WO2010121516A1 - 一种费托合成催化剂、其制备方法和应用 - Google Patents

一种费托合成催化剂、其制备方法和应用 Download PDF

Info

Publication number
WO2010121516A1
WO2010121516A1 PCT/CN2010/071629 CN2010071629W WO2010121516A1 WO 2010121516 A1 WO2010121516 A1 WO 2010121516A1 CN 2010071629 W CN2010071629 W CN 2010071629W WO 2010121516 A1 WO2010121516 A1 WO 2010121516A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
slurry
structural
catalyst according
auxiliary agent
Prior art date
Application number
PCT/CN2010/071629
Other languages
English (en)
French (fr)
Inventor
杨勇
吴宝山
李永旺
相宏伟
Original Assignee
中科合成油技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科合成油技术有限公司 filed Critical 中科合成油技术有限公司
Priority to US13/259,356 priority Critical patent/US20120022174A1/en
Priority to RU2011140229/04A priority patent/RU2477654C1/ru
Priority to AU2010239013A priority patent/AU2010239013B2/en
Priority to CA2757851A priority patent/CA2757851C/en
Publication of WO2010121516A1 publication Critical patent/WO2010121516A1/zh
Priority to ZA2011/07129A priority patent/ZA201107129B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to a Fischer-Tropsch synthesis catalyst having high performance and capable of performing Fischer-Tropsch synthesis (FT synthesis) in a wide temperature range, a preparation method thereof, and the catalyst in a slurry bed.
  • Fischer-Tropsch synthesis is a process in which carbonaceous materials such as coal, natural gas, biomass, and the like are converted into hydrocarbon products and other chemicals by syngas (CO + H 2 ).
  • Typical catalysts for syngas conversion involve Group VIII transition metals such as iron, cobalt, ruthenium and nickel.
  • the ruthenium catalyst is expensive, the methanation reaction of the nickel catalyst is too serious, and only the iron and cobalt catalysts have industrial development and application value.
  • the cobalt-based catalyst is weak in water gas shift reaction, and is suitable for the conversion of natural gas-based synthesis gas with H 2 /CO close to 2.0, while the iron-based catalyst has a strong water vapor shift reaction capability for the synthesis gas.
  • the H 2 /CO ratio is more adaptable, and compared with other Group VIII metals, the active component iron in the catalyst is inexpensive, and the application is relatively common.
  • industrial iron-based Fischer-Tropsch synthesis catalysts generally have a preparation method such as a supported type, a molten iron type, and a coprecipitated type.
  • the catalyst prepared by the molten iron method is generally suitable for the circulating fluidized bed Fischer-Tropsch synthesis (320-35CTC), while the supported and coprecipitated catalysts are suitable for the fixed bed Fischer-Tropsch synthesis and the advanced slurry bed Fischer-Tropsch synthesis (220-25CTC). ).
  • the slurry bed reaction system has advantages such as low cost, simple operation, easy catalyst replacement, good heat transfer performance, and high yield per unit/set.
  • CN1803281A adopt the Renee method and improve the method, but the C 3 + space-time yield of the obtained catalyst is only 0.26 g / g catalyst / h, while the d - 2 hydrocarbon selectivity Too high, reaching 9.76wt%.
  • U.S. Patent No. 7,076,562 discloses a method for preparing a precipitated 100Fe/5Cu ( l-2Ag/Ca) /0.2-4.2K (or 1.2-4Li, l-2Ag)/10-25SiO2 (weight ratio), and The catalysts were evaluated in fixed bed and slurry bed reactors respectively, but the highest C 5 + space time yield of the catalyst was only 0.23 g/g catalyst/h.
  • the catalyst was only suitable for operation at 230-24 CTC, methane.
  • the selectivity also reached 4-10% by weight.
  • Appropriate addition of transition metal auxiliaries can significantly improve the Fe-based Fischer-Tropsch synthesis catalyst (Appl. Catal. A: Gen. 284 (2005) 105 and 266 (2004) 181; Catal. Today 106 (2004) 170) Activity and olefin selectivity.
  • the catalyst was evaluated for its high activity and low methane selectivity. However, no structural auxiliaries were added to the catalyst, and the anti-wear ability of the catalyst was poor, which did not have the feasibility of practical application, and failed to provide index data such as strength, space-time yield and productivity of the catalyst.
  • U.S. Patent 4,340,503 provides a molecular sieve supported Fe-Mn fixed bed catalyst which has high methane selectivity and low activity.
  • Chinese patent CN1817451A provides a precipitated Fe/Cu/Cr/K/Na catalyst suitable for high temperature fluidized bed Fischer-Tropsch synthesis operation, but the activity of the catalyst is lower, at 350 ° C, 1400-1450 ml / Under the condition of ml catalyst/h and 2.5MPa, the synthesis gas with H 2 /CO ratio of 3.0 was used as raw material gas, but the conversion rate of synthesis gas was low ( ⁇ 50%), product selectivity was poor, methane selectivity More than 10%.
  • the high comprehensive performance catalyst with high activity, reasonable product distribution and strong anti-wear ability which is especially suitable for advanced slurry bed Fischer-Tropsch synthesis.
  • the existing slurry bed catalyst can only be used at lower temperature. Operation (220-240 °C), can not improve the operating temperature, is not conducive to improve the overall energy conversion efficiency of the Fischer-Tropsch synthesis process.
  • the structural auxiliary Si0 2 or / and A1 2 0 3 ) can fully disperse and stabilize the active phase of the catalyst, and maintain high stability of the active phase and the catalyst structure during the reaction, thereby obtaining a high activity.
  • the catalyst is synthesized.
  • a microspheroidal iron-based catalyst suitable for slurry bed Fischer-Tropsch synthesis the active component of which is Fe, characterized in that the catalyst further comprises a transition metal auxiliary M, a structural auxiliary
  • the S and K auxiliaries, the transition metal auxiliaries M are selected from the group consisting of one or more of Mn, Cr and Zn, and the structural auxiliary S is Si0 2 or / and A1 2 0 3 , wherein
  • the amount of the transition metal promoter M is the sum of all transition metal auxiliaries; the amount of the structural auxiliaries S is the sum of all structural auxiliaries.
  • the transition metal promoter M is selected from a combination of two or more of Mn, Cr and Zn; and the metal adjuvant M contains two or more groups. In time sharing, the components may be present in any ratio.
  • the two components A1 2 0 3 and SiO 2 of the structural auxiliary agent may be used in any ratio, and preferably the weight ratio of the two (Al 2 0 3 /Si0 2 ) is not more than 0.5, more preferably It is no more than 0.3.
  • Another object of the present invention is to provide a process for preparing the above catalyst, which comprises using metal Fe, transition metal M and nitric acid as raw materials, or using a nitrate solution of the metal as a raw material, and adopting conventional coprecipitation in the art.
  • the catalyst is prepared by the method.
  • the method of the present invention for preparing the above catalyst comprises the following steps:
  • preparing a nitrate solution of the metal by using metal Fe, a transition metal M and nitric acid as a raw material according to the above-mentioned desired ratio, or directly dissolving the nitrate of the various metals to obtain a mixed nitrate solution, and the resulting mixture is obtained.
  • the salt solution is directly used for precipitation, or is added to the salt solution to add a structural auxiliary S for precipitation;
  • the method for preparing the catalyst of the present invention comprises the following steps:
  • preparing a nitrate solution of the metal by using metal Fe, a transition metal M and nitric acid as a raw material according to the above-mentioned desired ratio, or directly dissolving the nitrate of the various metals to prepare a mixed nitrate solution.
  • concentration of the mixed nitrate is 5 to 45 wt%; and adding a structural auxiliary S to the salt solution;
  • the slurry is prepared by coprecipitation.
  • the precipitation temperature is 20-95 ° C
  • the precipitation time is 5-120 minutes
  • the precipitation is 5-120 minutes after precipitation.
  • pH is 5-10;
  • the sprayed slurry is spray-dried in a pressurized spray drying tower under the conditions of an inlet air temperature of 150-450 ° C and an outlet temperature of 70-15 CTC;
  • the catalyst is calcined at 300-75 CTC for 1-10 hours to obtain the desired catalyst;
  • the structural auxiliary agent S added in the step (1) may be added in the step (4), or a part of the structural auxiliary agent may be added in each of the steps (1) and (4).
  • the phrase "in the above-mentioned desired ratio” or “required amount” means the above description of the ratio between the components of the catalyst of the present invention, and the amount of each corresponding raw material added during the preparation process and The ratio between each other is based on the principle that the ratio of each component in the obtained catalyst meets the above requirements.
  • the process of adding the structural auxiliary S may not be carried out in the step (1), but in the step (4), that is, in the step (4), the deionized water and the potassium salt are added to the filter cake.
  • a part of the structural auxiliary agent is added in each of the steps (1) and (4), it is preferred to add the structural auxiliary agent in the step (1) so that the weight ratio of the Fe/structural auxiliary in the final salt solution is not less than 100/30. More preferably, it is not less than 100/25.
  • the nitrate solution in the step (1) can be prepared by using metal Fe, transition metal M and nitric acid as raw materials to prepare a nitrate solution of the metal, or directly dissolving the nitrates of the various metals to prepare a mixture.
  • the nitrate solution preferably the mixed nitrate solution is directly prepared by using the nitrate of the metal; the concentration of the mixed nitrate prepared in the step (1) is 5 to 45 wt%; preferably the prepared mixed nitrate The concentration of the solution is 10-40% by weight.
  • the starting material used is the precursor silica sol or/and the aluminum sol of the structural auxiliary agent
  • the raw material of the structural auxiliary agent SiO 2 is a silica sol or potassium water glass (ie, potassium silicate)
  • the raw material of the structural auxiliary agent A1 2 0 3 is an aluminum sol.
  • the silica sol also known as silicic acid sol, refers to a colloidal solution of a silicic acid multi-molecular polymer; preferably, the silica sol is an acidic silica sol or an alkaline silica sol; and the aluminum sol is hydrated alumina.
  • the precipitation process of the mixed nitrate solution and the aqueous ammonia solution is completed by continuous coprecipitation;
  • the concentration of the aqueous ammonia precipitating agent is 1-25% by weight, and preferably the concentration of the aqueous ammonia precipitating agent is 5- 20wt% ;
  • the precipitation temperature of the coprecipitation process is 20-95 ° C, preferably the precipitation temperature is 50-90 ° C, the pH value of the precipitation process is 6.0-9.5, the precipitation time is 5-120 minutes, and the precipitation is aging 5- At 120 minutes, the endpoint pH was 5-10.
  • the solid content in the filter cake is 5 to 60% by weight, preferably the solid content of the filter cake is 15 to 50% by weight; ammonium nitrate in the filter cake The content is 0.1-2.5 wt ; preferably, the content of ammonium nitrate in the filter cake is 0.01-5.0 wt%.
  • the potassium salt added as a potassium auxiliary agent is selected from the group consisting of potassium hydrogencarbonate, potassium acetate, potassium organic acid and potassium water.
  • One of the glass preferably potassium hydrogencarbonate, potassium acetate and potassium water glass; the slurry formed by adding potassium water glass and deionized water has a pH of 5.0-9.5; wherein the solid content is 3-50% by weight, preferably solid The content is 10-40% by weight.
  • potassium water glass is used as the potassium auxiliary, the silica content thereof should be included in the total amount of the structural auxiliary.
  • the spray drying process can be carried out in a conventional apparatus in the art, preferably in a pressurized spray drying tower; wherein the process conditions can be carried out using conditions commonly used in the apparatus and method, such as spraying
  • the air inlet temperature of the drying process is 150-450 ° C, the outlet air temperature is 70-15 CTC; the preferred inlet air temperature is 180-420 ° C, and the outlet air temperature is 85-130 ° C; the roasting process can also be It is carried out in a conventional apparatus in the art, preferably in an air atmosphere; for example, the calcination temperature is 300-750 ° C, the calcination time is 1-10 hours; the preferred calcination temperature is 350-700 ° C, and the calcination time is 2 -8 hours.
  • the catalyst of the present invention and the preparation method thereof have the following advantages:
  • the active component iron of the catalyst can be stably stabilized and dispersed, the electronic structure of the catalyst surface can be improved, and the activity of the catalyst (the conversion capacity of the synthesis gas) can be greatly improved, and the catalyst can be optimized.
  • Product selectivity such as hydrocarbons and by-products.
  • the mixed co-precipitation process is completed in 15 minutes. Allow to stand for 60 minutes.
  • the aged slurry was washed with deionized water to an ammonium nitrate content of 0.10% by weight, and filtered to obtain a solid content of the filter cake of 48.5 wt%.
  • Add potassium acetate solution (8.35 kg solution dissolved in 412 kg of deionized water) to the prepared filter cake, beat and fully slurry, adjust the pH value of the slurry to 5.2, and obtain the solid content of the slurry. It is 35.0% by weight.
  • the slurry prepared in the above procedure was spray-dried in a pressurized spray drying tower under the conditions of an inlet air temperature of 180 ° C and an outlet air temperature of 85 ° C.
  • the dried shaped catalyst was sent to a calciner and calcined at 35 CTC for 8 hours in an air atmosphere to obtain a desired iron-based catalyst.
  • Example 2 Example 2
  • the salt solution and The aqueous ammonia solution was co-precipitated by co-precipitation, maintaining the temperature of the slurry in the precipitation kettle at 90 ° C, the pH of the mixed synthetic slurry was 9.0 ⁇ 0.3, and the mixed coprecipitation process was completed in 20 minutes. Allow to stand for 20 minutes.
  • the aged slurry was washed with deionized water to an ammonium nitrate content of 2.45 wt%, and filtered to obtain a solid content of the filter cake of 36.5 wt%.
  • the content rate was 30.0% by weight.
  • the amount of water glass and alkaline silica sol added therein is based on the principle that the content ratio of various structural assistants is finally achieved.
  • the slurry obtained in the above procedure was spray-dried in a pressurized spray drying tower under the conditions of an inlet air temperature of 210 ° C and an outlet air temperature of 95 ° C.
  • the dried and shaped catalyst was sent to a calcining furnace and calcined at 70 CTC for 2 hours in an air atmosphere to obtain a desired iron-based catalyst.
  • the amount of the basic silica sol and the aluminum sol to be added is based on the principle that the content ratio of various structural assistants is finally achieved.
  • the slurry prepared in the above procedure was spray-dried in a pressurized spray drying tower at an inlet air temperature of 400 ° C and an outlet air temperature of 105 ° C.
  • the dried and formed catalyst was sent to a calcining furnace and calcined at 60 CTC for 7.5 hours in an air atmosphere to obtain a desired iron-based catalyst.
  • Example 4
  • 15.0wt% ammonia aqueous solution was prepared and heated to 40 ° C, 1500 kg of deionized water was preset in the precipitation kettle, and preheated to 65 ° C.
  • the salt solution and The aqueous ammonia solution was co-precipitated by co-precipitation, maintaining the temperature of the slurry in the precipitation kettle at 65 ° C, the pH of the mixed synthesis slurry was 7.5 ⁇ 0.3, and the mixed coprecipitation process was completed in 20 minutes. Allow to stand for 30 minutes.
  • the aged slurry was washed with deionized water to an ammonium nitrate content of 1.0% by weight, and filtered to obtain a solid content of the filter cake of 26.5% by weight.
  • the content ratio was 25.0% by weight.
  • the amount of potassium water glass and alkaline silica sol added therein is based on the principle that the content ratio of various structural assistants is finally achieved.
  • the slurry prepared in the above procedure was spray-dried in a pressurized spray drying tower under the conditions of an inlet air temperature of 350 ° C and an outlet air temperature of 125 ° C.
  • the dried shaped catalyst was sent to a calcining furnace and calcined at 50 CTC for 3.5 hours in an air atmosphere to obtain a desired iron-based catalyst.
  • Example 5
  • aqueous ammonia solution was prepared and heated to 45 ° C, 1500 kg of deionized water was preset in the precipitation kettle, and preheated to 80 ° C. After the temperature rose to the set temperature, the salt solution and The aqueous ammonia solution was co-precipitated by co-precipitation, maintaining the temperature of the slurry in the precipitation vessel at 80 ° C, the pH of the mixed synthetic slurry was 7.5 ⁇ 0.3, and the mixed coprecipitation process was completed in 25 minutes. Allow to stand for 15 minutes. The aged slurry was washed with deionized water to an ammonium nitrate content of 0.50% by weight, and filtered to obtain a solid content of the filter cake.
  • a certain amount of potassium carbonate, acidic silica sol, aluminum sol and deionized water were added to the prepared filter cake, beaten and fully slurried, and the pH of the slurry was adjusted to 7.2, and the solid content of the obtained slurry was 32.0 wt. %.
  • the amount of the acidic silica sol and the aluminum sol to be added is based on the principle that the content ratio of various structural assistants is finally achieved.
  • the slurry prepared in the above procedure was spray-dried in a pressurized spray drying tower under the conditions of an inlet air temperature of 250 ° C and an outlet air temperature of 10 °C.
  • the dried and formed catalyst was sent to a calcining furnace and calcined at 55 CTC for 6 hours in an air atmosphere to obtain a desired iron-based catalyst.
  • Example 6
  • 18.0 wt% aqueous ammonia solution was prepared and heated to 40 ° C.
  • the precipitation kettle was preset with 1500 kg of deionized water and preheated to 60 ° C.
  • the salt solution and Ammonia solution coprecipitates co-precipitation to maintain precipitation
  • the temperature of the slurry in the autoclave was 60 ° C
  • the pH of the mixed synthetic slurry was 7.0 ⁇ 0.3
  • the mixed coprecipitation process was completed in 22 minutes. Allow to stand for aging for 35 minutes.
  • the aged slurry was washed with deionized water to an ammonium nitrate content of 1.2% by weight, and filtered to obtain a solid content of the filter cake of 25.5%.
  • the slurry prepared in the above procedure was spray-dried in a pressurized spray drying tower at an inlet air temperature of 320 ° C and an outlet air temperature of 12 °C.
  • the dried and formed catalyst was sent to a calcining furnace and calcined at 60 CTC for 6 hours in an air atmosphere to obtain an iron-based catalyst.
  • Example 7
  • the slurry was washed with deionized water to an ammonium nitrate content of 1.5% by weight, and filtered to obtain a solid content of the filter cake of 35.0%.
  • the solid content was 28.0% by weight.
  • the amount of potassium water glass, aluminum sol and acidic silica sol added therein is based on the principle that the content ratio of various structural assistants is finally achieved.
  • the slurry prepared in the above procedure was spray-dried in a pressurized spray drying tower under the conditions of an inlet air temperature of 240 ° C and an outlet air temperature of 11 CTC.
  • the dried and formed catalyst was sent to a calcining furnace and calcined at 55 CTC for 5 hours in an air atmosphere to obtain an iron-based catalyst.
  • Table 1 lists the compositions of the catalysts prepared in Examples 1-7 and their physical properties.
  • the synthesis gas is used as a reducing gas, and is reduced at a temperature of 220-300 ° C, a pressure of 0.1-4.0 MPa, and a space velocity of 500-10000 h- 1 for 5-48 hours.
  • the slurry bed Fischer-Tropsch synthesis reaction conditions of the catalyst are:
  • reaction temperature is 240-280 ° C
  • reaction pressure is 1.0-5.0 MPa
  • fresh gas reaction space velocity is 5000-12000 h" 1
  • exhaust gas cycle ratio is 0.5-4.0. 2 It can be seen that the catalyst maintains a high Fischer-Tropsch synthesis activity at a higher reaction space velocity in a slurry bed reactor, and the CO and H 2 conversion rates are all above 80%, effective hydrocarbon selectivity.

Description

一种费托合成催化剂、 其制备方法和应用
技术领域 本发明涉及一种高性能、 可在宽温度范围内进行浆态床费托合成 (Fischer-Tropsch synthesis, 简称 F-T合成)的费托合成催化剂、其制备方法及所述催化剂在浆态床费托合成 中的应用。 背景技术 费托合成是将煤、 天然气、 生物质等含碳物质经合成气 (CO+H2) 转化为烃类产品及 其他化学品的过程。用于合成气转化的典型催化剂涉及铁、钴、钌和镍等 VIII族过渡金属。 在上述体系的催化剂中, 钌系催化剂价格昂贵, 镍系催化剂甲烷化反应过于严重, 只有铁 和钴系催化剂具有工业开发应用价值。 其中, 钴系催化剂由于水煤气变换反应能力较弱, 适用于 H2/CO接近于 2.0的天然气基的合成气的转化, 而铁系催化剂因其自身较强的水汽 变换反应能力, 对合成气的 H2/CO比适应能力较强, 同时相对于其他 VIII族金属, 催化剂 中的活性组分铁的价格低廉, 应用较为普遍。 目前工业铁基费托合成催化剂一般有负载型、 熔铁型和共沉淀型等制备方法。 熔铁法 制得的催化剂一般适用于循环流化床费托合成(320-35CTC ), 而负载型和共沉淀催化剂分 别适用于固定床费托合成和先进的浆态床费托合成(220-25CTC )。 与固定床和流化床相比 较, 浆态床反应体系具有诸如造价低廉、 操作简单、 催化剂置换容易和良好的热传递性能 以及单台 /套产量高等优势。但目前所公布和应用的浆态床铁基费托合成催化剂的性能, 如 活性, 抗磨损性能, 稳定性, 产物选择性、 时空产率、 产能等, 都并不是很高。 为了提高 上述指标, 国内外各公司、院校对铁系浆态床费托合成催化剂进行了多方面的研究和开发, 试图改进催化剂的各项指标, 但均不尽如人意。 如美国专利 US6265451、 US6277895、 中 国专利 CN1803281A采用瑞尼法并对该法进行了改进, 但制得的催化剂的 C3 +时空产率只 有 0.26g/g催化剂 /h, 同时 d— 2烃选择性过高, 达到了 9.76wt%。美国专利 US7067562公布 了一种沉淀型的 100Fe/5Cu ( l-2Ag/Ca) /0.2-4.2K (或 1.2-4Li、 l-2Ag ) /10-25SiO2 (重量 比) 的制备方法, 并将该催化剂分别在固定床和浆态床反应器中进行了评价, 但催化剂的 最高 C5+时空产率只有 0.23g/g催化剂 /h, 同时, 该催化剂只适合于在 230-24CTC下运行, 甲烷选择性也达到了 4-10wt%。 适量的添加过渡金属助剂(如锰等)能显著提高 Fe基费托合成催化剂(Appl. Catal. A: Gen. 284 (2005) 105和 266(2004)181; Catal. Today 106(2004)170) 的活性和烯烃选择性。 美 国专利 US4621102和 US5118715提供了一种含 Cu、 K助剂的沉淀型 Fe-Mn费托合成催化 剂, 并以 H2/CO = 2.0 的合成气为原料于浆态床和固定床反应器中进行了评价, 该催化剂 具有很高的活性, 和较低的甲烷选择性。 但该催化剂中没有添加结构助剂, 催化剂的抗磨 损能力较差, 不具有现实应用的可行性, 也未能提供催化剂的强度、 时空产率和产能等指 标数据。 美国专利 US4340503提供了一种分子筛负载的 Fe-Mn固定床催化剂, 但该催化 剂的甲烷选择性高, 活性低。 中国专利 CN1817451A 提供了一种适用于高温流化床费托合成操作的沉淀型的 Fe/Cu/Cr/K/Na催化剂, 但该催化剂的活性较低, 在 350°C下, 1400-1450ml/ml催化剂 /h、 2.5MPa条件下, 以 H2/CO比为 3.0的合成气为原料气进行评价, 但合成气的转化率较低 (<50% ) ,产物选择性较差, 甲烷选择性大于 10%。 目前还没有特别适用于先进的浆态床费托合成的高活性、 合理产物分布、 抗磨损能力 强的高综合性能催化剂的专利报道, 同时现有浆态床催化剂也只能在较低温度下操作 (220-240 °C ) , 不能提高操作温度, 不利于提高费托合成过程的整体能量转化效率。 针对浆态床费托合成反应器操作的特点以及现有技术已有催化剂的不足, 本申请人发 现通过在催化剂制备过程中优化地添加一定量的能与 Fe 形成稳定结构的过渡金属助剂和 结构助剂(Si02 或 /和 A1203) , 可实现催化剂的活性相充分分散和稳定化, 并使活性相和 催化剂结构在反应过程中保持高稳定性, 从而得到了一种高活性 (高时空产率) 、 高稳定 性 (高产能) 、 具有合理产物选择性兼具高强度、 高抗磨损性能的适用于宽温度范围 (240-280°C ) 操作的微球状浆态床费托合成催化剂。 发明内容 本发明的目的是提供了一种适用于浆态床费托合成的微球状铁基催化剂, 该催化剂的 活性组分为 Fe, 其特征在于催化剂还包括过渡金属助剂 M、 结构助剂 S和 K助剂, 所述 的过渡金属助剂 M选自 Mn、 Cr和 Zn中的一种或多种的组合, 所述的结构助剂 S为 Si02 或 /和 A1203, 其中 A1203和 Si02的重量比 (Al203/Si02) 不大于 0.5; 所述各组分的重量比 为 Fe: 过渡金属助剂 M: 结构助剂 S: K =100: 1-50: 1-50: 0.5-10; 其中所述的金属组分 以元素计,所述的结构助剂以氧化物计。其中所述过渡金属助剂 M的量为所有过渡金属助 剂之和; 所述结构助剂 S的量为所有结构助剂之和。 优选的, 本发明所述微球状铁基催化剂中各组分的重量比为 Fe:M:S:K =100: 4-40:5-40: 1-7。 在本发明上述催化剂中, 优选所述过渡金属助剂 M选自 Mn、 Cr和 Zn中的二种或二 种以上的组合; 当所述的金属助剂 M含有二种或二种以上的组分时,各组分之间可以任意 比例存在。 在本发明上述催化剂中, 所述结构助剂的两种成分 A1203和 Si02可以任意比例使用, 优选两者的重量比 (Al203/Si02) 为不大于 0.5, 更优选为不大于 0.3。 本发明的另一目的是提供了一种制备上述催化剂的方法, 该方法以金属 Fe、 过渡金属 M和硝酸为原料, 或者使用所述金属的硝酸盐溶液为原料, 采用本领域常规的共沉淀法制 备所述的催化剂。 本发明制备上述催化剂的方法包括以下步骤:
( 1 )按上述所需比例, 以金属 Fe、 过渡金属 M和硝酸为原料制备所述金属的硝酸盐 溶液, 或者直接将所述各种金属的硝酸盐溶解制得混合硝酸盐溶液, 所得混合盐溶液直接 用于沉淀, 或并向所述的盐溶液中添加结构助剂 S后用于沉淀;
(2) 以氨水为沉淀剂, 采用共沉淀方式制得浆料;
( 3 ) 将制得的浆料洗涤、 过滤, 制得的催化剂滤饼;
(4) 向滤饼中添加所需量的 K助剂钾盐和去离子水, 打浆, 调节 pH值至 4-10后乳 化, 制得浆料;
( 5 ) 将所制得的浆料喷雾干燥成型, 经焙烧后得到所述的催化剂。 具体的, 本发明制备所述催化剂的方法包括以下步骤:
( 1 )按上述所需比例, 以金属 Fe、 过渡金属 M和硝酸为原料制备所述金属的硝酸盐 溶液, 或者直接将所述各种金属的硝酸盐溶解制得混合硝酸盐溶液, 所制得的混合硝酸盐 的浓度为 5-45wt%; 并向所述的盐溶液中添加结构助剂 S;
(2)以 1-25^%的氨水为沉淀剂,采用共沉淀方式制得浆料,沉淀温度条件为 20-95°C, 沉淀用时 5-120分钟, 沉淀后老化 5-120分钟, 终点 pH值为 5-10;
( 3 ) 将制得的浆料洗涤、 过滤, 制得催化剂滤饼, 其中的固含率为 5-60wt%;
(4) 向滤饼中添加去离子水和所需量的钾盐, 打浆, 调节 pH值至 4-10后乳化, 制 得固含率为 3-50^%的浆料;
( 5 ) 在加压式喷雾干燥塔中, 将所制得的浆料进行喷雾干燥成型, 喷雾干燥的条件 是进风温度为 150-450°C, 出风温度为 70-15CTC ; 干燥成型后催化剂于 300-75CTC下焙烧 1-10小时, 得到所需的催化剂; 其中在步骤 (1 ) 加入的结构助剂 S可改在步骤 (4) 加入, 也可在步骤 (1 ) 和 (4) 中各加入部分结构助剂。 在上述方法中, 所谓"按上述所需比例"或"所需量的"是指上述对本发明催化剂各组分 之间比例的描述, 在制备过程中, 所加入的各种相应原料的量及相互之间的比例是以所得 到的催化剂中各组分的比例符合上文所述要求为原则。 上述方法中, 加入结构助剂 S的工艺过程可以不在步骤(1 )进行, 而是改在步骤(4) 中进行, 即在步骤(4) 向滤饼中添加去离子水和钾盐的同时加入所述的结构助剂 S, 然后 进行打浆; 也可以在步骤 (1 ) 和 (4) 中各加入部分结构助剂; 更优选在步骤 (1 ) 加入 全部结构助剂, 或在步骤 (1 ) 和 (4) 中各加入部分结构助剂。 当在步骤 (1 ) 和 (4) 各 加入部分结构助剂时, 优选在步骤 (1 ) 中加入结构助剂之后, 使最终盐溶液中的 Fe/结构 助剂的重量比不小于 100/30, 更优选为不小于 100/25。 上述方法中, 步骤 (1 ) 中硝酸盐溶液的制备可以以金属 Fe、 过渡金属 M和硝酸为原 料制备所述金属的硝酸盐溶液, 或者直接将所述各种金属的硝酸盐溶解制得混合硝酸盐溶 液, 优选所述的混合硝酸盐溶液直接使用所述金属的硝酸盐配制而成; 步骤 (1 ) 中所制 备的混合硝酸盐的浓度为 5-45wt%; 优选所制备的混合硝酸盐溶液的浓度为 10-40wt%。 在步骤 (1 ) 和 /或步骤 (4) 中, 为引入结构助剂 3102和/或 A1203, 所采用的原料是 所述结构助剂的前驱体硅溶胶或 /和铝溶胶, 具体地说, 其中所述结构助剂 Si02的原料是 硅溶胶或钾水玻璃 (即硅酸钾) , 所述的结构助剂 A1203的原料是铝溶胶。 所述的硅溶胶 又称硅酸溶胶, 是指硅酸多分子聚合物的胶体溶液; 优选所述的硅溶胶是酸性硅溶胶或是 碱性硅溶胶; 所述的铝溶胶即水合氧化铝。 在使用钾水玻璃作为 Si02的原料时, 其中金属钾的含量应计入 K助剂的总量之中。 在步骤 (2) 中, 所述混合硝酸盐溶液与氨水溶液的沉淀过程采用连续共沉淀法完成; 所述氨水沉淀剂的浓度为 l-25wt%, 优选所述氨水沉淀剂的浓度为 5-20wt%; 所述共沉淀 过程的沉淀温度为 20-95°C, 优选沉淀温度为 50-90 °C, 沉淀过程的 pH值为 6.0-9.5, 沉淀 用时 5-120分钟, 沉淀后老化 5-120分钟, 终点 pH值为 5-10。 在步骤(3) 中, 在将所述的浆料洗涤过滤后, 滤饼中的固含率为 5-60wt%, 优选滤饼 的固含率为 15-50wt%; 滤饼中的硝酸铵的含量为 0.1-2.5 wt ; 优选滤饼中硝酸铵的含量 为 0.01-5.0wt%。 在步骤 (4) 中, 作为钾助剂加入的钾盐选自碳酸氢钾、 醋酸钾、 有机酸钾和钾水玻 璃之一, 优选为碳酸氢钾、醋酸钾和钾水玻璃; 加入钾水玻璃和去离子水所形成浆料的 pH 值为 5.0-9.5; 其中的固含率为 3-50wt%, 优选固含率为 10-40wt%。 在使用钾水玻璃作为钾助剂时, 其中的二氧化硅含量应计入结构助剂的总量之中。 在步骤 (5 ) 中, 所述的喷雾干燥工艺可在本领域常规的设备中进行, 优选在加压式 喷雾干燥塔中进行; 其中工艺条件可采用所述设备和方法常用的条件, 例如喷雾干燥工艺 的进风温度为 150-450°C, 出风温度为 70-15CTC ; 优选进风温度为 180-420 °C, 出风温度为 85-130°C ; 所述的焙烧工艺也可在本领域的常规设备中进行, 优选在空气气氛中进行; 例 如所述的焙烧温度是 300-750°C, 焙烧时间是 1-10小时; 优选焙烧温度是 350-700°C, 焙 烧时间是 2-8小时。 与现有技术相比, 本发明的催化剂及其制备方法具有如下优点:
( 1 ) 通过添加过渡金属, 可较好的稳定和分散催化剂的活性组分铁、 改善催化剂表 面的电子结构, 进而能大幅度地提高催化剂的活性 (合成气的转化能力) , 优化了催化剂 的烃及副产品等产物选择性。
(2) 通过在沉淀和 /或成型过程中添加一定比例的结构助剂 Si02或 /和 A1203, 可有效 调控还原后催化剂中活性组分的形成、 结构和稳定性, 进而提高了催化剂的结构、 运行稳 定性和抗磨损性能, 同时可在较宽温度范围内进行费托合成工艺操作。
(3 ) 采用本发明的催化剂进行费托合成反应时, 生产条件温和、 工艺简单, 所用金 属及助剂原料廉价, 生产成本低廉。 具体实施方式 下面通过具体实例更详细的说明本发明, 提供的实施例仅用于示例本发明, 但不以任 何方式限制本发明的保护范围。 其中涉及的百分含量为重量百分含量。 实施例 1
将 2000 公斤 Fe(N03)3-9H20、 36 公斤的 50wt Mn(N03)3水溶液、 10.65 公斤 Cr(N03)3-3H20和 6.3公斤的 Ζη(Ν03)2·6Η20溶于 1050公斤的去离子水中, 充分溶解后, 向混合盐溶液中添加 Si02含量为 30 ^%的硅溶胶 45公斤, A1203含量为 25 wt%的铝溶胶 1.2公斤, 搅拌下将该溶液升温至 50°C, 所得混合溶液中硝酸盐的总浓度为 12.22wt%, 所 述混合盐溶液中各组分的重量比为 Fe: Mn: Cr: Zn: Si02: Al2O3 = 100: 2.0: 0.5: 0.5: 4.88: O.ll o 同时配制 10.0wt%的氨水溶液并升温至 30°C, 沉淀釜内预置 1500公斤去离子水, 并 预热至 50°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉淀 釜内浆料温度为 50°C, 混合合成浆料的 pH=6.5±0.3, 混合共沉淀过程在 15分钟内完成。 静置老化 60分钟。 老化后的浆料用去离子水洗涤至硝酸铵含量为 0.10wt%, 过滤, 所得滤饼的固含率为 48.5wt%。 在所制得的滤饼中加入醋酸钾溶液 (8.35公斤溶于 412公斤去离子水中制成的 溶液) , 打浆并充分浆化, 调节浆料的 pH值为 5.2, 所得浆料的固含率为 35.0wt%。 将上一述步骤制得的浆料在进风温度为 180°C, 出风温度为 85°C的条件下在加压式喷 雾干燥塔中喷雾干燥。 将干燥成型后的催化剂送入焙烧炉中, 在空气气氛中于 35CTC下焙 烧 8小时, 得到所需的铁基催化剂, 该催化剂各组分的重量比为 Fe: Mn: Cr: Zn: Si02: A1203: K=100: 2.0: 0.5: 0.5: 4.88: 0.11: 1.2, 该催化剂记为 A。 实施例 2
将 2000 公斤 Fe(N03)3-9H20 324 公斤的 50wt Mn(N03)3水溶液、 127.5 公斤 Cr(N03)3-3H20和 201.5公斤的 Ζη(Ν03)2·6Η20溶于 1360公斤的去离子水中,充分溶解后, 向混合盐溶液中添加 Α1203含量为 25.0^%的铝溶胶 24.0 公斤, 搅拌下将该溶液升温至 90°C, 所得混合溶液中硝酸盐的总浓度为 39.6wt%, 所述盐溶液中各组分的重量比为 Fe: Mn: Cr: Zn: Α12Ο3 = 100: 20.0: 5.0: 15.0: 2.0。 同时配制 20.0 wt%的氨水溶液并升温至 60°C, 沉淀釜内预置 1500公斤去离子水, 并 预热至 90°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉淀 釜内浆料温度为 90°C, 混合合成浆料的 pH=9.0±0.3, 混合共沉淀过程在 20分钟内完成。 静置老化 20分钟。 老化后的浆料用去离子水洗涤至硝酸铵含量为 2.45wt%, 过滤, 所得滤饼的固含率为 36.5wt%。 在制得的滤饼中添加一定量的醋酸钾、 A1203含量为 25%的铝溶胶和去离子水, 打浆并充分浆化, 调节浆料的 pH值为 9.2, 所得浆料的固含率为 30.0wt%。 其中所加入的 水玻璃和碱性硅溶胶的量以最终达到各种结构助剂的含量比为原则。 将上一述步骤制得浆料在进风温度为 210°C, 出风温度为 95°C条件下在加压式喷雾干 燥塔中喷雾干燥。 将干燥成型后的催化剂送入焙烧炉中, 在空气气氛中于 70CTC下焙烧 2 小时, 得到所需的铁基催化剂, 该催化剂各组分的重量比为 Fe: Mn: Cr: Zn: A1203: K = 100: 20.0: 5.0: 15.0: 20: 4.5, 该催化剂记为 B。 实施例 3 将 2000 公斤 Fe(N03)3-9H20 270 公斤的 50wt Mn(N03)3水溶液、 127.5 公斤 Cr(N03)3-3H20溶于 2500公斤的去离子水中, 充分溶解后, 搅拌下将该溶液升温至 80°C, 所得混合盐溶液中硝酸盐的总浓度为 29.5wt%, 该盐溶液中各组分的重量比为 Fe: Mn: Cr= 100: 15.0: 6.0。 同时配制 12.5 wt%的氨水溶液并升温至 40°C, 沉淀釜内预置 1500公斤去离子水, 并 预热至 80°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉淀 釜内浆料温度为 80°C, 混合合成浆料的 pH=8.5±0.3, 混合共沉淀过程在 30分钟内完成。 静置老化 30分钟。 老化后的浆料用去离子水洗涤至硝酸铵含量为 1.5wt%, 并过滤, 所得滤饼的固含率为 16.5wt%。 在制得的滤饼中添加一定量的 KHC03、 碱性硅溶胶、 铝溶胶和去离子水, 打浆 并充分浆化, 并调节浆料的 pH值为 8.8, 所得浆料的固含率为 12.0wt%。 其中所加入的碱 性硅溶胶和铝溶胶的量以最终达到各种结构助剂的含量比为原则。 将上一述步骤制得的浆料在进风温度为 400°C, 出风温度为 105°C条件下在加压式喷 雾干燥塔中喷雾干燥。 将干燥成型后的催化剂送入焙烧炉中, 在空气气氛中于 60CTC下焙 烧 7.5 小时, 得到所需的铁基催化剂, 该催化剂各组分的重量比为 Fe: Mn: Cr: Si02: A1203: K= 100: 15.0: 6.0: 20.0: 6.0: 6.0, 该催化剂记为 C。 实施例 4
将 2000公斤 Fe(N03) 9H20、216公斤的 50wt% Mn(N03)3水溶液以及 216公斤含 Si02 25.0wt%的酸性硅溶胶溶于 4000公斤的去离子水中, 充分溶解后, 搅拌下将该溶液升温至 65°C, 所得混合溶液中硝酸盐的总浓度为 21.0wt%, 所述盐溶液中各组分的重量比为 Fe: Mn: SiO2= 100: 12.0: 19.5 ο 同时配制 15.0wt%的氨水溶液并升温至 40°C, 沉淀釜内预置 1500公斤去离子水, 并 预热至 65°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉淀 釜内浆料温度为 65°C, 混合合成浆料的 pH=7.5±0.3, 混合共沉淀过程在 20分钟内完成。 静置老化 30分钟。 老化后的浆料用去离子水洗涤至硝酸铵含量为 1.0wt%, 过滤, 所得滤饼的固含率为 26.5wt%。 在制得的滤饼中添加一定量的模数为 4.0的钾水玻璃、 碱性硅溶胶和去离子水, 打浆并充分浆化, 并调节浆料的 pH值为 8.2, 所得浆料的固含率为 25.0wt%。 其中所加入 的钾水玻璃和碱性硅溶胶的量以最终达到各种结构助剂的含量比为原则。 将上一述步骤制得的浆料在进风温度为 350°C, 出风温度为 125°C的条件下在加压式 喷雾干燥塔中喷雾干燥。 将干燥成型后催化剂送入焙烧炉中, 在空气气氛中于 50CTC下焙 烧 3.5小时,得到所需的铁基催化剂, 该催化剂各组分的重量比为 Fe: Mn: Si02: K= 100: 12.0: 38.5: 6.8, 该催化剂记为 D。 实施例 5
将 2000 公斤 Fe(N03) 9H20、 126.0 公斤的 50wt Mn(N03)3水溶液、 37.8 公斤的 Ζη(Ν03)2·6Η20溶于 2000公斤的去离子水中, 充分溶解后, 向混合盐溶液中添加 Α1203含 量为 25.0^%的铝溶胶 33.2公斤, 搅拌下将该溶液升温至 80°C, 所得混合溶液中硝酸盐的 总浓度为 30.9 wt%, 所述混合盐溶液中各组分的重量比为 Fe: Mn: Zn: A1203: = 100: 7.0: 3.0: 3.0。 同时配制 13.5 wt%的氨水溶液并升温至 45°C, 沉淀釜内预置 1500公斤去离子水, 并 预热至 80°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉淀 釜内浆料温度为 80°C, 混合合成浆料的 pH=7.5±0.3, 混合共沉淀过程在 25分钟内完成。 静置老化 15分钟。 老化后的浆料用去离子水洗涤至硝酸铵含量为 0.50wt%, 过滤, 所得滤饼的固含率为
38.5%。 在制得的滤饼中添加一定量的碳酸钾、 酸性硅溶胶、 铝溶胶和去离子水, 打浆并 充分浆化, 调节浆料的 pH值为 7.2, 所得浆料的固含率为 32.0wt%。 其中所加入的酸性硅 溶胶和铝溶胶的量以最终达到各种结构助剂的含量比为原则。 将上一述步骤制得的浆料在进风温度为 250°C, 出风温度为 10CTC的条件下在加压式 喷雾干燥塔中喷雾干燥。 将干燥成型后的催化剂送入焙烧炉中, 在空气气氛中于 55CTC下 焙烧 6小时, 得到所需的铁基催化剂, 该催化剂各组分的重量比为 Fe: Mn: Zn: Si02: A1203: K= 100: 7.0: 3.0: 4.0: 6.0: 3.5, 该催化剂记为 E。 实施例 6
将 2000公斤 Fe(N03)3.9H20、 170.0公斤 Cr(N03)3.3H20和 75.6公斤的 Ζη(Ν03)2·6Η20 溶于 1700公斤的去离子水中, 充分溶解后, 向混合盐溶液中添加 Si02含量为 30wt%的硅 溶胶 18.5公斤, A1203含量为 25^%的铝溶胶 16.6公斤, 搅拌下将该溶液升温至 60°C, 所 得混合溶液中硝酸盐的总浓度为 35.3 wt%, 所述混合盐溶液中各组分的重量比为 Fe: Cr: Zn: Si02: Α12Ο3 = 100: 8.0: 6.0: 2.0: 1.5。 同时配制 18.0 wt%的氨水溶液并升温至 40°C, 沉淀釜内预置 1500公斤去离子水, 并 预热至 60°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉淀 釜内浆料温度为 60°C, 混合合成浆料的 pH=7.0±0.3, 混合共沉淀过程在 22分钟内完成。 静置老化 35分钟。 老化后的浆料用去离子水洗涤至硝酸铵含量为 1.2wt%, 过滤, 所得滤饼的固含率为 25.5%。在制得的滤饼中添加一定量的模数为 3.3的钾水玻璃、铝溶胶、 酸性硅溶胶和去离 子水, 打浆并充分浆化, 调节浆料的 pH值为 8.5, 所得浆料的固含率为 18.0wt%。 其中所 加入的钾水玻璃、 铝溶胶和酸性硅溶胶的量以最终达到各种结构助剂的含量比为原则。 将上一述步骤制得的浆料在进风温度为 320°C, 出风温度为 12CTC条件下在加压式喷 雾干燥塔中喷雾干燥。 将干燥成型后的催化剂送入焙烧炉中, 在空气气氛中于 60CTC下焙 烧 6 小时, 得到铁基催化剂, 该催化剂各组分的重量比为 Fe: Cr: Zn: Si02: A1203: K = 100: 8.0: 6.0: 10.5: 4.5: 4.0, 该催化剂记为 F。 实施例 7
将 300公斤金属铁、 300公斤金属锰、 18公斤金属铬和 27公斤金属锌与重量百分数 为 50Wt%的适量硝酸溶液反应,尾气用去离子水加压喷淋吸收后,制得的硝酸可重复使用; 用上述方法制得的混合硝酸盐溶液中硝酸盐的总浓度为 32.2wt%; 向上述混合盐溶液中添 加 Si02含量为 30 ^%的硅溶胶 35.0公斤, A1203含量为 25 ^%的铝溶胶 24.0公斤, 搅拌 下将该溶液升温至 85°C ; 所得到的混合硝酸盐溶液中各组分的重量比为 Fe: Mn: Cr: Zn: Si02: Al2O3 = 100: 18.0: 6.0: 9.0: 3.5: 2.0。 同时配制 16.0wt%的氨水溶液并升温至 60°C, 在沉淀釜内预置 1500公斤去离子水, 并预热至 85°C, 待温度升至设定温度后, 将所述的盐溶液和氨水溶液并流共沉淀, 保持沉 淀釜内浆料温度为 85°C, 混合合成浆料的 pH=7.0±0.3, 混合共沉淀过程在 27分钟内完成。 静置老化 90分钟。 老化后浆料用去离子水洗涤至硝酸铵含量为 1.5wt%, 过滤, 所得滤饼的固含率为 35.0%。在制得的滤饼中添加一定量的模数为 3.3的钾水玻璃、铝溶胶、 酸性硅溶胶和去离 子水, 打浆并充分浆化, 调节浆料的 pH值为 8.0, 所得浆料的固含率为 28.0wt%。 其中所 加入的钾水玻璃、 铝溶胶和酸性硅溶胶的量以最终达到各种结构助剂的含量比为原则。 将上一述步骤制得的浆料在进风温度为 240°C, 出风温度为 11CTC条件下在加压式喷 雾干燥塔中喷雾干燥。 将干燥成型后的催化剂送入焙烧炉中, 在空气气氛中于 55CTC下焙 烧 5小时, 得到铁基催化剂, 该催化剂各组分的重量比为 Fe: Mn: Cr: Zn: Si02: A1203: K= 100: 18.0: 6.0: 9.0: 18.0: 3.0: 5.0, 该催化剂记为 G。 下表 1列出了实施例 1-7所制备催化剂的组成及其物理性能。
表 1 实施例 1-7所所制备的催化剂组成及其物理性能
Figure imgf000011_0001
采用上述实施例 1-7所制备的催化剂, 在下述催化剂还原和费托合成反应条件下在浆 状床反应器中进行费托合成反应, 所述的的费托合成反应性能参数见下表 2。 催化剂的还原条件为:
以合成气为还原气, 在 220-300°C、 压力为 0.1-4.0 MPa以及空速为 500-10000 h—1的条 件下还原 5-48小时。 催化剂的浆态床费托合成反应条件为:
H2/CO=0.7-3.0, 反应温度为 240-280°C, 反应压力为 1.0-5.0MPa, 新鲜气反应空速为 5000-12000 h"1 和尾气循环比为 0.5-4.0。 由下表 2可以看出, 该催化剂在浆态床反应器中, 在较高反应空速下, 仍保持很高的 费托合成反应活性, CO和 H2转化率均在 80 %以上, 有效烃选择性 (C2=~C4=+ C5 +) 维持 在 90.0 wt%以上, 甲烷选择性在 5.0%以下, 其中 C5 +烃的选择性和收率很高, 均超过 0.80g/g-cat./h。 因此该催化剂尤其适合于在浆态床反应器中由合成气生产柴油、 汽油、 蜡 等产品。 表 2催化剂评价结果
Figure imgf000012_0001
以上已详细描述了本发明的实施方案, 对本领域技术人员来说很显然可以做很多改进 和变化而不会背离本发明的基本精神。 所有这些变化和改进都在本发明的保护范围之内。

Claims

权利要求书
1、 一种用于浆态床费托合成的微球状铁基催化剂, 该催化剂的活性组分为 Fe, 其特 征在于催化剂还包括过渡金属助剂 M、 结构助剂 S和 K助剂, 所述的过渡金属助剂 M选 自 Mn、 Cr和 Zn中的一种或多种的组合, 所述的结构助剂 S为 3102或/和 A1203; 所述各 组分的重量比为 Fe: 过渡金属助剂 M: 结构助剂 S: K =100: 1-50: 1-50: 0.5-10; 其中所 述的金属组分以元素计, 所述的结构助剂以氧化物计; 所述结构助剂 S的两种成分 A1203 和 Si02的重量比 (Al203/Si02) 不大于 0.5。
2、 根据权利要求 1 所述的微球状铁基催化剂, 其特征在于催化剂各组分的重量比为 Fe: M: S: K =100: 4-40: 5-40: 1-7; 和 /或当所述的金属助剂 Μ含有二种或二种以上的组 分时, 各组分之间可以任意比例存在。
3、 根据权利要求 2所述的微球状铁基催化剂, 其特征在于所述过渡金属助剂 Μ选自 Mn、 Cr和 Zn中的二种或二种以上的组合。
4、 根据权利要求 2所述的微球状铁基催化剂, 其特征在于所述结构助剂 S的两种成 分 A1203和 Si02的重量比不大于 0.3。
5、根据权利要求 1-4任意一项所述的微球状铁基催化剂, 其特征在于所述催化剂各组 分的组成是:
Fe:Mn:Cr:Zn:SiO2:Al2O3:K=100:2.0:0.5:0.5:4.88:0.11: 1.2;
Fe:Mn:Cr:Zn:Al203: K= 100:20.0:5.0: 15.0:20:4.5;
Fe: Mn: Cr:Si02:Al203:K= 100: 15.0:6.0:20.0:6.0 :6.0;
Fe:Mn:Si02K= 100: 12.0:38.5:6.8;
Fe:Mn:Zn:Si02:Al203:K= 100:7.0:3.0:4.0 :6.0 :3.5;
Fe:Cr:Zn:Si02:Al203:K= 100:8.0:6.0: 10.5:4.5:4.0; 或
Fe:Mn:Cr:Zn:SiO2:Al2O3:K= 100: 18.0:6.0:9.0: 18.0:3.0:5.0。
6、 一种权利要求 1-5任意一项所述微球状催化剂的制备方法, 该方法包括以下步骤:
( 1 )按所需比例, 以金属 Fe、过渡金属 M和硝酸为原料制备所述金属的硝酸盐溶液, 或者直接将所述各种金属的硝酸盐溶解制得混合硝酸盐溶液, 向所述的盐溶液中添加结构 助剂 S;
(2) 以氨水为沉淀剂, 采用共沉淀方式制得浆料;
(3) 将制得的浆料洗涤、 过滤, 制得催化剂滤饼;
(4) 向滤饼中添加所需量的 K助剂钾盐、 去离子水, 打浆, 调节 pH值至 4-10后乳 化, 制得浆料;
(5) 将所制得的浆料喷雾干燥成型, 经焙烧后得到所述的催化剂。
7、 根据权利要求 6所述催化剂的制备方法, 该方法包括以下步骤:
( 1 )按所需比例, 以金属 Fe、过渡金属 M和硝酸为原料制备所述金属的硝酸盐溶液, 或者直接将所述各种金属的硝酸盐溶解制得混合硝酸盐溶液, 所制得的混合硝酸盐溶液的 浓度为 5-45wt%; 向所述的盐溶液中添加结构助剂 S;
(2)以 1-25^%的氨水为沉淀剂,采用共沉淀方式制得浆料,沉淀温度条件为 20-95°C, 沉淀过程的 pH值为 6.0-9.5, 沉淀后浆料进行老化, 终点 pH值为 5-10;
(3) 将制得的浆料洗涤、 过滤, 制得催化剂滤饼, 滤饼中的固含率为 5-60wt%; (4) 向滤饼中添加所需量的钾盐和去离子水, 打浆, 调节 pH值至 4-10后乳化, 制 得固含率为 3-50 ^%的浆料;
(5 ) 在加压式喷雾干燥塔中, 将所制得的浆料进行喷雾干燥成型, 然后将干燥成型 后催化剂进行焙烧, 得到所需的催化剂;
其中所述在步骤 (1 ) 中加入的结构助剂可改在步骤 (4) 中加入; 或是在步骤 (1 ) 和 (4) 各加入部分结构助剂。
8、 根据权利要求 7所述催化剂的制备方法, 其中所述结构助剂的加入是在步骤 (1 ) 和 (4) 各加入部分结构助剂时, 在步骤 (1 ) 中加入结构助剂后, 使硝酸盐溶液中的 Fe/ 结构助剂 S的重量比为不小于 100/25。
9、 根据权利要求 6-8任意一项所述催化剂的制备方法, 其中所述结构助剂 Si02的原 料是硅溶胶或钾水玻璃, 和 /或所述的结构助剂 A1203的原料是铝溶胶。
10、 根据权利要求 6-8任意一项所述催化剂的制备方法, 其特征在于步骤(1 ) 中的混 合硝酸盐溶液是使用所述金属的硝酸盐配制而成; 优选所述混合硝酸盐溶液的浓度为 10-40wt%。
11、 根据权利要求 6-8任意一项所述催化剂的制备方法, 其特征在于其中步骤(2) 中 所述氨水沉淀剂的浓度为 5-20 wt , 和 /或所述的沉淀温度为 50-9CTC。
12、 根据权利要求 11所述催化剂的制备方法, 其特征在于在步骤 (3) 将所述的浆料 洗涤过滤后,滤饼中的硝酸铵含量小于 2.5wt%^B/或过滤后所得到的滤饼的固含率为 15-50 wt%。
13、 根据权利要求 12所述催化剂的制备方法, 其特征在于步骤 (4) 中所述的钾盐选 自碳酸氢钾、 醋酸钾、 有机酸钾和钾水玻璃之一; 和 /或步骤 (4) 中所述浆料的 pH值为 5.0-9.5; 所述浆料的固含率为 10-40wt%。
14、 根据权利要求要求 1-5任意一项所述铁基催化剂在费托合成反应中的应用; 优选 所述的费托合成反应是在浆态床中, 于 240-28CTC的温度范围内进行。
PCT/CN2010/071629 2009-04-22 2010-04-08 一种费托合成催化剂、其制备方法和应用 WO2010121516A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/259,356 US20120022174A1 (en) 2009-04-22 2010-04-08 Fischer-tropsch synthesis catalyst, preparation and application thereof
RU2011140229/04A RU2477654C1 (ru) 2009-04-22 2010-04-08 Катализатор синтеза фишера-тропша, его изготовление и применение
AU2010239013A AU2010239013B2 (en) 2009-04-22 2010-04-08 Fischer-Tropsch synthesis catalyst, preparation and application thereof
CA2757851A CA2757851C (en) 2009-04-22 2010-04-08 Fischer-tropsch synthesis catalyst, preparation and application thereof
ZA2011/07129A ZA201107129B (en) 2009-04-22 2011-01-29 Fischer-tropsch synthesis catalyst,preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910133993A CN101869840A (zh) 2009-04-22 2009-04-22 一种费托合成催化剂、其制备方法和应用
CN200910133993.9 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010121516A1 true WO2010121516A1 (zh) 2010-10-28

Family

ID=42995036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071629 WO2010121516A1 (zh) 2009-04-22 2010-04-08 一种费托合成催化剂、其制备方法和应用

Country Status (7)

Country Link
US (1) US20120022174A1 (zh)
CN (1) CN101869840A (zh)
AU (1) AU2010239013B2 (zh)
CA (1) CA2757851C (zh)
RU (1) RU2477654C1 (zh)
WO (1) WO2010121516A1 (zh)
ZA (1) ZA201107129B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160158733A1 (en) * 2013-07-18 2016-06-09 China University Of Petroleum-Beijing A Fe-BASED HYDROGENATION CATALYST AND USE THEREOF
CN110732329A (zh) * 2018-07-20 2020-01-31 国家能源投资集团有限责任公司 含钾硅溶胶及其制备方法和费托合成铁基催化剂及其制备方法和费托合成方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418404B (zh) * 2012-05-16 2015-06-10 中国石油化工股份有限公司 费托合成催化剂及其制备方法
CN103418393B (zh) * 2012-05-16 2016-02-10 中国石油化工股份有限公司 费托合成重质烃的催化剂及其制备方法
CN103769109B (zh) * 2012-10-24 2015-12-16 中国石油化工股份有限公司 一种合成气转化催化剂及其制备方法和应用
CN103769098B (zh) * 2012-10-24 2016-05-18 中国石油化工股份有限公司 一种合成气转化催化剂及其制备方法和应用
CN104549343B (zh) * 2013-10-28 2017-07-14 中国石油化工股份有限公司 合成气制低碳烯烃催化剂、制备方法及其用途
CN103831115B (zh) * 2013-12-04 2016-04-20 中国科学院山西煤炭化学研究所 浆态床费托合成钴基催化剂及制法和应用
CN103831116B (zh) * 2013-12-04 2016-06-15 中国科学院山西煤炭化学研究所 一种钴基浆态床费托合成催化剂及制备方法和应用
CN103949262A (zh) * 2014-04-21 2014-07-30 武汉凯迪工程技术研究总院有限公司 一种用于合成气生产α-烯烃的结构化铁基催化剂及制备方法和应用
CN104046398B (zh) * 2014-07-08 2016-04-06 赛鼎工程有限公司 一种合成气制天然气的耐硫甲烷化工艺
CN104046399B (zh) * 2014-07-08 2017-01-11 赛鼎工程有限公司 一种焦炉煤气制天然气的耐硫甲烷化工艺
CN104707620B (zh) * 2015-03-16 2017-08-01 中科合成油技术有限公司 一种费托合成催化剂及其制备方法与应用
CN104785276B (zh) * 2015-03-16 2017-05-17 中科合成油技术有限公司 一种以复合溶胶为硅源制备的费托合成催化剂及其制备方法与应用
FR3044005B1 (fr) * 2015-11-23 2017-12-15 Ifp Energies Now Procede de synthese d'hydrocarbures a partir de gaz de synthese en presence d'un catalyseur a base de cobalt piege dans une matrice oxyde mesoporeuse et obtenu a partir d'au moins un precurseur monomerique
CN105413698B (zh) * 2015-11-23 2018-04-27 中科合成油技术有限公司 一种高活性费托合成催化剂及其制备方法与应用
CN105727961B (zh) * 2016-02-02 2018-09-18 中科合成油技术有限公司 一种具有特殊微观形貌的费托合成铁基催化剂及制备方法
CN107617442B (zh) * 2016-07-15 2020-07-14 神华集团有限责任公司 费托合成沉淀铁基催化剂及其制备方法和应用及合成气经浆态床费托合成制烃化合物的方法
CN108262043B (zh) * 2016-12-30 2021-06-11 中国石油化工股份有限公司 一种费托合成催化剂的制备方法及所制备的费托合成催化剂
CN107551961B (zh) * 2017-11-03 2022-10-25 河北科技大学 一种高温高压浆态床反应装置
CN109225235B (zh) * 2018-10-10 2021-07-20 上海兖矿能源科技研发有限公司 高效耐磨浆态床费托合成铁基催化剂及其制备方法和应用
CN111303929B (zh) * 2018-12-11 2022-06-21 国家能源投资集团有限责任公司 沉淀铁费托合成催化剂及其制备方法与应用
CN109939725B (zh) * 2019-03-15 2021-12-14 武汉科技大学 一种合成气直接转化制异构烷烃的催化剂及其制备方法
CN110639528A (zh) * 2019-10-30 2020-01-03 武汉容新技术有限公司 一种微球铁基催化剂及其制备方法和应用
CN111167470B (zh) * 2020-01-15 2023-04-07 大连凯信科技研发有限公司 合成气制烯烃的催化剂及其制备方法和在烯烃生产中的应用
CN111992199B (zh) * 2020-05-31 2023-06-30 南京克米斯璀新能源科技有限公司 一种用于费托油脱除酸的催化剂及其制备方法
CN111848407B (zh) * 2020-08-10 2022-07-19 中科合成油技术股份有限公司 一种由合成气制备有机胺的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463793A (zh) * 2002-06-12 2003-12-31 中国科学院山西煤炭化学研究所 一种用于费托合成的铁/锰催化剂及其制备方法
CN1562475A (zh) * 2004-03-16 2005-01-12 中国科学院山西煤炭化学研究所 一种微球状铁锰费托合成催化剂及其制备方法
CN1562476A (zh) * 2004-03-16 2005-01-12 中国科学院山西煤炭化学研究所 一种高活性和高稳定性铁锰费托合成催化剂及其制法
CN1562471A (zh) * 2004-03-29 2005-01-12 中国科学院山西煤炭化学研究所 一种费托合成铁基催化剂及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB650794A (en) * 1946-11-27 1951-03-07 Standard Oil Dev Co Improvements in or relating to a hydrocarbon synthesis process
US20040106517A1 (en) * 2000-05-23 2004-06-03 Dlamini Thulani Humphrey Chemicals from synthesis gas
US6455595B1 (en) * 2000-07-24 2002-09-24 Chevron U.S.A. Inc. Methods for optimizing fischer-tropsch synthesis
RU2299764C2 (ru) * 2002-05-15 2007-05-27 Зюд-Хеми Аг Катализатор фишера-тропша, полученный при использовании высокочистого железосодержащего предшественника (варианты)
US7067562B2 (en) * 2002-12-20 2006-06-27 Conocophillips Company Iron-based Fischer-Tropsch catalysts and methods of making and using
US7541310B2 (en) * 2003-10-16 2009-06-02 Conocophillips Company Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same
CN1260007C (zh) * 2004-06-11 2006-06-21 中国科学院山西煤炭化学研究所 一种微球状费托合成铁基催化剂及制法和应用
CN100434169C (zh) * 2005-08-22 2008-11-19 上海兖矿能源科技研发有限公司 一种高温费托合成微球型铁基催化剂及其制备方法
EP2185281A1 (en) * 2007-09-10 2010-05-19 Shell Internationale Research Maatschappij B.V. Process for stabilising a fischer tropsch catalyst
CN101945703B (zh) * 2008-02-21 2013-05-08 埃克森美孚化学专利公司 由甲烷生产芳烃的方法
WO2010078371A2 (en) * 2008-12-29 2010-07-08 Chevron U.S.A. Inc. Preparation of cobalt-containing acidic support-based fischer-tropsch catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463793A (zh) * 2002-06-12 2003-12-31 中国科学院山西煤炭化学研究所 一种用于费托合成的铁/锰催化剂及其制备方法
CN1562475A (zh) * 2004-03-16 2005-01-12 中国科学院山西煤炭化学研究所 一种微球状铁锰费托合成催化剂及其制备方法
CN1562476A (zh) * 2004-03-16 2005-01-12 中国科学院山西煤炭化学研究所 一种高活性和高稳定性铁锰费托合成催化剂及其制法
CN1562471A (zh) * 2004-03-29 2005-01-12 中国科学院山西煤炭化学研究所 一种费托合成铁基催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. LOHITHARN ET AL.: "Fe-based Fischer-Tropsch Synthesis Catalysts Containing Carbide-Forming Transition Metal Promoters", JOURNAL OF CATALYSIS, vol. 225, 2008, pages 104 *
WANG, RUNPING ET AL.: "Researching Overview of Fe-based Fischer-Tropsch Synthesis Catalyst Promoters", TIANJIN CHEMICAL INDUSTRY, vol. 22, no. 1, January 2008 (2008-01-01), pages 19 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160158733A1 (en) * 2013-07-18 2016-06-09 China University Of Petroleum-Beijing A Fe-BASED HYDROGENATION CATALYST AND USE THEREOF
US10335773B2 (en) * 2013-07-18 2019-07-02 China University of Petroleum—Beijing Fe-based hydrogenation catalyst and use thereof
CN110732329A (zh) * 2018-07-20 2020-01-31 国家能源投资集团有限责任公司 含钾硅溶胶及其制备方法和费托合成铁基催化剂及其制备方法和费托合成方法
CN110732329B (zh) * 2018-07-20 2022-12-27 国家能源投资集团有限责任公司 含钾硅溶胶及其制备方法和费托合成铁基催化剂及其制备方法和费托合成方法

Also Published As

Publication number Publication date
RU2477654C1 (ru) 2013-03-20
CN101869840A (zh) 2010-10-27
AU2010239013A1 (en) 2011-10-20
CA2757851A1 (en) 2010-10-28
AU2010239013B2 (en) 2013-01-31
CA2757851C (en) 2015-03-24
ZA201107129B (en) 2012-12-27
US20120022174A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2010121516A1 (zh) 一种费托合成催化剂、其制备方法和应用
WO2010102573A1 (zh) 一种费托合成催化剂、其制备方法和应用
WO2010094226A1 (zh) 一种费托合成用铁基催化剂、其制备方法和应用
EP2318131B1 (en) Catalyst for direct production of light olefins and preparation method thereof
EP2173481A2 (en) Catalysts for fischer-tropsch synthesis on cobalt/phosphorus-aluminum oxide and preparation methods thereof
EP1331992A1 (en) Attrition resistant bulk iron catalysts and processes for preparing and using same
JP5837620B2 (ja) 触媒
CN102371154B (zh) 合成轻质烃的铁基催化剂及其制备方法
JP2010532245A (ja) ゾル・ゲル法によるフィッシャー・トロプシュ合成用リン含有アルミナ支持体の製造及びその触媒の製造
US8901027B2 (en) Stable slurry bed fischer-tropsch catalyst with high surface area and activity
CN101279260B (zh) 一种铁镍费托合成催化剂及其制备方法
CN111167470B (zh) 合成气制烯烃的催化剂及其制备方法和在烯烃生产中的应用
CN110614099A (zh) 费托合成铁基催化剂及其制备方法和费托合成的方法
CN111195521B (zh) 烯烃催化剂及其制备方法以及在合成气制烯烃中的应用
CN112619652A (zh) 合成气制低碳烯烃的催化剂及其制备方法
CN114643062B (zh) 一种合成气制低碳烯烃催化剂及其制备方法和应用
CN105688926B (zh) 多产低碳烯烃的费托铁基催化剂及其制备方法
CN114643071B (zh) 合成气直接制低碳烯烃铁基催化剂及其制备方法和应用
CN111068689B (zh) 合成气直接法制备低碳烯烃的催化剂及其应用
CN109092289B (zh) Co和h2直接制低碳烯烃催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259356

Country of ref document: US

Ref document number: 2010239013

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2757851

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 7399/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010239013

Country of ref document: AU

Date of ref document: 20100408

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011140229

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10766606

Country of ref document: EP

Kind code of ref document: A1