WO2010140488A1 - 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法 - Google Patents

炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法 Download PDF

Info

Publication number
WO2010140488A1
WO2010140488A1 PCT/JP2010/058582 JP2010058582W WO2010140488A1 WO 2010140488 A1 WO2010140488 A1 WO 2010140488A1 JP 2010058582 W JP2010058582 W JP 2010058582W WO 2010140488 A1 WO2010140488 A1 WO 2010140488A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
modified silicone
fiber
oil agent
epoxy
Prior art date
Application number
PCT/JP2010/058582
Other languages
English (en)
French (fr)
Inventor
武圭 中山
善夫 橋本
幹生 中川
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to US13/262,890 priority Critical patent/US8323743B2/en
Priority to JP2010529970A priority patent/JP4616934B1/ja
Priority to CN2010800244148A priority patent/CN102459748B/zh
Publication of WO2010140488A1 publication Critical patent/WO2010140488A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M157/00Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
    • C10M157/10Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a compound containing atoms of elements not provided for in groups C10M157/02 - C10M157/08
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/65Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/65Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups
    • D06M15/652Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing epoxy groups comprising amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • C10M2229/0475Siloxanes with specific structure containing alkylene oxide groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/46Textile oils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Definitions

  • the present invention relates to an acrylic fiber oil agent for producing carbon fiber, an acrylic fiber for producing carbon fiber, and a method for producing carbon fiber for providing carbon fiber having excellent strength. More specifically, an acrylic fiber oil for carbon fiber production (hereinafter referred to as a precursor oil) that provides excellent strength when used in producing acrylic fibers for carbon fiber production (hereinafter sometimes referred to as a precursor). And an acrylic fiber for producing carbon fiber that has been produced by applying the oil agent, and a method for producing the carbon fiber using the oil agent.
  • a precursor oil an acrylic fiber oil for carbon fiber production
  • a precursor oil that provides excellent strength when used in producing acrylic fibers for carbon fiber production
  • an acrylic fiber for producing carbon fiber that has been produced by applying the oil agent, and a method for producing the carbon fiber using the oil agent.
  • Carbon fibers are widely used for aerospace applications, sports applications, general industrial applications and the like as reinforcing fibers for composite materials with plastics called matrix resins, utilizing their excellent mechanical properties.
  • a precursor production process may be referred to as a yarn production process.
  • This precursor is converted to a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C. (this process may hereinafter be referred to as a flame resistance process), and then carbonized in an inert atmosphere at 300 to 2000 ° C.
  • This process may be hereinafter referred to as a carbonization process
  • a common method hereinafter, the flameproofing process and the carbonization process may be collectively referred to as a firing process).
  • the precursor is manufactured through a drawing process that is drawn at a high magnification even when compared with a normal acrylic fiber. At that time, the fibers tend to stick together and are not uniformly stretched at a high magnification, resulting in a non-uniform precursor.
  • the carbon fiber obtained by firing such a precursor has a problem that sufficient strength cannot be obtained. Further, when the precursor is fired, there is a problem that the single fibers are fused with each other, and the quality and quality of the obtained carbon fibers are deteriorated.
  • Silicone oils with low fiber-to-fiber friction and excellent releasability when wet and in high-temperature environments to prevent adhesion of precursors and carbon fibers, especially amino modification that can improve heat resistance by crosslinking reaction Many techniques for applying a silicone-based oil to a precursor have been proposed (see Patent Documents 1 and 2), and are widely used industrially. However, even with these silicone oils, carbon fibers having sufficient strength may not be obtained.
  • an object of the present invention is to provide an acrylic fiber oil agent for producing carbon fiber, an acrylic fiber for producing carbon fiber, and a method for producing carbon fiber, which can provide excellent carbon fiber strength.
  • a silicone-based oil agent is an emulsion dispersed in water in order to adhere industrially safely and uniformly to a precursor. Therefore, when the silicone component used does not have self-emulsifying properties, various surfactants and the like are used together as an emulsifier component to be emulsified. As a result of intensive studies to solve the above-mentioned problems, the present inventors often find that this emulsifier component is incompatible with the silicone component in the absolutely dry state after removing moisture. When applied to the precursor as an emulsion and dried, the silicone component and the emulsifier component are separated, and the precursor surface cannot be uniformly coated, which is the cause of the burning spots in the firing step of converting the precursor to carbon fiber.
  • the present invention is an acrylic fiber oil agent for producing carbon fibers, which essentially contains an epoxy polyether-modified silicone and a surfactant, wherein the weight ratio of the epoxy polyether-modified silicone in the entire nonvolatile content of the oil agent is 1 to 95. It is an acrylic fiber oil agent for producing carbon fibers in which the weight percentage of the surfactant is 5 to 50% by weight.
  • the epoxy polyether-modified silicone contains a modified dimethylpolysiloxane modified with a substituent containing both a (poly) oxyalkylene group and an epoxy group, or a substituent containing an epoxy group and a (poly) oxyalkylene group It is preferably a modified dimethylpolysiloxane modified with two different substituents of the substituents to be modified.
  • the epoxy polyether-modified silicone is preferably at least one compound selected from a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
  • Ep An epoxy group represented by the following general formula (3) or the following general formula (4).
  • A An alkylene group having 2 to 4 carbon atoms.
  • (AO) A in r may be the same, may be different.
  • Ra represents an alkylene group having 1 to 6 carbon atoms.
  • Rb an alkylene group having 1 to 6 carbon atoms or an alkoxyalkylene group represented by —R 1 OR 2 — (R 1 and R 2 represent an alkylene group having 1 to 6 carbon atoms, which may be the same or different. May be present).
  • Rc represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • r An integer from 1 to 50.
  • B, D each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a hydroxyl group, or —Ra— (AO) r —Rb—Ep. B and D may be the same or different.
  • F, G An alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a hydroxyl group, —Rb—Ep, or —Ra— (AO) r —Rc. F and G may be the same or different.
  • the epoxy group of the epoxy polyether-modified silicone is preferably a glycidyl type epoxy group.
  • the present invention further includes an amino-modified silicone, and the total weight ratio of the epoxy polyether-modified silicone and the amino-modified silicone in the entire nonvolatile content of the oil agent is 30 to 95% by weight, and the epoxy polyether-modified silicone
  • the amino acid-modified silicone weight ratio can be 5/95 to 90/10.
  • the acrylic fiber oil agent for carbon fiber manufacture concerning this invention becomes the emulsion disperse
  • the acrylic fiber for carbon fiber production (precursor) according to the present invention is produced by attaching the above-mentioned acrylic fiber oil agent for carbon fiber production to the raw acrylic fiber of the acrylic fiber for carbon fiber production.
  • the carbon fiber manufacturing method according to the present invention comprises the above-mentioned acrylic fiber oil agent for carbon fiber production (precursor oil agent) attached to the raw acrylic fiber of the acrylic fiber for carbon fiber production, and the acrylic fiber for carbon fiber production (precursor). ), A flameproofing process for converting the precursor produced in the spinning process into a flameproof fiber in an oxidizing atmosphere at 200 to 300 ° C., and the flameproof fiber at a temperature of 300 to 2000 ° C. And a carbonization treatment step of carbonizing in an inert atmosphere.
  • the acrylic fiber oil agent for producing carbon fiber of the present invention is an acrylic fiber for producing carbon fiber that is uniformly stretched by being attached to a raw acrylic fiber for producing acrylic fiber for carbon fiber and has few fiber bundles and fluff.
  • firing spots such as a flameproofing treatment step and a carbonization treatment step in carbon fiber production can be prevented, and the strength of the carbon fiber can be improved.
  • the acrylic fiber oil for carbon fiber manufacturing is adhered, a high-strength carbon fiber can be manufactured.
  • the acrylic fiber oil agent for carbon fiber production (precursor oil agent) of the present invention is a process for producing an acrylic fiber for carbon fiber production (precursor), and the first object is to give it to the precursor raw acrylic fiber before the drawing process.
  • the oil agent which essentially contains an epoxy polyether-modified silicone and a surfactant, and the weight ratio of the epoxy polyether-modified silicone to the entire nonvolatile content of the oil agent is 1 to 95% by weight
  • the surfactant Is an acrylic fiber oil agent for producing carbon fibers having a weight ratio of 5 to 50% by weight. This will be described in detail below.
  • Epoxy polyether modified silicone The precursor oil agent of the present invention contains an epoxy polyether-modified silicone as an essential component.
  • the epoxy polyether-modified silicone is not particularly limited as long as it is a modified dimethylpolysiloxane modified with a substituent having an epoxy group in the molecule and a substituent containing a (poly) oxyalkylene group.
  • the epoxy polyether-modified silicone is a modified dimethylpolysiloxane modified with a substituent containing both a (poly) oxyalkylene group and an epoxy group, or a substituent containing an epoxy group and a (poly) oxy Examples thereof include modified dimethylpolysiloxane modified with two kinds of substituents having different substituents containing an alkylene group.
  • a modified dimethylpolysiloxane in which a part of methyl group of dimethylpolysiloxane is substituted by a substituent having both an epoxy group and a (poly) oxyalkylene group, or a part of methyl group of dimethylpolysiloxane is It is shown as a modified dimethylpolysiloxane substituted by a substituent having an epoxy group and a part of other methyl groups being substituted by a substituent having a (poly) oxyalkylene group.
  • the remaining one substituent other than dimethyl of the terminal silicon of the modified dimethylpolysiloxane may be an alkyl group having 1 to 3 carbon atoms, that is, a methyl group, an ethyl group or a propyl group, or an alkoxy group having 1 to 3 carbon atoms.
  • it may be a methoxy group, an ethoxy group or a propoxy group, a hydroxyl group, a substituent similar to a substituent obtained by modifying the methyl group of the main chain dimethylpolysiloxane, that is, a substituent having an epoxy group,
  • a substituent having a (poly) oxyalkylene group may be used, or a substituent having both an epoxy group and a (poly) oxyalkylene group may be used.
  • the epoxy polyether-modified silicone will be described in detail below.
  • Examples of the epoxy polyether-modified silicone include compounds represented by the above general formulas (1) and (2).
  • Ep in the formula represents an epoxy group, and examples of the structure include a glycidyl type epoxy group represented by the general formula (3) and an alicyclic epoxy group represented by the general formula (4).
  • Either type of epoxy group may be used, and is not particularly limited. However, a glycidyl type epoxy group is more preferable because it has a more general structure and can easily synthesize various types of compounds.
  • the (poly) oxyalkylene group of the epoxy polyether-modified silicone is not particularly limited, but from the viewpoint of affinity with the emulsifier component, and in the case of using another silicone component together, from the viewpoint of affinity with the silicone component, oxyalkylene
  • the repeating unit of the group is preferably 1 to 50 and the number of repeating silicon in the main chain to which the side chain containing an oxyalkylene group is bonded is preferably 1 to 100.
  • the repeating unit q of the main chain to which the repeating unit r of the oxyalkylene group is 1 to 50 and the substituent containing the oxyalkylene group is bonded is 1 to 100 is preferred, r is 1 to 30 and q is 10 to 80, more preferably r is 5 to 20, and q is 15 to 60.
  • the repeating number s of silicon in the main chain to which a substituent containing a (poly) oxyalkylene group is bonded and the main chain to which a substituent containing an epoxy group is bonded is preferred.
  • r is 5 to 20, s is 15 to 60, and t is 1 to 100, r is 5 to 20, s is 15 to 60, and More preferably, t is 10 to 80, particularly preferably r is 5 to 20, s is 15 to 60, and t is 15 to 60.
  • A represents an alkylene group having 2 to 4 carbon atoms
  • a in (AO) r may be the same or different. That is, examples of AO that is an oxyalkylene group include an oxyethylene group, an oxypropylene group, and an oxybutylene group, and the oxyalkylene group constituting the polyoxyalkylene group may be the same, for example, an oxyethylene group and an oxyalkylene group. They may be different like a propylene group block copolymer or a random copolymer.
  • Random copolymer of oxypropylene group and random copolymer of oxyethylene group and oxybutylene group are preferable, and oxyethylene group is the most important factor in this case from the standpoint of improving film uniformity. And a random copolymer of oxypropylene group or (poly) oxyethylene group is more preferable.
  • Ra represents an alkylene group having 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • Rb is an alkylene group having 1 to 6 carbon atoms, or an alkoxyalkylene group represented by —R 1 OR 2 — (R 1 and R 2 are alkylene groups having 1 to 6 carbon atoms, which may be the same or different. May be present).
  • R 1 and R 2 are alkylene groups having 1 to 6 carbon atoms, which may be the same or different. May be present).
  • the number of carbon atoms is more preferably 1 to 4.
  • R 1 and R 2 both preferably have 1 to 3 carbon atoms.
  • r represents an integer of 1 to 50, preferably 1 to 30, more preferably 5 to 25, and still more preferably 5 to 20.
  • p represents an integer of 1 to 10,000, preferably 100 to 1,000, more preferably 200 to 800, and still more preferably 300 to 700.
  • q represents an integer of 1 to 100, preferably 10 to 80, and more preferably
  • B and D each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a hydroxyl group, or —Ra— (AO) r —Rb—Ep.
  • B and D may be the same or different.
  • B and D are preferably a hydroxyl group or —Ra— (AO) r —Rb—Ep, more preferably a hydroxyl group.
  • B and D are carbon.
  • An alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms is preferred, an alkyl group having 1 to 3 carbon atoms is more preferred, and a methyl group or an ethyl group is more preferred from the viewpoint of ease of production.
  • Rc represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Rc is more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and even more preferably a hydrogen atom.
  • s and t each represent an integer of 1 to 100, preferably 10 to 80, and more preferably 15 to 60.
  • F and G each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a hydroxyl group, —Rb—Ep, or —Ra— (AO) r —Rc.
  • F and G may be the same or different.
  • F and G are hydroxy groups, preferably -Rb-Ep or -Ra- (AO) r -Rc, more preferably hydroxyl group or -Rb-Ep, hydroxyl further preferable.
  • F and G are the number of carbon atoms from the viewpoint of emphasizing “gum-up suppression in the adhesion treatment process”, that is, “process passability”, and further, “spinning operability”, and emphasizing the product stability of the precursor oil agent.
  • An alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms is preferable, an alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group or an ethyl group is more preferable from the viewpoint of ease of production.
  • the epoxy polyether-modified silicone represented by the general formulas (1) and (2) is a methyl hydrogen polysiloxane in which a part of the methyl group of dimethylpolysiloxane is a hydrogen atom, and an organic compound having an unsaturated bond at the terminal And the like can be synthesized by a known method. That is, it can be synthesized by a hydrosilylation reaction of methyl hydrogen polysiloxane.
  • Examples of the organic compound having an unsaturated bond at the terminal include compounds represented by the following general formulas (5) to (15), but are not limited thereto.
  • x and y are each an integer of 0 or more and satisfying r ⁇ 1 ⁇ x + y ⁇ 1.
  • the compounds represented by the general formulas (5) to (15) may be a single compound selected from the possible combinations of x and y, or may be a mixture of a plurality of combinations.
  • Ra and Rb are methylene groups
  • Ep is an epoxy group of general formula (3)
  • Ra is a methylene group
  • Rb is an ethylene group
  • Ep is an epoxy group of the formula (4)
  • (AO) r is an oxyethylene-oxypropylene copolymer
  • Ra is a methylene group
  • Rc is a hydrogen atom
  • (AO) r is an oxyethylene-oxypropylene copolymer
  • a modified polysiloxane which is an oxypropylene group and r x + y + 1 is obtained.
  • Ra is a methylene group
  • Rc is a methyl group
  • (AO) r is an oxyethylene-oxypropylene copolymer
  • a modified polysiloxane which is an oxypropylene group and r x + y + 1 is obtained.
  • Ra is a methylene group
  • Rc is a hydrogen atom
  • (AO) r is an oxyethylene-oxypropylene copolymer, oxypropylene- (poly) oxyethylene group or (poly)
  • a modified polysiloxane which is an oxypropylene group and r x + y + 1 is obtained.
  • Ra is a methylene group
  • Rc is a methyl group
  • a modified polysiloxane which is an oxypropylene group and r x + y + 1 is obtained.
  • the compound represented by the general formula (1) it can be obtained by a hydrosilylation reaction between tilhydrogen polysiloxane and at least one compound selected from the compounds of the general formulas (5) and (6).
  • Examples include modified polysiloxane.
  • examples of the compound represented by the general formula (2) include methyl hydrogen polysiloxane and one or more compounds (epoxy group-containing compounds) selected from the general formulas (7), (8) and (9), And modified polysiloxanes obtainable by a hydrosilylation reaction with one or more compounds (polyoxyalkylene group-containing compounds) selected from the general formulas (10) to (15).
  • the epoxy polyether-modified silicone has a (poly) oxyalkylene group in the same molecule, it can be easily emulsified and a stable aqueous emulsion can be obtained. Further, the friction between fiber and fiber under high temperature and humidity is low, and the anti-sticking property at the time of stretching is also excellent. Moreover, compatibility with an emulsifier is good and it is easy to form a uniform film. Furthermore, since the epoxy polyether-modified silicone is also excellent in heat resistance, a uniform high heat-resistant film can be obtained, which advantageously acts to prevent fusion in the firing process.
  • the fiber-fiber friction tends to be high, which is advantageous for improving the convergence of the precursor fiber bundle, and a uniform fiber bundle with few fiber variations can be sent to the firing step. Therefore, a high-strength carbon fiber can be obtained. Moreover, it has the characteristics that it is difficult to gum up as compared with amino-modified silicone and is excellent in yarn-manufacturability.
  • epoxy polyether-modified silicone and amino-modified silicone can be used in combination as the silicone component.
  • Amino-modified silicone is superior in heat cross-linking property as compared with epoxy polyether-modified silicone, and therefore has excellent heat resistance.
  • the fiber-fiber friction under high temperature and humidity is also low. Therefore, using amino-modified silicone in combination is more advantageous for preventing sticking in the stretching process and preventing fusion in the firing process.
  • the silicone component is an epoxy-modified silicone
  • it is difficult to obtain a stable aqueous emulsion and since the compatibility with the emulsifier is poor, it is difficult to form a uniform film.
  • Even when an epoxy-modified silicone and an amino-modified silicone are used in combination it is difficult to obtain a stable aqueous emulsion.
  • the silicone component is a polyether-modified silicone, the heat resistance is inferior, and a sufficient anti-sticking effect cannot be obtained in a stretching process under high temperature and humidity, and a sufficient anti-fusing effect in a firing process cannot be obtained. .
  • the viscosity at 25 ° C. of the epoxy polyether-modified silicone is not particularly limited, but is preferably from 100 to 15,000 mm 2 / s from the viewpoint of preventing scattering and handling in each step after application to the fiber. 000 mm 2 / s is more preferable, and 500 to 5,000 mm 2 / s is particularly preferable.
  • the epoxy group content of the epoxy polyether-modified silicone is not particularly limited. However, if the content is too high, aqueous emulsification becomes difficult, and in the aqueous system, cyclization of the epon ring occurs easily. There is a possibility that the period in which the ring remains is very short and the product life is very short. From such a viewpoint, the modification equivalent of the epoxy group is preferably 500 to 15,000 g / mol, more preferably 500 to 5,000 g / mol, and particularly preferably 500 to 3,000 g / mol.
  • surfactant In the precursor oil agent of this invention, surfactant is included as an essential component.
  • a surfactant is a component that is used as an emulsifier and makes a precursor oil emulsified or dispersed. When imparted to the precursor in that state, the surfactant has uniform adhesion to the fiber and the safety of the working environment. Can be improved.
  • the surfactant is not particularly limited, and a known one can be appropriately selected from nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants. Surfactant may use together 1 type (s) or 2 or more types.
  • nonionic surfactant examples include polyoxyalkylene straight chain alkyl ethers such as polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether; Polyoxyalkylene branched primary alkyl ethers such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene isocetyl ether, polyoxyethylene isostearyl ether; polyoxyethylene 1-hexyl hexyl ether, polyoxyethylene 1-octyl hexyl ether , Polyoxyethylene 1-hexyloctyl ether, polyoxyethylene 1-pentyl heptyl ether, polyoxyethylene 1-heptyl pentyl Polyoxyalkylene branched secondary alkyl ethers such as ether; polyoxyalkylene alkenyl ethers such as polyoxyethylene oleyl ether; polyoxys such as
  • polyoxyalkylene alkylaryl phenyl ether Of polyoxyalkylene alkylaryl phenyl ether; polyoxyethylene monolaur , Polyoxyethylene monooleate, polyoxyethylene monostearate, polyoxyethylene monomyristate, polyoxyethylene dilaurate, polyoxyethylene dioleate, polyoxyethylene dimyristate, polyoxyethylene distearate, etc.
  • polyoxyalkylene branched primary alkyl ether polyoxyalkylene branched secondary alkyl ether, polyoxyalkylene alkenyl ether, polyoxyalkylene ether, polyoxyalkylene alkenyl ether, polyoxyalkylene alkenyl ether,
  • Oxyalkylene alkylphenyl ethers polyoxyalkylene fatty acid esters, oxyethylene-oxypropylene block copolymers, and terminal alkyl etherified products of oxyethylene-oxypropylene block copolymers are preferred, and further, tarred on the fiber in the firing step.
  • Oxyethylene-oxypropylene blocks or random copolymers, and terminal alkyl ethers of oxyethylene-oxypropylene block copolymers are more preferred because they are less likely to damage the fiber. .
  • anionic surfactant examples include fatty acids (salts) such as oleic acid, palmitic acid, sodium oleate, potassium palmitate, triethanolamine oleate; hydroxyacetic acid, potassium potassium hydroxyacetate, lactic acid, lactic acid Hydroxyl group-containing carboxylic acid (salt) such as potassium salt; polyoxyalkylene alkyl ether acetic acid (salt) such as polyoxyethylene tridecyl ether acetic acid (sodium salt); and many carboxyl groups such as potassium trimellitic acid and potassium pyromellitic acid Salt of substituted aromatic compound; alkylbenzene sulfonic acid (salt) such as dodecylbenzene sulfonic acid (sodium salt); polyoxyalkylene alkyl ether sulfonic acid (salt) such as polyoxyethylene 2-ethylhexyl ether sulfonic acid (potassium salt) Stearoylmethyltaurine (sodium),
  • Polyoxyalkylene alkyl (alkenyl) ether phosphates such as polyoxyethylene lauryl ether phosphate (potassium salt), polyoxyethylene oleyl ether phosphate (triethanolamine salt); polyoxyethylene Nonoxyphenyl ether phosphate (potassium salt), polyoxyalkylene alkyl pheny such as polyoxyethylene dodecyl phenyl ether phosphate (potassium salt) Ether ether phosphate (salt); long-chain sulfosuccinate such as sodium di-2-ethylhexylsulfosuccinate and sodium dioctylsulfosuccinate; long-chain N such as sodium monosodium N-lauroylglutamate and disodium N-stearoyl-L-glutamate -Acyl glutamate; and the like.
  • cationic surfactant examples include quaternary ammonium salts such as lauryltrimethylammonium chloride and oleylmethylethylammonium ethosulphate; (polyoxyethylene) laurylaminoether lactate, stearylaminoether lactate, (polyoxyethylene) ) (Polyoxyalkylene) alkylamino ether salts such as lauryl amino ether trimethyl phosphate salt;
  • amphoteric surfactants examples include 2-undecyl-N, N- (hydroxyethylcarboxymethyl) -2-imidazoline sodium and 2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt.
  • Imidazoline-based amphoteric surfactants 2-heptadecyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, lauryldimethylaminoacetic acid betaine, alkylbetaines, amide betaines, sulfobetaines, and other betaine-based amphoteric surfactants; N- Examples include amino acid type amphoteric surfactants such as lauryl glycine, N-lauryl ⁇ -alanine, N-stearyl ⁇ -alanine.
  • ionic surfactants may change over time after emulsification, and may affect the crosslinkability of silicone.
  • nonionic surfactants are preferred because they have excellent stability over time, little influence on silicone crosslinkability, and excellent emulsifying power of silicone.
  • the precursor oil of the present invention can further contain an amino-modified silicone.
  • Amino-modified silicone has the effect of greatly reducing fiber-fiber friction when wet, and is a very effective component for preventing sticking of single fibers in the precursor yarn forming process, particularly in the drawing process, that is, for uniform drawing.
  • the fiber bundle lacks the convergence property in the precursor yarn making process and the flameproofing process, the single fibers are easily broken, fuzz and yarn defects, and excellent carbon fibers cannot be obtained. There was a case.
  • amino-modified silicone is a component excellent in crosslinkability, and is a preferable component from the viewpoint of protecting fibers during firing because silicone crosslinking is promoted in the firing step and heat resistance is further improved.
  • the crosslinkability may be reduced by using a silicone having an extremely small amount of amino modification or a system in which a phosphorus antioxidant or a phosphorus surfactant is added as a crosslinking inhibitor. Since it is largely suppressed, the heat resistance is lowered, and sufficient anti-fusing property cannot be obtained in the firing step, and it may be a problem that carbon fibers having excellent strength cannot be obtained.
  • epoxy polyether-modified silicone is a component having higher fiber-fiber friction and lower crosslinkability when wet and in a high-temperature environment than amino-modified silicone.
  • amino-modified silicone and epoxy polyether-modified silicone in combination, "precursor anti-sticking property in the spinning process”, “fiber bundle convergence in the spinning process and flameproofing process”, " It is possible to meet various required characteristics such as “gum-up suppression in the adhesion treatment process” and “fiber protection in the baking process”, and carbon fibers having excellent strength can be obtained.
  • the compatibility with the emulsifier component is also excellent, the “coating uniformity” is also improved, and it becomes easier to obtain carbon fibers with even better strength.
  • the structure of the amino-modified silicone is not particularly limited, and the amino group that is the modifying group may be bonded to the side chain of the silicone that is the main chain, may be bonded to the terminal, or both. It may be bonded.
  • the amino group may be a monoamine type or a polyamine type, and both may be present in one molecule.
  • the viscosity of the amino-modified silicone at 25 ° C. is not particularly limited, but it is possible to prevent the sticking of the precursor in the drawing process included in the yarn-making process and to improve the drawability (that is, to suppress the fiber-fiber friction).
  • the amino equivalent of the amino-modified silicone is not particularly limited, but from the viewpoint of suppressing the gum-up in the adhesion treatment process and preventing the deterioration of the anti-fusing property in the firing process such as the flame resistance process and the carbonization process. Is preferably 500 to 10,000 g / mol, more preferably 1,000 to 5,000 g / mol, and particularly preferably 1,500 to 2,000 g / mol.
  • the precursor oil agent of the present invention is an oil agent containing the above-mentioned epoxy polyether-modified silicone and a surfactant as essential components.
  • the weight ratio of the epoxy polyether-modified silicone in the entire nonvolatile content of the oil is 1 to 95% by weight, preferably 30 to 95% by weight, more preferably 50 to 95% by weight, still more preferably 70 to 90% by weight, and particularly preferably 75 to 85% by weight.
  • the non-volatile content means an absolutely dry component when the oil agent is heat treated at 105 ° C. to remove the solvent and the like and reach a constant weight.
  • the weight ratio of the surfactant to the whole nonvolatile content of the oil is 5 to 50% by weight from the viewpoint of emulsion stability when used as an emulsifier and maintaining the heat resistance of the oil. It is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, and further preferably 15 to 25% by weight.
  • the weight ratio of the surfactant in the entire nonvolatile content is less than 5% by weight, it is difficult to obtain good emulsion stability.
  • it exceeds 50% by weight the heat resistance of the oil agent is insufficient, and it is difficult to obtain the anti-fusing property in the firing step.
  • the silicone component consists essentially of an epoxy polyether-modified silicone, thereby providing excellent uniform dry film uniformity, anti-fusing properties during firing, emulsion stability, While maintaining the strength, it is possible to further improve the convergence of the precursor and the yarn operability.
  • the silicone component consists essentially of epoxy polyether-modified silicone means that the total weight ratio of the epoxy polyether-modified silicone and the surfactant exceeds 99.9% by weight, preferably 100% by weight. .
  • the precursor oil agent of this invention can further contain amino modified silicone as mentioned above.
  • the total weight ratio of the epoxy polyether-modified silicone and amino-modified silicone in the entire nonvolatile content of the oil is 30 to 95% by weight, preferably 50 to 95% by weight, more preferably 70 to 90% by weight, and 75 to More preferred is 85% by weight.
  • the weight ratio of epoxy polyether-modified silicone to amino-modified silicone is preferably 5/95 to 90/10.
  • the weight ratio of epoxy polyether-modified silicone to amino-modified silicone is more preferably 30/70 to 70/30, and 35/65 Is more preferably from 65/35, particularly preferably from 40/60 to 60/40.
  • either the epoxy polyether-modified silicone or the amino-modified silicone can be increased.
  • a weight ratio containing a large amount of epoxy polyether-modified silicone it is preferable to use a weight ratio containing a large amount of epoxy polyether-modified silicone.
  • the weight ratio of the epoxy polyether-modified silicone to the amino-modified silicone is preferably 50/50 to 90/10, more preferably 70/30 to 90/10, and further preferably 80/20 to 85/15. .
  • the weight ratio of the epoxy polyether-modified silicone to the amino-modified silicone is preferably 5/95 to 50/50, more preferably 5/95 to 30/70, and even more preferably 5/95 to 20/80.
  • the amino-modified silicone and the epoxy polyether-modified silicone may be mixed after aqueous emulsification with another emulsifier, mixed after aqueous emulsification with the same emulsifier,
  • a mixed silicone of a modified silicone and an epoxy polyether-modified silicone may be water-based emulsified using an emulsifier.
  • the emulsification method There is no particular limitation on the emulsification method.
  • the precursor oil of the present invention may contain silicone components other than epoxy polyether-modified silicone and amino-modified silicone as long as the effects of the present invention are not impaired.
  • silicone components other than epoxy polyether-modified silicone and amino-modified silicone as long as the effects of the present invention are not impaired.
  • amide polyether-modified silicone is more preferable because it has good compatibility with emulsifiers and is a component that can easily achieve both gum-up resistance and heat resistance.
  • the precursor oil of the present invention further comprises phenolic, amine-based, sulfur-based, phosphorus-based, quinone-based antioxidants; higher alcohol / higher alcohol ether sulfates, sulfonates, higher salts
  • Antistatic agents such as phosphate ester salts of alcohol / higher alcohol ethers, quaternary ammonium salt type cationic surfactants, amine salt type cationic surfactants; alkyl esters of higher alcohols, higher alcohol ethers, waxes, etc.
  • a smoothing agent; an antibacterial agent; an antiseptic agent; a rust inhibitor; and a hygroscopic agent may be contained as long as the effects of the present invention are not impaired.
  • Precursor oil may be composed of the above-mentioned components consisting only of non-volatile components, but from the viewpoint of uniform adhesion to fibers and safety in the working environment, it contains a surfactant as an emulsifier and is emulsified in water. Alternatively, it is preferable that the emulsion is dispersed and dispersed in water.
  • the precursor oil agent of the present invention contains water
  • the weight ratio of water in the entire precursor oil agent, the weight ratio of the non-volatile content is not particularly limited, for example, transportation costs when transporting the precursor oil agent of the present invention, What is necessary is just to determine suitably considering the handleability etc. which depend on emulsion viscosity.
  • the weight ratio of water in the entire precursor oil is preferably 0.1 to 99.9% by weight, more preferably 10 to 99.5% by weight, and particularly preferably 50 to 99% by weight.
  • the weight ratio (concentration) of the non-volatile component in the entire precursor oil is preferably 0.01 to 99.9% by weight, more preferably 0.5 to 90% by weight, and particularly preferably 1 to 50% by weight.
  • the precursor oil of the present invention can be produced by mixing the components described above.
  • the method for emulsifying and dispersing the components described above is not particularly limited, and a known method can be employed.
  • each component constituting the precursor oil agent is charged into warm water under stirring and emulsified and dispersed, and each component constituting the precursor oil agent is mixed, homogenizer, homomixer, ball mill, etc.
  • a precursor and carbon fiber can be manufactured using the precursor oil agent of this invention.
  • the method for producing a precursor and carbon fiber using the precursor oil of the present invention is not particularly limited, and examples thereof include the following production methods.
  • the method for producing carbon fiber of the present invention includes a yarn making process, a flameproofing process, and a carbonization process.
  • the precursor of the present invention is obtained by this spinning process.
  • the yarn making process is a process of manufacturing a precursor by adhering the acrylic fiber oil agent for carbon fiber production (precursor oil agent) to the raw acrylic fiber for acrylic fiber for carbon fiber production (precursor), and includes an adhesion treatment process and a stretching process. Including.
  • the adhesion treatment process is a process of adhering the precursor oil agent after spinning the precursor raw acrylic fiber. That is, the precursor oil agent is adhered to the precursor raw acrylic fiber in the adhesion treatment step.
  • the precursor raw acrylic fiber is stretched immediately after spinning, and the high-strength stretching after the adhesion treatment step is particularly called a “stretching step”.
  • the stretching process may be a wet heat stretching method using high temperature steam or a dry heat stretching method using a hot roller.
  • the precursor is composed of acrylic fibers mainly composed of polyacrylonitrile obtained by copolymerizing at least 95 mol% or more of acrylonitrile and 5 mol% or less of the flame resistance promoting component.
  • the flame resistance promoting component a vinyl group-containing compound having copolymerizability with acrylonitrile can be suitably used.
  • the fineness of the single fiber of the precursor is not particularly limited, but is preferably 0.1 to 2.0 dTex from the balance between performance and production cost.
  • the number of single fibers constituting the precursor fiber bundle is not particularly limited, but is preferably 1,000 to 96,000 from the balance between performance and production cost.
  • the precursor oil may be attached to the precursor raw acrylic fiber at any stage of the yarn-making process, but it is preferably attached once before the drawing process. It may be attached at any stage before the stretching process, for example, immediately after spinning. Further, it may be reattached at any stage after the stretching process, for example, it may be reattached immediately after the stretching process, it may be reattached at the winding stage, or it may be reattached immediately before the flameproofing process. May be.
  • the adhesion method when the precursor oil consists only of non-volatile components, it may be adhered using a roller or the like as a straight oil, or the precursor oil is emulsified or dispersed in a solvent such as water or an organic solvent. In the case of an emulsion, it may be attached by dipping or spraying.
  • the rate of applying the precursor oil is to obtain an anti-sticking effect and an anti-fusing effect between the fibers and fibers, and to prevent deterioration of the quality of the carbon fiber due to the tar product of the oil in the carbonization treatment process.
  • the amount is preferably 0.1 to 2% by weight, more preferably 0.3 to 1.5% by weight, based on the weight of the precursor.
  • the application rate of the precursor oil is more than 2% by weight, the precursor oil covers more than necessary between the single fibers, so that the supply of oxygen to the fibers is hindered in the flameproofing process, and the strength of the obtained carbon fiber May decrease.
  • the provision rate of precursor oil agent here is defined with the percentage of the non volatile matter weight to which the precursor oil agent adhered with respect to the precursor weight.
  • the flameproofing treatment step is a step of converting the precursor to which the precursor oil is adhered to flameproof fiber in an oxidizing atmosphere of 200 to 300 ° C.
  • the oxidizing atmosphere is usually an air atmosphere.
  • the temperature of the oxidizing atmosphere is preferably 230 to 280 ° C.
  • the acrylic fiber after the adhesion treatment is applied for 20 to 100 minutes (preferably 30 minutes) while applying a tension of a stretch ratio of 0.90 to 1.10 (preferably 0.95 to 1.05). Heat treatment is performed for ⁇ 60 minutes.
  • a flameproof fiber having a flameproof structure is produced through intramolecular cyclization and oxygen addition to the ring.
  • the carbonization treatment step is a step of further carbonizing the flameproof fiber in an inert atmosphere at 300 to 2000 ° C.
  • a tension of 0.95 to 1.15 is applied to the flame resistant fiber in a firing furnace having a temperature gradient from 300 ° C. to 800 ° C. in an inert atmosphere such as nitrogen or argon. It is preferable to perform a preliminary carbonization treatment step (first carbonization treatment step) by applying a heat treatment for several minutes while applying. Thereafter, in order to further promote carbonization and graphitization, a tension ratio of 0.95 to 1.05 is applied to the first carbonization treatment step in an inert atmosphere such as nitrogen or argon.
  • the second carbonization treatment step is performed by heat treatment for several minutes, and the flame resistant fiber is carbonized.
  • the maximum temperature is preferably set to 1000 ° C. or higher (preferably 1000 to 2000 ° C.) while applying a temperature gradient. This maximum temperature is appropriately selected and determined according to the required characteristics (tensile strength, elastic modulus, etc.) of the desired carbon fiber.
  • a graphitization treatment step can be performed subsequent to the carbonization treatment step.
  • the graphitization treatment step is usually performed at a temperature of 2000 to 3000 ° C. while applying tension to the fiber obtained in the carbonization treatment step in an inert atmosphere such as nitrogen or argon.
  • the carbon fiber thus obtained can be subjected to a surface treatment for increasing the adhesive strength with the matrix resin when made into a composite material, depending on the purpose.
  • a surface treatment method gas phase or liquid phase treatment can be adopted, and from the viewpoint of productivity, liquid phase treatment with an electrolytic solution of acid, alkali or the like is preferable.
  • various sizing agents having excellent compatibility with the matrix resin can be added to improve the processability and handleability of the carbon fiber.
  • ⁇ Grant ratio> The precursor after application of the oil was alkali-fused with potassium hydroxide / sodium butyrate, dissolved in water, and adjusted to pH 1 with hydrochloric acid. This was colored by adding sodium sulfite and ammonium molybdate, and colorimetric determination (wavelength 815 m ⁇ ) of silicomolybdenum blue was performed to determine the silicon content. The application rate of the precursor oil was calculated using the silicon content obtained here and the value of the silicon content in the oil obtained in advance by the same method.
  • ⁇ Precursor anti-sticking property> The fiber bundle of the precursor after the drawing process was cut into a length of 5 cm, the degree of sticking of the fiber bundle was observed, and judged according to the following evaluation criteria. ⁇ : No sticking ⁇ : Almost no sticking ⁇ : Less sticking ⁇ : Many sticking
  • Silicone composition S-E5 Epoxy polyether modified silicone (X-22-3667: manufactured by Shin-Etsu Chemical Co., Ltd., 25 ° C. viscosity: 4,900 mm 2 / s, epoxy equivalent: 4,500 g / mol) Silicone composition S-E6: Epoxy polyether modified silicone (BY-16-876: manufactured by Toray Dow Corning, 25 ° C.
  • Silicone composition S-1 Amino-modified silicone (25 ° C. viscosity: 1,300 mm 2 / s, amino equivalent: 2000 g / mol)
  • Silicone composition S-2 Amide polyether modified silicone (BY-16-878: manufactured by Toray Dow Corning, 25 ° C. viscosity: 1,600 mm 2 / s, modified equivalent: 3,200 g / mol)
  • Silicone composition S-3 polyether-modified silicone (25 ° C. viscosity: 2,900 mm 2 / s)
  • Silicone composition S-4 Epoxy modified silicone (25 ° C.
  • Silicone composition S-5 Dimethyl silicone (KF-96-100: manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Surfactant N-1 Polyoxyethylene alkyl ether (the alkyl group has C12 to C14) having an oxyethylene repeating unit of 3 to 12 in consideration of the hydrophilic-hydrophobic balance with the silicone component It selected suitably and used.
  • the oil agent non-volatile content concentration was 3.0% by weight.
  • This oil agent emulsion was attached to a precursor raw material acrylic fiber obtained by copolymerizing 97 mol% acrylonitrile and 3 mol% itaconic acid so as to give an application rate of 1.0%, and stretching process (steam stretching, stretching)
  • a precursor was produced through a magnification of 2.1 times (single fiber fineness 0.8 dtex, 24,000 filaments).
  • the precursor was flameproofed in a flameproofing furnace at 250 ° C. for 60 minutes and then baked in a carbonization furnace having a temperature gradient of 300 to 1400 ° C. in a nitrogen atmosphere to convert into carbon fibers.
  • Table 1 shows the evaluation results of the characteristic values.
  • Example 1 a precursor and carbon fibers after adhesion of the oil agent were obtained in the same manner as in Example 1 except that the oil agent emulsion was prepared so as to have the oil agent nonvolatile component composition shown in Tables 1 to 5. The evaluation results of each characteristic value are shown in Tables 1 to 5.
  • the acrylic fiber oil agent for producing carbon fibers of the present invention is a treatment agent used when producing acrylic fibers for producing carbon fibers, and is useful for producing high-quality carbon fibers.
  • the acrylic fiber for producing carbon fibers of the present invention is treated with the acrylic fiber oil for producing carbon fibers of the present invention, and is useful for producing high-quality carbon fibers.
  • High quality carbon fibers can be obtained by the carbon fiber manufacturing method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

 本発明の目的は、優れた炭素繊維強度が得られる炭素繊維製造用アクリル繊維油剤と、それを用いた炭素繊維の製造方法とを提供することにある。 本発明の炭素繊維製造用アクリル繊維油剤は、エポキシポリエーテル変性シリコーンおよび界面活性剤を必須に含有し、油剤の不揮発分全体に占める前記エポキシポリエーテル変性シリコーンの重量割合が1~95重量%であり、前記界面活性剤の重量割合が5~50重量%である。また、本発明の炭素繊維の製造方法は、炭素繊維製造用アクリル繊維の原料アクリル繊維に上記油剤を付着させて、炭素繊維製造用アクリル繊維を製造する製糸工程と、その製糸工程で製造されたアクリル繊維を200~300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む。

Description

炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
 本発明は、強度の優れた炭素繊維を提供するための炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法に関する。より詳しくは、炭素繊維製造用アクリル繊維(以下、プレカーサーと称することがある)を製造する際に使用することで、優れた強度が得られる炭素繊維製造用アクリル繊維油剤(以下、プレカーサー油剤と称することがある)と、該油剤を付与させて製糸した炭素繊維製造用アクリル繊維、および該油剤を用いた炭素繊維の製造方法とに関する。
 炭素繊維はその優れた機械的特性を利用して、マトリックス樹脂と称されるプラスチックとの複合材料用の補強繊維として、航空宇宙用途、スポーツ用途、一般産業用途等に幅広く利用されている。
 炭素繊維を製造する方法としては、まずプレカーサーを製造する(このプレカーサーの製造工程を製糸工程と称することがある)。このプレカーサーを200~300℃の酸化性雰囲気中で耐炎化繊維に転換し(この工程を以下、耐炎化工程と称することがある)、続いて300~2000℃の不活性雰囲気中で炭素化する(この工程を以下、炭素化工程と称することがある)方法が一般的である(以下、耐炎化工程と炭素化工程をあわせて、焼成工程と称することがある)。このプレカーサーの製造には通常のアクリル繊維と比較しても高倍率に延伸される延伸工程を経る。その際、繊維同士の膠着が起こり易く、均一に高倍率延伸が行われない為に、不均一なプレカーサーとなる。この様なプレカーサーを焼成して得られる炭素繊維は十分な強度が得られないという問題がある。また、プレカーサーの焼成時には、単繊維同士の融着が発生し、得られた炭素繊維の品質、品位を低下させるという問題がある。
 プレカーサーの膠着防止、炭素繊維の融着防止の為、湿潤時および高温環境下で繊維-繊維間摩擦が低く、優れた剥離性を有するシリコーン系油剤、特に架橋反応により耐熱性を向上できるアミノ変性シリコーン系油剤をプレカーサーに付与する技術が多数提案され(特許文献1~2参照)、工業的に広く利用されている。しかし、これらシリコーン系油剤であっても、十分な強度を有する炭素繊維が得られないことがあった。
特開昭60-181322号公報 特開2001-172879号公報
 かかる従来の技術背景に鑑み、本発明の目的は、優れた炭素繊維強度が得られる炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法を提供することにある。
 一般に、シリコーン系油剤は、工業的に安全にかつプレカーサーに均一に付着させるため、水中に分散したエマルジョンとされる。そのため、使用されるシリコーン成分が自己乳化性を有しない場合においては、各種界面活性剤などが乳化剤成分として併用され、エマルジョン化される。
 本発明者らは、上記課題を解決するべく鋭意検討した結果、この乳化剤成分が、水分を除去した後の絶乾状態において、シリコーン成分と相溶しない場合が多く、そのようなシリコーン系油剤をエマルジョンとしてプレカーサーに付与、乾燥させた際に、シリコーン成分と乳化剤成分が分離してしまい、均質にプレカーサー表面を被覆できていないこと、このことがプレカーサーを炭素繊維に転換する焼成工程における焼成斑の一因となり、十分な強度を有する炭素繊維が得られないことを見出した。
 また、湿潤時や高温環境下において、繊維-繊維間摩擦が低く、剥離性に優れるシリコーンを用いるため、プレカーサー製糸工程や焼成工程において、繊維束の集束性が劣り、バラケた単繊維が切断されて毛羽が発生し易く、焼成後、十分な強度を有する炭素繊維が得られない場合があることも見出した。
 そして、特定の変性シリコーンおよび界面活性剤を必須成分として含有する炭素繊維製造用アクリル繊維油剤であれば、油剤絶乾状態における皮膜の均一性を向上させることができ、かつ繊維束の集束性も向上でき、上記課題を解決できるという知見を得て、本発明に到達した。
 すなわち、本発明はエポキシポリエーテル変性シリコーンおよび界面活性剤を必須に含有する炭素繊維製造用アクリル繊維油剤であって、油剤の不揮発分全体に占める前記エポキシポリエーテル変性シリコーンの重量割合が1~95重量%であり、前記界面活性剤の重量割合が5~50重量%である炭素繊維製造用アクリル繊維油剤である。
 前記エポキシポリエーテル変性シリコーンは、(ポリ)オキシアルキレン基とエポキシ基の両方を含有する置換基によって変性された変性ジメチルポリシロキサン、またはエポキシ基を含有する置換基と(ポリ)オキシアルキレン基を含有する置換基の2つの異なる置換基によって変性された変性ジメチルポリシロキサンであることが好ましい。
 また、前記エポキシポリエーテル変性シリコーンは、下記一般式(1)で示される化合物および下記一般式(2)で示される化合物から選ばれる少なくとも1種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
但し、式(1)および(2)中の記号は、各式独立して次の意味を表す。
Ep:下記一般式(3)または下記一般式(4)で示されるエポキシ基を示す。
A:炭素数2~4のアルキレン基を示す。(AO)中のAは同一であってもよく、異なっていてもよい。
Ra:炭素数1~6のアルキレン基を示す。
Rb:炭素数1~6のアルキレン基、または-ROR-で示されるアルコキシアルキレン基(R、Rは炭素数1~6のアルキレン基を示し、同一であってもよく、異なっていてもよい)を示す。
Rc:水素原子または炭素数1~10のアルキル基を示す。
r:1~50の整数を示す。
p:1~10000の整数を示す。
q:1~100の整数を示す。
s:1~100の整数を示す。
t:1~100の整数を示す。
B、D:炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、水酸基、または-Ra-(AO)-Rb-Epを示す。BとDは同一であってもよく、異なっていてもよい。
F、G:炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、水酸基、-Rb-Ep、または-Ra-(AO)-Rcを示す。FとGは同一であってもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 また、前記エポキシポリエーテル変性シリコーンのエポキシ基は、グリシジル型エポキシ基であることが好ましい。
 また本発明は、アミノ変性シリコーンをさらに含有し、油剤の不揮発分全体に占める前記エポキシポリエーテル変性シリコーンと前記アミノ変性シリコーンの合計の重量割合が30~95重量%であり、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンとの重量比が5/95~90/10とすることができる。
 また、本発明にかかる炭素繊維製造用アクリル繊維油剤は、水中に分散したエマルジョンとなっていることが好ましい。
 また、本発明にかかる炭素繊維製造用アクリル繊維(プレカーサー)は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記の炭素繊維製造用アクリル繊維油剤を付着させて製糸したものである。
 また、本発明にかかる炭素繊維の製造方法は、炭素繊維製造用アクリル繊維の原料アクリル繊維に上記の炭素繊維製造用アクリル繊維油剤(プレカーサー油剤)を付着させて、炭素繊維製造用アクリル繊維(プレカーサー)を製造する製糸工程と、その製糸工程で製造されたプレカーサーを200~300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む製造方法である。
 本発明の炭素繊維製造用アクリル繊維油剤は、炭素繊維製造用アクリル繊維の原料アクリル繊維に付着させて処理することによって、均一延伸された、繊維束のバラケ、毛羽が少ない炭素繊維製造用アクリル繊維を製造でき、また、炭素繊維製造における耐炎化処理工程および炭素化処理工程などの焼成工程で焼成斑を防止し、炭素繊維の強度を向上させることができる。また、本発明の炭素繊維の製造方法では、この炭素繊維製造用アクリル繊維油剤を付着させるので、高強度の炭素繊維を製造できる。
 本発明の炭素繊維製造用アクリル繊維油剤(プレカーサー油剤)は、炭素繊維製造用アクリル繊維(プレカーサー)を製造する工程で、延伸工程前に、プレカーサーの原料アクリル繊維に付与することを第一の目的とした油剤であり、エポキシポリエーテル変性シリコーンおよび界面活性剤を必須に含有し、油剤の不揮発分全体に占める前記エポキシポリエーテル変性シリコーンの重量割合が1~95重量%であり、前記界面活性剤の重量割合が5~50重量%である、炭素繊維製造用アクリル繊維油剤である。以下に詳細に説明する。
〔エポキシポリエーテル変性シリコーン〕
 本発明のプレカーサー油剤はエポキシポリエーテル変性シリコーンを必須成分として含む。エポキシポリエーテル変性シリコーンは、分子中にエポキシ基を有する置換基と(ポリ)オキシアルキレン基を含む置換基により変性された変性ジメチルポリシロキサンであれば特に限定されない。具体的には、エポキシポリエーテル変性シリコーンは、(ポリ)オキシアルキレン基とエポキシ基の両方を含有する置換基によって変性された変性ジメチルポリシロキサン、またはエポキシ基を含有する置換基と(ポリ)オキシアルキレン基を含有する置換基の異なる2種類の置換基によって変性された変性ジメチルポリシロキサンが挙げられる。より詳細には、ジメチルポリシロキサンのメチル基の一部がエポキシ基と(ポリ)オキシアルキレン基の両方を有する置換基によって置換された変性ジメチルポリシロキサン、又はジメチルポリシロキサンのメチル基の一部がエポキシ基を有する置換基によって置換され、且つ他のメチル基の一部が(ポリ)オキシアルキレン基を有する置換基によって置換された変性ジメチルポリシロキサンとして示される。その変性ジメチルポリシロキサンの末端珪素のジメチル以外の残りの1つの置換基は、炭素数1~3のアルキル基、すなわちメチル基、エチル基またはプロピル基でもよいし、炭素数1~3のアルコキシ基、すなわちメトキシ基、エトキシ基またはプロポキシ基でもよいし、水酸基でもよいし、主鎖のジメチルポリシロキサンのメチル基を変性した置換基と同様の置換基、即ちエポキシ基を有する置換基でもよいし、(ポリ)オキシアルキレン基を有する置換基でもよいし、エポキシ基と(ポリ)オキシアルキレン基の両方を有する置換基でもよい。以下にエポキシポリエーテル変性シリコーンについてさらに詳細に説明する。
 エポキシポリエーテル変性シリコーンとしては上記一般式(1)および(2)で示される化合物が挙げられる。式中のEpはエポキシ基を示すが、その構造としては、一般式(3)に示すグリシジル型エポキシ基、および一般式(4)に示す脂環式エポキシ基が挙げられる。どちらの型のエポキシ基でもよく、特に限定はしないが、より汎用的な構造であり、多用な種類の化合物を合成しやすいという理由からグリシジル型エポキシ基の方がより好ましい。
 エポキシポリエーテル変性シリコーンの(ポリ)オキシアルキレン基は特に限定はないが、乳化剤成分との親和性の観点、他のシリコーン成分を併用する場合はそのシリコーン成分との親和性の観点から、オキシアルキレン基の繰り返し単位は1~50で且つオキシアルキレン基を含む側鎖が結合した主鎖の珪素の繰り返し数が1~100であるものが好ましい。例えば、上記一般式(1)で示される化合物であれば、オキシアルキレン基の繰り返し単位rが1~50で且つオキシアルキレン基を含む置換基が結合した主鎖の珪素の繰り返し数qは1~100であるものが好ましく、rが1~30で且つqが10~80であるものがさらに好ましく、rが5~20で且つqが15~60であるものが特に好ましい。さらに上記一般式(2)で示される化合物においては、(ポリ)オキシアルキレン基を含む置換基が結合した主鎖の珪素の繰り返し数sと、エポキシ基を含有する置換基が結合した主鎖の珪素の繰り返し数tについて、sとtの数量比に特に限定は無いが、sとtが同程度の数値の方が、親水-疎水のバランス関係から乳化剤成分との相溶性が優れる場合が多く、より好ましい。即ち、上記一般式(2)においては、rが5~20で且つsが15~60で且つtが1~100であるものが好ましく、rが5~20で且つsが15~60で且つtが10~80であるものがより好ましく、rが5~20で且つsが15~60で且つtが15~60であるものが特に好ましい。
 一般式(1)で示される化合物において、Aは炭素数2~4のアルキレン基を示し、(AO)中のAは同一であってもよく、異なっていてもよい。つまり、オキシアルキレン基であるAOとしては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられ、ポリオキシアルキレン基を構成するオキシアルキレン基は同一であってもよく、例えばオキシエチレン基とオキシプロピレン基のブロック共重合体やランダム共重合体のように異なっていてもよい。これらの中でも、水系乳化のし易さ、皮膜の均一性に寄与する乳化剤成分との相溶性、取り扱い性を重視し、親水性-疎水性のバランスと粘度をコントロールし易いという観点から、オキシエチレン基とオキシプロピレン基のランダム共重合体や、オキシエチレン基とオキシブチレン基のランダム共重合体が好ましく、さらには本件の重要因子である皮膜の均一性向上を最重視する観点からはオキシエチレン基とオキシプロピレン基のランダム共重合体または、(ポリ)オキシエチレン基がより好ましい。
 Raは炭素数1~6のアルキレン基を示し、炭素数は1~3がさらに好ましい。Rbは炭素数1~6のアルキレン基、または-ROR-で示されるアルコキシアルキレン基(R、Rは炭素数1~6のアルキレン基を示し、同一であってもよく、異なっていてもよい)を示す。炭素数1~6のアルキレン基の場合、炭素数は1~4がより好ましい。またアルコキシアルキレン基の場合、R、Rの炭素数はともに1~3がより好ましい。rは1~50の整数を示し、1~30が好ましく、5~25がより好ましく、5~20がさらに好ましい。pは1~10000の整数を示し、100~1000が好ましく、200~800がより好ましく、300~700がさらに好ましい。qは1~100の整数を示し、10~80が好ましく、15~60がさらに好ましい。
 BおよびDは、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、水酸基または-Ra-(AO)-Rb-Epを示す。BとDは同一であってもよく、異なっていてもよい。これらの中でも、架橋性をより重視する観点から、BおよびDは、水酸基または-Ra-(AO)-Rb-Epが好ましく、水酸基がより好ましい。一方、「付着処理工程でのガムアップ抑制」すなわち「工程通過性」、更には「製糸操業性」をより重視する観点およびプレカーサー油剤の製品安定性を重視する観点からは、BおよびDは炭素数1~3のアルキル基または炭素数1~3のアルコキシ基が好ましく、炭素数1~3のアルキル基がより好ましく、さらに製造の容易さの観点も加味するとメチル基またはエチル基がより好ましい。
 一般式(2)で示される化合物において、A、Ra、Rb、rおよびpは、一般式(1)で示される化合物で説明した内容と同じである。Rcは、水素原子または炭素数1~10のアルキル基を示す。Rcは、水素原子または炭素数1~3のアルキル基がより好ましく、水素原子であることがさらに好ましい。sおよびtは1~100の整数を示し、10~80が好ましく、15~60がさらに好ましい。
 FおよびGは、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、水酸基、-Rb-Ep、または-Ra-(AO)-Rcを示す。FとGは同一であってもよく、異なっていてもよい。これらの中でも、架橋性をより重視する観点から、FおよびGは、水酸基、-Rb-Epまたは-Ra-(AO)-Rcが好ましく、水酸基または-Rb-Epがより好ましく、水酸基が更に好ましい。一方、「付着処理工程でのガムアップ抑制」すなわち「工程通過性」、更には「製糸操業性」をより重視する観点およびプレカーサー油剤の製品安定性を重視する観点からはFおよびGは炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基が好ましく、炭素数1~3のアルキル基がより好ましく、更に製造の容易さの観点も加味するとメチル基またはエチル基がより好ましい。
 上記一般式(1)および(2)で示されるエポキシポリエーテル変性シリコーンはジメチルポリシロキサンのメチル基の一部が水素原子である、メチルハイドロジェンポリシロキサンと、末端に不飽和結合を有する有機化合物などとから公知の方法により合成することができる。即ちメチルハイドロジェンポリシロキサンのヒドロシリル化反応により合成することができる。末端に不飽和結合を有する有機化合物としては次の一般式(5)~(15)で示される様な化合物が挙げられるが、これらに限るものではない。
 一般式(5)~(15)において、xおよびyはそれぞれ0以上であり、かつr-1≧x+y≧1を満たす整数を示す。また、一般式(5)~(15)に示される化合物は、xおよびyの可能な組み合わせから選ばれる単独の化合物でもよいし、複数の組み合わせの混合物でもよい。
Figure JPOXMLDOC01-appb-C000009
 ヒドロシリル化反応により、一般式(1)において、Ra、Rbがメチレン基、Epが一般式(3)のエポキシ基、(AO)がオキシエチレン-オキシプロピレンの共重合体、(ポリ)オキシエチレン基またはオキシエチレン-(ポリ)オキシプロピレン基であり、r=x+y+1である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000010
 ヒドロシリル化反応により、一般式(1)において、Ra、がメチレン基、Rbがエチレン基、Epが式(4)のエポキシ基、(AO)がオキシエチレン-オキシプロピレンの共重合体、(ポリ)オキシエチレン基またはオキシエチレン-(ポリ)オキシプロピレン基であり、r=x+y+1である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000011
 ヒドロシリル化反応により、一般式(2)において、Rbが炭素数4のアルキレン基、Epが一般式(3)のエポキシ基である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000012
 ヒドロシリル化反応により、一般式(2)において、Rbが、-ROR-で示されるアルコキシアルキレン基であり、Rがプロピレン基、Rがメチレン基である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000013
 ヒドロシリル化反応により、一般式(2)において、Rbがエチレン基、Epが一般式(4)のエポキシ基である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000014
 ヒドロシリル化反応により、一般式(2)において、Raがエチレン基、AOがオキシエチレン、r=1、Rcが水素原子である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000015
 ヒドロシリル化反応により、一般式(2)において、Raがメチレン基、AOがオキシプロピレン、r=1、Rcが水素原子である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000016
 ヒドロシリル化反応により、一般式(2)において、Raがメチレン基、Rcが水素原子、(AO)がオキシエチレン-オキシプロピレンの共重合体、(ポリ)オキシエチレン基またはオキシエチレン-(ポリ)オキシプロピレン基であり、r=x+y+1である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000017
 ヒドロシリル化反応により、一般式(2)において、Raがメチレン基、Rcがメチル基、(AO)rがオキシエチレン-オキシプロピレンの共重合体、(ポリ)オキシエチレン基またはオキシエチレン-(ポリ)オキシプロピレン基であり、r=x+y+1である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000018
 ヒドロシリル化反応により、一般式(2)において、Raがメチレン基、Rcが水素原子、(AO)がオキシエチレン-オキシプロピレンの共重合体、オキシプロピレン-(ポリ)オキシエチレン基または(ポリ)オキシプロピレン基であり、r=x+y+1である変性ポリシロキサンが得られる。
Figure JPOXMLDOC01-appb-C000019
 ヒドロシリル化反応により、一般式(2)において、Raがメチレン基、Rcがメチル基、(AO)がオキシエチレン-オキシプロピレンの共重合体、オキシプロピレン-(ポリ)オキシエチレン基または(ポリ)オキシプロピレン基であり、r=x+y+1である変性ポリシロキサンが得られる。
 一般式(1)で示される化合物の例としては、チルハイドロジェンポリシロキサンと一般式(5)および(6)の化合物から選ばれる少なくとも1つ以上の化合物とのヒドロシリル化反応により得ることができる変性ポリシロキサンを挙げられる。
 一方、一般式(2)で示される化合物の例としてはメチルハイドロジェンポリシロキサンと、一般式(7)、(8)および(9)から選ばれる1つ以上の化合物(エポキシ基含有化合物)、および一般式(10)~(15)から選ばれる1つ以上の化合物(ポリオキシアルキレン基含有化合物)とのヒドロシリル化反応により得ることができる変性ポリシロキサンを挙げることができる。
 エポキシポリエーテル変性シリコーンは同一分子内に(ポリ)オキシアルキレン基を有している為、乳化が容易で、安定な水系エマルジョンを得ることができる。また、高温、湿潤下の繊維-繊維間摩擦が低く、延伸時の膠着防止性にも優れる。また、乳化剤との相溶性が良く、均一な皮膜を形成し易い。更にエポキシポリエーテル変性シリコーンは耐熱性にも優れる為、均一な高耐熱皮膜が得られ、焼成工程での融着防止に有利に作用する。
 また、アミノ変性シリコーンと比較すると、繊維-繊維間摩擦は高い傾向があり、プレカーサー繊維束の集束性向上に有利であり、繊維バラケの少ない均一な繊維束を焼成工程に送る事ができる。その為、高強度の炭素繊維を得ることができる。また、アミノ変性シリコーンと比較してガムアップし難く、製糸操業性にも優れるという特徴を有する。
 また、後述するように、シリコーン成分としてエポキシポリエーテル変性シリコーンとアミノ変性シリコーンを併用することもできる。アミノ変性シリコーンはエポキシポリエーテル変性シリコーンと比較して熱架橋性に優れる為、耐熱性が優れる。また、高温、湿潤下の繊維-繊維間摩擦もより低いという特徴がある。その為、アミノ変性シリコーンを併用することにより、より延伸工程での膠着防止や、焼成工程での融着防止に有利となる。またシリコーン成分としてアミノ変性シリコーンを単独で用いるよりも、均一皮膜を形成し易く、ガムアップし難い為に製糸操業性に優れ、また、プレカーサー繊維束の集束性にも優れる。
 シリコーン成分がエポキシ変性シリコーンである場合、安定な水系エマルジョンを得ることが困難であり、また、乳化剤との相溶性も悪い為、均一皮膜を形成し難い。エポキシ変性シリコーンとアミノ変性シリコーンを併用する場合においても、安定な水系エマルジョンを得る事が困難である。また、均一な皮膜を形成し難い為、十分な強度の炭素繊維を得ることが難しい。
 シリコーン成分がポリエーテル変性シリコーンである場合、耐熱性が劣り、高温、湿潤下の延伸工程で十分な膠着防止効果が得られないことや、焼成工程での十分な融着防止効果が得られない。その為に、十分な強度の炭素繊維を得ることが難しい。ポリエーテル変性シリコーンとアミノ変性シリコーンを併用する場合には、耐熱性とガムアップの抑制を両立することが困難である。
 シリコーン成分として、エポキシ変性シリコーンとポリエーテル変性シリコーンを併用する場合も安定な水系エマルジョンを得ることが困難であり、均一皮膜を形成し難い。また耐熱性が劣り、焼成工程での十分な融着防止効果が得られない。その為に、十分な強度の炭素繊維を得ることが難しい。
 また、シリコーン成分としてエポキシ変性シリコーンとポリエーテル変性シリコーンとアミノ変性シリコーンを併用する場合も安定な水系エマルジョンを得ることが困難であり、均一皮膜を形成し難い。その為に、十分な強度の炭素繊維が得ることが難しい。
 エポキシポリエーテル変性シリコーンの25℃における粘度については特に限定はないが、繊維に付与後の各工程での飛散防止と取扱性の観点から100~15,000mm/sが好ましく、300~10,000mm/sがさらに好ましく、500~5,000mm/sが特に好ましい。
 エポキシポリエーテル変性シリコーンのエポキシ基含有量には特に限定はないが、含有量が多すぎると水系乳化が困難となり、また水系ではエポン環の環化が起こり易い為、含有量が少なすぎるとエポン環が残存する期間が非常に短くなってしまい、製品寿命が非常に短くなってしまうおそれがある。このような観点から、エポキシ基の変性当量は500~15,000g/molが好ましく、500~5,000g/molがさらに好ましく、500~3,000g/molが特に好ましい。
 例えば、上記一般式(1)で示される化合物においては、メチルハイドロジェンポリシロキサンと一般式(5)で示される化合物のヒドロシリル化反応により得られるエポキシポリエーテル変性シリコーンで、25℃における粘度が2,000mm/s、エポキシ当量が3,000g/molであるもの(末端珪素置換基がトリメチル基であり、r=1~20、p=10~1,000、q=10~80であるものの混合物)や、メチルハイドロジェンポリシロキサンと一般式(6)で示される化合物のヒドロシリル化反応により得られるエポキシポリエーテル変性シリコーンで、25℃における粘度が4,000mm/s、エポキシ当量が2,800g/molであるもの(末端珪素置換基がトリメチル基であり、r=1~20、p=10~1,000、q=10~80であるものの混合物)などが好適例として挙げられる。
 上記一般式(2)で示される化合物においては、メチルハイドロジェンポリシロキサンと一般式(7)および(12)で示される化合物とのヒドロシリル化反応により得られるエポキシポリエーテル変性シリコーンで、25℃における粘度が、3,000mm/s、エポキシ当量が5,000g/molであるもの(末端珪素置換基がトリメチル基であり、r=1~20、p=10~1,000、s=5~80、t=5~80であるものの混合物)や、メチルハイドロジェンポリシロキサンと一般式(9)および(12)で示される化合物とのヒドロシリル化反応により得られるエポキシポリエーテル変性シリコーンで、25℃における粘度が、5,000mm/s、エポキシ当量が2,000g/molであるもの(末端珪素置換基がトリメチル基であり、r=1~20、p=10~1,000、s=5~80、t=5~80であるものの混合物)などが好適例として挙げられる。また、信越化学工業製の、X-22-4741、KF-1002、X-22-3667、東レ・ダウコーニング製の、FZ-3736、BY-16-876、SF-8421なども好適例として挙げることができる。
〔界面活性剤〕
 本発明のプレカーサー油剤においては、界面活性剤を必須成分として含む。界面活性剤は、乳化剤として使用され、プレカーサー油剤を乳化または分散させた状態にする成分であり、その状態にてプレカーサーに付与する際に、繊維への均一な付着性および作業環境の安全性を向上させることができる。
 界面活性剤としては、特に限定されず、非イオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤および両性界面活性剤から、公知のものを適宜選択して使用することができる。界面活性剤は、1種または2種以上を併用してもよい。
 非イオン系界面活性剤としては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル等のポリオキシアルキレン直鎖アルキルエーテル;ポリオキシエチレン2-エチルヘキシルエーテル、ポリオキシエチレンイソセチルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシアルキレン分岐第一級アルキルエーテル;ポリオキシエチレン1-ヘキシルヘキシルエーテル、ポリオキシエチレン1-オクチルヘキシルエーテル、ポリオキシエチレン1-ヘキシルオクチルエーテル、ポリオキシエチレン1-ペンチルへプチルエーテル、ポリオキシエチレン1-へプチルペンチルエーテル等のポリオキシアルキレン分岐第二級アルキルエーテル;ポリオキシエチレンオレイルエーテル等のポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレントリスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレントリベンジルフェニル、ポリオキシエチレンジベンジルフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル等のポリオキシアルキレンアルキルアリールフェニルエーテル;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノオレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノミリスチレート、ポリオキシエチレンジラウレート、ポリオキシエチレンジオレート、ポリオキシエチレンジミリスチレート、ポリオキシエチレンジステアレート等のポリオキシアルキレン脂肪酸エステル;ソルビタンモノパルミテート、ソルビタンモノオレート等のソルビタンエステル;ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレート等のポリオキシアルキレンソルビタン脂肪酸エステル;グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノパルミテート等のグリセリン脂肪酸エステル;ポリオキシアルキレンソルビトール脂肪酸エステル;ショ糖脂肪酸エステル;ポリオキシエチレンひまし油エーテル等のポリオキシアルキレンひまし油エーテル;ポリオキシエチレン硬化ひまし油エーテル等のポリオキシアルキレン硬化ひまし油エーテル;ポリオキシエチレンラウリルアミノエーテル、ポリオキシエチレンステアリルアミノエーテル等のポリオキシアルキレンアルキルアミノエーテル;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体の末端アルキルエーテル化物;オキシエチレン-オキシプロピレンブロックまたはランダム共重合体の末端ショ糖エーテル化物;等を挙げることができる。
 これら非イオン系界面活性剤の中でも、シリコーン化合物の水系乳化力に特に優れるという理由で、ポリオキシアルキレン分岐第一級アルキルエーテル、ポリオキシアルキレン分岐第二級アルキルエーテル、ポリオキシアルキレンアルケニルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレン脂肪酸エステル、オキシエチレン-オキシプロピレンブロック共重合体、オキシエチレン-オキシプロピレンブロック共重合体の末端アルキルエーテル化物が好ましく、更に焼成工程で、繊維上でタール化して繊維に損傷を与え難いという理由で、オキシエチレン-オキシプロピレンブロックまたはランダム共重合体、オキシエチレン-オキシプロピレンブロック共重合体の末端アルキルエーテル化物がより好ましい。
 アニオン系界面活性剤としては、例えば、オレイン酸、パルミチン酸、オレイン酸ナトリウム塩、パルミチン酸カリウム塩、オレイン酸トリエタノールアミン塩等の脂肪酸(塩);ヒドロキシ酢酸、ヒドロキシ酢酸カリウム塩、乳酸、乳酸カリウム塩等のヒドロキシル基含有カルボン酸(塩);ポリオキシエチレントリデシルエーテル酢酸(ナトリウム塩)等のポリオキシアルキレンアルキルエーテル酢酸(塩);トリメリット酸カリウム、ピロメリット酸カリウム等のカルボキシル基多置換芳香族化合物の塩;ドデシルベンゼンスルホン酸(ナトリウム塩)等のアルキルベンゼンスルホン酸(塩);ポリオキシエチレン2-エチルヘキシルエーテルスルホン酸(カリウム塩)等のポリオキシアルキレンアルキルエーテルスルホン酸(塩);ステアロイルメチルタウリン(ナトリウム)、ラウロイルメチルタウリン(ナトリウム)、ミリストイルメチルタウリンN(ナトリウム)、パルミトイルメチルタウリン(ナトリウム)等の高級脂肪酸アミドスルホン酸(塩);ラウロイルサルコシン酸(ナトリウム)等のN-アシルサルコシン酸(塩);オクチルホスホネート(カリウム塩)等のアルキルホスホン酸(塩); フェニルホスホネート(カリウム塩)等の芳香族ホスホン酸(塩);2-エチルヘキシルホスホネートモノ2-エチルヘキシルエステル(カリウム塩)等のアルキルホスホン酸アルキル燐酸エステル(塩);アミノエチルホスホン酸(ジエタノールアミン塩)等の含窒素アルキルホスホン酸(塩);2-エチルヘキシルサルフェート(ナトリウム塩)等のアルキル硫酸エステル(塩);ポリオキシエチレン2-エチルヘキシルエーテルサルフェート(ナトリウム塩)等のポリオキシアルキレン硫酸エステル(塩);ラウリルホスフェート(カリウム塩)、セチルホスフェート(カリウム塩)、ステアリルホスフェート(ジエタノールアミン塩)等のアルキル燐酸エステル(塩);ポリオキシエチレンラウリルエーテルホスフェート(カリウム塩)、ポリオキシエチレンオレイルエーテルホスフェート(トリエタノールアミン塩)等のポリオキシアルキレンアルキル(アルケニル)エーテル燐酸エステル(塩);ポリオキシエチレンノニルフェニルエーテルホスフェート(カリウム塩)、ポリオキシエチレンドデシルフェニルエーテルホスフェート(カリウム塩)等のポリオキシアルキレンアルキルフェニルエーテル燐酸エステル(塩);ジ-2-エチルヘキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩、N-ラウロイルグルタミン酸ナトリウムモノナトリウム、N-ステアロイル-L-グルタミン酸ジナトリウム等の長鎖N-アシルグルタミン酸塩;等を挙げる事ができる。
 カチオン系界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、オレイルメチルエチルアンモニウムエトサルフェート等の第4級アンモニウム塩;(ポリオキシエチレン)ラウリルアミノエーテル乳酸塩、ステアリルアミノエーテル乳酸塩、(ポリオキシエチレン)ラウリルアミノエーテルトリメチルホスフェート塩等の(ポリオキシアルキレン)アルキルアミノエーテル塩等;を挙げることができる。
 両性界面活性剤としては、例えば、2-ウンデシル-N,N-(ヒドロキシエチルカルボキシメチル)-2-イミダゾリンナトリウム、2-ココイル-2-イミダゾリニウムヒドロキサイド-1-カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤;2-ヘプタデシル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等のベタイン系両性界面活性剤;N-ラウリルグリシン、N-ラウリルβ-アラニン、N-ステアリルβ-アラニン等のアミノ酸型両性界面活性剤等が挙げられる。
 これらの界面活性剤のなかでも、イオン性を持つ界面活性剤は乳化後の経時変化が起こる場合があり、またシリコーンの架橋性にも影響を与える場合がある。その為、経時安定性に優れ、シリコーン架橋性への影響も少なく、更にはシリコーンの乳化力にも優れるという理由から、非イオン系界面活性剤が好ましい。
〔アミノ変性シリコーン〕
 本発明のプレカーサー油剤は、アミノ変性シリコーンをさらに含有することができる。アミノ変性シリコーンは、湿潤時の繊維-繊維摩擦を大きく低減できる作用があり、プレカーサー製糸工程の特に延伸工程で単繊維同士の膠着防止、即ち均一延伸に非常に有効な成分である。しかし、その優れた平滑性のために、プレカーサー製糸工程や耐炎化工程で繊維束の集束性に欠け、単繊維がバラケ易く、毛羽、糸欠点となり、優れた炭素繊維が得られないことが問題となる場合があった。さらに、アミノ変性シリコーンは架橋性に優れる成分であり、焼成工程においてシリコーン架橋が促進され耐熱性が更に良好となり、焼成時の繊維保護の観点から好ましい成分である。しかし、その優れた架橋性のために、製糸工程の付着処理工程で油剤付与後の乾燥時においても架橋が促進されてしまい、ガムアップが問題となる場合があった。逆に付着処理工程におけるガムアップ抑制の目的から、アミノ変性量が極端に少ないシリコーンを用いたり、燐系酸化防止剤や燐系界面活性剤を架橋抑制剤として添加した系などでは、架橋性が大きく抑制されてしまう為、耐熱性が低下してしまい、焼成工程で十分な融着防止性が得られず、優れた強度の炭素繊維が得られないことが問題となる場合があった。
 一方、エポキシポリエーテル変性シリコーンは、アミノ変性シリコーンと比較して湿潤時および高温環境下での繊維-繊維間摩擦は高く、また架橋性は低い成分である。この為、アミノ変性シリコーンとエポキシポリエーテル変性シリコーンを併用することで、「製糸工程でのプレカーサーの膠着防止性」、「製糸工程、耐炎化工程での繊維束の集束性」、「製糸工程の付着処理工程でのガムアップ抑制」、「焼成工程での繊維保護」という様々な要求特性に対応することができ、優れた強度の炭素繊維を得る事ができる。さらに乳化剤成分との相溶性にも優れるため「皮膜の均一性」も向上し、よりいっそう優れた強度の炭素繊維が得られやすくなる。
 アミノ変性シリコーンの構造としては特に限定はなく、変性基であるアミノ基は、主鎖であるシリコーンの側鎖と結合していてもよいし、末端と結合していてもよいし、また両方と結合していてもよい。また、そのアミノ基は、モノアミン型であってもポリアミン型であってもよく、1分子中に両者が併存していてもよい。
 アミノ変性シリコーンの25℃における粘度については、特に限定はないが、製糸工程に含まれる延伸工程でのプレカーサーの膠着を防止し、延伸性を向上させる(すなわち繊維-繊維間摩擦を抑制する)観点から、また耐炎化処理工程におけるアミノ変性シリコーンの飛散防止および付着処理工程におけるガムアップ抑制の観点から、100~15,000mm/sが好ましく、500~10,000mm/sがさらに好ましく、1,000~5,000mm/sが特に好ましい。
 アミノ変性シリコーンのアミノ当量については、特に限定はないが、付着処理工程でのガムアップの抑制、および耐炎化工程や炭素化工程などの焼成工程での融着防止性の低下を防止する観点からは、500~10,000g/molが好ましく、1,000~5,000g/molがさらに好ましく、1,500~2,000g/molが特に好ましい。
〔プレカーサー油剤〕
 本発明のプレカーサー油剤は、上記のエポキシポリエーテル変性シリコーンおよび界面活性剤を必須成分として含む油剤である。絶乾皮膜の均一性および焼成時の融着防止性および油剤エマルジョンとする際の乳化安定性のバランス保持の観点から、油剤の不揮発分全体に占めるエポキシポリエーテル変性シリコーンの重量割合は、1~95重量%であり、30~95重量%が好ましく、50~95重量%がより好ましく、70~90重量%がさらに好ましく、75~85重量%が特に好ましい。不揮発分全体に占めるエポキシポリエーテル変性シリコーンの重量割合が1重量%未満となると、本発明の効果である絶乾皮膜の均一性が得られにくい。また、95重量%を超えると、必然的に他の必須成分の比率が合計で5重量%未満となり、焼成工程での融着防止性および良好な乳化安定性が得られにくい。なお、本発明において不揮発分とは、油剤を105℃で熱処理して溶媒等を除去し、恒量に達した時の絶乾成分を意味する。
 本発明のプレカーサー油剤において、油剤の不揮発分全体に占める界面活性剤の重量割合は、乳化剤として使用したときのエマルジョンの乳化安定性と油剤の耐熱性維持の観点から、5~50重量%であり、10~40重量%が好ましく、10~30重量%がより好ましく、さらに15~25重量%が好ましい。不揮発分全体に占める界面活性剤の重量割合が5重量%未満となると、良好な乳化安定性が得られにくい。また、50重量%を超えると、油剤の耐熱性が不足し、焼成工程における融着防止性が得られにくい。
 また、本発明のプレカーサー油剤において、シリコーン成分が実質的にエポキシポリエーテル変性シリコーンのみからなることにより、優れた絶乾皮膜の均一性、焼成時の融着防止性、乳化安定性、炭素繊維の強度を維持した上で、さらにプレカーサーの集束性および製糸操業性を一層向上させることができる。ここで、シリコーン成分が実質的にエポキシポリエーテル変性シリコーンのみからなるとは、エポキシポリエーテル変性シリコーンと界面活性剤の合計の重量割合が99.9重量%超をいい、好ましくは100重量%をいう。
 また、本発明のプレカーサー油剤は、上述のようにアミノ変性シリコーンをさらに含有することができる。油剤の不揮発分全体に占めるエポキシポリエーテル変性シリコーンとアミノ変性シリコーンの合計の重量割合は、30~95重量%であり、50~95重量%が好ましく、70~90重量%がより好ましく、75~85重量%がさらに好ましい。また、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンの重量比(エポキシポリエーテル変性シリコーン/アミノ変性シリコーン)は、5/95~90/10が好ましい。
 エポキシポリエーテル変性シリコーン、アミノ変性シリコーンの両者の効果をより効率よく利用する観点から、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンの重量比は、30/70~70/30がより好ましく、35/65~65/35がさらに好ましく、40/60~60/40が特に好ましい。
 また、製造プロセスの条件によっては、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンのどちらかを多くすることができる。例えば、製糸工程、耐炎化工程での繊維束の集束性を一層向上させる場合には、エポキシポリエーテル変性シリコーンを多く含む重量比にすることが好ましい。そのような場合、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンの重量比は、50/50~90/10が好ましく、70/30~90/10がより好ましく、80/20~85/15がさらに好ましい。
 一方、製糸工程でのプレカーサーの膠着防止性や、焼成工程での融着防止性を一層向上させる場合には、アミノ変性シリコーンを多く含む重量比にすることが好ましい。そのような場合、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンの重量比は5/95~50/50が望ましく、5/95~30/70がより好ましく、5/95~20/80がさらに好ましい。
 アミノ変性シリコーンを含有する場合は、アミノ変性シリコーンとエポキシポリエーテル変性シリコーンを別の乳化剤で水系乳化した後に混合してもよいし、同一の乳化剤で水系乳化した後に混合してもよいし、アミノ変性シリコーンとエポキシポリエーテル変性シリコーンの混合シリコーンを、乳化剤を用いて水系乳化してもよい。乳化方法などの限定は特にない。
 本発明のプレカーサー油剤は、本発明の効果を阻害しない範囲で、エポキシポリエーテル変性シリコーンおよびアミノ変性シリコーン以外のシリコーン成分を含んでいてもよい。具体的には、ジメチルシリコーン、エポキシ変性シリコーン、アルキレンオキサイド変性シリコーン(ポリエーテル変性シリコーン)、カルボキシ変性シリコーン、カルビノール変性シリコーン、アルキル変性シリコーン、アミノポリエーテル変性シリコーン、アマイドポリエーテル変性シリコーン、フェノール変性シリコーン、メタクリレート変性シリコーン、アルコキシ変性シリコーン、フッ素変性シリコーン等が挙げられる。中でも、アマイドポリエーテル変性シリコーンは乳化剤との相溶性もよく、耐ガムアップ性と耐熱性の両立を図り易い成分であるため、より好ましい。
 本発明のプレカーサー油剤はさらに上記した成分以外にも、フェノール系、アミン系、硫黄系、リン系、キノン系等の酸化防止剤;高級アルコール・高級アルコールエーテルの硫酸エステル塩、スルホン酸塩、高級アルコール・高級アルコールエーテルの燐酸エステル塩、第4級アンモニウム塩型カチオン系界面活性剤、アミン塩型カチオン系界面活性剤等の制電剤;高級アルコールのアルキルエステル、高級アルコールエーテル、ワックス類等の平滑剤;抗菌剤;防腐剤;防錆剤;および吸湿剤等を、本発明の効果を阻害しない範囲で含有してもさしつかえない。
 プレカーサー油剤は、不揮発分のみからなる上述の成分で構成されていてもよいが、繊維への均一な付着性および作業環境の安全性の面からは、乳化剤として界面活性剤を含み、水に乳化または分散させて、水中に分散したエマルジョンとなっている状態が好ましい。
 本発明のプレカーサー油剤が水を含む場合、プレカーサー油剤全体に占める水の重量割合、不揮発分の重量割合については、特に限定はなく、たとえば、本発明のプレカーサー油剤を輸送する際の輸送コストや、エマルジョン粘度に因るところの取扱い性等を考慮して適宜決定すればよい。プレカーサー油剤全体に占める水の重量割合は、好ましくは0.1~99.9重量%、さらに好ましくは10~99.5重量%、特に好ましくは50~99重量%である。プレカーサー油剤全体に占める不揮発分の重量割合(濃度)は、好ましくは0.01~99.9重量%、さらに好ましくは0.5~90重量%、特に好ましくは1~50重量%である。
 本発明のプレカーサー油剤は、上記で説明した成分を混合することによって製造することができる。特に、プレカーサー油剤が水中で乳化または分散させた状態の組成物である場合、上記で説明した成分を乳化・分散させる方法については特に限定されず、公知の手法が採用できる。このような方法としては、たとえば、プレカーサー油剤を構成する各成分を攪拌下の温水中に投入して乳化分散する方法や、プレカーサー油剤を構成する各成分を混合し、ホモジナイザー、ホモミキサー、ボールミル等を用いて機械せん断力を加えつつ、水を徐々に投入して転相乳化する方法等が挙げられる。
 また、本発明のプレカーサー油剤を用いて、プレカーサーおよび炭素繊維を製造することができる。本発明のプレカーサー油剤を用いたプレカーサーおよび炭素繊維の製造方法は、特に限定されないが、たとえば、以下の製造方法を挙げることができる。
〔プレカーサーおよび炭素繊維の製造方法〕
 本発明の炭素繊維の製造方法は、製糸工程と耐炎化処理工程と炭素化処理工程とを含む。本発明のプレカーサーは、この製糸工程で得られるものである。
 製糸工程は、炭素繊維製造用アクリル繊維(プレカーサー)の原料アクリル繊維に上記炭素繊維製造用アクリル繊維油剤(プレカーサー油剤)を付着させてプレカーサーを製造する工程であり、付着処理工程と延伸工程とを含む。
 付着処理工程は、プレカーサーの原料アクリル繊維を紡糸した後、プレカーサー油剤を付着させる工程である。つまり、付着処理工程でプレカーサーの原料アクリル繊維にプレカーサー油剤を付着させる。またこのプレカーサーの原料アクリル繊維は紡糸直後から延伸されるが、付着処理工程後の高倍率延伸を特に「延伸工程」と呼ぶ。延伸工程は高温水蒸気をもちいた湿熱延伸法でもよいし、熱ローラーをもちいた乾熱延伸法でもよい。
 プレカーサーは、少なくとも95モル%以上のアクリロニトリルと、5モル%以下の耐炎化促進成分とを共重合させて得られるポリアクリロニトリルを主成分とするアクリル繊維から構成される。耐炎化促進成分としては、アクリロニトリルに対して共重合性を有するビニル基含有化合物が好適に使用できる。プレカーサーの単繊維繊度については、特に限定はないが、性能と製造コストのバランスから、好ましくは0.1~2.0dTexである。また、プレカーサーの繊維束を構成する単繊維の本数についても特に限定はないが、性能と製造コストのバランスから、好ましくは1,000~96,000本である。
 プレカーサー油剤は、製糸工程のどの段階でプレカーサーの原料アクリル繊維に付着させてもよいが、延伸工程前に一度付着させておくことが好ましい。延伸工程前の段階であればどの段階でも、例えば紡糸直後に付着させてもよい。さらに延伸工程後のどの段階で再度付着させてもよく、例えば、延伸工程直後に再度付着させてもよいし、巻取り段階で再度付着させてもよいし、耐炎化工程の直前に再度付着させてもよい。その付着方法に関しては、プレカーサー油剤が不揮発分のみからなる場合は、ストレートオイルとしてローラー等を使用して付着してもよいし、プレカーサー油剤が水や有機溶剤等の溶媒中に乳化または分散させたエマルジョンの場合は、浸漬法、スプレー法等で付着してもよい。
 付着処理工程において、プレカーサー油剤の付与率は、繊維-繊維間の膠着防止効果や融着防止効果を得ることと、炭素化処理工程において油剤のタール化物によって炭素繊維の品質低下を防止することとのバランスからは、プレカーサーの重量に対して好ましくは0.1~2重量%であり、さらに好ましくは0.3~1.5重量%である。プレカーサー油剤の付与率が0.1重量%未満であると、単繊維間の膠着、融着を十分に防止できず、得られる炭素繊維の強度が低下することがある。一方、プレカーサー油剤の付与率が2重量%超であると、プレカーサー油剤が単繊維間を必要以上に覆うため、耐炎化処理工程において繊維への酸素の供給が妨げられ、得られる炭素繊維の強度が低下することがある。なお、ここでいうプレカーサー油剤の付与率とは、プレカーサー重量に対するプレカーサー油剤の付着した不揮発分重量の百分率で定義される。
 耐炎化処理工程は、プレカーサー油剤が付着したプレカーサーを200~300℃の酸化性雰囲気中で耐炎化繊維に転換する工程である。酸化性雰囲気とは、通常、空気雰囲気であればよい。酸化性雰囲気の温度は好ましくは230~280℃である。耐炎化処理工程では、付着処理後のアクリル繊維に対して、延伸比0.90~1.10(好ましくは0.95~1.05)の張力をかけながら、20~100分間(好ましくは30~60分間)にわたって熱処理が行われる。この耐炎化処理では、分子内環化および環への酸素付加を経て、耐炎化構造を持つ耐炎化繊維が製造される。
 炭素化処理工程は、耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる工程である。炭素化処理工程では、まず、窒素、アルゴン等の不活性雰囲気中、300℃から800℃まで温度勾配を有する焼成炉で、耐炎化繊維に対して、延伸比0.95~1.15の張力をかけながら、数分間熱処理して、予備炭素化処理工程(第一炭素化処理工程)を行うのが好ましい。その後、より炭素化を進行させ、且つグラファイト化を進行させるために、窒素、アルゴン等の不活性雰囲気中で、第一炭素化処理工程に対して延伸比0.95~1.05の張力をかけながら、数分間熱処理して、第二炭素化処理工程を行い、耐炎化繊維が炭素化される。第二炭素化処理工程における熱処理温度の制御については、温度勾配をかけながら、最高温度を1000℃以上(好ましくは1000~2000℃)とすることがよい。この最高温度は、所望する炭素繊維の要求特性(引張強度、弾性率等)に応じて適宜選択して決定される。
 本発明の炭素繊維の製造方法では、弾性率がさらに高い炭素繊維が所望される場合は、炭素化処理工程に引き続いて、黒鉛化処理工程を行うこともできる。黒鉛化処理工程は、通常、窒素、アルゴン等の不活性雰囲気中、炭素化処理工程で得られた繊維に対して張力をかけながら、2000~3000℃の温度で行われる。
 このようにして得られた炭素繊維には、目的に応じて、複合材料とした時のマトリックス樹脂との接着強度を高めるための表面処理を行うことができる。表面処理方法としては、気相または液相処理を採用でき、生産性の観点からは、酸、アルカリなどの電解液による液相処理が好ましい。さらに、炭素繊維の加工性、取り扱い性を向上させるために、マトリックス樹脂に対して相溶性の優れる各種サイジング剤を付与することもできる。
 以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。なお、以下の実施例に示されるパーセント(%)は特に限定しない限り、「重量%」を示す。各特性値の測定は以下に示す方法に基づいて行った。
<油剤の付与率>
 油剤付与後のプレカーサーを水酸化カリウム/ナトリウムブチラートでアルカリ溶融した後、水に溶解して塩酸でpH1に調整した。これを亜硫酸ナトリウムとモリブデン酸アンモニウムを加えて発色させ、ケイモリブデンブルーの比色定量(波長815mμ)を行い、ケイ素の含有量を求めた。ここで求めたケイ素含有量と予め同法で求めた油剤中のケイ素含有量の値を用いて、プレカーサー油剤の付与率を算出した。
<絶乾皮膜均一性>
 直径φ60mmのアルミカップ上に、各プレカーサー油剤エマルジョンを、その不揮発分の重量が1gとなるよう採取した。そして温風乾燥機にて105℃で3時間処理し、水分を除去して得られた絶乾皮膜の状態を観察し、下記の評価基準で判定した。
 ◎:斑点の無い均一な皮膜
 ○:1~5個の斑点のある皮膜
 △:6~9個の斑点のある皮膜
 ×:10個以上の斑点のある、または2つの部分に分離している皮膜
<プレカーサー膠着防止性>
 延伸工程後のプレカーサーの繊維束を5cm長にカットし、繊維束の膠着度合いを観察し、下記の評価基準で判定した。
 ◎:膠着無し
 ○:ほぼ膠着無し
 △:膠着少ない
 ×:膠着多い
<製糸操業性(ローラー汚れ)>
 プレカーサー50kgに油剤を付与した後の乾燥ローラーの汚染度合い(ガムアップ)を下記の評価基準で判定した。
 ◎ :ガムアップによるローラー汚染が無く、製糸操業性問題無し
 ○ :ガムアップによるローラー汚染が少なく、製糸操業性問題無し
 △ :ガムアップによるローラー汚染がややあるが、製糸操業性問題無し
 × :ガムアップによるローラー汚染があり、やや製糸操業性に劣る
 ××:ガムアップによるローラー汚染が著しく、製糸時に単糸取られ、捲き付きあり
<繊維束の集束性>
 プレカーサー製糸工程での巻取り時、解舒時、および耐炎化工程での耐炎化炉の入り口、出口において、繊維束の集束度合いを観察し、総合して下記の評価基準で目視判定した。
 ◎:均一な太さの繊維束で、単繊維のバラケも全く見られない
 ○:均一な太さの繊維束で、単繊維のバラケもほぼ見られない
 △:均一な太さの繊維束であるが、バラケた単繊維がやや見られる
 ×:バラケた単繊維も多く、単糸切れもみられる
<融着防止性>
炭素繊維から無作為に20カ所を選び、そこから長さ10mmの短繊維を切り出し、その融着状態を観察し、下記の評価基準で判定した。
 ◎:融着無し
 ○:ほぼ融着無し
 △:融着少ない
 ×:融着多い
<炭素繊維強度>
 JIS-R-7601に規定されているエポキシ樹脂含浸ストランド法に準じ測定し、測定回数10回の平均値を炭素繊維強度(GPa)とした。
<成分の説明>
 シリコーン組成物 S-E1:エポキシポリエーテル変性シリコーン(25℃粘度:2,000mm/s、エポキシ当量:3,000g/mol、末端珪素置換基:トリメチル基、一般式(5)で示される化合物を側鎖置換基として導入したもので、r=1~20、p=10~1,000、q=10~80であるものの混合物)
 シリコーン組成物 S-E2:エポキシポリエーテル変性シリコーン(25℃粘度:4,000mm/s、エポキシ当量:2,800g/mol、末端珪素置換基:トリメチル基、一般式(6)で示される化合物を側鎖置換基として導入したもので、r=1~20、p=10~1,000、q=10~80であるものの混合物)
 シリコーン組成物 S-E3:エポキシポリエーテル変性シリコーン(25℃粘度:3,000mm/s、エポキシ当量:5,000g/mol、末端珪素置換基:トリメチル基、一般式(7)および(12)で示される化合物を側鎖置換基として導入したもので、r=1~20、p=10~1,000、s=5~80、t=5~80であるものの混合物)
 シリコーン組成物 S-E4:エポキシポリエーテル変性シリコーン(25℃粘度:5,000mm/s、エポキシ当量:2,000g/mol、末端珪素置換基:トリメチル基、一般式(9)および(12)で示される化合物を側鎖置換基として導入したもので、r=1~20、p=10~1,000、s=5~80、t=5~80であるものの混合物)
 シリコーン組成物 S-E5:エポキシポリエーテル変性シリコーン(X-22-3667:信越化学工業製、25℃粘度:4,900mm/s、エポキシ当量:4,500g/mol)
 シリコーン組成物 S-E6:エポキシポリエーテル変性シリコーン(BY-16-876:東レ・ダウコーニング製、25℃粘度:2,200mm/s、エポキシ当量:2,800g/mol)
 シリコーン組成物 S-1:アミノ変性シリコーン(25℃粘度:1,300mm/s、アミノ当量:2000g/mol)
 シリコーン組成物 S-2:アマイドポリエーテル変性シリコーン(BY-16-878:東レ・ダウコーニング製、25℃粘度:1,600mm/s、変性当量:3,200g/mol)
 シリコーン組成物 S-3:ポリエーテル変性シリコーン(25℃粘度:2,900mm/s)
 シリコーン組成物 S-4:エポキシ変性シリコーン(25℃粘度:8,000mm/s、エポキシ当量:3,200g/mol、グリシジル型エポキシ基)
 シリコーン組成物 S-5:ジメチルシリコーン(KF-96-100:信越化学工業製)
 界面活性剤 N-1:ポリオキシエチレンアルキルエーテル(アルキル基の炭素数はC12~14)のうち、オキシエチレンの繰り返し単位が3~12のものをシリコーン成分との親水-疎水バランスを考慮して適宜選択して用いた。
 界面活性剤 N-2:オキシエチレン-オキシプロピレンブロック共重合体およびその重合体の末端アルキルエーテル化物(分子量1,000~5,000、オキシプロピレン/オキシエチレン=80/20~60/40で末端水酸基のものと末端2-エチルヘキシル基のものをシリコーン成分との親水-疎水バランスを考慮して適宜選択して用いた。)
〔実施例1〕
 シリコーン組成物S-E1を、界面活性剤N-1を用いて水系乳化し、油剤不揮発成分組成として、S-E1/N-1=90/10の重量比率よりなる油剤エマルジョン(プレカーサー油剤)を得た。なお、油剤不揮発分濃度は3.0重量%とした。この油剤エマルジョンを97モル%のアクリロニトリルと3モル%のイタコン酸を共重合させて得られるプレカーサーの原料アクリル繊維に、付与率1.0%となるように付着し、延伸工程(スチーム延伸、延伸倍率2.1倍)を経てプレカーサーを作製した(単繊維繊度0.8dtex,24,000フィラメント)。このプレカーサーを250℃の耐炎化炉にて60分間耐炎化処理し次いで窒素雰囲気下300~1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換した。各特性値の評価結果を表1に示す。
〔実施例2~35、比較例1~8〕
 実施例1において、表1~5に示す油剤不揮発成分組成になるように油剤エマルションを調製した以外は実施例1と同様にして、油剤付着後のプレカーサーおよび炭素繊維を得た。各特性値の評価結果を表1~5に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表1~5から明らかなように、実施例においてはいずれの評価項目に於いても比較例よりも優れ、またより高い炭素繊維強度の炭素繊維を得ることができた。
 本発明の炭素繊維製造用アクリル繊維油剤は、炭素繊維製造用アクリル繊維を製造する際に使用される処理剤であり、高品位の炭素繊維を製造するために有用である。本発明の炭素繊維製造用アクリル繊維は、本発明の炭素繊維製造用アクリル繊維油剤が処理されており、高品位の炭素繊維を製造するために有用である。本発明の炭素繊維の製造方法によって、高品位の炭素繊維が得られる。

Claims (8)

  1.  エポキシポリエーテル変性シリコーンおよび界面活性剤を必須に含有する炭素繊維製造用アクリル繊維油剤であって、油剤の不揮発分全体に占める前記エポキシポリエーテル変性シリコーンの重量割合が1~95重量%であり、前記界面活性剤の重量割合が5~50重量%である、炭素繊維製造用アクリル繊維油剤。
  2.  前記エポキシポリエーテル変性シリコーンが、(ポリ)オキシアルキレン基とエポキシ基の両方を含有する置換基によって変性された変性ジメチルポリシロキサン、またはエポキシ基を含有する置換基と(ポリ)オキシアルキレン基を含有する置換基によって変性されたジメチルポリシロキサンである、請求項1に記載の炭素繊維製造用アクリル繊維油剤。
  3.  前記エポキシポリエーテル変性シリコーンが、下記一般式(1)で示される化合物および下記一般式(2)で示される化合物から選ばれる少なくとも1種の化合物である、請求項1または2に記載の炭素繊維製造用アクリル繊維油剤。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    但し、式(1)および(2)中の記号は、各式独立して次の意味を表す。
    Ep:下記一般式(3)または下記一般式(4)で示されるエポキシ基を示す。
    A:炭素数2~4のアルキレン基を示す。(AO)中のAは同一であってもよく、異なっていてもよい。
    Ra:炭素数1~6のアルキレン基を示す。
    Rb:炭素数1~6のアルキレン基、または-ROR-で示されるアルコキシアルキレン基(R、Rは炭素数1~6のアルキレン基を示し、同一であってもよく、異なっていてもよい)を示す。
    Rc:水素原子または炭素数1~10のアルキル基を示す。
    r:1~50の整数を示す。
    p:1~10000の整数を示す。
    q:1~100の整数を示す。
    s:1~100の整数を示す。
    t:1~100の整数を示す。
    B、D:炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、水酸基、または-Ra-(AO)-Rb-Epを示す。BとDは同一であってもよく、異なっていてもよい。
    F、G:炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、水酸基、-Rb-Ep、または-Ra-(AO)-Rcを示す。FとGは同一であってもよく、異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  4.  前記エポキシポリエーテル変性シリコーンのエポキシ基がグリシジル型エポキシ基である、請求項2または3に記載の炭素繊維製造用アクリル繊維油剤。
  5.  アミノ変性シリコーンをさらに含有し、油剤の不揮発分全体に占める前記エポキシポリエーテル変性シリコーンと前記アミノ変性シリコーンの合計の重量割合が30~95重量%であり、エポキシポリエーテル変性シリコーンとアミノ変性シリコーンとの重量比が5/95~90/10である、請求項1~4のいずれかに記載の炭素繊維製造用アクリル繊維油剤。
  6.  水中に分散したエマルジョンとなっている、請求項1~5のいずれかに記載の炭素繊維製造用アクリル繊維油剤。
  7.  炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1~6のいずれかに記載の炭素繊維製造用アクリル繊維油剤を付着させて製糸した、炭素繊維製造用アクリル繊維。
  8.  炭素繊維製造用アクリル繊維の原料アクリル繊維に請求項1~6のいずれかに記載の炭素繊維製造用アクリル繊維油剤を付着させて、炭素繊維製造用アクリル繊維を製造する製糸工程と、その製糸工程で製造された炭素繊維製造用アクリル繊維を200~300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む、炭素繊維の製造方法。
PCT/JP2010/058582 2009-06-04 2010-05-21 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法 WO2010140488A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/262,890 US8323743B2 (en) 2009-06-04 2010-05-21 Acrylic-fiber finish, acrylic fiber for carbon-fiber production, and carbon-fiber production method
JP2010529970A JP4616934B1 (ja) 2009-06-04 2010-05-21 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
CN2010800244148A CN102459748B (zh) 2009-06-04 2010-05-21 丙烯酸系纤维整理剂、碳纤维制备用丙烯酸系纤维及碳纤维制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009134740 2009-06-04
JP2009-134740 2009-06-04

Publications (1)

Publication Number Publication Date
WO2010140488A1 true WO2010140488A1 (ja) 2010-12-09

Family

ID=43297624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058582 WO2010140488A1 (ja) 2009-06-04 2010-05-21 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法

Country Status (5)

Country Link
US (1) US8323743B2 (ja)
JP (1) JP4616934B1 (ja)
KR (1) KR101653160B1 (ja)
CN (1) CN102459748B (ja)
WO (1) WO2010140488A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218754A (ja) * 2013-05-02 2014-11-20 日華化学株式会社 合成繊維用サイジング剤、強化繊維束及び繊維強化複合材
JP2015030931A (ja) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法
WO2016056070A1 (ja) * 2014-10-07 2016-04-14 日華化学株式会社 合成繊維用サイジング剤、強化繊維束及び繊維強化複合材
WO2016136527A1 (ja) * 2015-02-27 2016-09-01 日華化学株式会社 合成繊維用サイジング剤、強化繊維束及び繊維強化複合材
CN106414841A (zh) * 2014-08-12 2017-02-15 松本油脂制药株式会社 丙烯酸纤维处理剂及其用途
CN116657287A (zh) * 2023-07-14 2023-08-29 中复神鹰碳纤维股份有限公司 高耐热性碳纤维油剂及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1304768B1 (it) * 1998-10-05 2001-03-29 Esaote Spa Lettino porta paziente o simili, e macchina, in particolare macchinaper il rilevamento d'immagini in risonanza magnetica nucleare in
JP5309280B1 (ja) 2012-03-02 2013-10-09 松本油脂製薬株式会社 炭素繊維製造用アクリル繊維処理剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
US8993707B2 (en) * 2012-08-23 2015-03-31 Wacker Chemical Corporation Aqueous epoxy and organo-substituted branched organopolysiloxane emulsions
KR20150088259A (ko) * 2012-11-22 2015-07-31 미쯔비시 레이온 가부시끼가이샤 탄소 섬유속의 제조 방법
MX2019002016A (es) 2016-12-02 2019-06-03 Takemoto Oil & Fat Co Ltd Solucion de aceite para precursor de fibras de carbono y precursor de fibra de carbono.
JP6671698B1 (ja) * 2019-05-30 2020-03-25 竹本油脂株式会社 炭素繊維前駆体用処理剤及び炭素繊維前駆体
JP6632016B1 (ja) * 2019-07-05 2020-01-15 竹本油脂株式会社 炭素繊維前駆体用処理剤、及び炭素繊維前駆体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371477A (ja) * 2001-06-14 2002-12-26 Takemoto Oil & Fat Co Ltd 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法
JP2004197272A (ja) * 2002-12-19 2004-07-15 Takemoto Oil & Fat Co Ltd 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法
JP2007039866A (ja) * 2005-06-30 2007-02-15 Toray Ind Inc 炭素繊維前駆体用油剤および炭素繊維前駆体
WO2007066517A1 (ja) * 2005-12-09 2007-06-14 Matsumoto Yushi-Seiyaku Co., Ltd. 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2008202208A (ja) * 2007-01-22 2008-09-04 Toray Ind Inc 炭素繊維用前駆体繊維、炭素繊維およびそれらの製造方法
WO2009060834A1 (ja) * 2007-11-07 2009-05-14 Mitsubishi Rayon Co., Ltd. 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181322A (ja) 1984-02-22 1985-09-17 Mitsubishi Rayon Co Ltd 炭素繊維の製造方法
TW459075B (en) * 1996-05-24 2001-10-11 Toray Ind Co Ltd Carbon fiber, acrylic fiber and preparation thereof
JP3992319B2 (ja) * 1997-04-09 2007-10-17 花王株式会社 ウエットティッシュ用不織布
JP2001172879A (ja) 1999-10-08 2001-06-26 Sanyo Chem Ind Ltd 炭素繊維製造工程用油剤
GB2388610A (en) * 2002-05-17 2003-11-19 Procter & Gamble Detergent composition containing silicone and fatty acid
WO2006058273A2 (en) * 2004-11-29 2006-06-01 Dow Corning Corporation Emulsions of epoxy functional silicone polyethers
EP1837424B1 (en) 2004-12-27 2011-02-02 Toray Industries, Inc. Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
CN1982356A (zh) 2005-12-15 2007-06-20 山东大易化工有限公司 环氧丙氧丙基封端聚醚和苯基共改性聚硅氧烷及制备方法和应用
CN101081899A (zh) * 2006-05-29 2007-12-05 深圳市海川实业股份有限公司 一种聚氧化烯基醚接枝聚硅氧烷的制备方法
CN101418518A (zh) * 2008-12-11 2009-04-29 绍兴文理学院 耐久亲水性聚醚改性氨基聚硅氧烷柔软剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371477A (ja) * 2001-06-14 2002-12-26 Takemoto Oil & Fat Co Ltd 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法
JP2004197272A (ja) * 2002-12-19 2004-07-15 Takemoto Oil & Fat Co Ltd 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法
JP2007039866A (ja) * 2005-06-30 2007-02-15 Toray Ind Inc 炭素繊維前駆体用油剤および炭素繊維前駆体
WO2007066517A1 (ja) * 2005-12-09 2007-06-14 Matsumoto Yushi-Seiyaku Co., Ltd. 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2008202208A (ja) * 2007-01-22 2008-09-04 Toray Ind Inc 炭素繊維用前駆体繊維、炭素繊維およびそれらの製造方法
WO2009060834A1 (ja) * 2007-11-07 2009-05-14 Mitsubishi Rayon Co., Ltd. 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218754A (ja) * 2013-05-02 2014-11-20 日華化学株式会社 合成繊維用サイジング剤、強化繊維束及び繊維強化複合材
JP2015030931A (ja) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法
CN106414841A (zh) * 2014-08-12 2017-02-15 松本油脂制药株式会社 丙烯酸纤维处理剂及其用途
WO2016056070A1 (ja) * 2014-10-07 2016-04-14 日華化学株式会社 合成繊維用サイジング剤、強化繊維束及び繊維強化複合材
WO2016136527A1 (ja) * 2015-02-27 2016-09-01 日華化学株式会社 合成繊維用サイジング剤、強化繊維束及び繊維強化複合材
CN116657287A (zh) * 2023-07-14 2023-08-29 中复神鹰碳纤维股份有限公司 高耐热性碳纤维油剂及其制备方法
CN116657287B (zh) * 2023-07-14 2024-05-07 中复神鹰碳纤维股份有限公司 高耐热性碳纤维油剂及其制备方法

Also Published As

Publication number Publication date
KR101653160B1 (ko) 2016-09-01
JP4616934B1 (ja) 2011-01-19
US20120021125A1 (en) 2012-01-26
KR20120027022A (ko) 2012-03-20
US8323743B2 (en) 2012-12-04
CN102459748B (zh) 2013-03-27
CN102459748A (zh) 2012-05-16
JPWO2010140488A1 (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
JP4616934B1 (ja) 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
JP5309280B1 (ja) 炭素繊維製造用アクリル繊維処理剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
CN110291245B (zh) 丙烯酸纤维用处理剂及其用途
JP5914780B1 (ja) アクリル繊維処理剤及びその用途
WO2017169632A1 (ja) アクリル繊維処理剤及びその用途
JP6397601B2 (ja) 繊維処理剤及びその利用
JP5528649B1 (ja) 炭素繊維製造用アクリル繊維処理剤及びその用途
JP5437649B2 (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP6190673B2 (ja) 炭素繊維製造用アクリル繊維処理剤及びその用途
JP5277005B2 (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2010024582A (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2012102429A (ja) 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
JP6488104B2 (ja) アクリル繊維処理剤及びその用途
JP5592676B2 (ja) 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
JP2018021263A (ja) アクリル繊維処理剤及びその用途
JP6914745B2 (ja) アクリル繊維処理剤及びその用途
JP4217748B2 (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP4217748B6 (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP6204211B2 (ja) アクリル繊維処理剤及びその用途
JP2013159868A (ja) 炭素繊維製造用アクリル繊維処理剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024414.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010529970

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13262890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117029512

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10783272

Country of ref document: EP

Kind code of ref document: A1