WO2010094226A1 - 一种费托合成用铁基催化剂、其制备方法和应用 - Google Patents

一种费托合成用铁基催化剂、其制备方法和应用 Download PDF

Info

Publication number
WO2010094226A1
WO2010094226A1 PCT/CN2010/070569 CN2010070569W WO2010094226A1 WO 2010094226 A1 WO2010094226 A1 WO 2010094226A1 CN 2010070569 W CN2010070569 W CN 2010070569W WO 2010094226 A1 WO2010094226 A1 WO 2010094226A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
metal
solution
group
catalyst
Prior art date
Application number
PCT/CN2010/070569
Other languages
English (en)
French (fr)
Inventor
吴宝山
杨勇
李永旺
相宏伟
Original Assignee
中科合成油技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科合成油技术有限公司 filed Critical 中科合成油技术有限公司
Priority to RU2011137234/04A priority Critical patent/RU2468863C1/ru
Priority to CA2751043A priority patent/CA2751043C/en
Priority to US13/148,209 priority patent/US20110294908A1/en
Priority to AU2010214972A priority patent/AU2010214972B2/en
Publication of WO2010094226A1 publication Critical patent/WO2010094226A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4031Start up or shut down operations

Definitions

  • the invention relates to a carbon monoxide (CO) hydrogenation reaction catalyst and a preparation method thereof, in particular to an iron-based catalyst for Fischer-Tropsch synthesis, a preparation method thereof and a catalyst for producing hydrocarbons in a Fischer-Tropsch synthesis technology Application in the method. Background technique
  • Fischer-Tropsch synthesis is a method of producing liquid fuel from syngas (CO+H 2 ), which was invented in Germany in the 1920s and gradually turned to industrial applications.
  • Syngas is derived from coal, natural gas, coalbed methane and other carbon-containing raw materials. substance.
  • the main active metal of the Fischer-Tropsch synthesis catalyst is a Group VIII metal, wherein only four metals of Fe, Co, Ni and Ru have sufficiently high CO hydrogenation activity, and they have application value to Fischer-Tropsch synthesis, wherein Ru has the highest activity. Even at 150 ° C, a relatively high yield of heavy hydrocarbons can be obtained, but low reserves and high prices limit its large-scale industrial applications.
  • Ni-based catalyst The activity of the Ni-based catalyst is also relatively high, but there are two main disadvantages: First, the strong hydrogenation ability makes the formation of CH 4 in the Fischer-Tropsch synthesis product produced by the Ni catalyst much higher than that of the Fe-based and Co-based catalysts; Under typical industrial Fischer-Tropsch synthesis operating conditions, Ni readily forms volatile metal carbonyl compounds resulting in the continued loss of nickel metal. Therefore only Fe and Co have potential industrial application value.
  • Co catalyst is the first Fischer-Tropsch synthesis (FT) catalyst put into industrial production. It is characterized by high single-pass conversion, long life and high linear hydrocarbon yield at relatively low temperature. Although the cost is high, However, it is easy to recycle and regenerate, and is more suitable for operation on a fixed bed reactor.
  • the Co gas catalyst has a weak water gas shift (WGS) reaction and is suitable for FT synthesis of natural gas-based syngas with a high hydrogen to carbon ratio.
  • WGS weak water gas shift
  • H 2 / CO 0.5 to 0.7
  • a method for preparing a binder-free precipitated Fe-Cu-K Fischer-Tropsch synthesis catalyst which is suitable for synthesizing hydrocarbon products in a high temperature fluidized bed is also disclosed in U.S. Patent No. 6,844,370.
  • a method for preparing a Fischer-Tropsch synthetic iron-based catalyst for a slurry bed reactor is disclosed in US Patent No. 5,504,118 and Chinese Patent No.
  • CN1113905A specifically: dissolving metallic iron and copper with nitric acid to obtain nitrate Adding ammonia water to the hot nitrate mixture, the pH is controlled at 7.4, obtaining a precipitating slurry, filtering, washing, and then adding a potassium carbonate solution, and beating the catalyst, the weight percentage of the catalyst in the slurry is about 8 to 12%. It was then spray dried using a spray dryer, and finally the catalyst was calcined in air at 315 ° C to obtain a finished catalyst.
  • a method for preparing a catalyst by coprecipitation of a silicone with an iron salt and its use in a Fischer-Tropsch synthesis reaction is disclosed in U.S. Patent No. 6,787,577.
  • the K 2 CO 3 and Cu(NO 3 ) 2 aqueous solution are impregnated in a certain ratio to obtain an Fe-Cu-K-Si catalyst. It is characterized by high yields of C 2 to C 4 and C 5 to C U olefins.
  • the preparation of precipitated Fe-Zn-Cu-K catalysts and their use in Fischer-Tropsch synthesis reactions are disclosed in U.S. Patent No. 5,100,556.
  • the K 2 CO 3 solution is firstly impregnated, dried, and then impregnated with Cu(NO 3 ) 2 solution, and finally dried. , roasting.
  • This method improves catalyst activity and stability and is advantageous for the production of alpha-olefins. Burkur et al., Texas A&M University, USA, in the journal Ind. Eng. Chem.
  • Res., 1990, 29, pl588-1599 discloses a preparation method of a Fe/Cu/K/SiO 2 catalyst, specifically: adding a solution of an aqueous solution of iron nitrate and copper nitrate in a continuous coprecipitation at 82 ° C, the precipitate is thoroughly washed and Filtration, adding a certain amount of K 2 SiO 3 solution, re-pulping and pH ⁇ 6, vacuum drying, immersing a certain amount of KHCO 3 solution, then drying and baking at 300 ° C for 5 hours.
  • the (by weight) catalyst was used in the slurry bed reaction and it was found that the catalyst has high activity and high C 5 + and low olefin selectivity for the synthesis gas feedstock having a low H 2 /CO ratio.
  • the above catalysts have their own characteristics in terms of composition, preparation method and application depending on the synthesis gas source and the target product, but some of the catalysts have not yet entered the stage of substantial industrial application. Summary of the invention
  • the catalyst is an iron-based catalyst for Fischer-Tropsch synthesis, the main component of which is iron, and further comprising: a Group IB metal Cu and/or Or an oxide of Ag as a reduction aid; an oxide containing at least one Group IA metal M as an electron promoter, said Group IA metal M being selected from Li, Na, K or Rb; containing at least one Group VIII noble metal M' as a hydrogenation aid, the Group VIII metal M' is selected from
  • the weight percentage of the main component Fe in the catalyst is 30% by weight to 70% by weight, preferably the weight percentage of the main component Fe in the catalyst is 40 wt% to 65 wt%, more preferably 45 wt% to 60 wt%.
  • the main component iron exists in the form of a complete oxide, that is, in the case of the highest oxidation price (trivalent).
  • the composition of each component is involved, wherein each metal component is based on the element, and the structural auxiliary is based on the oxide.
  • the iron-based catalyst of the present invention contains at least one Group IB metal oxide as a reduction aid, preferably an oxide of Cu and/or Ag.
  • the iron-based catalyst of the present invention further contains a small amount of a Group VIII noble metal M' as a hydrogenation assistant, and the Group VIII noble metal M' is selected from Ru, Rh, Pd or Pt, preferably Ru or Pt.
  • the Group IA metal M electron adjuvant is an oxide of K or Li, and/or preferably the Group VIII metal M' hydrogenation assistant is Ru or Pt.
  • iron-based catalyst compositions of the invention are, for example, Fe/Cu/Li/Ru/SiO 2 , Fe/Ag/K/Pt/SiO 2 , or Fe/Cu/K/Pt/SiO 2 .
  • a small amount of a Group VIII noble metal is added as a hydrogenation assistant.
  • the hydrogenation activity of the catalyst is increased after the addition of the noble metal; however, since the addition amount of the noble metal in the catalyst of the present invention is small, the improvement of the hydrogenation activity should be very limited; however, by using other additives and using The selection and optimization of the amount, the synergistic effect of the two makes the catalyst of the invention not only can increase the hydrogenation activity to a greater extent, but also has a very good modulation effect in terms of product selectivity. Therefore, the iron-based catalyst of the present invention is suitable as a catalyst for Fischer-Tropsch synthesis reaction, and is more suitable as a catalyst for low temperature Fischer-Tropsch synthesis (LTFT), and is particularly suitable for low temperature Fischer-Tropsch synthesis in a slurry bed reactor.
  • LTFT low temperature Fischer-Tropsch synthesis
  • Another object of the present invention is to provide a method for preparing the above iron-based catalyst, which is characterized in that the preparation process is simple, and a plurality of iron sources can be used, in the case where the total production cost is constant.
  • the addition of a small amount of precious metal auxiliaries not only increases the reactivity of the catalyst, but also modulates the selectivity of the product.
  • the method for preparing the above iron-based catalyst of the present invention comprises the following steps:
  • the structural auxiliary silica is a silica sol or a silicate of Group IA metal M;
  • the above mixed slurry is subjected to spray drying molding, and the formed catalyst is impregnated in an equal volume with a salt solution of at least one Group VIII noble metal M' in a desired ratio, followed by drying and calcination to obtain the catalyst.
  • the step of adding the Group IB metal Cu and/or Ag salt solution in the step (3) may be completed in the step (1), that is, adding a salt solution of the Group IB metal Cu and/or Ag to the iron salt.
  • the step (3) of introducing the structural auxiliary silica may be carried out in the step (1), or in the steps (1) and (3), a part of the structural auxiliary agent may be added, and the two may be adjusted as needed. The proportion of steps added.
  • the above method for adding a Group IB metal Cu and/or Ag salt solution can be arbitrarily selected and adjusted as described above; the above method for introducing the structural auxiliary silica can also be optionally selected as described above, for example, respectively.
  • the amount of addition per step may be any ratio.
  • the addition amount of which is "as required” means the above The content ratio between the components.
  • the Group IA metal M as an electron auxiliary agent is selected from Li, Na, K or Rb, preferably the Group IA metal M is K or Li, more preferably K;
  • the Group VIII noble metal M' of the hydrogenation aid is selected from the group consisting of Ru, Rh, Pd and Pt, preferably Ru or Pt.
  • the iron salt solution used in the step (1) is an aqueous solution of a ferric iron (Fe 3+ ) salt, for example, the ferric salt is iron nitrate or iron sulfate;
  • the iron salt solution is a ferric nitrate solution
  • the solution can be obtained by dissolving industrial ferric nitrate or by dissolving iron scraps with nitric acid
  • the iron salt is ferric sulfate
  • the solution can be dissolved by dissolving industrial polyferric sulfate.
  • the concentration of the iron salt solution is 0.5 to 10% by weight, preferably 1 to 5 mol/L.
  • the step (2) employs a coprecipitation technique known in the art, preferably a cocurrent precipitation technique.
  • the alkaline precipitant used in the coprecipitation is selected from the group consisting of Na 2 CO 3 , ammonia water, K 2 CO 3 , (NH 4 ) 2 CO 3 and (NH 4 )HCO 3 , etc., preferably Na 2 CO 3 , ammonia water or ( NH 4 ) 2 CO 3 ;
  • the molar concentration of the alkaline precipitant aqueous solution is 1 ⁇ 6mol/L, preferably 1.5 ⁇ 4.5mol/L; wherein the amount of the alkaline precipitant in the step (2) is usually prepared according to stoichiometry , but preferably a slight excess than the stoichiometric amount;
  • the precipitation temperature of the step is 20 to 95 ° C
  • the pH of the precipitation slurry is 5 to 10
  • the precipitation time is 5 to 60 minutes
  • the preferred precipitation temperature is 40 to 90 ° C, pH
  • the water used therein is preferably deionized water such as distilled water.
  • the amount of water used in the production process can be greatly saved.
  • step (2) uses ammonia or (NH 4 ) 2 CO 3 as a precipitant, the water consumption can be saved by 50% compared to the conventional process.
  • the Cu salt solution described in the step (3) is a copper nitrate solution or a copper sulfate solution, and has a concentration of 1 to 4 mol/L, preferably a concentration of 1.5 to 3.0 mol/L;
  • the Ag + salt solution is a silver nitrate solution having a concentration of 0.1 to 3 mol/L, preferably a concentration of 0.5 to 1.5 mol/L.
  • the structural auxiliary silica used in the step (3) is a silica sol or a silicate of the Group IA metal M, wherein the silica sol is an acidic silica sol or an alkaline silica sol.
  • the concentration of SiO 2 in the structural auxiliary is 5 to 50% by weight, preferably 15 to 40% by weight.
  • the SiO 2 added to the precipitation slurry in the step (3) is a silicate of the Group IA metal M
  • the silicate is prepared from the silica and the Group IA metal M in a desired ratio of the Group IA metal.
  • the salt of the Group IA metal M used in the step (3) may be a carbonate, an acid carbonate, a nitrate or an acetate solution of the metal M, preferably a carbonate solution or an acetate solution; the salt solution has a concentration of 0.5 to 25 wt%. Preferably, it is 10 to 20% by weight.
  • the silica to be added is a silicate of Group IA metal M
  • the content of Group IA metal M and silica should be included in the electronic auxiliary agent and structural auxiliary agent, respectively.
  • the step (4) comprises first spray-drying the catalyst slurry, selecting particles of a suitable particle size, and then immersing the particles in a salt solution of the Group VIII noble metal M'.
  • the impregnation method can be carried out by a conventional technique in the art, such as an equal volume impregnation method.
  • the salt solution of the Group VIII metal M' is preferably a nitrate solution, and the concentration of the salt solution used can be determined according to the Fe/M' in the prepared catalyst.
  • the drying temperature of the step (4) is 60 to 120 ° C, preferably 80 to 100 ° C; and the baking temperature is 200 to 600 ° C, preferably 300 to 550 ° C.
  • the solution when referring to a solution of a metal salt, the solution means an aqueous solution of the salt.
  • the method for preparing the iron-based catalyst of the present invention comprises the following steps:
  • the solution described in (1) and (2) is cocurrently precipitated at a temperature of 55 to 85 ° C, and the pH of the precipitated slurry is 6 to 9 and the precipitation time is 10 to 30 minutes;
  • the obtained precipitated slurry is allowed to stand for aging, suction filtration and washing;
  • a silica sol or a Group IA metal M silicate having a silica concentration of 15 to 40% by weight, and a concentration a salt solution of 10 to 20 wt% of Group IA metal M, stirred uniformly to prepare a catalyst slurry;
  • the operation of adding the Cu and/or Ag salt solution in the step (3) may be completed in the step (1); and/or the step of introducing the step (3) into the structural auxiliary silica is completed in the step (1). , or add some structural auxiliaries in each of steps (1) and (3), and adjust the ratio of the two steps as needed.
  • the iron-based catalyst of the present invention and the preparation method thereof have the following advantages:
  • the improvement of the synthesis reaction activity and the selectivity of the product selectivity are very significant, and the selectivity of the olefin in the heavy hydrocarbon can be controlled by adjusting the ratio of the amount of the precious metal adjuvant added to the other additives.
  • the addition aid is more flexible, and can be coprecipitated with the main metal component or added to the slurry before the catalyst is formed, thereby avoiding the Group IB metal. Loss of the effective component in the preparation process;
  • Ag has excellent reducing assistants and electronic auxiliary properties, which have a beneficial effect on the selectivity of the catalyst Fischer-Tropsch synthesis reaction product.
  • the structural assistant SiO 2
  • the structural assistant may be added by coprecipitation with the main metal component, or may be added to the slurry before the catalyst is formed, or in different proportions. Add them separately in the above two steps.
  • the addition method is flexible, and the strength of the catalyst can be ensured by ensuring the physical and chemical stability of the catalyst by selecting different addition methods and adjusting the ratio added in the two steps while ensuring that the catalyst has sufficient Fischer-Tropsch synthesis activity. .
  • the iron-based catalyst of the present invention is characterized in that the iron source can be derived from a plurality of raw materials, and the precipitating agent can be selected according to actual conditions. Use different raw materials without increasing the total cost of the catalyst. For example, when ferric nitrate having a relatively high raw material price is used, ammonia water or ammonium carbonate can be selected as a precipitating agent, and the cost can be reduced by saving distilled water used for washing.
  • Another object of the present invention is to provide a Fischer-Tropsch synthesis process for producing hydrocarbons, characterized in that the process employs the above iron-based catalyst of the present invention.
  • the Fischer-Tropsch synthesis method may be a high temperature Fischer-Tropsch synthesis reaction or a low temperature Fischer-Tropsch synthesis reaction, and preferably wherein the Fischer-Tropsch synthesis reaction is a low temperature Fischer-Tropsch synthesis reaction;
  • the Fischer-Tropsch synthesis reaction can be carried out in a reactor conventionally used in Fischer-Tropsch synthesis, such as a fixed bed reactor, a suspended bed reactor or a slurry bed reactor, etc., preferably the Fischer-Tropsch synthesis reaction is carried out in a slurry bed reactor. More preferably, the slurry bed reactor is a slurry bed reactor having an exhaust gas cycle.
  • the space-time yield of the effective hydrocarbon product can be ensured to be high, and the CH 4 selectivity can be controlled at a very low level, generally controlled at 4 wt. % or less, and heavy hydrocarbons selectivity of lower olefins; as in the prior art generally Fe / Cu / K catalyst C 5 -C u olefin selectivity is about 80 wt% at most, while the present invention contain an amount of Pt Fe / 0.01 The olefin selectivity of the Fe/Cu/K catalyst of Pt is reduced to 60 wt% or less.
  • the Fischer-Tropsch synthesis reaction is carried out in a tail gas circulating slurry bed reactor, and the iron-based catalyst of the present invention is first pretreated in the reactor, that is, the On-line reduction of the catalyst; then, under the action of the above pretreated catalyst, an efficient Fischer-Tropsch synthesis reaction is carried out according to the operating conditions of the low temperature Fischer-Tropsch synthesis reaction.
  • the reaction process for producing hydrocarbons according to the present invention includes a pretreatment process of the above catalyst and a subsequent Fischer-Tropsch synthesis reaction process.
  • the pretreatment process exposes the above catalyst to a suitable temperature, pressure, space velocity reducing atmosphere, and performs on-line reduction on a tail gas circulating slurry bed reactor at a suitable time for the LTFT operating conditions.
  • a Fischer-Tropsch synthesis reaction is carried out to produce hydrocarbons.
  • the pretreatment process involved in the Fischer-Tropsch synthesis method of the present invention comprises the steps of: mixing a catalyst with a molten FT wax to form a slurry, filling it into a slurry bed reactor of an exhaust gas circulation, and first purging with an inert gas; Then, the reducing gas is introduced; the reactor pressure is adjusted to a reduction pressure of 0.1 to 5 MPa, the reduction gas space velocity is 0.5 to 5.0 NL/g-cat/h, and the temperature is gradually raised to a reduction temperature of 180 to 300 ° C, and the reduction is 2 to 48 hours, and then introducing an inert gas containing reducing gas, wherein the volume percentage of the inert gas is 1% ⁇ 20%, and the remaining synthesis gas, the synthesis gas hydrogen to carbon ratio of H 2 / CO is 0.5 ⁇ 40; after completion of this procedure, the condition switching operation For the typical operating conditions of the low temperature Fischer-Tropsch synthesis reaction, the Fischer-Tropsch synthesis reaction process for the production of hydrocarbon
  • the typical operating conditions of the low-temperature Fischer-Tropsch synthesis reaction are: a reaction temperature of 210 to 290 ° C, a reaction pressure of 0.5 to 5 MPa, and a reaction space gas velocity of the inlet raw material of the reaction is 0.5 to 5.0.
  • the reaction inlet raw material synthesis gas hydrogen-carbon ratio H 2 /CO is 0.5-3.5; preferably, the Fischer-Tropsch synthesis reaction is operated at a reaction temperature of 220 to 270 ° C,
  • the reaction pressure is l ⁇ 4Mpa
  • the reaction inlet synthesis gas space velocity is 1.0 ⁇ 4.0NL/g-cat/h
  • the reaction inlet synthesis gas hydrogen-carbon ratio is 3 ⁇ 4/CO of 0.7 ⁇ 2.5.
  • the exhaust gas circulation ratio is 1 to 3; wherein the reducing gas is pure H 2 , pure CO or syngas; when the reducing gas is syngas, the syngas is The hydrogen to carbon ratio is 0.01 to 99, and the hydrogen to carbon ratio of the synthesis gas is preferably 0.1 to 50, and more preferably the hydrogen to carbon ratio is 2 to 50.
  • the inert gas used is N 2 or Ar; in the inert gas-containing reducing gas used, the volume percentage of the inert gas in the reducing gas is 5% to 15%.
  • the reduction temperature therein is preferably 210 to 280 ° C; the reduction pressure is preferably 0.25 to 4 MPa; and the reduction gas space velocity is preferably 1.0 to 4.0 NL / g - cat / h.
  • the low temperature Fischer-Tropsch synthesis method using the iron-based catalyst of the present invention has the following advantages:
  • the pretreatment process of the Fischer-Tropsch synthesis method of the present invention enables on-line reduction of the catalyst without the need for an additional reduction reactor, and the reduction conditions are mild. Inert gas protection is used during the switching of the reducing conditions and the reaction conditions, thereby avoiding the physical property changes caused by the sudden changes in the catalyst.
  • the iron-based catalyst of the invention has high Fischer-Tropsch synthesis activity, high selectivity to C 5 or more hydrocarbons and low carbon olefins, and the selectivity of formazan can be controlled at a very low level, heavy hydrocarbons
  • the low selectivity of medium olefins is suitable for the synthesis of diesel, gasoline and wax products from coal-based syngas in a slurry bed reactor. Best way to implement the invention
  • LOT FeSO 4 H 2 O was dissolved in 3.0 m 3 of deionized water, and then 70 mol of a 3 mol/L sulfuric acid solution was added. To the mixed solution, 450 L of a 15% aqueous H 2 O 2 solution was added, and the mixture was oxidized under vigorous stirring at 20 ° C for 2 hours. 47 kg of CuSO 4 _5H 2 O was dissolved in 100 L of deionized water and added to the above-prepared iron sulfate solution. Dissolve 0.7T of Na 2 CO 3 in 2.5 m 3 of deionized water. To the aqueous sodium carbonate solution.
  • the LOT of Fe (NO 3) 3 _9H 2 O were dissolved in deionized water 2.0m 3, formulated with water to ammonia of 10wt% aqueous ammonia solution was 2.0m 3.
  • a 0.5 T iron ingot and 10 kg of copper scrap were reacted with an appropriate amount of a nitric acid solution having a weight percentage of 20% by weight, and the tail gas was sprayed with deionized water and absorbed, and then absorbed by a soda ash solution.
  • the 4.0m 3 prepared iron nitrate and copper nitrate in a mixture of an acid into the tank; the base can be formulated in a saturated solution of ammonium carbonate with water to 4.0 m 3.
  • the two solutions were separately heated to 80 ° C, and the precipitate was flowed, maintaining the temperature of the precipitation vessel at 85 ° C, the pH of the mixed solution was 7.0 to 7.5, and the mixed coprecipitation process was completed in 40 minutes. Allow to stand for 10 minutes.
  • Silica sol intensely stirred evenly, sheared at high speed. The slurry is then spray dried.
  • 25 g of catalyst A was mixed with 400 ml of molten FT wax to form a slurry, which was filled into a 1 L slurry bed reactor of exhaust gas circulation, and the circulation ratio was 3, firstly introduced into N 2 purge, and then introduced into pure 3 ⁇ 4 as reducing gas.
  • the reactor pressure was adjusted to a reduction pressure of 0.101 MPa.
  • the reaction pressure is 2.0 MPa
  • the synthesis gas space velocity of the inlet raw material of the reaction is 2.5 NL/g ⁇ cat/h
  • the reaction raw material synthesis gas hydrogen/carbon ratio H 2 /CO is 2, and the process of producing hydrocarbons begins.
  • 10 g of catalyst B is mixed with 300 g of molten FT wax to form a slurry, which is filled into a 1 L slurry bed reactor of an exhaust gas cycle, and has a cycle ratio of 2, firstly introduced into an Ar gas purge, and then introduced into a synthesis gas as a reducing gas.
  • H 2 /CO 10
  • the reactor pressure was adjusted to a reduction pressure of 2.5 MPa.
  • Example 6 Process for producing hydrocarbons by Fischer-Tropsch synthesis reaction
  • the catalyst of the present invention operates at a higher reaction space velocity in a slurry bed reactor and maintains a high Fischer-Tropsch synthesis reaction activity, and both CO and H 2 conversion rates are above 80%, and effective hydrocarbons
  • the selectivity (C ⁇ C 4 C 5 + ) is maintained above 90% by weight, the selectivity of formazan is below 3.0%, and the selectivity of C DDR olefin is reduced to below 60% by weight, wherein the yield (oil + wax) is high, both More than 0.45 g/g-cat./h.
  • the catalyst of the present invention is particularly useful for the production of diesel, gasoline, wax, and the like from syngas in a slurry bed reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

一种费托合成用铁基催化剂、 其制备方法和应用 技术领域
本发明涉及一种一氧化碳(CO)加氢反应催化剂及其制备方法, 具体 地说, 本发明涉及一种费托合成用的铁基催化剂、 其制备方法以及该催化 剂在费托合成技术生产烃的方法中的应用。 背景技术
费托合成是上世纪 20年代在德国发明并逐渐转向工业应用的、 由合 成气 (CO+H2) 生产液体燃料的一种方法, 合成气来源于煤炭、 天然气、 煤层气以及其它含碳生物质。费托合成催化剂的主活性金属为 VIII族金属, 其中只有 Fe、 Co、 Ni和 Ru四种金属有足够高的 CO加氢反应活性, 它们 对费托合成具有应用价值, 其中 Ru的活性最高, 即使在 150°C下反应也能 获得相当高的重质烃收率,但低储量和高价格限制了其大规模的工业应用。 Ni基催化剂的活性也比较高, 但存在两个主要的缺点: 一是强的加氢能力 使得 Ni催化剂生成的费托合成产物中 CH4生成量远高于 Fe基和 Co基催 化剂; 二是在典型的工业费托合成操作条件下, Ni容易生成挥发性的金属 羰基化合物而导致镍金属不断流失。 因此只有 Fe和 Co具有潜在的工业应 用价值。
Co催化剂是最早投入工业化生产的费托合成(FT)催化剂, 其特点是 在相对较低的温度下, 有较高的单程转化率, 寿命长, 直链烃收率高; 虽 然成本较高, 但易于回收和再生, 比较适合在固定床反应器上进行操作。 此外, Co 催化剂的水煤气变换 (WGS) 反应较弱, 适于高氢碳比的天然 气基合成气的 FT合成。 研究 Co催化剂的文献和专利很多, 其中 Shell公 司的 Co催化剂已经成功实现数年的工业应用。 铁催化剂的特点是价格低廉,允许较宽范围的操作温度(220〜350°C ); 即使在很高的温度下, 甲垸的选择性也能保持相对较低的值; 产物选择性 可以调变; 此外, 铁催化剂具有较高的 WGS反应活性, 较适合于低氢碳 比的煤基合成气(H2/CO=0.5〜0.7)的转化。早在上世纪 50年代,南非 Sasol 公司就已经成功地将 Fe催化剂应用于煤基合成液体燃料的工业化过程中。 可用于费托合成的铁催化剂包括熔铁催化剂和沉淀铁催化剂。 目前制备沉 淀铁催化剂的方法已经有相当数量的文献报道。 美国 Mobil公司在美国专利 USP4, 617,288和 USP4, 686,313中公开了 一种采用连续共沉淀法制备低氮含量的 Fe-Cu-K 费托合成催化剂的方法, 具体为: 将计量比例的硝酸铁与硝酸铜混合溶液及适当浓度的氨水溶液在
80〜90°C、 pH在 6.6〜6.8之间连续共沉淀, 抽滤, 洗涤, 再加入一定量的 K2CO3溶液, 打浆, 烘干, 300°C焙烧, 制得含氮量很低的催化剂, 该法适 合于工业化连续生产。美国 Mobil公司还在美国专利 USP4, 994,428中公开 了一种制备共沉淀 Fe-Cu-K催化剂的方法以及用水蒸汽处理该催化剂的方 法, 生产的烃产物中 C5 +达到 90%以上。
Sasol技术有限公司在美国专利 USP6, 844,370中也公开了一种不含粘 结剂的沉淀型 Fe-Cu-K费托合成催化剂的制备方法, 该催化剂适用于在高 温流化床中合成烃产物。 美国 Rentech 公司在美国专利 USP5, 504,118 和中国发明专利 CN1113905A 中公开了一种用于浆态床反应器的费托合成铁基催化剂的制 备方法, 具体为: 用硝酸溶解金属铁和铜获得硝酸盐, 将氨水加入热的硝 酸盐混合液中, pH值控制在 7.4, 获得沉淀浆液, 过滤, 洗涤, 随后加入 碳酸钾溶液, 打浆, 催化剂在浆液中的重量百分含量约为 8〜12%, 然后用 喷雾干燥器喷雾干燥, 最后催化剂在空气中 315°C焙烧制得成品催化剂。 美国 Chevron公司在美国专利 USP6, 787,577中公开了一种采用有机硅 与铁盐共沉淀制备催化剂的方法及其在费托合成反应中的应用。 共沉淀浆 料经洗涤、过滤、干燥后, 按一定比例浸渍 K2CO3和 Cu(NO3)2水溶液得到 Fe-Cu-K-Si催化剂。 其特点是 C2〜C4以及 C5〜CU烯烃收率高。 美国 Exxon 公司在美国专利 USP5, 100,556 中公开了沉淀型的 Fe-Zn-Cu-K催化剂的制备方法及其在费托合成反应中的应用。 采用 Fe/Zn 混合硝酸盐在 pH=6.5左右与氨水共沉淀, 滤饼洗涤、 过滤、 干燥后, 按 比例先浸渍 K2CO3溶液, 干燥后再浸渍 Cu(NO3)2溶液, 最后干燥、 焙烧。 该方法使催化剂活性、 稳定性提高, 有利于生产 alpha-烯烃。 美国 Texas A&M大学 Burkur等人在杂志 Ind. Eng. Chem. Res., 1990, 29, pl588-1599中公开了一种 Fe/Cu/K/SiO2催化剂的制备方法, 具体为: 硝酸铁和硝酸铜混合溶液中加入氨水溶液在 82°C进行连续共沉淀, 沉淀彻 底洗涤并过滤, 加入一定量的 K2SiO3溶液, 重新打浆并使 pH≤6, 真空干 燥后浸渍一定量的 KHCO3溶液, 然后烘干并在 300°C焙烧 5小时制得。在 Ind.Eng.Chem.Res., 1999, 38, p3270~3275中将配方为 100Fe/3Cu/4K/16SiO2
(重量计) 的催化剂用于浆态床反应, 发现该催化剂对低 H2/CO比的合成 气原料具有高的活性和高的 C5 +与低碳烯烃选择性。 上述催化剂根据合成气源以及目标产物的不同, 在组成、 制备方法和 应用等方面各具特色,但其中部分催化剂还未进入实质性的工业应用阶段。 发明内容
本发明的目的是提供了一种一氧化碳加氢催化剂, 具体的, 所述的催 化剂是一种费托合成用的铁基催化剂, 其主要成分是铁, 其中还包括: 含 有 IB族金属 Cu和 /或 Ag的氧化物作为还原助剂; 含有至少一种 IA族金 属 M的氧化物作为电子助剂, 所述的 IA族金属 M选自 Li、 Na、 K或 Rb; 含有至少一种 VIII族贵金属 M'作为加氢助剂,所述的 VIII族金属 M'选自
Ru、 Rh、 Pd或 Pt; 和含有 SiO2作为结构助剂; 在所述催化剂中主要成分 Fe的重量百分含量为 30wt%〜70wt%, 优选主要成分 Fe在催化剂中的重量 百分含量为 40wt%〜65wt%, 更优选 45wt%〜60wt%。 在本发明上述铁基催化剂中, 所述的主要成分铁以完全氧化物的形式 存在, 即以最高氧化价 (三价) 存在的情况。 在以下的描述中涉及各组分 的组成时, 其中各金属组分以元素计, 结构助剂以氧化物计。 本发明所述的铁基催化剂含有至少一种 IB族金属氧化物作为还原助 剂, 优选 Cu和 /或 Ag的氧化物。 铁与铜的重量比为 Fe/Cu=100/0〜20, 优 选为 Fe/Cu=100/0〜12, 更优选为 Fe/Cu = 100/0〜8; 铁与银的重量比为 Fe/Ag= 100/0-10, 优选为 Fe/Ag=100/0〜5, 更优选为 Fe/Ag=100/0〜2。 本发明所述的铁基催化剂含有至少一种 IA族金属 M的氧化物作为电 子助剂, 所述的 IA族金属 M选自 Li、 Na、 K或 Rb, 优选 Li、 K或 Na, 更优选 K或 Li; 铁与所述电子助剂的重量比为 Fe/M=100/0.05〜15, 优选为 Fe/M=100/0.1〜10, 更优选为 Fe/M=100/0.5〜8。 本发明所述的铁基催化剂还含有 SiO2作为结构助剂,铁与二氧化硅的 重量比为 Fe/SiO2=100/0.1〜50, 优选为 Fe/SiO2=100/l〜45, 更优选为 Fe/SiO2=100/5〜35。 本发明所述的铁基催化剂还含有少量 VIII族贵金属 M'作为加氢助剂, 所述的 VIII族贵金属 M'选自 Ru、 Rh、 Pd或 Pt, 优选 Ru或 Pt。 该催化剂 的主要成分铁与所述贵金属 M'的重量比为 Fe/M'=100/0.001〜5, 优选为 Fe/M,=100/0.005〜1, 更优选为 Fe/M,=100/0.01〜0.5。 在本发明所述的铁基催化剂中, 优选所述 IA族金属 M电子助剂是 K 或 Li的氧化物, 和 /或优选所述的 VIII族金属 M'加氢助剂是 Ru或 Pt。 优选的, 本发明的铁基催化剂由上述组分 Fe、还原助剂 Cu和 /或 Ag、 电子助剂、加氢助剂和结构助剂组成;其中所述各组分的重量份数之比为: Fe:Cu:Ag:电子助齐 IJ :加氢助齐 IJ:结构助剂 = 100 : 0-20 : 0-10 : 0.05-15 : 0.001-5 : 0.1-50, 优选所述各组分的重量份数之比为: Fe:Cu:Ag:电子助剂 :加氢助剂:结构助剂 = 100: 0-12: 0-5 :0.1-10: 0.005-1: 1-45,更优选所述 各组分的重量份数之比为: Fe:Cu:Ag:电子助剂:加氢助剂:结构助剂 = 100 :
0-8: 0-2 :0.5-8: 0.01-0.5: 5-35, 条件是 Cu和 Ag的含量不能同时为 0。 本发明优选的铁基催化剂组成例如是: Fe/Cu/Li/Ru/SiO2, Fe/Ag/K/Pt/SiO2, 或是 Fe/Cu/K/Pt/SiO2 。 在本发明的铁基催化剂中, 添加了少量的 VIII族贵金属作为加氢助 剂。 根据本领域的常识, 添加贵金属后, 催化剂的加氢活性提高; 但由于 本发明催化剂中贵金属的添加量很小, 其加氢活性的提高应该是非常有限 的; 但通过对其它助剂和使用量的选择和优化, 两者的协同作用使本发明 催化剂不仅可以更大限度地提高加氢活性, 而且在产物选择性方面也具有 非常好的调变作用。 因此, 本发明所述的铁基催化剂适于作为费托合成反应的催化剂, 更 适合用作低温费托合成(LTFT) 的催化剂, 特别适用于在浆态床反应器中 进行的低温费托合成反应。 本发明的另一目的是提供了一种上述铁基催化剂的制备方法, 该方法 的特点是制备工艺简单, 可以使用多种铁源, 在总生产成本不变的情况下 添加少量贵金属助剂, 不仅提高了催化剂的反应活性, 而且可调变产物的 选择性。 本发明制备上述铁基催化剂的方法包括以下步骤:
( 1 ) 配制铁盐溶液;
(2) 将铁盐溶液用碱性沉淀剂进行共沉淀;
(3 )沉淀洗涤后重新打浆, 按所需比例向所述料浆中加入 IB族金属 Cu和 /或 Ag的盐溶液、 IA族金属 M的盐溶液和结构助剂二氧化硅, 所述 的结构助剂二氧化硅是硅溶胶或 IA族金属 M的硅酸盐; 和
(4) 将上述混合浆料经喷雾干燥成型, 并将成型的催化剂按所需比 例用至少一种 VIII族贵金属 M'的盐溶液等体积浸渍, 然后干燥和焙烧, 得到所述的催化剂。 在上述方法中, 步骤 (3 ) 所述添加 IB族金属 Cu和 /或 Ag盐溶液的 操作可改在步骤 (1 ) 完成, 即把 IB族金属 Cu和 /或 Ag的盐溶液添加在 铁盐溶液中。 在上述方法中, 步骤 (3 ) 引入结构助剂二氧化硅的操作可改在步骤 ( 1 ) 完成, 或在步骤 (1 )和 (3 ) 各加入部分结构助剂, 并可根据需要调 节两个步骤添加的比例。 优选的,上述添加 IB族金属 Cu和 /或 Ag盐溶液的方法可根据需要如 上所述随意选择和调节; 上述引入结构助剂二氧化硅的方法也可根据需要 如上所述随意选择, 如分别在步骤 (1 ) 和 (3 ) 各加入部分结构助剂时, 每个步骤的添加量可以是任意比例的。 在本发明方法的描述中提及催化剂的各组分, 例如还原助剂、 电子助 剂和加氢助剂等的选择时如上文所述, 其添加量 "按所需比例"是指上文 所述各组分之间的含量比。 本发明的上述方法中,其中所述作为电子助剂的 IA族金属 M选自 Li、 Na、 K或 Rb, 优选所述的 IA族金属 M是 K或 Li, 更优选 K; 其中所述 作为加氢助剂的 VIII族贵金属 M'选自 Ru、 Rh、 Pd和 Pt, 优选 Ru或 Pt。 在本发明的上述方法中, 其中所述步骤 (1 ) 中使用的铁盐溶液是三 价铁 (Fe3+) 盐的水溶液, 例如所述的三价铁盐是硝酸铁或硫酸铁; 当该 铁盐溶液是硝酸铁溶液时, 该溶液可通过溶解工业硝酸铁制得, 或通过用 硝酸溶解铁屑制得; 当所述的铁盐是硫酸铁时, 该溶液可通过溶解工业聚 合硫酸铁制得, 或通过工业硫酸亚铁溶解后氧化制得; 其中所述铁盐溶液 的浓度为 0.5〜10wt%, 优选 l〜5mol/L。 在本发明的上述方法中, 其中步骤 (2) 采用了本领域已知的共沉淀 技术, 优选并流共沉淀技术。 其中共沉淀时所使用的碱性沉淀剂选自 Na2CO3、 氨水、 K2CO3、 (NH4)2CO3和 (NH4)HCO3等, 优选 Na2CO3、 氨水 或 (NH4)2CO3 ; 所述碱性沉淀剂水溶液的摩尔浓度为 l〜6mol/L, 优选 1.5〜4.5mol/L; 其中步骤 (2) 中碱性沉淀剂的用量通常是按照化学计量配 制, 但优选比化学计量稍过量; 所述步骤的沉淀温度为 20〜95°C, 沉淀浆 液的 pH=5〜10, 沉淀时间为 5〜60分钟; 优选沉淀温度为 40〜90°C, pH值 为 6〜10; 更优选所述的沉淀温度为 55〜85°C, pH值为 6〜9, 沉淀时间为 10〜30分钟; 以及其中所述的老化时间为 5分钟〜 2小时, 优选 5〜30分钟。 在本发明的上述方法中, 其中所使用的水优选是去离子水, 例如蒸馏 水。 应用本发明制备催化剂的方法, 可大大节约生产过程中的用水量。 例 如, 当步骤 (2) 采用氨水或 (NH4)2CO3作为沉淀剂时, 与传统工艺相比, 其用水量可节约 50%。 在本发明的上述方法中, 其中步骤(3 )所述的 Cu盐溶液是硝酸铜溶 液或硫酸铜溶液, 浓度为 l〜4mol/L, 优选浓度为 1.5〜3.0mol/L; 其中所述 的 Ag+盐溶液为硝酸银溶液,浓度为 0.1〜3mol/L,优选浓度为 0.5〜1.5mol/L。 在本发明的上述方法中, 其中步骤 (3 ) 使用的结构助剂二氧化硅是 硅溶胶或 IA族金属 M的硅酸盐, 其中所述的硅溶胶是酸性硅溶胶或碱性 硅溶胶, 所述结构助剂中 SiO2的浓度为 5〜50wt%, 优选 15〜40wt%。 当步骤 (3 ) 向沉淀浆液加入的 SiO2是 IA族金属 M的硅酸盐时, 所 述的硅酸盐由二氧化硅和 IA族金属 M是按所需比例预先调制好的 IA族金 属 M的硅酸盐溶液, 所述的 IA族金属 M的硅酸盐是由工业 M水玻璃与 硅溶胶配制而成; 该溶液中的 SiO2与 M2O摩尔比为 SiO2/M2O=l〜10, 优 选 SiO2与 M2O摩尔比为 SiO2/ M2O=2〜5。 在本发明的上述方法中, 其中步骤 (3 ) 所使用的 IA族金属 M的盐 溶液可以是所述金属 M的碳酸盐、酸式碳酸盐、硝酸盐或或醋酸盐溶液等, 优选碳酸盐溶液或醋酸盐溶液; 所述盐溶液的浓度为 0.5〜25wt%, 优选 10〜20wt%。 在本发明的上述方法中, 如果所加入的二氧化硅是 IA族金属 M的硅 酸盐时, 其中 IA族金属 M和二氧化硅的含量应该分别计入电子助剂和结 构助剂之中; 另外, 在完全步骤(3 ) 的加入过程之后, 需要将得到的混合 物搅拌均匀, 高速剪切, 制成催化剂浆料。 在本发明的上述方法中, 其中步骤 (4) 包括首先将上述催化剂浆料 进行喷雾干燥成型, 选取适当粒径的颗粒, 然后将上述颗粒于 VIII族贵金 属 M'的盐溶液中浸渍。所述的浸渍方法可以采用本领域的常规技术,例如 等体积浸渍法, 所述 VIII族金属 M'的盐溶液优选是硝酸盐溶液, 所用盐 溶液的浓度可根据所制备催化剂中 Fe/M'的比例, 以及等体积浸渍时溶液 的量来确定。 在本发明的上述方法中, 其中步骤 (4) 的干燥温度为 60〜120°C, 优 选 80〜100°C ; 焙烧温度为 200〜600°C, 优选 300〜550°C。 在本发明的上述方法中, 涉及金属盐的溶液时, 所述溶液是指所述的 盐的水溶液。 优选的, 本发明制备所述铁基催化剂的方法包括如下步骤:
( 1 ) 配制摩尔浓度为 l〜5mol/L的硝酸铁或硫酸铁水溶液;
(2)按照化学计量配制稍过量的碱性沉淀剂水溶液,其摩尔浓度为为
1.5~4.5mol/L;
将 (1 )和 (2)所述的溶液在温度为 55〜85°C的条件下进行并流沉淀, 沉淀浆液的 pH=6〜9, 沉淀时间为 10〜30分钟;
将得到的沉淀浆液静置老化, 抽滤和洗涤;
(3 ) 向洗涤后的沉淀物中加入水制成浆液, 按所需比例加入浓度为
1.5〜3.0mol/L的 Cu盐溶液和 /或浓度为 0.5〜1.5mol/L Ag盐溶液, 加入二氧 化硅浓度为 15〜40wt%的硅溶胶或 IA族金属 M 的硅酸盐, 以及浓度为 10〜20wt%的 IA族金属 M的盐溶液, 搅拌均匀后制成催化剂浆料;
(4) 将上述催化剂浆料进行喷雾干燥成型, 选取 50〜100μιη的颗粒; 按所需比例将上述颗粒等体积浸渍 VIII族贵金属 M'的盐溶液, 然后经干 燥、 焙烧, 制得成品催化剂;
其中步骤 (3 ) 所述添加 Cu和 /或 Ag盐溶液的操作可改在步骤 (1 ) 完成; 和 /或将步骤(3 )引入结构助剂二氧化硅的操作改在步骤(1 )完成, 或在步骤 (1 ) 和 (3 ) 各加入部分结构助剂, 并可根据需要调节两个步骤 添加的比例。 与现有技术相比, 本发明的铁基催化剂及其制备方法具有如下优点:
( 1 ) 本发明的铁基催化剂中添加了少量的贵金属作为加氢助剂, 其 加入量虽然很少, 通常只按 Fe/M'=100/0.01〜0.5的比例添加, 但对催化剂 费托合成反应活性的提高以及对产物选择性的调变作用非常显著, 可以通 过调变贵金属助剂添加量与其它助剂的配比,控制重质烃中的烯烃选择性。
(2) 在本发明制备铁基催化剂的方法中, 还原助剂的添加方式更为 灵活, 可以与主金属组分共沉淀, 也可以在催化剂成型前的浆料中添加, 避免了 IB族金属有效组分在制备过程中的损失; 此外 Ag具有优异的还原 助剂及电子助剂特性, 对调整催化剂费托合成反应产物选择性产生有益的 影响。
(3 ) 在本发明制备铁基催化剂的方法中, 结构助剂 (SiO2) 的加入 方式可以是与主金属组分共沉淀, 也可以在催化剂成型前的浆料中添加, 或以不同比例分别添加在上述两个步骤中。 加入方法灵活, 可以通过选择 不同的添加方法和调节两个步骤中添加的比例, 在保证催化剂具有足够费 托合成反应活性的同时, 尽可能地提高其强度, 以保证催化剂的物理及化 学稳定性。
(4) 本发明的铁基催化剂的特点在于所述铁源可以来自多种原料, 所述的沉淀剂亦可根据实际情况加以选择。 在不提高催化剂总成本的情况 下, 选择使用不同的原料。 例如当采用原料价格相对较高的硝酸铁时, 可 选择氨水或碳酸铵作为沉淀剂, 通过节约洗涤所用蒸馏水降低成本。 本发明的另一目的是提供一种生产烃的费托合成方法, 其特征在于该 方法采用了本发明上述的铁基催化剂。 其中所述的费托合成方法可以是高温费托合成反应, 也可以是低温费 托合成反应, 优选其中所述的费托合成反应是低温费托合成反应; 所述的 费托合成反应可以在费托合成常用的反应器, 如固定床反应器、 悬浮床反 应器或浆状床反应器等之中进行, 优选所述的费托合成反应在浆态床反应 器中进行, 更优选所述的浆态床反应器是具有尾气循环的浆态床反应器。 在上述的费托合成反应中, 由于使用了本发明所述的催化剂, 可以保 证有效烃产物的时空收率很高, CH4选择性可以控制在很低的水平上, 一 般可控制在 4 wt%以下, 而且重质烃中烯烃选择性较低; 如现有技术中一 般 Fe/Cu/K催化剂 C5-Cu烯烃选择性大多在 80wt%左右, 而本发明含 Pt 量为 Fe/0.01Pt的 Fe/Cu/K催化剂烯烃选择性降低至 60wt%以下。 本发明的上述目的是这样实现的: 所述的费托合成反应在尾气循环的 浆态床反应器中进行, 首先将本发明的铁基催化剂在该反应器中进行预处 理, 即实现所述催化剂的在线还原;然后在上述预处理后的催化剂作用下, 按照低温费托合成反应操作条件实现高效的费托合成反应。 因此, 本发明所涉及的生产烃的反应过程包括上述催化剂的预处理过 程和随后进行的费托合成反应过程。 预处理过程是将上述的催化剂暴露在 适当温度、 压力、 空速的还原气氛下, 在尾气循环的浆态床反应器上进行 适当时间的在线还原, 还原后的催化剂在典型的 LTFT操作条件下进行费 托合成反应生产烃。 本发明的费托合成方法所涉及的预处理过程包括如下步骤: 将催化剂 与溶融的 FT蜡混合均匀制成浆液, 填充到尾气循环的浆态床反应器中, 先通入惰性气体吹扫, 然后导入还原气; 调整反应器压力至还原压力 0.1〜5MPa, 还原气空速为 0.5〜5.0NL/g-cat/h, 逐渐升温至还原温度为 180〜300°C, 还原 2〜48h, 然后导入含惰性气体的还原气, 其中惰性气体的 体积百分数为 1%〜20%, 其余为合成气, 合成气氢碳比 H2/CO为 0.5〜40; 在完成此过程之后,将操作条件切换为低温费托合成反应的典型操作条件, 开始生产烃的费托合成反应过程。 在本发明的上述方法中, 其中所述低温费托合成反应的典型操作条件 是: 反应温度为 210〜290°C, 反应压力为 0.5〜5MPa, 反应的入口原料合成 气空速为 0.5〜5.0NL/g-cat/h, 反应的入口原料合成气氢碳比 H2/CO 为 0.5-3.5;优选的,所述费托合成反应的操作条件是:反应温度为 220〜270°C, 反应压力为 l〜4Mpa, 反应入口合成气空速为 1.0〜4.0NL/g-cat/h, 以及反应 入口合成气氢碳比 ¾/CO为 0.7〜2.5。 在上述预处理过程中, 其中的尾气循环比为 1〜3; 其中所述的还原气 为纯 H2 、 纯 CO或合成气; 当所述的还原气为合成气时, 所述合成气的 氢碳比为 0.01〜99, 优选合成气的氢碳比为 0.1〜50, 更优选氢碳比为 2〜50。 在上述预处理过程中, 所采用的惰性气体是 N2或 Ar; 在所采用的含 惰性气体的还原气中, 惰性气体在该还原气中的体积百分数为 5%〜15%。 在上述预处理过程中, 其中的还原温度优选为 210〜280°C ; 所述的还 原压力优选为 0.25〜4Mpa; 所述的还原气空速优选为 1.0〜4.0NL/g-cat/h。 与现有技术相比, 应用本发明的铁基催化剂所进行的低温费托合成方 法具有如下优点:
( 1 )本发明费托合成方法的预处理过程能够实现催化剂的在线还原, 无需另外的还原反应器, 还原条件温和。 在还原条件与反应条件切换过程 中采用惰性气体保护, 避免了催化剂因条件剧变所引起的物性变化。
(2) 本发明上述方法中的费托合成反应过程能够使催化剂在较高空 速下的运转, 可以得到理想的烃产物时空收率。
(3 ) 本发明的铁基催化剂具有很高的费托合成反应活性, 对 C5以上 烃及低碳烯烃有高的选择性, 甲垸选择性可以控制在很低的水平上, 重质 烃中烯烃选择性较低, 适用于在浆态床反应器中由煤基合成气合成柴油、 汽油和蜡产品。 实施本发明的最佳方式
下面通过铁基催化剂的制备实例及费托合成反应实例更详细的说明本 发明, 所提供的实施例仅用于示例本发明, 但不以任何方式限制本发明的 保护范围。 实施例 1 催化剂制备
将 LOT的 FeSO4 H2O溶于 3.0m3去离子水中, 再加入 3mol/L的硫 酸溶液 70L。 向该混合溶液加入 15%的 H2O2水溶液 450L, 在 20°C下激烈 搅拌下氧化 2小时。 将 47kg的 CuSO4_5H2O溶入 100L去离子水中, 加入 到上述制得的硫酸铁溶液中。 将 0.7T的 Na2CO3溶入 2.5 m3去离子水中得 到碳酸钠水溶液。 两种溶液分别加热到 70 °C, 并流沉淀, 保持沉淀釜温度 为 75°C, 混合溶液的 PH=7〜7.5, 混合共沉淀过程在 15分钟内完成。 静置 老化 30分钟。用去离子水过滤洗涤至无硫酸根检出为止。滤饼再加入水重 新打浆, 按 Fe/Li=100/2的比例加入适量 Li2CO3的水溶液, 充分搅拌后, 按 Fe/SiO2= 100/30的比例加入适量 SiO2含量为 40wt%的碱性硅溶胶,激烈 搅拌均匀, 高速剪切。 然后将浆料喷雾干燥。 取所需量的干燥后的球状催 化剂, 按 Fe/Ru=100/0.2 的比例等体积浸渍硝酸钌溶液, 充分浸润后水浴 85°C干燥后, 再在 400°C下焙烧 6小时, 得到铁基催化剂, 催化剂重量比 例为 Fe/Cu/Li/SiO2/Ru=100:6:2:30:0.2, 该催化剂记为 A。 实施例 2 催化剂制备
将 LOT的 Fe(NO3)3_9H2O溶于 2.0m3去离子水中, 将液氨用水配制成 10wt%的氨水溶液 2.0m3。 两种溶液分别加热到 40 °C, 并流沉淀, 保持沉 淀釜温度为 65°C, 混合溶液的 PH=8.5〜9, 混合共沉淀过程在 10分钟内完 成。静置老化 20分钟。用适量去离子水过滤洗涤。滤饼再加入水后重新打 浆, 按 Fe/Ag=100/0.5 的比例加入适量的硝酸银水溶液, 充分搅拌; 按
Fe/K/SiO2=100/6/16的比例加入模数为 3.3的含 25wt%SiO2的硅酸钾水玻璃 溶液, 充分搅拌后高速剪切, 然后将浆料喷雾干燥。 取所需量的干燥后的 球状催化剂, 按 Fe/Pt=100/0.01 的比例等体积浸渍硝酸铂溶液, 充分浸润 后水浴 90°C干燥后, 再在 500°C下焙烧 3小时, 得到铁基催化剂, 催化剂 重量比例为 Fe/Ag/K/SiO2/Pt=100:0.5:6: 16:0.01, 该催化剂记为 B。 实施例 3 催化剂制备
将 0.5T的铁锭和 10kg铜屑与重量百分数为 20wt%的适量硝酸溶液反 应, 尾气用去离子水喷淋吸收后, 再用纯碱溶液吸收。 将 4.0m3所制得的 硝酸铁和硝酸铜混合液打入酸罐中; 将碱罐中用水配制成饱和碳酸铵溶液 4.0 m3。 两种溶液分别加热到 80°C, 并流沉淀, 保持沉淀釜温度为 85°C, 混合溶液的 PH=7.0〜7.5, 混合共沉淀过程在 40分钟内完成。 静置老化 10 分钟。 用适量去离子水过滤洗涤。 滤饼再加入水重新打浆, 按 Fe/K=100/3 的比例加入适量醋酸钾的水溶液, 充分搅拌后, 按照 Fe/SiO2=100/10的比 例加入适量 SiO2含量为 20wt%的酸性硅溶胶, 激烈搅拌均匀, 高速剪切。 然后将浆料喷雾干燥。 取所需量的干燥后的球状催化剂, 按 Fe/Pt=100/0.1 的比例等体积浸渍硝酸铂溶液, 充分浸润后水浴 85°C干燥后, 再在 450°C 下焙烧 5 小 时 , 得到铁基催化剂 , 催化剂重量 比例为 Fe/Cu/K/SiO2/Pt=100:2:3:10:0.1 , 该催化剂记为 C。 实施例 4 催化剂的预处理过程
将 25g催化剂 A与 400ml熔融的 FT蜡混合均匀制成浆液, 填充到尾 气循环的 1L浆态床反应器中, 循环比为 3, 先通入 N2吹扫, 然后导入纯 ¾作为还原气, 调整反应器压力至还原压力 0.101MPa。 还原气空速为 1.0NL/g〜cat/h,逐渐升温至还原温度 220°C,还原 8h,然后导入 N2/(CO+H2) 混合气, 合成气 (CO+H2) 的 H2/CO=2, N2所占体积百分数为 10V%, 在 此过程中将操作条件逐渐切换为 LTFT合成反应的操作条件, 反应温度为
240 °C , 反应压力为 2.0MPa, 反应的入口原料合成气空速为 2.5NL/g〜cat/h, 反应的入口原料合成气氢碳比 H2/CO为 2, 开始生产烃的过程。 实施例 5 催化剂的预处理过程
将 10g催化剂 B与 300g熔融的 FT蜡混合均匀制成浆液,填充到尾气 循环的 1L浆态床反应器中, 循环比为 2, 先通入 Ar气吹扫, 然后导入合 成气作为还原气, H2/CO=10, 调整反应器压力至还原压力 2.5MPa。 还原 气空速为 4.0NL/g〜cat/h, 逐渐升温至还原温度 250°C, 还原 24h, 然后导 入 Ar/(CO+H2)混合气, 合成气 (CO+H2) 中 H2/CO=30, N2所占体积百分 数为 15V%, 在此过程中将操作条件逐渐切换为 LTFT合成反应的操作条 件, 反应温度为 260°C, 反应压力为 3.0MPa, 反应的入口原料合成气空速 为 2.0NL/g〜cat/h, 反应的入口原料合成气氢碳比 H2/CO为 1.2, 开始生产 烃的过程。 实施例 6 费托合成反应生产烃的工艺过程
将 20g催化剂 C与 400ml熔融的 FT蜡混合均匀制成浆液, 填充到尾 气循环的 1L浆态床反应器中, 循环比为 2, 先通入 N2气体吹扫, 然后导 入纯 CO作为还原气, 调整反应器压力至还原压力 3.0MPa。 还原气空速为 2.0NL/g〜cat/h,逐渐升温至还原温度 270 °C,还原 36h,然后导入 N2/(CO+H2) 混合气, 合成气(CO+H2) 中 H2/CO=10, N2所占体积百分数为 20V%, 在 此过程中将操作条件逐渐切换为 LTFT合成反应的操作条件, 反应温度为 250 °C , 反应压力为 1.5MPa, 反应的入口原料合成气空速为 4.0NL/g〜cat/h, 反应的入口原料合成气氢碳比 H2/CO为 0.67, 开始生产烃的过程。 表 1列出了实施例所制备催化剂的费托合成反应性能参数。 由表 1可以看出, 本发明催化剂在浆态床反应器上以较高反应空速运 转, 并保持很高的费托合成反应活性, CO和 H2转化率均在 80%以上, 有 效烃选择性(C 〜C4 C5 +)维持在 90wt%以上, 甲垸选择性在 3.0%以下, C 〜dr烯烃选择性降低至 60wt%以下, 其中收率 (油 +蜡)很高, 均超过 0.45 g/g-cat./h。 因此, 本发明催化剂特别适用于在浆态床反应器中由合成 气生产柴油、 汽油、 蜡等产品。 表 1 催化剂评价结果
Figure imgf000014_0001
以上已详细描述了本发明的实施方案, 对本领域技术人员来说很显然 可以做很多改进和变化而不会背离本发明的基本精神。 所有这些变化和改 进都在本发明的保护范围之内。

Claims

权利要求书
1、 一种费托合成用铁基催化剂, 其主要成分是铁, 其中还包括: 含 有 IB族金属 Cu和 /或 Ag的氧化物作为还原助剂; 含有至少一种 IA族金 属 M的氧化物作为电子助剂, 所述的 IA族金属 M选自 Li、 Na、 K或 Rb; 含有至少一种 VIII族贵金属 M'作为加氢助剂,所述的 VIII族金属 M'选自 Ru、 Rh、 Pd或 Pt; 和含有 SiO2作为结构助剂; 其中所述的主要成分铁以 完全氧化物的形式存在; Fe 在成品催化剂中的重量百分含量为 30wt%〜70wt%。
2、 根据权利要求 1所述的铁基催化剂, 其中所述的 Fe在成品催化剂 中的重量百分含量为 45wt%〜60wt%。
3、 根据权利要求 1或 2所述的铁基催化剂, 其中所述各组分的重量 份数之比为: Fe:Cu:Ag:电子助剂:加氢助剂:结构助剂 = 100: 0-20: 0-10: 0.05-15 : 0.001-5 : 0.1-50, 其中各金属组分以元素计, 结构助剂以氧化物 计; 条件是 Cu和 Ag的含量不能同时为 0。
4、 根据权利要求 3所述的铁基催化剂, 其中所述各组分的重量份数 之比为: Fe:Cu:Ag:电子助剂:力卩氢助剂:结构助剂 = 100: 0-8: 0-2 :0.5-8: 0.01-0.5 : 5-35 , 其中各金属组分以元素计, 结构助剂以氧化物计; 条件是 Cu和 Ag的含量不能同时为 0。
5、 根据权利要求 3所述的铁基催化剂, 其中所述作为电子助剂的 IA 族金属 M是 K或 Li; 和 /或所述作为加氢助剂的 VIII族金属 M'是 Ru或 Pt。
6、 根据权利要求 5所述的铁基催化剂, 其中所述催化剂的组成是: Fe、 Cu、 Li、 Ru和 SiO2, Fe、 Ag、 K、 Pt和 SiO2, 或是 Fe、 Cu、 K、 Pt 和 SiO2
7、权利要求 1-6任意一项所述铁基催化剂的制备方法,该方法包括以 下步骤:
( 1 ) 配制铁盐溶液;
(2) 将铁盐溶液用碱性化合物进行共沉淀;
(3 )沉淀洗涤后重新打浆, 按所需比例向所述料浆中加入 IB族金属 Cu和 /或 Ag的盐溶液、 IA族金属 M的盐溶液和结构助剂二氧化硅, 所述 的结构助剂二氧化硅是硅溶胶或 IA族金属 M的硅酸盐; 和
(4) 将上述混合浆料经喷雾干燥成型, 并将成型的催化剂按所需比 例用至少一种 VIII族贵金属 M'的盐溶液等体积浸渍, 然后干燥和焙烧, 得到所述的催化剂;
其中步骤 (3 ) 所述添加 IB族金属 Cu和 /或 Ag盐溶液的操作可改在 步骤 (1 ) 完成; 和 /或将步骤 (3 ) 引入结构助剂二氧化硅的操作改在步骤
( 1 ) 完成, 或在步骤 (1 )和 (3 ) 各加入部分结构助剂, 并根据需要调节 两个步骤中添加的比例。
8、 根据权利要求 7所述铁基催化剂的制备方法, 其中所述步骤 (1 ) 中的铁盐溶液是硝酸铁溶液或硫酸铁溶液,浓度为 0.5〜10mol/L;所述步骤
(2)使用的碱性沉淀剂选自 Na2CO3、氨水和 (NH4)2CO3, 该碱性沉淀剂水 溶液的摩尔浓度为 l〜6mol/L; 所述步骤 (3 ) 使用的铜盐溶液是硝酸铜溶 液或硫酸铜溶液, 其浓度为 l〜4mol/L; 所述步骤 (3 ) 使用的银盐溶液是 硝酸银溶液, 其浓度为 0.1〜3mol/L; 所述步骤(3 )使用的 IA族金属 M的 盐溶液是 IA族金属 M的碳酸盐溶液或醋酸盐溶液,其浓度为 0.5〜25wt%; 所述步骤 (3 )使用的结构助剂溶液中 SiO2的浓度为 5〜50wt%; 和 /或其中 所述步骤 (4) 使用的 VIII族贵金属 M'的盐溶液是硝酸盐溶液。
9、 根据权利要求 8所述铁基催化剂的制备方法, 其中所述步骤 (2) 中的沉淀温度为 40〜90°C,pH值为 6〜10;优选所述的沉淀温度为 55〜85°C, pH值为 6〜9, 沉淀时间为 10〜30分钟。
10、 根据权利要求 9所述铁基催化剂的制备方法, 其中所述步骤 (3 ) 中向沉淀浆液加入的 SiO2和 IA族金属 M是按所需比例预先调制好的 IA 族金属 M 的硅酸盐溶液, 该溶液中的 SiO2 与 M2O 摩尔比为 SiO2/M2O=l〜10; 优选所述 SiO2与 M2O摩尔比为 SiO2/ M2O=2〜5。
11、根据权利要求 10所述铁基催化剂的制备方法,其中所述步骤(4) 中的干燥温度为 60〜120°C, 优选 80〜100°C ; 焙烧温度为 200〜600°C, 优选 300〜550°C。
12、根据权利要求 7-11任意一项所述铁基催化剂的制备方法,该方法 包括如下步骤: ( 1 ) 配制摩尔浓度为 l〜5mol/L的硝酸铁或硫酸铁水溶液;
(2) 按照化学计量配制稍过量的碱性沉淀剂水溶液, 其摩尔浓度为 1.5~4.5mol/L;
将 (1 )和 (2)所述的溶液在温度为 55〜85°C的条件下进行并流沉淀, 沉淀浆液的 pH=6〜9, 沉淀时间为 10〜30分钟; 然后将得到的沉淀浆液静 置老化, 抽滤和洗涤;
(3 ) 向洗涤后的沉淀物中加入水制成浆液, 按所需比例加入浓度为 1.5〜3.0mol/L的 Cu盐溶液和 /或浓度为 0.5〜1.5mol/L 的 Ag盐溶液, 加入 二氧化硅浓度为 15〜40wt%的硅溶胶或 IA族金属 M的硅酸盐, 以及浓度 为 10〜20wt%的 IA族金属 M的盐溶液, 搅拌均匀后制成催化剂浆料; 和
(4) 将上述催化剂浆料进行喷雾干燥成型, 选取 50〜100μιη的颗粒; 按所需比例将上述颗粒等体积浸渍 VIII族贵金属 M'的盐溶液, 然后经干 燥、 焙烧, 制得成品催化剂;
其中步骤 (3 ) 所述添加 Cu和 /或 Ag盐溶液的操作可改在步骤 (1 ) 完成; 和 /或将步骤 (3 ) 引入结构助剂的操作改在步骤 (1 ) 完成, 或在步 骤 (1 ) 和 (3 ) 各加入部分结构助剂, 并根据需要调节两个步骤添加的比 例。
13、一种生产烃的费托合成方法,其特征在于该方法采用权利要求 1-6 所述的铁基催化剂, 和所述的费托合成技术是低温费托合成反应。
14、 根据权利要求 13所述的费托合成方法, 其特征在于在尾气循环 的浆态床反应器中首先将权利要求 1-6所述的铁基催化剂进行预处理, 然 后在上述预处理后的催化剂作用下, 按照常规的低温费托合成反应操作条 件进行费托合成反应。
15、 根据权利要求 14所述的费托合成方法, 其中所述的预处理过程 是: 将所述的催化剂与溶融的费托合成蜡混合均匀制成浆液,填充到尾气 循环的浆态床反应器中, 通入惰性气体吹扫, 然后导入还原气; 调整反应 器压力至还原压力 0.1〜5MPa, 还原气空速为 0.5〜5.0NL/g-cat/h, 逐渐升温 至还原温度为 180〜300°C, 还原 2〜48h, 然后导入含惰性气体的还原气; 其中惰性气体在该还原气中的体积百分数为 1%〜20%, 其余为合成气, 该 合成气的氢碳比 H2/CO为 0.5〜40。
16、 根据权利要求 15所述的费托合成方法, 其中所述的还原气为纯 H2、 纯 CO 或合成气, 当所述的还原气为合成气时, 合成气的氢碳比为 0.01-99, 优选所述合成气的氢碳比为 2〜50; 所述的惰性气体是 N2或 Ar; 所述含惰性气体的还原气中惰性气体在该还原气中的体积百分数为 5%~15%; 和 /或所述预处理过程中的还原温度为 210〜280°C, 压力为 0.25〜4Mpa, 还原气空速为 1.0〜4.0NL/g-cat/h。
PCT/CN2010/070569 2009-02-20 2010-02-09 一种费托合成用铁基催化剂、其制备方法和应用 WO2010094226A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2011137234/04A RU2468863C1 (ru) 2009-02-20 2010-02-09 КАТАЛИЗАТОР НА ОСНОВЕ Fe ДЛЯ СИНТЕЗА ФИШЕРА-ТРОПША, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
CA2751043A CA2751043C (en) 2009-02-20 2010-02-09 Fischer-tropsch synthesis fe-based catalyst, process of preparation and application thereof
US13/148,209 US20110294908A1 (en) 2009-02-20 2010-02-09 Fischer-tropsch synthesis fe-based catalyst, process of preparation and application thereof
AU2010214972A AU2010214972B2 (en) 2009-02-20 2010-02-09 Fischer-Tropsch synthesis Fe-based catalyst, process of preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910005362.9A CN101811047B (zh) 2009-02-20 2009-02-20 一种费托合成用铁基催化剂、其制备方法和应用
CN200910005362.9 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010094226A1 true WO2010094226A1 (zh) 2010-08-26

Family

ID=42618500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070569 WO2010094226A1 (zh) 2009-02-20 2010-02-09 一种费托合成用铁基催化剂、其制备方法和应用

Country Status (6)

Country Link
US (1) US20110294908A1 (zh)
CN (1) CN101811047B (zh)
AU (1) AU2010214972B2 (zh)
CA (1) CA2751043C (zh)
RU (1) RU2468863C1 (zh)
WO (1) WO2010094226A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743586A (zh) * 2019-09-02 2020-02-04 宁夏大学 Na盐修饰的Cu/SiO2催化剂的制备方法及其应用
CN114602478A (zh) * 2022-04-11 2022-06-10 西南化工研究设计院有限公司 一种负载型合成气直接制高碳烯烃的催化剂

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872877B (zh) * 2011-07-15 2014-12-17 神华集团有限责任公司 一种高抗磨性的含锂铁系费托合成催化剂、共混硅溶胶的催化剂粘结剂及制备方法及其应用
CN102380390B (zh) * 2011-09-08 2013-07-24 神华集团有限责任公司 一种铁基费托合成催化剂及其制备方法
US10179326B2 (en) * 2012-01-23 2019-01-15 King Abdullah University Of Science And Technology Supported iron catalysts, methods of making, methods of hydrocarbon decomposition
CN104884386A (zh) * 2012-10-19 2015-09-02 巴斯夫欧洲公司 用于合成气转化成烯烃的催化剂及其制备
CN104096564B (zh) * 2013-04-02 2016-06-01 北京化工大学 一种费托合成铁基催化剂及其制备方法和应用
CN104549359B (zh) * 2013-10-28 2017-06-20 中国石油化工股份有限公司 生产低碳烯烃催化剂、催化剂的制备方法及其使用方法
CN104549358B (zh) * 2013-10-28 2017-03-15 中国石油化工股份有限公司 合成低碳烯烃的催化剂、制备方法及其使用方法
CN103801329B (zh) * 2014-02-27 2017-01-18 神华集团有限责任公司 用于合成气制备油品与石蜡的微球状催化剂及其制备方法
CN103816922B (zh) * 2014-02-27 2016-07-13 神华集团有限责任公司 用于合成气制备油品与石蜡的催化剂及其制备方法
CN103949262A (zh) * 2014-04-21 2014-07-30 武汉凯迪工程技术研究总院有限公司 一种用于合成气生产α-烯烃的结构化铁基催化剂及制备方法和应用
CN105195169B (zh) * 2015-10-13 2017-07-28 上海交通大学 一种费托合成制取低碳烯烃的催化剂及其制备方法与应用
CN107456976B (zh) * 2016-06-02 2020-07-14 神华集团有限责任公司 一种费托合成铁基催化剂及其制备方法
EP3320971A1 (de) * 2016-11-15 2018-05-16 Basf Se Mechanisch stabiler katalysator zur hydrierung von carbonylverbindungen und verfahren zu dessen herstellung
CN109225292B (zh) * 2018-10-10 2021-06-15 上海兖矿能源科技研发有限公司 高抗耐磨性浆态床费托合成铁基催化剂及制备方法和应用
CN111068691B (zh) * 2018-10-18 2024-03-26 中国石油化工股份有限公司 合成气直接制低碳烯烃的催化剂和其应用
CN111068743B (zh) * 2018-10-19 2022-09-27 中国石油化工股份有限公司 低碳烯烃的生产方法
CN111303929B (zh) * 2018-12-11 2022-06-21 国家能源投资集团有限责任公司 沉淀铁费托合成催化剂及其制备方法与应用
CN110586154A (zh) * 2019-08-27 2019-12-20 浙江工业大学 碳纳米管内嵌金属粒子催化剂在费托合成反应中的应用
CN112569982B (zh) * 2019-09-30 2023-08-18 国家能源投资集团有限责任公司 含沉淀型ε/ε’碳化铁组合物及其制备方法、催化剂和应用以及费托合成的方法
CN112619662B (zh) * 2019-10-09 2022-07-12 中国石油化工股份有限公司 一种生产低碳烯烃的催化剂及其制备方法和应用
RU2745214C1 (ru) * 2020-08-11 2021-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Катализатор синтеза фишера-тропша и способ его получения
CN112138660B (zh) * 2020-10-15 2023-12-08 中国石油大学(华东) 一种铜铝加氢催化剂用途及其制备方法
CN112237916B (zh) * 2020-10-16 2021-10-15 西南化工研究设计院有限公司 一种高活性甲醇合成催化剂的制备方法
CN114436750B (zh) * 2020-10-20 2024-07-23 中国石油化工股份有限公司 一种合成气直接制烯烃反应系统的预处理方法
CN115518647B (zh) * 2021-06-24 2023-08-08 中国石油化工股份有限公司 一种固定床合成气生产低碳烯烃的催化剂及其制备方法和应用
CN114100649B (zh) * 2021-12-01 2023-09-29 浙江工业大学 一种高导热Fe基催化剂及其制备方法和在费托合成反应中的应用
CN114768820B (zh) * 2022-04-06 2023-06-27 郑州大学 一种铁基催化加氢制低碳烯烃催化剂的压片成型方法
CN114768823B (zh) * 2022-05-11 2023-10-27 太原工业学院 一种合成气加氢制备油品的方法
CN114950430B (zh) * 2022-05-16 2023-09-26 东莞理工学院 一种蛋黄-蛋壳结构Fe@ZrO2费托合成催化剂的制备方法和应用
CN118204082A (zh) * 2022-12-15 2024-06-18 中国石油天然气股份有限公司 一种铁基催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869287A (ja) * 1981-09-30 1983-04-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベイ・ウイ 炭化水素の製法
CN1113905A (zh) * 1994-06-21 1995-12-27 伦特克公司 烃的生产方法
CN1418933A (zh) * 2001-11-14 2003-05-21 中国石油化工股份有限公司 一种由合成气选择合成汽、柴油馏分用的催化剂
US6787577B2 (en) * 2002-02-19 2004-09-07 Chevron U.S.A. Inc. Process for the production of highly branched Fischer-Tropsch products and potassium promoted iron catalyst

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2919921A1 (de) * 1979-05-17 1980-11-20 Vielstich Wolf Verfahren zur herstellung von gasfoermigen olefinen aus kohlenmonoxid und katalysatoren dafuer
US5720901A (en) * 1993-12-27 1998-02-24 Shell Oil Company Process for the catalytic partial oxidation of hydrocarbons
KR19990067851A (ko) * 1998-01-14 1999-08-25 고오사이 아끼오 올레핀 중합체, 올레핀 중합 촉매 및 올레핀 중합체의 제조 방법
US20040106517A1 (en) * 2000-05-23 2004-06-03 Dlamini Thulani Humphrey Chemicals from synthesis gas
RU2259988C2 (ru) * 2000-07-03 2005-09-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор и способ получения углеводородов
US7452844B2 (en) * 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
CN1128667C (zh) * 2001-07-12 2003-11-26 中国科学院山西煤炭化学研究所 一种微球状费托合成催化剂的制备方法
US7176160B2 (en) * 2002-10-16 2007-02-13 Conocophillips Company Method for forming a Fischer-Tropsch catalyst using a boehmite support
WO2005046855A2 (en) * 2003-10-16 2005-05-26 Conocophillips Company Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same
CN1245255C (zh) * 2004-03-29 2006-03-15 中国科学院山西煤炭化学研究所 一种费托合成铁基催化剂及其制备方法
CN101279260B (zh) * 2008-05-20 2010-10-20 神华集团有限责任公司 一种铁镍费托合成催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869287A (ja) * 1981-09-30 1983-04-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベイ・ウイ 炭化水素の製法
CN1113905A (zh) * 1994-06-21 1995-12-27 伦特克公司 烃的生产方法
CN1418933A (zh) * 2001-11-14 2003-05-21 中国石油化工股份有限公司 一种由合成气选择合成汽、柴油馏分用的催化剂
US6787577B2 (en) * 2002-02-19 2004-09-07 Chevron U.S.A. Inc. Process for the production of highly branched Fischer-Tropsch products and potassium promoted iron catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DRAGOMIR B. BUKUR ET AL.: "Binder/Support Effects on the Activity and Selectivity of Iror Catalysts in the Fischer-Tropsch Synthesis", IND. ENG. CHEM. RES., vol. 29, 1990, pages 1588 - 1599 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743586A (zh) * 2019-09-02 2020-02-04 宁夏大学 Na盐修饰的Cu/SiO2催化剂的制备方法及其应用
CN110743586B (zh) * 2019-09-02 2022-04-15 宁夏大学 Na盐修饰的Cu/SiO2催化剂的制备方法及其应用
CN114602478A (zh) * 2022-04-11 2022-06-10 西南化工研究设计院有限公司 一种负载型合成气直接制高碳烯烃的催化剂
CN114602478B (zh) * 2022-04-11 2023-01-10 西南化工研究设计院有限公司 一种负载型合成气直接制高碳烯烃的催化剂

Also Published As

Publication number Publication date
CN101811047A (zh) 2010-08-25
US20110294908A1 (en) 2011-12-01
RU2468863C1 (ru) 2012-12-10
AU2010214972A1 (en) 2011-08-18
CN101811047B (zh) 2012-10-03
CA2751043A1 (en) 2010-08-26
CA2751043C (en) 2015-09-01
AU2010214972B2 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2010094226A1 (zh) 一种费托合成用铁基催化剂、其制备方法和应用
JP5275080B2 (ja) モノカルボキシル酸またはその誘導体から一価アルコールを製造する方法
WO2016011841A1 (zh) 一种无载体催化剂及其制备方法和应用
CN112169799B (zh) 采用铁基催化剂进行二氧化碳加氢合成低碳烯烃的方法
WO2010121516A1 (zh) 一种费托合成催化剂、其制备方法和应用
CN114829004B (zh) 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用
CN108499564A (zh) 一种乙醇酸甲酯的合成过程中的催化剂及其制备方法、应用
CN105727962B (zh) 用于己二酸二甲酯制己二醇的催化剂及其制备方法和应用
CN107335446B (zh) 一种用于合成气一步法制取混合醇的钴基催化剂及其制备和应用
CN104624196B (zh) 一种高比表面积费托合成催化剂及其制备方法与应用
CN104815659A (zh) 一种用于费托合成的铁基催化剂及制法和应用
CN112755996A (zh) 用于二氧化碳加氢合成甲醇的催化剂、制备方法及应用
WO2008071059A1 (fr) Catalyseur à suspension et son procédé de préparation
CN115254100A (zh) 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN109569623B (zh) 合成气直接制烯烃的催化剂、制备方法及使用方法
JP3632071B2 (ja) 硫化物触媒を用いた一酸化炭素の水素化法
JPH0674215B2 (ja) 炭化水素の製造方法
CN107537475A (zh) 复合物催化剂、制备方法及其用途
CN102039133A (zh) 费-托合成钴基流化床催化剂及其制备方法
CN114643071B (zh) 合成气直接制低碳烯烃铁基催化剂及其制备方法和应用
CN110935457B (zh) 一种铜锌催化剂的制备方法
CN109569619B (zh) 催化剂组合物、制造方法及用途
CN116943669A (zh) 一种Ni-Ce类固溶体催化剂及其制备方法和应用
CN117548113A (zh) 铜锌催化剂的制备方法及其所制备出的铜锌催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2751043

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13148209

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010214972

Country of ref document: AU

Date of ref document: 20100209

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5963/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011137234

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10743407

Country of ref document: EP

Kind code of ref document: A1