WO2010117070A1 - ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石 - Google Patents

ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石 Download PDF

Info

Publication number
WO2010117070A1
WO2010117070A1 PCT/JP2010/056484 JP2010056484W WO2010117070A1 WO 2010117070 A1 WO2010117070 A1 WO 2010117070A1 JP 2010056484 W JP2010056484 W JP 2010056484W WO 2010117070 A1 WO2010117070 A1 WO 2010117070A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ferrite powder
weight
ferrite
ihc
Prior art date
Application number
PCT/JP2010/056484
Other languages
English (en)
French (fr)
Inventor
真一 末永
晃嗣 平田
禅 坪井
敬祐 綾部
一良 堀井
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201080016639.9A priority Critical patent/CN102388423B/zh
Priority to EP10761769.8A priority patent/EP2418660B1/en
Priority to US13/258,617 priority patent/US8951635B2/en
Publication of WO2010117070A1 publication Critical patent/WO2010117070A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a ferrite powder for anisotropic bonded magnets, a method for producing the same, and a bonded magnet using the same.
  • Ferrite-based sintered magnets are used for magnets that are required for high magnetic force and are used in AV, OA equipment, magnet rolls of copying machines, and the like.
  • the ferrite-based sintered magnet has inherent problems that it is difficult to process into a complicated shape in addition to inferior productivity because chipping occurs and polishing is required.
  • Recently, bonded magnets using rare earth magnets are partially used in this field.
  • rare earth magnets are about 20 times more expensive than ferrite-based sintered magnets, and are susceptible to rust. Therefore, there is a demand for replacing the ferrite-based sintered magnet with a ferrite-based bonded magnet.
  • the bond magnet has a lower maximum energy product BHmax than the sintered magnet, further improvement in the characteristics of the maximum energy product BHmax is necessary to replace it.
  • Patent document 1 As a method for improving the saturation magnetization value ⁇ s, a ferrite powder having a W-type crystal structure, a method for improving ⁇ s by adding other elements (rare earth element, cobalt element, etc.) and dissolving in the crystal, etc. ( Patent document 1) has been devised, but the improvement is limited to a few percent, and the effect is not so great for the complicated manufacturing method and the use of expensive additive elements leading to increased costs. It is not expensive and has not yet replaced ferrite-based sintered magnets.
  • Patent Document 2 a method of improving the filling rate by mixing two or more types of ferrite powders having different particle diameters and allowing small particles to enter the gaps between large particles.
  • Patent Document 2 a method of improving the filling rate by mixing two or more types of ferrite powders having different particle diameters and allowing small particles to enter the gaps between large particles.
  • the ferrite powder used for mixing contains many hexagonal plate-like particles, which is disadvantageous for achieving both the ferrite filling properties and fluidity of the compound, and it cannot be said that sufficient consideration is given to the dispersibility of the ferrite particles. It was.
  • the orientation is greatly influenced by the fluidity of the compound.
  • the flowability is also greatly influenced by the resin and surface treatment agent used in the compound, but speaking of ferrite powder, there are few hexagonal plate-shaped particles, which are typical shapes of ferrite powder with good crystallinity. It is advantageous to have good dispersibility and a small specific surface area (large particle size).
  • the particle size is increased, domain wall generation is likely to occur and multiaxial particles are easily formed. This causes a decrease in coercive force, and thus the particle size cannot be simply increased.
  • JP 2001-189210 A Japanese Patent No. 3257936
  • Ferrite powder for anisotropic bonded magnets that can produce bonded magnets with high magnetic force with excellent filling properties and orientation while maintaining coercive force by achieving both improved crystallinity and dispersibility and particle shape control It is an issue to provide.
  • the ferrite powder for anisotropic bonded magnets of the present invention is an anisotropic mixture of ferrite powders having a plurality of peaks and a particle size distribution.
  • Ferrite powder for conductive bond magnets having a compression density (CD) of 3.5 g / cm 3 or more, a compact coercive force (p-iHc) of 2100 Oe or more, and a specific surface area (SSA) of 2.
  • CD compression density
  • p-iHc compact coercive force
  • SSA specific surface area
  • the present invention also provides a ferrite powder for anisotropic bonded magnets having a melt flow rate of 80 g / 10 min or more when subjected to a fluidity test in which the ferrite powder content is 92% by weight.
  • the present invention also provides an anisotropic bonded magnet having a coercive force (inj-iHc) of 2100 Oe or more and a maximum energy product (inj-BHmax) of 2.2 MGOe or more even in a low magnetic field orientation of 4.3 kOe.
  • the method for producing the ferrite powder for anisotropic bond of the present invention A step of granulating a plurality of raw materials containing iron oxide to obtain a granulated product; Calcining the granulated product in an atmosphere of 1050 ° C. or higher and 1300 ° C. or lower under a vapor pressure of chloride to obtain a calcined product;
  • a method for producing a ferrite powder for anisotropic bonded magnets which comprises a step of pulverizing or pulverizing the fired product to obtain a powder.
  • the present invention provides a process for producing an anisotropic bonded magnet ferrite powder having the following steps, wherein a second powder having a different specific surface area is provided before or after the crushing step or annealing (annealing) step or during the step.
  • a method for producing a ferrite powder for an anisotropic bonded magnet having a mixing step. (1) a step of granulating a plurality of raw materials containing iron oxide to obtain a first granulated product; (2) firing the first granulated product in an atmosphere of 1050 ° C. or higher and 1300 ° C.
  • the manufacturing method of the ferrite powder for anisotropic bonded magnets including the process of annealing (annealing) the said mixed powder in the atmosphere of 800 to 1100 degreeC in air
  • the ferrite powder for anisotropic bonded magnets of the present invention satisfies the compression density (CD) and the coercive force (p-iHc) of the green compact of 3.5 g / cm 3 or more and 2100 Oe or more, respectively.
  • CD compression density
  • p-iHc coercive force
  • a bonded magnet can be obtained.
  • bonded magnets The ferrite powder for anisotropic bonded magnets (hereinafter also simply referred to as “bonded magnets”) of the present invention has the following characteristics. This will be described in order below.
  • the compression density (CD) can be said to be an index indicating how much ferrite particles, which are the minimum constituent units of the bonded magnet, can be filled in a limited volume, and has a high correlation with the saturation magnetic flux density (Bs). Further, when the compression density (CD) is high, the volume of the particle gap is reduced, so that the resin entering the gap apparently decreases. As a result, the proportion of the resin that can move freely and contribute to the buffering between the particles is increased, the fluidity during kneading and molding is increased, and the orientation is improved. Therefore, compressed density (CD) is higher well, preferably 3.55 g / cm 3 or more, more preferably 3.6 g / cm 3 or more is good.
  • the ferrite powder for anisotropic bonded magnets of the present invention has a plurality of peaks in the particle size distribution. Further, if there are a plurality of peaks in the particle size distribution, it is not necessary to mix a plurality of ferrite powders. That is, it may be a ferrite powder produced so as to have a plurality of peaks in the particle size distribution when the ferrite powder is synthesized. Note that the peak may not be completely independent of the maximum value of the peak, and a peak having a shoulder at the bottom of the peak can be regarded as another peak.
  • the coercive force (p-iHc) of the green compact is a coercive force in a state where it is compressed under a high pressure of 2 ton / cm 2 and has a history of mechanical stress. “Ton” means 1000 kg. In general, mechanical stress is applied during kneading and molding when manufacturing a bonded magnet, and the coercive force is reduced (as compared to a powder state without stress). Since the coercivity (p-iHc) of the green compact and the coercivity (inj-iHc) of the bond magnet (molded body) are highly correlated, the coercivity (inj-iHc) of the bond magnet (molded body) is It is an effective index to estimate.
  • the coercive force (p-iHc) of the green compact is preferably high, but if the coercive force is too high, it is difficult to be magnetized, so that it is preferably 2200 Oe or more and 3200 Oe or less.
  • the ferrite powder for anisotropic bonded magnets of the present invention satisfies a specific surface area (SSA) of 2.0 m 2 / g or less.
  • SSA specific surface area
  • the specific surface area (SSA) is high, the amount of resin (binder) adsorbed on the surface of the ferrite particles during kneading and molding increases, and the proportion of the resin that can move freely correspondingly decreases, leading to a decrease in fluidity.
  • the decrease in fluidity leads to a decrease in orientation during magnetic field molding, that is, a decrease in residual magnetic flux density (Br). This tendency tends to become more prominent as the content ratio (FC ratio) of the ferrite powder in the compound is higher and the orientation magnetic field during magnetic field molding is lower. Therefore, the specific surface area should be lower, and preferably 1.8 m 2 / g. The following is good.
  • the ferrite powder for anisotropic bonded magnets of the present invention can obtain high fluidity by high compression density (CD), low specific surface area (SSA), and further improvement of ferrite particle dispersibility and reduction of plate-like particles. .
  • high fluidity leads to an improvement in orientation during magnetic field molding, that is, an improvement in residual magnetic flux density (Br). Therefore, there is no particular upper limit, and the melt flow in a compound having a ferrite powder content ratio of 92% by weight.
  • the rate (MFR) is 80 g / 10 min or more, preferably 100 g / 10 min or more.
  • the kneaded pellet in the present invention means a crushed compound having an average diameter of about 2 mm.
  • the ferrite powder for anisotropic bonded magnets of the present invention satisfies a non-oriented saturation magnetization value ( ⁇ s) of 54 emu / g. Since the saturation magnetization value ( ⁇ s) has a high correlation with the saturation magnetic flux density (Bs), the saturation magnetization value ( ⁇ s) is preferably high, preferably 55 emu / g or more, and more preferably 56 emu / g or more.
  • the ferrite powder for anisotropic bonded magnets of the present invention may contain a rare earth element or a transition metal element (such as cobalt) (solid solution) for the purpose of further improving the magnetic properties.
  • a rare earth element or a transition metal element such as cobalt
  • solid solution for the purpose of further improving the magnetic properties.
  • rare earth elements or transition metal elements such as cobalt directly leads to an increase in cost.
  • the cost increase range is 20% or less, preferably 10% or less, and more preferably, the cost is not increased. Therefore, the content of rare earth elements and transition metal elements is desired to be 10 at% or less, preferably 5 at% or less, and more preferably not contained (excluding inclusion as an inevitable impurity) so as not to increase the cost.
  • the ferrite powder for anisotropic bonded magnets of the present invention has good crystallinity and a small ratio of plate-like particles, so that the coercive force is less lowered against mechanical stress.
  • the coercive force (inj-iHc) of the molded product is small because the coercive force is reduced due to mechanical stress during kneading and molding in producing a bonded magnet. Satisfies 2100 Oe or more.
  • the coercive force (p-iHc) of the green compact a higher coercive force is better.
  • the coercive force (inj-iHc) of the molded product Preferably, it is 2200 Oe or more and 3200 Oe or less.
  • any of compression density (CD), coercive force of compact (p-iHc), specific surface area (SSA), saturation magnetization value ( ⁇ s) in non-oriented state, and melt flow rate (MFR) Some met two or three, but none met all of them.
  • high Hc and Br can be obtained with a high filling rate of 92% by weight of ferrite powder and also in molding in a low orientation magnetic field of 4.3 kOe.
  • a high energy product of 2.2 MGOe or more can be obtained.
  • the method for producing a ferrite powder for anisotropic bonded magnets of the present invention is fired at a temperature of 1050 ° C. to 1300 ° C. under the vapor pressure of chloride, particularly KCl. Is preserved. As a result, it is possible to obtain a highly crystalline ferrite powder with a small ratio of plate-like particles, a small amount of inter-particle sintering, and a small specific surface area.
  • chloride examples include KCl, NaCl, LiCl, RbCl, CsCl, BaCl 2 , SrCl 2 , CaCl 2 , and MgCl 2 , and two or more of these may be used in combination.
  • oxides, inorganic acids or inorganic acid salts may be used as fluxes during firing.
  • oxides, inorganic acids and salts thereof include bismuth oxide, boric acid, borates, sulfates, phosphates, silicic acids, silicates, etc., and two or more of these may be used in combination. It doesn't matter.
  • the vapor pressure (partial pressure) of chloride during firing is difficult to measure directly, the presence or absence of remaining chloride after firing, the airtightness and volume of the firing furnace (container), and the firing temperature Calculated from the saturated vapor pressure. More specifically, the vapor pressure of chloride at the time of firing is determined by regression calculation based on the chemical handbook data (Table 1).
  • the chloride partial pressure is 50 mmHg or more and 760 mmHg or less, preferably 50 mmHg or more and a saturated vapor pressure or less, and during firing (while maintaining the firing temperature), chloride always exists as vapor. is important.
  • the ferrite powder and another ferrite powder with different specific surface areas are mixed and fired to satisfy the characteristics of compression density (CD), green compact coercive force (p-iHc), and specific surface area (SSA). Ferrite powder can be obtained.
  • a ferrite powder having a different specific surface area a ferrite powder having a specific surface area of 8 m 2 / g or less is preferably used so that the specific surface area of the ferrite powder of the final product does not become too high.
  • the specific surface area (SSA) of the ferrite powder was measured using a monosorb manufactured by Yuasa Ionics Co., Ltd. based on the BET method.
  • the three measurement points near the maximum value in the frequency distribution curve were approximated by a quadratic function, and the particle size at which the maximum value of the quadratic function was obtained was taken as the peak particle size.
  • ⁇ Ratio of plate-like particles> The ratio of the plate-like particles in the ferrite powder was measured by the following procedure. (1) Disperse 4.5 g of ferrite powder and 5.7 g of NC clear lacquer with a centrifugal ball mill (trade name: PULNERISETE type 702 manufactured by FRITSCH). (2) The dispersed paint was applied on a sheet using an applicator bar and then oriented by applying an orientation magnetic field of 5 kOe in parallel to the application surface (the C-axis direction of the ferrite particles is parallel to the application surface) Therefore, the particle diameter in the C-axis direction of the particles can be measured by observing the particles from directly above the coated surface).
  • the dried sheet was observed with a scanning electron microscope (JSM-J220 JSM-T220A), and in a 2000 times SEM photograph, the major axis diameter (c-axis vertical surface diameter) and the short axis were more than 100 particles.
  • the shaft diameter (c-axis length) was measured.
  • the major axis diameter / minor axis diameter 2 or more particles were regarded as plate-like particles, and the ratio of the plate-like particles was calculated.
  • the magnetic properties of the ferrite powder are VSM (manufactured by Toei Kogyo Co., Ltd., VSM P-7-15), 20 mg of ferrite powder and 30 mg of paraffin are filled in the cell attached to the device, and heated to 80 ° C to dissolve the paraffin. Then, the sample particles were randomly fixed by cooling to room temperature, measured at a measurement magnetic field of 10 kOe, and ⁇ s (emu / g) and iHc (Oe) were calculated. 1 Oe is 1 / 4 ⁇ ⁇ 10 3 [A / m].
  • the green compact coercive force (p-iHc) of the ferrite powder was measured by the following procedure.
  • the molded product was removed from the mold, dried at 150 ° C. for 30 minutes, and then measured with a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) with a measuring magnetic field of 10 kOe.
  • TRF-5BH manufactured by Toei Kogyo Co., Ltd. a measuring magnetic field of 10 kOe.
  • melt flow rate (MFR) of the kneaded pellets was subjected to a melt flow indexer (melt flow indexer C-5059D2 (conforms to JIS K-7210) manufactured by Toyo Seiki Seisakusho Co., Ltd.) and extruded at 270 ° C. and a load of 10 kg. The weight was measured, and the melt flow rate (unit: g / 10 minutes) was obtained by converting this to the amount of extrusion per 10 minutes.
  • melt flow indexer C-5059D2 conforms to JIS K-7210 manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the melt flow rate is a value measured by the following procedures (1) to (3).
  • (1) Stir 91.7 parts by weight of the magnetic powder to be measured, 0.8 part by weight of the silane coupling agent, 0.8 part by weight of the lubricant and 6.7 parts by weight of nylon-6 (powder) with a mixer.
  • (2) The obtained mixture is kneaded at 230 ° C. to obtain pellets (compounds of compound) having an average diameter of 2 mm.
  • (3) The pellet obtained in (2) above was subjected to a melt flow indexer, and the weight extruded at 10 minutes under a load of 270 ° C. and 10 kg was measured. This was determined as the melt flow rate (unit: g / 10 minutes). To do.
  • the magnetic properties of the molded product were evaluated by the following procedure.
  • (1) The kneaded pellets were injection molded at a temperature of 290 ° C. and a molding pressure of 8.5 N / mm 2 in a 4.3 KOe magnetic field using an injection molding machine (manufactured by Sumitomo Heavy Industries), and had a diameter of 15 mm ⁇ height of 8 mm.
  • a cylindrical shaped product (the orientation direction of the magnetic field is a direction along the central axis of the cylinder) was obtained.
  • (2) The magnetic properties of the cylindrical molded product were measured with a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) at a measuring magnetic field of 10 kOe.
  • Example 1 Production of Powder A Iron oxide and strontium carbonate were weighed so that the molar ratio was iron oxide 5.9: strontium carbonate 1. 0.18% by weight boric acid and 2.44% by weight potassium chloride are added to the weighed product and mixed, and then granulated into a spherical shape having a diameter of 3 to 10 mm with water. It was dried at 150 ° C. Each granulated product was put in an amount of 200 g per 0.68 L alumina container (atmosphere), covered with an alumina lid, and then fired in an electric furnace at 1245 ° C. for 80 minutes to obtain a fired product. The bulk density of the fired product was 1.6 g / cm 3 , and it was confirmed that the sintering between the particles had hardly progressed.
  • the alumina container used had a structure in which gas escaped from the gap between the lid and the container when the internal pressure was increased by the volatile gas in the raw material, and was always set to 1 atm during firing. Since the amount of potassium chloride relative to the volume of the container is sufficient, it is considered that potassium chloride at the time of firing maintains an equilibrium state of saturated vapor pressure, so the partial pressure of potassium chloride at the time of firing is 1245 ° C.
  • the saturated vapor pressure of potassium chloride is estimated to be 210 mmHg (regression calculation based on chemical handbook data).
  • 550 mmHg which is a subtraction of the vapor pressure of potassium chloride from 1 atm (760 mmHg)
  • the coarsely pulverized powder was obtained by treating the fired product with a hammer mill (Ec Sample Mill KII type manufactured by Fuji Paudal).
  • the coarsely pulverized powder was pulverized with a planetary ball mill (trade name: PULNERISETE type 07-301, manufactured by FRITSCH), and after repeating the pulverization with a planetary mill until the amount of powder A necessary for particle size synthesis could be secured,
  • the slurry is collected and filtered, and the resulting cake is dried in the atmosphere at 150 ° C. for 10 hours, and the dried cake is crushed with a mixer (trade name sample mill SK-M10, manufactured by Kyoritsu Riko Co., Ltd.) to obtain a powder.
  • A was obtained.
  • the obtained powder A had a peak particle size (Helos): 5.3 ⁇ m, a specific surface area (SSA): 0.7 m 2 / g, ⁇ s: 56.5 emu / g, and Hc: 1490 Oe.
  • Helos peak particle size
  • SSA specific surface area
  • the proportion of plate-like particles was 25%, and it was confirmed that the number of plate-like particles was small. Further, it was confirmed by X-ray diffraction that the powder A had a crystal structure of magnetoplumbite type ferrite.
  • the coarsely pulverized powder is crushed with a planetary ball mill, and after repeating the pulverized treatment with a planetary ball mill until the amount of powder B required for particle size synthesis can be secured, the slurry is filtered and the cake obtained is filtered. Powder B was obtained by drying at 150 degreeC in air
  • the obtained powder B had a peak particle size: 1.1 ⁇ m, a specific surface area: 6.8 m 2 / g, ⁇ s: 54.4 emu / g, and Hc: 2570 Oe. Further, X-ray diffraction confirmed that powder B had a magnetoplumbite type ferrite crystal structure.
  • the obtained ferrite powder has a peak particle size: 1.2 ⁇ m, 5.7 ⁇ m and two peaks, specific surface area: 1.5 m 2 / g, compression density: 3.63 g / cm 3, ⁇ s: 56.8 emu. / G, Hc: 3430 Oe, p-iHc: 2350 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 2 A ferrite powder according to Example 2 was obtained by operating in the same manner as in Example 1 except that the firing temperature in the production of Powder A in Example 1 was 1260 ° C.
  • the partial pressure of each gas component at the time of firing was calculated as a partial pressure of potassium chloride of 250 mmHg, a partial pressure of carbon dioxide of 442 mmHg, and an oxygen partial pressure of 14 mmHg, and the bulk density of the fired product was 1.6 g / cm 3 .
  • the obtained powder A had a peak particle size of 6.7 ⁇ m, a specific surface area: 0.6 m 2 / g, ⁇ s: 56.5 emu / g, Hc: 1210 Oe, and the proportion of plate-like particles was 24%. .
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 6.8 ⁇ m, a specific surface area: 1.5 m 2 / g, a compression density: 3.69 g / cm 3 , ⁇ s: 56.5 emu / g, Hc : 3430 Oe, p-iHc: 2230 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 3 A ferrite powder according to Example 3 was obtained in the same manner as in Example 1 except that the firing temperature in the production of the powder A of Example 1 was 1230 ° C.
  • the partial pressure of each gas component during firing was calculated as potassium chloride partial pressure 190 mmHg, carbon dioxide partial pressure 494 mmHg, oxygen partial pressure 16 mmHg, and the bulk density of the fired product was 1.5 g / cm 3 .
  • the obtained powder A had a peak particle size of 5.2 ⁇ m, a specific surface area: 0.9 m 2 / g, ⁇ s: 56.5 emu / g, Hc: 1590 Oe, and the proportion of plate-like particles was 19%. .
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 5.1 ⁇ m, a specific surface area: 1.4 m 2 / g, a compression density: 3.58 g / cm 3 , ⁇ s: 55.7 emu / g, Hc : 3760 Oe, p-iHc: 2620 Oe, and it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 4 A ferrite powder according to Example 4 was obtained in the same manner as in Example 1 except that sodium chloride was used as the potassium chloride in the production of the powder A of Example 1.
  • the partial pressure of each gas component at the time of firing was calculated as a sodium chloride partial pressure of 80 mmHg, a carbon dioxide partial pressure of 589 mmHg, and an oxygen partial pressure of 19 mmHg, and the bulk density of the fired product was 1.6 g / cm 3 .
  • the obtained powder A had a peak particle size: 5.1 ⁇ m, a specific surface area: 1.1 m 2 / g, ⁇ s: 56.4 emu / g, Hc: 1510 Oe, and the proportion of plate-like particles was 21%. .
  • the obtained ferrite powder has a peak particle size: 1.4 ⁇ m, 5.3 ⁇ m, a specific surface area: 1.3 m 2 / g, a compression density: 3.57 g / cm 3 , ⁇ s: 56.2 emu / g, Hc : 3880 Oe, p-iHc: 2740 Oe, it was confirmed that the specific surface area was low, and sufficient compression density and p-iHc were secured.
  • Example 5 A ferrite powder according to Example 5 was obtained in the same manner as in Example 2 except that sodium chloride was used as the potassium chloride in the production of the powder A of Example 2.
  • the partial pressure of each gas component at the time of firing was calculated as a sodium chloride partial pressure of 150 mmHg, a carbon dioxide partial pressure of 528 mmHg, and an oxygen partial pressure of 17 mmHg, and the fired product had a bulk density of 1.8 g / cm 3 .
  • the obtained powder A had a peak particle size: 6.3 ⁇ m, a specific surface area: 0.8 m 2 / g, ⁇ s: 56.5 emu / g, Hc: 1330 Oe, and the proportion of plate-like particles was 28%. .
  • the obtained ferrite powder has a peak particle size of 1.2 ⁇ m, 6.5 ⁇ m, a specific surface area of 1.2 m 2 / g, a compression density of 3.61 g / cm 3 , ⁇ s of 56.8 emu / g, and Hc. : 3150 Oe, p-iHc: 2130 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 6 A granulated product was obtained in the same manner as in Example 1 except that potassium chloride in the production of powder A of Example 1 was not mixed.
  • An alumina boat loaded with 35 g of granulated material and 0.85 g of potassium chloride (equivalent to 2.43 wt% with respect to the granulated material) were placed in a 1.0 L tubular furnace (gas was introduced from the outside) Without firing), and fired at 1260 ° C. for 80 minutes to obtain a fired product.
  • the tubular furnace has a structure in which the entire tube having a volume of 1.0 L (inner diameter 85 mm ⁇ , tube length 200 mm) is heated, and a gas introduction (discharge) tube having an inner diameter of 5 mm is attached to both ends of the tube. When the internal pressure of was increased, the gas was allowed to escape to the outside through the gas introduction pipe.
  • the partial pressure of potassium chloride at the time of firing is estimated to be 250 mmHg, which is the saturated vapor pressure of potassium chloride at 1260 ° C., as in Example 2.
  • 510 mmHg of the subtraction of potassium chloride vapor pressure from 1 atm can be regarded as carbon dioxide generated from air and strontium carbonate, and generated as air remaining in the container (1.0 L (STP)). From the amount of carbon dioxide (0.77 L (STP)), the carbon dioxide partial pressure was calculated to be 222 mmHg and the oxygen partial pressure was 60 mmHg, and the bulk density of the fired product was 1.6 g / cm 3 .
  • Example 6 About the process after crushing of the said baked product, the ferrite powder which concerns on Example 6 was obtained by operating like Example 1.
  • FIG. The obtained powder A had a peak particle size of 6.8 ⁇ m, a specific surface area: 0.7 m 2 / g, ⁇ s: 56.6 emu / g, Hc: 1410 Oe, and the proportion of plate-like particles was 16%. .
  • the obtained ferrite powder has a peak particle size of 1.3 ⁇ m, 6.8 ⁇ m, a specific surface area of 1.4 m 2 / g, a compression density of 3.62 g / cm 3 , ⁇ s of 56.3 emu / g, and Hc. : 3400 Oe, p-iHc: 2230 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 7 The same operation as in Example 6 was performed to obtain a granulated product containing no potassium chloride.
  • An alumina boat loaded with 35 g of granulated material and an alumina crucible charged with 150 g of potassium chloride were placed in the tubular furnace described in Example 5 (volume: 1.0 L), and air was discharged from the potassium chloride crucible side. While being introduced at 2 L / min, firing was performed at 1260 ° C. for 80 minutes to obtain a fired product. When the crucible in the tubular furnace was confirmed after firing, potassium chloride remained.
  • the ferrite powder according to Example 7 was obtained by operating in the same manner as in Example 1 for the steps after crushing of the fired product. Since it is considered that the amount of potassium chloride was sufficient at the time of firing, the partial pressure of potassium chloride at the time of firing is estimated to be 250 mmHg, which is the saturated vapor pressure of potassium chloride at 1260 ° C., as in Example 2.
  • the obtained powder A had a peak particle size of 6.8 ⁇ m, a specific surface area: 0.7 m 2 / g, ⁇ s: 56.4 emu / g, Hc: 1420 Oe, and the proportion of plate-like particles was 18%. .
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 6.8 ⁇ m, a specific surface area: 1.5 m 2 / g, a compression density: 3.61 g / cm 3 , ⁇ s: 56.6 emu / g, Hc : 3380 Oe, p-iHc: 2210 Oe, and it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 8 Ferrite powder according to Example 8 operated in the same manner as in Example 1 except that the wet crushing in the production of powder A of Example 1 was treated with a sand grinder (1/4 G1H 146 manufactured by Igarashi Machine Manufacturing Co., Ltd.). Got. The obtained powder A had a peak particle size: 5.0 ⁇ m, a specific surface area: 0.8 m 2 / g, ⁇ s: 55.6 emu / g, Hc: 1760 Oe, and the proportion of plate-like particles was 11%. .
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 4.7 ⁇ m, a specific surface area: 1.5 m 2 / g, a compression density: 3.59 g / cm 3 , ⁇ s: 56.0 emu / g, Hc : 3730 Oe, p-iHc: 2570 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 9 A ferrite powder according to Example 9 was obtained by operating in the same manner as in Example 1 except that the wet crushing in the production of powder A in Example 1 was treated with a pearl mill (Star Mill AMS1 manufactured by Ashizawa Finetech).
  • the obtained powder A had a peak particle size: 5.3 ⁇ m, a specific surface area: 0.9 m 2 / g, ⁇ s: 55.9 emu / g, Hc: 1720 Oe, and the proportion of plate-like particles was 23%. .
  • the obtained ferrite powder has a peak particle size of 1.2 ⁇ m, 5.4 ⁇ m, a specific surface area of 1.8 m 2 / g, a compression density of 3.56 g / cm 3 , ⁇ s of 56.1 emu / g, and Hc. : 3580 Oe, p-iHc: 2320 Oe, and it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 10 The mixed powder before annealing in Example 1 was treated in the same manner as in Example 1 except that it was treated with a vibrating ball mill (Murakami Seiki: Uras Vibrator KEC-8-YH) and then annealed. Ferrite powder was obtained.
  • a vibrating ball mill Murakami Seiki: Uras Vibrator KEC-8-YH
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 3.4 ⁇ m, a specific surface area: 1.6 m 2 / g, a compression density: 3.62 g / cm 3 , ⁇ s: 57.1 emu / g, Hc: 3530 Oe.
  • P-iHc 2600 Oe, the specific surface area was low, and it was confirmed that a sufficient compression density and p-iHc were secured.
  • Example 11 The mixed powder before annealing in Example 8 was treated in the same manner as in Example 8 except that it was treated with a vibration ball mill (manufactured by Murakami Seiki: Uras Vibrator KEC-8-YH) and then annealed. Ferrite powder was obtained.
  • a vibration ball mill manufactured by Murakami Seiki: Uras Vibrator KEC-8-YH
  • the obtained ferrite powder has a peak particle size: 1.5 ⁇ m, 3.6 ⁇ m, a specific surface area: 1.7 m 2 / g, a compression density: 3.60 g / cm 3 , ⁇ s: 56.5 emu / g, Hc: 3530 Oe. , P-iHc: 2590 Oe, it was confirmed that the specific surface area was low, and sufficient compression density and p-iHc were secured.
  • Comparative Example 1 A ferrite powder according to Comparative Example 1 was obtained by operating in the same manner as in Example 1 except that the alumina container during firing in the production of Powder A in Example 1 was not capped.
  • the partial pressure of each gas component at the time of firing was calculated as potassium chloride partial pressure 0 mmHg, carbon dioxide partial pressure 0 mmHg, oxygen partial pressure 160 mmHg, and the bulk density of the fired product was 2.4 g / cm 3 .
  • the obtained powder A had a peak particle size of 10.6 ⁇ m, a specific surface area: 0.9 m 2 / g, ⁇ s: 54.8 emu / g, and Hc: 1520 Oe.
  • a peak particle size of 10.6 ⁇ m a specific surface area: 0.9 m 2 / g, ⁇ s: 54.8 emu / g, and Hc: 1520 Oe.
  • many agglomerated particles exceeding 10 ⁇ m were observed. Aggregation was so severe that it was difficult to measure the minor axis diameter, and the ratio of plate-like particles could not be calculated.
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 11.0 ⁇ m, a specific surface area: 2.0 m 2 / g, a compression density: 3.42 g / cm 3 , ⁇ s: 55.9 emu / g, Hc : 3250 Oe, p-iHc: 2460 Oe, the specific surface area was low, and although p-iHc was secured, it was confirmed that the compression density was low.
  • Comparative Example 2 The ferrite powder according to Comparative Example 2 is operated in the same manner as in Comparative Example 1 except that the crushing process in the planetary ball mill in the production of Powder A of Comparative Example 1 is a pulverizing process in a wet pulverizer / wet mill (WM). Got.
  • the obtained powder A had a peak particle size: 4.8 ⁇ m, a specific surface area: 1.9 m 2 / g, ⁇ s: 55.1 emu / g, and Hc: 1220 Oe.
  • SEM observation it was confirmed that there were a large number of fine particles of submicron or less having acute angles that were considered to have occurred during pulverization.
  • a wet pulverizer / wet mill refers to packing a material to be crushed together with a hard crushing medium such as zircon into a container, and rotating a stirring bar having a plurality of rods connected to a rotating shaft in the crushing medium.
  • a hard crushing medium such as zircon
  • a stirring bar having a plurality of rods connected to a rotating shaft in the crushing medium.
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 5.8 ⁇ m, a specific surface area: 2.3 m 2 / g, a compression density: 3.46 g / cm 3 , ⁇ s: 55.6 emu / g, Hc : 3330 Oe, p-iHc: 2600 Oe.
  • the specific surface area is high because many fine particles of sub-micron or smaller remain, and the fine particles of sub-micron or smaller act as a sintering accelerator during annealing, thereby causing aggregation (sintering) between particles. Because of the progress, the compression density could not be secured.
  • Example 3 In the production of powder A of Example 1, 0.18% by weight of boric acid was changed to 2.1% by weight of sodium metaborate tetrahydrate (NaBO 2 .4H 2 O), and the amount of potassium chloride was 2.1% by weight.
  • the alumina container was fired in the atmosphere at 1200 ° C. for 2 hours without a lid, and the fired product was pulverized by a wet pulverizer / wet mill (WM). Otherwise, the same operation as in Example 1 was performed to obtain a ferrite powder according to Comparative Example 3.
  • the partial pressure of each gas component at the time of firing was calculated as a potassium chloride partial pressure of 0 mmHg, a carbon dioxide partial pressure of 0 mmHg, and an oxygen partial pressure of 160 mmHg, and the bulk density of the fired product was 2.2 g / cm 3 .
  • the obtained powder A had a peak particle size: 3.0 ⁇ m, a specific surface area: 3.9 m 2 / g, a compression density: 3.23 g / cm 3 , ⁇ s: 55.2 emu / g, and Hc: 1540 Oe.
  • the average particle diameter measured by the air permeation method using SS-100 manufactured by Shimadzu Corporation was 1.29 ⁇ m.
  • SEM observation a large number of fine particles of submicron or less were observed, and as a result of calculating the proportion of plate-like particles excluding fine particles of sub-micron or less, the proportion of plate-like particles was 72%. It was confirmed that there are many.
  • the obtained ferrite powder has a peak particle size: 1.6 ⁇ m (with a shoulder on the coarse particle side of the particle size distribution curve), a specific surface area: 2.3 m 2 / g, a compression density: 3.30 g / cm 3 , ⁇ s : 56.6 emu / g, Hc: 3830 Oe, p-iHc: 2780 Oe.
  • p-iHc was ensured, since there were many plate-like particles, the packing property was inferior and the compression density could not be ensured.
  • Comparative Example 4 A ferrite powder according to Comparative Example 4 was obtained in the same manner as in Example 1 except that the firing temperature in the production of Powder A of Example 1 was 1010 ° C.
  • the partial pressure of each gas component during firing was calculated as potassium chloride partial pressure 20 mmHg, carbon dioxide partial pressure 641 mmHg, oxygen partial pressure 21 mmHg, and the bulk density of the fired product was 1.5 g / cm 3 .
  • the obtained powder A had a peak particle size: 1.6 ⁇ m, a specific surface area: 4.8 m 2 / g, ⁇ s: 56.5 emu / g, and Hc: 3240 Oe.
  • a large number of aggregates composed of particles having a primary particle size of submicron were confirmed, and because the aggregation was intense, it was difficult to measure the short axis diameter, and the ratio of plate-like particles could not be calculated. .
  • the obtained ferrite powder has a peak particle size of 1.8 ⁇ m (only one peak), a specific surface area of 2.7 m 2 / g, a compression density of 3.24 g / cm 3 , ⁇ s of 56.8 emu / g, Hc: 4220 Oe, p-iHc: 3120 Oe. Although p-iHc was secured, it was confirmed that the specific surface area was high and the compression density was not secured.
  • Comparative Example 5 A ferrite powder according to Comparative Example 5 was obtained in the same manner as in Example 1 except that the mixing ratio of Powder A and Powder B in Example 1 was 55 parts by weight: 45 parts by weight.
  • the obtained ferrite powder has a peak particle size of 1.2 ⁇ m, 5.6 ⁇ m, a specific surface area: 2.0 m 2 / g, a compression density: 3.48 g / cm 3 , ⁇ s: 55.9 emu / g, Hc: 3770 Oe.
  • P-iHc 2650 Oe.
  • Example 6 A ferrite powder according to Comparative Example 6 was obtained in the same manner as in Example 1 except that the annealing temperature was 750 ° C. in Example 1.
  • the obtained ferrite powder has a peak particle size: 1.2 ⁇ m, 5.3 ⁇ m, a specific surface area: 2.1 m 2 / g, a compression density: 3.56 g / cm 3 , ⁇ s: 55.4 emu / g, Hc: 2760 Oe.
  • P-iHc 2030 Oe.
  • the compression density is secured, it is considered that the annealing is insufficient and the crystal strain cannot be sufficiently removed, and p-iHc is insufficient.
  • Example 12 91.7 parts by weight of the ferrite powder obtained in Example 1 and 0.8 part by weight of a silane coupling agent (manufactured by Toray Dow Corning, Z-6094N) were added, and a mixer (manufactured by Kyoritsu Riko, model SK-10) The ferrite powder was surface-treated with stirring. Next, 6.7 parts by weight of powdered 6-nylon (manufactured by Ube Industries, P-1011F) and 0.8 part by weight of a lubricant (manufactured by Henkel, VPN-212P) are added to the ferrite powder. A mixture was obtained.
  • a silane coupling agent manufactured by Toray Dow Corning, Z-6094N
  • the mixture was kneaded at 230 ° C. using a kneader (manufactured by Toyo Seiki Seisakusho, 100C100 type), and crushed with a plastic crusher to obtain pellets having an average diameter of 2 mm.
  • the melt flow rate of the kneaded pellets was measured and found to be 106 g / 10 min.
  • the kneaded pellet was injection-molded in a magnetic field of a temperature of 290 ° C., a molding pressure of 85 kgf / cm 2 , and 4.3 kOe to obtain a cylindrical anisotropic bonded magnet having a diameter of 15 mm and a height of 8 mm according to Example 12.
  • the mixing weight ratio was 92.8 parts by weight of the ferrite powder of Example 1, 0.7 part by weight of a silane coupling agent, 5.7 parts by weight of powdered 6-nylon, and 0.8 part by weight of a lubricant. Except that, kneaded pellets having a ferrite powder content of 93 parts by weight were obtained in the same manner.
  • the melt flow rate of the kneaded pellet is 39 g / 10 min, and the ferrite powder obtained in Example 1 exhibits relatively high fluidity even when the ferrite content in the compound (the kneaded pellet) is high. Was confirmed.
  • Example 13 Except that the ferrite powder obtained in Example 2 was used, the same operation as in Example 12 was performed, and a kneaded pellet and a bonded magnet having a ferrite powder content of 92 parts by weight, and a ferrite powder content of 93 parts by weight were equivalent. Kneaded pellets were obtained. The melt flow rate of the kneaded pellets was 110 g / 10 min (equivalent to 92 parts by weight) and 46 g / 10 min (equivalent to 93 parts by weight). The magnetic properties of the bond magnet were Br: 3080G, iHc: 2140 Oe, BHmax: 2.24 MGOe. By securing sufficient fluidity (MFR) and iHc, a bonded magnet having a high BHmax could be obtained even in a low magnetic field orientation of 4.3 kOe.
  • MFR fluidity
  • Example 14 Except for using the ferrite powder obtained in Example 8, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 130 g / 10 min, and the magnetic properties of the bonded magnet were Br: 3040 G, iHc: 2460 Oe, and BHmax: 2.22 MGOe.
  • MFR fluidity
  • Example 15 Except for using the ferrite powder obtained in Example 10, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 161 g / 10 min, and the magnetic properties of the bonded magnet were Br: 3180 G, iHc: 2620 Oe, BHmax: 2.46 MGOe.
  • MFR fluidity
  • Example 16 Except that the ferrite powder obtained in Example 11 was used, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 158 g / 10 min, and the magnetic properties of the bond magnet were Br: 3180 G, iHc: 2600 Oe, BHmax: 2.47 MGOe.
  • MFR fluidity
  • Comparative Example 7 Except for using the ferrite powder obtained in Comparative Example 1, the same operation as in Example 12 was performed to obtain a kneaded pellet corresponding to a ferrite powder content of 92 parts by weight. Since the melt flow rate of the kneaded pellets was 18 g / 10 min and the fluidity was insufficient, the bonded magnet could not be formed.
  • Example 8 Except for using the ferrite powder obtained in Comparative Example 2, the same operation as in Example 12 was performed to obtain a kneaded pellet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 56 g / 10 min, and the magnetic properties of the bond magnet were Br: 2760G, iHc: 2320 Oe, BHmax: 1.90 MGOe. Since the ferrite powder has a low compression density and lacks fluidity (MFR), the residual magnetic flux density is lowered in the low magnetic field orientation of 4.3 kOe, and the target BHmax cannot be obtained.
  • MFR compression density and lacks fluidity
  • Comparative Example 9 Except for using the ferrite powder obtained in Comparative Example 3, the same operation as in Example 12 was performed to obtain a kneaded pellet corresponding to a ferrite powder content of 92 parts by weight. Since the melt flow rate of the kneaded pellets was 8 g / 10 min and the fluidity was insufficient, the bonded magnet could not be formed.
  • Comparative Example 10 The same operation as in Example 12 was performed except that the ferrite powder obtained in Comparative Example 4 was used. However, when the ferrite content was 92 parts by weight, the fluidity during kneading was insufficient and kneaded pellets could be obtained. There wasn't.
  • Example 11 Except for using the ferrite powder obtained in Comparative Example 5, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 71 g / 10 min, and the magnetic properties of the bond magnet were Br: 2810G, iHc: 2350Oe, BHmax: 1.93MGOe.
  • the ferrite powder has a low compression density and lacks fluidity (MFR). Therefore, in the low magnetic field orientation of 4.3 kOe, the residual magnetic flux density decreases, and the target BHmax is reduced. Cann't get.
  • Example 12 Except that the ferrite powder obtained in Comparative Example 6 was used, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 76 g / 10 min, and the magnetic properties of the bond magnet were Br: 2740 G, iHc: 1990 Oe, BHmax: 1.85 MGOe. Although there was some residual magnetic flux density, Hc was insufficient, and the target BHmax could not be obtained in a low magnetic field orientation of 4.3 kOe.
  • Example 17 A powder A according to Example 17 was obtained in the same manner as in Example 2 except that the wet crushing in the production of the powder A of Example 2 was processed with a wet pulverizer / wet mill (WM).
  • the obtained powder A had a peak particle size of 6.2 ⁇ m, a specific surface area: 0.7 m 2 / g, ⁇ s: 56.4 emu / g, Hc: 1200 Oe, and the proportion of plate-like particles was 22%. .
  • a powder B according to Example 17 was obtained in the same manner as in Example 1 except that the wet crushing in the production of the powder B of Example 1 was treated with a wet pulverizer / wet mill (WM).
  • the obtained powder B had a peak particle size: 1.1 ⁇ m, a specific surface area: 7.0 m 2 / g, ⁇ s: 54.6 emu / g, and Hc: 2520 Oe.
  • the mixed powder before annealing was treated with a vibration ball mill (Murakami Seiki: Uras Vibrator KEC-8-YH) and then annealed, and then the same operation as in Example 1 was performed to obtain a ferrite powder according to Example 17. It was.
  • a vibration ball mill Murakami Seiki: Uras Vibrator KEC-8-YH
  • the obtained ferrite powder has a peak particle size: 1.2 ⁇ m, 3.8 ⁇ m, a specific surface area: 1.7 m 2 / g, a compression density: 3.64 g / cm 3 , ⁇ s: 56.4 emu / g, Hc: 3170 Oe, p-iHc: 2300 Oe, the specific surface area was low, and it was confirmed that sufficient compression density and p-iHc were secured.
  • Example 18 The same procedure as in Example 2 was carried out except that the amount of potassium chloride added in the production of powder A in Example 2 was 2.80 wt% and wet crushing was treated with a wet mill / wet mill (WM).
  • a powder A according to Example 18 was obtained.
  • the obtained powder A had a peak particle size of 6.0 ⁇ m, a specific surface area: 0.7 m 2 / g, ⁇ s: 56.5 emu / g, Hc: 1230 Oe, and the proportion of plate-like particles was 19%. .
  • Example 18 The same operation as in Example 1 was carried out to Example 18 except that the calcination temperature in the production of powder B of Example 1 was changed to 1020 ° C. and wet crushing was processed with a wet pulverizer / wet mill (WM). Such powder B was obtained.
  • the obtained powder B had a peak particle size: 1.0 ⁇ m, a specific surface area: 7.5 m 2 / g, ⁇ s: 54.2 emu / g, and Hc: 2670 Oe.
  • the mixed powder before annealing was treated with a vibration ball mill (Murakami Seiki: Uras Vibrator KEC-8-YH) and then annealed, and then the same operation as in Example 1 was performed to obtain a ferrite powder according to Example 18. It was.
  • a vibration ball mill Murakami Seiki: Uras Vibrator KEC-8-YH
  • the obtained ferrite powder has a peak particle size: 1.2 ⁇ m, 4.3 ⁇ m, a specific surface area: 1.7 m 2 / g, a compression density: 3.64 g / cm 3 , ⁇ s: 56.3 emu / g, Hc: 3280 Oe, p-iHc: 2380 Oe. It was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 19 Powder A according to Example 19 was obtained in the same manner as in Example 1 except that potassium chloride in the production of powder A of Example 1 was changed to magnesium chloride and the addition amount was 2.25 wt%.
  • the obtained powder A had a peak particle size: 5.1 ⁇ m, a specific surface area: 0.8 m 2 / g, ⁇ s: 56.1 emu / g, Hc: 1530 Oe, and the proportion of plate-like particles was 25%. .
  • Example 1 The obtained powder A and the powder B obtained in Example 1 were mixed in the same ratio as in Example 1, and the mixed powder before annealing was mixed with a vibrating ball mill (Murakami Seiki: Uras Vibrator KEC-8-YH). After the treatment, a ferrite powder according to Example 19 was obtained in the same manner as in Example 1 except that the annealing temperature was 940 ° C.
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 3.2 ⁇ m, a specific surface area: 1.8 m 2 / g, a compression density: 3.60 g / cm 3 , ⁇ s: 55.7 emu / g, Hc: 3490 Oe P-iHc: 2550 Oe, the specific surface area was low, and it was confirmed that sufficient compression density and p-iHc were secured.
  • Example 20 (1) Manufacture of raw material crushed powder of powder A Iron oxide strontium carbonate was weighed so as to be iron oxide 5.9: strontium carbonate 1 in molar ratio. 0.18% by weight boric acid and 2.44% by weight potassium chloride are added to the weighed product and mixed, and then granulated into a spherical shape having a diameter of 3 to 10 mm with water. It was dried at 150 ° C. Each granulated product was put in an amount of 200 g per 0.68 L alumina container (atmosphere), covered with an alumina lid, and then fired in an electric furnace at 1260 ° C. for 80 minutes to obtain a fired product.
  • the bulk density of the fired product was 1.6 g / cm 3 , and it was confirmed that the sintering between the particles had hardly progressed.
  • the fired product was processed with a hammer mill (Ec Sample Mill KII, manufactured by Fuji Powder Co., Ltd.) to obtain a raw material coarse powder of powder A.
  • the obtained ferrite powder has a peak particle size: 1.4 ⁇ m, 3.8 ⁇ m, a specific surface area: 1.7 m 2 / g, a compression density: 3.62 g / cm 3 , ⁇ s: 56.4 emu / g, Hc: 3110 Oe P-iHc: 2290 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 21 The mixed powder before annealing is the powder A obtained in Example 2 and the powder B obtained in Example 1, and the mixing ratio (rough / fine) is 65 parts by weight (powder A) / 35 parts by weight (powder B).
  • the mixed powder obtained by changing to) was treated with a vibrating ball mill (Murakami Seiki: Uras Vibrator KEC-8-YH) and then annealed, and then the same operation as in Example 1 was performed according to Example 21. Ferrite powder was obtained.
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 3.8 ⁇ m, a specific surface area: 1.8 m 2 / g, a compression density: 3.59 g / cm 3 , ⁇ s: 56.1 emu / g, Hc: 3410 Oe P-iHc: 2390 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 22 A mixed powder obtained by changing the mixing ratio (rough / fine) of the mixed powder before annealing to 75 parts by weight (powder A) / 25 parts by weight (powder B) was used as a vibration ball mill (Murakami Seiki: Uras Vibrator KEC- The ferrite powder according to Example 22 was obtained in the same manner as in Example 1 except that the annealing was performed after the treatment with 8-YH).
  • the obtained ferrite powder has a peak particle size: 1.3 ⁇ m, 4.0 ⁇ m, a specific surface area: 1.7 m 2 / g, a compression density: 3.61 g / cm 3 , ⁇ s: 56.4 emu / g, Hc: 3100 Oe P-iHc: 2260 Oe, it was confirmed that the specific surface area was low and sufficient compression density and p-iHc were secured.
  • Example 23 Except for using the ferrite powder obtained in Example 17, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 161 g / 10 min, and the magnetic properties of the bonded magnet were Br: 3240G, iHc: 2170 Oe, BHmax: 2.57 MGOe.
  • MFR fluidity
  • Example 24 Except for using the ferrite powder obtained in Example 18, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 217 g / 10 min, and the magnetic properties of the bond magnet were Br: 3270 G, iHc: 2240 Oe, BHmax: 2.61 MGOe.
  • MFR fluidity
  • Example 25 Except that the ferrite powder obtained in Example 19 was used, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 139 g / 10 min, and the magnetic properties of the bonded magnet were Br: 3150 G, iHc: 2470 Oe, BHmax: 2.42 MGOe.
  • MFR fluidity
  • Example 26 Except for using the ferrite powder obtained in Example 20, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 115 g / 10 min, and the magnetic properties of the bonded magnet were Br: 3200 G, iHc: 2190 Oe, BHmax: 2.52 MGOe.
  • MFR fluidity
  • Example 27 Except for using the ferrite powder obtained in Example 21, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 115 g / 10 min, and the magnetic properties of the bond magnet were Br: 3170G, iHc: 2350 Oe, BHmax: 2.45 MGOe.
  • MFR fluidity
  • Example 28 Except for using the ferrite powder obtained in Example 22, the same operation as in Example 12 was performed to obtain a kneaded pellet and a bonded magnet corresponding to a ferrite powder content of 92 parts by weight.
  • the melt flow rate of the kneaded pellets was 137 g / 10 min, and the magnetic properties of the bonded magnet were Br: 3260G, iHc: 2150 Oe, BHmax: 2.60 MGOe.
  • MFR fluidity
  • the manufacturing conditions and properties of the ferrite powder A are shown in Table 2, the manufacturing conditions and properties of the ferrite powder B are shown in Table 3, the properties before and after the ferrite powder A is mixed with the fine powder and annealed in Table 4, and Table 5 shows various characteristics when a bonded magnet is used.
  • Table 5 shows various characteristics when a bonded magnet is used.
  • Table 5 various properties after annealing of the ferrite powder described in Table 4 are listed again.
  • the abbreviations of the devices in Table 3 are the same as those in Table 2 (UBM, SG, PM, WM, etc.).
  • the bonded magnet produced using the ferrite powder of the present invention has an energy product of 2.0 MGOe or more, whereas the bonded magnet produced using the ferrite powder of the comparative example is 2.0 MGOe. Only had energy product up to.
  • the coercive force was not significantly different between the example and the comparative example.
  • the example has a magnetization of 3000 G or more, whereas the comparative example has a maximum of 2810 G. That is, the difference between the example and the comparative example is a difference in magnetization when the magnet is used.
  • the cause of the difference in magnetization when magnets are used is that the density of the powder tends to increase and the magnetic powder is easily oriented by molding in a magnetic field. Therefore, when comparing the MFRs of the example and the comparative example, all the examples had a melt flow rate of 100 g / min or more, whereas the comparative examples did not exceed 80 g / min.
  • the compression density (CD) when compared between the ferrite powders before adding the binder is 3.5 g / cm 3 or more in all the examples, while those exceeding 3.5 in the comparative example are compared. None other than Example 12 (Comparative Example 6 for ferrite powder).
  • Comparative Example 6 Temperature of annealing (annealing) process compared to 750 ° C. and 970 ° C. Example Therefore, the coercive force in the green compact after annealing (annealing) was as low as 2030 Oe. The coercive force of the example was 2100 Oe or more in the green compact.
  • annealing temperature affects the crystallinity, and an annealing (annealing) temperature of about 970 ° C. is necessary.
  • coercive force value of the green compact is 2100 Oe or more, it can be one of the judgments that 970 ° C. annealing (annealing) is experienced.
  • the example when comparing SSA, the example was 2.0 m 2 / g or less, while the comparative example showed a larger tendency.
  • the peak value of the particle size distribution is not significantly different between the example and the comparative example. Therefore, in the example, since the grain growth proceeds and a beautiful crystal is generated, it is considered that the surface has few active points even with the same particle size, and is easily oriented without being entangled with the binder.
  • the ferrite powder annealed at 970 ° C. (the coercive force of the green compact is 2100 Oe or more), the compression density (CD) is 3.5 g / cm 3 and the specific surface area (SSA) is 2.0 m 2. / G or less ferrite powder, even if used as a bond magnet, the coercive force does not decrease, the MFR increases, and it is well oriented, so it can be said that a high energy product can be obtained.
  • the reason why the ferrite powder as in the example can be produced is that 1200 ° C. or higher under the saturated vapor pressure of chloride NaCl or KCl when firing the mixture of iron oxide and strontium oxide as the first raw material It was mentioned that it was done in the environment of. In Comparative Examples 1 to 3, although KCl was present, the lid of the container was empty, and the sample was not fired under saturated vapor pressure.
  • Comparative Example 4 it was considered that the vessel had a saturated vapor pressure of KCl in the container with a lid, but because the firing temperature was as low as 1010 ° C., the specific surface area (SSA) was 4.8 m 2 / g and others. It was larger than the throat sample, and the powder was not capable of crystal growth.
  • SSA specific surface area
  • ferrite powder fired at a temperature of 1050 ° C. to 1300 ° C. under saturated vapor pressure of Na or K chloride is easily clogged by mixing with fine ferrite and firing, and the coercive force is also reduced. It was possible to produce a ferrite powder that was easy to orient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

ボンド磁石は、磁化Brと保磁力Hcの積であるエネルギー積を大きくすることが必要である。しかし、ボンド磁石用フェライト粉末は、保磁力を高めるために粒径を小さくすると詰まりにくくなってBrが低下する。また磁化を高めようとして粒径を大きくすると保磁力が低下する。そのため、エネルギー積を大きくするには、BrとHcの両方を大きくしなければならない。 塩化物の飽和蒸気圧下で1050℃乃至1300℃の温度で焼成したフェライト粉を粒径の小さな微粉フェライト粉と混合し、800℃乃至1100℃の温度でアニールすると、粒径が大きく、きれいな結晶で、加圧しても保磁力の下がりが低いフェライト粉末を得た。この粉末で作製したボンド磁石は2.0MGOe以上のエネルギー積を有する。

Description

ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石
 本発明は、異方性ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石に関する。
 高磁力が要求される、AV、OA機器、複写機のマグネットロール等に用いられる磁石には、フェライト系焼結磁石が使用されている。だが、当該フェライト系焼結磁石は、欠け割れが発生したり、研磨が必要なため生産性に劣ることに加え、複雑な形状への加工が困難であるという固有の問題がある。最近では、希土類磁石を用いたボンド磁石がこの分野で一部使用されている。しかし、希土類磁石は、フェライト系焼結磁石の約20倍のコスト高であり、また錆びやすいという問題がある。そこで、フェライト系焼結磁石をフェライト系ボンド磁石で代替したいという要請がある。しかし、ボンド磁石は、焼結磁石に
対して最大エネルギー積BHmaxが劣るため、代替するためには最大エネルギー積BHmaxのさらなる特性向上が必要である。
 最大エネルギー積BHmaxを向上させるためには、残留磁束密度Brと保磁力Hcの向上が必要となるわけであるが、前者に対しては、フェライト粉の飽和磁化値σs、充填性および配向性の向上が、後者に対しては結晶性の向上とフェライト粒子の多軸化抑制が重要である。
 飽和磁化値σsを向上させる方法として、W型の結晶構造を有するフェライト粉や、他元素(希土類元素やコバルト元素等)を添加して結晶中に固溶させることによりσsを向上させる方法等(特許文献1)が考案されているが、その向上幅は数%と限定されており、製法が複雑であったり、高価な添加元素を使用しコストアップに繋がったりする割には、それほど効果は高くなく、フェライト系焼結磁石の置き換えには至っていない。
 充填性を高めるため、粒径の異なるフェライト粉2種以上を混合し、大きい粒子の間隙に小さい粒子を入り込ませるようにすることにより充填率を向上させる方法(特許文献2)も考案されている。しかし、混合に供するフェライト粉は、六角板状の粒子を多く含み、コンパウンドのフェライト充填性と流動性を両立するためには不利であるとともに、フェライト粒子の分散性に関する配慮も十分とは言えなかった。
 流動性はコンパウンドの混練性および成形性に大きく影響し、極端な場合は混練不可や成形不可となる。また、最終的には、成形体中のフェライト粒子の配向性に影響することから、フェライト粉の充填量を高めることにより低下する配向性を補わなければならず、成型に10kOe以上の高い配向磁場が必要であった。成型装置が大掛かりとなれば当然生産コストの悪化に結びつきかねず、こちらについても、フェライト系焼結磁石の置き換えを満足するには至っていない。
 配向性については、前述したとおり、コンパウンドの流動性に大きく影響される。流動性は、コンパウンドで使用される樹脂や表面処理剤の影響も大きいが、フェライト粉について言えば、結晶性の良いフェライト粉の代表的な形状である六角板状の形状の粒子が少なく、粒子の分散性が良く、比表面積が少ない(粒子サイズが大きい)ことが有利である。しかしながら、粒子サイズを大きくすると、磁壁生成が起き多軸粒子化しやすくなることから、保磁力の低下を引き起こしてしまうため、単純に粒子サイズを大きくすることはできなかった。
 一方、保磁力の向上には、結晶性を良くすることと、多軸粒子化を抑制できるよう粒子サイズが小さいことが有利である。しかしながら、結晶性を良くしようと、アニール温度を高くすれば、凝集(焼結)が進み分散性を低下させてしまうおそれがある。また、粒子サイズを小さくすれば流動性の低下を招く。そのため、残留磁束密度Brを維持したまま、保磁力Hcを向上させることは困難であった。
特開2001-189210号 特許3257936号
 結晶性と分散性の向上ならびに粒子形状制御を両立することにより、保磁力を維持しながらも、充填性と配向性に優れた高磁力を有するボンド磁石を作製できる異方性ボンド磁石用フェライト粉末を提供することを課題とする。
 本発明は上記課題に鑑みて想到されたものであり、より具体的には、本発明の異方性ボンド磁石用フェライト粉末は、複数のピークを有する粒径分布のフェライト粉末を混合した異方性ボンド磁石用フェライト粉末であって、圧縮密度(CD)が3.5g/cm以上であり、圧粉体保磁力(p-iHc)が2100Oe以上であり、比表面積(SSA)が2.0m/g以下である異方性ボンド磁石用フェライト粉末を提供する。
 また本発明は、フェライト粉末含有率が92重量%である流動性試験に供したときのメルトフローレートが80g/10min以上である異方性ボンド磁石用フェライト粉末を提供する。また本発明は、4.3kOeの低磁場配向においても、保磁力(inj-iHc)が2100Oe以上、最大エネルギー積(inj-BHmax)が2.2MGOe以上の異方性ボンド磁石を提供する。
 また本発明の異方性ボンド用フェライト粉末の製造方法は、
酸化鉄を含む複数の原材料を造粒し造粒物を得る工程と、
前記造粒物を塩化物の蒸気圧下で1050℃以上1300℃以下の雰囲気で焼成し焼成物を得る工程と、
前記焼成物を解砕または粉砕し粉末を得る工程を有する異方性ボンド磁石用フェライト粉末の製造方法を提供する。
 さらに、本発明は、以下の工程を有する異方性ボンド磁石用フェライト粉末の製造プロセスにおいて、解砕工程またはアニール(焼鈍)工程の前後またはその工程中に、比表面積の異なる第2の粉末を混合する工程を有する異方性ボンド磁石用フェライト粉末の製造方法を提供する。
(1)酸化鉄を含む複数の原材料を造粒し第1の造粒物を得る工程と、
(2)前記第1の造粒物を塩化物の飽和蒸気圧下で1050℃以上1300℃以下の雰囲気で焼成し第1の焼成物を得る工程と、
(3)前記第1の焼成物を解砕または粉砕し第1の粉末を得る工程と、
(4)前記混合粉を大気中で800℃以上1100℃以下の雰囲気でアニール(焼鈍)する工程を含む異方性ボンド磁石用フェライト粉末の製造方法。
 本発明の異方性ボンド磁石用フェライト粉末は、圧縮密度(CD)と圧粉体の保磁力(p-iHc)が、それぞれ3.5g/cm以上、2100Oe以上を満足する。そして、本発明の異方性ボンド磁石用フェライト粉末を用いることで、保磁力(inj-iHc)が2100Oe以上、最大エネルギー積(inj-BHmax)が2.2MGOe以上のエネルギー積を有する異方性ボンド磁石を得ることができる。
 本発明の異方性ボンド磁石(以下単に「ボンド磁石」とも呼ぶ。)用フェライト粉末は以下のような特性を有する。以下順に説明する。
 圧縮密度(CD)は、ボンド磁石の最小構成単位であるフェライト粒子を限られた体積にどれだけ充填することができるかを示す指標と言え、飽和磁束密度(Bs)との相関性が高い。また、圧縮密度(CD)が高いと、粒子間隙の容積が小さくなるため、間隙に入り込む樹脂が見かけ上減少する。その分、自由に動くことができて粒子間の緩衝に寄与する樹脂の割合が多くなり、混練および成型時の流動性が上がり、配向性を高める効果もある。したがって、圧縮密度(CD)は高い方が良く、好ましくは3.55g/cm以上、さらに好ましくは3.6g/cm以上が良い。
 また、圧縮密度(CD)を向上させる方法として、従来より、粒径の異なるフェライト粉末を混合する方法が用いられる。本発明も複数の粒径を有するフェライト粉末を混合して得ることができる。従って、本発明の異方性ボンド磁石用フェライト粉末は、粒度分布において複数のピークを有する。また、粒度分布において複数のピークを有すれば、複数のフェライト粉を混合しなくてもよい。すなわち、フェライト粉末の合成時に粒度分布に複数のピークを有するように作製されたフェライト粉末であってもよい。なお、ピークとは、ピークの極大値が完全に独立していなくても良く、一つのピークの裾部分がショルダー(肩)になっているものについても、別のピークと見なすことができる。
 一方、圧粉体の保磁力(p-iHc)は、2ton/cmの高圧力下で圧縮され機械的ストレスの履歴がある状態での保磁力である。なお、「ton」は1000kgの意である。一般に、ボンド磁石を製造する際の混練および成形時には機械的ストレスを受け、保磁力は(ストレスの掛かっていない粉体状態のときより)低下する。圧粉体の保磁力(p-iHc)と、ボンド磁石(成形体)の保磁力(inj-iHc)とは高い相関があるため、ボンド磁石(成形体)の保磁力(inj-iHc)を推定する有効な指標となる。したがって、圧粉体の保磁力(p-iHc)は、高い方が良いが、保磁力が高すぎると着磁されにくいといった問題も起こるため、好ましくは2200Oe以上3200Oe以下が良い。
 また、本発明の異方性ボンド磁石用フェライト粉末は、比表面積(SSA)が、2.0m/g以下を満足する。比表面積(SSA)が高いと、混練および成型時にフェライト粒子表面に吸着する樹脂(バインダー)量が増え、その分自由に動くことができる樹脂の割合が減少し、流動性の低下を招く。流動性の低下は磁場成型時の配向性の低下、すなわち残留磁束密度(Br)の低下に結びつく。この傾向は、コンパウンド中のフェライト粉末の含有比率(FC比率)が高く、磁場成型中の配向磁場が低いほど顕著になりやすいため、比表面積は低い方が良く、好ましくは1.8m/g以下が良い。
 本発明の異方性ボンド磁石用フェライト粉末は、高い圧縮密度(CD)、低い比表面積(SSA)、さらにフェライト粒子の分散性向上と板状粒子の低減により、高い流動性を得ることができる。前述のとおり、高い流動性は、磁場成型時の配向性の向上、すなわち残留磁束密度(Br)の向上に繋がるため、特に上限はなく、フェライト粉末含有比率が92重量%のコンパウンドでのメルトフローレート(MFR)が80g/10min以上、好ましくは100g/10min以上が良い。なお、本発明における混練ペレットとは、平均径約2mmのコンパウンドの破砕物を意味する。
 また、本発明の異方性ボンド磁石用フェライト粉末は、無配向状態の飽和磁化値(σs)が54emu/gを満足する。飽和磁化値(σs)は、飽和磁束密度(Bs)と相関性が高いため、高い方が良く、好ましくは55emu/g以上、さらに好ましくは56emu/g以上が良い。
 なお、本発明の異方性ボンド磁石用フェライト粉末は、さらなる磁気特性向上を目的として、希土類元素や遷移金属元素(コバルト等)を含有しても(固溶させても)よい。しかしながら、希土類元素や遷移金属元素(コバルト等)の添加は、コストアップに直結する。
 例えば、希土類元素の中で比較的安価な元素であっても、ストロンチウムもしくはバリウムの10at%固溶するだけで、原料代として20%以上のコストアップになる。フェライト粉末(ボンド磁石)の最大の長所はやはり安価なことであるため、コストアップ幅は20%以下、好ましくは10%以下、さらに好ましくはコストアップにならないことが重要である。したがって、希土類元素や遷移金属元素の含有量は、コストアップにならないよう、10at%以下、好ましくは5at%以下、さらに好ましくは含有しないこと(不可避不純物としての含有は除く)が望まれる。
 また、本発明の異方性ボンド磁石用フェライト粉末は、結晶性が良く、板状粒子の比率が少ないため、機械的ストレスに対する保磁力の低下も少ない。フェライト粉末含有比率が92重量%の高い充填率のコンパウンドにおいても、ボンド磁石を製造する際の混練および成形時には機械的ストレスによる保磁力の低下が少なく、成形品の保磁力(inj-iHc)は、2100Oe以上を満足する。圧粉体の保磁力(p-iHc)同様、保磁力は高い方が良いが、保磁力が高すぎると着磁されにくいといった問題も起こるため、成形品の保磁力(inj-iHc)についても、好ましくは2200Oe以上3200Oe以下が良い。
 これまでは、圧縮密度(CD)、圧粉体の保磁力(p-iHc)、比表面積(SSA)、無配向状態での飽和磁化値(σs)およびメルトフローレート(MFR)のうち、いずれか2つもしくは3つを満足するものはあったが、これら全てを満たすものは無かった。本発明では、これら全ての項目を満足させることにより、フェライト粉末含有比率92重量%の高充填率で、なおかつ、4.3kOeの低い配向磁場中での成型においても、高いHcとBrを得ることができ、その結果、2.2MGOe以上の高いエネルギー積を得ることができる。
 また、本発明の異方性ボンド磁石用フェライト粉末の製造方法は、塩化物、特にKClの蒸気圧下、1050℃以上1300℃以下の温度で焼成するので、粒成長が進みながらも、粒子間距離が保たれる。その結果、板状粒子の比率が少なく、粒子間焼結が少なく、比表面積が小さい結晶性の高いフェライト粉末を得ることができる。
 上記の塩化物としては、KCl、NaCl、LiCl、RbCl、CsCl、BaCl、SrCl、CaCl、MgCl等があり、これらのうちの2種以上を組み合わせて使用しても構わない。
 また、塩化物以外に、焼成時の融剤として、酸化物、無機酸もしくは無機酸塩を使用しても良い。酸化物、無機酸およびその塩としては、酸化ビスマス、ホウ酸、ホウ酸塩、硫酸塩、燐酸塩、ケイ酸、ケイ酸塩等があげられ、これらのうちの2種以上を組み合わせて使用しても構わない。
 なお、焼成時の塩化物の蒸気圧(分圧)は、直接測定することが困難であるため、焼成後の塩化物の残り有無、焼成炉(容器)の気密性とその容積、焼成温度での飽和蒸気圧より算出する。より具体的には、化学便覧データ(表1)を元に回帰計算で焼成時の塩化物の蒸気圧を求める。塩化物の分圧は、50mmHg以上760mmHg以下、好ましくは50mmHg以上かつ飽和蒸気圧以下であることが好ましく、焼成時(焼成温度に保持している間)、常に塩化物が蒸気として存在することが重要である。
Figure JPOXMLDOC01-appb-T000001
 また、このフェライト粉末と比表面積の異なる別のフェライト粉末を混合し、焼成することで、圧縮密度(CD)と圧粉体保磁力(p-iHc)と、比表面積(SSA)の特性を満足するフェライト粉末を得ることができる。なお、比表面積の異なるフェライト粉末としては、最終製品のフェライト粉の比表面積が高くなりすぎないよう、8m/g以下のものを使用するのが良い。
 本実施例において製造したフェライト粉の粉体特性の測定方法について説明する。
 <比表面積>
 フェライト粉の比表面積(SSA)は、BET法に基づいて、ユアサ アイオニクス株式会社製のモノソーブを用いて測定を行った。
 <粒度分布>
 フェライト粉の粒度分布は、乾式レーザー回折式粒度分布測定装置(株式会社日本レーザー製、HELOS&RODOS)を用い、focal length=20mm、分散圧 5.0bar、吸引圧 130mbarの条件にて測定を行った。
 また、頻度分布曲線における極大値近傍の3計測点に対して二次関数で近似し、その二次関数の極大値となる粒径をピーク粒径とした。
 <圧縮密度(CD)>
 フェライト粉の圧縮密度は、内径2.54cmφの円筒形金型にフェライト粉10gを充填した後、1ton/cmの圧力で圧縮した。このときのフェライト粉の密度を圧縮密度として測定した。
 <板状粒子の割合>
 フェライト粉中の板状粒子の割合は、次の手順により測定した。
(1)フェライト粉4.5gと、NCクリアラッカー5.7gを遠心ボールミル(FRITSCH社製 商品名:PULNERISETTE type702)で分散させる。
(2)分散させた塗料を、アプリケータバーを使用しシート上に塗布した後、塗布面に対して並行に配向磁場5kOeを印加して配向させた(フェライト粒子のC軸方向が塗布面と並行となるため、塗布面の真上から粒子を観測することで粒子のC軸方向の粒径を測定できるようにした)。
(3)乾燥させたシートを走査型電子顕微鏡(JEOL製JSM-T220A)にて観察し、2000倍のSEM写真中、100個以上の粒子について、長軸径(c軸垂直面径)と短軸径(c軸長)を計測した。
(4)長軸径/短軸径=2以上の粒子を板状粒子とし、板状粒子の割合を算出した。
 <焼成体のカサ密度>
 焼成体のカサ密度は、約180mL相当の焼成体を、200mLのメスシリンダーに入れ、焼成体重量と、メスシリンダーの目盛りより算出した。
 <磁気特性>
 フェライト粉の磁気特性は、VSM(東英工業株式会社製、VSM P-7-15)を用い、フェライト粉20mgとパラフィン30mgを装置付属のセルに充填し、80℃に過熱してパラフィンを解かした後、室温に冷却することでサンプル粒子をランダムに固定化し、測定磁場10kOeにて測定し、σs(emu/g)、iHc(Oe)を算出した。なお、1Oeは1/4π×10[A/m]である。
 <圧粉体磁気特性>
 フェライト粉の圧粉体保磁力(p-iHc)は、次の手順により測定した。
(1)フェライト粉8gとポリエステル樹脂(日本地科学社製P-レジン)0.4ccを乳鉢中で混練する。
(2)混練物7gを内径15mmφの金型に充填し、2ton/cmの圧力で40秒間圧縮した。
(3)成型品を金型より抜取り、150℃で30分間乾燥した後、BHトレーサー(東英工業製 TRF-5BH)により測定磁場10kOeで測定した。
 <メルトフローレート>
 混練ペレットのメルトフローレート(MFR)は、メルトフローインデクサー((株)東洋精機製作所製 メルトフローインデクサーC-5059D2(JIS K-7210準拠))に供し、270℃、荷重10kgで押し出された重量を測定し、これを10分間あたりの押し出し量に換算することで、メルトフローレート(単位g/10分)とした。
 なお、本明細書において、メルトフローレートとは、以下の(1)乃至(3)の手順で測定した値であるとする。
(1)被測定磁性粉91.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部をミキサーにてかき混ぜる。
(2)得られた混合物を230℃で混練して平均径2mmのペレット(コンパウンドの破砕物)にする。
(3)前記(2)で得られたペレットをメルトフローインデクサーに供し、270℃ 荷重10kgで、10分間に押し出された重量を測定し、これをメルトフローレート(単位g/10分)とする。
 <成形品の磁気特性>
 成形品の磁気特性は、次の手順により評価した。
(1)混練ペレットを、射出成形機(住友重機製)を用い4.3KOeの磁場中にて、温度290℃、成形圧力8.5N/mmで射出成形し、直径15mm×高さ8mmの円柱状の成形品(磁場の配向方向は円柱の中心軸に沿う方向)を得た。
(2)円柱状の成形品の磁気特性を、BHトレーサー(東英工業製 TRF-5BH)にて測定磁場10kOeで測定した。
 (実施例1)
(1)粉末Aの製造
 酸化鉄と炭酸ストロンチウムとを、モル比で、酸化鉄5.9:炭酸ストロンチウム1になるように秤量した。当該秤量物に対して、0.18重量%のホウ酸、および2.44重量%の塩化カリウムを加えて混合後、水で直径3~10mmの球状に造粒し、造粒物を大気中150℃にて乾燥させた。造粒物を、容積0.68Lのアルミナ製容器あたり各200g入れ(大気雰囲気)、アルミナ製のフタをした後、電気炉中1245℃で80分間焼成し焼成物を得た。焼成物のカサ密度1.6g/cmであり、粒子間の焼結がほとんど進んでいないことを確認した。
 なお、アルミナ容器は原材料中の揮発ガスにより内圧が上がれば、フタと容器の隙間からガスが外に逃げる構造のものを使用し、焼成中は常に1気圧となるようにした。容器容積に対して塩化カリウム量が十分にあるため、焼成時の塩化カリウムは飽和蒸気圧の平衡状態を維持していると考えられることから、焼成時の塩化カリウムの分圧は1245℃での塩化カリウムの飽和蒸気圧である210mmHg(化学便覧データをもとに回帰計算)と見積もられる。また、1気圧(760mmHg)から塩化カリウム蒸気圧の差し引き分の550mmHgが、空気および炭酸ストロンチウムから発生した二酸化炭素と見なすことができ、容器内に残留する空気(0.68L(STP))と発生二酸化炭素量(4.4L(STP))から、二酸化炭素分圧476mmHg、酸素分圧15mmHgと算出される。
 当該焼成物をハンマーミル(不二パウダル製 エックサンプルミルKII型)で処理することで、粗砕粉末を得た。粗砕粉末を遊星ボールミル(FRITSCH社製 商品名:PULNERISETTE type07-301)にて解砕処理し、粒度合成に必要な粉末Aの量が確保できるまで遊星ミルでの解砕処理を繰り返した後、スラリーを纏めてろ過し、得られたケーキを大気中150℃で10時間乾燥させ、乾燥ケーキをミキサー(共立理工株式会社製の商品名サンプルミルSK-M10)で解砕処理することで、粉末Aを得た。
 得られた粉末Aは、ピーク粒子径(Helos):5.3μm、比表面積(SSA):0.7m/g、σs:56.5emu/g、Hc:1490Oeであった。SEM観察の結果、板状粒子の割合は25%であり、板状粒子が少ないことを確認した。また、X線回折にて、粉末Aはマグネトプランバイト型フェライトの結晶構造を有することを確認した。
(2)粉末Bの製造
 酸化鉄と炭酸ストロンチウムとを、モル比で、酸化鉄5.5:炭酸ストロンチウム1になるように秤量および混合した後、直径3~10mmの球状に造粒し、造粒物を大気中150℃にて乾燥させた。造粒物を、容積0.68Lのアルミナ製容器あたり各200g入れ、大気中、電気炉中1070℃で80分間焼成し、焼成物を得た。当該焼成物をハンマーミルで処理することで粗砕粉末を得た。当該粗砕粉末を遊星ボールミルにて解砕処理し、粒度合成に必要な粉末B量が確保できるまで遊星ボールミルでの解砕処理を繰り返した後、スラリーを纏めてろ過し、得られたケーキを大気中150℃で10時間乾燥させ、乾燥ケーキをミキサーで解砕処理することで、粉末Bを得た。
 得られた粉末Bは、ピーク粒子径:1.1μm、比表面積:6.8m/g、σs:54.4emu/g、Hc:2570 Oeであった。また、X線回折にて、粉末Bはマグネトプランバイト型フェライト結晶構造を有することを確認した。
(3)混合粉(フェライト粉末)の製造
 上記(1)で得られた粉末A(70重量部)、(2)で得られた粉末B(30重量部)、および水道水(150重量部)とを秤量し、攪拌翼を有する容器に投入して攪拌混合した。スラリーをろ過、乾燥(大気中150℃で10時間)させた後、乾燥ケーキをミキサーで解砕処理した。当該混合粉を電気炉で大気中970℃にて30分間アニール(焼鈍)して、実施例1に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.2μm、5.7μmと2山のピークを持ち、比表面積:1.5m/g、圧縮密度:3.63g/cm3、σs:56.8emu/g、Hc:3430Oe、p-iHc:2350Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例2)
 実施例1の粉末Aの製造における焼成温度を1260℃とした以外、実施例1と同様に操作して実施例2に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化カリウム分圧250mmHg、二酸化炭素分圧442mmHg、酸素分圧14mmHgと算出され、焼成物のカサ密度1.6g/cmであった。得られた粉末Aは、ピーク粒子径:6.7μm、比表面積:0.6m/g、σs:56.5emu/g、Hc:1210Oeであり、板状粒子の割合は24%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、6.8μm、比表面積:1.5m/g、圧縮密度:3.69g/cm、σs:56.5emu/g、Hc:3430Oe、p-iHc:2230Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例3)
 実施例1の粉末Aの製造における焼成温度を1230℃とした以外、実施例1と同様に操作して実施例3に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化カリウム分圧190mmHg、二酸化炭素分圧494mmHg、酸素分圧16mmHgと算出され、焼成物のカサ密度1.5g/cmであった。得られた粉末Aは、ピーク粒子径:5.2μm、比表面積:0.9m/g、σs:56.5emu/g、Hc:1590Oeであり、板状粒子の割合は19%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、5.1μm、比表面積:1.4m/g、圧縮密度:3.58g/cm、σs:55.7emu/g、Hc:3760Oe、p-iHc:2620Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例4)
 実施例1の粉末Aの製造における塩化カリウムを塩化ナトリウムとした以外、実施例1と同様に操作して実施例4に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化ナトリウム分圧80mmHg、二酸化炭素分圧589mmHg、酸素分圧19mmHgと算出され、焼成物のカサ密度1.6g/cmであった。得られた粉末Aは、ピーク粒子径:5.1μm、比表面積:1.1m/g、σs:56.4emu/g、Hc:1510Oeであり、板状粒子の割合は21%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.4μm、5.3μm、比表面積:1.3m/g、圧縮密度:3.57g/cm、σs:56.2emu/g、Hc:3880Oe、p-iHc:2740Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例5)
 実施例2の粉末Aの製造における塩化カリウムを塩化ナトリウムとした以外、実施例2と同様に操作して実施例5に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化ナトリウム分圧150mmHg、二酸化炭素分圧528mmHg、酸素分圧17mmHgと算出され、焼成物のカサ密度1.8g/cmであった。得られた粉末Aは、ピーク粒子径:6.3μm、比表面積:0.8m/g、σs:56.5emu/g、Hc:1330Oeであり、板状粒子の割合は28%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.2μm、6.5μm、比表面積:1.2m/g、圧縮密度:3.61g/cm、σs:56.8emu/g、Hc:3150Oe、p-iHc:2130Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例6)
 実施例1の粉末Aの製造における塩化カリウムを混合しなかったこと以外、実施例1と同様に操作して造粒物を得た。造粒物35gを載せたアルミナ製のボートと、塩化カリウム0.85g(造粒物に対して2.43重量%相当)を、容積1.0Lの管状炉に入れ、(外部からガスを導入することなく)1260℃で80分間焼成し焼成物を得た。なお、管状炉は容積1.0L(内径85mmφ、管長200mm)の管全体が加熱される構造で、管の両端には内径5mmのガス導入(排出)管が取り付けられているおり、管状炉内の内圧が上がれば、ガス導入管を通して、ガスが外部に逃げるようになっているものを使用した。
 管状炉の容積に対して塩化カリウム量が十分にあるため、実施例2と同様に、焼成時の塩化カリウムの分圧は1260℃での塩化カリウムの飽和蒸気圧である250mmHgと見積もられる。また、1気圧(760mmHg)から塩化カリウム蒸気圧の差し引き分の510mmHgが、空気および炭酸ストロンチウムから発生した二酸化炭素と見なすことができ、容器内に残留する空気(1.0L(STP))と発生二酸化炭素量(0.77L(STP))から、二酸化炭素分圧222mmHg、酸素分圧60mmHgと算出され、焼成物のカサ密度1.6g/cmであった。
 当該焼成物の解砕以降の工程については、実施例1と同様に操作することで、実施例6に係るフェライト粉末を得た。得られた粉末Aは、ピーク粒子径:6.8μm、比表面積:0.7m/g、σs:56.6emu/g、Hc:1410Oeであり、板状粒子の割合は16%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、6.8μm、比表面積:1.4m/g、圧縮密度:3.62g/cm、σs:56.3emu/g、Hc:3400Oe、p-iHc:2230Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例7)
 実施例6と同様に操作して塩化カリウムを含まない造粒物を得た。造粒物35gを載せたアルミナ製のボートと、塩化カリウム150gを投入したアルミナ製の坩堝を、実施例5記載の管状炉(容積1.0L)に入れ、塩化カリウムの坩堝側から空気を0.2L/minで導入しながら1260℃で80分間焼成し焼成物を得た。焼成後管状炉内の坩堝を確認したところ、塩化カリウムが残っていた。
 当該焼成物の解砕以降の工程については、実施例1と同様に操作することで、実施例7に係るフェライト粉末を得た。焼成時に塩化カリウム量が十分にあったと考えられることから、実施例2と同様に、焼成時の塩化カリウムの分圧は1260℃での塩化カリウムの飽和蒸気圧である250mmHgと見積もられる。
 また、焼成時に管状炉内に空気を流していたことから、炭酸ストロンチウムから発生した二酸化炭素は管状炉外に排気され、管状炉内に存在する二酸化炭素は、空気中の二酸化炭素濃度(約0.03%)相当になると解釈できる。以上より、焼成時の各ガス成分の分圧は、塩化カリウム分圧250mmHg、二酸化炭素分圧0mmHg、酸素分圧110mmHgと算出され、焼成物のカサ密度1.7g/cmであった。
 得られた粉末Aは、ピーク粒子径:6.8μm、比表面積:0.7m/g、σs:56.4emu/g、Hc:1420Oeであり、板状粒子の割合は18%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、6.8μm、比表面積:1.5m/g、圧縮密度:3.61g/cm、σs:56.6emu/g、Hc:3380Oe、p-iHc:2210Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例8)
 実施例1の粉末Aの製造における湿式解砕をサンドグラインダー(五十嵐機械製造株式会社製 1/4 G1H 146)で処理したこと以外、実施例1と同様に操作して実施例8に係るフェライト粉末を得た。得られた粉末Aは、ピーク粒子径:5.0μm、比表面積:0.8m/g、σs:55.6emu/g、Hc:1760Oeであり、板状粒子の割合は11%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、4.7μm、比表面積:1.5m/g、圧縮密度:3.59g/cm、σs:56.0emu/g、Hc:3730Oe、p-iHc:2570Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例9)
 実施例1の粉末Aの製造における湿式解砕をパールミル(アシザワファインテック製スターミルAMS1)で処理したこと以外、実施例1と同様に操作して実施例9に係るフェライト粉末を得た。得られた粉末Aは、ピーク粒子径:5.3μm、比表面積:0.9m/g、σs:55.9emu/g、Hc:1720Oeであり、板状粒子の割合は23%であった。
 また、得られたフェライト粉末は、ピーク粒径:1.2μm、5.4μm、比表面積:1.8m/g、圧縮密度:3.56g/cm、σs:56.1emu/g、Hc:3580Oe、p-iHc:2320Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例10)
 実施例1のアニール前の混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールしたこと以外、実施例1と同様に操作して実施例10に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.3μm、3.4μm、比表面積:1.6m/g、圧縮密度:3.62g/cm、σs:57.1emu/g、Hc:3530Oe、p-iHc:2600Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例11)
 実施例8のアニール前の混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールしたこと以外、実施例8と同様に操作して実施例11に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.5μm、3.6μm、比表面積:1.7m/g、圧縮密度:3.60g/cm、σs:56.5emu/g、Hc:3530Oe、p-iHc:2590Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (比較例1)
 実施例1の粉末Aの製造における焼成時のアルミナ容器にフタをしなかった以外、実施例1と同様に操作して比較例1に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化カリウム分圧0mmHg、二酸化炭素分圧0mmHg、酸素分圧160mmHgと算出され、焼成物のカサ密度2.4g/cmであった。
 得られた粉末Aは、ピーク粒子径:10.6μm、比表面積:0.9m/g、σs:54.8emu/g、Hc:1520Oeであった。SEM観察の結果、10μmを超える凝集粒子が多く見られ、凝集が激しいため短軸径の計測が困難で、板状粒子の割合を算出することはできなかった。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、11.0μm、比表面積:2.0m/g、圧縮密度:3.42g/cm、σs:55.9emu/g、Hc:3250Oe、p-iHc:2460Oeであり、比表面積は低く、p-iHcは確保されているものの、圧縮密度が低いことが確認された。
 (比較例2)
 比較例1の粉末A製造における遊星ボールミルでの解砕処理を、湿式粉砕機・ウエットミル(WM)での粉砕処理とした以外、比較例1と同様に操作して比較例2に係るフェライト粉末を得た。得られた粉末Aは、ピーク粒子径:4.8μm、比表面積:1.9m/g、σs:55.1emu/g、Hc:1220Oeであった。SEM観察の結果、粉砕中に発生したと考えられる鋭角の角を持ったサブミクロン以下の微粒子が多数存在していることが確認された。サブミクロン以下の微粒子が多数観察されたため、サブミクロン以下の微粒子を除いて板状粒子の割合を算出した結果、板状粒子の割合は67%であり、板状粒子が多いことが確認された。
 なお、湿式粉砕機・ウエットミル(WM)とは、ジルコンなどの硬質の破砕媒体と共に被破砕物を容器に詰め、回転軸に複数の棒が接続された攪拌棒を破砕媒体中で回転させることで、被破砕媒体を粉砕するものである。
 また、得られたフェライト粉末は、ピーク粒径:1.3μm、5.8μm、比表面積:2.3m/g、圧縮密度:3.46g/cm、σs:55.6emu/g、Hc:3330Oe、p-iHc:2600Oeであった。p-iHcは確保されているものの、サブミクロン以下の微粒子が多く残っているため比表面積が高く、サブミクロン以下の微粒子がアニール時の焼結促進剤として働き粒子間の凝集(焼結)が進むため、圧縮密度も確保できなかった。
 (比較例3)
 実施例1の粉末Aの製造におけるホウ酸0.18重量%をメタホウ酸ナトリウム四水和物(NaBO2・4H2O)2.1重量%に変更し、塩化カリウム量を2.1重量%、焼成時のアルミナ容器にフタをせず大気中1200℃で2時間焼成し、焼成物を湿式粉砕機・ウエットミル(WM)で粉砕処理した。それ以外は、実施例1と同様に操作することにより比較例3に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化カリウム分圧0mmHg、二酸化炭素分圧0mmHg、酸素分圧160mmHgと算出され、焼成物のカサ密度2.2g/cmであった。
 得られた粉末Aは、ピーク粒子径:3.0μm、比表面積:3.9m/g、圧縮密度:3.23g/cm、σs:55.2emu/g、Hc:1540Oeであった。また、島津製作所製SS-100を使用し空気透過法による平均粒径を測定したところ、1.29μmであった。SEM観察を行ったところ、サブミクロン以下の微粒子が多数観察されたため、サブミクロン以下の微粒子を除いて板状粒子の割合を算出した結果、板状粒子の割合は72%であり、板状粒子が多いことが確認された。
 また、得られたフェライト粉末は、ピーク粒径:1.6μm(粒度分布曲線の粗粒側にショルダーあり)、比表面積:2.3m/g、圧縮密度:3.30g/cm、σs:56.6emu/g、Hc:3830Oe、p-iHc:2780Oeであった。p-iHcは確保されているものの、板状粒子が多いため、充填性に劣り、圧縮密度を確保できなかった。
 (比較例4)
 実施例1の粉末Aの製造における焼成温度を1010℃とした以外、実施例1と同様に操作して比較例4に係るフェライト粉末を得た。焼成時の各ガス成分の分圧は、塩化カリウム分圧20mmHg、二酸化炭素分圧641mmHg、酸素分圧21mmHgと算出され、焼成物のカサ密度1.5g/cmであった。
 得られた粉末Aは、ピーク粒子径:1.6μm、比表面積:4.8m/g、σs:56.5emu/g、Hc:3240Oeであった。SEM観察の結果、一次粒径がサブミクロンの粒子から構成される凝集体が多数確認され、凝集が激しいため短軸径の計測が困難で、板状粒子の割合を算出することはできなかった。
 また、得られたフェライト粉末は、ピーク粒径:1.8μm(1ピークのみ)、比表面積:2.7m/g、圧縮密度:3.24g/cm、σs:56.8emu/g、Hc:4220Oe、p-iHc:3120Oeであり、p-iHcは確保されているものの、比表面積が高く、圧縮密度は確保できていないことが確認された。
 (比較例5)
 実施例1の粉末Aと粉末Bの混合比率を、55重量部:45重量部とした以外、実施例1と同様に操作して比較例5に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.2μm、5.6μm、比表面積:2.0m/g、圧縮密度:3.48g/cm、σs:55.9emu/g、Hc:3770Oe、p-iHc:2650Oeであった。p-iHcは確保されているものの、粉末Aの粒子間隙の容積よりも粉末Bの容積が多くなったことにより、粉末Bが粒子間隙より溢れ、圧縮密度を確保できなかったと考えられる。
 (比較例6)
 実施例1のアニール温度750℃とした以外、実施例1と同様に操作して比較例6に係るフェライト粉末を得た。得られたフェライト粉末は、ピーク粒径:1.2μm、5.3μm、比表面積:2.1m/g、圧縮密度:3.56g/cm、σs:55.4emu/g、Hc:2760Oe、p-iHc:2030Oeであり、圧縮密度は確保されているものの、アニールが不十分で結晶歪を十分に取り除くにはいたらず、p-iHcが不足したと考えられる。
 (実施例12)
 実施例1で得られたフェライト粉91.7重量部、シラン系カップリング剤(東レダウコーニング製、Z-6094N)0.8重量部を添加し、ミキサー(共立理工製、SK-10型)で撹拌して当該フェライト粉末の表面処理を行った。次に、当該フェライト粉末へ、粉末状の6-ナイロン(宇部興産株式会社製、P-1011F)6.7重量部と、滑剤(ヘンケル製、VPN―212P)0.8重量部とを添加し、混合物を得た。
 次いで、当該混合物を、混練機(東洋精機製作所製、100C100型)を用いて230℃で混練し、プラスチック破砕機にて破砕することで、平均径2mmのペレットを得た。当該混練ペレットのメルトフローレートを測定したところ、106g/10minであった。そして当該混練ペレットを温度290℃、成形圧力85kgf/cm、4.3kOeの磁界中で射出成形し、実施例12に係る直径15mm×高さ8mmの円柱状異方性ボンド磁石を得た。当該実施例12に係るボンド磁石を、BHトレーサーで測定したところ、Br:3100G、iHc:2260Oe、BHmax:2.28MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 また、混合重量比率を、実施例1のフェライト粉92.8重量部、シラン系カップリング剤0.7重量部、粉末状の6-ナイロン5.7重量部と、滑剤0.8重量部とした以外は、同様に操作してフェライト粉の含有量が93重量部相当の混練ペレットを得た。当該混練ペレットのメルトフローレートは39g/10minであり、実施例1で得られたフェライト粉は、コンパウンド(当該混練ペレット)中のフェライト含有量が高い場合においても、比較的高い流動性を示すことが確認できた。
 (実施例13)
 実施例2で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石、および、フェライト粉含有量93重量部相当の混練ペレットを得た。混練ペレットのメルトフローレートは110g/10min(92重量部相当)、46g/10min(93重量部相当)であった。ボンド磁石の磁気特性は、Br:3080G、iHc:2140Oe、BHmax:2.24MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例14)
 実施例8で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは130g/10minであり、ボンド磁石の磁気特性は、Br:3040G、iHc:2460Oe、BHmax:2.22MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例15)
 実施例10で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは161g/10minであり、ボンド磁石の磁気特性は、Br:3180G、iHc:2620Oe、BHmax:2.46MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例16)
 実施例11で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは158g/10minであり、ボンド磁石の磁気特性は、Br:3180G、iHc:2600Oe、BHmax:2.47MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (比較例7)
 比較例1で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットを得た。混練ペレットのメルトフローレートは18g/10minであり、流動性が不足しているため、ボンド磁石の成形はできなかった。
 (比較例8)
 比較例2で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットを得た。混練ペレットのメルトフローレートは56g/10minであり、ボンド磁石の磁気特性は、Br:2760G、iHc:2320Oe、BHmax:1.90MGOeであった。フェライト粉の圧縮密度が低く、流動性(MFR)も不足しているため、4.3kOeの低磁場配向においては、残留磁束密度が低下し、目的とするBHmaxを得ることができなかった。
 (比較例9)
 比較例3で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットを得た。混練ペレットのメルトフローレートは8g/10minであり、流動性が不足しているため、ボンド磁石の成形はできなかった。
 (比較例10)
 比較例4で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行ったが、フェライト含有量92重量部では混練時の流動性が不足し、混練ペレットを得ることができなかった。
 (比較例11)
 比較例5で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは71g/10minであり、ボンド磁石の磁気特性は、Br:2810G、iHc:2350Oe、BHmax:1.93MGOeであった。iHcは確保できているものの、フェライト粉の圧縮密度が低く、流動性(MFR)も不足しているため、4.3kOeの低磁場配向においては、残留磁束密度が低下し、目的とするBHmaxを得ることができなかった。
 (比較例12)
 比較例6で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは76g/10minであり、ボンド磁石の磁気特性は、Br:2740G、iHc:1990Oe、BHmax:1.85MGOeであった。残留磁束密度はある程度あったものの、Hcが不足し、4.3kOeの低磁場配向において目的とするBHmaxを得ることができなかった。
 (実施例17)
 実施例2の粉末Aの製造における湿式解砕を湿式粉砕機・ウエットミル(WM)で処理したこと以外、実施例2と同様に操作して実施例17に係る粉末Aを得た。得られた粉末Aは、ピーク粒子径:6.2μm、比表面積:0.7m/g、σs:56.4emu/g、Hc:1200Oeであり、板状粒子の割合は22%であった。
 実施例1の粉末Bの製造における湿式解砕を湿式粉砕機・ウエットミル(WM)で処理したこと以外、実施例1と同様に操作して実施例17に係る粉末Bを得た。得られた粉末Bは、ピーク粒子径:1.1μm、比表面積:7.0m/g、σs:54.6emu/g、Hc:2520Oeであった。
 アニール前の混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールしたこと以外、実施例1と同様に操作して実施例17に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.2μm、3.8μm、比表面積:1.7m/g、圧縮密度:3.64g/cm、σs:56.4emu/g、Hc:3170 Oe、p-iHc:2300Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例18)
 実施例2の粉末Aの製造における塩化カリウムの添加量を2.80wt%とし、湿式解砕を湿式粉砕機・ウエットミル(WM)で処理したこと以外、実施例2と同様に操作して実施例18に係る粉末Aを得た。得られた粉末Aは、ピーク粒子径:6.0μm、比表面積:0.7m/g、σs:56.5emu/g、Hc:1230Oeであり、板状粒子の割合は19%であった。
 実施例1の粉末Bの製造における焼成温度を1020℃に変更し、湿式解砕を湿式粉砕機・ウエットミル(WM)で処理したこと以外、実施例1と同様に操作して実施例18に係る粉末Bを得た。得られた粉末Bは、ピーク粒子径:1.0μm、比表面積:7.5m/g、σs:54.2emu/g、Hc:2670Oeであった。
 アニール前の混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールしたこと以外、実施例1と同様に操作して実施例18に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.2μm、4.3μm、比表面積:1.7m/g、圧縮密度:3.64g/cm、σs:56.3emu/g、Hc:3280 Oe、p-iHc:2380Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例19)
 実施例1の粉末Aの製造における塩化カリウムを塩化マグネシウムに変更し、添加量を2.25wt%とした以外、実施例1と同様に操作して実施例19に係る粉末Aを得た。得られた粉末Aは、ピーク粒子径:5.1μm、比表面積:0.8m/g、σs:56.1emu/g、Hc:1530Oeであり、板状粒子の割合は25%であった。
 得られた粉末Aと実施例1で得られた粉末Bを、実施例1と同様な割合で混合し、アニール前の混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニール温度を940℃としたこと以外、実施例1と同様に操作して実施例19に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.3μm、3.2μm、比表面積:1.8m/g、圧縮密度:3.60g/cm、σs:55.7emu/g、Hc:3490Oe、p-iHc:2550Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例20)
(1)粉末Aの原料粗砕粉末の製造
 酸化鉄の炭酸ストロンチウムとを、モル比で酸化鉄5.9:炭酸ストロンチウム1になるように秤量した。当該秤量物に対して、0.18重量%のホウ酸、および2.44重量%の塩化カリウムを加えて混合後、水で直径3~10mmの球状に造粒し、造粒物を大気中150℃にて乾燥させた。造粒物を、容積0.68Lのアルミナ製容器あたり各200g入れ(大気雰囲気)、アルミナ製のフタをした後、電気炉中1260℃で80分間焼成し焼成物を得た。焼成物のカサ密度1.6g/cmであり、粒子間の焼結がほとんど進んでいないことを確認した。当該焼成物をハンマーミル(不二パウダル製 エックサンプルミルKII型)で処理することで、粉末Aの原料粗砕粉末を得た。
 (2)粉末Bの原料の製造
 酸化鉄と炭酸ストロンチウムとを、モル比で、酸化鉄5.5:炭酸ストロンチウム1になるように秤量および混合した後、水で直径3~10mmの球状に造粒し、造粒物を大気中150℃にて乾燥させた。造粒物を、容積0.68Lのアルミナ製容器あたり各200g入れ(大気雰囲気)、アルミナ製のフタをした後、電気炉中1020℃で80分間焼成し焼成物を得た。当該焼成物をハンマーミル(不二パウダル製 エックサンプルミルKII型)で処理することで,粉末Bの原料粗砕粉末を得た。
 (3)混合粉(フェライト粉末)の製造
 上記(1)で得られた粉末Aの原料粗砕粉(70重量部)、(2)で得られた粉末Bの原料粗砕粉(30重量部)および水道水(150重量部)を秤量し、湿式粉砕機・ウエットミル(WM)を用いて同時に分散処理した後、スラリーをろ過し、得られたケーキを大気中150℃で10時間乾燥させ、乾燥ケーキをミキサー(共立理工株式会社製の商品名サンプルミルSK-M10)で解砕処理することで、得られた混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールすることで実施例20に係るフェライト粉を得た。
 得られたフェライト粉末は、ピーク粒径:1.4μm、3.8μm、比表面積:1.7m/g、圧縮密度:3.62g/cm、σs:56.4emu/g、Hc:3110Oe、p-iHc:2290Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例21)
 アニール前の混合粉を、実施例2で得られた粉末Aと実施例1で得られた粉末Bとし、混合比率(粗/微)を65重量部(粉末A)/35重量部(粉末B)に変更して得た混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールしたこと以外、実施例1と同様に操作して実施例21に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.3μm、3.8μm、比表面積:1.8m/g、圧縮密度:3.59g/cm、σs:56.1emu/g、Hc:3410Oe、p-iHc:2390Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例22)
 アニール前の混合粉の混合比率(粗/微)を75重量部(粉末A)/25重量部(粉末B)に変更して得た混合粉を、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で処理した後、アニールしたこと以外、実施例1と同様に操作して実施例22に係るフェライト粉末を得た。
 得られたフェライト粉末は、ピーク粒径:1.3μm、4.0μm、比表面積:1.7m/g、圧縮密度:3.61g/cm、σs:56.4emu/g、Hc:3100Oe、p-iHc:2260Oeであり、比表面積が低く、十分な圧縮密度とp-iHcを確保していることが確認できた。
 (実施例23)
 実施例17で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは161g/10minであり、ボンド磁石の磁気特性は、Br:3240G、iHc:2170Oe、BHmax:2.57MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例24)
 実施例18で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは217g/10minであり、ボンド磁石の磁気特性は、Br:3270G、iHc:2240Oe、BHmax:2.61MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例25)
 実施例19で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは139g/10minであり、ボンド磁石の磁気特性は、Br:3150G、iHc:2470Oe、BHmax:2.42MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例26)
 実施例20で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは115g/10minであり、ボンド磁石の磁気特性は、Br:3200G、iHc:2190Oe、BHmax:2.52MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例27)
 実施例21で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは115g/10minであり、ボンド磁石の磁気特性は、Br:3170G、iHc:2350Oe、BHmax:2.45MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 (実施例28)
 実施例22で得られたフェライト粉を使用した以外は、実施例12と同様の操作を行い、フェライト粉含有量92重量部相当の混練ペレットとボンド磁石を得た。混練ペレットのメルトフローレートは137g/10minであり、ボンド磁石の磁気特性は、Br:3260G、iHc:2150Oe、BHmax:2.60MGOeであった。十分な流動性(MFR)とiHcを確保することで、4.3kOeの低磁場配向においても、BHmaxの高いボンド磁石を得ることができた。
 フェライト粉末Aの製造条件および各諸特性を表2に、フェライト粉末Bの製造条件および諸特性を表3に、フェライト粉末Aを微粉末と混合しアニールする前後の諸特性を表4に、また、ボンド磁石にした時の諸特性を表5にそれぞれ示す。なお、表5には、表4に記載したフェライト粉末のアニール後の諸特性を再度掲載した。また、表3の装置の略文字は表2の略文字(UBM、SG、PM、WM等)に準ずる。
 表5を参照して、本発明のフェライト粉末を用いて作製したボンド磁石が2.0MGOe以上のエネルギー積を有するのに対して、比較例のフェライト粉末を用いて作製したボンド磁石は2.0MGOeまでのエネルギー積しか持たなかった。
 BrとHcの値を比較してみると、保磁力に関しては、実施例と比較例で大きな違いはなかった。しかし、Brに関してみると、実施例が3000G以上の磁化を有するのに対して、比較例では、最大でも2810Gであった。すなわち、実施例と比較例の違いは、磁石にした際の磁化の違いである。
 磁石にした際の磁化の違いの原因は、粉末の密度が上がりやすいという点と、磁場中成型で磁性粉が配向し易い点にある。そこで、まず実施例と比較例のMFRを比較してみると、実施例は全て100g/min以上のメルトフローレートを有するのに対して、比較例は80g/minを超えるものはなかった。
 また、バインダーを入れる前のフェライト粉末同士で比較した際の圧縮密度(CD)は実施例が全て3.5g/cm以上であるのに対して、比較例で3.5を超えるものは比較例12(フェライト粉では比較例6)以外なかった。
 なお、比較例6については、3.56g/cmと3.5g/cmを超えているが、比較例6はアニール(焼鈍)工程の温度が750℃と実施例の970℃と比較して低かったため、アニール(焼鈍)後の圧粉体での保磁力が2030Oeと低くなってしまった。実施例の保磁力は圧粉体での保磁力は2100Oe以上であった。
 これは、アニール(焼鈍)温度が結晶性に影響を及ぼし、970℃程度のアニール(焼鈍)温度が必要であると言える。また、逆に圧粉体での保磁力の値が2100Oe以上であれば、970℃のアニール(焼鈍)を経験しているとの判断の1つになり得る。
 また、SSAを比較してみると、実施例は2.0m/g以下であるのに対して比較例はそれより大きな傾向を示した。一方、粒度分布のピーク値は実施例と比較例で大きな違いはない。従って、実施例の方が、粒成長が進みきれいな結晶が生成するため、同じ粒子径でも表面の活性点が少なく、バインダーにからみつくことなく、配向しやすくなっていると考えられる。
 従って、970℃にてアニール(焼鈍)されたフェライト粉末(圧粉体の保磁力で2100Oe以上)で圧縮密度(CD)が3.5g/cmでなおかつ比表面積(SSA)が2.0m/g以下のフェライト粉は、ボンド磁石として使用されても、保磁力が低下することもなく、MFRも高くなり、よく配向するため、高いエネルギー積を得ることができると言える。
 表2を参照して、実施例のようなフェライト粉末が作製できる原因は、最初の原料である酸化鉄と酸化ストロンチウムの混合物を焼成する際に塩化物NaClやKClの飽和蒸気圧下で1200℃以上の環境下で行ったことが挙げられる。比較例1乃至3は、KClが存在していたものの、容器の蓋が空いており、サンプルは飽和蒸気圧下で焼成されていたわけではない。
 また、比較例4で、蓋つきで容器の中ではKClの飽和蒸気圧になっていたと考えられるが、焼成温度が1010℃と低かったため、比表面積(SSA)が4.8m/gと他のどのサンプルより大きく、粉末が結晶成長できていなかった。
 従って、1050℃乃至1300℃の温度であって、Na若しくはKの塩化物の飽和蒸気圧下で焼成されたフェライト粉末は、微粉のフェライトと混合し焼成することで、詰まりやすく、保磁力の低下もなく、配向しやすいフェライト粉末を作ることができた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (19)

  1.  粒度分布において複数のピークを有し、圧縮密度(CD)が3.5g/cm以上であり、圧粉体の保磁力(p-iHc)が2100Oe以上である異方性ボンド磁石用フェライト粉末。
  2.  比表面積(SSA)が2.0m/g以下である請求項1記載の異方性ボンド磁石用フェライト粉末。
  3.  無配向状態での飽和磁化(σs)が54emu/g以上である請求項1または請求項2のいずれかに記載された異方性ボンド磁石用フェライト粉末。
  4.  粒径分布において複数のピークを有し、圧縮密度(CD)が3.5g/cm以上、圧粉体保磁力(p-iHc)が2100Oe以上、比表面積(SSA)が2.0m/g以下、かつ、無配向状態での飽和磁化(σs)が54emu/g以上である異方性ボンド磁石用フェライト粉末。
  5.  フェライト粉末含有比率が92重量%であって、下記(1)から(3)の流動性試験に供したときのメルトフローレートが80g/10分以上である請求項1から請求項4いずれかに記載の異方性ボンド磁石用フェライト粉末。
    (1)供試磁性粉91.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部をミキサーにてかき混ぜる。
    (2)得られた混合物を230℃で混練して平均径2mmのペレットにする。
    (3)前記(2)で得られたペレットをメルトフローインデクサーに供し、270℃ 荷重10kgで、10分間に押し出された重量を測定し、これをメルトフローレート(単位g/10分)とする。
  6.  粒度分布において複数のピークを有し、
    圧縮密度(CD)が3.5g/cm以上であり、
    圧粉体保磁力(p-iHc)が2100Oe以上であり、
    比表面積(SSA)が2.0m/g以下であり、
    無配向状態での飽和磁化値(σs)が54emu/g以上であり、
    フェライト粉末含有比率が91.7重量%の時、下記(1)から(3)の流動性試験に供したときのメルトフローレートが80g/10分以上である異方性ボンド磁石用フェライト粉末。
    (1)供試磁性粉91.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部をミキサーにてかき混ぜる。
    (2)得られた混合物を230℃で混練して平均径2mmのペレットにする。
    (3)前記(2)で得られたペレットをメルトフローインデクサーに供し、270℃ 荷重10kgで、10分間に押し出された重量を測定し、これをメルトフローレート(単位g/10分)とする。
  7.  フェライト粉末含有比率が92重量%であって、下記(1)(2)(4)で測定された保磁力iHcが、2100Oe以上である請求項1から請求項6いずれかに記載の異方性ボンド磁石用フェライト粉末。
    (1)供試磁性粉91.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部をミキサーにてかき混ぜる。
    (2)得られた混合物を230℃で混練して平均径2mmのペレットにする。
    (4)該ペレットを温度290℃、成形圧力85kgf/cm2で、4.3kOeの磁場配向中で射出成形し、直径15mm×高さ8mmの円柱状の成形品(磁場の配向方向は円柱の中心軸に沿う方向)の磁気特性をBHトレーサーで測定する。
  8.  請求項1から請求項7いずれか記載のフェライト粉末を使用した異方性ボンド磁石。
  9.  前記(4)で測定された成形品の保磁力(inj-iHc)が2100Oe以上である請求項8に記載の異方性ボンド磁石。
  10.  前記(4)で測定された成形品の最大エネルギー積(inj-BHmax)が2.2MGOe以上である請求項8または9いずれかに記載の異方性ボンド磁石。
  11.  粒度分布において複数のピークを有し、
    圧縮密度(CD)が3.5g/cm以上であり、
    圧粉体保磁力(p-iHc)が2100Oe以上であり、
    比表面積(SSA)が2.0m/g以下であり、
    無配向状態での飽和磁化(σs)が54emu/g以上であり、
    フェライト粉末含有比率が91.7重量%の時、下記(1)から(3)の流動性試験に供したときのメルトフローレートが80g/10分以上であり、前記(4)で測定された成形品の最大エネルギー積が2.2MGOe以上である異方性ボンド磁石。
    (1)供試磁性粉91.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部をミキサーにてかき混ぜる。
    (2)得られた混合物を230℃で混練して平均径2mmのペレット(コンパウンドの破砕物)にする。
    (3)前記(2)で得られたペレットをメルトフローインデクサーに供し、270℃ 荷重10kgで、10分間に押し出された重量を測定し、これをメルトフローレート(単位g/10分)とする。
  12.  酸化鉄を含む複数の原材料を造粒し造粒物を得る工程と、
    前記造粒物を塩化物の蒸気圧下で1050℃以上1300℃以下の雰囲気で焼成し焼成物を得る工程と、
    前記焼成物を解砕または粉砕し粉末を得る工程を有する異方性ボンド磁石用フェライト粉末の製造方法。
  13.  塩化物蒸気の分圧が、50mmHg以上760mmHg以下である請求項12に記載された異方性ボンド磁石用フェライト粉末の製造方法。
  14.  前記塩化物はNaCl若しくはKClである請求項12または13のいずれかに記載された異方性ボンド磁石用フェライト粉末の製造方法。
  15.  以下の工程を有するフェライト粉の製造プロセスにおいて、
    解砕工程またはアニール工程の前後またはその工程中に、比表面積(SSA)の異なる第2の粉末を所定の比率で混合する工程を有する異方性ボンド磁石用フェライト粉末の製造
    方法。
    (1)酸化鉄を含む複数の原材料を造粒し第1の造粒物を得る工程
    (2)前記第1の造粒物を塩化物の蒸気圧下で1050℃以上1300℃以下の雰囲気で焼成し第1の焼成物を得る工程
    (3)前記第1の焼成物を解砕または粉砕し第1の粉末を得る工程
    (4)大気中で800℃以上1100℃以下の雰囲気でアニールする工程
  16.  前記の比表面積の異なる第2の粉末が、次の(5)~(7)もしくは(5)~(8)によって製造される請求項15に記載された異方性ボンド磁石用フェライト粉末の製造方法。
    (5)酸化鉄を含む複数の原材料を造粒し第2の造粒物を得る工程
    (6)前記第2の造粒物を大気中で900℃以上1200℃以下の雰囲気で焼成し第2の焼成物を得る工程
    (7)前記第2の焼成物を解砕または粉砕し第2の粉末を得る工程
    (8)前記第2の粉末を大気中で800℃以上1100℃以下の雰囲気で焼成する工程
  17.  前記の比表面積の異なる第2の粉末の比表面積(SSA)が、8m/g以下である請求項15から請求項16のいずれかに記載された異方性ボンド磁石用フェライト粉末の製造方法。
  18.  前記第1の粉砕粉末と前記第2の粉砕粉末を混合する比率は、60:40乃至85:15である請求項15から請求項17のいずれかの請求項に記載された異方性ボンド磁石用フェライト粉末の製造方法。
  19.  前記塩化物はNaCl若しくはKClである請求項15または18のいずれか1の請求項に記載された異方性ボンド磁石用フェライト粉末の製造方法。
     
PCT/JP2010/056484 2009-04-09 2010-04-09 ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石 WO2010117070A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080016639.9A CN102388423B (zh) 2009-04-09 2010-04-09 粘结磁体用铁氧体粉末及其制造方法、以及使用其的粘结磁体
EP10761769.8A EP2418660B1 (en) 2009-04-09 2010-04-09 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
US13/258,617 US8951635B2 (en) 2009-04-09 2010-04-09 Ferrite powder for bonded magnet, method for manufacturing ferrite powder, and bonded magnet using ferrite powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009095324 2009-04-09
JP2009-095324 2009-04-09
JP2010090184A JP5651368B2 (ja) 2009-04-09 2010-04-09 ボンド磁石用フェライト粉末の製造方法
JP2010-090184 2010-04-09

Publications (1)

Publication Number Publication Date
WO2010117070A1 true WO2010117070A1 (ja) 2010-10-14

Family

ID=42936352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056484 WO2010117070A1 (ja) 2009-04-09 2010-04-09 ボンド磁石用フェライト粉末およびその製造方法並びにこれを用いたボンド磁石

Country Status (6)

Country Link
US (1) US8951635B2 (ja)
EP (1) EP2418660B1 (ja)
JP (1) JP5651368B2 (ja)
KR (1) KR101648115B1 (ja)
CN (1) CN102388423B (ja)
WO (1) WO2010117070A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072634A (ja) * 2014-09-30 2016-05-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP2016072635A (ja) * 2014-09-30 2016-05-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP2016072636A (ja) * 2014-09-30 2016-05-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
JP2016157939A (ja) * 2015-02-23 2016-09-01 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016136701A1 (ja) * 2015-02-23 2016-09-01 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360445B2 (ja) * 2012-03-30 2013-12-04 戸田工業株式会社 ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
EP2960290B1 (en) 2013-02-21 2019-01-30 NOK Corporation Nitrile rubber composition
JP6459963B2 (ja) 2013-04-03 2019-01-30 戸田工業株式会社 ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
JP6468192B2 (ja) 2013-10-02 2019-02-13 戸田工業株式会社 ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
JP5920961B2 (ja) * 2014-05-16 2016-05-24 内山工業株式会社 磁気エンコーダの製造方法
EP3202717B1 (en) * 2014-10-01 2023-12-20 Toda Kogyo Corp. Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
CN107406272B (zh) * 2015-01-22 2020-02-18 保德科技股份有限公司 六方板状铁氧体粉及其制造方法、以及采用该铁氧体粉的树脂组合物及成形体
KR101693519B1 (ko) * 2015-08-11 2017-01-06 주식회사 포스코 MnBi 영구자석 제조 방법
CN105397082B (zh) * 2015-12-01 2017-07-18 横店集团东磁股份有限公司 一种磁性材料注塑颗粒母料制备方法
JP6797735B2 (ja) * 2017-03-31 2020-12-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末およびその製造方法
JP7082033B2 (ja) * 2017-11-13 2022-06-07 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末およびその製造方法
JP7405648B2 (ja) 2020-03-04 2023-12-26 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170219A (ja) * 1987-01-09 1988-07-14 Ube Ind Ltd フエライト粉末の製造方法
JPH09106904A (ja) * 1995-10-11 1997-04-22 Nippon Bene Kogyo Kk ボンド磁石用フエライト粉末およびこれを用いたボンド磁石
JP2001189210A (ja) 1999-12-28 2001-07-10 Toda Kogyo Corp ボンド磁石用ストロンチウムフェライト粒子粉末及び該ストロンチウムフェライト粒子粉末を用いたボンド磁石
JP2004186224A (ja) * 2002-11-29 2004-07-02 Toda Kogyo Corp ボンド磁石用マグネトプランバイト型フェライト粒子粉末、その製造法並びに該マグネトプランバイト型フェライト粒子粉末を用いたボンド磁石
JP2004327669A (ja) * 2003-04-24 2004-11-18 Dowa Mining Co Ltd ボンド磁石およびボンド磁石用フェライト磁性粉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108302A (ja) * 1989-09-22 1991-05-08 Kawasaki Steel Corp ボンド磁石用フェライト磁性粉の製造方法
JP2504601B2 (ja) 1990-03-08 1996-06-05 ローム株式会社 半導体チップ用ピックアップ装置
JP2001348601A (ja) * 2000-06-09 2001-12-18 Seiko Epson Corp 粉末冶金方法および表面処理装置並びに粉末冶金装置
JP4674370B2 (ja) * 2004-03-22 2011-04-20 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト磁性粉
KR101385869B1 (ko) * 2007-03-30 2014-04-17 도다 고교 가부시끼가이샤 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물및 이들을 이용한 성형체
JP5578777B2 (ja) * 2007-09-28 2014-08-27 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末およびその製造方法、並びに、これを用いたボンド磁石

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170219A (ja) * 1987-01-09 1988-07-14 Ube Ind Ltd フエライト粉末の製造方法
JPH09106904A (ja) * 1995-10-11 1997-04-22 Nippon Bene Kogyo Kk ボンド磁石用フエライト粉末およびこれを用いたボンド磁石
JP3257936B2 (ja) 1995-10-11 2002-02-18 日本弁柄工業株式会社 ボンド磁石用フエライト粉末およびこれを用いたボンド磁石
JP2001189210A (ja) 1999-12-28 2001-07-10 Toda Kogyo Corp ボンド磁石用ストロンチウムフェライト粒子粉末及び該ストロンチウムフェライト粒子粉末を用いたボンド磁石
JP2004186224A (ja) * 2002-11-29 2004-07-02 Toda Kogyo Corp ボンド磁石用マグネトプランバイト型フェライト粒子粉末、その製造法並びに該マグネトプランバイト型フェライト粒子粉末を用いたボンド磁石
JP2004327669A (ja) * 2003-04-24 2004-11-18 Dowa Mining Co Ltd ボンド磁石およびボンド磁石用フェライト磁性粉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418660A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072634A (ja) * 2014-09-30 2016-05-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP2016072635A (ja) * 2014-09-30 2016-05-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP2016072636A (ja) * 2014-09-30 2016-05-09 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
JP2016157939A (ja) * 2015-02-23 2016-09-01 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016136701A1 (ja) * 2015-02-23 2016-09-01 Dowaエレクトロニクス株式会社 ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
KR20170121226A (ko) * 2015-02-23 2017-11-01 도와 일렉트로닉스 가부시키가이샤 본드 자석용 페라이트 분말과 이의 제조방법 및 페라이트계 본드 자석
KR102093905B1 (ko) * 2015-02-23 2020-03-26 도와 일렉트로닉스 가부시키가이샤 본드 자석용 페라이트 분말과 이의 제조방법 및 페라이트계 본드 자석

Also Published As

Publication number Publication date
EP2418660A1 (en) 2012-02-15
US20120015189A1 (en) 2012-01-19
JP2010263201A (ja) 2010-11-18
KR20120006500A (ko) 2012-01-18
JP5651368B2 (ja) 2015-01-14
US8951635B2 (en) 2015-02-10
CN102388423B (zh) 2015-02-25
EP2418660B1 (en) 2014-05-07
KR101648115B1 (ko) 2016-08-16
CN102388423A (zh) 2012-03-21
EP2418660A4 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5651368B2 (ja) ボンド磁石用フェライト粉末の製造方法
CN107004479B (zh) 粘结磁体用铁氧体粉末及其制造方法以及铁氧体系粘结磁体
JP6482445B2 (ja) ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
JP5774146B2 (ja) ボンド磁石用フェライト粉末およびこれを用いたボンド磁石
JP6482443B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP2019080055A (ja) 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法
JP6797735B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP7082033B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP6482444B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016136701A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016052681A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016052677A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016052678A1 (ja) ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
JP2023041550A (ja) ボンド磁石用六方晶フェライト磁性粉とその製造方法、およびボンド磁石とその製造方法
JP2023134239A (ja) ボンド磁石用六方晶フェライト磁性粉とその製造方法、およびボンド磁石とその製造方法
JP2022084472A (ja) ボンド磁石用六方晶フェライト磁性粉とその製造方法、およびボンド磁石とその製造方法
WO2019093508A1 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP2022156380A (ja) ボンド磁石用六方晶フェライト磁性粉およびその製造方法、ならびにボンド磁石およびその製造方法
JP2023014477A (ja) ボンド磁石用フェライト粉末およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016639.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010761769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258617

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117023406

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE