WO2010114056A1 - 透明導電性積層体及び透明タッチパネル - Google Patents

透明導電性積層体及び透明タッチパネル Download PDF

Info

Publication number
WO2010114056A1
WO2010114056A1 PCT/JP2010/055926 JP2010055926W WO2010114056A1 WO 2010114056 A1 WO2010114056 A1 WO 2010114056A1 JP 2010055926 W JP2010055926 W JP 2010055926W WO 2010114056 A1 WO2010114056 A1 WO 2010114056A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
transparent
conductive laminate
cured resin
Prior art date
Application number
PCT/JP2010/055926
Other languages
English (en)
French (fr)
Inventor
伊藤 晴彦
池田 幸紀
Original Assignee
帝人株式会社
帝人化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社, 帝人化成株式会社 filed Critical 帝人株式会社
Priority to US13/260,046 priority Critical patent/US10042481B2/en
Priority to CN201080006162.6A priority patent/CN102438822B/zh
Priority to JP2011507271A priority patent/JP5005112B2/ja
Priority to EP10758827.9A priority patent/EP2415591A4/en
Publication of WO2010114056A1 publication Critical patent/WO2010114056A1/ja
Priority to HK12109835.6A priority patent/HK1169354A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • Y10T428/24909Free metal or mineral containing

Definitions

  • the present invention relates to a transparent conductive laminate for an electrode substrate of a transparent touch panel.
  • the present invention also relates to a transparent touch panel having such a transparent conductive laminate.
  • the transparent touch panel includes an optical method, an ultrasonic method, a capacitance method, a resistance film method, and the like depending on the position detection method.
  • These transparent touch panels use a transparent conductive laminate in which a transparent conductive layer or the like is laminated on at least one surface of a transparent organic polymer substrate.
  • the transparent organic polymer substrate usually, a cellulose film such as triacetyl cellulose (TAC), a polyester film such as a polyethylene terephthalate (PET) film, a polycarbonate film, an amorphous polyolefin film, etc.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • An organic polymer substrate having high transparency is used.
  • a resin layer called a hard coat layer is coated on the surface of the transparent organic polymer substrate.
  • This hard coat layer is known not only to protect the surface of the transparent organic polymer substrate, but also to fill and planarize fine scratches existing on the surface of the transparent organic polymer substrate. ing.
  • this hard coat layer it is known that by adjusting the refractive index of the hard coat layer to the refractive index of the transparent organic polymer substrate, interference spots due to reflection at the interface between the hard coat layer and the transparent organic polymer substrate are suppressed. (Patent Document 1).
  • a transparent metal oxide layer such as ITO (indium tin oxide) is generally used.
  • ITO indium tin oxide
  • the transmitted light may be colored in a slightly brownish color. Such coloring results in a change in the hue of the display display screen and is therefore not preferred.
  • an optical interference layer is inserted between the transparent conductive layer and the transparent organic polymer substrate, and reflection by the transparent conductive layer is suppressed by an interference effect (patent) Literature 2 etc.).
  • a resistive touch panel is an electronic component configured by holding two transparent substrates having a transparent conductive layer on opposite sides at a predetermined interval, and a movable electrode substrate (viewing side electrode substrate) is a pen or A detection circuit detects a position by pressing and bending with a finger, making contact with and continuity with a fixed electrode substrate (an electrode substrate on the opposite side), and a predetermined input is made.
  • the electrostatic capacitance method is considered to be a promising technology in the future because it can detect multiple points.
  • the electrostatic capacity type transparent touch panel detects a position based on a change in electrostatic capacity between a transparent conductive layer provided with a pattern and a finger or the like, and performs a predetermined input.
  • a so-called analog touch panel to which no pattern is applied is generally used as a single-point detection method.
  • a type with a pattern is provided. Things have also been developed.
  • the transmittance and color tone of the display light differ between the part with and without the transparent conductive layer.
  • the pattern of the transparent conductive layer is visually recognized and it becomes difficult to see the display light (hereinafter referred to as “bone appearance”).
  • Patent Document 7 a relatively thin transparent conductive layer is used (Patent Document 7), and the refractive index of these layers is intermediate between the transparent conductive layer and the hard coat layer below the transparent conductive layer. It is known to provide a layer having a refractive index of (Patent Document 8).
  • the transparent organic polymer substrate for the transparent conductive laminate is not slippery when handled as it is, an easy-slip layer with irregularities on the surface is introduced to improve the slipperiness. Is common. However, when unevenness is formed on the surface to improve the slipperiness, light is irregularly reflected on the surface, resulting in a decrease in transparency and an increase in haze. For this reason, it is very important to provide an organic polymer substrate having excellent slipperiness while maintaining high transparency and small haze.
  • fine particles having a particle size of about submicron for example, inorganic particles such as silica, calcium carbonate, kaolin, and / or silicone, crosslinked polystyrene, etc. It is known that organic particles are contained in a resin, and an easy-sliding layer is formed from a resin containing such fine particles (Patent Documents 3 and 4).
  • a protrusion on the transparent conductive layer forming surface of the electrode substrate is formed when a writing durability test is performed. Particles may fall off and scatter in the touch panel. The fine particles scattered in this way may prevent conduction between the movable electrode substrate and the fixed electrode substrate, and may deteriorate the electrical characteristics of the touch panel. Furthermore, these scattered fine particles may damage the transparent conductive layers of the movable electrode substrate and the fixed electrode substrate, thereby deteriorating the electrical characteristics of the touch panel.
  • a transparent base film as a transparent organic polymer substrate has an uneven surface formed of a resin containing ultrafine particles having an average particle diameter of 1 to 30 nm. It has been proposed to form an anchor layer and provide a transparent conductive layer thereon to obtain a transparent conductive film.
  • the anchor layer having an uneven surface is disposed on the transparent base film, thereby preventing sticking caused by sticking between films in the resistive touch panel.
  • a relatively large amount of ultrafine particles are contained in the anchor layer so that the anchor layer has an uneven surface by ultrafine particles having an average particle diameter of 1 to 30 nm, and therefore the anchor layer is relatively large. It is understood to have a haze value.
  • An object of the present invention is to provide a transparent conductive laminate suitable for use in combination with a display element such as a liquid crystal display (LCD) or an organic EL display. Moreover, the objective of this invention is providing the transparent touch panel which has such a transparent conductive laminated body.
  • a display element such as a liquid crystal display (LCD) or an organic EL display.
  • a transparent layer is formed by sequentially laminating a hard coat layer, an optical interference layer, and a transparent conductive layer on at least one surface of a transparent organic polymer substrate.
  • a transparent conductive laminate a transparent conductive laminate suitable for use in combination with a display element is obtained by reducing the difference between the refractive index of the transparent organic polymer substrate and the refractive index n of the hard coat layer.
  • a hard coat layer, an optical interference layer, and a transparent conductive layer are sequentially laminated on at least one surface of the transparent organic polymer substrate, and satisfy the following (Aa) to (Af) Transparent conductive laminate:
  • the hard coat layer has a thickness of 1 ⁇ m or more and 10 ⁇ m or less;
  • the optical interference layer has a thickness of 5 nm to 500 nm;
  • the thickness of the transparent conductive layer is 5 nm or more and 200 nm or less;
  • ⁇ A2> Furthermore, regarding (Ag) the reflection spectrum when light having a wavelength of 450 nm to 700 nm is projected from the transparent conductive layer side of the transparent conductive laminate, the reflection spectrum of the transparent conductive laminate and The transparent conductive laminate according to ⁇ A1>, wherein the difference spectrum from the reflection spectrum when the transparent conductive layer is removed from the transparent conductive laminate satisfies the following (A-g1) and (Ag2): body: (A-g1) The maximum absolute value of the difference spectrum is 3.0% or less, and (A-g2) the integrated value of the difference spectrum is ⁇ 200 nm ⁇ % or more and 200 nm ⁇ % or less.
  • the transparent conductive layer is disposed only on a part of the optical interference layer to form a pattern, according to ⁇ A1> or ⁇ A2> above Transparent conductive laminate.
  • ⁇ A4> The transparent conductive laminate according to any one of ⁇ A1> to ⁇ A3>, wherein (Ai) the optical interference layer is laminated directly on the hard coat layer.
  • ⁇ A5> The transparent conductive laminate according to any one of ⁇ A1> to ⁇ A4>, wherein the optical interference layer contains a cured resin component and first ultrafine particles having an average primary particle diameter of 100 nm or less.
  • the optical interference layer includes a resin component and first ultrafine particles having an average primary particle size of 1 nm to 100 nm, (Aq) the resin component and the first ultrafine particles contain the same metal and / or metalloid element, and (Ar) the same metal and / or semimetal as the resin component in the optical interference layer.
  • Content of the said 1st ultrafine particle containing a metal element is 0.01 mass part or more and 3 mass parts or less with respect to 100 mass parts of said resin components.
  • ⁇ A7> The transparent conductive laminate according to ⁇ A6>, wherein the transparent conductive layer has 10 or more and 300 or less protrusions having a height of 30 nm or more and 200 nm or less per 50 ⁇ m square.
  • ⁇ A8> The transparent conductive laminate according to ⁇ A6> or ⁇ A7>, wherein the transparent conductive layer has a surface roughness Ra of 20 nm or less.
  • ⁇ A9> The transparent conductive laminate according to any one of ⁇ A6> to ⁇ A8>, wherein the haze is 2% or less.
  • the metal and / or metalloid element is one or more elements selected from the group consisting of Al, Bi, Ca, Hf, In, Mg, Sb, Si, Sn, Ti, Y, Zn, and Zr
  • the transparent conductive laminate according to any one of ⁇ A6> to ⁇ A9>, wherein ⁇ A11> In a transparent touch panel in which two transparent electrode substrates each provided with a transparent conductive layer on at least one side are arranged so that the transparent conductive layers face each other, the above-described ⁇ A1 as at least one transparent electrode substrate
  • a resistive film type transparent touch panel comprising the transparent conductive laminate according to any one of ⁇ 1> to ⁇ A10>.
  • ⁇ A12> The transparent conductive laminate according to any one of ⁇ A1> to ⁇ A10>, wherein the transparent conductive layer is disposed only on a part of the optical interference layer to form a pattern.
  • ⁇ A13> The transparent touch panel according to ⁇ A11> or ⁇ A12>, in which a polarizing plate is laminated on the transparent conductive laminate directly or via another substrate on the observation side of the transparent touch panel.
  • the present inventors have found that a transparent conductive layer in which a cured resin layer and a transparent conductive layer are sequentially laminated on at least one surface of a transparent organic polymer substrate.
  • the laminate when the reflection spectrum when light is projected from the transparent conductive layer side satisfies a specific condition, the pattern of the transparent conductive layer is visually recognized on the transparent touch panel, which makes it difficult to see the display light.
  • the inventors found that the appearance can be suppressed, and arrived at the second present invention ⁇ B1> to ⁇ B14> below.
  • ⁇ B1> A transparent conductive laminate in which a cured resin layer and a transparent conductive layer are sequentially laminated on at least one surface of a transparent organic polymer substrate, Regarding the reflection spectrum when light having a wavelength of 450 nm to 700 nm is projected from the transparent conductive layer side of the transparent conductive laminate, the reflection spectrum in the transparent conductive laminate and the transparent conductive laminate from the transparent conductive laminate are transparent.
  • Transparent conductive laminate in which the difference spectrum from the reflection spectrum when the layer is removed satisfies the following (Ba1) and (Ba2): (B-a1)
  • the maximum absolute value of the difference spectrum is 3.0% or less
  • (B-a2) the integrated value of the difference spectrum is ⁇ 200 nm ⁇ % or more and 200 nm ⁇ % or less.
  • the refractive index of the transparent organic polymer substrate is n 3
  • the thickness and refractive index of the cured resin layer are d 2 (nm) and n 2 , respectively
  • the thickness and refractive index of the transparent conductive layer are respectively
  • the cured resin layer includes a resin component and first ultrafine particles having an average primary particle size of 1 nm to 100 nm, (Bd) the resin component and the first ultrafine particles contain the same metal and / or metalloid element, (Be) In the cured resin layer, the content of the first ultrafine particles is 0.01 to 3 parts by mass with respect to 100 parts by mass of the resin component, and (Bf) The thickness of the cured resin layer is 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • ⁇ B4> (Bg) The transparent resin layer according to ⁇ B3>, wherein the cured resin layer further includes second ultrafine particles having an average primary particle size of 1 nm to 100 nm and a refractive index larger than that of the resin component.
  • Conductive laminate. ⁇ B5> When the cured resin layer contains the second ultrafine particles, the cured resin layer has a refractive index of 0.01 compared to the case where the cured resin layer does not contain the second ultrafine particles.
  • the transparent conductive laminate according to ⁇ B4> which has been increased as described above.
  • ⁇ B6> The transparent conductive layer according to any one of ⁇ B3> to ⁇ B5>, wherein the transparent conductive layer has 10 or more and 300 or less protrusions having a height of 30 nm or more and 200 nm or less per 50 ⁇ m square. Laminated body.
  • ⁇ B7> The transparent conductive laminate according to any one of ⁇ B3> to ⁇ B6>, wherein the transparent conductive layer has a surface roughness Ra of 20 nm or less.
  • ⁇ B8> The transparent conductive laminate according to any one of ⁇ B1> to ⁇ B7>, wherein the total light transmittance is 85% or more and the haze is 2% or less.
  • the metal and / or metalloid element is one or more elements selected from the group consisting of Al, Bi, Ca, Hf, In, Mg, Sb, Si, Sn, Ti, Y, Zn, and Zr
  • the transparent conductive laminate according to any one of ⁇ B3> to ⁇ B8> above, wherein ⁇ B10> The transparent conductive laminate according to any one of ⁇ B1> to ⁇ B9>, including an additional cured resin layer between the transparent organic polymer substrate and the cured resin layer.
  • ⁇ B11> The transparent conductive laminate according to ⁇ B10>, wherein the additional cured resin layer has a surface roughness Ra of 20 nm or more and less than 500 nm.
  • ⁇ B12> An adhesive layer is provided between the transparent conductive layer and the cured resin layer, and the adhesive layer, the resin component of the cured resin layer, and the ultrafine particles of the cured resin layer are all the same metal and / or
  • ⁇ B13> In a capacitive transparent touch panel in which at least one transparent electrode substrate provided with a transparent conductive layer on at least one surface is disposed, at least one of the above-mentioned ⁇ B1> to ⁇ B10>, and A transparent touch panel using the transparent conductive laminate according to any one of ⁇ B12>.
  • ⁇ B14> In a transparent touch panel of resistive film type, in which at least one transparent electrode substrate having a transparent conductive layer provided on at least one side is disposed so that the transparent conductive layers face each other, at least one transparent electrode A transparent touch panel, wherein the transparent conductive laminate according to any one of the items ⁇ B1> to ⁇ B12> is used as a substrate.
  • ⁇ B15> The transparent touch panel according to ⁇ B13> or ⁇ B14>, in which a polarizing plate is laminated on the transparent conductive laminate directly or via another substrate on the observation side of the transparent touch panel.
  • a transparent conductive laminate suitable for use in combination with a display element is provided.
  • the transparent touch panel using such a transparent conductive laminated body, especially the transparent touch panel of a resistance film system or an electrostatic capacitance system is provided.
  • the transparent conductive laminate of the first invention comprises a hard coat layer, an optical interference layer, and a transparent conductive layer sequentially laminated on at least one surface of a transparent organic polymer substrate.
  • the color tone suitable for use in combination with the display element can be obtained.
  • the transparent conductive laminate of the second aspect of the present invention is a transparent touch panel using the transparent conductive laminate, and the problem that the pattern of the transparent conductive layer is visually recognized and the display light becomes difficult to see, that is, the appearance of bone Can be suppressed.
  • a resin layer called a hard coat layer is provided on the surface of a transparent organic polymer substrate. That is, as shown in FIG. 3, the hard coat layer 33h and the transparent conductive layer 31 are sequentially stacked on at least one surface of the transparent organic polymer substrate 33 to provide a transparent conductive laminate 30a. Has been done.
  • the hard coat layer 33h may cause interference spots due to interference between the reflection 33R on the surface of the transparent organic polymer substrate 33 and the reflection 31R on the surface of the transparent conductive layer 31.
  • the effect of this interference is, for example, as shown in FIG.
  • an optical interference layer may be inserted between the transparent conductive layer and the transparent organic polymer substrate in order to achieve suppression of reflection and transmission light coloring by the transparent conductive layer.
  • an optical interference layer is further used to suppress coloring of reflected and transmitted light by the transparent conductive layer, at least one surface of the transparent organic polymer substrate 33 as shown in FIG. It is conceivable to provide the transparent conductive laminate 30b by sequentially laminating the hard coat layer 33h, the optical interference layer 32, and the transparent conductive layer 31 thereon.
  • reflection can be suppressed by the optical interference layer, thereby increasing the transmittance as a whole.
  • the optical interference layer is designed so as to increase the transmittance of light having a wavelength of about 470 nm in order to suppress the coloring of the transmitted light by the transparent conductive layer and to obtain a preferable color tone. .
  • the transparent conductive laminate of the first aspect of the present invention as shown in FIG. 1, the hard coat layer 33h, the optical interference layer 32, and the transparent layer are formed on at least one surface of the transparent organic polymer substrate 33.
  • the conductive layer 31 is sequentially laminated, and the difference between the refractive index of the hard coat layer 33h and the refractive index of the transparent organic polymer substrate 33 is sufficiently small, so that the interface between the hard coat layer and the transparent organic polymer substrate is Reflection is suppressed.
  • the transparent conductive laminate of the present invention the adjustment of the color tone of transmitted light and the improvement of the transmittance can be achieved by the optical interference layer.
  • the interference effect of the transparent conductive laminate of the first present invention is shown in FIG.
  • the transparent conductive laminate of the first invention has a hard coat layer, particularly a cured resin hard coat layer, on at least one surface of the transparent organic polymer substrate.
  • the thickness of the hard coat layer is 1 ⁇ m or more and 10 ⁇ m or less, and may be 1 ⁇ m or more and 5 ⁇ m or less, or 1 ⁇ m or more and 3 ⁇ m or less.
  • the refractive index n 3h of the hard coat layer satisfies the following formula with respect to the refractive index n 3 of the transparent organic polymer substrate:
  • the wavelength of the refractive index satisfies the above formula at 550 nm. Further, it is preferable that the above formula is satisfied in the wavelength range of 500 nm to 600 nm. In particular, it is preferable that the above formula is satisfied in the range of 400 nm to 700 nm.
  • the hard coat layer satisfies the above conditions, thereby suppressing reflection at the interface between the hard coat layer and the transparent organic polymer substrate, thereby adjusting the color tone of transmitted light by the optical interference layer and An increase in transmittance can be achieved.
  • the hard coat layer can be formed of a material, particularly a thermosetting resin or an active energy ray curable resin, as long as the above conditions are satisfied.
  • a material particularly a thermosetting resin or an active energy ray curable resin, as long as the above conditions are satisfied.
  • an ultraviolet curable resin using ultraviolet rays for active energy rays is preferable because it is excellent in productivity and economy.
  • Examples of the ultraviolet curable resin for the hard coat layer include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, and tripropylene glycol.
  • Diacrylate neopentyl glycol diacrylate, 1,4-butanediol dimethacrylate, poly (butanediol) diacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, triethylene glycol diacrylate, triisopropylene Diacrylates such as glycol diacrylate, polyethylene glycol diacrylate and bisphenol A dimethacrylate; Triacrylates such as tyrolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate; tetraacrylates such as pentaerythritol tetraacrylate and di-trimethylolpropane tetraacrylate; and Mention may be made of pentaacrylates such as dipentaerythritol (monohydroxy) pentaacrylate.
  • a polyfunctional acrylate having 5 or more functional groups can also be used. These polyfunctional acrylates may be used alone or in combination of two or more. Further, these acrylates are used by adding one or more of third components such as photoinitiators, photosensitizers, leveling agents, fine particles composed of metal oxides and acrylic components, and ultrafine particles. be able to.
  • the cured resin component contained in the hard coat layer may be obtained using a compound as disclosed in Patent Document 1.
  • the cured resin component contained in the hard coat layer may be formed by curing a coating composition containing a monomer having a fluorene skeleton in the molecular structure by irradiation with active energy and / or heat.
  • the monomer having a fluorene skeleton is a compound represented by the following formula (b), and the hard coat layer may be cured by irradiation with active energy rays:
  • R 1 to R 2 are each independently a divalent hydrocarbon group having 2 to 6 carbon atoms
  • R 3 to R 10 are each independently a hydrogen atom, a halogen atom, and a carbon atom. At least one group selected from the group consisting of monovalent hydrocarbon groups of 1 to 6).
  • the optical interference layer used in the transparent conductive laminate of the first aspect of the present invention obtains optical interference by reflection at the interface between the underlying layer, particularly the hard coat layer, and thereby the transparent conductive laminate
  • the body can be selected to obtain the desired total light transmittance and the chromaticness index b * value of the L * a * b * color system.
  • the thickness of this optical interference layer is 5 nm to 500 nm, in particular 5 to 300 nm, more particularly 5 to 200 nm, and even more particularly 5 to 100 nm.
  • the optical interference layer is a resin-based optical interference layer made of a resin.
  • the refractive index difference between the optical interference layer and the underlying layer is preferably 0. .05 or more, more preferably 0.10 or more, and even more preferably 0.15 or more.
  • the optical interference layer is particularly directly laminated on the hard coat layer.
  • optical interference layer-optical path length As described above, reflection at the interface between the optical interference layer and the hard coat layer can be used to obtain an interference effect that cancels reflection and coloring by the transparent conductive layer.
  • the phase is shifted by half a wavelength in both reflection on the surface of the transparent conductive layer and reflection on the surface of the hard coat layer. Therefore, for light entering from the transparent conductive layer side, the optical path difference between the reflection on the surface of the transparent conductive layer and the reflection on the surface of the hard coat layer is about n + 1/2 of the wavelength of the light intended to be canceled by interference. It is preferably a double (n is 0 or a positive integer).
  • the optical path length of the path reflected on the surface of the hard coat layer is 470 nm ⁇ (n + 1/2) ⁇ 70 nm to 470 nm ⁇
  • the optical path difference in the path reflected on the surface of the hard coat layer is 550 nm ⁇ (n + 1/2) -80 nm to 550 nm.
  • ⁇ (n + 1/2) +80 nm positive range especially 550 nm ⁇ (n + 1/2) ⁇ 50 nm to 550 nm ⁇ (n + 1/2) +50 nm positive range, more particularly 550 nm ⁇ (n + 1/2) ⁇ 20 nm to 550 nm ⁇
  • the positive range can be (n + 1/2) +20 nm.
  • the optical path difference between the reflection on the surface of the transparent conductive layer and the reflection on the surface of the hard coat layer is about n times the wavelength of the light intended to be canceled by interference ( n is preferably 0 or a positive integer).
  • the optical path difference in the path reflected on the surface of the optical interference layer is 470 nm ⁇ n ⁇ 70 nm to 470 nm ⁇ n + 70 nm.
  • the optical path difference in the path reflected on the surface of the optical interference layer is a positive value of 550 nm ⁇ n ⁇ 80 nm to 550 nm ⁇ n + 80 nm.
  • a positive range of 550 nm ⁇ n ⁇ 50 nm to 550 nm ⁇ n + 50 nm more particularly a positive range of 550 nm ⁇ n ⁇ 20 nm to 550 nm ⁇ n + 20 nm.
  • the color tone of a transparent conductive laminated body can be adjusted.
  • the chromaticness index b * value of the L * a * b * color system is adjusted by canceling the reflection of light (blue light) having a wavelength of about 470 nm by the interference effect,
  • permeability of a transparent conductive laminated body can be improved by negating reflection of the light of the wavelength of about 550 nm which is the center wavelength of visible light by an interference effect.
  • the b * value is the chromaticness index b * value of the L * a * b * color system defined by JIS Z8729, and is measured in the transmission mode according to JIS Z8722. Value.
  • standard light D65 defined in Japanese Industrial Standard Z8720 is adopted as the light source, and the measurement is performed under the condition of a two-degree field of view.
  • the conventional transparent conductive laminate 30 b includes a hard coat layer 33 h (thickness) on at least one surface of the transparent organic polymer substrate 33 (thickness: d 3 , refractive index: n 3 ).
  • the reflectance R 1 of the reflection 31R on the surface of the transparent conductive layer 31, the reflectance R 2 of the reflection 32R on the surface of the optical interference layer 32, the reflectance R 3h of the reflection 33hR on the surface of the hard coat layer 33h, and transparent organic each reflectance R 3 of the reflection 33R on the surface of the polymer substrate 33 can be calculated generally by the following formula (n 0: refractive index of air).
  • R 1 (n 0 ⁇ n 1 ) 2 / (n 0 + n 1 ) 2 (Formula 1)
  • R 2 (n 1 ⁇ n 2 ) 2 / (n 1 + n 2 ) 2
  • R 3h (n 2 ⁇ n 3h ) 2 / (n 2 + n 3h ) 2
  • R 3 (n 3h ⁇ n 3 ) 2 / (n 3h + n 3 ) 2 (Formula 3)
  • optical path difference D 33hR-31R between the reflection 31R on the surface of the transparent conductive layer 31 and the reflection 33hR on the surface of the hard coat layer 33h, and the reflection 31R on the surface of the transparent conductive layer 31 and the transparent organic polymer substrate 33
  • the optical path difference D 33R-31R with respect to the reflection 33R at the surface can be calculated by the following formulas.
  • D 33hR-31R (d 1 ⁇ n 1 + d 2 ⁇ n 2 ) ⁇ 2 (Formula 4)
  • D 33R ⁇ 31R (d 1 ⁇ n 1 + d 2 ⁇ n 2 + d 3h ⁇ n 3h ) ⁇ 2 (Formula 5)
  • the transparent conductive laminate of the first invention can be used as a transparent electrode substrate in a transparent touch panel.
  • the transparent conductive laminate of the present invention is a resistive film type transparent touch panel in which at least one transparent electrode substrate provided with a transparent conductive layer on one side is arranged so that the transparent conductive layers face each other.
  • one embodiment of the transparent conductive laminate of the first aspect of the present invention has an optical interference layer (15) and a transparent conductive layer on at least one surface of a transparent organic polymer substrate (16).
  • the transparent conductive laminate (14, 15, 16) of the present invention is a glass plate having a transparent conductive layer (12).
  • the substrate (11) and the transparent conductive layers (12, 14) are arranged so as to face each other, and a spacer (13) is arranged between them to form a resistive film type transparent touch panel (20). it can.
  • the transparent conductive laminate of the first invention is also suitably used as a transparent electrode substrate for a capacitive touch panel.
  • the transparent conductive layer of the transparent conductive laminate is disposed only on a part of the optical interference layer to form a pattern.
  • the transmittance of the display light is different between the portion where the transparent conductive layer is present and the portion where the transparent conductive layer is not present, whereby the pattern of the transparent conductive layer is visually recognized.
  • a problem (“bone appearance") that the display light becomes difficult to see.
  • the difference between the refractive index of the transparent organic polymer substrate and the refractive index of the hard coat layer is small, and an optical interference layer is present. The appearance of this bone can be suppressed.
  • the reflection spectrum of the transparent conductive laminate and the transparent conductive When the difference spectrum from the reflection spectrum when the transparent conductive layer is removed from the conductive laminate satisfies (A-g1) and (A-g2), the problem of bone appearance can be suppressed: (Ag1)
  • the maximum absolute value of the difference spectrum is 3.0% or less, particularly 2.0 or less
  • (Ag2) the integrated value of the difference spectrum is ⁇ 200 nm ⁇ % or more and 200 nm. % Or less, particularly ⁇ 170 nm ⁇ % or more and 170 nm ⁇ % or less, more particularly ⁇ 150 nm ⁇ % or more and 150 nm ⁇ % or less.
  • the conductive laminate can have a configuration as shown in FIG.
  • the hard coat layer 33 h and the optical interference layer 32 are sequentially laminated on at least one surface of the transparent organic polymer substrate 33, and the transparent conductive layer 31 becomes the optical interference layer.
  • the pattern is formed by being arranged only on a part of the upper part of 32.
  • both of the reflection 33R ′ on the surface of the transparent organic polymer substrate 33 and the reflection 33hR ′ on the surface of the hard coat layer 33h in the portion where the transparent conductive layer 31 does not exist are the same.
  • the optical path length is shortened by the amount that the transparent conductive layer 31 does not exist.
  • FIG. 11 shows the effect of interference on a portion where the transparent conductive layer 31 does not exist and a portion where the transparent conductive layer 31 exists in the configuration shown in FIG. Further, the difference in the effect of interference in these cases is also shown in FIG. As is clear from FIG. 11, the difference in the interference effect varies depending on the wavelength in the configuration shown in FIG. 10, and therefore there is a portion where the transparent conductive layer 31 is not present and a portion where the transparent conductive layer 31 is present. Observed as a difference in color or brightness, and therefore bone appearance occurs.
  • the hard coat layer 33 h and the optical interference layer 32 are sequentially laminated on at least one surface of the transparent organic polymer substrate 33.
  • the transparent conductive layer 31 is disposed only on a part of the optical interference layer to form a pattern.
  • the difference between the refractive index of the transparent organic polymer substrate 33 and the refractive index of the hard coat layer 33h is small. There is virtually no reflection at the interface.
  • both of the reflection 33R ′ on the surface of the transparent organic polymer substrate 33 and the reflection 33hR ′ on the surface of the hard coat layer 33h in the portion where the transparent conductive layer 31 does not exist are the same.
  • the optical path length is shortened by the amount that the transparent conductive layer 31 does not exist.
  • FIG. 9 shows the effect of interference on a portion where the transparent conductive layer 31 does not exist and a portion where the transparent conductive layer 31 exists in the configuration shown in FIG. Also, the difference in the interference effect in these cases is shown in FIG. As is apparent from FIG. 9, the change in the difference in the interference effect is gentle depending on the wavelength in the configuration shown in FIG. 8. Therefore, the absolute value of the difference in the interference effect is reduced, and the interference in the visible light region is reduced. By reducing the integrated value of the effect, bone appearance can be suppressed.
  • the transparent conductive laminate of the first aspect of the present invention includes a polarizing plate laminated directly or via another substrate on the observation side of the transparent touch panel, and controls the phase difference of the transparent electrode substrate to control the inside of the touch panel. It is suitably used as a transparent electrode substrate for a so-called inner type touch panel, for example, an inner type resistive film type or capacitive type touch panel.
  • the order of lamination of the transparent conductive layer, the optional metal compound layer, the optical interference layer, the hard coat layer, and the optional additional hard coat layer is the same as that of the transparent organic polymer substrate.
  • the hard coat layer, the optical interference layer, and the transparent conductive layer are sequentially laminated on at least one surface, and there is no particular limitation as long as it fulfills the function expected to appear depending on the application.
  • the transparent conductive laminate of the present invention when used as a touch panel substrate, the transparent conductive layer is A, the metal compound layer is B, the optical interference layer is C, the hard coat layer is Dh, the transparent organic polymer substrate is D, Assuming that the additional hard coat layer is E, A / C / Dh / D, A / C / Dh / D / E, A / C / Dh / D / C, A / C / Dh / D / C, A / C / Dh / D / E, A / C / Dh / D / E / C, A / B / C / Dh / D, A / B / C / Dh / D / E, A / B / C / Dh / It can be laminated like D / C, A / B / C / Dh / D / C, A / B / C / Dh / D / E, A
  • the transparent conductive laminate of the second aspect of the present invention is a transparent conductive laminate in which a cured resin layer and a transparent conductive layer are sequentially laminated on at least one surface of a transparent organic polymer substrate.
  • a cured resin layer 132 and a transparent conductive layer 131 are sequentially laminated on at least one surface of a transparent organic polymer substrate 133 as shown in FIG. Transparent conductive laminate 130.
  • the reflection spectrum when light having a wavelength of 450 nm to 700 nm is projected from the transparent conductive layer side of the transparent conductive laminate is the same as that in the transparent conductive laminate.
  • the difference spectrum between the reflection spectrum and the reflection spectrum when the transparent conductive layer is removed from the transparent conductive laminate satisfies the following (B-a1) and (B-a2): (B-a1)
  • the maximum absolute value of the difference spectrum is 3.0% or less, particularly 2.0 or less
  • (Ba2) the integrated value of the difference spectrum is ⁇ 200 nm ⁇ % or more and 200 nm. % Or less, particularly ⁇ 170 nm ⁇ % or more and 170 nm ⁇ % or less, more particularly ⁇ 150 nm ⁇ % or more and 150 nm ⁇ % or less.
  • the difference spectrum between the reflection spectrum of the transparent conductive laminate and the reflection spectrum when the transparent conductive layer is removed from the transparent conductive laminate is (Ba1). And by satisfying (Ba2), the problem of bone appearance can be suppressed.
  • the difference spectrum shows the refractive index of the transparent organic polymer substrate as n 3 , the thickness and refractive index of the cured resin layer as d 2 (nm) and n 2 , and the thickness and refractive index of the transparent conductive layer, respectively.
  • the transparent conductive laminate of the present invention can further have a single or a plurality of additional cured resin layers depending on the application.
  • This additional cured resin layer can be disposed at any position of the transparent conductive laminate of the present invention, that is, the transparent organic polymer substrate constituting the transparent conductive laminate of the present invention, the cured resin layer, and It can be disposed between or on any layer of the transparent conductive layer. Therefore, this additional cured resin layer may be a so-called hard coat layer constituting the surface of the transparent organic polymer substrate, particularly a clear hard coat layer not containing fine particles.
  • the additional cured resin layer can be formed of a thermosetting resin or an active energy ray curable resin.
  • a thermosetting resin or an active energy ray curable resin.
  • an ultraviolet curable resin using ultraviolet rays for active energy rays is preferable because it is excellent in productivity and economy.
  • Examples of the ultraviolet curable resin for the additional cured resin layer include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, triethylene glycol Propylene glycol diacrylate, neopentyl glycol diacrylate, 1,4-butanediol dimethacrylate, poly (butanediol) diacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, triethylene glycol diacrylate, tri Diacrylates such as isopropylene glycol diacrylate, polyethylene glycol diacrylate and bisphenol A dimethacrylate; Triacrylates such as methylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate;
  • a polyfunctional acrylate having 5 or more functional groups can also be used. These polyfunctional acrylates may be used alone or in combination of two or more. Further, these acrylates are used by adding one or more of third components such as photoinitiators, photosensitizers, leveling agents, fine particles composed of metal oxides and acrylic components, and ultrafine particles. be able to.
  • irregularities can be formed in the additional cured resin layer.
  • various proposed methods can be used. That is, for example, a method of adding a filler having a particle system of the same thickness as the film thickness in the additional cured resin layer (Japanese Patent Laid-Open No. 10-323931), and a method of forming irregularities using nanoparticles (Japanese Patent Laid-Open No. 2004) -351744), and a method of forming irregularities by utilizing phase separation by a plurality of curing components (Japanese Patent Laid-Open No. 2009-123985).
  • the method of adding a filler when used as a resistive film type touch panel, causes the filler to fall off during use from the transparent conductive laminate, resulting in damage to the transparent electrode, resulting in a long life of the touch panel. Since there is a risk of lowering, a method of forming irregularities by utilizing aggregation of nanoparticles and a method of forming irregularities by utilizing phase separation by a plurality of curing components are preferable.
  • the transparent conductive laminate of the second invention is also suitably used as a transparent electrode substrate for a capacitive touch panel.
  • the transparent conductive laminate of the present invention is used as at least one transparent electrode substrate in a capacitive transparent touch panel in which at least one transparent electrode substrate having a transparent conductive layer provided on at least one surface is disposed. can do.
  • the transparent conductive layer of the transparent conductive laminate may be arranged only in a part on the cured resin layer to form a pattern.
  • the transparent conductive laminate of the second aspect of the present invention is particularly suitably used as a transparent electrode substrate for a resistive film type touch panel.
  • the transparent conductive laminate of the second aspect of the present invention is particularly configured by arranging two transparent electrode substrates each provided with a transparent conductive layer on at least one side so that the transparent conductive layers face each other.
  • a transparent touch panel of a resistive film type it can be used as at least one transparent electrode substrate.
  • the transparent conductive layer of the transparent conductive laminate may be arranged only in a part on the cured resin layer to form a pattern.
  • the transparent conductive laminate of the second aspect of the present invention can be obtained by laminating a polarizing plate directly or through another substrate on the observation side of the transparent touch panel, and controlling the phase difference of the transparent electrode substrate. It is suitably used as a transparent electrode substrate for a so-called inner type touch panel, for example, an inner type resistive film type or capacitive type touch panel.
  • the order of lamination of the transparent conductive layer, the optional metal compound layer, the cured resin layer, and the optional additional cured resin layer is at least one surface of the transparent organic polymer substrate.
  • a cured resin layer and a transparent conductive layer are sequentially laminated thereon, and there is no particular limitation as long as it fulfills a function expected to develop depending on the application.
  • the transparent conductive laminate of the present invention when used as a touch panel substrate, the transparent conductive layer is A, the metal compound layer is B, the cured resin layer is C, the transparent organic polymer substrate is D, and the additional cured resin layer is Assuming E, A / C / D, A / C / D / E, A / C / D / C, A / C / E / D / C, A / C / E / D / E, A / C / E / D / E / C, A / B / C / D, A / B / C / D / E, A / B / C / D / C, A / B / C / E / D / C, A / Lamination can be performed as B / C / E / D / E and A / B / C / E / D / E / C.
  • the transparent organic polymer substrate used in the transparent conductive laminates of the first and second inventions is an arbitrary transparent organic polymer substrate, particularly a transparent material excellent in heat resistance and transparency used in the optical field. It may be an organic polymer substrate.
  • Examples of the transparent organic polymer substrate used in the transparent conductive laminate of the first and second inventions include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate polymers, cellulose such as diacetyl cellulose and triacetyl cellulose. Examples thereof include a substrate made of a transparent polymer such as an acrylic polymer such as a polymer and polymethyl methacrylate.
  • the transparent organic polymer substrate used in the transparent conductive laminate of the present invention includes polystyrene, styrene-based polymers such as acrylonitrile / styrene copolymer, polyethylene, polypropylene, polyolefin having a cyclic or norbornene structure, and ethylene / propylene copolymer.
  • examples thereof include substrates made of transparent polymers such as olefin polymers such as polymers, vinyl chloride polymers, amide polymers represented by nylon and aromatic polyamide.
  • imide polymer sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol type
  • substrates made of transparent polymers such as polymers, vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • those having a low optical birefringence, or a retardation which is the product of birefringence and film thickness is used.
  • those controlled to about 1 ⁇ 4 or 1 ⁇ 2 of the wavelength of visible light referred to as “ ⁇ / 4 film” or “ ⁇ / 2 film”
  • ⁇ / 4 film or “ ⁇ / 2 film”
  • ⁇ / 2 film the wavelength of visible light
  • it can select suitably according to a use.
  • it when selecting appropriately according to the application, for example, it incorporates functions such as polarizing plates and retardation films used in liquid crystal displays, anti-reflection polarizing plates and retardation films for organic EL displays, etc.
  • the transparent conductive laminate of the present invention is used as a display member that exhibits a function by polarized light such as linearly polarized light, elliptically polarized light, and circularly polarized light as in a so-called inner-type touch panel can be given.
  • the film thickness of the transparent polymer substrate can be determined as appropriate, but is generally about 10 to 500 ⁇ m, particularly 20 to 300 ⁇ m, more preferably 30 to 200 ⁇ m from the viewpoint of workability such as strength and handleability.
  • optical interference layer / cured resin layer ⁇ Optical interference layer / cured resin layer-material and manufacturing method>
  • a method for forming the optical interference layer of the first invention particularly the resin-based optical interference layer and the second cured resin layer
  • formation by a wet method is particularly suitable.
  • a doctor knife, a bar coater, a gravure roll coater Any known method such as a curtain coater, a knife coater, a spin coater, a spray method, or an immersion method can be used.
  • a specific resin-based optical interference layer / cured resin layer reference can be made to, for example, the description in Patent Document 2.
  • these resin-based optical interference layers / cured resin layers are formed by various roll coating methods represented by microgravure coating method, Mayer bar coating method, direct club coating method, knife coating method, curtain coating method, spin coating method, etc. It can be prepared by a wet coating method such as a spray coating method or a combination thereof.
  • the resin-based optical interference layer / cured resin layer it is particularly preferable to use a resin-based optical interference layer / cured resin layer by a wet coating method from the viewpoint of obtaining high productivity.
  • metal alkoxides particularly titanium, zirconium, or silicon alkoxides are used from the viewpoint of excellent mechanical strength and stability of the layers and adhesion to a transparent conductive layer or a substrate. It is most preferable to use a resin-based optical interference layer / cured resin layer.
  • the titanium-zirconium alkoxide resin-based optical interference layer / cured resin layer functions as a high refractive index layer having a refractive index of about 1.6 or more, and in some cases about 1.7 or more.
  • the resin-based optical interference layer / cured resin layer of silicon alkoxide functions as a low refractive index layer having a refractive index of about 1.5 or less.
  • titanium alkoxides examples include titanium tetraisopropoxide and tetra-n-propyl orthotitanate.
  • silicon alkoxide examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and methyltriethoxysilane.
  • the refractive index of the resin-based optical interference layer / cured resin layer can be adjusted by including not only the cured resin component but also ultrafine particles having an average primary particle diameter of 100 nm or less in any amount that can be blended.
  • Examples of the material of the ultrafine particles include those described below with respect to the resin-based optical interference layer / cured resin layer having fine protrusions on the surface.
  • the optical interference layer includes a resin component and first ultrafine particles having an average primary particle size of 1 nm to 100 nm, -Q)
  • the resin component and the first ultrafine particles contain the same metal and / or metalloid element
  • the optical interference layer contains the same metal and / or metalloid element as the resin component.
  • the content of ultrafine particles is 0.01 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the (Bc) cured resin layer contains a resin component and first ultrafine particles having an average primary particle size of 1 nm to 100 nm, -D)
  • the resin component and the first ultrafine particles contain the same metal and / or metalloid element.
  • (Be) In the cured resin layer the content of the first ultrafine particles is 100 parts by mass of the resin component.
  • the thickness of the (Bf) cured resin layer is 0.01 to 0.5 ⁇ m.
  • minute protrusions are formed on the surface of the transparent conductive layer, thereby providing a combination of high transparency, small haze, and sufficient slipperiness.
  • the minute protrusions on the surface of the transparent conductive layer are such that the resin component of the resin optical interference layer / cured resin layer and the first ultrafine particles contain the same metal and / or metalloid element.
  • the resin component and the first ultrafine particles have some interaction, and fine protrusions are formed on the surface of the resin optical interference layer / cured resin layer. It is considered that the reflection is formed on the surface of the transparent conductive layer on the system optical interference layer / cured resin layer.
  • the transparent conductive layer is smooth, sticking between the films occurs, resulting in poor handling and winding.
  • the writing durability is reduced, but in the transparent conductive laminate of the present invention, because the micro-projections are formed on the surface, It has good handling and winding properties and high writing durability.
  • the fine particles may cause a decrease in the writing durability of the touch panel as described above.
  • the transparent conductive laminate of the invention contains the first ultrafine particles having a very small particle diameter, and the protrusions are formed by the interaction between the first ultrafine particles and the resin component. There is no reduction.
  • the “metal and / or metalloid element” contained in both the resin component and the first ultrafine particles is not particularly limited, but Al, Bi, Ca, Hf, In, Mg, Sb, Si It is preferably one or more elements selected from the group consisting of Sn, Ti, Y, Zn and Zr, more preferably one or more elements selected from the group consisting of Al, Si and Ti Preferably, Si and / or Ti are even more preferable.
  • ⁇ Optical interference layer with fine protrusions on the surface / cured resin layer-cured resin component As the curable resin component, ultrafine particles can be dispersed, have sufficient strength as a film after the formation of the resin-based optical interference layer / cured resin layer, are transparent, and have the same metal and / or the same as the ultrafine particles.
  • any material containing a metalloid element can be used without particular limitation. Therefore, for example, as the curable resin component, a polymerizable organometallic compound, particularly a metal-containing acrylate, a metal alkoxide, or the like can be used.
  • curable resin component examples include an ionizing radiation curable resin and a thermosetting type.
  • Monomers and polyfunctional acrylates such as polyol acrylates, polyester acrylates, urethane acrylates, epoxy acrylates, modified styrene acrylates, melamine acrylates, and silicone-containing acrylates that give a hard layer other than those described above are examples of monomers that provide ionizing radiation curable resins. Can be mentioned.
  • Monomers that give ionizing radiation curable resins containing Si include, for example, methylacryloxypropyltrimethoxysilane, tris (trimethylsiloxy) silylpropyl methacrylate, allyltrimethylsilane, diallyldiphenylsilane, methylphenylvinylsilane, methyltriallylsilane, phenyl Triallylsilane, tetraallylsilane, tetravinylsilane, triallylsilane, triethylvinylsilane, vinyltrimethylsilane, 1,3-dimethyl-1,1,3,3-tetravinyldisiloxane, divinyltetramethyldisiloxane, vinyltris (trimethylsiloxy) silane , Vinylmethylbis (trimethylsilyloxy) silane, N- (trimethylsilyl) allylamine, polydimethylsilane having double bonds at both ends. Hexane
  • a photopolymerization initiator when polymerizing a resin layer by ionizing radiation, generally an appropriate amount of a photopolymerization initiator may be added, and an appropriate amount of a photosensitizer may be added as necessary.
  • the photopolymerization initiator include acetophenone, benzophenone, benzoin, benzoylbenzoate, and thioxanthone.
  • the photosensitizer include triethylamine, tri-n-butylphosphine, and the like.
  • thermosetting resins include organosilane thermosetting resins such as alkoxysilane compounds, alkoxytitanium thermosetting resins, melamine thermosetting resins using etherified methylol melamine, and the like as monomers.
  • organosilane thermosetting resins such as alkoxysilane compounds, alkoxytitanium thermosetting resins, melamine thermosetting resins using etherified methylol melamine, and the like as monomers.
  • thermosetting resins include thermosetting resins, phenol-based thermosetting resins, and epoxy curable resins. These thermosetting resins can be used alone or in combination. If necessary, a thermoplastic resin can be mixed with the thermosetting resin.
  • organosilane thermosetting resins include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyl Methyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) ) 3-aminoprop
  • alkoxytitanium-based thermosetting resins include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, and titanium ethylacetate.
  • Acetate, titanium octanediolate, titanium lactate, titanium triethanolamate, polyhydroxytitanium stearate and the like are preferably used.
  • tetraisopropyl titanate, tetranormal butyl titanate, titanium lactate and the like exhibiting stable performance are preferably used from the viewpoint of stability as a paint and stabilization of adhesion to a substrate.
  • reaction accelerator examples include triethylenediamine, dibutyltin dilaurate, benzylmethylamine, pyridine and the like.
  • curing agent examples include methylhexahydrophthalic anhydride, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-diethyldiphenylmethane, diaminodiphenylsulfone, and the like.
  • the monomer forming the resin-based optical interference layer / cured resin layer contains the same metal and / or metalloid element as the ultrafine particles
  • these monomers may be used alone or in combination with other monomers, for example,
  • the fine particles can be used in combination with a monomer that does not contain the same metal and / or metalloid element.
  • the resin-based optical interference layer / cured resin layer may contain other components such as a leveling agent and a photosensitizer.
  • the first ultrafine particles having an average primary particle size of 1 nm or more and 100 nm or less contained in the resin optical interference layer / cured resin layer are essentially provided that they contain the same metal and / or metalloid element as the resin component.
  • a metal oxide or a metal fluoride is preferably used. Examples of the metal oxide and metal fluoride include Al 2 O 3 , Bi 2 O 3 , CaF 2 , In 2 O 3 , In 2 O 3 .SnO 2 , HfO 2 , La 2 O 3 , MgF 2 , Sb 2 O.
  • Sb 2 O 5 .SnO 2 , SiO 2 , SnO 2 , TiO 2 , Y 2 O 3 , ZnO and ZrO 2 can be suitably used. At least one selected from the group consisting of Al 2 O 3 , SiO 2 and TiO 2 can be particularly preferably used.
  • the resin component of the resin optical interference layer / cured resin layer is a resin component obtained from alkoxysilane
  • the first ultrafine particles of SiO 2 can be used.
  • the resin component of the resin optical interference layer / cured resin layer is a resin component obtained from alkoxy titanium
  • the first ultrafine particles of TiO 2 can be used.
  • the particle diameter of the first ultrafine particles contained in the resin optical interference layer / cured resin layer is 1 nm to 100 nm, preferably 1 nm to 70 nm, more preferably 1 nm to 50 nm, and more preferably 5 nm. More preferably, it is 40 nm or less. If the particle diameter of the first ultrafine particles is too large, light scattering tends to occur, which is not preferable. When the particle size of the first ultrafine particles is too small, the specific surface area of the particles is increased to promote activation of the particle surface, and the cohesiveness between the particles becomes remarkably high, thereby making it difficult to prepare and store the solution. This is not preferable.
  • the first ultrafine particles contained in the resin-based optical interference layer / cured resin layer may be surface-modified with a coupling agent or the like as long as the characteristics of the present invention are satisfied.
  • the first ultrafine particles can be produced by a liquid phase method, a gas phase method or the like, but there are no particular restrictions on these production methods.
  • the mixing ratio for dispersing the first ultrafine particles in the cured resin requires that the first ultrafine particles be 0.01 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the cured resin component. , Preferably 0.01 parts by weight or more and 2.5 parts by weight or less, more preferably 0.05 parts by weight or more and 2 parts by weight or less, even more preferably 0.1 parts by weight or more and 1 part by weight or less. .
  • the amount of the first ultrafine particles is too small, it is difficult to form a resin layer having protrusions on the surface necessary for the application of the present invention. On the other hand, if this ratio is too large, projections on the surface become large and light scattering occurs on the surface, which is not preferable because haze increases.
  • the protrusions on the surface of the resin optical interference layer / cured resin layer in the present invention also depend on the thixotropy of the first ultrafine particles used. Therefore, for the purpose of expressing or controlling thixotropy, a solvent and a dispersant can be appropriately selected and used when forming the optical interference layer.
  • a solvent for example, various alcohols, aromatics, ketones, lactates, cellosolves, glycols and the like can be used.
  • the dispersant include various fatty acid amines, sulfonic acid amides, ⁇ -caprolactone, hydrostearic acid, polycarboxylic acid, and polyesteramine. These solvents and dispersants can be used alone or in combination of two or more.
  • the second ultrafine particles having an average primary particle size of 1 nm to 100 nm contained in the cured resin layer are larger in refractive index than the resin component contained in the cured resin layer.
  • the second ultrafine particles may increase the refractive index of the cured resin layer as compared with the case where the cured resin layer does not further contain the second ultrafine particles.
  • the specific material, particle size, surface modification, production method, and the like of the second ultrafine particles the above description regarding the first ultrafine particles can be referred to.
  • the refractive index of the cured resin layer is approximately 1.50.
  • ultrafine particles having a high refractive index such as titanium oxide (refractive index: 2.4) can be selected as the second ultrafine particles.
  • the blending ratio for dispersing the second ultrafine particles in the cured resin can be arbitrarily determined within a range where blending is possible. Therefore, this blending ratio is, for example, 1 part by mass or more, 10 parts by mass or more, or 30 parts by mass or more, and 500 parts by mass or less, 400 parts by mass with respect to 100 parts by mass of the resin component after curing. Part or less, 300 parts by weight or less, 200 parts by weight or less, or 150 parts by weight or less.
  • this ratio is too large, film formation may become difficult and haze may increase.
  • the blending ratio for dispersing the second ultrafine particles in the cured resin is such that the cured resin layer contains the second ultrafine particles, so that the cured resin layer does not contain the second ultrafine particles.
  • the refractive index of the cured resin layer is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, or 0 You can choose to increase by 10 or more.
  • the refractive index of the cured resin layer is 1.55 or more, 1.60 or more, or 1.65 or more, and can be 1.85 or less, 1.80 or less, or 1.75 or less. .
  • ⁇ Optical interference layer with fine protrusions on the surface / cured resin layer-film thickness When a resin optical interference layer / cured resin layer having fine protrusions on the surface is used, it is difficult to form effective protrusions on the surface of the resin optical interference layer / cured resin layer if the film thickness is too small. This may be undesirable.
  • the transparent conductive layer is not particularly limited, and examples thereof include a crystalline metal layer and a crystalline metal compound layer.
  • the component constituting the transparent conductive layer include metal oxide layers such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide.
  • a crystalline layer mainly composed of indium oxide is preferable, and a layer made of crystalline ITO (Indium Tin Oxide) is particularly preferably used.
  • the crystal grain size need not be particularly limited, but is preferably 3000 nm or less. A crystal grain size exceeding 3000 nm is not preferable because writing durability is deteriorated.
  • the crystal grain size is defined as the largest diagonal line or diameter in each polygonal or oval region observed under a transmission electron microscope (TEM).
  • the sliding durability (or writing durability) and environmental reliability required for the touch panel may decrease.
  • the transparent conductive layer can be formed by a known method.
  • a physical formation method such as a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser deposition method
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • sol-gel method a sol-gel method
  • the sputtering method is desirable from the viewpoint of thickness control.
  • the film thickness of the transparent conductive layer is preferably 5 to 200 nm, particularly 5 to 150 nm from the viewpoint of transparency and conductivity. More preferably, it is 5 to 80 nm, and particularly preferably 10 to 50 nm. If the film thickness of the transparent conductive layer is less than 5 nm, the resistance value tends to be inferior in stability over time, and if it exceeds 200 nm, the surface resistance value decreases, which may be undesirable.
  • the surface resistance value of the transparent conductive layer is 100 to 2000 ⁇ / ⁇ ( ⁇ at a film thickness of 10 to 30 nm due to reduction of power consumption of the touch panel and necessity for circuit processing. / Sq), more preferably a transparent conductive layer having a range of 140 to 1000 ⁇ / ⁇ ( ⁇ / sq) is preferably used.
  • the transparent conductive laminates according to the first and second aspects of the present invention include a metal compound layer, particularly a metal compound having a thickness of 0.5 nm or more and less than 5.0 nm, between the optical interference layer / cured resin layer and the transparent conductive layer. It may further have a layer.
  • the adhesion between each layer is greatly improved.
  • the optical interference layer / cured resin layer and the transparent layer can be made transparent by making the metal of the ultrafine particles such as the metal oxide ultrafine particles and / or the metal fluoride ultrafine particles in the optical interference layer the same as the metal of the above metal compound layer. The adhesion between the conductive layers is further improved.
  • the writing durability required for the transparent touch panel is improved as compared with the case without the metal compound layer. If the metal compound layer is too thick, the endurance durability required for the transparent touch panel cannot be improved because the metal compound layer starts to exhibit mechanical properties as a continuum. On the other hand, when the thickness of the metal compound layer is too thin, it is difficult to control the thickness, and the adhesiveness between the optical interference layer / cured resin layer having fine protrusions on the surface and the transparent conductive layer is fully expressed. It may be difficult to improve the writing durability required for the transparent touch panel.
  • components constituting the metal compound layer include metal oxide layers such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide.
  • the resin component contained in the optical interference layer and the same element as the ultrafine particles are preferably included.
  • These metal compound layers can be formed by a known method, for example, physical formation such as DC magnetron sputtering method, RF magnetron sputtering method, ion plating method, vacuum deposition method, pulse laser deposition method, etc.
  • the method (PVD) or the like can be used, but the DC magnetron sputtering method is desirable from the viewpoint of industrial productivity of forming a metal compound layer having a uniform film thickness over a large area.
  • a chemical formation method such as a chemical vapor deposition method (CVD) or a sol-gel method can be used, but the sputtering method is desirable from the viewpoint of film thickness control. .
  • the target used for sputtering is preferably a metal target, and the reactive sputtering method is widely employed. This is because the oxide of the element used as the metal compound layer is often an insulator, and in the case of a metal compound target, the DC magnetron sputtering method is often not applicable. In recent years, a power source has been developed that simultaneously discharges two cathodes and suppresses formation of an insulator on a target, and a pseudo RF magnetron sputtering method can be applied.
  • the fine protrusions provide a combination of high transparency, small haze, and sufficient slipperiness.
  • minute protrusions are formed on the surface of the cured resin layer by satisfying the conditions (Bc) to (Bf), and thereby high transparency and smallness. A combination of haze and sufficient slipperiness is provided.
  • the transparent conductive layer has projections having a height of 30 nm or more and 200 nm or less, preferably 10 or more and 300 or less, particularly preferably 20 or more and 200 or less, more preferably 30 per 50 ⁇ m square.
  • the number is from 150 to 150.
  • protrusions having a protrusion height of less than 30 nm are not considered because they have a small effect on the slipperiness of the laminate.
  • the protrusion having a protrusion height of more than 200 nm tends to increase light haze and increase haze, although it gives the laminate a slipperiness.
  • the transparent conductive laminate may not have sufficient slipperiness, while the number of protrusions is large. If it is too high, light scattering on the surface of the laminate will increase, and thus haze may increase.
  • a resistive film type touch panel is an electrical component that is configured by holding two films or sheets having a transparent conductive layer on opposite sides at a constant interval.
  • the detection circuit detects the position by pressing one electrode with a finger, deflecting, contacting, and conducting, and a predetermined input is made.
  • an interference color called a so-called Newton ring may appear in the vicinity of a pointing part such as a pen or a finger that is being pressed, thereby reducing the visibility of the display.
  • an uneven shape is formed on the surface with an additional cured resin layer to be described later, and interference is prevented by diffusing reflection of light between the electrodes (anti-Newton ring). .
  • the number of protrusions having a height of 30 nm to 200 nm on the transparent conductive layer may exceed 500. .
  • the number of protrusions on the surface of the transparent conductive layer was measured using a scanner having a measurement range of 150 ⁇ m in dynamic force mode using an atomic force microscope (AFM) SPA400 manufactured by SII Nanotechnology Co., Ltd.
  • a Si cantilever with back Al (SI-DF40, manufactured by SII Nanotechnology Co., Ltd.) was used as the cantilever, and measurement was performed in a scanning range of 50 ⁇ 50 ⁇ m.
  • the number of data was measured at 512 in the X direction and 512 in the Y direction.
  • the obtained shape image data was subjected to third-order profile conversion, the height of each protrusion was estimated from the obtained surface data, and the number of protrusions of 30 nm to 200 nm was counted. Each sample was measured five times, and the average value of the number of protrusions was calculated.
  • the average arithmetic roughness of irregularities on the surface of the transparent conductive layer ( Ra) is preferably 20 nm or less, more preferably 10 nm or less, and particularly preferably 8 nm or less. If the average arithmetic roughness (Ra) is too large, the haze is increased, which is not particularly preferable because the sharpness is lowered when adapted to a high-quality liquid crystal display.
  • corrugation is desirably 20 nm or more and less than 500 nm, and it is 25 nm or more and 400 nm or less. Is more desirable, and it is particularly desirable that the thickness be 30 nm to 350 nm.
  • the average arithmetic roughness (Ra) is too small, Newton's ring occurs when the glass or film substrate is brought into strong contact with the uneven surface of the present invention. Further, if the average arithmetic roughness (Ra) exceeds 500 nm, haze increases, and when applied to a liquid crystal display, it is not preferable as a substrate for display use because it causes pixel color separation and flickering.
  • the total light transmittance of the transparent conductive laminate of the present invention is 85% or more, preferably 88% or more, more preferably 89% or more, and particularly preferably 90% or more.
  • the transparent conductive laminate of the present invention In the case of a transparent conductive laminate requiring low haze, such as a capacitive transparent touch panel and a low-haze resistive touch panel, from the viewpoint of visibility, the transparent conductive laminate of the present invention.
  • the haze is desirably 2% or less, more desirably 1.5% or less, still more desirably 1% or less, and particularly desirably 0.5% or less.
  • the haze of the transparent conductive laminate of the present invention is 2% or more or 2. from the viewpoint of the balance between visibility and anti-Newton ring characteristics. Even 5% or more can be tolerated, desirably 15% or less, more desirably 12% or less, and even more desirably 10% or less.
  • ⁇ Number of protrusions on the surface (AFM)> Using an atomic force microscope SPA400 manufactured by SII Nanotechnology Co., Ltd., using a scanner with a measurement range of 150 ⁇ m in dynamic force mode, and using a Si cantilever with back Al (SI-DF40 manufactured by SII Nanotechnology Co., Ltd.) as the cantilever The measurement was performed in a scanning range of 50 ⁇ 50 ⁇ m. The number of data was measured at 512 in the X direction and 512 in the Y direction. The obtained shape image data was subjected to third-order profile conversion, the height of each protrusion was estimated from the obtained surface data, and the number of protrusions of 30 nm to 200 nm was counted. Each sample was measured five times, and the average value of the number of protrusions was calculated.
  • the thickness and refractive index of the optical interference layer / cured resin, transparent conductive layer, and hard coat layer are laminated as a single layer under the same coating conditions on an appropriate thermoplastic film substrate having a refractive index different from those layers.
  • the wavelength of the maximum peak or minimum peak of the reflectance expressed based on the light interference effect on the light reflection spectrum of the laminated surface and the value of the peak reflectance were calculated by optical simulation.
  • the refractive index is the refractive index for light having a wavelength of 550 nm unless otherwise specified.
  • ⁇ Reflectance spectrum> Each spectrum was measured in the integrating sphere measurement mode of Hitachi spectrophotometer U3500.
  • the incident angle of the measurement light to the sample is 5 degrees, and a light-shielding layer is formed on the back side using a commercially available black spray, and the measurement is performed with almost no light reflected from the back side or the back side of the sample. went.
  • the difference spectrum was obtained by subtracting the reflection spectrum of the laminate after forming the transparent conductive layer from the reflection spectrum of the laminate before forming the transparent conductive layer.
  • the reflection spectrum of the laminate obtained by removing the transparent conductive layer from the transparent conductive laminate was measured by removing the prepared transparent conductive laminate with an etching solution.
  • Total light transmittance> The measurement was performed according to JIS K7361-1 using a Nippon Denshoku Co., Ltd. haze meter (MDH2000).
  • the transparent conductive layer of the prepared transparent conductive laminate was lightly rubbed with steel wool to evaluate whether the surface was scratched (x) or not (O).
  • the prepared transparent conductive laminate was cut into 5 cm square, and 8 pieces of 3 mm-wide polyimide tape were attached in parallel to the transparent conductive layer so as to have an interval of 3 mm.
  • the laminate with the polyimide tape attached was immersed in an ITO etching solution (trade name “ITO-06N” manufactured by Kanto Chemical Co., Ltd.) for 1 minute to remove the ITO where the polyimide tape was not attached to 3 mm.
  • ITO etching solution trade name “ITO-06N” manufactured by Kanto Chemical Co., Ltd.
  • a laminate in which an ITO film having a width of 3 mm was patterned at intervals was obtained. This film was visually observed to evaluate whether the ITO pattern was almost invisible ( ⁇ ), slightly visible ( ⁇ ), or visible ( ⁇ ).
  • Example A1 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the following coating solution H1 is applied to one surface with a wire bar at 60 ° C. After drying for 30 seconds, a hard coat layer (H1 layer) having a film thickness of about 3 ⁇ m was formed by irradiating with a high pressure mercury lamp having an intensity of 160 W with ultraviolet rays having an integrated light quantity of 700 mJ / cm 2 .
  • Coating fluid H1 1-methoxy-2-propanol was used as a diluent solvent in 59 parts by mass of bisphenoxyethanol full orange acrylate (manufactured by Osaka Gas Co., Ltd.) and 41 parts by mass of urethane acrylate (trade name “NK Oligo U-15HA” manufactured by Shin-Nakamura Chemical). Further, 3 parts by weight of Irgacure 184 (Ciba Geigy) was added as a photoinitiator and stirred until uniform.
  • the following coating solution R1 was applied with a wire bar and heat-treated at 130 ° C. for 5 minutes to form a cured resin layer having a thickness of about 50 nm.
  • Coating fluid R1 After mixing 720 parts by mass of water, 1080 parts by mass of 2-propanol and 46 parts by mass of acetic acid, 480 parts by mass of 3-glycidoxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (Product name “KBM13” manufactured by Shin-Etsu Chemical Co., Ltd.) 240 parts by mass and 120 parts by mass of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (trade name “KBM603” manufactured by Shin-Etsu Chemical Co., Ltd.) An alkoxysilane mixed solution was produced, this alkoxysilane mixed solution was stirred for 3 hours, hydrolyzed and partially condensed, and further diluted with a mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol in a mass ratio of 1: 1.
  • MgF 2 ultrafine particles in the table, “MgF 2 ”) 20% by mass isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 50 nm) 4200 parts by mass (solid content conversion 840 mass) Part, that is, 100 parts by mass of ultrafine particles with respect to 100 parts by mass of the resin monomer to be added, and 145 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin component after curing) R1 was created.
  • the monomer condensation reaction has progressed 100% with respect to parts by mass of the cured resin component.
  • an amorphous transparent oxide film is formed by sputtering using an indium oxide-tin oxide target having a composition of indium oxide and tin oxide of 95: 5 and a packing density of 98%.
  • a conductive layer (ITO layer) was formed. The thickness of the ITO layer was about 20 nm, and the surface resistance value was about 370 ⁇ / ⁇ ( ⁇ / sq).
  • the transparent conductive layer had a thickness of about 20 nm, a refractive index of 2.10, and a surface resistance value of about 450 ⁇ / ⁇ ( ⁇ / sq).
  • the crystal grain size of the transparent conductive layer observed by TEM was in the range of 50 nm to 200 nm.
  • Example A2 A polyester film (“Teijin Tetron Film” manufactured by Teijin DuPont Films Ltd., OFW-188) is used for the transparent organic polymer substrate, and the coating liquid H2 is applied to one surface thereof with a wire bar, and then at 60 ° C. for 30 seconds. After drying, a hard coat layer (H2 layer) having a film thickness of about 3 ⁇ m was formed by irradiating with a high-pressure mercury lamp having an intensity of 160 W with ultraviolet rays having an integrated light quantity of 700 mJ / cm 2 .
  • a high-pressure mercury lamp having an intensity of 160 W with ultraviolet rays having an integrated light quantity of 700 mJ / cm 2 .
  • Coating fluid H2 Diluting 85 parts by mass of bisphenoxyethanol full orange acrylate (manufactured by Osaka Gas Co., Ltd.) and 15 parts by mass of urethane acrylate (trade name “NK Oligo U-15HA” manufactured by Shin-Nakamura Chemical) using toluene as a diluent solvent, As a photoinitiator, 3 parts by mass of Irgacure 184 (manufactured by Ciba Geigy) was added and stirred until uniform.
  • a cured resin layer having a thickness of about 50 nm was formed on the formed H2 layer in the same manner as in Example A1.
  • Example A1 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the characteristics of the produced transparent conductive laminate are shown in Table A1.
  • Example A3 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the coating liquid H1 is used on one side in the same manner as in Example A1 to form a film.
  • the following coating liquid R2 was applied on the formed hard coat layer with a wire bar, and heat-treated at 130 ° C. for 5 minutes to form a cured resin layer having a thickness of about 100 nm.
  • Coating fluid R2 After mixing 720 parts by mass of water, 1080 parts by mass of 2-propanol and 46 parts by mass of acetic acid, 480 parts by mass of 3-glycidoxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (Product name “KBM13” manufactured by Shin-Etsu Chemical Co., Ltd.) 240 parts by mass and 120 parts by mass of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (trade name “KBM603” manufactured by Shin-Etsu Chemical Co., Ltd.) An alkoxysilane mixed solution was produced, this alkoxysilane mixed solution was stirred for 3 hours, hydrolyzed and partially condensed, and further diluted with a mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol in a mass ratio of 1: 1.
  • titanium oxide ultrafine particles in the table, “TiO 2 ”) 15 mass% isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 30 nm) 3024 parts by mass (solid content conversion 453 mass) Parts, that is, 54 parts by mass of ultrafine particles with respect to 100 parts by mass of the resin monomer to be added, and 78 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin after curing) It was created.
  • Example A1 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the characteristics of the produced transparent conductive laminate are shown in Table A1.
  • FIG. 13 shows the created transparent conductive laminate and the reflection spectrum when the transparent conductive layer is removed from the transparent conductive laminate.
  • FIG. 15 shows a difference spectrum between the two reflection spectra shown in FIG.
  • Example A4 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the coating liquid H1 is applied to one side of the substrate with a wire bar, and 30 seconds at 60 ° C. After drying, a hard coat layer having a film thickness of about 3 ⁇ m was formed by irradiating with a high-pressure mercury lamp having an intensity of 160 W with ultraviolet rays having an integrated light quantity of 700 mJ / cm 2 .
  • the following coating liquid R3 was applied on the formed hard coat layer with a wire bar, and heat-treated at 130 ° C. for 5 minutes to form a cured resin layer having a thickness of about 50 nm.
  • Coating fluid R3 After mixing 720 parts by mass of water, 1080 parts by mass of 2-propanol and 46 parts by mass of acetic acid, 480 parts by mass of 3-glycidoxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (Product name “KBM13” manufactured by Shin-Etsu Chemical Co., Ltd.) 240 parts by mass and 120 parts by mass of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (trade name “KBM603” manufactured by Shin-Etsu Chemical Co., Ltd.) An alkoxysilane mixed solution was produced, this alkoxysilane mixed solution was stirred for 3 hours, hydrolyzed and partially condensed, and further diluted with a mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol in a mass ratio of 1: 1.
  • MgF 2 ultrafine particles in the table, “MgF 2 ”) 20% by mass isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 50 nm) 4200 parts by mass (solid content conversion 840 mass) Parts, that is, 100 parts by mass of ultrafine particles with respect to 100 parts by mass of the resin monomer to be added, and 145 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin after curing, and further stirred for 10 minutes.
  • MgF 2 ultrafine particles in the table, “MgF 2 ” 20% by mass isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 50 nm) 4200 parts by mass (solid content conversion 840 mass) Parts, that is, 100 parts by mass of ultrafine particles with respect to 100 parts by mass of the resin monomer to be added, and 145 parts by mass of ultrafine particles with respect
  • silica ultrafine particles in the table, “SiO 2 -1”) having an average primary particle size of 20 nm, which is not further surface-modified, are added to the liquid (ultrafine particles with respect to 100 parts by mass of the charged resin monomer).
  • Example A1 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the characteristics of the produced transparent conductive laminate are shown in Table A1.
  • Example A5 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the coating liquid H1 is applied to one side of the substrate with a wire bar, and 30 seconds at 60 ° C. After drying, a hard coat layer having a film thickness of about 3 ⁇ m was formed by irradiating with a high-pressure mercury lamp having an intensity of 160 W with ultraviolet rays having an integrated light quantity of 700 mJ / cm 2 .
  • the following coating liquid R4 was applied with a wire bar and heat-treated at 130 ° C. for 5 minutes to form a cured resin layer having a thickness of about 100 nm.
  • Coating fluid R4 After mixing 720 parts by mass of water, 1080 parts by mass of 2-propanol and 46 parts by mass of acetic acid, 480 parts by mass of 3-glycidoxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (Product name “KBM13” manufactured by Shin-Etsu Chemical Co., Ltd.) 240 parts by mass and 120 parts by mass of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (trade name “KBM603” manufactured by Shin-Etsu Chemical Co., Ltd.) An alkoxysilane mixed solution was produced, this alkoxysilane mixed solution was stirred for 3 hours, hydrolyzed and partially condensed, and further diluted with a mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol in a mass ratio of 1: 1.
  • titanium oxide ultrafine particles in the table, “TiO 2 ”) 15 mass% isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 30 nm) 3024 parts by mass (solid content conversion 453 mass) Part, that is, 54 parts by mass of ultrafine particles with respect to 100 parts by mass of the resin monomer to be added, and 78 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin after curing.
  • TiO 2 titanium oxide ultrafine particles 15 mass% isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 30 nm) 3024 parts by mass (solid content conversion 453 mass) Part, that is, 54 parts by mass of ultrafine particles with respect to 100 parts by mass of the resin monomer to be added, and 78 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin after curing.
  • silica ultrafine particles in the table, “SiO 2 -1”) having an average primary particle size of 20 nm, which is not further surface-modified, are added to the liquid (ultrafine particles with respect to 100 parts by mass of the charged resin monomer).
  • Example A1 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the characteristics of the produced transparent conductive laminate are shown in Table A1.
  • Example A1 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) was used for the transparent organic polymer substrate, and an ITO layer was formed directly on one surface in the same manner as in Example A1 and crystallized.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Reference Example A1.
  • the properties of the produced transparent conductive laminate are shown in Table A2.
  • Example A2 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the properties of the produced transparent conductive laminate are shown in Table A2.
  • Example A3 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) was used for the transparent organic polymer substrate, and a hard coat layer having a thickness of 3 ⁇ m was formed on one surface using an ultraviolet curable polyfunctional acrylate resin paint. Next, an optical interference layer having a film thickness of about 50 nm was formed on the hard coat layer in the same manner as in Example A1 using the coating liquid R1.
  • Example A2 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the properties of the produced transparent conductive laminate are shown in Table A2.
  • Example A4 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) is used for the transparent organic polymer substrate, and a hard coat layer is not provided on one side thereof, and an optical interference layer having a thickness of about 50 nm is formed in the same manner as in Example A1. Formed.
  • Example A2 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the properties of the produced transparent conductive laminate are shown in Table A2.
  • Example A5 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) was used for the transparent organic polymer substrate, and a hard coat layer having a thickness of 3 ⁇ m was formed on one surface using an ultraviolet curable polyfunctional acrylate resin paint. Next, an optical interference layer having a thickness of about 50 nm was formed on the hard coat layer in the same manner as in Example A3 using the coating liquid R2.
  • Example A2 An ITO layer was formed and crystallized in the same manner as in Example A1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example A1.
  • the properties of the produced transparent conductive laminate are shown in Table A2.
  • FIG. 14 shows the reflection spectrum when the transparent conductive layer is removed from the prepared transparent conductive laminate and the transparent conductive laminate. Moreover, the difference spectrum of the two reflection spectra shown in FIG. 14 is shown in FIG. 15 together with the difference spectrum of Example A3.
  • the touch panel using the transparent conductive laminate of the example has a combination of good scratch resistance and a preferable color tone (b * value) due to a hard coat layer having a small refractive index difference from the substrate.
  • b * value a preferable color tone due to a hard coat layer having a small refractive index difference from the substrate.
  • Comparative Example A1 having neither a hard coat layer nor an optical interference layer
  • Comparative Example A2 having a hard coat layer but no optical interference layer
  • the touch panel which does not have a hard-coat layer but uses the transparent conductive laminated body of Comparative Example A4 which has an optical interference layer is preferable regarding color tone (b * value)
  • the scratch resistance is inferior.
  • the refractive index of the optical interference layer is the difference between the refractive index of the transparent conductive layer and the refractive index of the hard coat layer.
  • the touch panel using the transparent conductive laminate of Comparative Example A5 having a large refractive index difference between the hard coat layer and the substrate is preferable in terms of color tone (b * value) and scratch resistance. The visibility was not satisfactory.
  • Example B1 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the following coating solution P1 is applied to one side of the substrate with a wire bar. A cured resin layer having a film thickness of about 100 nm was formed by heat treatment for minutes.
  • titanium oxide ultrafine particles in the table, “TiO2”) 15% by mass isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle size of ultrafine particles: 30 nm) 3024 parts by mass (solid content conversion 453 parts by mass) That is, 54 parts by mass of ultrafine particles are added to 100 parts by mass of the resin monomer to be added, and 78 parts by mass of ultrafine particles are added to 100 parts by mass of the cured resin after curing, and the mixture is further stirred for 10 minutes. Created. In the present invention, it is assumed that the monomer condensation reaction has progressed 100% with respect to parts by mass of the cured resin component.
  • an amorphous transparent oxide film is formed by sputtering using an indium oxide-tin oxide target having a composition of indium oxide and tin oxide of 95: 5 and a packing density of 98%.
  • a conductive layer (ITO layer) was formed. The thickness of the ITO layer was about 20 nm, and the surface resistance value was about 370 ⁇ / ⁇ ( ⁇ / sq).
  • the transparent conductive layer had a thickness of about 20 nm, a refractive index of 2.10, and a surface resistance value of about 450 ⁇ / ⁇ ( ⁇ / sq).
  • the crystal grain size of the transparent conductive layer observed by TEM was in the range of 50 nm to 200 nm.
  • FIG. 18 shows a difference spectrum between the two reflection spectra shown in FIG.
  • Example B2 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the following coating solution P2 is applied to one side of the substrate with a wire bar, and 5 ° C. at 130 ° C. A cured resin layer having a film thickness of about 100 nm was formed by heat treatment for minutes.
  • PC Teijin Chemicals Ltd.
  • titanium oxide ultrafine particles in the table, “TiO2”) 15% by mass isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle size of ultrafine particles: 30 nm) 3024 parts by mass (solid content conversion 453 parts by mass) That is, 54 parts by mass of ultrafine particles were added to 100 parts by mass of the resin monomer to be added, and 78 parts by mass of ultrafine particles were added to 100 parts by mass of the cured resin after curing, and the mixture was further stirred for 10 minutes.
  • TiO2 titanium oxide ultrafine particles
  • isopropyl alcohol dispersion manufactured by CI Chemical Co., Ltd., average primary particle size of ultrafine particles: 30 nm
  • silica ultrafine particles in the table, “SiO2-1”) having an average primary particle diameter of 20 nm, which is not further surface-modified to this liquid (0.5 parts per 100 parts by mass of the charged resin monomer).
  • An isopropyl alcohol solution containing 0.7 parts by mass of an ultrafine particle component with respect to 100 parts by mass of the cured resin component after curing was added and further stirred for 10 minutes to prepare a coating liquid P2.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Examples B3 to 5 In the preparation of the coating liquid P2, the coating liquid P2 was prepared in the same manner as in Example B2, except that the addition amount of the ultrafine silica particles was changed, and the film having a thickness of about 100 nm was cured in the same manner as in Example B2. A resin layer was formed.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B6 A coating liquid P2 was prepared in the same manner as in Example B2, except that in the preparation of the coating liquid P2, the addition amount of the titanium oxide ultrafine particle dispersion was changed. A cured resin layer was formed in the same manner as in Example B2 except that the film thickness was changed.
  • an ITO layer was formed in the same manner as in Example B1 except that the film thickness was changed.
  • the thickness of the ITO layer was about 15 nm, and the surface resistance value was about 450 ⁇ / ⁇ ( ⁇ / sq).
  • the surface resistance value of the transparent conductive layer after the ITO layer was crystallized was about 540 ⁇ / ⁇ ( ⁇ / sq).
  • the crystal grain size of the transparent conductive layer observed by TEM was in the range of 50 nm to 200 nm.
  • Example B7 A coating liquid P2 was prepared in the same manner as in Example B2, except that in the preparation of the coating liquid P2, the addition amount of the titanium oxide ultrafine particle dispersion was changed. A cured resin layer was formed in the same manner as in Example B2 except that the film thickness was changed.
  • an ITO layer was formed in the same manner as in Example B1 except that the film thickness was changed.
  • the thickness of the ITO layer was about 50 nm, and the surface resistance value was about 150 ⁇ / ⁇ ( ⁇ / sq).
  • the surface resistance value of the transparent conductive layer after the ITO layer was crystallized was about 180 ⁇ / ⁇ ( ⁇ / sq).
  • the crystal grain size of the transparent conductive layer observed by TEM was in the range of 50 nm to 200 nm.
  • Examples B8 and 9 A cured resin layer was formed in the same manner as in Example B2 except that the film thickness was changed.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B10 In the preparation of the coating liquid P1, a coating liquid P2 was prepared in the same manner as in Example B2, except that ultrafine particles (“SiO2-2” in the table) having an average primary particle diameter of silica ultrafine particles of 50 nm were used. In addition, a cured resin layer having a thickness of about 100 nm was formed in the same manner as in Example B2.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B11 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the following coating solution P3 is applied to one side of the substrate with a wire bar, and 5 ° C. at 130 ° C. A cured resin layer having a film thickness of about 100 nm was formed by heat treatment for minutes.
  • Coating fluid P3 After mixing 720 parts by mass of water, 1080 parts by mass of 2-propanol and 46 parts by mass of acetic acid, 480 parts by mass of 3-glycidoxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (Product name “KBM13” manufactured by Shin-Etsu Chemical Co., Ltd.) 240 parts by mass and 120 parts by mass of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (trade name “KBM603” manufactured by Shin-Etsu Chemical Co., Ltd.) An alkoxysilane mixed solution was produced, this alkoxysilane mixed solution was stirred for 3 hours, hydrolyzed and partially condensed, and further diluted with a mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol in a mass ratio of 1: 1.
  • cerium oxide ultrafine particles in the table, “CeO2”) 15% by mass isopropyl alcohol dispersion (manufactured by CI Chemical Co., Ltd., average primary particle size of ultrafine particles: 30 nm) 7860 parts by mass (solid content conversion 1179 parts by mass) That is, 141 parts by mass of ultrafine particles were added to 100 parts by mass of the resin monomer to be added, and 203 parts by mass of ultrafine particles were added to 100 parts by mass of the cured resin after curing, and the mixture was further stirred for 10 minutes.
  • CeO2 cerium oxide ultrafine particles
  • isopropyl alcohol dispersion manufactured by CI Chemical Co., Ltd., average primary particle size of ultrafine particles: 30 nm
  • silica ultrafine particles in the table, “SiO2-1”) having an average primary particle diameter of 20 nm, which is not further surface-modified to this liquid (0.5 parts per 100 parts by mass of the charged resin monomer).
  • An isopropyl alcohol solution containing 0.7 parts by mass of an ultrafine particle component with respect to 100 parts by mass of the cured resin component after curing was added and further stirred for 10 minutes to prepare a coating liquid P3.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B12 A coating liquid P1 was prepared in the same manner as in Example B1, except that in the preparation of the coating liquid P1, the addition amount of the titanium oxide ultrafine particle dispersion was changed. Further, a cured resin layer having a thickness of about 76 nm was formed in the same manner as in Example B1 except that the thickness was changed.
  • an amorphous transparent conductive layer is formed on the surface on which the cured resin layer is formed by sputtering using an indium oxide-zinc oxide target having a composition of indium oxide and zinc oxide of 90:10. Formed.
  • the thickness of the IZO layer was about 130 nm, the refractive index was 2.02, and the surface resistance value was about 30 ⁇ / ⁇ ( ⁇ / sq).
  • Example B13 A clear hard coat layer 1 having a film thickness of 4 ⁇ m is formed using a polycarbonate film (C110-100, manufactured by Teijin Kasei Co., Ltd.) on a transparent organic polymer substrate and an ultraviolet curable polyfunctional acrylate resin paint on one side thereof. did.
  • the coating liquid P2 is prepared on the clear hard coat layer in the same manner as in Example B2, except that the addition amount of the ultrafine silica particles is changed, and the same as in Example B2.
  • a cured resin layer having a thickness of about 104 nm was formed.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B14 Clear film with a film thickness of 4 ⁇ m using a polyester film (“Teijin Tetron Film” manufactured by Teijin DuPont Films Ltd., OFW-188) on a transparent organic polymer substrate and UV curable polyfunctional acrylate resin paint on one side. Hard coat layer 1 was formed.
  • the coating liquid P2 is prepared in the same manner as in Example B2, except that the addition amount of the ultrafine silica particles is changed.
  • the clear hard coat layer is prepared in the same manner as in Example B2. A cured resin layer having a thickness of about 104 nm was formed thereon.
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B15 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd., “PC” in the table) is used for the transparent organic polymer substrate, and the following coating liquid P4 is applied to one surface with a wire bar at 60 ° C. After drying for 30 seconds, a cured resin layer having a film thickness of about 100 nm was formed by irradiating with a high-pressure mercury lamp having an intensity of 160 W with ultraviolet rays having an integrated light quantity of 700 mJ / cm 2.
  • Coating fluid P4 Ultraviolet curable urethane acrylate (trade name “NK Oligo U-15HA” manufactured by Shin-Nakamura Chemical Co., Ltd.) 200 parts by mass (resin component 50%), titanium oxide ultrafine particles (“TiO2” in the table) 15% by mass isopropyl alcohol 480 parts by mass (72 parts by mass in terms of solid content, that is, 72 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin) after addition of a dispersion (CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 30 nm) Further, the mixture was diluted with isopropyl alcohol and stirred until uniform to prepare a coating liquid P4.
  • a dispersion CI Chemical Co., Ltd., average primary particle diameter of ultrafine particles: 30 nm
  • Example B1 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B1.
  • Example B16 A polyester film (“Teijin Tetron Film”, OFW-188 manufactured by Teijin DuPont Films Ltd.) was used as the transparent organic polymer substrate.
  • Additional resin layer (Q1) An additional cured resin layer having a thickness of 3.5 ⁇ m is coated on one side of the substrate by the bar coating method using the following coating liquid Q1, dried at 70 ° C. for 1 minute, and then cured by irradiation with ultraviolet rays. Q1 was formed.
  • Coating fluid Q1 is an unsaturated double bond-containing acrylic copolymer (SP value: 10.0, Tg: 92 ° C.) 4 parts by weight, pentaerythritol triacrylate (SP value: 12.7) 100 parts by weight, light 7 parts by weight of a polymerization initiator Irgacure 184 (manufactured by Ciba Specialty Chemicals) was dissolved in an isobutyl alcohol solvent so as to have a solid content of 40% by weight.
  • An unsaturated double bond-containing acrylic copolymer (SP value: 10.0, Tg: 92 ° C.) was prepared as follows.
  • a mixture composed of 171.6 g of isobornyl methacrylate, 2.6 g of methyl methacrylate, and 9.2 g of methyl acrylic acid was mixed. This mixed solution was added to 330.0 g of propylene glycol monomethyl ether heated to 110 ° C. under a nitrogen atmosphere in a 1,000 ml reaction vessel equipped with a stirring blade, a nitrogen introducing tube, a cooling tube and a dropping funnel. A solution of 80.0 g of propylene glycol monomethyl ether containing 1.8 g of peroxy-2-ethylhexanoate was added dropwise at a constant rate over 3 hours and then reacted at 110 ° C. for 30 minutes.
  • An unsaturated double bond-containing acrylic copolymer having a number average molecular weight of 5,500 and a weight average molecular weight of 18,000 was obtained.
  • This resin had an SP value of 10.0, a Tg of 92 ° C., and a surface tension of 31 dyn / cm.
  • Additional resin layer (Q2) The surface opposite to the surface on which the additional cured resin layer Q1 is formed is coated by the bar coating method using the coating liquid Q2 below, dried at 70 ° C. for 1 minute, and then cured by irradiation with ultraviolet rays. A cured resin layer Q2 of 3.5 ⁇ m was formed.
  • the coating liquid Q2 comprises 4 parts by weight of the unsaturated double bond-containing acrylic copolymer (SP value: 10.0, Tg: 92 ° C.), 90 parts by weight of pentaerythritol triacrylate (SP value: 12.7), 10 parts by weight of trimethylolpropane triethylene glycol triacrylate (SP value: 11.6), 7 parts by weight of a photoinitiator Irgacure 184 (manufactured by Ciba Specialty Chemicals), and a solid content of 40% by weight in an isobutyl alcohol solvent It was prepared by dissolving as follows.
  • a coating liquid P1 was prepared in the same manner as in Example B1, except that the addition amount of the titanium oxide ultrafine particle dispersion was changed. Further, a cured resin layer having a thickness of about 90 nm was formed on the additional cured resin layer Q1 in the same manner as in Example B1 except that the film thickness was changed.
  • Example B1 ⁇ Formation of transparent conductive layer> Next, an ITO layer was formed and crystallized in the same manner as in Example B1. The obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1. The characteristics of the produced transparent conductive laminate are shown in Table B1.
  • ⁇ Formation of touch panel> After performing SiO 2 dip coating on both surfaces of a 1.1 mm thick glass plate, an 18 nm thick ITO layer was formed by sputtering. Next, a fixed electrode substrate was prepared by forming dot spacers having a height of 7 ⁇ m, a diameter of 70 ⁇ m, and a pitch of 1.5 mm on the ITO layer.
  • a touch panel having a layer structure shown in FIG. 19 was produced using a fixed electrode substrate and a movable electrode substrate.
  • the touch panel using the transparent conductive laminate of this example had good anti-Newton ring property and no Newton ring was observed.
  • the anti-Newton ring property is Newton in a region where the movable electrode substrate and the fixed electrode substrate are brought into contact with each other from the direction of 60 degrees obliquely with respect to the surface of the touch panel (vertical direction 0 degree) under a three-wavelength fluorescent lamp The presence or absence of a ring was visually observed and evaluated.
  • Example B1 A polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) was used for the transparent organic polymer substrate, and an ITO layer was directly formed on one surface in the same manner as in Example B1 and crystallized. The obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • Example B2 In the preparation of the coating liquid P1, a coating liquid P1 was prepared in the same manner as in Example B1, except that no titanium oxide ultrafine particles were added. Also, a cured resin layer having a film thickness of about 100 nm was formed in the same manner as in Example B1. Formed.
  • Example B2 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B2.
  • a coating liquid P2 is prepared in the same manner as in Example B2 except that no titanium oxide ultrafine particles are added, and a cured resin layer having a film thickness of about 100 nm is formed in the same manner as in Example B2. Formed.
  • Example B2 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B2.
  • the coating liquid P2 was prepared in the same manner as in Example B2, except that the addition amount of the titanium oxide ultrafine particles was changed, and the film thickness was about 100 nm as in Example B2. A cured resin layer was formed.
  • Example B2 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B2.
  • Example B2 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B2.
  • Example B8 An additional cured resin layer was formed in the same manner as in Example B16 except that the cured resin layer of the coating liquid P1 was not formed.
  • Example B2 An ITO layer was formed and crystallized in the same manner as in Example B1.
  • the obtained ITO film had the same surface resistance value and crystal grain size as the ITO film of Example B1.
  • the characteristics of the produced transparent conductive laminate are shown in Table B2.
  • silica ultrafine particles (“SiO 2 -1” in the table) having an average primary particle size of 20 nm, which is not further surface-modified in this solution (100 parts by mass of resin monomer added)
  • An isopropyl alcohol solution containing 0.7 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin component after curing was added and further stirred for 10 minutes to prepare a coating liquid X2.
  • an amorphous indium oxide-tin oxide target having a mass ratio of indium oxide to tin oxide of 95: 5 and a packing density of 98% is formed into an amorphous transparent layer by sputtering.
  • a conductive layer (ITO layer) was formed. The thickness of the ITO layer was about 20 nm, and the surface resistance value was about 370 ⁇ / ⁇ ( ⁇ / sq).
  • the transparent conductive layer had a thickness of about 20 nm, a refractive index of 2.10, and a surface resistance value of about 450 ⁇ / ⁇ ( ⁇ / sq).
  • the crystal grain size of the transparent conductive layer observed by TEM was in the range of 50 nm to 200 nm.
  • the coating liquid X2 was prepared in the same manner as in Reference Example 1 except that the addition amount of the silica ultrafine particles was changed. In the same manner as in Reference Example 1, an optical film having a film thickness of about 50 nm was prepared. An interference layer was formed.
  • the coating liquid X2 was applied to a polycarbonate film in the same manner as in Reference Example 1 except that the film thickness was about 30 nm and 1000 nm, thereby forming an optical interference layer.
  • the coating liquid X2 was prepared in the same manner as in Reference Example 1, except that ultrafine particles having an average primary particle diameter of 50 nm of silica ultrafine particles (“SiO 2 -2” in the table) were used.
  • An optical interference layer having a thickness of about 50 nm was formed in the same manner as in Reference Example 1.
  • Coating liquid Y1 200 parts by mass of tetrabutoxy titanate (trade name “B-4” manufactured by Nippon Soda Co., Ltd.) is added to ligroin (grade made by Wako Pure Chemical Industries, Ltd.) and butanol (grade manufactured by Wako Pure Chemical Industries, Ltd. is special grade) Diluted with a 1: 4 mixed solvent.
  • TiO 2 titanium oxide ultrafine particles
  • An isopropyl alcohol solution containing 17 parts by mass and 0.7 parts by mass of ultrafine particles with respect to 100 parts by mass of the cured resin component after curing was added and further stirred for 10 minutes to prepare a coating liquid Y1.
  • Reference Example 10 Clear film with a film thickness of 4 ⁇ m using a polyester film (“Teijin Tetron Film” manufactured by Teijin DuPont Films Ltd., OFW-188) on a transparent organic polymer substrate and UV curable polyfunctional acrylate resin paint on one side. A hard coat layer was formed. Next, an optical interference layer having a film thickness of about 50 nm was formed on the clear hard coat layer in the same manner as in Reference Example 1.
  • the coating liquid X2 is prepared in the same manner as in Reference Example 1 except that no ultrafine particles are added, and an optical interference layer having a film thickness of about 50 nm is formed in the same manner as in Reference Example 1. did.
  • a polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) is used for the transparent organic polymer substrate, and an average primary particle diameter is 200 parts by mass of UV-curable polyfunctional acrylate resin paint (resin component 50%) on one surface.
  • An optical interference layer having a film thickness of about 50 nm was formed using isopropyl alcohol solutions each containing 0.7 parts by mass, 20 parts by mass, and 40 parts by mass of 20 nm ultrafine silica particles.
  • a polycarbonate film (C110-100, manufactured by Teijin Chemicals Ltd.) is used for the transparent organic polymer substrate.
  • the following coating solution Z2 is applied to one surface of the substrate with a wire bar, and heat-treated at 130 ° C. for 5 minutes to form a film.
  • An optical interference layer having a thickness of about 50 nm was formed.
  • Coating fluid Z2 After mixing 720 parts by mass of water, 1080 parts by mass of 2-propanol and 46 parts by mass of acetic acid, 480 parts by mass of 3-glycidoxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (Product name “KBM13” manufactured by Shin-Etsu Chemical Co., Ltd.) 240 parts by mass and 120 parts by mass of N-2 (aminoethyl) 3-aminopropyltrimethoxysilane (trade name “KBM603” manufactured by Shin-Etsu Chemical Co., Ltd.) An alkoxysilane mixed solution was produced, this alkoxysilane mixed solution was stirred for 3 hours, hydrolyzed and partially condensed, and further diluted with a mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol in a mass ratio of 1: 1.
  • the coating liquid X2 was prepared in the same manner as in Reference Example 1 except that the addition amount of the silica ultrafine particles was changed. In the same manner as in Reference Example 1, an optical film having a film thickness of about 50 nm was prepared. An interference layer was formed.
  • the coating liquid X2 was prepared in the same manner as in Reference Example 1 except that 4 parts by mass of silica fine particles having an average particle size of 0.5 ⁇ m (“SiO 2 -3” in the table) were added.
  • An optical interference layer having a thickness of about 50 nm was formed in the same manner as in Reference Example 1.
  • the transparent conductive laminate of this example had a surface shape with sparse protrusions exceeding 300 nm in height.
  • the touch panel using the transparent conductive laminate of the reference example had low haze and excellent writing (sliding) durability.
  • the touch panel using the transparent conductive laminates of Reference Comparative Examples 1 to 7 has low haze, but is inferior in slipperiness and writing durability. The result was low.
  • the touch panel using the transparent conductive laminates of Reference Comparative Examples 8 to 10 had excellent writing (sliding) durability, but had high haze and optical characteristics. Was inferior.
  • the touch panel using the transparent conductive laminate of Reference Comparative Example 11 was inferior in writing durability although it had a relatively low haze.
  • Substrate (glass plate) 12 14 Transparent conductive layer 13 Spacer 15 Optical interference layer 16 Transparent organic polymer substrate 20 Transparent touch panel 30, 130 Transparent conductive laminate 30a, b Conventional transparent conductive laminate 31, 131 Transparent conductive layer 32, 132 Optical interference layer 33h Hard coat layer 33, 133 Transparent organic polymer substrate

Abstract

 液晶ディスプレイ等の表示素子と組み合わせて使用するのに適した透明導電性積層体、及びこのような透明導電性積層体を有する透明タッチパネルを提供する。透明有機高分子基板33の少なくとも一方の面上に、ハードコート(HC)層33h、光学干渉層32、そして透明導電層31が順次積層されてなり、且つ以下の条件を満たす、透明導電性積層体:透明有機高分子基板及びHC層の屈折率n及びn3hが下記の式を満たし:|n-n3h|≦0.02;HC層の厚さが、1μm以上10μm以下であり;光学干渉層の厚さが、5nm~500nmであり;透明導電性層の厚さが、5nm以上200nm以下であり;全光線透過率が85%以上であり;且つb値が-1.0以上1.5未満。また、このような透明導電性積層体を有する透明タッチパネルとする。

Description

透明導電性積層体及び透明タッチパネル
 本発明は透明タッチパネルの電極基板のための透明導電性積層体に関する。また、本発明は、このような透明導電性積層体を有する透明タッチパネルに関する。
 マン-マシンインタフェイスの1つとして対話型入力方式を実現する透明タッチパネルが多く使用されるようになった。透明タッチパネルは位置検出方式によって、光学方式、超音波方式、静電容量方式、抵抗膜方式などがある。
 これらの透明タッチパネルは、透明有機高分子基板の少なくとも一方の面上に、透明導電層等が積層されてなる透明導電性積層体を用いている。
 ここで、透明有機高分子基板としては、通常、トリアセチルセルロース(TAC)のようなセルロース系フィルム、ポリエチレンテレフタレート(PET)フィルムのようなポリエステル系フィルム、ポリカーボネート系フィルム、非晶性ポリオレフィン系フィルム等の高い透明性を有する有機高分子基板が用いられる。
 これらの透明有機高分子基板は、表面硬度が低く、傷つきやすいので、透明有機高分子基板の表面にハードコート層と呼ばれる樹脂層をコートすることがおこなわれている。このハードコート層は、透明有機高分子基板の表面の保護のためだけでなく、透明有機高分子基板の表面に存在する微細な傷を埋めて平坦化するためにも有効であることが知られている。このハードコート層に関し、ハードコート層の屈折率を、透明有機高分子基板の屈折率と合せることによって、ハードコート層と透明有機高分子基板との界面における反射による干渉斑を抑制することが知られている(特許文献1)。
 また、透明導電層としては、ITO(酸化インジウム-スズ)のような透明金属酸化物層が一般的に用いられている。このような透明導電性層を透明有機高分子基板に直接に積層させる場合、基板と透明導電層との界面及び透明導電層と空気との界面での反射による光干渉、透明導電層自体の光吸収等によって、透明導電性積層体を透過する光が着色することがある。例えば、一般的に用いられる20~30nm程度の膜厚の透明導電性層では、透過光が若干茶色がかった色に着色されることがある。このような着色は、ディスプレイ表示画面の色相の変化をもたらし、したがって好ましくない。
 この問題を解決するために、透明導電性層と透明有機高分子基板との間に光学干渉層を挿入し、干渉効果によって透明導電性層による反射等を抑制することが行われている(特許文献2等)。
 透明タッチパネルの位置検出方式のうち、抵抗膜方式は、構造が単純で価格/性能比も良いため、最も普及した方式である。抵抗膜方式の透明タッチパネルは、対向する側に透明導電層を有する2枚の透明基板を一定間隔に保持して構成される電子部品であり、可動電極基板(視認側の電極基板)をペン又は指で押圧し、たわませ、固定電極基板(対向する側の電極基板)と接触、導通することによって検出回路が位置を検知し、所定の入力がなされるものである。
 また、透明タッチパネルの位置検出方式のうち、静電容量方式は、多点検出が可能なため、将来的に有望な技術であるとされている。静電容量方式の透明タッチパネルは、パターンを付与された透明導電層と指等の間での静電容量の変化に基づいて位置を検出し、所定の入力がなされるものである。
 また、抵抗膜方式においても、従来は一点式の検出方式として、パターンの付与されていない所謂アナログ式タッチパネルが一般的であったが、多点検出を可能にするため、パターンを付与したタイプのものも開発されてきている。
 これら多点検出に対応した透明タッチパネルのように、透明タッチパネルにおいてパターンを付与された透明導電性層を用いる場合、透明導電性層がある部分とない部分とで表示光の透過率や色調が異なり、それによって透明導電性層のパターンが視認されて表示光が見にくくなってしまう問題(以下「骨見え」と呼ぶ)がある。
 この骨見えの抑制のためには、比較的薄い透明導電性層を用いること(特許文献7)、透明導電性層とその下のハードコート層との間に、これらの層の屈折率の中間の屈折率を有する層を提供すること(特許文献8)等が知られている。
 なお、透明導電性積層体のための透明有機高分子基板は、取り扱いの際にそのままでは滑り性が不足するため、表面に凹凸を形成した易滑層を導入し、易滑性を向上させることが一般的である。しかしながら、表面に凹凸を形成して易滑性を改良する場合、表面での光の乱反射が生じ、透明性の低下、及びヘーズの増大が起こる。このため、高い透明性や小さいヘーズを維持しつつ、優れた易滑性を有する有機高分子基板を提供することは、非常に重要である。
 透明有機高分子基板に易滑層を形成する一般的な手法としては、サブミクロン程度の粒径を持つ微粒子、例えばシリカ、炭酸カルシウム、カオリン等の無機粒子、及び/又はシリコーン、架橋ポリスチレン等の有機粒子を樹脂に含有させ、このような微粒子を含有している樹脂で易滑層を形成することが知られている(特許文献3及び4)。
 しかしながら、サブミクロン程度の粒径を持つ微粒子を含有している樹脂から作られた易滑層を用いる場合、樹脂中に含有されるこれらの微粒子によって光が散乱し、得られる透明有機高分子基板の透明性又はヘーズ特性が損なわれるという問題があった。
 これに関して、樹脂に含有される微粒子の量を減らすことによって、ある程度の透明度及び低ヘーズを実現することは可能であるが、この場合には、充分な易滑性を得ることが困難な場合がある。
 また、サブミクロン程度の粒径を持つ微粒子を含有している樹脂から作られた易滑層を用いる場合、筆記耐久試験を行ったときに、電極基板の透明導電層形成面の突起を形成する粒子が剥がれ落ち、タッチパネル内に飛散することがある。このように飛散した微粒子が可動電極基板と固定電極基板間の導通を妨げ、タッチパネルの電気特性を劣化させることがある。更にこれら飛散した微粒子は、可動電極基板と固定電極基板の透明導電層を着傷し、タッチパネルの電気特性を劣化させることがある。
 これらの問題を解決するために、例えば特許文献5及び6では、透明有機高分子基板としての透明基材フィルムに、平均粒径1~30nmの超微粒子を含む樹脂で形成された凹凸表面を有するアンカー層を形成し、その上に透明導電層を設けて、透明導電性フィルムを得ることを提案している。
 ここでは、凹凸表面を有するアンカー層が透明基材フィルム上に配置されていることによって、抵抗膜方式タッチパネルにおけるフィルム同士の貼り付きに起因するスティッキングを防止している。しかしながら、ここでは、平均粒径1~30nmの超微粒子によってアンカー層が凹凸表面を有するようにするために、比較的多量の超微粒子をアンカー層に含有させており、したがってアンカー層は比較的大きいヘーズ値を有することが理解される。
特開2003-291274号公報 特開2000-301648号公報 特開2001-109388号公報 特開平06-99559号公報 特開2001-283644号公報 特開2002-117724号公報 特昭64-10507号公報 特開平8-240800号公報
 本発明の目的は、液晶ディスプレイ(LCD)や有機ELディスプレイなどの表示素子と組み合わせて使用するのに適した透明導電性積層体を提供することである。また、本発明の目的は、このような透明導電性積層体を有する透明タッチパネルを提供することである。
 本件発明者らは、上記課題を解決するための鋭意検討した結果、透明有機高分子基板の少なくとも一方の面上に、ハードコート層、光学干渉層、そして透明導電層が順次積層されてなる透明導電性積層体において、透明有機高分子基板の屈折率とハードコート層の屈折率nとの差を小さくすること等によって、表示素子と組み合わせて使用するのに適した透明導電性積層体が得られることを見出して、下記〈A1〉~〈A12〉の第1の本発明に至った。
 〈A1〉透明有機高分子基板の少なくとも一方の面上に、ハードコート層、光学干渉層、そして透明導電層が順次積層されてなり、且つ以下(A-a)~(A-f)を満たす、透明導電性積層体:
  (A-a)上記透明有機高分子基板の屈折率nと上記ハードコート層の屈折率n3hとが下記の式を満たし:
         |n-n3h|≦0.02
  (A-b)上記ハードコート層の厚さが、1μm以上10μm以下であり;
  (A-c)上記光学干渉層の厚さが、5nm~500nmであり;
  (A-d)上記透明導電性層の厚さが、5nm以上200nm以下であり;
  (A-e)全光線透過率が85%以上であり;且つ
  (A-f)L表色系のクロマティクネス指数b値が-1.0以上1.5未満。
 〈A2〉更に、(A-g)上記透明導電性積層体の透明導電層側から波長450nm~700nmの波長の光を投射したときの反射スペクトルに関して、上記透明導電性積層体での反射スペクトルと上記透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが以下(A-g1)及び(A-g2)を満たす、上記〈A1〉項に記載の透明導電性積層体:
  (A-g1)上記差スペクトルの絶対値の最大値が、3.0%以下であり、且つ
  (A-g2)上記差スペクトルの積算値が、-200nm・%以上200nm・%以下。
 〈A3〉更に、(A-h)上記透明導電性層が、上記光学干渉層の上の一部においてのみ配置されてパターンを形成している、上記〈A1〉又は〈A2〉項に記載の透明導電性積層体。
 〈A4〉更に、(A-i)上記光学干渉層が上記ハードコート層上に直接に積層されている、上記〈A1〉~〈A3〉項のいずれかに記載の透明導電性積層体。
 〈A5〉光学干渉層が、硬化樹脂成分及び平均一次粒子径100nm以下の第1の超微粒子を含む、上記〈A1〉~〈A4〉項のいずれかに記載の透明導電性積層体。
 〈A6〉更に、以下(A-p)~(A-r)を満たす、上記〈A1〉~〈A5〉項のいずれかに記載の透明導電性積層体:
  (A-p)上記光学干渉層が、樹脂成分、及び平均一次粒径1nm以上100nm以下の第1の超微粒子を含み、
  (A-q)上記樹脂成分及び上記第1の超微粒子が、同じ金属及び/又は半金属元素を含み、且つ
  (A-r)上記光学干渉層において、上記樹脂成分と同じ金属及び/又は半金属元素を含む上記第1の超微粒子の含有量が、上記樹脂成分100質量部に対して0.01質量部以上3質量部以下。
 〈A7〉上記透明導電層が、30nm以上200nm以下の高さの突起を、50μm四方当たり10個以上300個以下有する、上記〈A6〉記載の透明導電性積層体。
 〈A8〉上記透明導電層の表面粗さRaが、20nm以下である、上記〈A6〉又は〈A7〉項記載の透明導電性積層体。
 〈A9〉ヘーズが2%以下である、上記〈A6〉~〈A8〉項のいずれかに記載の透明導電性積層体。
 〈A10〉上記金属及び/又は半金属元素が、Al、Bi、Ca、Hf、In、Mg、Sb、Si、Sn、Ti、Y、Zn及びZrからなる群より選択される1又は複数の元素である、上記〈A6〉~〈A9〉項のいずれかに記載の透明導電性積層体。
 〈A11〉少なくとも片面に透明導電層が設けられた2枚の透明電極基板が互いの透明導電層同士が向き合うように配置されて構成された透明タッチパネルにおいて、少なくとも一方の透明電極基板として上記〈A1〉~〈A10〉項のいずれかに記載の透明導電性積層体を有する、抵抗膜方式の透明タッチパネル。
 〈A12〉上記透明導電性層が、上記光学干渉層の上の一部においてのみ配置されてパターンを形成している上記〈A1〉~〈A10〉項のいずれかに記載の透明導電性積層体を有する、静電容量方式の透明タッチパネル。
 〈A13〉上記透明タッチパネルの観察側において偏光板が直接又は他の基材を介して上記透明導電性積層体に積層されている、〈A11〉又は〈A12〉に記載の透明タッチパネル。
 また、本件発明者らは、上記課題を解決するための鋭意検討した結果、透明有機高分子基板の少なくとも一方の面上に、硬化樹脂層、そして透明導電層が順次積層されてなる透明導電性積層体において、透明導電層側から光を投射したときの反射スペクトルが特定の条件を満たすことによって、透明タッチパネルにおいて透明導電性層のパターンが視認されて表示光が見にくくなってしまう問題、すなわち骨見えを抑制できることを見出して、下記〈B1〉~〈B14〉の第2の本発明に至った。
 〈B1〉透明有機高分子基板の少なくとも一方の面上に、硬化樹脂層、そして透明導電層が順次積層されてなる透明導電性積層体であって、
 上記透明導電性積層体の透明導電層側から波長450nm~700nmの波長の光を投射したときの反射スペクトルに関して、上記透明導電性積層体での反射スペクトルと上記透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが以下(B-a1)及び(B-a2)を満たす、透明導電性積層体:
  (B-a1)上記差スペクトルの絶対値の最大値が、3.0%以下であり、且つ
  (B-a2)上記差スペクトルの積算値が、-200nm・%以上200nm・%以下。
 〈B2〉上記透明有機高分子基板の屈折率をn、上記硬化樹脂層の厚み及び屈折率をそれぞれ、d(nm)及びn、且つ上記透明導電層の厚み及び屈折率をそれぞれ、d(nm)及びnとしたときに、以下(B-b1)~(B-b3)を更に満たす、上記〈B1〉項に記載の透明導電性積層体:
  (B-b1)n>n>n
  (B-b2)0.44<n/(n+n)<0.49、且つ
  (B-b3)245<n/(n-0.12<275。
 〈B3〉以下(B-c)~(B-f)を更に満たす、上記〈B1〉又は〈B2〉項に記載の透明導電性積層体:
  (B-c)上記硬化樹脂層が、樹脂成分、及び平均一次粒径1nm以上100nm以下の第1の超微粒子を含み、
  (B-d)上記樹脂成分及び上記第1の超微粒子が、同じ金属及び/又は半金属元素を含み、
  (B-e)上記硬化樹脂層において、上記第1の超微粒子の含有量が、上記樹脂成分100質量部に対して0.01質量部以上3質量部以下であり、且つ
  (B-f)上記硬化樹脂層の厚みが0.01μm以上0.5μm以下。
 〈B4〉(B-g)上記硬化樹脂層が、平均一次粒径1nm以上100nm以下で且つ屈折率が上記樹脂成分よりも大きい第2の超微粒子を更に含む、上記〈B3〉項記載の透明導電性積層体。
 〈B5〉上記硬化樹脂層が、上記第2の超微粒子を含むことによって、上記硬化樹脂層が第2の超微粒子を含まない場合と比較して、上記硬化樹脂層の屈折率が0.01以上増加している、上記〈B4〉項に記載の透明導電性積層体。
 〈B6〉上記透明導電層が、30nm以上200nm以下の高さの突起を、50μm四方当たりの10個以上300個以下有する、上記〈B3〉~〈B5〉項のいずれかに記載の透明導電性積層体。
 〈B7〉上記透明導電層の表面粗さRaが、20nm以下である、上記〈B3〉~〈B6〉項のいずれかに記載の透明導電性積層体。
 〈B8〉全光線透過率が85%以上であり、且つヘーズが2%以下である、上記〈B1〉~〈B7〉項のいずれかに記載の透明導電性積層体。
 〈B9〉上記金属及び/又は半金属元素が、Al、Bi、Ca、Hf、In、Mg、Sb、Si、Sn、Ti、Y、Zn及びZrからなる群より選択される1又は複数の元素である、上記〈B3〉~〈B8〉項のいずれかに記載の透明導電性積層体。
 〈B10〉上記透明有機高分子基板と上記硬化樹脂層との間に、追加の硬化樹脂層を含む、上記〈B1〉~〈B9〉のいずれかに記載の透明導電性積層体。
 〈B11〉上記追加の硬化樹脂層の表面粗さRaが、20nm以上500nm未満である、上記〈B10〉の透明導電性積層体。
 〈B12〉上記透明導電層と上記硬化樹脂層との間に接着層を有し、且つ上記接着層、硬化樹脂層の樹脂成分、及び硬化樹脂層の超微粒子がいずれも、同じ金属及び/又は半金属元素を含む、上記〈B3〉~〈B11〉項のいずれかに記載の透明導電性積層体。
 〈B13〉少なくとも片面に透明導電層が設けられた透明電極基板が1枚以上配置された、静電容量方式の透明タッチパネルにおいて、少なくとも一つの透明電極基板として上記〈B1〉~〈B10〉、及び〈B12〉項のいずれかに記載の透明導電性積層体を用いたことを特徴とする透明タッチパネル。
 〈B14〉少なくとも片面に透明導電層が設けられた2枚の透明電極基板が互いの透明導電層同士が向き合うように配置されて構成された、抵抗膜方式の透明タッチパネルにおいて、少なくとも一方の透明電極基板として上記〈B1〉~〈B12〉項のいずれかに記載の透明導電性積層体を用いたことを特徴とする透明タッチパネル。
 〈B15〉上記透明タッチパネルの観察側において偏光板が直接又は他の基材を介して上記透明導電性積層体に積層されている、〈B13〉又は〈B14〉に記載の透明タッチパネル。
 本発明によれば、表示素子と組み合わせて使用するのに適した透明導電性積層体が提供される。また、本発明によれば、このような透明導電性積層体を用いた透明タッチパネル、特に抵抗膜方式又は静電容量方式の透明タッチパネルが提供される。
 より具体的には、第1の本発明の透明導電性積層体は、透明有機高分子基板の少なくとも一方の面上に、ハードコート層、光学干渉層、そして透明導電層が順次積層されてなり、ここで透明有機高分子基板の屈折率とハードコート層の屈折率との差が小さいこと等によって、表示素子と組み合わせて使用するのに適した色調を有することができる。
 また、第2の本発明の透明導電性積層体は、この透明導電性積層体を使用する透明タッチパネルにおいて、透明導電性層のパターンが視認されて表示光が見にくくなってしまう問題、すなわち骨見えを抑制できる。
第1の本発明の透明導電性積層体を説明するための図である。 図1の第1の本発明の透明導電性積層体での干渉を説明するための図である。 従来の透明導電性積層体を説明するための図である。 図3の従来の透明導電性積層体での干渉を説明するための図である。 従来の透明導電性積層体を説明するための図である。 図5の従来の透明導電性積層体での干渉を説明するための図である。 第1の本発明の透明導電性積層体を有する透明タッチパネルの例を示す図である。 第1の本発明の透明導電性積層体を説明するための図である。 図8の第1の本発明の透明導電性積層体での干渉を説明するための図である。 従来の透明導電性積層体を説明するための図である。 図10の従来の透明導電性積層体での干渉を説明するための図である。 第2の本発明の透明導電性積層体の例を示す図である。 実施例A3の透明導電性積層体、及びこの透明導電性積層体から透明導電性層を除去したときの反射スペクトルである。 比較例A5の透明導電性積層体、及びこの透明導電性積層体から透明導電性層を除去したときの反射スペクトルである。 図13及び図14で示した各反射スペクトルの差スペクトルである。 実施例B1の透明導電性積層体、及び透明導電性積層体から透明導電性層を除去したときの反射スペクトルである。 比較例B1の透明導電性積層体、及び透明導電性積層体から透明導電性層を除去したときの反射スペクトルである。 図16及び図17で示した各反射スペクトルの差スペクトルである。 実施例B16で得たタッチパネルの構成を示す図である。 式(B-b1)に関して、実施例及び比較例の透明導電性積層体の各層の厚み及び屈折率の関係を示す図である。 式(B-b2)に関して、実施例及び比較例の透明導電性積層体の各層の厚み及び屈折率の関係を示す図である。 参考例1の透明導電性積層体表面の形態についてAFMにて観察した結果を示す図である。
 以下、本発明の実施の形態を説明するが、本発明は以下の説明に限定されるものではない。
 《第1の本発明》
 上記記載のように、従来、透明有機高分子基板の表面にハードコート層と呼ばれる樹脂層を提供することがおこなわれている。すなわち、図3に示すように、透明有機高分子基板33の少なくとも一方の面上に、ハードコート層33hと透明導電層31とを順次積層して、透明導電性積層体30aを提供することが行われている。
 しかしながら、特許文献1に記載のように、このハードコート層33hは、透明有機高分子基板33の表面における反射33Rと透明導電性層31の表面における反射31Rとの干渉によって干渉斑を生じることが知られている。この干渉の効果は、例えば図4に示すようなものである。
 また、上記記載のように、従来、透明導電層による反射及び透過光の着色の抑制を達成するために、透明導電性層と透明有機高分子基板との間に光学干渉層を挿入することが行われている。したがってハードコート層を用いる態様おいて更に光学干渉層を用いて、透明導電層による反射及び透過光の着色を抑制する場合、図5に示すように、透明有機高分子基板33の少なくとも一方の面上に、ハードコート層33h、光学干渉層32、そして透明導電層31を順次積層して、透明導電性積層体30bを提供することが考えられる。
 この態様では、例えば図6に示すように、光学干渉層によって反射を抑制し、それによって全体としての透過率を高めることができる。しかしながら、透明導電層による透過光の着色の抑制、すなわち透過光の色調の調節に関しては、ハードコート層による干渉によって波長毎の透過率の調節が困難であり、それによって透明導電層による透過光の着色が充分に抑制されないことがある。なお、図6に示す態様では、透明導電層によって透過光の着色を抑制し、好ましい色調を得るために、470nm程度の波長の光の透過率を高めるようにして光学干渉層を設計している。
 これに対して第1の本発明の透明導電性積層体では、図1に示すように、透明有機高分子基板33の少なくとも一方の面上に、ハードコート層33h、光学干渉層32、そして透明導電層31が順次積層されてなり、更にハードコート層33hの屈折率と透明有機高分子基板33の屈折率との差が充分に小さいことによって、ハードコート層と透明有機高分子基板との界面における反射を抑制している。この本発明の透明導電性積層体によれば、光学干渉層による透過光の色調の調節及び透過率の向上を達成できる。この第1の本発明の透明導電性積層体の干渉効果を図2に示す。
 〈ハードコート層〉
 第1の本発明の透明導電性積層体は、透明有機高分子基板の少なくとも一方の面上に、ハードコート層、特に硬化樹脂系ハードコート層を有する。このハードコート層の厚さは、1μm以上10μm以下であり、1μm以上5μm以下、又は1μm以上3μm以下であってよい。
 ここで、このハードコート層の屈折率n3hは、透明有機高分子基板の屈折率nに対して下記の式を満たす:
         |n-n3h|≦0.02、特に0.01
 屈折率の波長は550nmにおいて上記式を満たす。さらには波長500nm~600nmの範囲において上記式を満たしていることが好ましい。特に400nm~700nmの範囲において上記式を満たしていることが好ましい。
 上記記載のように、このハードコート層が上記の条件を満たすことによって、ハードコート層と透明有機高分子基板との界面における反射を抑制し、それによって光学干渉層による透過光の色調の調節及び透過率の向上を達成できる。
 このハードコート層は、上記の条件を満たす限り、材料、特に熱硬化樹脂や活性エネルギー線硬化樹脂などで形成することができる。なかでも、活性エネルギー線に紫外線を用いた、紫外線硬化型樹脂は生産性や経済性に優れており好適である。
 ハードコート層のための紫外線硬化型樹脂としては、例えば1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジメタクリレート、ポリ(ブタンジオール)ジアクリレート、テトラエチレングリコールジメタクリレート、1,3-ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリイソプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート及びビスフェノールAジメタクリレートの如きジアクリレート類;トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリトリトールモノヒドロキシトリアクリレート及びトリメチロールプロパントリエトキシトリアクリレートの如きトリアクリレート類;ペンタエリトリトールテトラアクリレート及びジ-トリメチロールプロパンテトラアクリレートの如きテトラアクリレート類;並びにジペンタエリトリトール(モノヒドロキシ)ペンタアクリレートの如きペンタアクリレート類を挙げることができる。ハードコート層のための紫外線硬化型樹脂としては、この他にも、5官能以上の多官能アクリレートも用いることができる。これらの多官能アクリレートは1種単独、又は2種以上混合して同時に用いてもよい。さらにこれらのアクリレート類には、光開始剤、光増感剤、レベリング剤、金属酸化物やアクリル成分などから成る微粒子や超微粒子などの第三成分を1種又は2種以上を添加して用いることができる。
 また特に、ハードコート層に含まれる硬化樹脂成分は、特許文献1で示されるような化合物を用いて得られるものであってもよい。
 すなわち、ハードコート層に含まれる硬化樹脂成分は、分子構造中にフルオレン骨格を有するモノマーを含むコーティング組成物を、活性エネルギー照射及び/又は熱により硬化させることにより形成されるものであってよい。また、フルオレン骨格を有するこのモノマーは、下記式(b)で表される化合物であり、且つハードコート層が活性エネルギー線照射により硬化したものであってよい:
Figure JPOXMLDOC01-appb-C000001
 (上記式(b)においてR~Rはそれぞれ独立に、炭素数2~6の2価の炭化水素基であり、R~R10はそれぞれ独立に、水素原子、及びハロゲン原子及び炭素数1~6の1価の炭化水素基からなる群から選ばれる少なくとも一種の基)。
 〈光学干渉層〉
 第1の本発明の透明導電性積層体において用いられる光学干渉層は、その下の層、特にハードコート層との間の界面での反射によって光学的な干渉を得、それによって透明導電性積層体において、所望の全光線透過率及びL表色系のクロマティクネス指数b値を得られるようにするように選択できる。この光学干渉層の厚さは、5nm~500nm、特に5~300nm、より特に5~200nm、更により特に5~100nmである。またこの光学干渉層は特に、樹脂から構成されている樹脂系光学干渉層である。
 光学干渉層は、その下の層、特にハードコート層との間の界面での反射によって光学的な干渉を得るために、光学干渉層とその下の層との屈折率差が、好ましくは0.05以上、より好ましくは0.10以上、更により好ましくは0.15以上になるように選択できる。また、光学干渉層は特に、ハードコート層上に直接に積層されている。
 〈光学干渉層-光路長〉
 上記記載のように、光学干渉層とハードコート層との界面での反射は、透明導電層による反射及び着色を打ち消す干渉効果を得るために用いることができる。
 ここで、空気の屈折率n、透明導電性層の屈折率n、光学干渉層の屈折率n、ハードコート層の屈折率n3hが、n>n3h>n>nの関係を満たす場合、透明導電性層の表面での反射、及びハードコート層の表面での反射ではいずれも、位相が半波長ずれる。したがって、透明導電層側から入った光について、透明導電層の表面での反射とハードコート層の表面での反射との光路差が、干渉によって打ち消すことを意図する光の波長の約n+1/2倍(nは0又は正の整数)であることが好ましい。
 すなわち、例えば波長470nmの光に対する透明導電層の表面での反射を打ち消す干渉効果を得る場合、ハードコート層の表面で反射する経路の光路長は、470nm×(n+1/2)-70nm~470nm×(n+1/2)+70nmの正の範囲、すなわち例えば165nm~345nm、又は635nm~775nm、特に470nm×(n+1/2)-50nm~470nm×(n+1/2)+50nmの正の範囲、すなわち例えば185nm~285nm、又は655nm~755nm、より特に470nm×(n+1/2)-20nm~470nm×(n+1/2)+20nmの正の範囲、すなわち例えば215nm~255nm、又は685nm~725nmにすることができる。
 また、例えば波長550nmの光に対する透明導電層の表面での反射を打ち消す干渉効果を得る場合、ハードコート層の表面で反射する経路での光路差は、550nm×(n+1/2)-80nm~550nm×(n+1/2)+80nmの正の範囲、特に550nm×(n+1/2)-50nm~550nm×(n+1/2)+50nmの正の範囲、より特に550nm×(n+1/2)-20nm~550nm×(n+1/2)+20nmの正の範囲にすることができる。
 また、空気の屈折率n、透明導電性層の屈折率n、光学干渉層の屈折率n、ハードコート層の屈折率n3hが、n>n>n3h>nの関係を満たす場合、透明導電性層の表面での反射では、位相が半波長ずれ、且つハードコート層の表面での反射では、位相がずれない。したがって、透明導電層側から入った光について、透明導電層の表面での反射とハードコート層の表面での反射との光路差は、干渉によって打ち消すことを意図する光の波長の約n倍(nは0又は正の整数)であることが好ましい。
 すなわち、例えば波長470nmの光に対する透明導電層の表面での反射を打ち消す干渉効果を得る場合、光学干渉層の表面で反射する経路での光路差は、470nm×n-70nm~470nm×n+70nmの正の範囲、すなわち例えば0nm~70nm、又は400nm~540nm、特に470nm×n-50nm~470nm×n+50nmの正の範囲、すなわち例えば0nm~50nm、又は420nm~520nm、より特に470nm×n-20nm~470nm×n+20nmの正の範囲、すなわち例えば0nm~20nm、又は450nm~490nmの範囲にすることができる。
 また、例えば波長550nmの光に対する透明導電層の表面での反射を打ち消す干渉効果を得る場合、光学干渉層の表面で反射する経路での光路差は、550nm×n-80nm~550nm×n+80nmの正の範囲、特に550nm×n-50nm~550nm×n+50nmの正の範囲、より特に550nm×n-20nm~550nm×n+20nmの正の範囲にすることができる。
 上記の干渉効果によれば、透明導電性積層体の色調を調整することができる。例えば上記の計算例でのように、470nm程度の波長の光(青色光)の反射を干渉効果によって打ち消すことによって、L表色系のクロマティクネス指数b値を調節し、特に-1.0~1.5、より特に-0.5~1.5、更により特に0~1.5の範囲にすることが可能になる。また、可視光の中心波長である550nm程度の波長の光の反射を干渉効果によって打ち消すことによって、透明導電性積層体の透過率を改良することができる。
 ここで、本発明に関してb値は、JIS Z8729にて定義されるL表色系のクロマティクネス指数b値であり、JIS Z8722号に準じて、透過モードにより計測される値である。なお、b値の測定においては、光源として日本工業規格Z8720に規定される標準の光D65を採用し、2度視野の条件で測定を行う。
 参考までに、透明導電性積層体の各層の表面での反射率、及びこれらの反射の際の光路長は、図5を用いて下記に示すようにして計算できる。なお、この図5では、従来の透明導電性積層体30bは、透明有機高分子基板33(厚さ:d、屈折率:n)の少なくとも一方の面上に、ハードコート層33h(厚さ:d3h、屈折率:n3h)、光学干渉層32(厚さ:d、屈折率:n)、そして透明導電層31(厚さ:d、屈折率:n)が順次積層されてなる。
 透明導電層31の表面での反射31Rの反射率R、光学干渉層32の表面での反射32Rの反射率R、ハードコート層33hの表面での反射33hRの反射率R3h及び透明有機高分子基板33の表面での反射33Rの反射率Rはそれぞれ、一般に下記の式によって計算することができる(n:空気の屈折率)。
 R=(n-n/(n+n     (式1)
 R=(n-n/(n+n     (式2)
 R3h=(n-n3h/(n+n3h  (式3h)
 R=(n3h-n/(n3h+n   (式3)
 また、透明導電層31の表面での反射31Rとハードコート層33hの表面での反射33hRとの光路差D33hR-31R、及び透明導電層31の表面での反射31Rと透明有機高分子基板33の表面での反射33Rとの光路差D33R-31Rはそれぞれ、下記の式によって計算することができる。
 D33hR-31R=(d×n+d×n)×2         (式4)
 D33R-31R=(d×n+d×n+d3h×n3h)×2  (式5)
 〈用途〉
 第1の本発明の透明導電性積層体は、透明タッチパネルにおける透明電極基板として使用できる。特に、本発明の透明導電性積層体は、少なくとも片面に透明導電層が設けられた2枚の透明電極基板が互いの透明導電層同士が向き合うように配置されて構成された抵抗膜方式透明タッチパネルにおいて、可動及び/又は固定電極基板用の透明電極基板として使用できる。
 この第1の本発明の透明導電性積層体の1つの態様は、図7に示すように、透明有機高分子基板(16)の少なくとも一方の面上に、光学干渉層(15)と透明導電層(14)とが順次積層された透明導電性積層体(14、15、16)である。この図1で示す本発明の透明導電性積層体の1つの態様では、本発明の透明導電性積層体(14、15、16)は、透明導電層(12)を有するガラス板のような他の基板(11)と、互いの透明導電層(12、14)同士が向き合うように配置され、その間にスペーサー(13)が配置されて、抵抗膜方式の透明タッチパネル(20)を形成することができる。
 また特に、第1の本発明の透明導電性積層体は、静電容量方式のタッチパネルのための透明電極基板としても好適に使用される。この場合、透明導電性積層体の透明導電性層が、光学干渉層の上の一部においてのみ配置されてパターンを形成している。上記記載のように、この用途では、従来の透明導電性層では、透明導電性層がある部分とない部分とで表示光の透過率が異なり、それによって透明導電性層のパターンが視認されて表示光が見にくくなってしまう問題(「骨見え」)があった。
 これに関して、第1の本発明の透明導電性積層体では、透明有機高分子基板の屈折率とハードコート層の屈折率との差が小さく、且つ光学干渉層が存在していること等によって、この骨見えを抑制することができ、特に透明導電性積層体の透明導電層側から波長450nm~700nmの波長の光を投射したときの反射スペクトルに関して、透明導電性積層体の反射スペクトルと透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが(A-g1)及び(A-g2)を満たすことによって、骨見えの問題を抑制できる:
 (A-g1)上記差スペクトルの絶対値の最大値が、3.0%以下、特に2.0以下であり、且つ
 (A-g2)上記差スペクトルの積算値が、-200nm・%以上200nm・%以下、特に-170nm・%以上170nm・%以下、より特に-150nm・%以上150nm・%以下。
 これは例えば、図8~11を用いて説明される。
 すなわち、従来の構成において光学干渉層によってこの骨見えを解消しようとする場合、導電性積層体は図10に示すような構成を有することができる。ここで、この導電性積層体30cでは、透明有機高分子基板33の少なくとも一方の面上に、ハードコート層33h、そして光学干渉層32が順次積層されてなり、透明導電層31が光学干渉層32の上の一部においてのみ配置されてパターンを形成している。
 この場合、透明導電性層31が存在しない部分での透明有機高分子基板33の表面での反射33R’、及びハードコート層33hの表面での反射33hR’はいずれも、透明導電性層31が存在する部分での対応する反射33R及び反射33hRと比較して、透明導電性層31が存在しない分だけ光路長が短くなっている。
 この図10に示す構成において透明導電性層31が存在しない部分、及び透明導電性層31が存在する部分についての干渉の効果を図11に示す。また、これらの場合の干渉の効果の差も図11に示す。この図11から明らかなように、図10に示す構成では波長によって干渉の効果の差が変化しており、したがって透明導電性層31が存在しない部分と透明導電性層31が存在する部分とが、色又は明るさの違いとして観察され、したがって骨見えが起こる。
 これに対して、図8に示すように、本発明の構成の導電性積層体では、透明有機高分子基板33の少なくとも一方の面上に、ハードコート層33h、そして光学干渉層32が順次積層されてなり、透明導電層31が光学干渉層の上の一部においてのみ配置されてパターンを形成している。また、本発明の構成の導電性積層体では、透明有機高分子基板33の屈折率とハードコート層33hの屈折率との差が小さく、したがって透明有機高分子基板33とハードコート層33hとの界面での反射は実質的に起こらない。
 この場合、透明導電性層31が存在しない部分での透明有機高分子基板33の表面での反射33R’、及びハードコート層33hの表面での反射33hR’はいずれも、透明導電性層31が存在する部分での対応する反射33R及び反射33hRと比較して、透明導電性層31が存在しない分だけ光路長が短くなっている。
 この図8に示す構成での透明導電性層31が存在しない部分、及び透明導電性層31が存在する部分についての干渉の効果を図9に示す。また、これらの場合の干渉の効果の差も図9に示す。この図9から明らかなように、図8に示す構成では波長によって干渉の効果の差の変化が穏やかであり、したがってこの干渉の効果の差の絶対値を小さくし、且つ可視光領域での干渉の効果の積算値を小さくすることによって、骨見えを抑制することができる。
 また、第1の本発明の透明導電性積層体は、透明タッチパネルの観察側において偏光板を直接又は他の基材を介して積層させて、透明電極基板の位相差を制御することでタッチパネル内での反射率を低減させた、いわゆるインナー型のタッチパネル用透明電極基板、例えばインナー型の抵抗膜方式又は静電容量方式のタッチパネル用の透明電極基板として好適に使用される。
 〈積層順〉
 第1の本発明の透明導電性積層体において、透明導電層、随意の金属化合物層、光学干渉層、ハードコート層、及び随意の追加のハードコート層の積層順は、透明有機高分子基板の少なくとも一方の面上に、ハードコート層、光学干渉層、そして透明導電層が順次積層されており、それによって用途に応じて発現を期待される機能を果たしていれば特に限定されるものではない。例えば、本発明の透明導電性積層体をタッチパネル用基板として用いる場合、透明導電層をA、金属化合物層をB、光学干渉層をC、ハードコート層をDh、透明有機高分子基板をD、追加のハードコート層をEとすると、A/C/Dh/D、A/C/Dh/D/E、A/C/Dh/D/C、A/C/Dh/D/C、A/C/Dh/D/E、A/C/Dh/D/E/C、A/B/C/Dh/D、A/B/C/Dh/D/E、A/B/C/Dh/D/C、A/B/C/Dh/D/C、A/B/C/Dh/D/E、A/B/C/Dh/D/E/Cのように積層することができる。
 《第2の本発明》
 第2の本発明の透明導電性積層体は、透明有機高分子基板の少なくとも一方の面上に、硬化樹脂層、そして透明導電層が順次積層された透明導電性積層体である。この本発明の透明導電性積層体の1つの態様は、図12に示すように、透明有機高分子基板133の少なくとも一方の面上に、硬化樹脂層132と透明導電層131とが順次積層された透明導電性積層体130である。
 また、第2の本発明の透明導電性積層体では、透明導電性積層体の透明導電層側から波長450nm~700nmの波長の光を投射したときの反射スペクトルに関して、透明導電性積層体での反射スペクトルと透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが、以下(B-a1)及び(B-a2)を満たす:
 (B-a1)上記差スペクトルの絶対値の最大値が、3.0%以下、特に2.0以下であり、且つ
 (B-a2)上記差スペクトルの積算値が、-200nm・%以上200nm・%以下、特に-170nm・%以上170nm・%以下、より特に-150nm・%以上150nm・%以下。
 第2の本発明の透明導電性積層体では、透明導電性積層体での反射スペクトルと透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが(B-a1)及び(B-a2)を満たすことによって、骨見えの問題を抑制できる。
 この差スペクトルは例えば、透明有機高分子基板の屈折率をn、上記硬化樹脂層の厚み及び屈折率をそれぞれ、d(nm)及びn、且つ上記透明導電層の厚み及び屈折率をそれぞれ、d(nm)及びnとしたときに、以下(B-b1)~(B-b3)を更に満たすことによって達成できる:
 (B-b1)n>n>n
 (B-b2)0.44<n/(n+n)<0.49、特に0.45<n/(n+n)<0.48且つ
 (B-b3)245<n/(n-0.12<275、特に255<n/(n-0.12<265。
 〈追加の硬化樹脂層〉
 本発明の透明導電性積層体は、用途に応じて、単独又は複数の追加の硬化樹脂層を更に有することができる。この追加の硬化樹脂層は、本発明の透明導電性積層体の任意の位置に配置することができ、すなわち本発明の透明導電性積層体を構成する透明有機高分子基板、硬化樹脂層、及び透明導電層の任意の層の間又は上に配置することができる。したがって、この追加の硬化樹脂層は、透明有機高分子基板の表面を構成するいわゆるハードコート層、特に微粒子等を含有しないクリアハードコート層であってもよい。
 追加の硬化樹脂層は、熱硬化樹脂や活性エネルギー線硬化樹脂などで形成することができる。なかでも、活性エネルギー線に紫外線を用いた、紫外線硬化型樹脂は生産性や経済性に優れており好適である。
 追加の硬化樹脂層のための紫外線硬化型樹脂としては、例えば1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジメタクリレート、ポリ(ブタンジオール)ジアクリレート、テトラエチレングリコールジメタクリレート、1,3-ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリイソプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート及びビスフェノールAジメタクリレートの如きジアクリレート類;トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリトリトールモノヒドロキシトリアクリレート及びトリメチロールプロパントリエトキシトリアクリレートの如きトリアクリレート類;ペンタエリトリトールテトラアクリレート及びジ-トリメチロールプロパンテトラアクリレートの如きテトラアクリレート類;並びにジペンタエリトリトール(モノヒドロキシ)ペンタアクリレートの如きペンタアクリレート類を挙げることができる。追加の硬化樹脂層のための紫外線硬化型樹脂としては、この他にも、5官能以上の多官能アクリレートも用いることができる。これらの多官能アクリレートは1種単独、又は2種以上混合して同時に用いてもよい。さらにこれらのアクリレート類には、光開始剤、光増感剤、レベリング剤、金属酸化物やアクリル成分などから成る微粒子や超微粒子などの第三成分を1種又は2種以上を添加して用いることができる。
 本発明の透明導電性積層体にアンチニュートンリング機能を付与するために、追加の硬化樹脂層に凹凸を形成することができる。凹凸を形成する方法としては、提案されている種々の方法を使用することができる。すなわち、例えば追加の硬化樹脂層内に膜厚と同程度の粒子系を有するフィラーを添加する方法(特開平10-323931号公報)、ナノ粒子を利用して凹凸を形成する方法(特開2004-351744号公報)、複数の硬化成分による相分離を利用して凹凸を形成する方法(特開2009-123685号公報)などが挙げられる。このうち、フィラーを添加する方法は、抵抗膜式のタッチパネルとして使用する場合、透明導電性積層体から使用中にフィラーの脱落が起こり、結果的に透明電極を傷つけてしまうことでタッチパネルの寿命が低下する恐れがあるため、ナノ粒子の凝集を利用して凹凸を形成する方法や、複数の硬化成分による相分離を利用して凹凸を形成する方法が好ましい。
 〈用途〉
 第2の本発明の透明導電性積層体は特に、静電容量方式のタッチパネルのための透明電極基板としても好適に使用される。したがって、本発明の透明導電性積層体は特に、少なくとも片面に透明導電層が設けられた透明電極基板が1枚以上配置された静電容量方式の透明タッチパネルにおいて、少なくとも一つの透明電極基板として使用することができる。この場合、透明導電性積層体の透明導電性層が、硬化樹脂層の上の一部においてのみ配置されてパターンを形成していてよい。
 また、第2の本発明の透明導電性積層体は特に、抵抗膜方式のタッチパネルのための透明電極基板としても好適に使用される。したがって、第2の本発明の透明導電性積層体は特に、少なくとも片面に透明導電層が設けられた2枚の透明電極基板が互いの透明導電層同士が向き合うように配置されて構成された、抵抗膜方式の透明タッチパネルにおいて、少なくとも一方の透明電極基板として使用することができる。この場合、透明導電性積層体の透明導電性層が、硬化樹脂層の上の一部においてのみ配置されてパターンを形成していてよい。
 また、第2の本発明の透明導電性積層体は、透明タッチパネルの観察側において偏光板を直接又は他の基材を介して積層させて、透明電極基板の位相差を制御することでタッチパネル内での反射率を低減させた、いわゆるインナー型のタッチパネル用透明電極基板、例えばインナー型の抵抗膜方式又は静電容量方式のタッチパネル用の透明電極基板として好適に使用される。
 〈積層順〉
 第2の本発明の透明導電性積層体において、透明導電層、随意の金属化合物層、硬化樹脂層、及び随意の追加の硬化樹脂層の積層順は、透明有機高分子基板の少なくとも一方の面上に、硬化樹脂層、そして透明導電層が順次積層されており、それによって用途に応じて発現を期待される機能を果たしていれば特に限定されるものではない。例えば、本発明の透明導電性積層体をタッチパネル用基板として用いる場合、透明導電層をA、金属化合物層をB、硬化樹脂層をC、透明有機高分子基板をD、追加の硬化樹脂層をEとすると、A/C/D、A/C/D/E、A/C/D/C、A/C/E/D/C、A/C/E/D/E、A/C/E/D/E/C、A/B/C/D、A/B/C/D/E、A/B/C/D/C、A/B/C/E/D/C、A/B/C/E/D/E、A/B/C/E/D/E/Cのように積層することができる。
 《透明有機高分子基板》
 第1及び第2の本発明の透明導電性積層体で用いられる透明有機高分子基板は、任意の透明有機高分子基板、特に光学分野で使用されている耐熱性、透明性等に優れた透明有機高分子基板であってよい。
 第1及び第2の本発明の透明導電性積層体に用いる透明有機高分子基板としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ポリカーボネート系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等の透明ポリマーからなる基板があげられる。また、本発明の透明導電性積層体に用いる透明有機高分子基板としては、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドに代表されるアミド系ポリマー等の透明ポリマーからなる基板もあげられる。またさらに、本発明の透明導電性積層体に用いる透明有機高分子基板としては、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや上記ポリマーのブレンド物等の透明ポリマーからなる基板などもあげられる。
 第1及び第2の本発明の透明導電性積層体における用途では、これら透明有機高分子基板のうち、光学的に複屈折の少ないもの、あるいは複屈折とフィルム厚さの積である位相差を可視光の波長の1/4又は1/2程度に制御したもの(「λ/4フィルム」又は「λ/2フィルム」として言及される)、さらには複屈折をまったく制御していないものを、用途に応じて適宜選択することができる。ここで言うように用途に応じて適宜選択を行う場合としては、例えば液晶ディスプレイに使用する偏光板や位相差フィルムや、有機ELディスプレイの反射防止用の偏光板や位相差フィルムなどの機能を取り込んだ、いわゆるインナー型のタッチパネルのように、直線偏光、楕円偏光、円偏光などの偏光によって機能を発現するディスプレイ部材として、本発明の透明導電性積層体を用いる場合をあげることができる。
 透明高分子基板の膜厚は適宜に決定しうるが、一般には強度や取扱性等の作業性などの点より10~500μm程度であり、特に20~300μmが好ましく、30~200μmがより好ましい。
 《光学干渉層/硬化樹脂層》
 〈光学干渉層/硬化樹脂層-材料及び製造方法〉
 第1の本発明の光学干渉層、特に樹脂系光学干渉層、及び第2の硬化樹脂層の形成方法としては、特に湿式法による形成が好適であり、例えばドクターナイフ、バーコーター、グラビアロールコーター、カーテンコーター、ナイフコーター、スピンコータ-、スプレー法、浸漬法等、公知のあらゆる方法を用いることができる。具体的な樹脂系光学干渉層/硬化樹脂層については、例えば特許文献2の記載を参照することができる。
 すなわち、これらの樹脂系光学干渉層/硬化樹脂層は、マイクログラビヤコート法、マイヤーバーコート法、ダイレクトクラビヤコート法等に代表される各種ロールコーティング法、ナイフコート法、カーテンコート法、スピンコート法、スプレーコート法等の湿式コーティング法、及びそれらの併用により作成が可能である。
 この樹脂系光学干渉層/硬化樹脂層としては、高い生産性を得る観点からは、特に湿式コーティング法による樹脂系光学干渉層/硬化樹脂層を用いることが特に好ましく、さらに、湿式コーティングによる樹脂系光学干渉層/硬化樹脂層の中でも、層の機械的強度や安定性、透明導電層や基板等との密着性等に優れているといった観点から、金属アルコキシド、特にチタニウム、ジルコニウムあるいはケイ素のアルコキシドからなる樹脂系光学干渉層/硬化樹脂層を用いることが最も好ましい。ここで、チタニウムとジルコニウムのアルコキシドの樹脂系光学干渉層/硬化樹脂層は、屈折率が約1.6以上、場合によっては約1.7以上となる高屈折率層として機能するものであり、ケイ素アルコキシドの樹脂系光学干渉層/硬化樹脂層は、屈折率が約1.5以下の低屈折率層として機能するものである。
 チタニウムアルコキシドとしては、例えばチタニウムテトライソプロポキシド、テトラ-n-プロピルオルトチタネート等が例示される。また、ケイ素アルコキシドとしては、例えばテトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等が例示される。
 なお、樹脂系光学干渉層/硬化樹脂層は、硬化樹脂成分だけなく、更に平均一次粒子径100nm以下の超微粒子を、配合が可能な任意の量で含んで、屈折率を調節することができる。この超微粒子の材料としては、表面に微細突起を有する樹脂系光学干渉層/硬化樹脂層に関して下記に示すようなものを挙げることができる。
 〈表面に微細突起を有する光学干渉層/硬化樹脂層〉
 第1の本発明の透明導電性積層体の1つの態様では、(A-p)光学干渉層が、樹脂成分、及び平均一次粒径1nm以上100nm以下の第1の超微粒子を含み、(A-q)樹脂成分及び第1の超微粒子が、同じ金属及び/又は半金属元素を含み、且つ(A-r)光学干渉層において、樹脂成分と同じ金属及び/又は半金属元素を含む第1の超微粒子の含有量が、樹脂成分100質量部に対して0.01質量部以上3質量部以下である。
 第2の本発明の透明導電性積層体の1つの態様では、(B-c)硬化樹脂層が、樹脂成分、及び平均一次粒径1nm以上100nm以下の第1の超微粒子を含み、(B-d)樹脂成分及び第1の超微粒子が、同じ金属及び/又は半金属元素を含み、(B-e)硬化樹脂層において、第1の超微粒子の含有量が、樹脂成分100質量部に対して0.01質量部以上3質量部以下であり、且つ(B-f)硬化樹脂層の厚みが0.01以上0.5μm以下である。
 これらの態様では、透明導電層の表面に微小な突起が形成され、それによって高い透明性、小さいヘーズ、及び充分な易滑性の組み合わせが提供される。具体的な機構は不明であるが、透明導電層の表面の微小な突起は、樹脂系光学干渉層/硬化樹脂層の樹脂成分及び第1の超微粒子が同じ金属及び/又は半金属元素を含むことによって、樹脂成分の硬化の間に、樹脂成分と第1の超微粒子が何らかの相互作用を生じて、樹脂系光学干渉層/硬化樹脂層の表面に微小な突起が形成され、この突起が樹脂系光学干渉層/硬化樹脂層上の透明導電性層の表面に反映されて形成されると考えられる。
 透明導電層が平滑であると、フィルム同士の張り付きが生じることで、取り扱い性や巻き取り性が悪い。また、抵抗膜方式タッチパネルにおけるフィルム同士の貼り付きに起因するスティッキングが生じるために、筆記耐久性が低下するが、本発明の透明導電性積層体では表面に微小な突起が形成されているため、良好な取り扱い性や巻き取り性を有すると共に、高い筆記耐久性を有する。
 また、サブミクロン程度の粒径を持つ微粒子を含有している樹脂から作られた易滑層を用いた場合、前述のようにこの微粒子がタッチパネルの筆記耐久性を低下させる原因となるが、本発明の透明導電性積層体は、非常に小さな粒径の第1の超微粒子を含有し、この第1の超微粒子と樹脂成分との相互作用により突起を形成しているため、筆記耐久性を低下させることがない。
 ここで、樹脂成分及び第1の超微粒子の両者に含まれる「金属及び/又は半金属元素」は特に限定されるものではないが、Al、Bi、Ca、Hf、In、Mg、Sb、Si、Sn、Ti、Y、Zn及びZrからなる群より選択される1又は複数の元素であることが好ましく、Al、Si及びTiからなる群より選択される1又は複数の元素であることがより好ましく、Si及び/又はTiであることが更により好ましい。
 〈表面に微細突起を有する光学干渉層/硬化樹脂層-硬化樹脂成分〉
 硬化性樹脂成分としては、超微粒子を分散させることができ、樹脂系光学干渉層/硬化樹脂層の形成後に皮膜として十分な強度を持ち、透明性があり、且つ超微粒子と同一の金属及び/又は半金属元素を含むものであれば特に制限なく使用できる。したがって例えば、硬化性樹脂成分としては、重合性の有機金属化合物、特に金属含有アクリレート、金属アルコキシド等を用いることができる。
 硬化性樹脂成分としては例えば、電離放射線硬化型樹脂や熱硬化型等が挙げられる。
 電離放射線硬化型樹脂を与えるモノマーとしては、例えばポリオールアクリレート、ポリエステルアクリレート、上記以外の硬い層を与えるウレタンアクリレート、エポキシアクリレート、変性スチレンアクリレート、メラミンアクリレート、シリコーン含有アクリレート等の単官能及び多官能アクリレートを挙げることができる。
 Siを含む電離放射線硬化型樹脂を与えるモノマーとしては、例えば、メチルアクリルオキシプロピルトリメトキシシラン、トリス(トリメチルシロキシ)シリルプロピルメタクリレート、アリルトリメチルシラン、ジアリルジフェニルシラン、メチルフェニルビニルシラン、メチルトリアリルシラン、フェニルトリアリルシラン、テトラアリルシラン、テトラビニルシラン、トリアリルシラン、トリエチルビニルシラン、ビニルトリメチルシラン、1,3-ジメチル-1,1,3,3-テトラビニルジシロキサン、ジビニルテトラメチルジシロキサン、ビニルトリス(トリメチルシロキシ)シラン、ビニルメチルビス(トリメチルシリロキシ)シラン、N-(トリメチルシリル)アリルアミン、両末端に2重結合を有するポリジメチルシロキサン、シリコーン含有アクリレートが挙げられる。
 なお、電離放射線によって樹脂層の重合を行う場合、一般に光重合開始剤を適量添加し、また必要に応じ光増感剤を適量添加してもよい。この光重合開始剤としては、アセトフェノン、ベンゾフェノン、ベンゾイン、ベンゾイルベンゾエート、チオキサンソン類等が挙げられ、光増感剤としては、トリエチルアミン、トリ-n-ブチルホスフィン等が挙げられる。
 熱硬化型樹脂としては、例えばアルコキシシラン系化合物などのオルガノシラン系熱硬化型樹脂や、アルコキシチタン系の熱硬化型樹脂、エーテル化メチロールメラミン等をモノマーとしたメラミン系熱硬化型樹脂、イソシアネート系熱硬化型樹脂、フェノール系熱硬化型樹脂、エポキシ硬化型樹脂等が挙げられる。これら熱硬化型樹脂を単独又は複数組合せて使用することも可能である。また必要に応じ、熱硬化型樹脂に、熱可塑性樹脂を混合することも可能である。
 オルガノシラン系の熱硬化型樹脂としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン等を用いることが好ましい。中でも、基板への密着性の安定化を図るという観点から、安定した性能を発揮するメチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン等を用いることが好ましい。
 アルコキシチタン系の熱硬化型樹脂としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等を用いることが好ましい。中でも、塗料としての安定性や、基板への密着性の安定化を図るという観点から、安定した性能を発揮するテトライソプロピルチタネート、テトラノルマルブチルチタネート、チタンラクテート等を用いることが好ましい。
 なお、熱によって樹脂層の架橋を行う場合には、反応促進剤及び/又は硬化剤を適量配合することができる。反応促進剤としては、例えばトリエチレンジアミン、ジブチル錫ジラウレート、ベンジルメチルアミン、ピリジン等が挙げられる。また、硬化剤としては、例えばメチルヘキサヒドロ無水フタル酸、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノ-3,3′―ジエチルジフェニルメタン、ジアミノジフェニルスルフォン等が挙げられる。
 樹脂系光学干渉層/硬化樹脂層を形成するモノマーが超微粒子と同一の金属及び/又は半金属元素を含んでいる場合、これらのモノマーは、単独で、又は他のモノマーと組み合わせて、例えば超微粒子と同一の金属及び/又は半金属元素を含んでいないモノマーと組み合わせて用いることができる。
 なお、樹脂系光学干渉層/硬化樹脂層は、レベリング剤や光増感剤などの他の成分を含んでいても良い。
 〈表面に微細突起を有する光学干渉層/硬化樹脂層-超微粒子/第1の超微粒子〉
 樹脂系光学干渉層/硬化樹脂層に含有される平均一次粒径1nm以上100nm以下の第1の超微粒子は、樹脂成分と同一の金属及び/又は半金属元素を含むものであれば本質的には限定されるものではないが、金属酸化物又は金属フッ化物が好適に使用される。金属酸化物及び金属フッ化物としては、Al、Bi、CaF、In、In・SnO、HfO、La、MgF、Sb、Sb・SnO、SiO、SnO、TiO、Y、ZnO及びZrOからなる群から選ばれる少なくとも一種を好適に用いることができ、Al、SiO、TiOを特に好適に用いることができる。
 したがって例えば、樹脂系光学干渉層/硬化樹脂層の樹脂成分がアルコキシシランから得られる樹脂成分である場合、SiOの第1の超微粒子を用いることができる。また例えば、樹脂系光学干渉層/硬化樹脂層の樹脂成分がアルコキシチタンから得られる樹脂成分である場合、TiOの第1の超微粒子を用いることができる。
 樹脂系光学干渉層/硬化樹脂層に含有される第1の超微粒子の粒径は1nm以上100nmであり、1nm以上70nm以下であることが好ましく、1nm以上50nm以下であることがより好ましく、5nm以上40nm以下であることが更により好ましい。第1の超微粒子の粒径が大きすぎる場合は、光散乱を生じやすくなるため好ましくない。第1の超微粒子の粒径が小さすぎる場合は、粒子の比表面積が増大することにより粒子表面の活性化を促し、粒子同士の凝集性が著しく高くなり、それによって溶液の調整・保存が困難となるため好ましくない。
 樹脂系光学干渉層/硬化樹脂層に含有される第1の超微粒子は、本発明の特性を満たすものであれば、カップリング剤などにより表面修飾されていてもよい。また第1の超微粒子の製造法については液相法、気相法などが手法としてとりうるが、これら製造方法についても特に制約はない。
 硬化樹脂に上記第1の超微粒子を分散させる配合比は、硬化後の樹脂成分100質量部に対し、第1の超微粒子が0.01質量部以上3質量部以下であることが必要であり、好ましくは0.01質量部以上2.5質量部以下であり、より好ましくは0.05質量部以上2質量部以下であり、更により好ましくは0.1質量部以上1質量部以下である。第1の超微粒子が少なすぎる場合には、本発明の用途に必要な表面に突起を有する樹脂層を形成することは難しい。他方でこの割合が大きすぎる場合には、表面の突起が大きくなり、表面において光の散乱が発生することによって、ヘーズが増大するため好ましくない。
 また、本発明における樹脂系光学干渉層/硬化樹脂層の表面の突起は使用する第1の超微粒子のチクソ性にも依存する。それ故、チクソ性を発現、あるいは制御する目的で、光学干渉層を形成する際に、溶媒や分散剤を適宜選択して用いることができる。溶媒としては例えば、アルコール系、芳香族系、ケトン系、ラクテート系、セルソルブ系、グリコール系などの各種が使用できる。分散剤としては例えば、脂肪酸アミン系、スルホン酸アミド系、ε-カプロラクトン系、ハイドロステアリン酸系、ポリカルボン酸系、ポリエステルアミンなど各種が使用できる。これらの溶媒や分散剤は、それぞれ単独あるいは2種以上を組み合わせて用いることができる。
 〈硬化樹脂層-第2の超微粒子〉
 第2の本発明の透明導電性積層体において、硬化樹脂層に含有される平均一次粒径1nm以上100nm以下の第2の超微粒子は、硬化樹脂層に含有される樹脂成分よりも大きい屈折率を有することができる。また特に、この第2の超微粒子は、硬化樹脂層が第2の超微粒子を更に含まない場合と比較して、硬化樹脂層の屈折率を増加させるものであってよい。第2の超微粒子の具体的な材料、粒径、表面修飾、製造法等に関しては、第1の超微粒子に関する上記の記載を参照できる。
 例えば、硬化樹脂層が、樹脂成分として有機ケイ素化合物を含み、且つ第1の超微粒子としてシリカ(SiO)を含む1つの態様では、硬化樹脂層の屈折率は約1.50となる。この場合には、第2の超微粒子として、酸化チタン(屈折率:2.4)等の屈折率が大きい超微粒子を選択することができる。
 硬化樹脂に上記第2の超微粒子を分散させる配合比は、配合が可能な範囲で任意に決定できる。したがってこの配合比は例えば、硬化後の樹脂成分100質量部に対し、第2の超微粒子が1質量部以上、10質量部以上、又は30質量部以上であって、500質量部以下、400質量部以下、300質量部以下、200質量部以下、又は150質量部以下にすることができる。第2の超微粒子が少なすぎる場合には、硬化樹脂層の屈折率の変化が小さくなる。他方でこの割合が大きすぎる場合には、膜の形成が難しくなることがあり、またヘーズが増大することがある。
 例えば、硬化樹脂に上記第2の超微粒子を分散させる配合比は、硬化樹脂層が、第2の超微粒子を含むことによって、硬化樹脂層が第2の超微粒子を含まない場合と比較して、硬化樹脂層の屈折率が0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上、0.07以上、0.08以上、又は0.10以上増加するように選択できる。
 これによって、硬化樹脂層の屈折率は、1.55以上、1.60以上、又は1.65以上であって、1.85以下、1.80以下、又は1.75以下にすることができる。
 〈表面に微細突起を有する光学干渉層/硬化樹脂層-膜厚〉
 表面に微細突起を有する樹脂系光学干渉層/硬化樹脂層を用いる場合、樹脂系光学干渉層/硬化樹脂層は膜厚が小さすぎる場合には、層表面に有効な突起を形成することが困難となるため好ましくないことがある。
 《透明導電層》
 第1及び第2の本発明の透明導電性積層体において、透明導電層は、特に制限は無いが、例えば結晶質の金属層あるいは結晶質の金属化合物層を挙げることができる。透明導電層を構成する成分としては、例えば酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化錫等の金属酸化物の層が挙げられる。これらのうち酸化インジウムを主成分とした結晶質の層であることが好ましく、特に結晶質のITO(Indium Tin Oxide)からなる層が好ましく用いられる。
 また、透明導電層が結晶質の場合、結晶粒径は、特に上限を設ける必要はないが3000nm以下であることが好ましい。結晶粒径が3000nmを超えると筆記耐久性が悪くなるため好ましくない。ここで結晶粒径とは、透過型電子顕微鏡(TEM)下で観察される多角形状又は長円状の各領域における対角線又は直径の中で最大のものと定義される。
 透明導電層が結晶質の膜でない場合には、タッチパネルに要求される摺動耐久性(又は筆記耐久性)や環境信頼性が低下することがある。
 透明導電層は、公知の手法にて形成することが可能であり、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンプレーティング法、真空蒸着法、パルスレーザーデポジション法等の物理的形成法(Physical Vapor Deposition(以下では「PVD」とする))等を用いることができるが、大面積に対して均一な膜厚の金属化合物層を形成するという工業生産性に着目すると、DCマグネトロンスパッタリング法が望ましい。なお、上記物理的形成法(PVD)のほかに、化学気相堆積法(Chemical Vapor Deposition(以下では「CVD」とする))、ゾルゲル法などの化学的形成法を用いることもできるが、膜厚制御の観点からはやはりスパッタリング法が望ましい。
 透明導電層の膜厚は、透明性と導電性の点から、5~200nm、特に5~150nmであることが好ましい。更に好ましくは5~80nmであり、特に好ましくは10~50nmである。透明導電層の膜厚が5nm未満では抵抗値の経時安定性に劣る傾向が有り、また200nmを超えると表面抵抗値が低下するためタッチパネルとして好ましくないことがある。
 本発明の透明導電性積層体をタッチパネルに用いる場合、タッチパネルの消費電力の低減と回路処理上の必要等から、膜厚10~30nmにおいて透明導電層の表面抵抗値が100~2000Ω/□(Ω/sq)、より好ましくは140~1000Ω/□(Ω/sq)の範囲を示す透明導電層を用いることが好ましい。
 《金属化合物層》
 第1及び第2の本発明の透明導電性積層体は、光学干渉層/硬化樹脂層と透明導電層の間に、金属化合物層、特に膜厚が0.5nm以上5.0nm未満の金属化合物層を更に有していてもよい。
 透明有機高分子基板、光学干渉層/硬化樹脂層、膜厚が制御された金属化合物層、透明導電層を順次積層することにより各層間の密着性が大幅に改善される。さらに、光学干渉層中の金属酸化物超微粒子及び/又は金属フッ化物超微粒子等の超微粒子の金属と上記の金属化合物層の金属を同一にすることで、光学干渉層/硬化樹脂層と透明導電層の層間の密着性が更に改善される。
 このような金属化合物層を有する透明導電性積層体を用いた透明タッチパネルでは、金属化合物層がない場合と比較して、透明タッチパネルに要求される筆記耐久性が向上する。金属化合物層の膜厚が厚すぎる場合には、金属化合物層が連続体としての機械物性を示し始めることにより、透明タッチパネルに要求される端押し耐久性の向上は望めない。一方、金属化合物層の膜厚が薄すぎる場合には、膜厚の制御が困難なことに加え、表面に微細突起を有する光学干渉層/硬化樹脂層と透明導電層との密着性を十分発現させることが困難になり、透明タッチパネルに要求される筆記耐久性の向上は不十分となることがある。
 金属化合物層を構成する成分としては、例えば酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化錫等の金属酸化物の層が挙げられる。特に、光学干渉層に含有される樹脂成分と超微粒子と同一の元素を含むことが好ましい。
 これらの金属化合物層は、公知の手法にて形成することが可能であり、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンプレーティング法、真空蒸着法、パルスレーザーデポジション法等の物理的形成法(PVD)等を用いることができるが、大面積に対して均一な膜厚の金属化合物層を形成するという工業生産性に着目すると、DCマグネトロンスパッタリング法が望ましい。なお、上記物理的形成法(PVD)のほかに、化学気相堆積法(CVD)、ゾルゲル法などの化学的形成法を用いることもできるが、膜厚制御の観点からはやはりスパッタリング法が望ましい。
 スパッタリングに用いるターゲットは金属ターゲットを用いることが望ましく、反応性スパッタリング法を用いることが広く採用されている。これは、金属化合物層として用いる元素の酸化物が絶縁体であることが多く、金属化合物ターゲットの場合DCマグネトロンスパッタリング法が適応できないことが多いからである。また、近年では、2つのカソードを同時に放電させ、ターゲットへの絶縁体の形成を抑制するような電源が開発されており、擬似的なRFマグネトロンスパッタリング法を適応できるようになってきている。
 《表面の突起数》
 表面に微細突起を有する光学干渉層/硬化樹脂層を用いる本発明の透明導電性積層体では、この微小な突起によって、高い透明性、小さいヘーズ、及び充分な易滑性の組み合わせが提供される。特に第2の本発明の透明導電性積層体では、条件(B-c)~(B-f)を満たすことによって硬化樹脂層の表面に微小な突起が形成され、それによって高い透明性、小さいヘーズ、及び充分な易滑性の組み合わせが提供される。
 この場合、具体的には、透明導電層は、30nm以上200nm以下の高さの突起を50μm四方当たり、好ましくは10個以上300個以下、特に好ましくは20個以上200個以下、更に好ましくは30個以上150個以下有する。
 ここで、突起の高さが30nm未満の突起については、積層体の易滑性に与える効果が小さいため考慮しない。一方、突起の高さが200nm超である突起は、積層体に易滑性を与えるものの、光散乱を生じてヘーズを増加させる傾向がある。
 透明導電層上の30nm以上200nm以下の高さの突起の数が、少なすぎる場合には、透明導電性積層体に十分な滑り性が得られないことがあり、一方でこの突起の数が多すぎる場合には、積層体表面における光散乱が大きくなり、したがってヘーズが増加することがある。
 抵抗膜方式のタッチパネルは、対向する側に透明導電層を有する2枚のフィルム又はシートを一定間隔に保持して構成される電気部品であり、一方の電極を固定した上で、視認側からペンまたは指で一方の電極を押圧し、たわませ、接触、導通することによって検出回路が位置を検知し、所定の入力がなされるものである。この際、押圧しているペン又は指等のポインティング部周辺に、いわゆるニュートンリングと呼ばれる干渉色が現れることがあり、ディスプレイの視認性を低下させている。このニュートンリングを抑制するために、後述する追加の硬化樹脂層にて表面に凹凸形状を形成し、電極間での光の反射を拡散させることで干渉を防ぐこと(アンチニュートンリング)が行われる。
 このようなアンチニュートンリング機能を持たせる目的で、追加の硬化樹脂層に凹凸形状を形成する場合、透明導電層上の30nm以上200nm以下の高さの突起の数が500個を超える場合がある。
 なお、本発明に関して、透明導電性層上の表面の突起数はSIIナノテクノロジー株式会社製の原子間力顕微鏡(AFM)SPA400を用い、ダイナミックフォースモードにて、測定範囲150μmのスキャナーを使用し、カンチレバーとして背面Al付Siカンチレバー(SIIナノテクノロジー株式会社製 SI-DF40)を使用し、走査範囲50×50μmにて測定を行った。データ数はX方向512個、Y方向512個にて測定した。得られた形状像データを3次プロファイル変換し、得られた表面データから各々の突起部分の高さを見積もり、30nm以上200nm以下の突起数をカウントした。各サンプルについて5回測定し、突起数の平均値を算出した。
 《平均算術粗さ(Ra)》
 静電容量方式の透明タッチパネルや、低ヘーズの抵抗膜方式の透明タッチパネルなどのように、低ヘーズが求められる透明導電性積層体の場合、透明導電性層の表面の凹凸の平均算術粗さ(Ra)は、20nm以下であることが望ましく、10nm以下であることがより望ましく、8nm以下であることが特に望ましい。平均算術粗さ(Ra)が大きすぎると、ヘーズが大きくなり、高画質の液晶ディスプレイに適応したときに、鮮明度を落とすなどの理由から特に好ましくない。
 なお、アンチニュートンリング機能を持たせる目的で、追加の硬化樹脂層に凹凸形状を形成する場合、表面の凹凸のRaは、20nm以上、500nm未満であることが望ましく、25nm以上400nm以下であることがより望ましく、30nm以上350nm以下であることが特に望ましい。平均算術粗さ(Ra)が小さすぎる場合には、ガラスやフィルム基板を本発明の凹凸面に強く接触させた際に、ニュートンリングが生じる。また、平均算術粗さ(Ra)は500nmを超えると、ヘーズが大きくなり、液晶ディスプレイに適応すると、画素の色分離が生じてチラツキを起こすなどの理由から特にディスプレイ用途の基板としては好ましくない。
 なお、本発明に関して、平均算術粗さ(中心線平均粗さ)(Ra)は、JIS B0601-1994準拠で定義されるものである。具体的には、算術平均粗さ(Ra)は、粗さ曲線からその中心線の方向に基準長さlの部分を抜き取り、その抜き取り部分の中心線をX軸、縦倍率の方向をY軸とし、粗さ曲線をy=f(x)で表した時、下記の式によって表されるものである:
Figure JPOXMLDOC01-appb-M000002
 《全光線透過率》
 視認性の観点から、本発明の透明導電性積層体の全光線透過率は、85%以上、好ましくは88%以上、より好ましくは89%以上、特に好ましくは90%以上である。
 本発明に関して全光線透過率は、JIS K7361-1に準じて測定されるものである。具体的には全光線透過率τ(%)は、下記の式によって表される値である:
 τ=τ/τ×100
 (τ:入射光
  τ:試料片を透過した全光線)
 《ヘーズ》
 静電容量方式の透明タッチパネルや、低ヘーズの抵抗膜方式の透明タッチパネルなどのように、低ヘーズが求められる透明導電性積層体の場合、視認性の観点から、本発明の透明導電性積層体のヘーズは、2%以下であることが望ましく、1.5%以下であることがより望ましく、1%以下であることが更により望ましく、0.5%以下であることが特に望ましい。
 一方、アンチニュートンリング機能を持たせた透明導電性積層体の場合、視認性とアンチニュートンリング特性とのバランスの観点から、本発明の透明導電性積層体のヘーズは、2%以上又は2.5%以上であっても許容することができ、15%以下であることが望ましく、12%以下であることがより望ましく、10%以下であることが更により望ましい。
 なお、本発明に関して、ヘーズは、JIS K7136準拠で定義されるものである。具体的には、ヘーズは、全光線透過率τに対する拡散透過率τの比として定義される値であり、より具体的には下記の式から求めることができる:
   ヘーズ(%)=[(τ/τ)-τ(τ/τ)]×100
   τ: 入射光の光束
   τ: 試験片を透過した全光束
   τ: 装置で拡散した光束
   τ: 装置及び試験片で拡散した光束
 以下では参考例を挙げ、本発明をさらに具体的に説明するが、本発明はかかる参考例に限定されるものではない。なお、参考例中、「部」及び「%」は、特に断らない限り質量基準である。また、参考例中における各種の測定は、下記のとおり行った。
 〈Ra(算術平均粗さ)〉
 Sloan社製触針段差計DEKTAK3を用いて測定した。測定はJIS B0601-1994年版に準拠して行った。
 〈表面の突起数(AFM)〉
 SIIナノテクノロジー株式会社製の原子間力顕微鏡SPA400を用い、ダイナミックフォースモードにて、測定範囲150μmのスキャナーを使用し、カンチレバーとして背面Al付Siカンチレバー(SIIナノテクノロジー株式会社製 SI-DF40)を使用し、走査範囲50×50μmにて測定を行った。データ数はX方向512個、Y方向512個にて測定した。得られた形状像データを3次プロファイル変換し、得られた表面データから各々の突起部分の高さを見積もり、30nm以上200nm以下の突起数をカウントした。各サンプルについて5回測定し、突起数の平均値を算出した。
 〈厚さ及び屈折率〉
 光学干渉層/硬化樹脂、透明導電層及びハードコート層の厚さ及び屈折率については、これらの層と屈折率が相違する適当な熱可塑性フィルム基板上に同様のコーティング条件で単層で積層し、上記積層面の光反射スペクトル上に光干渉効果に基づいて発現する反射率の極大ピークもしくは極小ピークの波長とそのピーク反射率の値を用いて、光学シミュレーションにより算出した。なお、本発明に関して、屈折率は特に言及しない限り、550nmの波長の光についての屈折率とする。
 〈反射スペクトル〉
 日立製分光光度計U3500の積分球測定モードにて各スペクトルの測定を行った。尚、測定光のサンプルへの入射角度は5度とし、裏面側を市販の黒色スプレーを用いて遮光層を形成し、サンプルの裏面反射や裏面側からの光の入射がほとんどない状態で測定を行った。差スペクトルは、透明導電層形成前の積層体の反射スペクトルから、透明導電層形成後の積層体の反射スペクトルを引くことで得た。なお、透明導電性積層体から透明導電層を除いた積層体の反射スペクトルは、作成した透明導電性積層体をエッチング液で除去して測定した。
 〈ヘーズ〉
 JIS K7136号に準じ、日本電色(株)製ヘーズメーター(MDH2000)を用いて測定した。
 〈全光線透過率〉
 日本電色(株)製ヘーズメーター(MDH2000)を用いてJIS K7361-1に準じて測定した。
 〈b値〉
 JIS Z8722に準じ、JIS Z8729にて定義されるL表色系のクロマティクネス指数b値を透過モードにより計測した。なお、光源として日本工業規格Z8720に規定される標準の光D65を採用し、2度視野の条件で測定を行った。
 〈易滑性〉
 光学干渉層の易滑性は官能試験で、フィルムが良好(○)であるか、不良(×)であるかを評価した。
 〈耐擦傷性〉
 作成した透明導電性積層体の透明導電層をスチールウールで軽くこすり、表面に傷が付く(×)か、付かない(○)かを評価した。
 〈骨見え性〉
 作成した透明導電性積層体を5cm角に切り出し、透明導電層に3mm幅のポリイミドテープを3mmの間隔ができるように並行に8本貼り付けた。次いで、このポリイミドテープを貼り付けた積層体をITOエッチング液(関東化学社製、商品名「ITO-06N」)に1分間浸漬し、ポリイミドテープを貼り付けていない部分のITOを除去し、3mm間隔で3mm幅のITO膜がパターニングされた積層体を得た。このフィルムを目視観察し、ITOのパターンがほぼ見えない(○)、やや見える(△)、見える(×)を評価した。
 〈筆記耐久試験〉
 作製した透明タッチパネルの可動電極側から先端が0.8Rのポリアセタール製のペンを用いて450g荷重で直線往復50万往復の筆記耐久性試験を行った。ペンは10万回ごとに新規なものに交換した。筆記耐久性前後の透明タッチパネルの50万回往復後のリニアリティ変化量が0.5%未満のものを合格(◎)、1.0%未満のものを合格(○)、1.5%未満のものを合格(△)、1.5%以上となったものを不合格(×)とした。
 〈リニアリティ〉
 可動電極基板上又は固定電極基板上の平行電極間に直流電圧5Vを印加する。平行電極と垂直の方向に5mm間隔で電圧を測定する。測定開始位置Aの電圧をEA、測定終了位置の電圧Bの電圧をEB、Aからの距離Xにおける電圧実測値EX、理論値をETとすると、リニアリティLは、下記のように表される:
 ET=(EB-EA)・X/(B-A)+EA
 L(%)=(|ET-EX|)/(EB-EA)100
 [実施例A1]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に下記の塗工液H1をワイヤーバーで塗布し、60℃にて30秒乾燥後、強度160Wの高圧水銀ランプで積算光量700mJ/cmの紫外線を照射し、膜厚約3μmのハードコート層(H1層)を形成した。
 (塗工液H1)
 ビスフェノキシエタノールフルオレンジアクリレート(大阪ガス社製)59質量部、ウレタンアクリレート(新中村化学製の商品名「NKオリゴU-15HA」)41質量部に、希釈溶剤として1-メトキシ-2-プロパノールを用いて希釈を行い、更に光開始剤としてイルガキュア184(チバガイギー社製)3質量部を加えて均一になるまで攪拌したものを使用した。
 次いで形成したハードコート層上に、下記の塗工液R1をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約50nmの硬化樹脂層を形成した。
 (塗工液R1)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、MgF超微粒子(表中、「MgF」)20質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:50nm)4200質量部(固形分換算840質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子100質量部、硬化後の硬化樹脂成分100質量部に対して超微粒子145質量部)を加え、更に10分間攪拌し、塗工液R1を作成した。なお、本発明に関して、硬化後の樹脂成分の質量部については、モノマーの縮合反応が100%進行したことを仮定している。
 次いで硬化樹脂層を形成した面上に、酸化インジウムと酸化錫の質量比が95:5の組成で充填密度が98%の酸化インジウム-酸化錫ターゲットを用いて、スパッタリング法により非晶質の透明導電層(ITO層)を形成した。ITO層の厚さは約20nm、表面抵抗値は約370Ω/□(Ω/sq)であった。
 引き続いて130℃90分の熱処理を行い、透明導電層(ITO層)を結晶化させることにより透明導電性積層体を作製した。ITO層が結晶化した後の透明導電層の厚さは約20nm、屈折率は2.10、表面抵抗値は約450Ω/□(Ω/sq)であった。なお、TEMにより観察された透明導電層の結晶粒径は50nm~200nmの範囲であった。
 作製した透明導電性積層体の特性を表A1に示す。
 [実施例A2]
 透明有機高分子基板にポリエステルフィルム(帝人デュポンフィルム株式会社製「テイジンテトロンフィルム」、OFW-188)を用い、その一方の面に塗工液H2をワイヤーバーで塗布し、60℃にて30秒乾燥後、強度160Wの高圧水銀ランプで積算光量700mJ/cmの紫外線を照射し、膜厚約3μmのハードコート層(H2層)を形成した。
 (塗工液H2)
 ビスフェノキシエタノールフルオレンジアクリレート(大阪ガス社製)85質量部、ウレタンアクリレート(新中村化学製の商品名「NKオリゴU-15HA」)15質量部に、希釈溶剤としてトルエンを用いて希釈を行い、更に光開始剤としてイルガキュア184(チバガイギー社製)3質量部を加えて均一になるまで攪拌したものを使用した。
 次いで形成したH2層上に、実施例A1と同様にして、膜厚約50nmの硬化樹脂層を形成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A1に示す。
 [実施例A3]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に実施例A1と同様にして塗工液H1を使用して、膜厚約3μmのハードコート層を形成した。
 次いで形成したハードコート層上に、下記の塗工液R2をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約100nmの硬化樹脂層を形成した。
 (塗工液R2)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、酸化チタン超微粒子(表中、「TiO」)15質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:30nm)3024質量部(固形分換算453質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子54質量部、硬化後の硬化樹脂100質量部に対して超微粒子78質量部)を加え、更に10分間攪拌し、塗工液R2を作成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A1に示す。
 作成した透明導電性積層体、及び透明導電性積層体から透明導電性層を除去したときの反射スペクトルを図13に示す。また、図13で示した二つの反射スペクトルの差スペクトルを図15に示す。
 [実施例A4]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に塗工液H1をワイヤーバーで塗布し、60℃にて30秒乾燥後、強度160Wの高圧水銀ランプで積算光量700mJ/cmの紫外線を照射し、膜厚約3μmのハードコート層を形成した。
 次いで形成したハードコート層上に、下記の塗工液R3をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約50nmの硬化樹脂層を形成した。
 (塗工液R3)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、MgF超微粒子(表中、「MgF」)20質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:50nm)4200質量部(固形分換算840質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子100質量部、硬化後の硬化樹脂100質量部に対して超微粒子145質量部)を加え、更に10分間攪拌した。その後、この液に更に表面修飾を施していない平均一次粒子径が20nmのシリカ超微粒子(表中、「SiO-1」)4質量部(投入する樹脂モノマー量100質量部に対して超微粒子0.5質量部、硬化後の硬化樹脂100質量部に対して超微粒子0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液R3を作成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A1に示す。
 [実施例A5]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に塗工液H1をワイヤーバーで塗布し、60℃にて30秒乾燥後、強度160Wの高圧水銀ランプで積算光量700mJ/cmの紫外線を照射し、膜厚約3μmのハードコート層を形成した。
 次いで形成したハードコート層上に、下記の塗工液R4をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約100nmの硬化樹脂層を形成した。
 (塗工液R4)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、酸化チタン超微粒子(表中、「TiO」)15質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:30nm)3024質量部(固形分換算453質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子54質量部、硬化後の硬化樹脂100質量部に対して超微粒子78質量部)を加え、更に10分間攪拌した。その後、この液に更に表面修飾を施していない平均一次粒子径が20nmのシリカ超微粒子(表中、「SiO-1」)4質量部(投入する樹脂モノマー量100質量部に対して超微粒子0.5質量部、硬化後の硬化樹脂100質量部に対して超微粒子0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液R4を作成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A1に示す。
 [比較例A1]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に直接、実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A2に示す。
 [比較例A2]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が3μmのハードコート層を形成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A2に示す。
 [比較例A3]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が3μmのハードコート層を形成した。次にハードコート層上に実施例A1と同様にして塗工液R1を使用して膜厚約50nmの光学干渉層を形成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A2に示す。
 [比較例A4]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面にハードコート層を設けず、実施例A1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A2に示す。
 [比較例A5]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が3μmのハードコート層を形成した。次にハードコート層上に実施例A3と同様にして塗工液R2を使用して膜厚約50nmの光学干渉層を形成した。
 次いで実施例A1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例A1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表A2に示す。
 作成した透明導電性積層体、及び透明導電性積層体から透明導電性層を除去したときの反射スペクトルを図14に示す。また、図14で示した二つの反射スペクトルの差スペクトルを実施例A3の差スペクトルと併せて図15に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表A1から明らかなように、実施例の透明導電性積層体を使用したタッチパネルは、基板との屈折率差の小さいハードコート層による良好な耐擦り傷と好ましい色調(b値)の組み合わせを有していた。また特に、450nm~700nmの波長に関して望ましい差スペクトルを有している実施例A3及び5では、骨見え性が良好であった。更に光学干渉層が表面に凹凸を有する実施例A4及び5では、筆記耐久性が非常に優れていた。
 これに対して、表A2から明らかなように、ハードコート層及び光学干渉層の両方を有してない比較例A1、ハードコート層を有するが光学干渉層を有してない比較例A2、並びにハードコート層及び光学干渉層の両方を有するがハードコート層と基材との屈折率差が大きい比較例A3の透明導電性積層体を使用したタッチパネルは、耐擦り傷性には優れていたものの、色調(b値)に関して好ましくなかった。また、ハードコート層を有さないが光学干渉層を有する比較例A4の透明導電性積層体を使用したタッチパネルは、色調(b値)に関して好ましいが、耐擦り傷性が劣っていた。また更に、ハードコート層及び光学干渉層の両方を有し、且つ特許文献8で示されているように光学干渉層の屈折率が透明導電性層の屈折率とハードコート層の屈折率との中間の値であるが、ハードコート層と基材との屈折率差が大きい比較例A5の透明導電性積層体を使用したタッチパネルは、色調(b値)及び耐擦り傷性に関して好ましいが、骨見え性が好ましい程度ではなかった。
 [実施例B1]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に下記の塗工液P1をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約100nmの硬化樹脂層を形成した。
 (塗工液P1)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、酸化チタン超微粒子(表中、「TiO2」)15質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:30nm)3024質量部(固形分換算453質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子54質量部、硬化後の硬化樹脂100質量部に対して超微粒子78質量部)を加え、更に10分間攪拌し、塗工液P1を作成した。なお、本発明に関して、硬化後の樹脂成分の質量部については、モノマーの縮合反応が100%進行したことを仮定している。
 次いで硬化樹脂層を形成した面上に、酸化インジウムと酸化錫の質量比が95:5の組成で充填密度が98%の酸化インジウム-酸化錫ターゲットを用いて、スパッタリング法により非晶質の透明導電層(ITO層)を形成した。ITO層の厚さは約20nm、表面抵抗値は約370Ω/□(Ω/sq)であった。
 引き続いて130℃90分の熱処理を行い、透明導電層(ITO層)を結晶化させることにより透明導電性積層体を作製した。ITO層が結晶化した後の透明導電層の厚さは約20nm、屈折率は2.10、表面抵抗値は約450Ω/□(Ω/sq)であった。なお、TEMにより観察された透明導電層の結晶粒径は50nm~200nmの範囲であった。
 作製した透明導電性積層体の特性を表B1に示す。また、作成した透明導電性積層体、及び透明導電性積層体から透明導電性層を除去したときの反射スペクトルを図16に示す。また、図5で示した二つの反射スペクトルの差スペクトルを図18に示す。
 [実施例B2]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に下記の塗工液P2をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約100nmの硬化樹脂層を形成した。
 (塗工液P2)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、酸化チタン超微粒子(表中、「TiO2」)15質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:30nm)3024質量部(固形分換算453質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子54質量部、硬化後の硬化樹脂100質量部に対して超微粒子78質量部)を加え、更に10分間攪拌した。その後、この液に更に表面修飾を施していない平均一次粒子径が20nmのシリカ超微粒子(表中、「SiO2-1」)4質量部(投入する樹脂モノマー量100質量部に対して0.5質量部、硬化後の硬化樹脂成分100質量部に対して超微粒子成分0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液P2を作成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B3~5]
 塗工液P2の作成において、シリカ超微粒子の添加量を変更したこと以外は、実施例B2と同様にして塗工液P2を作成し、また実施例B2と同様にして膜厚約100nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B6]
 塗工液P2の作成において、酸化チタン超微粒子分散液の添加量を変更したこと以外は、実施例B2と同様にして塗工液P2を作成した。また、膜厚を変更する以外は実施例B2と同様にして硬化樹脂層を形成した。
 次いで膜厚を変更する以外は実施例B1と同様にしてITO層を形成した。ITO層の厚さは約15nm、表面抵抗値は約450Ω/□(Ω/sq)であった。
 引き続いて130℃90分の熱処理を行い、透明導電層(ITO層)を結晶化させることにより透明導電性積層体を作製した。ITO層が結晶化した後の透明導電層の表面抵抗値は約540Ω/□(Ω/sq)であった。なお、TEMにより観察された透明導電層の結晶粒径は50nm~200nmの範囲であった。
 [実施例B7]
 塗工液P2の作成において、酸化チタン超微粒子分散液の添加量を変更したこと以外は、実施例B2と同様にして塗工液P2を作成した。また、膜厚を変更する以外は実施例B2と同様にして硬化樹脂層を形成した。
 次いで膜厚を変更する以外は実施例B1と同様にしてITO層を形成した。ITO層の厚さは約50nm、表面抵抗値は約150Ω/□(Ω/sq)であった。
 引き続いて130℃90分の熱処理を行い、透明導電層(ITO層)を結晶化させることにより透明導電性積層体を作製した。ITO層が結晶化した後の透明導電層の表面抵抗値は約180Ω/□(Ω/sq)であった。なお、TEMにより観察された透明導電層の結晶粒径は50nm~200nmの範囲であった。
 [実施例B8及び9]
 膜厚を変更する以外は実施例B2と同様にして硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B10]
 塗工液P1の作成において、シリカ超微粒子の平均一次粒子径が50nmの超微粒子(表中「SiO2-2」)を使用すること以外は、実施例B2と同様にして塗工液P2を作成し、また実施例B2と同様にして膜厚約100nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B11]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に下記の塗工液P3をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約100nmの硬化樹脂層を形成した。
 (塗工液P3)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に、酸化セリウム超微粒子(表中、「CeO2」)15質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:30nm)7860質量部(固形分換算1179質量部、すなわち投入する樹脂モノマー量100質量部に対して超微粒子141質量部、硬化後の硬化樹脂100質量部に対して超微粒子203質量部)を加え、更に10分間攪拌した。その後、この液に更に表面修飾を施していない平均一次粒子径が20nmのシリカ超微粒子(表中、「SiO2-1」)4質量部(投入する樹脂モノマー量100質量部に対して0.5質量部、硬化後の硬化樹脂成分100質量部に対して超微粒子成分0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液P3を作成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B12]
 塗工液P1の作成において、酸化チタン超微粒子分散液の添加量を変更したこと以外は、実施例B1と同様にして塗工液P1を作成した。また、膜厚を変更する以外は実施例B1と同様にして、膜厚約76nmの硬化樹脂層を形成した。
 次いで硬化樹脂層を形成した面上に、酸化インジウムと酸化亜鉛の質量比が90:10の組成の酸化インジウム-酸化亜鉛ターゲットを用いて、スパッタリング法により非晶質の透明導電層(IZO層)を形成した。IZO層の厚さは約130nm、屈折率は2.02、表面抵抗値は約30Ω/□(Ω/sq)であった。
 作製した透明導電性積層体の特性を表B1に示す。
 [実施例B13]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が4μmのクリアハードコート層1を形成した。次に塗工液P2の作成において、シリカ超微粒子の添加量を変更したこと以外は、実施例B2と同様にしてクリアハードコート層上に塗工液P2を作成し、また実施例B2と同様にして膜厚約104nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B14]
 透明有機高分子基板にポリエステルフィルム(帝人デュポンフィルム株式会社製「テイジンテトロンフィルム」、OFW-188)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が4μmのクリアハードコート層1を形成した。次に塗工液P2の作成において、シリカ超微粒子の添加量を変更したこと以外は、実施例B2と同様にして塗工液P2を作成し、また実施例B2と同様にしてクリアハードコート層上に膜厚約104nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B15]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に下記の塗工液P4をワイヤーバーで塗布し、60℃にて30秒乾燥後、強度160Wの高圧水銀ランプで積算光量700mJ/cm2の紫外線を照射し、膜厚約100nmの硬化樹脂層を形成した。
 (塗工液P4)
 紫外線硬化型のウレタンアクリレート(新中村化学製の商品名「NKオリゴU-15HA」)200質量部(樹脂成分50%)に、酸化チタン超微粒子(表中、「TiO2」)15質量%イソプロピルアルコール分散液(シーアイ化成株式会社製、超微粒子の平均一次粒子径:30nm)480質量部(固形分換算72質量部、すなわち硬化後の硬化樹脂100質量部に対して超微粒子72質量部)を加え、更にイソプロピルアルコールにて希釈し、均一になるまで攪拌し、塗工液P4を作成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 [実施例B16]
 透明有機高分子基板にポリエステルフィルム(帝人デュポンフィルム株式会社製「テイジンテトロンフィルム」、OFW-188)を用いた。
 〈追加の樹脂層の形成〉
 特開2009-123685号公報の実施例B1を参考に、アンチニュートンリング機能を有する追加の樹脂層を作成した。すなわち、下記のようにして追加の樹脂層を作成した。
 (追加の樹脂層(Q1))
 基材の片面に、下記塗工液Q1を用いてバーコート法によりコーティングし、70℃で1分間乾燥した後、紫外線を照射して硬化させることにより厚さ3.5μmの追加の硬化樹脂層Q1を形成した。
 (塗工液Q1)
 塗工液Q1は、不飽和二重結合含有アクリル共重合体(SP値:10.0、Tg:92℃)4重量部、ペンタエリスリトールトリアクリレート(SP値:12.7)100重量部、光重合開始剤イルガキュア184(チバスペシャリティーケミカル社製)7重量部を、イソブチルアルコール溶媒に固形分が40重量%となるように溶解して作製した。なお、不飽和二重結合含有アクリル共重合体(SP値:10.0、Tg:92℃)は、以下のとおりに調製を行なった。
 イソボロニルメタクリレート171.6g、メチルメタクリレート2.6g、メチルアクリル酸9.2gからなる混合物を混合した。この混合液を、攪拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた1,000ml反応容器中の、窒素雰囲気下で110℃に加温したプロピレングリコールモノメチルエーテル330.0gに、ターシャルブチルペルオキシ-2-エチルヘキサノエート1.8gを含むプロピレングリコールモノメチルエーテル80.0g溶液と同時に3時間かけて等速で滴下し、その後、110℃で30分間反応させた。その後、ターシャルブチルペルオキシ-2-エチルヘキサノエート0.2gを含むプロピレングリコールモノメチルエーテル17.0gの溶液を滴下してテトラブチルアンモニウムブロマイド1.4gとハイドロキノン0.1gを含む5.0gのプロピレングリコールモノメチルエーテル溶液を加え、空気バブリングしながら、4-ヒドロキシブチルアクリレートグリシジルエーテル22.4gとプロピレングリコールモノメチルエーテル5.0gの溶液を2時間かけて滴下し、その後5時間かけて更に反応させた。数平均分子量5,500、重量平均分子量18,000の不飽和二重結合含有アクリル共重合体を得た。この樹脂は、SP値:10.0、Tg:92℃、表面張力:31dyn/cmであった。
 (追加の樹脂層(Q2))
 追加の硬化樹脂層Q1を形成した面と反対面に、下記塗工液Q2を用いてバーコート法によりコーティングし、70℃で1分間乾燥した後、紫外線を照射して硬化させることにより厚さ3.5μmの硬化樹脂層Q2を形成した。
 (塗工液Q2)
 塗工液Q2は、上記不飽和二重結合含有アクリル共重合体(SP値:10.0、Tg:92℃)4重量部、ペンタエリスリトールトリアクリレート(SP値:12.7)90重量部、トリメチロールプロパントリエチレングリコールトリアクリレート(SP値:11.6)10重量部、光重合開始剤イルガキュア184(チバスペシャリティーケミカル社製)7重量部を、イソブチルアルコール溶媒に固形分が40重量%となるように溶解して作製した。
 〈硬化樹脂層の形成〉
 次いで塗工液P1の作成において、酸化チタン超微粒子分散液の添加量を変更したこと以外は、実施例B1と同様にして塗工液P1を作成した。また、膜厚を変更する以外は実施例B1と同様にして、追加の硬化樹脂層Q1上に、膜厚約90nmの硬化樹脂層を形成した。
 〈透明導電層の形成〉
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B1に示す。
 作製した透明導電性積層体の特性を表B1に示す。
 〈タッチパネルの形成〉
 厚さ1.1mmのガラス板の両面にSiOディップコートを行った後、スパッタリング法により厚さ18nmのITO層を形成した。次にITO層上に高さ7μm、直径70μm、ピッチ1.5mmのドットスペーサーを形成することにより、固定電極基板を作製した。
 固定電極基板と可動電極基板とを用いて図19に示す層構造を有するタッチパネルを作製した。本例の透明導電性積層体を使用したタッチパネルは、アンチニュートンリング性が良好であり、ニュートンリングが観測されなかった。なお、アンチニュートンリング性は、3波長蛍光灯の下で、タッチパネルの表面(垂直方向0度)に対して斜め60度の方向から、可動電極基板と固定電極基板を接触させた領域でのニュートンリングの有無を目視で観察して評価した。
 [比較例B1]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に直接、実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。
 作製した透明導電性積層体の特性を表B2に示す。また、作成した透明導電性積層体、及び透明導電性積層体から透明導電性層を除去したときの反射スペクトルを図17に示す。また、図17で示した二つの反射スペクトルの差スペクトルを実施例B1の差スペクトルと併せて図18に示す。
 [比較例B2]
 塗工液P1の作成において、酸化チタン超微粒子を添加しないこと以外は、実施例B1と同様にして塗工液P1を作成し、また実施例B1と同様にして膜厚約100nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B2に示す。
 [比較例B3]
 塗工液P2の作成において、酸化チタン超微粒子を添加しないこと以外は、実施例B2と同様にして塗工液P2を作成し、また実施例B2と同様にして膜厚約100nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B2に示す。
 [比較例B4及び5]
 塗工液P2の作成において、酸化チタン超微粒子の添加量を変更したこと以外は、実施例B2と同様にして塗工液P2を作成し、また実施例B2と同様にして膜厚約100nmの硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B2に示す。
 [比較例B6及び7]
 膜厚を変更する以外は実施例B2と同様にして硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B2に示す。
 [比較例B8]
 塗工液P1の硬化樹脂層を形成しないこと以外は、実施例B16と同様にして追加の硬化樹脂層を形成した。
 次いで実施例B1と同様にITO層を形成し、結晶化させた。得られたITO膜は、実施例B1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表B2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表B1から明らかなように、実施例の透明導電性積層体を使用したタッチパネルではいずれも、骨見え性が良好であった。なお、表面に微細突起を有する硬化樹脂層を用いた実施例B2~11、13及び14は、低ヘーズであると共に、筆記(摺動)耐久性について優れたものであった。これに対して、表B2から明らかなように、比較例の透明導電性積層体を使用したタッチパネルはいずれも、骨見え性が不良であった。
 なお、図20及び21はそれぞれ、下記の式(B-b2)及び(B-b3)についてプロットしたものであり、これらの式を満たすことが、所望の差スペクトルを得るために重要であることを明らかにしている:
 (B-b2)0.44<n/(n+n)<0.49
 (B-b3)245<n/(n-0.12<275
 [参考例1]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100、表中「PC」)を用い、その一方の面に塗工液X2をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約50nm層の光学干渉層を形成した。
 (塗工液X2)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に更に表面修飾を施していない平均一次粒子径が20nmのシリカ超微粒子(表中「SiO-1」)4質量部(投入する樹脂モノマー量100質量部に対して超微粒子0.5質量部、硬化後の硬化樹脂成分100質量部に対して超微粒子0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液X2を作成した。
 次いで光学干渉層を形成した面上に、酸化インジウムと酸化錫の質量比が95:5の組成で充填密度が98%の酸化インジウム-酸化錫ターゲットを用いて、スパッタリング法により非晶質の透明導電層(ITO層)を形成した。ITO層の厚さは約20nm、表面抵抗値は約370Ω/□(Ω/sq)であった。
 引き続いて130℃90分の熱処理を行い、透明導電層(ITO層)を結晶化させることにより透明導電性積層体を作製した。ITO層が結晶化した後の透明導電層の厚さは約20nm、屈折率は2.10、表面抵抗値は約450Ω/□(Ω/sq)であった。なお、TEMにより観察された透明導電層の結晶粒径は50nm~200nmの範囲であった。
 作製した透明導電性積層体の特性を表C1に示す。また、本例の透明導電性積層体表面の形態についてAFMにて観察した結果を図22に示す。
 [参考例2~4]
 塗工液X2の作成において、シリカ超微粒子の添加量を変更したこと以外は、参考例1と同様にして塗工液X2を作成し、また参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C1に示す。
 [参考例5及び6]
 膜厚を約30nm及び1000nmとする以外は参考例1と同様の方法にて、塗工液X2をポリカーボネートフィルムに塗布して、光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C1に示す。
 [参考例7]
 塗工液X2の作成において、シリカ超微粒子の平均一次粒子径が50nmの超微粒子(表中「SiO-2」)を使用すること以外は、参考例1と同様にして塗工液X2を作成し、また参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C1に示す。
 [参考例8]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に下記の塗工液Y2をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約50nmの光学干渉層を形成した。
 (塗工液Y1)
 テトラブトキシチタネート(日本曹達社製の商品名「B-4」)200質量部をリグロイン(和光純薬工業社製の等級が一級品)とブタノール(和光純薬工業社製の等級が特級品)の1:4混合溶媒で希釈した。この液に更に表面修飾を施していない平均一次粒子径が20nmの酸化チタン超微粒子(表中「TiO」)0.33質量部(投入する樹脂モノマー量100質量部に対して超微粒子0.17質量部、硬化後の硬化樹脂成分100質量部に対して超微粒子0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液Y1を作成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C1に示す。
 [参考例9]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が4μmのクリアハードコート層を形成した。次にクリアハードコート層上に参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C1に示す。
 [参考例10]
 透明有機高分子基板にポリエステルフィルム(帝人デュポンフィルム株式会社製「テイジンテトロンフィルム」、OFW-188)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料を用いて膜厚が4μmのクリアハードコート層を形成した。次にクリアハードコート層上に参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C1に示す。
 [参考比較例1]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に直接、参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C2に示す。
 [参考比較例2]
 塗工液X2の作成において、超微粒子を添加しないこと以外は、参考例1と同様にして塗工液X2を作成し、また参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C2に示す。
 [参考比較例3~5]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に紫外線硬化型多官能アクリレート樹脂塗料200質量部(樹脂成分50%)に平均一次粒子径が20nmのシリカ超微粒子0.7質量部、20質量部及び40質量部をそれぞれ含むイソプロピルアルコール溶液を用いて、膜厚が約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C2に示す。
 [参考比較例6]
 透明有機高分子基板にポリカーボネートフィルム(帝人化成株式会社製、C110-100)を用い、その一方の面に下記の塗工液Z2をワイヤーバーで塗布し、130℃で5分間熱処理して、膜厚約50nmの光学干渉層を形成した。
 (塗工液Z2)
 水720質量部と2-プロパノール1080質量部と酢酸46質量部を混合した後に、3-グリシドキシプロピルトリメトキシシラン(信越化学社製の商品名「KBM403」)480質量部とメチルトリメトキシシラン(信越化学社製の商品名「KBM13」)240質量部とN-2(アミノエチル)3-アミノプロピルトリメトキシシラン(信越化学社製の商品名「KBM603」)120質量部を順次混合してアルコキシシラン混合液を生成し、このアルコキシシラン混合液を3時間攪拌して加水分解、部分縮合を行い、さらにイソプロピルアルコールと1-メトキシ-2-プロパノールの質量比率1:1の混合溶媒で希釈した。この液に更に表面修飾を施していない平均一次粒子径が20nmの酸化チタン超微粒子4質量部(投入する樹脂モノマー量100質量部に対して超微粒子0.5質量部、硬化後の硬化樹脂成分100質量部に対して超微粒子0.7質量部)を含むイソプロピルアルコール溶液を加え更に10分間攪拌し、塗工液Z2を作成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C2に示す。
 [参考比較例7~10]
 塗工液X2の作成において、シリカ超微粒子の添加量を変更したこと以外は、参考例1と同様にして塗工液X2を作成し、また参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C2に示す。
 [参考比較例11]
 塗工液X2の作成において、平均粒径が0.5μmのシリカ微粒子(表中「SiO-3」)を4質量部添加したこと以外は、参考例1と同様にして塗工液X2を作成し、また参考例1と同様にして膜厚約50nmの光学干渉層を形成した。
 次いで参考例1と同様にITO層を形成し、結晶化させた。得られたITO膜は、参考例1のITO膜と同様な表面抵抗値及び結晶粒径を有していた。作製した透明導電性積層体の特性を表C2に示す。本例の透明導電性積層体は高さ300nmを超える突起がまばらに存在した表面形状をしていた。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表C1から明らかなように、参考例の透明導電性積層体を使用したタッチパネルは、低ヘーズであると共に、筆記(摺動)耐久性について優れたものであった。これに対して、表C2から明らかなように、参考比較例1~7の透明導電性積層体を使用したタッチパネルは、低ヘーズであるものの、滑り性が劣っており、また筆記耐久性についても低い結果であった。また、表C2から明らかなように、参考比較例8~10の透明導電性積層体を使用したタッチパネルは、筆記(摺動)耐久性について優れたものであったものの、ヘーズが高く、光学特性が劣っていた。また更に、表C2から明らかなように、参考比較例11の透明導電性積層体を使用したタッチパネルは、比較的低ヘーズであるものの、筆記耐久性について劣っていた。
 11  基板(ガラス板)
 12、14  透明導電層
 13  スペーサー
 15  光学干渉層
 16  透明有機高分子基板
 20  透明タッチパネル
 30、130  本発明の透明導電性積層体
 30a、b  従来の透明導電性積層体
 31、131  透明導電層
 32、132  光学干渉層
 33h  ハードコート層
 33、133  透明有機高分子基板

Claims (28)

  1.  透明有機高分子基板の少なくとも一方の面上に、ハードコート層、光学干渉層、そして透明導電層が順次積層されてなり、且つ以下(A-a)~(A-f)を満たす、透明導電性積層体:
     (A-a)前記透明有機高分子基板の屈折率nと前記ハードコート層の屈折率n3hとが下記の式を満たし:
             |n-n3h|≦0.02
     (A-b)前記ハードコート層の厚さが、1μm以上10μm以下であり;
     (A-c)前記光学干渉層の厚さが、5nm~500nmであり;
     (A-d)前記透明導電性層の厚さが、5nm以上200nm以下であり;
     (A-e)全光線透過率が85%以上であり;且つ
     (A-f)L表色系のクロマティクネス指数b値が-1.0以上1.5未満。
  2.  更に、(A-g)前記透明導電性積層体の透明導電層側から波長450nm~700nmの波長の光を投射したときの反射スペクトルに関して、前記透明導電性積層体での反射スペクトルと前記透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが以下(A-g1)及び(A-g2)を満たす、請求項1に記載の透明導電性積層体:
      (A-g1)前記差スペクトルの絶対値の最大値が、3.0%以下であり、且つ
      (A-g2)前記差スペクトルの積算値が、-200nm・%以上200nm・%以下。
  3.  更に、(A-h)前記透明導電性層が、前記光学干渉層の上の一部においてのみ配置されてパターンを形成している、請求項1又は2に記載の透明導電性積層体。
  4.  更に、(A-i)前記光学干渉層が前記ハードコート層上に直接に積層されている、請求項1~3のいずれかに記載の透明導電性積層体。
  5.  光学干渉層が、硬化樹脂成分及び平均一次粒子径100nm以下の第1の超微粒子を含む、請求項1~4のいずれかに記載の透明導電性積層体。
  6.  更に、以下(A-p)~(A-r)を満たす、請求項1~5のいずれかに記載の透明導電性積層体:
     (A-p)前記光学干渉層が、樹脂成分、及び平均一次粒径1nm以上100nm以下の第1の超微粒子を含み、
     (A-q)前記樹脂成分及び前記第1の超微粒子が、同じ金属及び/又は半金属元素を含み、且つ
     (A-r)前記光学干渉層において、前記樹脂成分と同じ金属及び/又は半金属元素を含む前記第1の超微粒子の含有量が、前記樹脂成分100質量部に対して0.01質量部以上3質量部以下。
  7.  前記透明導電層が、30nm以上200nm以下の高さの突起を、50μm四方当たり10個以上300個以下有する、請求項6記載の透明導電性積層体。
  8.  前記透明導電層の表面粗さRaが、20nm以下である、請求項6又は7記載の透明導電性積層体。
  9.  ヘーズが2%以下である、請求項6~8のいずれかに記載の透明導電性積層体。
  10.  前記金属及び/又は半金属元素が、Al、Bi、Ca、Hf、In、Mg、Sb、Si、Sn、Ti、Y、Zn及びZrからなる群より選択される1又は複数の元素である、請求項6~9のいずれかに記載の透明導電性積層体。
  11.  少なくとも片面に透明導電層が設けられた2枚の透明電極基板が互いの透明導電層同士が向き合うように配置されて構成された透明タッチパネルにおいて、少なくとも一方の透明電極基板として請求項1~10のいずれかに記載の透明導電性積層体を有する、抵抗膜方式の透明タッチパネル。
  12.  前記透明導電性層が、前記光学干渉層の上の一部においてのみ配置されてパターンを形成している請求項1~10のいずれかに記載の透明導電性積層体を有する、静電容量方式の透明タッチパネル。
  13.  前記透明タッチパネルの観察側において偏光板が直接又は他の基材を介して前記透明導電性積層体に積層されている、請求項11又は12に記載の透明タッチパネル。
  14.  透明有機高分子基板の少なくとも一方の面上に、硬化樹脂層、そして透明導電層が順次積層されてなる透明導電性積層体であって、
     前記透明導電性積層体の透明導電層側から波長450nm~700nmの波長の光を投射したときの反射スペクトルに関して、前記透明導電性積層体での反射スペクトルと前記透明導電性積層体から透明導電性層を除去したときの反射スペクトルとの差スペクトルが以下(B-a1)及び(B-a2)を満たす、透明導電性積層体:
     (B-a1)前記差スペクトルの絶対値の最大値が、3.0%以下であり、且つ
     (B-a2)前記差スペクトルの積算値が、-200nm・%以上200nm・%以下。
  15.  前記透明有機高分子基板の屈折率をn、前記硬化樹脂層の厚み及び屈折率をそれぞれ、d(nm)及びn、且つ前記透明導電層の厚み及び屈折率をそれぞれ、d(nm)及びnとしたときに、以下(B-b1)~(B-b3)を更に満たす、請求項14に記載の透明導電性積層体:
     (B-b1)n>n>n
     (B-b2)0.44<n/(n+n)<0.49、且つ
     (B-b3)245<n/(n-0.12<275。
  16.  以下(B-c)~(B-f)を更に満たす、請求項14又は15に記載の透明導電性積層体:
     (B-c)前記硬化樹脂層が、樹脂成分、及び平均一次粒径1nm以上100nm以下の第1の超微粒子を含み、
     (B-d)前記樹脂成分及び前記第1の超微粒子が、同じ金属及び/又は半金属元素を含み、
     (B-e)前記硬化樹脂層において、前記第1の超微粒子の含有量が、前記樹脂成分100質量部に対して0.01質量部以上3質量部以下であり、且つ
     (B-f)前記硬化樹脂層の厚みが0.01μm以上0.5μm以下。
  17.  (B-g)前記硬化樹脂層が、平均一次粒径1nm以上100nm以下で且つ屈折率が前記樹脂成分よりも大きい第2の超微粒子を更に含む、請求項16記載の透明導電性積層体。
  18.  前記硬化樹脂層が、前記第2の超微粒子を含むことによって、前記硬化樹脂層が第2の超微粒子を含まない場合と比較して、前記硬化樹脂層の屈折率が0.01以上増加している、請求項17に記載の透明導電性積層体。
  19.  前記透明導電層が、30nm以上200nm以下の高さの突起を、50μm四方当たりの10個以上300個以下有する、請求項16~18のいずれかに記載の透明導電性積層体。
  20.  前記透明導電層の表面粗さRaが、20nm以下である、請求項16~19のいずれかに記載の透明導電性積層体。
  21.  全光線透過率が85%以上であり、且つヘーズが2%以下である、請求項14~20のいずれかに記載の透明導電性積層体。
  22.  前記金属及び/又は半金属元素が、Al、Bi、Ca、Hf、In、Mg、Sb、Si、Sn、Ti、Y、Zn及びZrからなる群より選択される1又は複数の元素である、請求項16~21のいずれかに記載の透明導電性積層体。
  23.  前記透明有機高分子基板と前記硬化樹脂層との間に、追加の硬化樹脂層を含む、請求項14~22のいずれかに記載の透明導電性積層体。
  24.  前記追加の硬化樹脂層の表面粗さRaが20nm以上500nm未満である、請求項23記載の透明導電性積層体。
  25.  前記透明導電層と前記硬化樹脂層との間に接着層を有し、且つ前記接着層、硬化樹脂層の樹脂成分、及び硬化樹脂層の超微粒子がいずれも、同じ金属及び/又は半金属元素を含む、請求項16~24のいずれかに記載の透明導電性積層体。
  26.  少なくとも片面に透明導電層が設けられた透明電極基板が1枚以上配置された、静電容量方式の透明タッチパネルにおいて、少なくとも一つの透明電極基板として請求項14~23、及び25のいずれかに記載の透明導電性積層体を用いたことを特徴とする透明タッチパネル。
  27.  少なくとも片面に透明導電層が設けられた2枚の透明電極基板が互いの透明導電層同士が向き合うように配置されて構成された、抵抗膜方式の透明タッチパネルにおいて、少なくとも一方の透明電極基板として請求項14~25のいずれかに記載の透明導電性積層体を用いたことを特徴とする透明タッチパネル。
  28.  前記透明タッチパネルの観察側において偏光板が直接又は他の基材を介して前記透明導電性積層体に積層されている、請求項26又は27に記載の透明タッチパネル。
PCT/JP2010/055926 2009-03-31 2010-03-31 透明導電性積層体及び透明タッチパネル WO2010114056A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/260,046 US10042481B2 (en) 2009-03-31 2010-03-31 Transparent electroconductive laminate and transparent touch panel
CN201080006162.6A CN102438822B (zh) 2009-03-31 2010-03-31 透明导电性层叠体和透明触摸面板
JP2011507271A JP5005112B2 (ja) 2009-03-31 2010-03-31 透明導電性積層体及び透明タッチパネル
EP10758827.9A EP2415591A4 (en) 2009-03-31 2010-03-31 TRANSPARENT CONDUCTIVE LAMINATE AND TRANSPARENT TOUCH PANEL
HK12109835.6A HK1169354A1 (zh) 2009-03-31 2012-10-08 透明導電性層叠體和透明觸摸面板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-088185 2009-03-31
JP2009088185 2009-03-31
JP2009088223 2009-03-31
JP2009-088223 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010114056A1 true WO2010114056A1 (ja) 2010-10-07

Family

ID=42828345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055926 WO2010114056A1 (ja) 2009-03-31 2010-03-31 透明導電性積層体及び透明タッチパネル

Country Status (8)

Country Link
US (1) US10042481B2 (ja)
EP (1) EP2415591A4 (ja)
JP (1) JP5005112B2 (ja)
KR (1) KR101564803B1 (ja)
CN (1) CN102438822B (ja)
HK (1) HK1169354A1 (ja)
TW (1) TWI517185B (ja)
WO (1) WO2010114056A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490108A3 (en) * 2011-02-16 2012-12-19 Sehf-Korea Co., Ltd. Touch Screen
JP5110226B1 (ja) * 2011-06-22 2012-12-26 東レフィルム加工株式会社 透明導電性フィルムおよびタッチパネル
JP2013107214A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 透明導電積層体
JP2013114344A (ja) * 2011-11-25 2013-06-10 Nitto Denko Corp タッチパネルセンサ
CN103257731A (zh) * 2012-02-20 2013-08-21 群康科技(深圳)有限公司 触控显示装置及其制造方法
JP2013218200A (ja) * 2012-04-11 2013-10-24 Nof Corp 色調補正フィルム及びこれを用いた透明導電性フィルム
JP2013224009A (ja) * 2012-03-23 2013-10-31 Sekisui Nano Coat Technology Co Ltd 光透過性導電性フィルム、その製造方法及びその用途
WO2013175958A1 (ja) * 2012-05-21 2013-11-28 東レ株式会社 基板及びそれを用いたタッチパネル部材
JP2014502293A (ja) * 2010-11-24 2014-01-30 エルジー・ハウシス・リミテッド タッチパネル用粘着剤組成物、粘着フィルム及びタッチパネル
WO2014091987A1 (ja) * 2012-12-10 2014-06-19 富士フイルム株式会社 積層フィルムおよびタッチパネル
CN103890700A (zh) * 2011-11-07 2014-06-25 王子控股株式会社 带电容式触摸面板的显示装置、电容式触摸面板
JP2014153987A (ja) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd タッチパネル基板、及び表示装置
JP2014156112A (ja) * 2013-01-17 2014-08-28 Sekisui Chem Co Ltd 光透過性導電性フィルム及びそれを有する静電容量型タッチパネル
JP2014209333A (ja) * 2013-03-26 2014-11-06 Jsr株式会社 積層体およびインデックスマッチング層形成用組成物
WO2015152184A1 (ja) * 2014-03-31 2015-10-08 積水ナノコートテクノロジー株式会社 光透過性導電性フィルム及びそれを有するタッチパネル
EP2765842A4 (en) * 2011-10-05 2015-10-28 Fujifilm Corp CONDUCTIVE SHEET, TOUCH SCREEN, SCREEN AND METHOD AND PROGRAM FOR PRODUCING CONDUCTOR
JP2018012101A (ja) * 2011-06-10 2018-01-25 シーマ ナノテック イスラエル リミテッド パターン化されたコーティングを製造するための方法
US10168805B2 (en) 2014-08-18 2019-01-01 3M Innovative Properties Company Conductive layered structure and methods of making same
US10228782B2 (en) 2013-03-04 2019-03-12 Fujifilm Corporation Transparent conductive film and touch panel
US10317598B2 (en) 2013-06-26 2019-06-11 Fujifilm Corporation Optical film, polarization plate, transparent conductive film, surface protection film, and liquid crystal display apparatus having negative birefringence
JP2019188768A (ja) * 2018-04-27 2019-10-31 日東電工株式会社 ハードコートフィルム、透明導電性フィルム、透明導電性フィルム積層体および画像表示装置
JPWO2018186412A1 (ja) * 2017-04-07 2020-02-20 積水化学工業株式会社 光透過性導電フィルムの可視化の分析方法、及び光透過性導電フィルム
KR20200035350A (ko) 2018-09-26 2020-04-03 아라까와 가가꾸 고교 가부시끼가이샤 활성 에너지선 경화형 수지 조성물, 경화물 및 적층체
JP2020104392A (ja) * 2018-12-27 2020-07-09 東洋インキScホールディングス株式会社 積層体、及び積層体の製造方法
JPWO2020122114A1 (ja) * 2018-12-12 2021-12-02 大塚化学株式会社 透明導電層形成用基材、透明導電性フィルム、タッチパネルおよび透明導電層形成用基材の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844996B2 (ja) 2011-05-11 2016-01-20 日東電工株式会社 透明導電性積層体及びタッチパネル
KR101357592B1 (ko) * 2011-09-28 2014-02-04 엘지이노텍 주식회사 터치윈도우
CN103210350B (zh) * 2011-10-03 2019-06-18 日立化成株式会社 导电图案的形成方法、导电图案基板和触摸面板传感器
CN103123547A (zh) * 2011-11-16 2013-05-29 宸鸿科技(厦门)有限公司 光学面板的堆叠结构及其制造方法
US9535277B2 (en) * 2012-09-05 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Conductive oxide film, display device, and method for forming conductive oxide film
KR101795101B1 (ko) * 2013-10-23 2017-11-07 주식회사 엘지화학 고굴절 점착제 필름 및 이를 포함하는 터치 패널
KR102088769B1 (ko) * 2014-04-02 2020-04-16 한국전자통신연구원 터치 스크린 패널 제작 방법 및 터치 스크린 패널
US20170005295A1 (en) * 2014-04-28 2017-01-05 Konica Minolta, Inc. Light extraction layered body, organic electroluminescence element, and method for manufacturing same
JP6352204B2 (ja) * 2015-02-18 2018-07-04 富士フイルム株式会社 透明導電部材用積層体、転写材料、透明導電部材、タッチパネル及びその製造方法、並びに、タッチパネル表示装置
CN107107587B (zh) * 2015-04-21 2018-06-05 东丽株式会社 层叠构件及触摸屏
CN107851485A (zh) * 2015-07-23 2018-03-27 富士胶片株式会社 层叠体
KR102427696B1 (ko) * 2015-10-22 2022-08-01 삼성디스플레이 주식회사 터치 패널
CN105677097A (zh) * 2016-01-04 2016-06-15 京东方科技集团股份有限公司 一种触摸屏及其制作方法
CN106843623A (zh) * 2016-12-22 2017-06-13 张家港康得新光电材料有限公司 一种电阻式触摸屏
CN107123467B (zh) * 2017-04-27 2019-06-21 张家港康得新光电材料有限公司 一种柔性导电膜及其应用
KR102430032B1 (ko) * 2017-08-16 2022-08-04 동우 화인켐 주식회사 투명 전극 적층체 및 이의 제조 방법
KR102603601B1 (ko) * 2018-08-13 2023-11-20 엘지디스플레이 주식회사 디스플레이 장치 및 그의 제조 방법
CN113474167B (zh) * 2019-04-02 2023-02-21 东丽株式会社 带导电层的基材及触摸面板

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410507A (en) 1987-07-02 1989-01-13 Optrex Kk Transparent conductive film and its manufacture
JPH0699559A (ja) 1992-09-18 1994-04-12 Teijin Ltd ポリエステルフイルム及びその製造方法
JPH08240800A (ja) 1995-03-03 1996-09-17 Asahi Glass Co Ltd 液晶ディスプレイ用樹脂基板
JPH1024516A (ja) * 1996-07-10 1998-01-27 Teijin Ltd 透明導電性積層体および透明タブレット
JPH10323931A (ja) 1997-05-26 1998-12-08 Kanegafuchi Chem Ind Co Ltd 透明導電性フィルム
JP2000301648A (ja) 1999-04-19 2000-10-31 Teijin Ltd 透明導電性積層体および透明タブレット
JP2001109388A (ja) 1999-10-12 2001-04-20 Teijin Ltd ディスプレイ用ハードコートフィルムおよびその製造方法
JP2001283644A (ja) 2000-04-03 2001-10-12 Oike Ind Co Ltd 透明導電性フイルムおよびタッチパネル
JP2002117724A (ja) 2000-10-12 2002-04-19 Oike Ind Co Ltd 透明導電性フイルムおよびタッチパネル
JP2003291274A (ja) 2002-03-29 2003-10-14 Teijin Ltd ディスプレイ用透明フィルム基板
WO2004057381A1 (ja) * 2002-12-20 2004-07-08 Teijin Limited 透明導電性積層体,タッチパネル及びタッチパネル付液晶表示装置
JP2004351744A (ja) 2003-05-29 2004-12-16 Teijin Ltd 凹凸を有する硬化樹脂層付き高分子基板
JP2005215283A (ja) * 2004-01-29 2005-08-11 Toppan Printing Co Ltd 帯電防止ハードコートフィルムおよび表示媒体
JP2008146927A (ja) * 2006-12-07 2008-06-26 Nitto Denko Corp 透明導電性積層体及びタッチパネル
WO2008088059A1 (ja) * 2007-01-16 2008-07-24 Teijin Limited 透明導電性積層体およびそれよりなるタッチパネル
JP2008233882A (ja) * 2007-02-19 2008-10-02 Fujifilm Corp 光学フィルム、並びに光学フィルムを用いた偏光板及び液晶表示装置
JP2009003354A (ja) * 2007-06-25 2009-01-08 Nof Corp 反射防止性フィルム及びそれを用いた電子画像表示装置
JP2009029108A (ja) * 2007-06-28 2009-02-12 Jsr Corp 積層フィルム、偏光板およびタッチパネル
JP2009123685A (ja) 2007-10-26 2009-06-04 Teijin Ltd 透明導電性積層体およびタッチパネル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
EP1147882B1 (en) * 2000-03-28 2007-05-23 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
JP4497782B2 (ja) * 2001-03-08 2010-07-07 日本製紙株式会社 ニュートンリングが防止されたタッチパネル及び該タッチパネル用透明電極
KR20070017296A (ko) * 2003-10-15 2007-02-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 개선된 광학 특성을 갖는 패턴화된 도체 터치 스크린
US8603611B2 (en) * 2005-05-26 2013-12-10 Gunze Limited Transparent planar body and transparent touch switch
JP4605788B2 (ja) * 2006-04-27 2011-01-05 日東電工株式会社 タッチパネル
JP4667471B2 (ja) * 2007-01-18 2011-04-13 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410507A (en) 1987-07-02 1989-01-13 Optrex Kk Transparent conductive film and its manufacture
JPH0699559A (ja) 1992-09-18 1994-04-12 Teijin Ltd ポリエステルフイルム及びその製造方法
JPH08240800A (ja) 1995-03-03 1996-09-17 Asahi Glass Co Ltd 液晶ディスプレイ用樹脂基板
JPH1024516A (ja) * 1996-07-10 1998-01-27 Teijin Ltd 透明導電性積層体および透明タブレット
JPH10323931A (ja) 1997-05-26 1998-12-08 Kanegafuchi Chem Ind Co Ltd 透明導電性フィルム
JP2000301648A (ja) 1999-04-19 2000-10-31 Teijin Ltd 透明導電性積層体および透明タブレット
JP2001109388A (ja) 1999-10-12 2001-04-20 Teijin Ltd ディスプレイ用ハードコートフィルムおよびその製造方法
JP2001283644A (ja) 2000-04-03 2001-10-12 Oike Ind Co Ltd 透明導電性フイルムおよびタッチパネル
JP2002117724A (ja) 2000-10-12 2002-04-19 Oike Ind Co Ltd 透明導電性フイルムおよびタッチパネル
JP2003291274A (ja) 2002-03-29 2003-10-14 Teijin Ltd ディスプレイ用透明フィルム基板
WO2004057381A1 (ja) * 2002-12-20 2004-07-08 Teijin Limited 透明導電性積層体,タッチパネル及びタッチパネル付液晶表示装置
JP2004351744A (ja) 2003-05-29 2004-12-16 Teijin Ltd 凹凸を有する硬化樹脂層付き高分子基板
JP2005215283A (ja) * 2004-01-29 2005-08-11 Toppan Printing Co Ltd 帯電防止ハードコートフィルムおよび表示媒体
JP2008146927A (ja) * 2006-12-07 2008-06-26 Nitto Denko Corp 透明導電性積層体及びタッチパネル
WO2008088059A1 (ja) * 2007-01-16 2008-07-24 Teijin Limited 透明導電性積層体およびそれよりなるタッチパネル
JP2008233882A (ja) * 2007-02-19 2008-10-02 Fujifilm Corp 光学フィルム、並びに光学フィルムを用いた偏光板及び液晶表示装置
JP2009003354A (ja) * 2007-06-25 2009-01-08 Nof Corp 反射防止性フィルム及びそれを用いた電子画像表示装置
JP2009029108A (ja) * 2007-06-28 2009-02-12 Jsr Corp 積層フィルム、偏光板およびタッチパネル
JP2009123685A (ja) 2007-10-26 2009-06-04 Teijin Ltd 透明導電性積層体およびタッチパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415591A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502293A (ja) * 2010-11-24 2014-01-30 エルジー・ハウシス・リミテッド タッチパネル用粘着剤組成物、粘着フィルム及びタッチパネル
EP2490108A3 (en) * 2011-02-16 2012-12-19 Sehf-Korea Co., Ltd. Touch Screen
JP2018012101A (ja) * 2011-06-10 2018-01-25 シーマ ナノテック イスラエル リミテッド パターン化されたコーティングを製造するための方法
JP5110226B1 (ja) * 2011-06-22 2012-12-26 東レフィルム加工株式会社 透明導電性フィルムおよびタッチパネル
EP2765842A4 (en) * 2011-10-05 2015-10-28 Fujifilm Corp CONDUCTIVE SHEET, TOUCH SCREEN, SCREEN AND METHOD AND PROGRAM FOR PRODUCING CONDUCTOR
KR101501907B1 (ko) * 2011-11-07 2015-03-12 오지 홀딩스 가부시키가이샤 정전 용량식 터치 패널이 형성된 표시 장치, 정전 용량식 터치 패널
TWI499958B (zh) * 2011-11-07 2015-09-11 Oji Holdings Corp 附有靜電電容式觸控面板之顯示裝置、靜電電容式觸控面板
US10353520B2 (en) 2011-11-07 2019-07-16 Oji Holdings Corporation Display device with capacitive touch panel, capacitive touch panel
CN103890700A (zh) * 2011-11-07 2014-06-25 王子控股株式会社 带电容式触摸面板的显示装置、电容式触摸面板
EP2799956A1 (en) 2011-11-07 2014-11-05 Oji Holdings Corporation Display device with capacitive touch panel, capacitive touch panel
JP2013107214A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 透明導電積層体
US8742772B2 (en) 2011-11-25 2014-06-03 Nitto Denko Corporation Touch panel sensor
JP2013114344A (ja) * 2011-11-25 2013-06-10 Nitto Denko Corp タッチパネルセンサ
CN103257731A (zh) * 2012-02-20 2013-08-21 群康科技(深圳)有限公司 触控显示装置及其制造方法
JP2013224009A (ja) * 2012-03-23 2013-10-31 Sekisui Nano Coat Technology Co Ltd 光透過性導電性フィルム、その製造方法及びその用途
JP2013218200A (ja) * 2012-04-11 2013-10-24 Nof Corp 色調補正フィルム及びこれを用いた透明導電性フィルム
WO2013175958A1 (ja) * 2012-05-21 2013-11-28 東レ株式会社 基板及びそれを用いたタッチパネル部材
WO2014091987A1 (ja) * 2012-12-10 2014-06-19 富士フイルム株式会社 積層フィルムおよびタッチパネル
JP2014156112A (ja) * 2013-01-17 2014-08-28 Sekisui Chem Co Ltd 光透過性導電性フィルム及びそれを有する静電容量型タッチパネル
JP2014153987A (ja) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd タッチパネル基板、及び表示装置
US10684710B2 (en) 2013-03-04 2020-06-16 Fujifilm Corporation Transparent conductive film and touch panel
US10228782B2 (en) 2013-03-04 2019-03-12 Fujifilm Corporation Transparent conductive film and touch panel
JP2014209333A (ja) * 2013-03-26 2014-11-06 Jsr株式会社 積層体およびインデックスマッチング層形成用組成物
US10317598B2 (en) 2013-06-26 2019-06-11 Fujifilm Corporation Optical film, polarization plate, transparent conductive film, surface protection film, and liquid crystal display apparatus having negative birefringence
JP2015201165A (ja) * 2014-03-31 2015-11-12 積水ナノコートテクノロジー株式会社 光透過性導電性フィルム及びそれを有するタッチパネル
WO2015152184A1 (ja) * 2014-03-31 2015-10-08 積水ナノコートテクノロジー株式会社 光透過性導電性フィルム及びそれを有するタッチパネル
US10168805B2 (en) 2014-08-18 2019-01-01 3M Innovative Properties Company Conductive layered structure and methods of making same
JPWO2018186412A1 (ja) * 2017-04-07 2020-02-20 積水化学工業株式会社 光透過性導電フィルムの可視化の分析方法、及び光透過性導電フィルム
JP7176950B2 (ja) 2017-04-07 2022-11-22 積水化学工業株式会社 光透過性導電フィルムの可視化の分析方法、及び光透過性導電フィルム
JP2019188768A (ja) * 2018-04-27 2019-10-31 日東電工株式会社 ハードコートフィルム、透明導電性フィルム、透明導電性フィルム積層体および画像表示装置
JP7141237B2 (ja) 2018-04-27 2022-09-22 日東電工株式会社 ハードコートフィルム、透明導電性フィルム、透明導電性フィルム積層体および画像表示装置
KR20200035350A (ko) 2018-09-26 2020-04-03 아라까와 가가꾸 고교 가부시끼가이샤 활성 에너지선 경화형 수지 조성물, 경화물 및 적층체
JPWO2020122114A1 (ja) * 2018-12-12 2021-12-02 大塚化学株式会社 透明導電層形成用基材、透明導電性フィルム、タッチパネルおよび透明導電層形成用基材の製造方法
JP7247220B2 (ja) 2018-12-12 2023-03-28 大塚化学株式会社 透明導電層形成用基材、透明導電性フィルム、タッチパネルおよび透明導電層形成用基材の製造方法
JP2020104392A (ja) * 2018-12-27 2020-07-09 東洋インキScホールディングス株式会社 積層体、及び積層体の製造方法

Also Published As

Publication number Publication date
CN102438822B (zh) 2015-11-25
KR101564803B1 (ko) 2015-10-30
JP5005112B2 (ja) 2012-08-22
EP2415591A4 (en) 2013-11-20
CN102438822A (zh) 2012-05-02
JPWO2010114056A1 (ja) 2012-10-11
TW201108261A (en) 2011-03-01
US20120094071A1 (en) 2012-04-19
EP2415591A1 (en) 2012-02-08
KR20110133481A (ko) 2011-12-12
HK1169354A1 (zh) 2013-01-25
TWI517185B (zh) 2016-01-11
US10042481B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
JP5005112B2 (ja) 透明導電性積層体及び透明タッチパネル
JP5355684B2 (ja) 透明導電性積層体及び透明タッチパネル
WO2010073781A1 (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP4187454B2 (ja) 反射防止フィルム
WO2013183487A1 (ja) 積層体、導電性積層体およびタッチパネル、ならびに、塗料組成物および当該塗料組成物を用いる積層体の製造方法
JP2007293229A (ja) 光学積層体
CN107407744B (zh) 防反射膜、使用了该防反射膜的显示装置、及防反射膜的选择方法
JP4496726B2 (ja) 減反射材料用低屈折率層、それを備えた減反射材料及びその用途
JP4857496B2 (ja) 複合体、コーティング組成物、その塗膜、反射防止膜、反射防止フィルム、及び、画像表示装置
JP5393222B2 (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP5123507B2 (ja) 反射防止フィルム
JP2003236970A (ja) 表面が強化された反射防止層、反射防止材、および反射防止体
JP2003294904A (ja) 反射防止層および反射防止材
JP6561519B2 (ja) 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2003183586A (ja) 透明ハードコート層、透明ハードコート材、およびディスプレイ装置
JP4393573B1 (ja) 透明導電性積層体およびそれを用いた透明タッチパネル
JP6561520B2 (ja) 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP4384250B1 (ja) 透明導電性積層体およびそれを用いた透明タッチパネル
JP6907436B2 (ja) 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
WO2021153423A1 (ja) 防眩フィルム及び防眩性且つ低反射性を有するフィルム
JP2002221601A (ja) 反射防止積層体
JP2021039359A (ja) 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2021015283A (ja) 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006162.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758827

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011507271

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117022021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010758827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010758827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13260046

Country of ref document: US