WO2016052678A1 - ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石 - Google Patents

ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石 Download PDF

Info

Publication number
WO2016052678A1
WO2016052678A1 PCT/JP2015/077876 JP2015077876W WO2016052678A1 WO 2016052678 A1 WO2016052678 A1 WO 2016052678A1 JP 2015077876 W JP2015077876 W JP 2015077876W WO 2016052678 A1 WO2016052678 A1 WO 2016052678A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ferrite
bonded magnet
ferrite powder
mass
Prior art date
Application number
PCT/JP2015/077876
Other languages
English (en)
French (fr)
Inventor
禅 坪井
泰信 三島
敬祐 綾部
正康 千田
Original Assignee
Dowaエレクトロニクス株式会社
Dowaエフテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社, Dowaエフテック株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201580048052.9A priority Critical patent/CN106688056B/zh
Priority to KR1020177011258A priority patent/KR102117580B1/ko
Priority to EP15845995.8A priority patent/EP3203484A4/en
Priority to US15/515,902 priority patent/US10665371B2/en
Priority claimed from JP2015193725A external-priority patent/JP6482445B2/ja
Publication of WO2016052678A1 publication Critical patent/WO2016052678A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a ferrite powder for a bonded magnet used for manufacturing a bonded magnet used in a low temperature environment, a manufacturing method thereof, and a ferrite-based bonded magnet using the same.
  • Ferrite-based sintered magnets are used for magnets that require a high magnetic force.
  • the sintered magnet has inherent problems in that chipping occurs and polishing is necessary, so that productivity is inferior and processing into a complicated shape is difficult.
  • bonded magnet which may be referred to as “bonded magnet” in the present invention.
  • the bond magnet is inferior in the maximum energy product (BH max ) compared to the sintered magnet, in order to replace the sintered magnet with the bonded magnet, an improvement in the BH max characteristics is required in the bonded magnet.
  • BH max is determined by the residual magnetic flux density (Br) and the coercive force (Hc).
  • Br is expressed by the following formula 1 by the density ( ⁇ ) of the magnet, the saturation magnetization ( ⁇ s) of the magnetic powder, and the degree of orientation (Br / 4 ⁇ Is).
  • Br 4 ⁇ ⁇ ⁇ ⁇ ⁇ s ⁇ (degree of orientation)
  • Hc is explained by the theory of crystal anisotropy, shape anisotropy and single domain structure.
  • The major difference between a sintered magnet and a bonded magnet is ⁇ .
  • ⁇ of the sintered magnet is about 5.0 g / cm 3 .
  • the raw material kneaded material compound
  • the density is naturally lower than this.
  • Br of a bonded magnet falls. Therefore, in order to increase the magnetic force of the bonded magnet, it is required to increase the content (FC) of the ferrite powder in the compound.
  • FC content
  • the ratio When the ratio is increased, the compound becomes highly viscous at the time of kneading the ferrite powder and the binder, the load increases and the productivity of the compound decreases, and in an extreme case, kneading becomes impossible. Even if kneading is possible, the value of fluidity (MFR) is low at the time of molding the compound, so that the productivity of the molded product is lowered, and in an extreme case, molding is impossible.
  • MFR fluidity
  • Patent Document 1 as a method for producing such a ferrite powder for bonded magnets (may be described as “ferrite powder” in the present invention).
  • the applicant disclosed a ferrite powder obtained by mixing ferrite powders having a plurality of particle sizes.
  • the ferrite powder had a plurality of peaks in the particle size distribution.
  • the peak may not be a completely independent peak. That is, when a shoulder exists at the bottom of the peak, the shoulder is considered as another peak.
  • SSA specific surface area
  • the amount of resin (binder) adsorbed on the ferrite particle surface during kneading and molding increases.
  • the ratio of the resin that can move freely is decreased, leading to a decrease in MFR. It is considered that a decrease in MFR leads to a decrease in orientation during magnetic field molding, that is, a decrease in Br. Therefore, the SSA is set to 1.8 m 2 / g or less.
  • the coercive force (p-iHc) of the green compact was 2100 Oe or more. Further, the saturation magnetization value ⁇ s in the non-oriented state is 55 emu / g or more.
  • Patent Document 1 a ferrite powder having a high compression density and a high filling property was obtained.
  • a ferrite-based bonded magnet used in an environment at a temperature lower than room temperature such as 0 ° C. or less has a so-called low temperature demagnetization problem.
  • the present inventors have conceived that a higher coercive force is required for a ferrite-based bonded magnet.
  • the ferrite powder for bonded magnets described in Patent Document 1 and bonded magnets using the same do not satisfy the required level of coercive force.
  • a bond magnet using a rare earth magnet is used in a field where a magnetic force having a high BH max is required in a low temperature environment.
  • rare earth magnets are 20 times more expensive than ferrite magnets and are prone to rust.
  • the present invention has been made under the above circumstances, and the problem to be solved is a ferrite powder for bonded magnets having a high iHc value that can be used even in a low temperature environment, a method for producing the same, and An object of the present invention is to provide a bonded magnet having a high iHc value that can be used even in a low-temperature environment.
  • the present inventors conducted research. And in the manufacturing process of ferrite powder for bonded magnet, in order to increase compression density for bonded magnet, when manufacturing coarse powder with large particle size and small fine powder, each is fired at a predetermined firing temperature. After mixing, it was found that a ferrite powder for a bonded magnet having a large value of p-iHc can be obtained by producing a ferrite powder for a bonded magnet by mixing and grinding under predetermined conditions.
  • a bonded magnet manufactured using the ferrite powder for bonded magnet having a large value of p-iHc has a high compact coercive force (inj-iHc), and is used in a low temperature environment. It was found that it can withstand. And, even if the bond magnet having the high inj-iHc is used in a low temperature environment and the value of the inj-iHc is lowered, the value of the inj-iHc is still higher.
  • the present invention has been completed on the basis of the fact that the company has sufficiently secured the level that satisfies the requirements.
  • the first invention for solving the above-described problem is The specific surface area is less than 2.20 m 2 / g or more 3.20 m 2 / g, Compressed density is less than 3.30 g / cm 3 or more 3.60 g / cm 3,
  • This is a ferrite powder for a bonded magnet, in which the coercivity of the green compact is 3250 Oe or more and less than 3800 Oe.
  • the second invention is F. kneading ferrite powder for bond magnet and nylon resin powder; C. When it is set as the compound which is 91.7 mass%, it is the ferrite powder for bonded magnets whose MFR of the said compound is 50 g / 10min or more.
  • the third invention is F.
  • the bond magnet has a inj-iHc of 3600 Oe or more and is a ferrite powder for bonded magnet.
  • the fourth invention is: F. kneading ferrite powder for bond magnet and nylon resin powder; C. When the compound is 91.7% by mass and the compound is molded in a magnetic field of 4.3 kOe to form a bond magnet, the bond magnet has a Brn ferrite powder of 2800 G or more.
  • the fifth invention is: A ferrite-based bonded magnet manufactured by molding the ferrite powder for bonded magnet according to any one of the first to fourth inventions.
  • the sixth invention is: A ferrite-based bonded magnet comprising the ferrite powder for bonded magnet according to any one of the first to fourth inventions.
  • the seventh invention A step of granulating a plurality of ferrite raw materials containing iron oxide and obtaining a first granulated product; Firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product; A step of granulating a plurality of ferrite raw materials containing iron oxide to obtain a second granulated product; Firing the obtained second granulated product at a second temperature lower than the first temperature to obtain a fine powder of the fired product; A step of mixing the obtained coarse powder and fine powder to obtain a mixed powder; A method of producing a ferrite powder for a bond magnet having a step of applying a mechanical pulverization force to the obtained mixed powder to obtain a mixed pulverized product, and annealing the obtained mixed pulverized product, The first temperature is 1180 ° C.
  • the second temperature is 900 ° C. or higher and 1000 ° C. or lower;
  • the mixing ratio of the coarse powder and the fine powder is expressed by [mass of coarse powder / mass of (coarse powder + fine powder)] ⁇ 100%, the ferrite powder for bonded magnets is 65 mass% or more and less than 75 mass%. It is a manufacturing method.
  • the mechanical pulverization force means that a steel ball having a diameter of 8 to 14 mm is loaded as a medium in a vibrating ball mill having a capacity of 2 to 4 L and a power of 0.3 to 0.5 kW, and a rotational speed of 1700 to 1900 rpm and an amplitude of 7
  • the pulverization force by the pulverization treatment of ⁇ 9 mm and the treatment time of 20 to 100 minutes, or the equivalent pulverization force means that a steel ball having a diameter of 8 to 14 mm is loaded as a medium in a vibrating ball mill having a capacity of 2 to 4 L and a power of 0.3 to 0.5 kW, and a rotational speed of 1700 to 1900 rpm and an amplitude of 7
  • the ferrite powder for bonded magnets according to the present invention has a high p-iHc value. Therefore, even if the bond magnet manufactured using the ferrite powder for bond magnet is placed in a low temperature environment and the value of inj-iHc decreases, the bond magnet still has a sufficiently high value of inj-iHc. As a result, bond magnets with high magnetic force can be manufactured.
  • the vertical axis represents the frequency distribution, and the horizontal axis represents the particle size ( ⁇ m).
  • the vertical axis represents the cumulative particle size distribution (volume%), and the horizontal axis represents the particle size ( ⁇ m).
  • the present inventors have conducted intensive research on bond magnets used in a low temperature environment.
  • the inj-iHc value is increased by increasing the value of inj-iHc rather than improving the heat resistance as in the case of rare-earth bond magnets.
  • the inventors came up with the idea of developing a bonded magnet having a level of inj-iHc that can continue to maintain a sufficient inj-iHc value even if the value of iHc is reduced.
  • the present inventors have intensively studied the bonded magnet. And granulating a plurality of ferrite raw materials containing iron oxide, obtaining a first granulated product, A step of firing the obtained first granulated product at a first temperature of 1180 ° C. or more and less than 1220 ° C.
  • the mechanical pulverization force means that a steel ball having a diameter of 8 to 14 mm is loaded as a medium in a vibrating ball mill having a capacity of 2 to 4 L and a power of 0.3 to 0.5 kW, and a rotational speed of 1700 to 1900 rpm and an amplitude of 7
  • the pulverization force by the pulverization treatment of ⁇ 9 mm and the treatment time of 20 to 100 minutes, or the equivalent pulverization force means that a steel ball having a diameter of 8 to 14 mm is loaded as a medium in a vibrating ball mill having a capacity of 2 to 4 L and a power of 0.3 to 0.5 kW, and a rotational speed of 1700 to 1900 rpm and an amplitude of 7
  • the inventors of the present invention have obtained a high-magnetism bond magnet that retains high inj-iHc even in a low-temperature environment by using a compound obtained by kneading and mixing the ferrite powder according to the present invention having the above-described structure and a resin. It was found that it can be easily manufactured.
  • the ferrite powder according to the present invention has an average particle size of 5 ⁇ m or less, 1 ⁇ m or more as measured by dry laser diffraction measurement, and a specific surface area (SSA) of 2.20 m 2 / g. or 3.20m less than 2 / g, compressed density (CD) is less than 3.30 g / cm 3 or more 3.60g / cm 3, p-iHc has a configuration that it is less than 3250Oe 3800Oe.
  • SSA specific surface area
  • CD compressed density
  • the ferrite powder according to the present invention relates to a ferrite powder having an average particle diameter of 5 ⁇ m or less and 1 ⁇ m or more measured by dry laser diffraction measurement. If the average particle size is 5 ⁇ m or less, the degree of orientation and the coercive force after the formation of a bonded magnet can be secured. Further, if the average particle size is 1 ⁇ m or more, the value of CD described later can be secured.
  • SSA Specific surface area
  • the SSA is less than 3.20 m 2 / g, the amount of resin (binder) adsorbed on the particle surface constituting the ferrite powder during kneading and molding increases, and the proportion of the resin that can move freely by that amount. This is considered to be because the situation in which the value of MFR increases and the value of MFR significantly decreases can be avoided. This tendency is similar to that of the ferrite powder in the compound.
  • the SSA is less than 3.20 m 2 / g, because it is likely to be noticeable when the orientation magnetic field during magnetic field molding is low and the orientation magnetic field is low.
  • the ferrite powder of the present invention is, 2.20 m 2 / g or more, it is obtained conceive configuration is less than 3.20 m 2 / g.
  • CD Compression density
  • the CD is preferably less than 3.60 g / cm 3 .
  • the ferrite powder for bonded magnets according to the present invention in which CD is conceive configured to 3.30 g / cm 3 or more 3.60 g / cm less than 3.
  • Coercive force of green compact (p-iHc) p-iHc is the coercive force of the ferrite powder for bonded magnet in a state where it is compressed under a high pressure of 2 ton / cm 2 and has a history of mechanical stress. “Ton” means 1000 kg. In general, at the time of kneading and molding when manufacturing a bonded magnet, the ferrite powder for bonded magnet is subjected to mechanical stress, and thus p-iHc is lower than that in a powder state without stress.
  • the value of p-iHc is an effective index for estimating the value of inj-iHc. Become. Therefore, the value of p-iHc is required to be high. Furthermore, even if a bond magnet is used in a low-temperature environment and the iHc value decreases, the iHc value is preferably 3250 Oe or more from the viewpoint of ensuring a sufficient iHc value and ensuring a high magnetic force. I came up with it.
  • the value of p-iHc is preferably less than 3800 Oe from the viewpoint of ensuring the ease of magnetization.
  • the inventors have conceived a configuration in which the green powder using the bonded magnet ferrite powder according to the present invention has a p-iHc value of 3250 Oe or more and less than 3800 Oe.
  • the method for producing ferrite powder according to the present invention comprises (1) a step of granulating a plurality of ferrite raw materials containing iron oxide to obtain a first granulated product, (2 ) Firing the obtained first granulated product at a first temperature to obtain coarse powder of the fired product; (3) granulating a plurality of ferrite raw materials containing iron oxide; A step of obtaining granules, (4) a step of firing the obtained second granulated product at a second temperature lower than the first temperature to obtain fine powder of the fired product, and (5) obtaining A step of mixing the obtained coarse powder and fine powder, and (6) a step of applying mechanical pulverization force to the mixed powder of the coarse powder and fine powder and further annealing.
  • each step will be described.
  • preferred examples of the oxide, inorganic acid, or salt thereof include bismuth oxide, boric acid, borate, sulfate, phosphate, silicic acid, silicate, and the like. Two or more types can also be used in combination.
  • Preferred examples of the chloride include KCl, NaCl, LiCl, RbCl, CsCl, BaCl 2 , SrCl 2 , CaCl 2 , MgCl 2 and the like, and two or more of these can be used in combination.
  • the obtained first granulated product is subjected to 1180-1220 in an air circulation atmosphere. C., more preferably 1210.degree. C., for 10 to 120 minutes to obtain a baked product.
  • the fired product is pulverized by a roller mill or a hammer mill to obtain a raw material coarsely pulverized powder.
  • a fired product is obtained by firing for 10 to 120 minutes at 900 ° C. to 1000 ° C., which is lower than the first temperature, in an air circulation atmosphere.
  • the fired product is pulverized with a roller mill or a hammer mill to obtain a raw material coarsely pulverized powder.
  • Step of mixing the obtained coarse powder and fine powder The raw coarse powder (65 to 75 parts by weight) obtained in (2) above and the fine powder obtained in (4) above The coarsely crushed powder (35 to 25 parts by weight) is weighed (at this time, the total of the coarsely divided raw material coarsely divided powder and the finely divided raw material coarsely pulverized powder is 100 parts by weight). The obtained weighed product is loaded into a wet pulverizer, mixed with water as a solvent, and dispersed to obtain a slurry.
  • the mixing ratio of the coarse powder is 65 parts by weight or more (the mixing ratio of the fine powder is 35 parts by weight or less), CD can be secured. On the other hand, if the mixing ratio of the coarse powder is less than 75 parts by weight (the mixing ratio of the fine powder is 25 parts by weight or more), a predetermined BH max is obtained in the bonded magnet obtained in the subsequent step.
  • the obtained slurry is filtered or dehydrated to obtain a cake, and the cake is dried in the air to obtain a dried cake.
  • the dry cake is crushed to obtain mixed powder.
  • a step of applying mechanical crushing force to the mixed powder of coarse powder and fine powder and further annealing The mechanical crushing force is applied to the mixed powder obtained by crushing the dried cake.
  • a steel ball having a diameter of 8 to 14 mm, preferably 12 mm is loaded as a medium in a vibrating ball mill having a capacity of 2 to 4 L, preferably 3 L, and a power of 0.3 to 0.5 kW, preferably 0.4 kW.
  • the pulverization force by the pulverization treatment of several 1700 to 1900 rpm, preferably 1800 rpm, the amplitude of 7 to 9 mm, preferably 8 mm, and the treatment time of 20 to 100 minutes, or the equivalent pulverization force.
  • the material of the vibration ball mill is preferably made of stainless steel.
  • Murakami Seiki's Uras Vibrator KEC-8-YH can be raised.
  • a grinder if it is a vibration ball mill which can obtain the same crushing strength as described above, there is no particular designation as to the type, batch system or continuous system.
  • the shape of the fine powder particles fired at the second temperature (low temperature) can be made unexpectedly uniform. I think. And, it is considered that the homogenization of the particle shape contributes to the improvement of the CD of the ferrite powder and the improvement of the MFR value of the compound.
  • the dry pulverization time is 100 minutes or less, the crystal distortion in the mixed powder particles (coarse particles and fine particles) resulting from the pulverization will not be excessive, and crystal distortion will be removed in a later step. Is easy.
  • the dry pulverization may be a batch type or a continuous type.
  • the frequency, amplitude, supply amount, pulverization aid, and the like may be adjusted so that the same pulverization strength as that of the batch method can be obtained.
  • the mixed powder After applying mechanical crushing force to the mixed powder of coarse powder and fine powder, the mixed powder is further annealed at a temperature of 940 to 990 ° C. for 5 to 60 minutes to obtain the ferrite powder according to the present invention.
  • a manufacturing process of the compound filled with the ferrite powder according to the present invention will be described.
  • a predetermined amount of ferrite powder, coupling agent, lubricant, and resin are weighed, loaded into a mixer or the like, and mixed to obtain a mixture.
  • the ferrite powder has a desired F.D. C. Weigh out the value.
  • the coupling agent for example, a silane coupling agent can be preferably used, and about 0.5 to 1.0% by mass is weighed.
  • the lubricant for example, VPN-212P (manufactured by Henkel) can be preferably used, and about 0.5 to 1.0% by mass is weighed.
  • the resin for example, nylon-6 or the like can be preferably used.
  • the obtained mixture is heated to melt the resin, and the mixture is kneaded to obtain a compound.
  • the compound is conveniently formed into a kneaded pellet of a predetermined size.
  • Bonded magnet formed with the compound according to the present invention By molding the compound according to the present invention described above, it was possible to easily obtain a molded product highly filled with the ferrite powder according to the present invention. As a result, it has been found that a high magnetic bond magnet having an iHc value of 3400 Oe or more can be easily produced.
  • a kneaded pellet of a predetermined size is loaded into an injection molding machine, and a molded product of a desired size is injection molded under a predetermined temperature and molding pressure while applying a magnetic field.
  • the bonded magnet according to the present invention is obtained by magnetizing the obtained molded article having a desired size.
  • the present invention is characterized in that the average particle size of the fine powder is reduced and the dry pulverization is enhanced.
  • the p-iHc of the magnetic powder obtained by reducing the average particle size of the fine powder could be increased.
  • Example 1 Manufacture of ferrite powder according to Example 1 (1) Step of granulating a plurality of ferrite raw materials including iron oxide to obtain a first granulated product Iron oxide and strontium carbonate in a molar ratio of iron oxide 5.87: Weighed to strontium carbonate 1. To the weighed product, 0.17% by mass boric acid and 2.36% by mass potassium chloride are added and mixed, and then water is added and granulated into a spherical shape having a diameter of 3 to 10 mm. Grains were obtained.
  • the coarse product powder was obtained by treating the fired product with a roller mill.
  • Step of mixing the obtained coarse powder and fine powder The coarse powder (70 parts by weight) obtained above, the obtained fine powder (30 parts by weight), and tap water (150 parts by weight) are weighed. Then, the mixture was put into a container having a stirring blade and stirred and mixed for 20 minutes to obtain a slurry in which coarse and fine particles were monodispersed. And the said slurry was filtered and dried (at 150 degreeC in air
  • the particle size distribution curve of the obtained ferrite powder according to Example 1 is shown in FIG. 1A, and the integrated particle size distribution curve is shown by a solid line in FIG. 2A.
  • the particle size distribution curve has one peak.
  • the peak may not have the peak maximum value completely independent. That is, the case where it is a shoulder (shoulder) in the bottom part of another peak is considered as another peak.
  • Table 2 shows the average particle size, peak particle size (peak particle size (2)), SSA, CD, and p-iHc of the ferrite powder obtained in Example 1.
  • Table 2 also shows the value of the residual magnetic flux density (p-Br) of the green compact. From the values in Table 2, it was confirmed that the ferrite powder according to Example 1 secured the values of SSA, CD, and p-iHc.
  • the three measurement points near the maximum value in the particle size distribution curve were approximated by a quadratic function, and the particle size at which the maximum value of the quadratic function was obtained was taken as the peak particle size.
  • SSA Specific surface area
  • CD Compression density
  • ⁇ Coercivity of green compact (p-iHc)> The p-iHc of the ferrite powder was measured by the following procedure. (1) 8 g of ferrite powder and 0.4 cc of a polyester resin (P-resin manufactured by Nihon Geoscience) are kneaded in a mortar. (2) 7 g of the kneaded material was filled in a mold having an inner diameter of 15 mm ⁇ and compressed at a pressure of 2 ton / cm 2 for 40 seconds. (3) The molded product was removed from the mold, dried at 150 ° C. for 30 minutes, and then measured with a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) with a measuring magnetic field of 10 kOe.
  • TRF-5BH manufactured by Toei Kogyo Co., Ltd. a measuring magnetic field of 10 kOe.
  • the magnetic properties of the ferrite powder were obtained by using VSM (manufactured by Toei Kogyo Co., Ltd., VSMP-7-15), filling 20 mg of ferrite powder and 30 mg of paraffin into a cell attached to the apparatus, and heating to 80 ° C. to dissolve the paraffin. Thereafter, the sample particles were randomly fixed by cooling to room temperature, measured with a measurement magnetic field of 10 kOe, and iHc (Oe) was calculated. 1 Oe is 1 / 4 ⁇ ⁇ 10 3 [A / m].
  • MFR ⁇ Fluidity
  • MFR is a value measured by the following procedures (1) to (3).
  • (3) The pellet obtained in the above (2) is subjected to a melt flow indexer, and the weight extruded for 10 minutes under a load of 10 kg at 270 ° C. is measured, and this is defined as MFR (unit: g / 10 min).
  • the magnetic properties of the molded product were evaluated by the following procedure.
  • (1) The kneaded pellets were injection molded at a temperature of 290 ° C. and a molding pressure of 8.5 N / mm 2 in a 4.3 kOe magnetic field using an injection molding machine (manufactured by Sumitomo Heavy Industries), and had a diameter of 15 mm ⁇ a height of 8 mm.
  • a cylindrical shaped product (the orientation direction of the magnetic field is a direction along the central axis of the cylinder) was obtained.
  • (2) The magnetic properties of the cylindrical molded product were measured with a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd.) at a measurement magnetic field of 10 kOe.
  • Example 2 Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product”
  • a ferrite powder according to Example 2 was obtained by performing the same operation as in Example 1 except that the firing temperature of the powder was 1180 ° C. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 2 is shown in FIG. 1A and the cumulative particle size distribution curve is shown in FIG. 2A by a short broken line.
  • the particle size distribution curve has one peak. I was able to confirm.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 3 Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product” Example 1 except that the firing temperature of the powder was 1217 ° C. and the annealing temperature described in “(6) Step of applying mechanical grinding force to the mixed powder of coarse powder and fine powder and annealing” was 950 ° C. The same operation as in Example 3 was performed to obtain a ferrite powder according to Example 3. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 3 is shown in FIG. 1A and the integrated particle size distribution curve is shown in FIG. 2A by a long broken line.
  • the particle size distribution curve has one peak. I was able to confirm.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 4 Manufacture of mixed powder (ferrite powder)
  • Example 1 “(4) The obtained second granulated product was fired at a second temperature lower than the first temperature to obtain fine powder of the fired product.
  • the ferrite powder according to Example 4 was obtained by performing the same operation as in Example 1, except that the firing temperature in the rotary kiln described in “Process for obtaining” was 930 ° C. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 4 is shown in FIG. 1A, and the cumulative particle size distribution curve is shown in FIG. 2A by a two-dot chain line.
  • the particle size distribution curve has one peak. It was confirmed that Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 5 Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product”
  • the firing temperature of the powder was set to 1180 ° C.
  • the operation was performed to obtain a ferrite powder according to Example 5.
  • the manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 5 is shown in FIG. 1B and the integrated particle size distribution curve is shown in FIG. 2B by a short broken line.
  • the particle size distribution curve has one peak. I was able to confirm.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 6 Manufacture of mixed powder (ferrite powder) Vibrating ball mill to the dried cake obtained as described in “(6) Step of applying mechanical pulverization force to mixed powder of coarse powder and fine powder and annealing” in Example 1
  • a ferrite powder according to Example 6 was obtained by performing the same operation as in Example 1, except that the pulverization time was set to 25 minutes.
  • the manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 6 is shown in FIG. 1B, and the cumulative particle size distribution curve is shown by a broken line in FIG. 2B.
  • the particle size distribution curve has one peak.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 7 Manufacture of mixed powder (ferrite powder) Vibrating ball mill to the dried cake obtained as described in “(6) Step of applying mechanical pulverization force to mixed powder of coarse powder and fine powder and annealing” in Example 1
  • a ferrite powder according to Example 7 was obtained by performing the same operation as in Example 1, except that the pulverization time was set at 21 minutes. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 7 is shown in FIG. 1B and the integrated particle size distribution curve is shown in FIG. 2B by a long broken line.
  • the particle size distribution curve has one peak. I was able to confirm.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 8 Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product”
  • the firing temperature of the powder is set to 1217 ° C.
  • the firing temperature in the rotary kiln described in 1 is set to 1000 ° C.
  • the mixing ratio of the coarse powder to the fine powder described in “(5) Step of mixing the obtained coarse powder and fine powder” is defined as coarse powder (74 weight). Part) and fine powder (26 parts by weight), the same operation as in Example 1 was performed to obtain a ferrite powder according to Example 8.
  • the manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Example 8 is shown in FIG. 1B, and the cumulative particle size distribution curve is shown in FIG. 2B by a broken line.
  • the particle size distribution curve has one peak. I was able to confirm.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • (Comparative Example 1) Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product” The firing temperature of the powder is 1235 ° C., and “(4) a step of firing the obtained second granulated product at a second temperature lower than the first temperature to obtain a fine powder of the fired product” The firing temperature in the rotary kiln explained in 1) is set to 1070 ° C., and the vibration to the obtained dry cake explained in “(6) Step of applying mechanical crushing force to the mixed powder of coarse powder and fine powder and annealing” is performed.
  • a ferrite powder according to Comparative Example 1 was obtained by performing the same operation as in Example 1 except that the pulverization time by the ball mill was 14 minutes and the annealing temperature was 910 ° C. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 1 is shown in FIG. 1C and the cumulative particle size distribution curve is shown in FIG. 2C by a solid line.
  • the particle size distribution curve has two peaks. Was confirmed.
  • Table 2 shows the average particle diameter of the ferrite powder, the peak particle diameter of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Kneaded pellets (2) according to Comparative Example 1 were prepared in the same manner as the kneaded pellets (2) according to Example 1, except that the ferrite powder according to Comparative Example 1 was used. Got. At this time, MFR values of the kneaded pellets (2) according to Comparative Example 1 are shown in Table 3.
  • (Comparative Example 2) Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product” The firing temperature of the powder is 1235 ° C., and “(4) a step of firing the obtained second granulated product at a second temperature lower than the first temperature to obtain a fine powder of the fired product” The baking temperature in the rotary kiln described in 1 is set to 1070 ° C., and the dry cake obtained as described in “(6) Step of applying mechanical pulverization force to the mixed powder of coarse powder and fine powder and annealing” is performed.
  • a ferrite powder according to Comparative Example 2 was obtained by performing the same operation as in Example 1 except that the pulverization time by the vibration ball mill was 14 minutes and the annealing temperature was 940 ° C. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the particle size distribution of the ferrite powder according to Comparative Example 2 obtained is shown in FIG. 1C, the integrated particle size distribution curve is shown in FIG. 2C by broken lines, and the particle size distribution curve has two peaks. I confirmed that I have it.
  • Table 2 shows the average particle diameter of the ferrite powder, the peak particle diameter of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Kneaded pellets (2) according to Comparative Example 2 were prepared in the same manner as the kneaded pellets (2) according to Example 1, except that the ferrite powder according to Comparative Example 2 was used. Got. At this time, MFR values of the kneaded pellets (2) according to Comparative Example 2 are shown in Table 3.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 3 is shown in FIG. 1C, and the cumulative particle size distribution curve is shown in FIG. 2C with a short broken line. I confirmed that I have.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Kneaded pellets (2) according to Comparative Example 3 were the same as the kneaded pellets (2) according to Example 1 except that the ferrite powder according to Comparative Example 3 was used. Got. At this time, MFR values of the kneaded pellets (2) according to Comparative Example 3 are shown in Table 3.
  • Example 4 Manufacture of mixed powder (ferrite powder)
  • Example 1 “(4) The obtained second granulated product was fired at a second temperature lower than the first temperature to obtain fine powder of the fired product.
  • the firing temperature in the rotary kiln described in “Process of obtaining” is set to 1030 ° C., and the mixing ratio of the coarse powder and fine powder described in “(5) Step of mixing coarse powder and fine powder obtained” is coarse.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 4 is shown in FIG. 1C, and the cumulative particle size distribution curve is shown in FIG. 2C by a one-dot chain line, and the particle size distribution curve has one peak. It was confirmed that Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 5 Manufacture of mixed powder (ferrite powder)
  • Example 1 “(4) The obtained second granulated product was fired at a second temperature lower than the first temperature to obtain fine powder of the fired product.
  • the baking temperature in the rotary kiln explained in “Process for obtaining the above” is 1100 ° C., and the obtained drying explained in “(6) Step of applying mechanical crushing force to the mixed powder of coarse powder and fine powder and annealing”
  • a ferrite powder according to Comparative Example 5 was obtained by performing the same operation as in Example 1 except that the pulverization time for the cake by the vibration ball mill was 14 minutes.
  • the manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 5 is shown in FIG. 1C, and the cumulative particle size distribution curve is shown in FIG. 2C by a two-dot chain line.
  • the particle size distribution curve has one peak. It was confirmed that Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 6 Manufacture of mixed powder (ferrite powder)
  • Example 1 “(4) The obtained second granulated product was fired at a second temperature lower than the first temperature to obtain fine powder of the fired product.
  • the baking temperature in the rotary kiln explained in “Process for obtaining the above” is 1100 ° C.
  • a ferrite powder according to Comparative Example 6 was obtained by performing the same operation as in Example 1 except that the time for pulverizing the cake with a vibrating ball mill was 14 minutes and the annealing temperature was 1010 ° C.
  • the manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 6 is shown in FIG. 1C, and the cumulative particle size distribution curve is shown in FIG. 2C by a short one-dot chain line.
  • the particle size distribution curve has one peak. It was confirmed that Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • (Comparative Example 7) Manufacture of mixed powder (ferrite powder) Coarse as described in Example 1, “(2) Step of firing the obtained first granulated product at a first temperature to obtain a coarse powder of the fired product” The firing temperature of the powder is set to 1150 ° C., and “(4) the step of firing the obtained second granulated product at a second temperature lower than the first temperature to obtain a fine powder of the fired product” The firing temperature in the rotary kiln explained in 1 was set to 1100 ° C., and the vibration to the dried cake obtained explained in “(6) Step of applying mechanical grinding force to the mixed powder of coarse powder and fine powder and annealing” was performed. A ferrite powder according to Comparative Example 7 was obtained by performing the same operation as in Example 1 except that the grinding time by the ball mill was 21 minutes. The manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 7 is shown in FIG. 1C, and the cumulative particle size distribution curve is shown in FIG. 2C, respectively, as a short two-dot chain line, but the particle size distribution curve has one peak. It was confirmed that Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • Example 8 Manufacture of mixed powder (ferrite powder)
  • Example 1 “(4) The obtained second granulated product was fired at a second temperature lower than the first temperature to obtain fine powder of the fired product.
  • the baking temperature in the rotary kiln explained in “Process for obtaining the above” is 1100 ° C., and the obtained drying explained in “(6) Step of applying mechanical crushing force to the mixed powder of coarse powder and fine powder and annealing”
  • a ferrite powder according to Comparative Example 8 was obtained by performing the same operation as in Example 1 except that the pulverization time for the cake by the vibration ball mill was 21 minutes.
  • the manufacturing conditions described above are listed in Table 1.
  • the particle size distribution curve of the obtained ferrite powder according to Comparative Example 8 is shown in FIG. 1C, and the cumulative particle size distribution curve is shown in FIG. It was confirmed that it has a peak.
  • Table 2 shows the average particle size of the ferrite powder, the peak particle size of the peaks, and the values of SSA, CD, p-iHc, and p-Br.
  • the ferrite powders for bonded magnets according to 1 to 8 have values of SSA of 2.37 to 2.97 m 2 / g, CD of 3.36 to 3.45 g / cm 3 , and piHc of 3370 to 3700 Oe. It was. As a result, a bonded magnet was produced by molding a compound obtained by kneading a mixture of ferrite powder for bonded magnet according to Examples 1 to 8 and a resin (FC 91.7% by mass). However, it was possible to easily produce a ferrite-based bonded magnet having iHc of 3610 to 3753 Oe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 低温環境下においても高いiHcの値を保持するボンド磁石用フェライト粉末とその製造方法、および、これを用いた低温環境下においても高いiHcの値を保持するボンド磁石を提供することである。比表面積が2.20m/g以上3.20m/g未満であり、圧縮密度が3.30g/cm以上3.60g/cm未満であり、圧粉体の保磁力が3250Oe以上3800Oe未満である、ボンド磁石用フェライト粉末を提供する。

Description

ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
 本発明は、低温環境下で使用されるボンド磁石の製造に用いられるボンド磁石用フェライト粉末およびその製造方法、並びにこれを用いたフェライト系ボンド磁石に関する。
 高磁力が要求される磁石には、フェライト系焼結磁石(本発明において「焼結磁石」と記載する場合ある。)が使用されている。しかし、当該焼結磁石は、欠け割れが発生したり、研磨が必要なため生産性に劣ることに加え、複雑な形状への加工が困難であるという固有の問題がある。最近では、当該焼結磁石をフェライト系ボンド磁石(本発明において「ボンド磁石」と記載する場合ある。)で代替したいという要請がある。しかし、ボンド磁石は、焼結磁石に比較すると、最大エネルギー積(BHmax)が劣るため、焼結磁石をボンド磁石ヘ代替するためには、ボンド磁石においてBHmaxの特性向上が求められる。
 一般に、BHmaxは、残留磁束密度(Br)と保磁力(Hc)とにより決まる。
 ここで、Brは、磁石の密度(ρ)と磁粉の飽和磁化(σs)、配向度(Br/4πIs)により下式1で表される。
     Br=4π×ρ×σ×(配向度)・・・式1
 一方、Hcは、結晶異方性と形状異方性および単磁区構造の理論で説明されている。
 焼結磁石とボンド磁石との大きな違いは、ρである。焼結磁石のρは、5.0g/cm程度である。これに対しボンド磁石では、原料の混練物(コンパウンド)においてフェライト粉末に加えて、樹脂やゴム等のバインダーが入るため、当然密度はこれより低くなる。この為、ボンド磁石のBrは低下する。したがって、ボンド磁石の磁力を高くするには、コンパウンドにおけるフェライト粉末の含有率(F.C.)を増やすことが求められる。
 しかしながら、コンパウンドにおけるフェライト粉末のF.C.を増やすと、フェライト粉末とバインダーとの混練時に、コンパウンドが高粘度となり、負荷が増大してコンパウンドの生産性が低下し、極端な場合には混練不可になる。そして、混練が出来たとしても、コンパウンドの成形時において流動性(MFR)の値が低いので、成形物の生産性が低下し、極端な場合には成形不可になる。
 このボンド磁石特有の課題を解決するために、バインダーの選定やフェライト粉末の表面処理等の観点から改良が行われている。しかし、基本的にはフェライト粉末自身のF.C.を高く確保することが最も重要である。フェライト粉末のF.C.は、当該フェライト粉末を構成するフェライト粒子の粒径分布や圧縮密度との関連性が高い。
 このようなボンド磁石用フェライト粉末(本発明において「フェライト粉末」と記載する場合がある。)の製造方法として、出願人は特許文献1を開示した。
 特許文献1において、出願人は複数の粒径を有するフェライト粉末を混合して得たフェライト粉末を開示した。そして、当該フェライト粉末においては、粒径分布において複数のピークを有するものとなった。
 尚、本発明において、ピークとは、ピークの極大値が完全に独立峰となっていなくても良い。即ち、ピークの裾部分においてショルダー(肩)が存在する場合は、当該ショルダーを別のピークとして考える。
 また、フェライト粉末を構成する粒子において比表面積(SSA)の値が高いと、混練および成型時にフェライト粒子表面に吸着する樹脂(バインダー)量が増える。その結果、自由に動くことができる樹脂の割合が減少し、MFRの低下を招き、MFRの低下は磁場成型時の配向性の低下、すなわちBrの低下に結びつくことが考えられた。そこで、SSAは1.8m/g以下のものとした。
 一方、圧粉体の保磁力(p-iHc)は、2100Oe以上のものを実現した。
 また、無配向状態の飽和磁化値σsは55emu/g以上のものを実現した。
特開2010-263201号公報
 本発明者らが開示した特許文献1によれば、圧縮密度が高く、高充填性のフェライト粉末が得られた。
 しかしながら、0℃以下など室温より低温の環境下で使用されるフェライト系ボンド磁石では、所謂、低温減磁の問題がある。この為、本発明者らは、フェライト系ボンド磁石には、より高い保磁力が要求されることに想到した。しかしながら、例えば特許文献1に記載のボンド磁石用フェライト粉末やこれを用いたボンド磁石は、要求される水準の保磁力を満足していない。
 この為、低温環境下においてBHmaxの高い磁力が要求される分野では、希土類磁石を用いたボンド磁石が使用されている。しかし、希土類磁石はフェライト磁石の20倍のコスト高であり、また錆びやすいという問題がある。
 このような状況から、加工性が良好で安価なボンド磁石によって、より高いBHmaxを達成することが強く要望されている。
 本発明は上述の状況の下でなされたものであり、その解決しようとする課題は、低温環境下においても使用可能な高いiHcの値を有するボンド磁石用フェライト粉末と、その製造方法、および、これを用いた低温環境下においても使用可能な、iHcの値の高いボンド磁石を提供することである。
 上述の課題を解決するため、本発明者らは研究を行った。
 そして、ボンド磁石用フェライト粉末の製造工程において、ボンド磁石用において圧縮密度を上げる為に、粒径の大きな粗粉と小さな微粉とを製造する際、それぞれを所定の焼成温度で焼成して製造し、混合した後、所定の条件で混合粉砕処理してボンド磁石用フェライト粉末を製造することで、p-iHcの値が大きなボンド磁石用フェライト粉末が得られることを知見した。
 さらに本発明者らは、当該p-iHcの値が大きなボンド磁石用フェライト粉末を用いて製造したボンド磁石は、高い成形体保磁力(inj-iHc)を有しており、低温環境での使用に耐えうることを知見した。そして、当該高いinj-iHcを有しているボンド磁石は、たとえ、低温環境下で使用されることにより、当該inj-iHcの値が低下した場合であっても、尚、inj-iHcの値が十分に要求を満たす水準を担保していることを知見して、本発明を完成した。
 即ち、上述の課題を解決するための第1の発明は、
 比表面積が2.20m/g以上3.20m/g未満であり、
 圧縮密度が3.30g/cm以上3.60g/cm未満であり、
 圧粉体の保磁力が3250Oe以上3800Oe未満である、ボンド磁石用フェライト粉末である。
 第2の発明は、
 前記ボンド磁石用フェライト粉末とナイロン樹脂粉末とを混錬して、F.C.91.7質量%であるコンパウンドとしたとき、当該コンパウンドのMFRが50g/10min以上である、ボンド磁石用フェライト粉末である。
 第3の発明は、
 前記ボンド磁石用フェライト粉末とナイロン樹脂粉末とを混錬して、F.C.91.7質量%であるコンパウンドとし、当該コンパウンドを成形してボンド磁石としたとき、当該ボンド磁石のinj-iHcが3600Oe以上である、ボンド磁石用フェライト粉末である。
 第4の発明は、
 前記ボンド磁石用フェライト粉末とナイロン樹脂粉末とを混錬して、F.C.91.7質量%であるコンパウンドとし、当該コンパウンドを4.3kOeの磁場中にて成形してボンド磁石としたとき、当該ボンド磁石のBrが2800G以上である、ボンド磁石用フェライト粉末である。
 第5の発明は、
 第1から第4の発明のいずれかに記載のボンド磁石用フェライト粉末を成形して製造されたフェライト系ボンド磁石である。
 第6の発明は、
 第1から第4の発明のいずれかに記載のボンド磁石用フェライト粉末を含むフェライト系ボンド磁石である。
 第7の発明は、
 酸化鉄を含む複数のフェライト原料を造粒し、第1の造粒物を得る工程と、
 得られた第1の造粒物を、第1の温度で焼成して、焼成物の粗粉を得る工程と、
 酸化鉄を含む複数のフェライト原料を造粒し、第2の造粒物を得る工程と、
 得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程と、
 得られた粗粉と微粉とを混合して混合粉を得る工程と、
 得られた混合粉へ、機械的粉砕力を加えて混合粉砕物を得、得られた混合粉砕物をアニールする工程と、を有するボンド磁石用フェライト粉末の製造方法であって、
 前記第1の温度が1180℃以上1220℃未満であり、
 前記第2の温度が900℃以上1000℃以下であり、
 前記粗粉と微粉との混合比率を〔粗粉の質量/(粗粉+微粉)の質量〕×100%で表記したとき、65質量%以上75質量%未満である、ボンド磁石用フェライト粉末の製造方法である。
 但し、前記機械的粉砕力とは、容量2~4L、動力0.3~0.5kWの振動ボールミルに、媒体として径8~14mmのスチール製ボールを装填し、回転数1700~1900rpm、振幅7~9mm、処理時間20~100分間である粉砕処理による粉砕力、または、それと同等の粉砕力である。
 本発明に係るボンド磁石用フェライト粉末は、高いp-iHcの値を有している。従って、当該ボンド磁石用フェライト粉末を用いて製造されたボンド磁石が低温環境下におかれて、inj-iHcの値が低下しても、当該ボンド磁石はまだ十分に高いinj-iHcの値を担保しており、磁力の高いボンド磁石を製造することが可能になった。
本発明に係るフェライト粉末の粒径分布曲線を示すグラフである。尚、縦軸は頻度分布を、横軸は粒径(μm)を表している。 本発明に係るフェライト粉末の積算粒径分布曲線を示すグラフである。尚、縦軸は積算粒径分布(体積%)を、横軸は粒径(μm)を表している。
 本発明者らは、低温環境下において使用されるボンド磁石について鋭意研究を行った。そして、低温環境下において使用されるボンド磁石について、希土類系のボンド磁石のように耐熱性を向上させるにではなく、inj-iHcの値を増大させることで、たとえ、低温環境の影響でinj-iHcの値が低減しても、まだ十分なinj-iHcの値を保持し続けられる水準のinj-iHcを有するボンド磁石を開発することに想到した。
 この十分なinj-iHcの値を有するボンド磁石を開発する為、本発明者らは、ボンド磁石について鋭意研究を行った。
 そして、酸化鉄を含む複数のフェライト原料を造粒し、第1の造粒物を得る工程と、
 得られた第1の造粒物を、1180℃以上1220℃未満の第1の温度で焼成して、焼成物の粗粉を得る工程、
 酸化鉄を含む複数のフェライト原料を造粒し、第2の造粒物を得る工程、
 得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程、
 得られた粗粉と微粉とを混合して混合粉を得る工程、
 得られた混合粉へ、機械的粉砕力を加えて混合粉砕物を得、得られた混合粉砕物をアニールする工程を経てフェライト粉末を製造することにより、p-iHcが3250Oe以上3800Oe未満であるフェライト粉末を製造出来ることを知見した。
 但し、前記機械的粉砕力とは、容量2~4L、動力0.3~0.5kWの振動ボールミルに、媒体として径8~14mmのスチール製ボールを装填し、回転数1700~1900rpm、振幅7~9mm、処理時間20~100分間である粉砕処理による粉砕力、または、それと同等の粉砕力である。
 そして本発明者らは、当該構成を有する本発明に係るフェライト粉末と、樹脂とを混練混合して得られたコンパウンドにより、低温環境下においても高いinj-iHcを保持する高磁力のボンド磁石を容易に製造できることを知見した。
 以下、1.)本発明に係るフェライト粉末、2.)本発明に係るフェライト粉末の製造方法、3.)本発明に係るフェライト粉末が充填されたコンパウンド、4.)本発明に係るコンパウンドが成形されたボンド磁石の順で、本発明について説明する。
1.)本発明に係るフェライト粉末
 上述したように、本発明に係るフェライト粉末は、乾式レーザー回折式測定による平均粒径が5μm以下、1μm以上であり、比表面積(SSA)が2.20m/g以上3.20m/g未満であり、圧縮密度(CD)が3.30g/cm以上3.60g/cm未満であり、p-iHcが3250Oe以上3800Oe未満であるとの構成を有する。
 ここで、フェライト粉末における(1)平均粒径、(2)SSA、(3)CD、(4)p-iHcの各々の構成とその効果について説明する。
 (1)平均粒径
 本発明に係るフェライト粉末は、乾式レーザー回折式測定による平均粒径が5μm以下、1μm以上のフェライト粉末に係るものである。平均粒径が5μm以下であれば、ボンド磁石化後の配向度や保磁力が担保出来ることによる。また、平均粒径が1μm以上であれば、後述するCDの値が担保出来ることによる。
 (2)比表面積(SSA)
 本発明者らは、SSAが2.20m/g以上であることが好ましいことを知見した。これは、フェライト粉末を構成する粒子が、配向するためには単分散していることが好ましいところ、SSAが2.20m/g以上であることにより、フェライト粒子が単分散した微粒子となっていることによると考えられる。
 一方、SSAが3.20m/g未満であることにより、混練および成型時にフェライト粉末を構成する粒子表面に吸着する樹脂(バインダー)量が増え、その分自由に動くことができる樹脂の割合が増加し、MFRの値が大きく低下する事態を回避出来るからであると考えられる。この傾向は、コンパウンド中のフェライト粉末のF.C.が高く、磁場成型中の配向磁場が低い場合は顕著になりやすいため、SSAは3.20m/g未満が良いことに想到したものである。
 以上より、本発明に係るフェライト粉末において、SSAが、2.20m/g以上、3.20m/g未満である構成に想到したものである。
 (3)圧縮密度(CD)
 CDは、ボンド磁石の最小構成単位であるフェライト粒子を限られた体積にどれだけ充填することができるかを示す指標であり、Brとの相関性が高い。一方、CDが高いと、粒子間隙の容積が小さくなるため、当該フェライト粉末と、例えばナイロン-6樹脂とを混合し、混錬して得られたコンパウンドにおいて、当該フェライト粉末の間隙に入り込む樹脂量は見かけ上減少する。そこで、CDは、3.30g/cm以上であることが好ましいことに想到した。
 一方、後工程にて製造される、ボンド磁石(成形体)の保磁力(inj-iHc)が高い値を担保する観点からは、CDが3.60g/cm未満であることが好ましい。
 以上より、本発明に係るボンド磁石用フェライト粉末において、CDが3.30g/cm以上3.60g/cm未満とする構成に想到したものである。
 (4)圧粉体の保磁力(p-iHc)
 p-iHcは、2ton/cmの高圧力下で圧縮され機械的ストレスの履歴がある状態における、ボンド磁石用フェライト粉末の保磁力である。なお、「ton」は1000kgの意である。一般に、ボンド磁石を製造する際の混練および成形時において、ボンド磁石用フェライト粉末は機械的ストレスを受ける為、p-iHcはストレスの掛かっていない粉体状態のときより低下する。
 ここで、p-iHcと、ボンド磁石(成形体)の保磁力(inj-iHc)とは高い相関がある為、p-iHcの値はinj-iHcの値を推定する為の有効な指標となる。従って、p-iHcの値は高いことが求められる。さらにボンド磁石が低温環境下で使用されiHcの値が低下しても、なお十分なiHcの値を担保し高い磁力を担保出来る観点から、iHcの値は3250Oe以上あることが好ましい構成であることに想到した。
 一方、ボンド磁石を製造する為に、成形された成形品を着磁する際、当該着磁の容易性を担保する観点から、p-iHcの値は3800Oe未満であることが好ましい。
 以上より、本発明に係るボンド磁石用フェライト粉末を用いた圧粉体のp-iHcの値が、3250Oe以上3800Oe未満である構成に想到したものである。
 また、ボンド磁石を製造する際の混練および成形時における機械的ストレスは、F.C.によって異なる。具体的には、F.C.を下げることで、機械的ストレスは小さくなりiHcの低下は小さくなるが、磁粉の充填量が減ることでBrも低下することを知見した。
 このため、十分な磁力の得られるF.C.を91.7質量%とした際のinj-iHcの値が3600以上であることが、好ましい構成であることにも想到した。
2.)本発明に係るフェライト粉末の製造方法
 本発明に係るフェライト粉末の製造方法は、(1)酸化鉄を含む、複数のフェライト原料を造粒し、第1の造粒物を得る工程、(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程、(3)酸化鉄を含む、複数のフェライト原料を造粒し、第2の造粒物を得る工程、(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程、(5)得られた粗粉と微粉とを混合する工程、(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、さらにアニールする工程、と、を有する。ここで、各工程について説明する。
 (1)酸化鉄を含む、複数のフェライト原料を造粒し、第1の造粒物を得る工程
 酸化鉄と炭酸ストロンチウムとをモル比で、酸化鉄:炭酸ストロンチウム=5.50~6.00:1になるように秤量する。
 当該秤量物に対して、0.10~3.0質量%の融剤(酸化物、無機酸、または、その塩)、および1.00~5.00質量%の塩化物を加えて混合し混合物とする。当該混合物を直径3~10mm程度に造粒後、当該造粒物を乾燥させ第1の造粒物を得た。
 ここで、酸化物、無機酸、または、その塩としては、酸化ビスマス、ホウ酸、ホウ酸塩、硫酸塩、燐酸塩、ケイ酸、ケイ酸塩等を好ましく挙げることが出来、これらのうちの2種以上を組み合わせて使用することも出来る。塩化物としては、KCl、NaCl、LiCl、RbCl、CsCl、BaCl、SrCl、CaCl、MgCl等を好ましく挙げることが出来、これらのうちの2種以上を組み合わせて使用することも出来る。
 (2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程
 得られた第1の造粒物を、大気の流通雰囲気下において1180~1220℃、さらに好ましくは1210℃、10~120分間焼成し焼成物を得る。当該焼成物をローラーミルまたはハンマーミルにより粉砕処理することで、粗粉の原料粗砕粉末を得る。
 (3)酸化鉄を含む、複数のフェライト原料を造粒し、第2の造粒物を得る工程
 酸化鉄と炭酸ストロンチウムとを、モル比で、酸化鉄:炭酸ストロンチウム=5.20~6.00:1になるように秤量し混合する。混合した後、直径3~10mm程度に造粒し、造粒物を乾燥させる。
 (4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程
 得られた第2の造粒物を、好ましくは大気の流通雰囲気下において前記第1の温度より低温である900℃~1000℃にて、10~120分間焼成し焼成物を得る。当該焼成物をローラーミルまたはハンマーミルで粉砕処理することで、微粉の原料粗砕粉末を得る。
 (5)得られた粗粉と微粉とを混合する工程
 上記(2)で得られた粗粉の原料粗砕粉(65~75重量部)と、上記(4)で得られた微粉の原料粗砕粉(35~25重量部)とを秤量する(このとき、粗粉の原料粗砕粉と微粉の原料粗砕粉との合計は100重量部とする。)。得られた秤量物を湿式粉砕機に装填し、溶媒として水を混合し、分散処理してスラリーを得る。
 得られた粗粉と微粉とを混合する際、粗粉の混合比率が65重量部以上(微粉の混合比率が35重量部以下)であれば、後工程にて得られるボンド磁石において、所定のCDを担保することができる。一方、粗粉の混合比率が75重量部未満(微粉の混合比率が25重量部以上)であれば、後工程にて得られるボンド磁石において、所定のBHmaxが得られる。
 得られたスラリーをろ過もしくは脱水してケーキを得、当該ケーキを大気中で乾燥させて乾燥ケーキを得る。当該乾燥ケーキを解砕処理することで混合粉を得る。
 (6)粗粉と微粉との混合粉へ機械的粉砕力を加え、さらにアニールする工程
 前記乾燥ケーキを解砕処理することで得られた混合粉へ機械的粉砕力を加える。具体的には、容量2~4L好ましくは3L、動力0.3~0.5kW好ましくは0.4kW、の振動ボールミルに、媒体として径8~14mm好ましくは12mmのスチール製ボールを装填し、回転数1700~1900rpm好ましくは1800rpm、振幅7~9mm好ましくは8mm、処理時間20~100分間である粉砕処理による粉砕力、または、それと同等の粉砕力である。そして、振動ボールミルの材質はステンレススチール製であることが好ましい。好ましい具体例として、村上精機製:Uras Vibrator KEC-8-YHを上げることが出来る。
 尚、粉砕機としては、上記と同様の粉砕強度を得られる振動ボールミルであれば、その型式、バッチ方式であるか連続方式であるかの指定は特にない。
 振動粉砕機として例えば振動ミルを用い、得られた混合粉を20分間以上乾式粉砕することにより、意外にも前記第2の温度(低い温度)で焼成された微粉の粒子の形状を均一化出来たものと考えている。そして当該粒子形状の均一化が、フェライト粉のCDの向上や、コンパウンドのMFRの値の向上に寄与していると考えられる。一方、当該乾式粉砕時間が100分間以下であれば、当該粉砕に起因する混合粉末の粒子(粗粉粒子および微粉粒子)における結晶歪みが過大にならず、後工程にて結晶歪みを除去することが容易である。
 当該乾式粉砕は、バッチ式でも連続式でも良い。当該乾式粉砕を連続式で行う場合には、バッチ式と同等の粉砕力強度が得られるように、振動数・振幅・供給量・粉砕助剤などの調整を行なえば良い。
 粗粉と微粉との混合粉へ機械的粉砕力を加えた後は、さらに当該混合粉を940~990℃の温度で、5~60分間アニールし、本発明に係るフェライト粉末を得る。
3.)本発明に係るフェライト粉末が充填されたコンパウンド
 コンパウンドの製造工程について説明する。
 フェライト粉末と、カップリング剤、滑剤、樹脂を所定量秤量し、ミキサー等に装填し混合し混合物を得る。
 このとき、フェライト粉末は所望のF.C.値となる量を秤量する。カップリング剤は、例えばシランカップリング剤を好ましく使用出来、0.5~1.0質量%程度を秤量する。滑剤は、例えば、VPN―212P(ヘンケル製)を好ましく使用出来、0.5~1.0質量%程度を秤量する。樹脂としては、例えば、ナイロン-6等を好ましく使用出来る。
 得られた混合物を加熱して樹脂を加熱溶融させ、当該混合物を混練してコンパウンドを得る。当該コンパウンドは、所定サイズの混練ペレット化するのが便宜である。
4.)本発明に係るコンパウンドが成形されたボンド磁石
 上述した本発明に係るコンパウンドを成形することで、容易に本発明に係るフェライト粉末が高充填された成形品を得ることが出来た。
 この結果、iHcの値が3400Oe以上の値を示す高磁力のボンド磁石を、容易に製造できることを知見した。
 以下、ボンド磁石の製造工程について説明する。
 所定サイズの混練ペレットを射出成形機に装填し、磁場を付与しながら、所定温度、成形圧力に下で、所望サイズの成形品を射出成型する。
 得られた所望サイズの成形品を着磁することにより、本発明に係るボンド磁石を得る。
 本発明では、微粒粉の平均粒子サイズを小さくし、かつ乾式粉砕を強化したことに製法上の特徴がある。微粒粉の平均粒子サイズを小さくしたことで得られる磁性粉末のp-iHcを高めることが出来た。
(実施例1)
1.)実施例1に係るフェライト粉末の製造
 (1)酸化鉄を含む、複数のフェライト原料を造粒し、第1の造粒物を得る工程
 酸化鉄と炭酸ストロンチウムとを、モル比で、酸化鉄5.87:炭酸ストロンチウム1になるように秤量した。当該秤量物に対して、0.17質量%のホウ酸、および2.36質量%の塩化カリウムを加えて混合後、水を加えて直径3~10mmの球状に造粒し、第1の造粒物を得た。
 (2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程
 当該造粒物を、ロータリーキルン中において大気の流通雰囲気下、1210℃で20分間焼成し焼成物を得た。焼成物のカサ密度1.6g/cmであり、粒子間の焼結がほとんど進んでいないことを確認した。
 当該焼成物をローラーミルで処理することで、焼成物の粗粉を得た。
 (3)酸化鉄を含む、複数のフェライト原料を造粒し、第2の造粒物を得る工程
 酸化鉄と炭酸ストロンチウムとを、モル比で、酸化鉄5.5:炭酸ストロンチウム1になるように秤量および混合した後、水を加えて直径3~10mmの球状に造粒し第2の造粒物を得た。
 (4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程
 当該第2の造粒物を、ロータリーキルン中において大気の流通雰囲気下、970℃で20分間焼成し、焼成物を得た。当該焼成物をローラーミルで処理することで焼成物の微粉を得た。
 (5)得られた粗粉と微粉とを混合する工程
 上記で得られた粗粉(70重量部)、得られた微粉(30重量部)、および水道水(150重量部)とを秤量し、攪拌翼を有する容器に投入して20分間攪拌混合し、粗粉および微粉の粒子が単分散したスラリーを得た。そして、当該スラリーをろ過、乾燥(大気中150℃で10時間)させて乾燥ケーキを得た。
 (6)粗粉と微粉との混合粉へ機械的粉砕力を加え、さらにアニールする工程
 得られた乾燥ケーキを、振動ボールミル(村上精機製:Uras Vibrator KEC-8-YH)で粉砕処理した。粉砕処理条件としては、媒体に径12mmのスチール製ボールを用い、回転数1800rpm、振幅8mmの条件で28分間実施した。当該粉砕処理した混合粉を大気中960℃にて30分間アニール(焼鈍)して、実施例1に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例1に係るフェライト粉末の粒径分布曲線を図1Aに、積算粒径分布曲線を図2Aに、夫々実線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。尚、本発明に係る実施例・比較例において、ピークとは、ピークの極大値が完全に独立峰となっていなくても良い。即ち、他のピークの裾部分におけるショルダー(肩)となっている場合についても、別のピークとして考えている。
 得られた実施例1に係るフェライト粉末の平均粒径、ピーク粒径(ピーク粒径(2))、SSA、CD、p-iHcの値を表2に記載する。尚、表2には、圧粉体の残留磁束密度(p-Br)の値も記載した。
 そして、表2の値より、実施例1に係るフェライト粉末は、SSA、CD、p-iHcの値を確保していることが確認できた。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例1に係るフェライト粉末91.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部を秤量し、ミキサーに装填して混合し、混合物を得た。得られた混合物を230℃で混練して、コンパウンドの破砕物である平均径2mmの混練ペレット(1)を得た。当該ペレットにおける(フェライト粉末/ナイロン-6)の質量比は13.7となった。
 このとき混練ペレット(1)のMFRの値を表3に記載する。
 (2)F.C.92.7質量%のペレットの製造
 実施例1に係るフェライト粉末92.7重量部,シランカップリング剤0.8重量部,滑剤0.8重量部およびナイロン-6(粉末状)5.7重量部を秤量し、ミキサーに装填して混合し、混合物を得た。得られた混合物を、230℃で混練して平均径2mmの実施例1に係る混練ペレット(2)を得た。当該ペレットにおける(フェライト粉末/ナイロン-6)の質量比は16.3となった。
 このとき実施例1に係る混練ペレット(2)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 得られた混練ペレット(1)を射出成形機(住友重機製)へ装填し、4.3kOeの磁場中において、温度290℃、成形圧力8.5N/mmで射出成形し、直径15mm×高さ8mmの円柱状(磁場の配向方向は円柱の中心軸に沿う方向)の実施例1に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例1に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
 (2)F.C.92.7質量%・12kOe配向のボンド磁石の製造
 実施例1に係る混練ペレット(2)を使用し、射出成型時の磁場を12kOeとした以外は、同様の操作を行って、実施例1に係る(F.C.92.7質量%・12kOe配向)ボンド磁石(2)を得た。
 このとき、実施例1に係る(F.C.92.7質量%・12kOe配向)ボンド磁石(2)のBr、iHc、BHmaxの値を表3に記載する。
4.)測定方法
 実施例1において製造したフェライト粉末、ペレット、ボンド磁石に係る各種特性の測定方法について説明する。以下、実施例2~8、比較例1~8も同様である。
<粒径分布>
 フェライト粉末の粒径分布は、乾式レーザー回折式粒径分布測定装置(株式会社日本レーザー製、HELOS&RODOS)を用い、focallength=20mm、分散圧5.0bar、吸引圧130mbarの条件にて測定することが出来る。
 また、粒径分布曲線における極大値近傍の3計測点に対して二次関数で近似し、その二次関数の極大値となる粒径をピーク粒径とした。
<比表面積(SSA)>
 フェライト粉末のSSAは、BET法に基づいて、ユアサアイオニクス株式会社製のモノソーブを用いて測定した。
<圧縮密度(CD)>
 フェライト粉末のCDは、内径2.54cmφの円筒形金型にフェライト粉末10gを充填した後、1ton/cmの圧力で圧縮した。このときのフェライト粉末の密度をCDとして測定した。
<圧粉体の保磁力(p-iHc)>
 フェライト粉末のp-iHcは、次の手順により測定した。
(1)フェライト粉末8gとポリエステル樹脂(日本地科学社製P-レジン)0.4ccを乳鉢中で混練する。
(2)混練物7gを内径15mmφの金型に充填し、2ton/cmの圧力で40秒間圧縮した。
(3)成型品を金型より抜取り、150℃で30分間乾燥した後、BHトレーサー(東英工業製TRF-5BH)により測定磁場10kOeで測定した。
<磁気特性>
 フェライト粉末の磁気特性は、VSM(東英工業株式会社製、VSMP-7-15)を用い、フェライト粉末20mgとパラフィン30mgを装置付属のセルに充填し、80℃に過熱してパラフィンを解かした後、室温に冷却することでサンプル粒子をランダムに固定化し、測定磁場10kOeにて測定し、iHc(Oe)を算出した。なお、1Oeは1/4π×10[A/m]である。
<流動性(MFR)>
 混練ペレットのMFRは、メルトフローインデクサー((株)東洋精機製作所製メルトフローインデクサーC-5059D2(JISK-7210準拠))に供し、270℃、荷重10kgで押し出された重量を測定し、これを10分間あたりの押し出し量に換算することで、MFR(単位g/10min)とした。
 尚、本明細書において、MFRとは、以下の(1)乃至(3)の手順で測定した値であるとする。
(1)被測定磁性粉末91.7重量部、シランカップリング剤0.8重量部、滑剤0.8重量部およびナイロン-6(粉末状)6.7重量部をミキサーにてかき混ぜる。
(2)得られた混合物を230℃で混練して、コンパウンドの破砕物である平均径2mmのペレットにする。
(3)前記(2)で得られたペレットをメルトフローインデクサーに供し、270℃荷重10kgで、10分間に押し出された重量を測定し、これをMFR(単位g/10min)とする。
<成形品の磁気特性>
 成形品の磁気特性は、次の手順により評価した。
(1)混練ペレットを、射出成形機(住友重機製)を用い4.3kOeの磁場中にて、温度290℃、成形圧力8.5N/mmで射出成形し、直径15mm×高さ8mmの円柱状の成形品(磁場の配向方向は円柱の中心軸に沿う方向)を得た。
(2)円柱状の成形品の磁気特性を、BHトレーサー(東英工業製TRF-5BH)にて測定磁場10kOeで測定した。
(実施例2)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1180℃とした以外は、実施例1と同様の操作を行って実施例2に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例2に係るフェライト粉末の粒径分布曲線を図1Aに、積算粒径分布曲線を図2Aに、夫々短破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例2に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例2に係る混練ペレット(1)を得た。
 このとき実施例2に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例2に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例2に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例2に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(実施例3)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1217℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明したアニール温度を950℃とした以外は、実施例1と同様の操作を行って実施例3に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例3に係るフェライト粉末の粒径分布曲線を図1Aに、積算粒径分布曲線を図2Aに、夫々長破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例3に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例3に係る混練ペレット(1)を得た。
 このとき実施例3に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例3に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例3に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例3に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(実施例4)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を930℃とした以外は、実施例1と同様の操作を行って実施例4に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例4に係るフェライト粉末の粒径分布曲線を図1Aに、積算粒径分布曲線を図2Aに、夫々2点鎖線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例4に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例4に係る混練ペレット(1)を得た。
 このとき実施例4に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例4に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例4に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例4に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(実施例5)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1180℃とし、「(5)得られた粗粉と微粉とを混合する工程」にて説明した粗粉と微粉との混合比率を、粗粉(67重量部)、微粉(33重量部)とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明したアニール温度を980℃とした以外は、実施例1と同様の操作を行って実施例5に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例5に係るフェライト粉末の粒径分布曲線を図1Bに、積算粒径分布曲線を図2Bに、夫々短破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例5に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例5に係る混練ペレット(1)を得た。
 このとき実施例5に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例5に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例5に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例5に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(実施例6)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を25分間とした以外は、実施例1と同様の操作を行って実施例6に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例6に係るフェライト粉末の粒径分布曲線を図1Bに、積算粒径分布曲線を図2Bに、夫々破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例6に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例6に係る混練ペレット(1)を得た。
 このとき実施例6に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例6に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例6に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例6に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(実施例7)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を21分間とした以外は、実施例1と同様の操作を行って実施例7に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例7に係るフェライト粉末の粒径分布曲線を図1Bに、積算粒径分布曲線を図2Bに、夫々長破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例7に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例7に係る混練ペレット(1)を得た。
 このとき実施例7に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例7に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例7に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例7に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(実施例8)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1217℃とし、「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1000℃とし、「(5)得られた粗粉と微粉とを混合する工程」にて説明した粗粉と微粉との混合比率を、粗粉(74重量部)、微粉(26重量部)とした以外は、実施例1と同様の操作を行って実施例8に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた実施例8に係るフェライト粉末の粒径分布曲線を図1Bに、積算粒径分布曲線を図2Bに、夫々中破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 実施例8に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、実施例8に係る混練ペレット(1)を得た。
 このとき実施例8に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 実施例8に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、実施例8に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、実施例8に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(比較例1)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1235℃とし、「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1070℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を14分間とし、アニール温度を910℃とした以外は、実施例1と同様の操作を行って比較例1に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例1に係るフェライト粉末の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々実線で示すが、粒径分布曲線が2山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、2山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例1に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例1に係る混練ペレット(1)を得た。
 このとき比較例1に係る混練ペレット(1)のMFRの値を表3に記載する。
 (2)F.C.92.7質量%のペレットの製造
 比較例1に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(2)と同様の操作を行って、比較例1に係る混練ペレット(2)を得た。
 このとき比較例1に係る混練ペレット(2)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例1に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例1に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例1に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(比較例2)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1235℃とし、「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1070℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した、得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を14分間とし、アニール温度を940℃とした以外は、実施例1と同様の操作を行って比較例2に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例2に係るフェライト粉末の粒径分布の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々破線で示すが、粒径分布曲線が2山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、2山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例2に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例2に係る混練ペレット(1)を得た。
 このとき比較例2に係る混練ペレット(1)のMFRの値を表3に記載する。
 (2)F.C.92.7質量%のペレットの製造
 比較例2に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(2)と同様の操作を行って、比較例2に係る混練ペレット(2)を得た。
 このとき比較例2に係る混練ペレット(2)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例2に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例2に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例2に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(比較例3)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1280℃とし、「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1070℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を14分間とし、アニール温度を965℃とした以外は、実施例1と同様の操作を行って比較例3に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例3に係るフェライト粉末の粒径分布の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々短破線で示すが、粒径分布曲線が2山のピークを持っていることが確認できた。また当該フェライト粉末の平均粒径、2山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例3に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例3に係る混練ペレット(1)を得た。
 このとき比較例3に係る混練ペレット(1)のMFRの値を表3に記載する。
 (2)F.C.92.7質量%のペレットの製造
 比較例3に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(2)と同様の操作を行って、比較例3に係る混練ペレット(2)を得た。
 このとき比較例3に係る混練ペレット(2)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例3に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例3に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例3に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
 (2)F.C.92.7質量%・12kOe配向のボンド磁石の製造
 比較例3に係る混練ペレット(2)を使用した以外は、実施例1と同様の操作を行って、比較例3に係る(F.C.92.7質量%・12kOe配向)ボンド磁石(3)を得た。
 このとき、比較例3に係る(F.C.92.7質量%・12kOe配向)ボンド磁石(3)のBr、iHc、BHmaxの値を表3に記載する。
(比較例4)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1030℃とし、「(5)得られた粗粉と微粉とを混合する工程」にて説明した粗粉と微粉との混合比率を、粗粉(90重量部)、微粉(10重量部)とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を14分間とした以外は、実施例1と同様の操作を行って比較例4に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例4に係るフェライト粉末の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々1点鎖線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例4に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例4に係る混練ペレット(1)を得た。
 このとき比較例4に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例4に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例4に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例4に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(比較例5)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1100℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を14分間とした以外は、実施例1と同様の操作を行って比較例5に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例5に係るフェライト粉末の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々2点鎖線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例5に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例5に係る混練ペレット(1)を得た。
 このとき比較例5に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例5に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例5に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例5に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(比較例6)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1100℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を14分間とし、アニール温度を1010℃とした以外は、実施例1と同様の操作を行って比較例6に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例6に係るフェライト粉末の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々短1点鎖線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例6に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例6に係る混練ペレット(1)を得た。
 このとき比較例6に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例6に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例6に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例6に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(比較例7)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(2)得られた第1の造粒物を第1の温度で焼成して、焼成物の粗粉を得る工程」にて説明した粗粉の焼成温度を1150℃とし、「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1100℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を21分間とした以外は、実施例1と同様の操作を行って比較例7に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例7に係るフェライト粉末の粒径分布曲線を図1Cに、積算粒径分布曲線を図2Cに、夫々短2点鎖線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例7に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例7に係る混練ペレット(1)を得た。
 このとき比較例7に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例7に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例7に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例7に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。 
(比較例8)
1.)混合粉(フェライト粉末)の製造
 実施例1の「(4)得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程」にて説明したロータリーキルン中における焼成温度を1100℃とし、「(6)粗粉と微粉との混合粉へ機械的粉砕力を加え、アニールする工程」にて説明した得られた乾燥ケーキへの振動ボールミルによる粉砕処理時間を21分間とした以外は、実施例1と同様の操作を行って比較例8に係るフェライト粉末を得た。
 上述した製造条件を表1に記載する。
 得られた比較例8に係るフェライト粉末の粒径分布曲線を図1(C)に、積算粒径分布曲線を図2(C)に、夫々長破線で示すが、粒径分布曲線が1山のピークを持っていることが確認できた。当該フェライト粉末の平均粒径、1山のピーク粒径、SSA、CD、p-iHc、p-Brの値を表2に記載する。
2.)コンパウンドの製造
 (1)F.C.91.7質量%のペレットの製造
 比較例7に係るフェライト粉末を用いた以外は、実施例1に係る混練ペレット(1)と同様の操作を行って、比較例7に係る混練ペレット(1)を得た。
 このとき比較例8に係る混練ペレット(1)のMFRの値を表3に記載する。
3.)コンパウンドの成形およびボンド磁石の製造
 (1)F.C.91.7質量%・4.3kOe配向のボンド磁石の製造
 比較例8に係る混練ペレット(1)を使用した以外は、実施例1と同様の操作を行って、比較例8に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)を得た。
 このとき、比較例8に係る(F.C.91.7質量%・4.3kOe配向)ボンド磁石(1)のBr、iHc、BHmaxの値を表3に記載する。
(まとめ)
 フェライト粉の焼成温度を制御して焼成物の粗粉や微粉の粒径を小さくし、かつ、粗粉と微粉との混合粉へ機械的粉砕力を長時間加えて分散性を高めた実施例1~8に係るボンド磁石用フェライト粉末は、SSAが2.37~2.97m/g、CDが3.36~3.45g/cm、p-iHcが3370~3700Oeの値を有していた。
 この結果、実施例1~8に係るボンド磁石用フェライト粉末と樹脂との混合物(F.C.91.7質量%)を混錬したコンパウンドを、成形してボンド磁石を作成した場合であっても、iHcは3610~3753Oeを示すフェライト系ボンド磁石を容易に製造することが出来た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 

Claims (7)

  1.  比表面積が2.20m/g以上3.20m/g未満であり、
     圧縮密度が3.30g/cm以上3.60g/cm未満であり、
     圧粉体の保磁力が3250Oe以上3800Oe未満である、ボンド磁石用フェライト粉末。
  2.  前記ボンド磁石用フェライト粉末とナイロン樹脂粉末とを混錬して、F.C.91.7質量%であるコンパウンドとしたとき、当該コンパウンドのMFRが50g/10min以上である、請求項1に記載のボンド磁石用フェライト粉末。
  3.  前記ボンド磁石用フェライト粉末とナイロン樹脂粉末とを混錬して、F.C.91.7質量%であるコンパウンドとし、当該コンパウンドを成形してボンド磁石としたとき、当該ボンド磁石のinj-iHcが3600Oe以上である、請求項1または2に記載のボンド磁石用フェライト粉末。
  4.  前記ボンド磁石用フェライト粉末とナイロン樹脂粉末とを混錬して、F.C.91.7質量%であるコンパウンドとし、当該コンパウンドを4.3kOeの磁場中にて成形してボンド磁石としたとき、当該ボンド磁石のBrが2800G以上である、請求項1から3のいずれかに記載のボンド磁石用フェライト粉末。
  5.  請求項1から4のいずれかに記載のボンド磁石用フェライト粉末を、成形して製造されたフェライト系ボンド磁石。
  6.  請求項1から4のいずれかに記載のボンド磁石用フェライト粉末を含むフェライト系ボンド磁石。
  7.  酸化鉄を含む複数のフェライト原料を造粒し、第1の造粒物を得る工程と、
     得られた第1の造粒物を、第1の温度で焼成して、焼成物の粗粉を得る工程と、
     酸化鉄を含む複数のフェライト原料を造粒し、第2の造粒物を得る工程と、
     得られた第2の造粒物を、前記第1の温度より低温である第2の温度で焼成して、焼成物の微粉を得る工程と、
     得られた粗粉と微粉とを混合して混合粉を得る工程と、
     得られた混合粉へ、機械的粉砕力を加えて混合粉砕物を得、得られた混合粉砕物をアニールする工程と、を有するボンド磁石用フェライト粉末の製造方法であって、
     前記第1の温度が1180℃以上1220℃未満であり、
     前記第2の温度が900℃以上1000℃以下であり、
     前記粗粉と微粉との混合比率を〔粗粉の質量/(粗粉+微粉)の質量〕×100%で表記したとき、65質量%以上75質量%未満である、ボンド磁石用フェライト粉末の製造方法。
     但し、前記機械的粉砕力とは、容量2~4L、動力0.3~0.5kWの振動ボールミルに、媒体として径8~14mmのスチール製ボールを装填し、回転数1700~1900rpm、振幅7~9mm、処理時間20~100分間である粉砕処理による粉砕力、または、それと同等の粉砕力である。
     
PCT/JP2015/077876 2014-09-30 2015-09-30 ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石 WO2016052678A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580048052.9A CN106688056B (zh) 2014-09-30 2015-09-30 粘结磁体用铁氧体粉末及其制造方法以及铁氧体系粘结磁体
KR1020177011258A KR102117580B1 (ko) 2014-09-30 2015-09-30 본드 자석용 페라이트 분말과 이의 제조 방법, 및 페라이트계 본드 자석
EP15845995.8A EP3203484A4 (en) 2014-09-30 2015-09-30 Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
US15/515,902 US10665371B2 (en) 2014-09-30 2015-09-30 Ferrite powder for bonded magnets, method for producing the same and ferrite bonded magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-202602 2014-09-30
JP2014202602 2014-09-30
JP2015193725A JP6482445B2 (ja) 2014-09-30 2015-09-30 ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
JP2015-193725 2015-09-30

Publications (1)

Publication Number Publication Date
WO2016052678A1 true WO2016052678A1 (ja) 2016-04-07

Family

ID=55630699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077876 WO2016052678A1 (ja) 2014-09-30 2015-09-30 ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石

Country Status (1)

Country Link
WO (1) WO2016052678A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327669A (ja) * 2003-04-24 2004-11-18 Dowa Mining Co Ltd ボンド磁石およびボンド磁石用フェライト磁性粉

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327669A (ja) * 2003-04-24 2004-11-18 Dowa Mining Co Ltd ボンド磁石およびボンド磁石用フェライト磁性粉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203484A4 *

Similar Documents

Publication Publication Date Title
JP5651368B2 (ja) ボンド磁石用フェライト粉末の製造方法
JP6947490B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP5578777B2 (ja) ボンド磁石用フェライト粉末およびその製造方法、並びに、これを用いたボンド磁石
JP6482445B2 (ja) ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
JP4806798B2 (ja) ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石
JP6482443B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP6797735B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP6482444B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP7082033B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
WO2016052681A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2016052678A1 (ja) ボンド磁石用フェライト粉末とその製造方法、並びにフェライト系ボンド磁石
WO2016136701A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP5774146B2 (ja) ボンド磁石用フェライト粉末およびこれを用いたボンド磁石
WO2016052677A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
JP5005595B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP2023041550A (ja) ボンド磁石用六方晶フェライト磁性粉とその製造方法、およびボンド磁石とその製造方法
JP2022156380A (ja) ボンド磁石用六方晶フェライト磁性粉およびその製造方法、ならびにボンド磁石およびその製造方法
JP2005286157A (ja) 酸化物磁石用磁性粉末及び酸化物焼結磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845995

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015845995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845995

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515902

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177011258

Country of ref document: KR

Kind code of ref document: A