WO2010090049A1 - Ddr型ゼオライト紛体、及びddr型ゼオライト粉体の製造方法 - Google Patents

Ddr型ゼオライト紛体、及びddr型ゼオライト粉体の製造方法 Download PDF

Info

Publication number
WO2010090049A1
WO2010090049A1 PCT/JP2010/050113 JP2010050113W WO2010090049A1 WO 2010090049 A1 WO2010090049 A1 WO 2010090049A1 JP 2010050113 W JP2010050113 W JP 2010050113W WO 2010090049 A1 WO2010090049 A1 WO 2010090049A1
Authority
WO
WIPO (PCT)
Prior art keywords
type zeolite
ddr type
diffraction
ddr
particle size
Prior art date
Application number
PCT/JP2010/050113
Other languages
English (en)
French (fr)
Inventor
谷島 健二
野中 久義
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201080006691.6A priority Critical patent/CN102307811B/zh
Priority to JP2010549415A priority patent/JP5632750B2/ja
Priority to EP10738388.7A priority patent/EP2394958B1/en
Publication of WO2010090049A1 publication Critical patent/WO2010090049A1/ja
Priority to US13/196,301 priority patent/US9493362B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a DDR type zeolite powder used for a catalyst, a catalyst carrier, an adsorbent, a gas separation membrane, a pervaporation membrane, and the like, and a method for producing a DDR type zeolite powder.
  • Zeolite is used as a catalyst, catalyst carrier, adsorbent and the like. Zeolite has a molecular sieving action. Zeolite membranes made of zeolite are used as gas separation membranes and pervaporation membranes.
  • Zeolite is classified into types such as LTA, MFI, MOR, AFI, FER, FAU, and DDR based on its crystal structure.
  • DDR Deca-Dodecasil 3R type zeolite is a crystal whose main component is silica, and has a pore in its crystal structure. These pores are formed by a polyhedron containing an oxygen 8-membered ring, and the pore diameter is 4.4 ⁇ 3.6 angstroms.
  • DDR type zeolite is hydrogen (H 2 ), carbon dioxide (CO 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), propane (C 3 H 8 ), It can be used for an adsorbent or a separation sieve membrane that separates only a low molecular gas such as propylene (C 3 H 6 ).
  • Non-Patent Documents 1 to 3 disclose a method for producing a DDR type zeolite.
  • 1-adamantanamine is used as a structure-directing agent (hereinafter referred to as “SDA”)
  • tetramethoxysilane, ethylenediamine, and water are used as raw materials, and all-silica containing no aluminum is obtained by hydrothermal synthesis.
  • DDR type zeolite powder is produced.
  • Patent Document 1 discloses a technique that simplifies the DDR type zeolite production method described in Non-Patent Documents 1 to 3.
  • a DDR type zeolite powder is added and dispersed as a seed crystal in a raw material solution containing 1-adamantanamine dissolved in ethylenediamine (or a DDR type zeolite powder as a seed crystal is adhered). After the support is immersed, hydrothermal synthesis is performed.
  • Non-Patent Documents 1 to 3 a fine DDR type zeolite powder having an average particle diameter of less than 2.5 ⁇ m cannot be obtained without pulverizing or classifying the particles.
  • the obtained DDR type zeolite powder hardly shows a particle size distribution in which the particle diameters of most particles converge near the average particle diameter. Further, since external force is applied to the particles by pulverization, a large number of particles having a high amorphous content are generated.
  • the DDR type zeolite powder has a high amorphous content, various useful characteristics due to the crystal structure of the DDR type zeolite are hardly exhibited. For example, the pore volume effective for adsorption or the like is reduced, and the performance as an adsorbent for separating a low molecular gas is also poor.
  • Patent Document 1 does not disclose the particle size distribution of the obtained powder or the content of the DDR type zeolite crystals, nor does it disclose conditions for optimizing the particle size distribution or the crystal content. .
  • an object of the present invention is to provide a DDR type zeolite powder composed of fine particles and having a particle size distribution in which the particle size of most particles converges around the average particle size, and a method for producing the same. It is to provide.
  • the present inventors have intensively studied, and as a result, found suitable conditions for crystal growth of a seed crystal of a DDR type zeolite having a predetermined average particle diameter, and completed the present invention. That is, according to the present invention, the following zeolite powder and method for producing the zeolite powder are provided.
  • the diffraction intensity A of the diffraction peak due to the DDR type zeolite crystal calculated by the following formula (I) and the following formula (II)
  • C1 is the minimum value of the diffraction intensity between the diffraction peak derived from the (012) plane of the DDR type zeolite crystal and the diffraction peak derived from the same (104) plane
  • ⁇ 1 is the diffraction angle indicating C1 ( 2 ⁇ )
  • C2 are the minimum values of diffraction intensities between the diffraction peak derived from the (606) plane of the DDR type zeolite crystal and the diffraction peak derived from the same (1.20) plane
  • ⁇ 2 is a value indicating C2.
  • the folding angle (2 ⁇ ), Ca is the diffraction intensity of the diffraction peak derived from the (024) plane of the DDR type zeolite crystal
  • ⁇ a is the diffraction angle (2 ⁇ ) indicating Ca
  • Cb is the (122) plane of the DDR type zeolite crystal.
  • ⁇ b is the diffraction angle (2 ⁇ ) indicating Cb)
  • Ethylenediamine in which 1-adamantanamine is dissolved, silica (SiO 2 ), and water have a molar ratio of 1-adamantanamine / SiO 2 of 0.002 to 0.5 and water / SiO 2 of 10 to 500.
  • a raw material solution in which DDR type zeolite seed crystals having an average particle diameter of 10 to 300 nm are dispersed at 0.001 to 1.0 mass% is heat-treated at 100 to 180 ° C.
  • the method for producing a DDR type zeolite powder comprising a step of crystal growth using the DDR type zeolite seed crystal as a core until the average particle size becomes 0.1 ⁇ m or more and less than 2.5 ⁇ m.
  • the percentage ratio of the mass of the obtained DDR type zeolite powder with respect to the total of the mass of the silica contained in the raw material solution and the mass of the DDR type zeolite seed crystal is 50% or more
  • the DDR type zeolite powder of the present invention is composed of fine particles and exhibits a particle size distribution in which the particle size of most particles converges around the average particle size. Further, in the method for producing a DDR type zeolite powder of the present invention, a DDR type zeolite powder which is composed of fine particles and has a particle size distribution in which most of the particles converge near the average particle size can be obtained.
  • FIG. 3 is a diagram illustrating a particle size distribution of a DDR type zeolite powder of Example 1.
  • FIG. 3 is a diagram illustrating a particle size distribution of a DDR type zeolite powder of Example 2.
  • FIG. 4 is a diagram illustrating a particle size distribution of a DDR type zeolite powder of Example 3.
  • 4 is a diagram illustrating a particle size distribution of a DDR type zeolite powder of Comparative Example 2.
  • FIG. 3 is a diagram illustrating an X-ray diffraction pattern of a DDR type zeolite powder of Example 1.
  • FIG. 3 is a diagram illustrating a particle size distribution of a DDR type zeolite powder of Example 1.
  • FIG. 3 is a diagram illustrating an X-ray diffraction pattern of a DDR type zeolite powder of Example 2.
  • FIG. 4 is a diagram illustrating an X-ray diffraction pattern of a DDR type zeolite powder of Example 3.
  • FIG. 4 is a diagram illustrating an X-ray diffraction pattern of a DDR type zeolite powder of Comparative Example 2.
  • DDR type zeolite powder 1-1.
  • Outline of DDR type zeolite powder of the present invention The DDR type zeolite powder of the present invention has an average particle size of 0.1 ⁇ m or more and less than 2.5 ⁇ m, and a particle size of 80% or more of all particles is in a range of ⁇ 45% to + 90% with respect to the average particle size. It has a particle size distribution contained within.
  • DDR type zeolite powder is a powder containing particles having a crystal structure called DDR type zeolite.
  • the zeolite crystal has a tetrahedral structure of (SiO 4 ) 4- and / or (AlO 4 ) 5- as a basic unit, and the basic unit is connected to have a pore.
  • the particles having a crystal structure of DDR type zeolite include particles having a lattice defect of DDR type zeolite crystal or impurities containing one particle as well as particles of complete crystal.
  • the powder containing particles having a crystal structure of DDR type zeolite is a collection of solid particles.
  • the solid particles include particles unavoidably contained when a DDR type zeolite powder is prepared, as well as particles having the crystal structure of the DDR type zeolite defined above.
  • the “average particle size” is the median size (d50) in the particle size distribution of the solid particles constituting the DDR type zeolite powder.
  • the average particle diameter is defined as the median diameter (d50) in the particle size distribution measurement by the laser Doppler method.
  • the DDR type zeolite powder of the present invention preferably has an average particle size of 0.2 ⁇ m or more and less than 1.0 ⁇ m from the viewpoint of improving adsorption efficiency when used as an adsorbent, for example.
  • the particle diameter is in the range of ⁇ 45% to + 90% with respect to the average particle diameter” means that the particle diameter value of the particles constituting the powder is 55% to 190% of the average particle diameter value of the powder. It means the following.
  • particle size distribution may be obtained by means commonly used by those skilled in the art, and may be obtained, for example, based on particle size distribution measurement by a laser Doppler method.
  • the DDR type zeolite powder of the present invention is based on the diffraction intensity obtained by X-ray diffraction analysis, and the diffraction intensity A of the diffraction peak due to the DDR type zeolite crystal calculated by the following formula (I): It is preferable that the value of Y calculated by the following formula (III) as a ratio with the diffraction intensity B caused by the amorphous contained in the DDR type zeolite powder calculated in II) is 100 or more.
  • A Ca ⁇ ⁇ (C2 ⁇ C1) / ( ⁇ 2 ⁇ 1) ⁇ ( ⁇ a ⁇ 1) + C1 ⁇ (I):
  • B Cb ⁇ ⁇ (C2 ⁇ C1) / ( ⁇ 2 ⁇ 1) ⁇ ( ⁇ b ⁇ 1) + C1 ⁇ (II):
  • Y A / B (III).
  • FIG. 1 shows the result of X-ray diffraction analysis of DRR-type zeolite powder by X-ray irradiation of CuK ⁇ 1 ray, where the horizontal axis is the diffraction angle (2 ⁇ ) and the vertical axis is the diffraction intensity (cps).
  • cps diffraction intensity
  • C1 is the minimum value of the diffraction intensity between the diffraction peak derived from the (012) plane of the DDR type zeolite crystal and the diffraction peak derived from the same (104) plane.
  • ⁇ 1 is a diffraction angle (2 ⁇ ) indicating C1.
  • C2 is the minimum value of the diffraction intensity between the diffraction peak derived from the (606) plane of the DDR type zeolite crystal and the diffraction peak derived from the same (1.20) plane.
  • ⁇ 2 is a diffraction angle (2 ⁇ ) indicating C2.
  • Ca is the diffraction intensity of the diffraction peak derived from the (024) plane of the DDR type zeolite crystal.
  • ⁇ a is a diffraction angle (2 ⁇ ) indicating Ca.
  • Cb is the minimum value of the diffraction intensity between the diffraction peak derived from the (122) plane of the DDR type zeolite crystal and the diffraction peak derived from the same (027) plane.
  • ⁇ b is a diffraction angle (2 ⁇ ) representing Cb.
  • C1, ⁇ 1, C2, ⁇ 2, Ca, ⁇ a, Cb, and ⁇ b are the Collection of Simulated XRD Powder Patterns for Zeolites, Eds. : M. M.M. J. et al. Treacy and J.M. B. It is defined based on the knowledge about the X-ray diffraction analysis of the DDR type zeolite crystal described in Higgins, Elsevier (2001) and the following consideration by the present inventors.
  • C1 and C2 are values used for calculating the background.
  • a straight line connecting coordinates ( ⁇ 1, C1) and coordinates ( ⁇ 2, C2) in FIG. 1 represents the background.
  • the diffraction intensity is corrected by subtracting this background value from the measured value.
  • a diffraction peak derived from the amorphous contained in the DDR type zeolite powder usually appears at a diffraction angle of about 15 to 30 degrees (see, for example, FIG. 9 for details). ).
  • C1 and C2 are selected from a portion having a diffraction angle of less than 15 degrees or a diffraction angle of more than 30 degrees, which is less influenced by the diffraction intensity derived from the DDR type zeolite crystal and the diffraction intensity derived from the amorphous state.
  • the diffraction angle ⁇ 1 is selected from less than 15 degrees and the diffraction angle ⁇ 2 is selected from more than 30 degrees
  • ⁇ 1 and ⁇ 2 are respectively defined based on the following considerations.
  • C1 is the same as the bottom of both peaks, which is presumed to have the least influence of diffraction intensity derived from crystal and amorphous within this interval, that is, the diffraction peak derived from the (012) plane of the DDR type zeolite crystal ( 104)
  • ⁇ 1 is defined as a diffraction angle indicating C1.
  • C2 is the same as the skirt of both peaks, which is presumed to have the least influence of the diffraction intensity derived from the crystal and amorphous within this interval, that is, the diffraction peak derived from the (606) plane of the DDR type zeolite crystal ( The minimum value of the diffraction intensity between the diffraction peak derived from the 1 2 20) plane.
  • ⁇ 2 is defined as a diffraction angle indicating C2.
  • Ca is the diffraction intensity derived from the (024) plane showing the highest diffraction intensity among the diffraction peaks derived from the DDR type zeolite crystals. Even when the amorphous content in the powder increases, this diffraction peak is easily distinguished from the diffraction peaks derived from other DDR type zeolite crystals.
  • the right side of the above formula (I) indicates that the above-described Ca is reduced by the background value at the diffraction angle ⁇ a. That is, the value A is a value after correcting the diffraction intensity of the diffraction peak due to the DDR type zeolite crystal.
  • the diffraction intensity derived from the amorphous contained in the DDR type zeolite powder usually has the largest diffraction angle around 23 degrees (see, for example, FIG. 9 for details). Many diffraction peaks derived from DDR type zeolite crystals appear at a diffraction angle of around 23 degrees (see FIG. 1). Therefore, it is difficult to grasp the diffraction intensity derived only from the amorphous contained in the DDR type zeolite powder.
  • the inventors of the present invention examined a number of diffraction patterns of the powder, and between the diffraction peak derived from the (122) plane of the DDR type zeolite crystal and the diffraction peak derived from the (027) plane at a diffraction angle of about 23 degrees. Is focused on. This is because it is considered that the diffraction peaks are hardly affected by the diffraction intensity derived from the DDR type zeolite crystal.
  • Cb is the same as the bottom of the two peaks that are presumed to have the least influence of the diffraction intensity derived from the DDR type zeolite crystal within this interval, that is, the diffraction peak derived from the (122) plane of the DDR type zeolite crystal (027). )
  • the minimum value of the diffraction intensity between the diffraction peak derived from the surface. ⁇ b is defined as a diffraction angle indicating Cb.
  • the right side of the above formula (II) represents that the above-mentioned Cb is reduced by the background value at the diffraction angle ⁇ b. That is, the value of B is a value after correcting the diffraction intensity due to the amorphous contained in the DDR type zeolite powder.
  • the value of Y in the above formula (III) indicates the diffraction intensity A of the diffraction peak due to the DDR type zeolite crystal and the diffraction intensity B due to the amorphous contained in the DDR type zeolite powder in the DDR type zeolite powder. And the ratio.
  • the value of Y is large, the content of the DDR type zeolite crystal is high, and the content of amorphous is low in relation to this.
  • the DDR type zeolite powder When the value of Y in the above formula (III) is 100 or more, the DDR type zeolite powder has a sufficient pore volume characteristic of the DDR type zeolite crystal structure. In this case, when used as an adsorbent for low molecular gas, good adsorption performance is exhibited.
  • the DDR type zeolite powder of the present invention described above can be obtained by the production method described below (the method for producing the DDR type zeolite powder of the present invention).
  • Method for producing DDR type zeolite powder 2-1.
  • the method for producing a DDR type zeolite powder of the present invention comprises ethylenediamine, silica (SiO 2 ) in which 1-adamantanamine is dissolved, and water in a molar ratio of 1-adamantane.
  • the raw material solution dispersed in% is heat-treated at 100 to 180 ° C. to grow crystals until the average particle diameter becomes 0.1 ⁇ m or more and less than 2.5 ⁇ m using the DDR type zeolite seed crystal as a nucleus.
  • Process the steps of the manufacturing method of the present invention will be described in detail along a time series.
  • DDR type zeolite seed crystal referred to here is a particle of DDR type zeolite crystal that becomes a nucleus of crystal growth in hydrothermal synthesis (details will be described later).
  • the DDR type zeolite seed crystal is obtained by preparing a DDR type zeolite crystal by a conventionally known method such as the method described in Non-Patent Document 3, and then pulverizing it. Further, after pulverization, classification may be performed as appropriate to select only particles having a desired average particle size. Methods that can be generally used by those skilled in the art can also be applied to pulverization and classification.
  • a DDR type zeolite seed crystal having an average particle size of 10 to 300 nm is prepared.
  • the raw material solution is such that ethylenediamine in which 1-adamantanamine is dissolved, silica (SiO 2 ), and water are mixed, and the above DDR type zeolite seed crystals having an average particle diameter of 10 to 300 nm are dispersed. Prepared.
  • 1-adamantanamine is an SDA (structure directing agent) used for the synthesis of DDR type zeolite crystals, that is, a substance that serves as a template for forming the crystal structure of DDR type zeolite.
  • the molar ratio (1-adamantanamine / SiO 2 molar ratio) between 1-adamantanamine and silica (SiO 2 ), which is a raw material for the DDR type zeolite, is important.
  • the 1-adamantanamine / SiO 2 molar ratio must be in the range of 0.002 to 0.5, preferably in the range of 0.01 to 0.3, and preferably in the range of 0.01 to 0. More preferably, it is within the range of .1. If the 1-adamantanamine / SiO 2 molar ratio is less than this range, the 1-adamantanamine functioning as SDA is insufficient and it becomes difficult to form a DDR type zeolite. When the 1-adamantanamine / SiO 2 molar ratio exceeds this range, expensive 1-adamantanamine is added more than necessary, which is not preferable from the viewpoint of production cost.
  • 1-adamantanamine is sparingly soluble in water. Therefore, 1-adamantanamine is dissolved in ethylenediamine and then used for preparing a raw material solution. By completely dissolving 1-adamantanamine in ethylenediamine and preparing the raw material solution in a uniform state, DDR type zeolite crystals having a uniform crystal size can be grown.
  • the molar ratio of ethylenediamine to 1-adamantanamine needs to be in the range of 4 to 35, preferably in the range of 8 to 24. More preferably, it is within the range of 20.
  • the ethylenediamine / 1-adamantanamine molar ratio is below this range, the amount of ethylenediamine is insufficient to completely dissolve the 1-adamantanamine.
  • the ethylenediamine / 1-adamantanamine molar ratio exceeds this range, ethylenediamine is used more than necessary, which is not preferable from the viewpoint of production cost.
  • silica sol can be used as a supply source of silica (SiO 2 ) mixed in the raw material solution.
  • a commercially available silica sol can be suitably used as the silica sol.
  • the silica sol can be prepared by dissolving fine powdered silica in water or hydrolyzing the alkoxide.
  • the molar ratio of water as a solvent to silica (water / SiO 2 molar ratio) needs to be in the range of 10 to 500, and in the range of 14 to 250. It is preferably within the range, and more preferably within the range of 14 to 112. If the water / SiO 2 molar ratio is smaller than this range, the SiO 2 concentration of the raw material solution is too high, which is not preferable in that a large amount of unreacted SiO 2 that does not crystallize remains. On the other hand, when the water / SiO 2 molar ratio exceeds this range, the SiO 2 concentration of the raw material solution is too low, which is not preferable in that it is difficult to grow DDR type zeolite crystals.
  • a DDR type zeolite containing aluminum and a metal cation in its skeleton (hereinafter referred to as “low silica type DDR type zeolite”) can also be produced. Since this low silica type DDR type zeolite has cations in the pores, the adsorption performance and catalytic performance are different from those of the all silica type DDR type zeolite.
  • an aluminum source and a cation source are added in addition to water and silica sol as solvents to prepare a raw material solution.
  • aluminum sulfate, sodium aluminate, metallic aluminum or the like can be used as the aluminum source.
  • the SiO 2 / Al 2 O 3 molar ratio needs to be in the range of 50 to 1000, preferably in the range of 70 to 300, More preferably, it is within the range of 200.
  • the SiO 2 / Al 2 O 3 molar ratio is less than this range, it is not preferable in that the ratio of amorphous SiO 2 other than DDR type zeolite is increased.
  • the SiO 2 / Al 2 O 3 molar ratio exceeds this range, a DDR type zeolite can be produced, but it has characteristics as a low silica type DDR type zeolite due to a significantly reduced amount of aluminum and cations. This is not preferable in that the product is not sufficiently obtained and there is no difference from the production of an all-silica type zeolite.
  • the cation when a cation is added to the raw material solution, the cation includes an alkali metal, that is, any one of K, Na, Li, Rb, and Cs.
  • alkali metal that is, any one of K, Na, Li, Rb, and Cs.
  • the cation source include sodium hydroxide, sodium aluminate and the like when described with reference to Na.
  • the X 2 O / Al 2 O 3 molar ratio needs to be in the range of 1 to 25, and preferably in the range of 3 to 20, More preferably, it is in the range of 6-15.
  • the X 2 O / Al 2 O 3 molar ratio is less than this range, it is not preferable in that it becomes difficult to obtain a target DDR type zeolite having a SiO 2 / Al 2 O 3 molar ratio.
  • the X 2 O / Al 2 O 3 molar ratio exceeds this range, it is not preferable in that amorphous SiO 2 is mixed into the product.
  • a solution in which 1-adamantanamine is dissolved in ethylenediamine, water as a solvent, silica sol (in the case of synthesizing a low silica type DDR, an aluminum source is further used.
  • a method of preparing a raw material solution by mixing and dissolving aluminum sulfate and sodium hydroxide as a cation source in a predetermined ratio is mentioned.
  • a raw material solution in which DDR type zeolite seed crystals having an average particle size of 10 to 300 nm are dispersed at 0.001 to 1.0 mass% is used.
  • the DDR type zeolite seed crystal in the raw material solution As a method of dispersing the DDR type zeolite seed crystal in the raw material solution, a general stirring method that can be generally used by those skilled in the art to which the present invention belongs may be employed.
  • the DDR type zeolite seed crystals can be dispersed in the raw material solution by a method such as ultrasonic treatment.
  • the temperature of the heat treatment needs to be in the range of 100 to 180 ° C., more preferably in the range of 130 to 180 ° C.
  • the temperature of the heat treatment is lower than this range, it is not preferable in that DDR type zeolite cannot be formed.
  • the temperature of the heat treatment exceeds this range, it is not preferable in that a DOH type zeolite which is not a target product is formed.
  • the heat treatment time is usually a short time of 8 to 120 hours.
  • the production method of the present invention it is not necessary to constantly stir the raw material solution during the heat treatment. This is because 1-adamantanamine contained in the raw material solution is already dissolved in ethylenediamine, so that the raw material solution is kept in a uniform state.
  • DOH is not formed without constantly stirring the raw material solution, and a DDR single-phase crystal can be formed.
  • a mixed crystal of DDR and DOH may be formed unless the raw material solution is constantly stirred.
  • the percentage ratio of the mass of the obtained DDR type zeolite powder to the total mass of the silica contained in the raw material solution and the mass of the DDR type zeolite seed crystal is 50% or more. it can.
  • the average particle size is 0.1 ⁇ m or more and less than 2.5 ⁇ m, and the particle size of 80% or more of all particles is within the range of ⁇ 45% to + 90% with respect to the average particle size.
  • DDR type zeolite powder having a particle size distribution contained in the DDR type zeolite powder, that is, the DDR type zeolite powder of the present invention can be obtained.
  • the DDR type zeolite powder of the present invention is composed of fine particles, and shows a particle size distribution in which the particle size of most particles converges around the average particle size.
  • the action and effect of the DDR type zeolite powder of the present invention will be described by taking as an example the case of being used as an adsorbent.
  • a powder composed of particles having a small particle diameter is preferable. This is because if the particle size is large, molecules to be adsorbed cannot reach the depth of the pores in a short time.
  • the smaller the variation in the particle diameter of the particles constituting the powder the smaller the difference in adsorption performance between different product lots.
  • the DDR type zeolite powder of the present invention exhibits the adsorption performance that can be possessed stably and sufficiently within a short time. Furthermore, in the embodiment in which the value of Y in the above formula (III) is 100 or more, the content ratio of the DDR type zeolite crystals is high and the crystal structure is secured. The adsorption efficiency is high.
  • the DDR type zeolite powder of the present invention can be used as it is, or mixed with other powders obtained from the above production method.
  • the particles that can constitute the “DDR type zeolite powder” defined above are extracted, and the powder composed of the extracted particles is used in the present invention.
  • the characteristics (average particle size and particle size distribution, sometimes Y value of the above formula (III) in addition to the above two characteristics) belonging to the DDR type zeolite powder It shall fall under use.
  • DDR type zeolite powder Example 1
  • Preparation of DDR type zeolite seed crystals In order to prepare the DDR type zeolite seed crystal, a DDR type zeolite powder was manufactured based on the description in Non-Patent Document 3 or Patent Document 1. Further, the DDR type zeolite powder was pulverized using a bead mill Minicer manufactured by Ashizawa Finetech. Specifically, a dispersion in which DDR type zeolite powder was dispersed in water was prepared and pulverized at a rotation speed of 3820 rpm for 2 hours.
  • the DDR type zeolite dispersion liquid after pulverization was centrifuged at 3000 rpm for 15 minutes using a Hitachi centrifuge, himacCT5L, to classify and remove coarse particles.
  • the DDR type zeolite dispersion obtained as described above was used as a seed crystal dispersion. This seed crystal dispersion contained DDR type zeolite seed crystals at an average particle diameter of 172 nm.
  • composition of this raw material solution was such that the concentration of the DDR type zeolite seed crystals was 0.28% by mass, the 1-adamantanamine / SiO 2 molar ratio was 0.027, and the water / SiO 2 molar ratio was 24.
  • Example 2 In the preparation of the DDR type zeolite seed crystal of (1), a seed crystal dispersion containing a DDR type zeolite seed crystal having an average particle diameter of 129 nm is prepared, and in the heat treatment of (3), heating is performed at 160 ° C. for 16 hours. The same operations as in (1) to (4) of Example 1 were performed except that the treatment was performed.
  • Example 1 In the preparation of the DDR type zeolite seed crystal of (1), a seed crystal dispersion containing a DDR type zeolite seed crystal having an average particle diameter of 1.5 ⁇ m is prepared, and the seed used in the preparation of the raw material solution of (2) The concentration of the DDR type zeolite seed crystal in the crystal dispersion is 0.0011% by mass, the concentration of the DDR type zeolite seed crystal in the raw material solution after preparation is 0.00062% by mass, The same operations as in (1) to (4) of Example 1 were carried out except that the heat treatment was carried out at 48 ° C. for 48 hours.
  • Nanotrack is a device for obtaining particle diameter based on the laser Doppler method.
  • FIGS. 2 to 5 show the particle size distributions of the DDR type zeolite powders obtained in Examples 1 to 3 and Comparative Example 2, respectively.
  • 2 to 5 show semilogarithmic graphs in which the horizontal axis represents the particle diameter ( ⁇ m), the vertical axis represents the frequency (%), and the horizontal axis represents a logarithmic scale.
  • the DDR type zeolite powders obtained in Examples 1 to 3 had less variation in particle diameter as compared with Comparative Example 2. Specific results such as the average particle diameter (d50) will be described below.
  • the average particle size (d50) is 568 nm
  • the particle size (d10) corresponding to the cumulative frequency 10% is the average particle size ⁇ 103 nm
  • the cumulative frequency 90% is 90%.
  • the particle diameter corresponding to (d90) was an average particle diameter +134 nm. Therefore, in the DDR type zeolite powder obtained in Example 1, the particle size of 80% of all particles was in the range of average particle size ⁇ 18% to average particle size + 24%.
  • the average particle size (d50) is 276 nm
  • the particle size corresponding to the cumulative frequency 10% (d10) is the average particle size ⁇ 103 nm
  • the cumulative frequency 90% is the average particle diameter corresponding to (d90) was an average particle diameter of +141 nm. Therefore, in the DDR type zeolite powder obtained in Example 2, the particle diameter of 80% of all particles was in the range of average particle diameter -37% to average particle diameter + 52%.
  • the average particle size (d50) is 539 nm
  • the particle size (d10) corresponding to the cumulative frequency of 10% is the average particle size of -237 nm
  • the cumulative frequency is 90%.
  • the particle diameter (d90) corresponding to was an average particle diameter +472 nm. Therefore, in the DDR type zeolite powder obtained in Example 3, the particle size of 80% of all particles was within the range of the average particle size of ⁇ 44% to the average particle size of + 88%.
  • the average particle size (d50) is 132 nm
  • the particle size corresponding to the cumulative frequency of 10% (d10) is the average particle size of -69 nm
  • the cumulative frequency is 90%.
  • the particle diameter corresponding to (d90) was an average particle diameter +194 nm. Therefore, in the DDR type zeolite powder obtained in Example 3, the particle size of 80% of all particles was in the range of the average particle size of ⁇ 52% to the average particle size of + 147%.
  • X-ray diffraction analysis and calculation of the value of Y X-ray diffraction analysis was performed using a high-resolution X-ray diffractometer RINT2000 (manufactured by Rigaku). The X-rays to be irradiated were CuK ⁇ 1 rays and were used at 50 kV and 300 mA. The scanning mode was continuous, the scanning axis was 2 ⁇ / ⁇ , and the scanning range was 5 to 50 degrees. The scan step was 0.02 degrees and the scan speed was 1 degree / minute.
  • C1, ⁇ 1, C2, ⁇ 2, Ca, ⁇ a, Cb, and ⁇ b are determined according to the above-mentioned rules, and these values are applied to the above formulas (I) to (III) to obtain the value of Y. Calculated.
  • Example 1 since the obtained DDR type zeolite powder is composed of particles grown from a DDR type zeolite seed crystal, the rate of containing the DDR type zeolite crystal is high, and the rate of containing the amorphous form is high. Low.
  • Comparative Example 2 since a powder was obtained by pulverizing DDR type zeolite particles having a large particle diameter, it is considered that an external force was applied to the particles during pulverization and many amorphous portions were generated.
  • the yield of the DDR type zeolite powder is the ratio of the mass of the obtained DDR type zeolite powder to the total of the mass of silica (SiO 2 ) contained in the raw material solution and the mass of the DDR type zeolite seed crystal (percentage ( %): Mass of DDR type zeolite powder / (mass of silica in raw material solution + mass of zeolite seed crystal) ⁇ 100).
  • the yield of the DDR type zeolite powder was 62% in Example 1, 60% in Example 2, 55% in Example 3, and 90% in Comparative Example 1.
  • the average particle size is 0.1 ⁇ m or more and less than 2.5 ⁇ m, and the particle size of 80% or more of all particles is the average particle size.
  • a DDR type zeolite powder having a particle size distribution in the range of ⁇ 45 to + 90% was produced.
  • the Y value calculated from the above formulas (I) to (III) was 100 or more. That is, it was found that the DDR type zeolite powder of the present invention described above can be manufactured by the manufacturing method of the present invention.
  • this example shows that the production method of the present invention is superior to the conventional method in the following three points.
  • the step of further pulverizing and classifying from the DDR type zeolite powder having a large particle diameter, which is necessary for the conventional method, can be omitted, the time cost and the equipment cost are reduced. Is excellent in terms of.
  • a powder having an average particle size of 0.1 ⁇ m or more and less than 2.5 ⁇ m can be produced with little variation in particle size. Is excellent.
  • the production method of the present invention is excellent in that it can produce a powder having a high rate of containing DDR type zeolite crystals and a low rate of containing non-crystals.
  • the production method of the present invention is a DDR type zeolite powder that exhibits excellent performance in application to separation of a catalyst, a catalyst carrier, an adsorbent, and a low molecular gas. It shows that it can be manufactured stably.
  • the present invention can be used as a DDR type zeolite powder used for a catalyst, a catalyst carrier, an adsorbent, a gas separation membrane, a pervaporation membrane, and the like, and a production method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 微細な粒子から構成され、大半の粒子の粒子径が平均粒子径付近に収束する粒度分布が示されるDDR型ゼオライト粉体、及びその製造方法を提供する。1-アダマンタンアミンを溶解させたエチレンジアミン、シリカ(SiO)、及び水が、モル比において1-アダマンタンアミン/SiOが0.002~0.5かつ水/SiOが10~500にて混合されており、さらに平均粒子径10~300nmのDDR型ゼオライト種結晶が0.001~1.0質量%にて分散されている原料溶液を、100~180℃にて加熱処理することにより、前記DDR型ゼオライト種結晶を核として平均粒子径が0.1μm以上2.5μm未満となるまで結晶成長させる工程を有するDDR型ゼオライト粉体の製造方法。

Description

DDR型ゼオライト紛体、及びDDR型ゼオライト粉体の製造方法
 本発明は、触媒、触媒担体、吸着剤、ガス分離膜、浸透気化膜などに利用されるDDR型ゼオライト粉体、及びDDR型ゼオライト粉体の製造方法に関する。
 ゼオライトは、触媒、触媒担体、吸着材等として利用されている。ゼオライトは、分子篩作用を有し、ゼオライトを膜状にしたゼオライト膜は、ガス分離膜や浸透気化膜として利用されている。
 ゼオライトは、その結晶構造から、LTA、MFI、MOR、AFI、FER、FAU、DDR等の型に分類される。これらの中でもDDR(Deca-Dodecasil 3R)型ゼオライトは、主成分がシリカからなる結晶であり、その結晶構造内に細孔を有する。この細孔は、酸素8員環を含む多面体によって形成され、細孔径が4.4×3.6オングストロームである。
 DDR型ゼオライトの細孔径は、ゼオライトの中では比較的小さい。そのため、DDR型ゼオライトは、水素(H)、二酸化炭素(CO)、メタン(CH)、エタン(C)、エチレン(C)、プロパン(C)、プロピレン(C)等の低分子ガスのみを分離する吸着剤や分離篩膜に利用できる。
 非特許文献1~3には、DDR型ゼオライトの製造方法が開示されている。これらの製造方法では、構造規定剤(以下、「SDA」と記す)に1-アダマンタンアミンを用い、テトラメトキシシラン、エチレンジアミン、及び水を原料とし、水熱合成によって、アルミニウムを含まないオールシリカのDDR型ゼオライト粉体を製造する。
 特許文献1には、非特許文献1~3に記載のDDR型ゼオライトの製造方法を簡便化した技術が開示されている。この技術では、エチレンジアミンに溶解させた1-アダマンタンアミンを含んだ原料溶液に、種結晶としてDDR型ゼオライト粉末を添加して分散させた後(或いは、種結晶であるDDR型ゼオライト粉末を付着せしめた支持体を浸漬させた後)、水熱合成する。
特開2004-83375号公報
H. Gies, Journal of Inclusion Phenomena 2, (1984)275-278 A. Stewart, D. W. Johnson and M. D. Shannon, Studies in Surface Science and Catalysis vol.37, (1988)57-64 M. J. den Exter, J. C. Jansen, H. van Bekkum, Studies in Surface Science and Catalysis vol.84, Ed. by J. Weitkamp et al., Elsevier (1994)1159-1166
 しかしながら、非特許文献1~3のDDR型ゼオライトの製造方法では、粒子の粉砕や分級を経ることなく、平均粒子径2.5μm未満の微細なDDR型ゼオライト粉体を得られない。
 さらに、粒子の粉砕と分級を施した場合でも、得られたDDR型ゼオライト粉体は、平均粒子径付近に大半の粒子の粒子径が収束する粒度分布を示し難い。また、粉砕によって粒子に外力が加わるため、非晶質の含有率が高い粒子を多数生成する。
 よって、従来の製造方法では、平均粒子径2.5μm未満の微細なDDR型ゼオライト粉体を得ようとした場合、非晶質の含有率が高く、DDR型ゼオライト結晶の含有率が低いものになってしまう。
 DDR型ゼオライト粉体は、非晶質の含有率が高い場合、DDR型ゼオライトの結晶構造に起因した種々の有用な特性が発揮されにくくなる。例えば、吸着等に有効な細孔の容積が小さくなり、低分子ガスを分離の対象とする吸着剤としての性能も劣る。
 また、特許文献1には、得られる粉体の粒度分布やDDR型ゼオライト結晶の含有率などは開示されておらず、粒度分布や結晶の含有率を最適化するための条件も開示されていない。
 上記の問題に鑑みて、本発明の課題は、微細な粒子から構成され、大半の粒子の粒子径が平均粒子径付近に収束する粒度分布が示されるDDR型ゼオライト粉体、及びその製造方法を提供することにある。
 上述の課題を解決するため、本発明者等は、鋭意検討した結果、所定の平均粒子径のDDR型ゼオライトの種結晶を結晶成長させる好適な条件を見出し、本発明を完成するに至った。すなわち、本発明によれば、以下に示すゼオライト粉体及びゼオライト粉体の製造方法が提供される。
[1] 平均粒子径が0.1μm以上2.5μm未満であり、全粒子の80%以上の粒子径が前記平均粒子径に対して-45%~+90%の範囲内に含まれる粒度分布を有するDDR型ゼオライト粉体。
[2] 前記平均粒子径が、0.2μm以上1.0μm未満である前記[1]に記載のDDR型ゼオライト粉体。
[3] X線回折分析により得られる回折強度に基づき、下記式(I)にて算出されるDDR型ゼオライト結晶に起因する回折ピークの回折強度Aと、下記式(II)にて算出されるDDR型ゼオライト粉体に含まれる非晶質に起因する回折強度Bとの比として下記式(III)にて算出されるYの値が、100以上である前記[1]又は[2]に記載のDDR型ゼオライト粉体:
 A=Ca-{(C2-C1)/(θ2-θ1)×(θa-θ1)+C1}(I):
 B=Cb-{(C2-C1)/(θ2-θ1)×(θb-θ1)+C1}(II):
 Y=A/B (III)。
 (但し、C1は、DDR型ゼオライト結晶の(012)面に由来する回折ピークと同(104)面に由来する回折ピークとの間の回折強度の最小値、θ1は、C1を示す回折角(2θ)、C2は、DDR型ゼオライト結晶の(606)面に由来する回折ピークと同(1 2 20)面に由来する回折ピークとの間の回折強度の最小値、θ2は、C2を示す回折角(2θ)、Caは、DDR型ゼオライト結晶の(024)面に由来する回折ピークの回折強度、θaは、Caを示す回折角(2θ),Cbは、DDR型ゼオライト結晶の(122)面に由来する回折ピークと同(027)面に由来する回折ピークとの間の回折強度の最小値、θbは、Cbを示す回折角(2θ))
[4] 1-アダマンタンアミンを溶解させたエチレンジアミン、シリカ(SiO)、及び水が、モル比において1-アダマンタンアミン/SiOが0.002~0.5かつ水/SiOが10~500にて混合されており、さらに平均粒子径10~300nmのDDR型ゼオライト種結晶が0.001~1.0質量%にて分散されている原料溶液を、100~180℃にて加熱処理することにより、前記DDR型ゼオライト種結晶を核として平均粒子径が0.1μm以上2.5μm未満となるまで結晶成長させる工程を有するDDR型ゼオライト粉体の製造方法。
[5] 前記原料溶液に含まれる前記シリカの質量と前記DDR型ゼオライト種結晶の質量との合計に対する得られたDDR型ゼオライト粉体の質量の百分率比が、50%以上である前記[4]に記載のDDR型ゼオライト粉体の製造方法。
 本発明のDDR型ゼオライト粉体は、微細な粒子から構成され、大半の粒子の粒子径が平均粒子径付近に収束する粒度分布を示す。また、本発明のDDR型ゼオライト粉体の製造方法では、微細な粒子から構成され、大半の粒子の粒子径が平均粒子径付近に収束する粒度分布を示すDDR型ゼオライト粉体を得られる。
DDR型ゼオライト粉体のX線回折パターンの一例を表す図である。 実施例1のDDR型ゼオライト粉体の粒度分布を表す図である。 実施例2のDDR型ゼオライト粉体の粒度分布を表す図である。 実施例3のDDR型ゼオライト粉体の粒度分布を表す図である。 比較例2のDDR型ゼオライト粉体の粒度分布を表す図である。 実施例1のDDR型ゼオライト粉体のX線回折パターンを表す図である。 実施例2のDDR型ゼオライト粉体のX線回折パターンを表す図である。 実施例3のDDR型ゼオライト粉体のX線回折パターンを表す図である。 比較例2のDDR型ゼオライト粉体のX線回折パターンを表す図である。
 以下、本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
1.DDR型ゼオライト粉体:
1-1.本発明のDDR型ゼオライト粉体の概要:
 本発明のDDR型ゼオライト粉体は、平均粒子径が0.1μm以上2.5μm未満であって、全粒子の80%以上の粒子径が平均粒子径に対して-45%~+90%の範囲内に含まれる粒度分布を有する。
 「DDR型ゼオライト粉体」は、DDR型ゼオライトと称される結晶構造を有する粒子が含まれている粉体である。
 ゼオライト結晶は、(SiO4-及び/又は(AlO5-の四面体構造を基本単位とし、この基本単位が連結して細孔を有した構造である。
 DDR型ゼオライトの結晶構造を有する粒子には、完全結晶の粒子はもちろん、1個の粒子中にDDR型ゼオライト結晶の格子欠陥があるものや不純物を含んだものも包含される。
 DDR型ゼオライトの結晶構造を有する粒子が含まれる粉体とは、固体の粒子が集合したものである。固体の粒子には、先に定義したDDR型ゼオライトの結晶構造を有する粒子はもちろん、DDR型ゼオライト粉体が調製される時などに不可避的に含有された粒子も含まれる。
 「平均粒子径」とは、DDR型ゼオライト粉体を構成する固体の粒子の粒子径の分布におけるメジアン径(d50)である。例えば、平均粒子径は、レーザードップラー法による粒度分布測定でのメジアン径(d50)として規定される。
 本発明のDDR型ゼオライト粉体は、例えば吸着剤として用いる際に吸着効率が向上される観点からは、平均粒子径が、0.2μm以上1.0μm未満であることが好ましい。
 「粒子径が前記平均粒子径に対して-45%~+90%の範囲内」とは、粉体を構成する粒子の粒子径の値が、粉体の平均粒子径値の55%以上190%以下にあることをいう。
 ここでいう「粒度分布」は、当業者が通常用いる手段によって得られるものであればよく、例えば、レーザードップラー法による粒度分布測定に基づき得られる。
1-2.DDR型ゼオライト結晶の含有率が高い粉体:
 本発明のDDR型ゼオライト粉体は、X線回折分析により得られる回折強度に基づき、下記式(I)にて算出されるDDR型ゼオライト結晶に起因する回折ピークの回折強度Aと、下記式(II)にて算出されるDDR型ゼオライト粉体に含まれる非晶質に起因する回折強度Bとの比として下記式(III)にて算出されるYの値が、100以上であるものが好ましい:
 A=Ca-{(C2-C1)/(θ2-θ1)×(θa-θ1)+C1}(I):
 B=Cb-{(C2-C1)/(θ2-θ1)×(θb-θ1)+C1}(II):
 Y=A/B (III)。
 上記式(I)~(III)中の表されるC1、θ1、C2、θ2、Ca、θa、Cb、及びθbは、次に説明するものである。
 図1は、CuKα1線のX線の照射による、DRR型ゼオライト粉末のX線回折分析の結果を表し、横軸が回折角(2θ)、縦軸が回折強度(cps)である。以下、図1を参照し説明する。下記の説明での回折角に関する具体的な数値は、CuKα1線のX線が照射される場合に適用されるものである点に留意する。
 C1は、DDR型ゼオライト結晶の(012)面に由来する回折ピークと同(104)面に由来する回折ピークとの間の回折強度の最小値である。θ1は、C1を示す回折角(2θ)である。
 C2は、DDR型ゼオライト結晶の(606)面に由来する回折ピークと同(1 2 20)面に由来する回折ピークとの間の回折強度の最小値である。θ2は、C2を示す回折角(2θ)である。
 Caは、DDR型ゼオライト結晶の(024)面に由来する回折ピークの回折強度である。θaは、Caを示す回折角(2θ)である。
 Cbは、DDR型ゼオライト結晶の(122)面に由来する回折ピークと同(027)面に由来する回折ピークとの間の回折強度の最小値である。θbは、Cbを示す回折角(2θ)である。
 C1、θ1、C2、θ2、Ca、θa、Cb、及びθbは、Collection of Simulated XRD Powder Patterns for Zeolites, Eds.: M.M.J.Treacy and J.B.Higgins, Elsevier (2001)、に記述されているDDR型ゼオライト結晶のX線回折分析に関する知見、及び本発明者等による以下の考察に基づいて規定されている。
 C1及びC2は、バックグランドの算出に用いる値である。図1中の座標(θ1、C1)と座標(θ2、C2)とを結ぶ直線は、バックグラウンドを表す。
 回折強度は、実測値からこのバックグランドの値を減じることによって、補正される。
 DDR型ゼオライト粉末のX線回折分析では、DDR型ゼオライト粉体に含まれる非晶質に由来する回折ピークが、通常、回折角15~30度付近に現れる(例えば図9を参照、詳しくは後述)。
 そこで、C1、C2は、DDR型ゼオライト結晶に由来する回折強度、及び非晶質に由来する回折強度による影響が少ない、回折角15度未満、又は回折角30度超の部分から選ぶ。具体的には、回折角θ1が15度未満、回折角θ2が30度超から選択され、θ1及びθ2は、それぞれ次の考察に基づいて規定されている。
 回折角15度未満では、DDR型ゼオライト結晶の(012)面に由来する回折ピークと同(104)面に由来する回折ピークとの間が、他の明瞭な回折ピークがなくて最も広い(図1参照)。よって、DDR型ゼオライト結晶の(012)面に由来する回折ピークと同(104)面に由来する回折ピークとの間では、DDR型ゼオライト結晶に由来する回折強度、及び非晶質に由来する回折強度による影響が少ない。
 C1は、この間隔内において結晶及び非晶質に由来する回折強度の影響が最も少ないと推察される前記両ピークの裾、すなわちDDR型ゼオライト結晶の(012)面に由来する回折ピークと同(104)面に由来する回折ピークとの間の回折強度の最小値とする。θ1は、C1を示す回折角として規定されている。
 回折角30度超では、DDR型ゼオライト結晶に由来する回折ピークが多数存在するため、C2は、C1と同様に規定することが困難である。
 回折角30度超では、DDR型ゼオライト結晶に由来する回折ピークのうち、同回折ピークで最も強い回折強度を示す、(024)面に由来する回折ピークの回折強度に対して、0.7%以上の回折強度を示す回折ピークのみをピックアップする。
 このようにピックアップされた回折ピークの分布では、DDR型ゼオライト結晶の(606)面に由来する回折ピークと(1 2 20)面に由来する回折ピークとの間が、他の明瞭な回折ピークがなくて最も広くなる。よって、DDR型ゼオライト結晶の(606)面に由来する回折ピークと同(1 2 20)面に由来する回折ピークとの間では、DDR型ゼオライト結晶に由来する回折強度、及び非晶質に由来する回折強度による影響が少ない。
 C2は、この間隔内において結晶及び非晶質に由来する回折強度の影響が最も少ないと推察される前記両ピークの裾、すなわちDDR型ゼオライト結晶の(606)面に由来する回折ピークと同(1 2 20)面に由来する回折ピークとの間の回折強度の最小値とする。θ2は、C2を示す回折角として規定されている。
 Caは、DDR型ゼオライト結晶に由来する回折ピークのうち、最も大きい回折強度を示す(024)面に由来する回折強度である。この回折ピークは、粉体中の非晶質の含有率が増加しても、他のDDR型ゼオライト結晶由来の回折ピークと比較して識別されやすい。
 上記式(I)の右辺は、上述のCaが、回折角θaでのバックグラウンドの値によって減ぜられていることを表す。すなわち、Aの値は、DDR型ゼオライト結晶に起因する回折ピークの回折強度の補正後の値である。
 続いて、DDR型ゼオライト粉体に含まれる非晶質に起因する回折強度である、Cbについて説明する。
 DDR型ゼオライト粉体に含まれる非晶質に由来する回折強度は、通常、回折角23度付近が最も大きい(例えば図9を参照、詳しくは後述)。DDR型ゼオライト結晶に由来する回折ピークは、回折角23度付近に多数現れる(図1参照)。そのため、DDR型ゼオライト粉体に含まれる非晶質のみに由来する回折強度を把握するのは困難である。
 本発明者等は、粉末の回折パターンを多数検討し、回折角23度近傍において、DDR型ゼオライト結晶の(122)面に由来する回折ピークと同(027)面に由来する回折ピークとの間に着目している。この両回折ピーク間では、DDR型ゼオライト結晶に由来する回折強度の影響を受けにくいと考えられるためである。
 Cbは、この間隔内においてDDR型ゼオライト結晶に由来する回折強度の影響が最も少ないと推察される前記両ピークの裾、すなわちDDR型ゼオライト結晶の(122)面に由来する回折ピークと同(027)面に由来する回折ピークとの間の回折強度の最小値とする。θbは、Cbを示す回折角として規定されている。
 上記式(II)の右辺は、上述のCbが、回折角θbでのバックグラウンドの値によって減ぜられることを表す。すなわち、Bの値は、DDR型ゼオライト粉体に含まれる非晶質に起因する回折強度の補正後の値である。
 上記式(III)のYの値は、DDR型ゼオライト粉体における、DDR型ゼオライト結晶に起因する回折ピークの回折強度Aと、DDR型ゼオライト粉体に含まれる非晶質に起因する回折強度Bとの比である。Yの値が大きいときは、DDR型ゼオライト結晶の含有率が高く、これに相関して非結晶の含有率が低い状態を表している。
 DDR型ゼオライト粉体は、上記式(III)のYの値が100以上の場合、DDR型ゼオライト結晶構造に特徴的な細孔の容積が十分に確保される。この場合、低分子ガスを対象とした吸着剤に利用すると、良好な吸着性能を発揮する。
 以上で説明した本発明のDDR型ゼオライト粉体は、次に述べる製造方法(本発明のDDR型ゼオライト粉体の製造方法)によって得られる。
2.DDR型ゼオライト粉体の製造方法:
2-1.本発明のDDR型ゼオライト粉体の製造方法の概要:
 本発明のDDR型ゼオライト粉体の製造方法(以下、「本発明の製造方法」)は、1-アダマンタンアミンを溶解させたエチレンジアミン、シリカ(SiO)、及び水が、モル比において1-アダマンタンアミン/SiOが0.002~0.5かつ水/SiOが10~500にて混合されており、さらに平均粒子径10~300nmのDDR型ゼオライト種結晶が0.001~1.0質量%にて分散されている原料溶液を、100~180℃にて加熱処理することにより、前記DDR型ゼオライト種結晶を核として平均粒子径が0.1μm以上2.5μm未満となるまで結晶成長させる工程を有する。以下、本発明の製造方法について、諸工程を時系列に沿って詳しく説明する。
2-2.DDR型ゼオライト種結晶の調製:
 ここでいう「DDR型ゼオライト種結晶」とは、水熱合成(詳しくは後述)において、結晶成長の核となるDDR型ゼオライト結晶の粒子である。
 DDR型ゼオライト種結晶は、例えば非特許文献3に記載の方法など、従来公知の方法によってDDR型ゼオライト結晶を作製し、これを粉砕して得られる。また、粉砕後、適宜分級などを行い、所望の平均粒子径の粒子のみを選別してもよい。粉砕及び分級についても、当業者が通常用いうる方法が適用できる。
 本発明の製造方法では、平均粒子径10~300nmのDDR型ゼオライト種結晶を調製する。
2-3.原料溶液の調製:
 原料溶液は、1-アダマンタンアミンを溶解させたエチレンジアミン、シリカ(SiO)、及び水が混合されており、さらに上述の平均粒子径10~300nmのDDR型ゼオライト種結晶が分散されているように調製される。
 1-アダマンタンアミンは、DDR型ゼオライト結晶の合成に用いられるSDA(構造規定剤)、即ち、DDR型ゼオライトの結晶構造を形成させるための鋳型となる物質である。
 1-アダマンタンアミンとDDR型ゼオライトの原料であるシリカ(SiO)とのモル比(1-アダマンタンアミン/SiOモル比)が重要である。1-アダマンタンアミン/SiOモル比は、0.002~0.5の範囲内であることが必要であり、0.01~0.3の範囲内であることが好ましく、0.01~0.1の範囲内であることが更に好ましい。1-アダマンタンアミン/SiOモル比がこの範囲より少ないと、SDAとして働く1-アダマンタンアミンが不足してDDR型ゼオライトを形成することが困難となる。1-アダマンタンアミン/SiOモル比がこの範囲を超えると、高価な1-アダマンタンアミンが必要以上に添加されることになり、製造コストの面から好ましくない。
 1-アダマンタンアミンは、水に対して難溶性である。そのため、1-アダマンタンアミンは、エチレンジアミンに溶解させた後、原料溶液の調製に供される。1-アダマンタンアミンをエチレンジアミンに完全に溶解させ、原料溶液が均一な状態にて調製されることにより、均一な結晶サイズを有するDDR型ゼオライト結晶を結晶成長させることが可能となる。
 エチレンジアミンと1-アダマンタンアミンとのモル比(エチレンジアミン/1-アダマンタンアミンモル比)は、4~35の範囲内であることが必要であり、8~24の範囲内であることが好ましく、10~20の範囲内であることが更に好ましい。エチレンジアミン/1-アダマンタンアミンモル比がこの範囲より少ないとき、エチレンジアミンの量が、1-アダマンタンアミンを完全に溶解させるのに不充分である。一方、エチレンジアミン/1-アダマンタンアミンモル比がこの範囲を超えると、エチレンジアミンが必要以上に使用されることになり、製造コストの面から好ましくない。
 本発明の製造方法では、原料溶液に混合されているシリカ(SiO)の供給源としてシリカゾルを用いることができる。シリカゾルは、市販のシリカゾルを好適に用いることができる。他に、シリカゾルは、微粉末状シリカを水に溶解し、或いは、アルコキシドを加水分解することにより調製できる。
 本発明の製造方法では、溶媒である水とシリカ(SiO)とのモル比(水/SiOモル比)は、10~500の範囲内であることが必要であり、14~250の範囲内であることが好ましく、14~112の範囲内であることが更に好ましい。水/SiOモル比がこの範囲より小さいと、原料溶液のSiO濃度が高すぎるために、結晶化しない未反応のSiOが多量に残存する点において好ましくない。一方、水/SiOモル比がこの範囲を超えると、原料溶液のSiO濃度が低すぎるために、DDR型ゼオライト結晶を結晶成長させることが困難になる点において好ましくない。
 本発明の製造方法によれば、オールシリカ型のDDR型ゼオライトの他、その骨格にアルミニウムと金属カチオンを含むDDR型ゼオライト(以下、「ローシリカ型のDDR型ゼオライト」と記す)も製造できる。このローシリカ型のDDR型ゼオライトは、細孔にカチオンを有するため、吸着性能や触媒性能がオールシリカ型のDDR型ゼオライトとは異なる。ローシリカ型のDDR型ゼオライトを製造する場合には、溶媒である水とシリカゾルの他、アルミニウム源、カチオン源を添加して原料溶液を調製する。
 本発明の製造方法では、アルミニウム源が原料溶液に添加される場合、アルミニウム源としては、硫酸アルミニウム、アルミン酸ナトリウム、金属アルミニウム等を用いることができる。
 アルミニウムが酸化物として換算された場合における、SiO/Alモル比は、50~1000の範囲内であることが必要であり、70~300の範囲内であることが好ましく、90~200の範囲内であることが更に好ましい。SiO/Alモル比がこの範囲より少ないと、DDR型ゼオライト以外のアモルファスSiOの比率が多くなってしまう点において好ましくない。SiO/Alモル比がこの範囲を超えると、DDR型ゼオライトは製造できるものの、アルミニウム及びカチオンの量が著しく少なくなることに起因して、ローシリカ型のDDR型ゼオライトとしての特性が備わったものが十分に得られず、オールシリカ型のゼオライトを製造したときと何ら違いがなくなってしまう点において好ましくない。
 本発明の製造方法では、カチオンが原料溶液に添加される場合、カチオンとしては、アルカリ金属、即ち、K、Na、Li、Rb、Csの何れかのカチオンが挙げられる。カチオン源としては、Naの例で説明すると、水酸化ナトリウム、アルミン酸ナトリウム等を挙げることができる。
 アルカリ金属が酸化物として換算された場合における、XO/Alモル比は、1~25の範囲内であることが必要であり、3~20の範囲内であることが好ましく、6~15の範囲内であることが更に好ましい。XO/Alモル比がこの範囲より少ないと、目的とするSiO/Alモル比のDDR型ゼオライトが得難くなる点において好ましくない。一方、XO/Alモル比がこの範囲を超えると、生成物にアモルファスSiOが混入してしまう点において好ましくない。
 特に好ましい原料溶液の調製方法の態様としては、1-アダマンタンアミンがエチレンジアミンに溶解された溶液、溶媒である水、シリカゾル(ローシリカ型のDDRを合成する場合にあっては、更に、アルミニウム源である硫酸アルミニウム、及びカチオン源である水酸化ナトリウム)を所定の比率で混合し、溶解させることにより、原料溶液を調製する方法が挙げられる。
 特に、本発明の製造方法では、平均粒子径10~300nmのDDR型ゼオライト種結晶が0.001~1.0質量%にて分散されている原料溶液を用いる。
 原料溶液にDDR型ゼオライト種結晶を分散させる方法は、本発明の属する技術分野の当業者が通常用い得る一般的な攪拌方法を採用すればよい。例えば、超音波処理等の方法によって、原料溶液にDDR型ゼオライト種結晶を分散させることができる。
2-4.加熱処理(水熱合成):
 本発明の製造方法では、上述のように原料溶液にDDR型ゼオライト種結晶を添加・分散させた後、加熱処理する。これによって、DDR型ゼオライト種結晶を核として平均粒子径0.1μm以上2.5μm未満まで結晶成長させて、DDR型ゼオライト粉体を作製する(以上の加熱処理のことを「水熱合成」とも称する)。
 本発明の製造方法では、加熱処理の温度は、100~180℃の範囲内とすることが必要であり、130~180℃の範囲内とすることが更に好ましい。加熱処理の温度がこの範囲より低いと、DDR型ゼオライトを形成することができない点において好ましくない。一方、加熱処理の温度がこの範囲を超えると、目的物ではないDOH型ゼオライトが形成されてしまう点において好ましくない。
 本発明の製造方法では、この加熱処理の時間は、通常、8~120時間という短時間で足りる。
 本発明の製造方法では、加熱処理に際し、原料溶液を常時攪拌する必要はない。原料溶液に含まれる1-アダマンタンアミンがエチレンジアミンに既に溶解されているため、原料溶液が均一な状態にて保持されているからである。本発明の製造方法によれば、原料溶液を常時攪拌しなくとも、DOHは形成されず、DDRの単相結晶を形成させることができる。なお、従来の方法では、原料溶液を常時撹拌しないと、DDRとDOHとの混晶が形成されてしまう場合がある。
 本発明の製造方法の一実施形態では、原料溶液に含まれるシリカの質量とDDR型ゼオライト種結晶の質量との合計に対する、得られたDDR型ゼオライト粉体の質量の百分率比を50%以上にできる。
3.本発明の作用・効果:
 以上の本発明の製造方法によって、平均粒子径が0.1μm以上2.5μm未満であり、全粒子の80%以上の粒子径が前記平均粒子径に対して-45%~+90%の範囲内に含まれる粒度分布を有するDDR型ゼオライト粉体、すなわち本発明のDDR型ゼオライト粉体を得ることができる。
 本発明のDDR型ゼオライト粉体では、微細な粒子から構成され、大半の粒子の粒子径が平均粒子径付近に収束する粒度分布が示される。
 以下、吸着剤として使用される場合を例に挙げて、本発明のDDR型ゼオライト粉体の作用・効果について述べる。短い吸着時間のうちに粒子の細孔の内部(深い部分)まで有効に分子が吸着されるためには、小さい粒子径の粒子からなる粉体であることが好ましい。なぜなら、粒子径が大きいと、短時間では細孔の奥深くまでは吸着対象の分子が到達しえないからである。また、粉体を構成する粒子の粒子径にバラツキが少ない方が、異なる製品ロット間での吸着性能の違いも少なくなる。これらの事情を考慮すると、本発明のDDR型ゼオライト粉体では、持ちうる吸着性能が、短時間のうちに、安定的に、充分に発揮される。さらに、上記式(III)のYの値が100以上である実施形態では、DDR型ゼオライト結晶の含有率が高く結晶構造が確保されているため、吸着機能などを有効に発揮しうる細孔数が多く、吸着効率が高い。
 本発明のDDR型ゼオライト粉体は、上述の製造方法から得られた粉体そのままでも、あるいは他の粉体などと混合して使用することも可能である。例えば、他の粉体などと混合して使用された場合、先に定義した「DDR型ゼオライト粉体」を構成しうる粒子を抽出し、この抽出された粒子からなる粉体が、本発明のDDR型ゼオライト粉末に属する特徴(平均粒子径及び粒度分布、ときには上述の2つの特性に加えて、上記式(III)のYの値)を具備するときは、本発明のDDR型ゼオライト粉体の使用に該当するものとする。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
4-1.DDR型ゼオライト粉体の製造:
(実施例1)
(1)DDR型ゼオライト種結晶の調製:
 DDR型ゼオライト種結晶の調製のため、非特許文献3又は特許文献1に記載に基づきDDR型ゼオライト粉体を製造した。さらに、アシザワファインテック製ビーズミルMinicerを使用して、DDR型ゼオライト粉体を粉砕した。具体的には、DDR型ゼオライト粉体が水に分散されている分散液を調製し、回転数3820rpmにて2時間粉砕した。この粉砕後のDDR型ゼオライト分散液について、日立製作所製遠心分離機himacCT5Lを用い、3000rpm、15分間の遠心分離をして、粗粒を分級除去した。以上により得たDDR型ゼオライト分散液を、種結晶分散液とした。この種結晶分散液は、DDR型ゼオライト種結晶を平均粒子径172nmにて含有していた。
(2)原料溶液の調製:
 フッ素樹脂製の100ml広口瓶に、4.21gのエチレンジアミン(和光純薬工業製)を入れた後、0.66gの1-アダマンタンアミン(アルドリッチ製)を加え、1-アダマンタンアミンの沈殿が残らないように溶解した。
 別途用意したビーカーに、DDR型ゼオライト種結晶が0.5質量%含まれる上述の種結晶分散液47.60gを入れ、続いて30質量%コロイダルシリカ(スノーテックスS,日産化学製、分散媒:水)32.62gを加えて軽く攪拌した。さらに、この混合液を、エチレンジアミンと1-アダマンタンアミンとを混ぜておいた上述の広口瓶に入れて強く振り混ぜ、原料溶液を調製した。この原料溶液の組成は、DDR型ゼオライト種結晶の濃度が0.28質量%、1-アダマンタンアミン/SiOモル比が0.027、水/SiOモル比が24であった。
(3)加熱処理:
 上述の広口瓶に入れられた原料溶液を、シェーカーを用いて、さらに1時間振り混ぜた。次いで、原料溶液を、内容積100mlのフッ素樹脂製内筒付きステンレス製耐圧容器内に注ぎ、加熱処理(水熱合成)を135℃にて48時間行った。加熱処理後、反応生成物を水洗し、さらに乾燥して、粉体を得た。得られた粉体についてX線回折を用いて結晶相を同定し、DDR型ゼオライト粉体であることを確認した。
(4)1-アダマンタンアミンの燃焼除去:
 さらに、電気炉を用い、上述のDDR型ゼオライト粉体を、大気雰囲気中、650℃にて4時間加熱した。これにより、DDR型ゼオライト粒子の細孔内にあった1-アダマンタンアミンを燃焼除去した。
(実施例2、3)
 (1)のDDR型ゼオライト種結晶の調製において、平均粒子径129nmのDDR型ゼオライト種結晶を含有する種結晶分散液を調製し、(3)の加熱処理において、160℃にて16時間の加熱処理を行った以外は、実施例1の(1)~(4)と同じ操作を行った。
(比較例1)
 (1)のDDR型ゼオライト種結晶の調製において、平均粒子径1.5μmのDDR型ゼオライト種結晶を含有する種結晶分散液を調製し、(2)の原料溶液の調製において、用いられた種結晶分散液中のDDR型ゼオライト種結晶の濃度が0.0011質量%、調製後の原料溶液におけるDDR型ゼオライト種結晶の濃度が0.00062質量%であり、(3)の加熱処理において、160℃にて48時間の加熱処理を行った以外は、実施例1の(1)~(4)と同じ操作をした。
(比較例2)
 DDR型ゼオライト粉体を粉砕することにより、平均粒子径132nmのゼオライト粉体を作製した。
4-2.DDR型ゼオライト粉体の粒度分布:
 上述の(3)の工程の水洗後における実施例1~3、比較例1、2の粉体の懸濁液について、粒度分布測定機ナノトラック(日機装製)を用い、DDR型ゼオライト粉体の粒度分布を測定した。ナノトラックは、レーザードップラー法に基づき粒子径を求める装置である。
 図2~5は、それぞれ実施例1~3、比較例2で得られたDDR型ゼオライト粉体の粒度分布を表す。図2~5は、横軸が粒子径(μm)、縦軸が頻度(%)を表し、横軸が対数目盛となっている片対数グラフを表す。実施例1~3により得られたDDR型ゼオライト粉体は、比較例2と比較して、粒子径のバラツキが少なかった。平均粒子径(d50)等の具体的な結果に関しては、以下に記述する。
 実施例1で得られたDDR型ゼオライト粉体では、累積分布において、平均粒子径(d50)が568nm、累積度数10%に相当する粒子径(d10)が平均粒子径-103nm、累積度数90%に相当する粒子径(d90)が平均粒子径+134nmであった。よって、実施例1で得られたDDR型ゼオライト粉体では、全粒子の80%の粒子径が、平均粒子径-18%~平均粒子径+24%の範囲内にあった。
 実施例2で得られたDDR型ゼオライト粉体では、累積分布において、平均粒子径(d50)は276nm、累積度数10%に相当する粒子径(d10)が平均粒子径-103nm、累積度数90%に相当する粒子径(d90)が平均粒子径+141nmであった。よって、実施例2で得られたDDR型ゼオライト粉体では、全粒子の80%の粒子径が、平均粒子径-37%~平均粒子径+52%の範囲内にあった。
 実施例3で得られたDDR型ゼオライト粉体では、累積分布において、平均粒子径(d50)は539nm、累積度数10%に相当する粒子径(d10)が平均粒子径-237nm、累積度数90%に相当する粒子径(d90)が平均粒子径+472nmであった。よって、実施例3で得られたDDR型ゼオライト粉体では、全粒子の80%の粒子径が、平均粒子径-44%~平均粒子径+88%の範囲内にあった。
 上述の(3)の工程の水洗後における、比較例1の懸濁液では、ナノトラックでの測定に必要とされる測定時間2分間のうちに、大部分の粒子が、測定セル内で沈降してしまった。よって、比較例1で得られるゼオライト粉体では、大半の粒子が、ナノトラックの測定限界とされている、粒子径3μmを超えていると考えられた。ナノトラックによる測定が不可能なため、比較例1で得られたDDR型ゼオライト粉体については、図2~5にて表されるような粒度分布のデータを得られなかった。そこで、比較例1については、上述の(3)の工程の乾燥後に得られた粉体から、電子顕微鏡写真上で任意に粒子10個を選択し、これら粒子の粒子径を測定した。10個の粒子の粒子径から算術平均によって算出された平均粒子径は、約85μmであった。
 比較例2で得られたDDR型ゼオライト粉体では、累積分布において、平均粒子径(d50)が132nm、累積度数10%に相当する粒子径(d10)が平均粒子径-69nm、累積度数90%に相当する粒子径(d90)が平均粒子径+194nmであった。よって、実施例3で得られたDDR型ゼオライト粉体では、全粒子の80%の粒子径が、平均粒子径-52%~平均粒子径+147%の範囲内にあった。
4-3.DDR型ゼオライト結晶が含有される率の評価試験:
 実施例1~3、比較例2により得られた粉体について、上記式(I)にて算出されるDDR型ゼオライト結晶に起因する回折ピークの回折強度Aと、上記式(II)にて算出されるDDR型ゼオライトの非晶質に起因する回折強度B、及び上記式(III)にて算出されるAとBとの比であるYの値を算出した。なお、粉体は、上記(4)1-アダマンタンアミンの燃焼除去を経たものである。比較例1で得られたDDR型ゼオライト粉体については、他と比べて粒子径が非常に大きく、本発明のDDR型ゼオライト粉体の特性とは大きく異なるため、本評価試験からは除外した。
4-3-1.X線回折分析、及びYの値の算出:
 高分解能X線回折装置RINT2000(リガク製)を用いて、X線回折分析を実施した。照射されるX線は、CuKα1線とし、50kV、300mAにて使用した。走査モードは連続、走査軸は2θ/θ、走査範囲は5~50度とした。スキャンステップは0.02度、スキャン速度は1度/分とした。得られた回折パターンから、上述の規定に従ってC1、θ1、C2、θ2、Ca,θa、Cb,及びθbを定め、これらの数値を上記式(I)~(III)にあてはめてYの値を算出した。
4-3-2.結果及び評価:
 実施例1~3及び比較例2にて得られた、DDR型ゼオライト粉体に関するX線回折分析の結果として、それぞれの回折パターンを図6~9に示す。さらに、実施例1~3及び比較例2にて得られたDDR型ゼオライト粉体について、上記式(I)~(III)中に表されるθ1、C1、θ2、C2、θa、Ca、θb、Cb,及び、Yの値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図6~8から理解できるように、実施例1~3により得られたDDR型ゼオライト粉体の回折パターンでは、DDR型ゼオライト結晶に由来する回折ピークが明瞭に現れていた。対して、図9から理解できるように、比較例2により得られたDDR型ゼオライト粉体の回折パターンでは、非晶質の回折パターンに特有なハローパターンがみられた。これらの回折パターンを裏付けるように、Yの値は、実施例1が735.5、実施例2が282.1、実施例3が213.6、比較例2が1.2であった。
 実施例1~3では、得られたDDR型ゼオライト粉体は、DDR型ゼオライト種結晶から結晶成長した粒子からなるため、DDR型ゼオライト結晶を含有する率が高く、非晶質を含有する率が低い。比較例2では、大きい粒子径のDDR型ゼオライト粒子を粉砕して粉体が得られたため、粉砕時に粒子に外力が加わり、非晶質の部分が多く生成されたと考えられる。
4-4.DDR型ゼオライト粉体の収率の測定:
 DDR型ゼオライト粉体の収率は、原料溶液に含まれるシリカ(SiO)の質量とDDR型ゼオライト種結晶の質量との合計に対する、得られたDDR型ゼオライ粉体の質量の割合(百分率(%):DDR型ゼオライト粉体の質量/(原料溶液でのシリカの質量+ゼオライト種結晶の質量)×100)として算出した。DDR型ゼオライト粉体の収率は、実施例1では62%、実施例2では60%、実施例3では55%、比較例1では90%であった。
4-5.総合評価:
 以上の結果から、本発明の製造方法の実施形態である実施例1~3では、平均粒子径0.1μm以上2.5μm未満であり、全粒子の80%以上の粒子径が平均粒子径に対して-45~+90%の範囲内にある粒度分布を有するDDR型ゼオライト粉体が製造された。さらに、これら実施例1~3から得られた粉体は、上記式(I)~(III)から算出されるYの値が100以上であった。すなわち、本発明の製造方法によって、先に述べた本発明のDDR型ゼオライト粉体を製造できることが判明した。
 まとめると、本実施例は、本発明の製造方法が、次の3つの点において、従来の方法よりも優れていることを示す。第1に、本発明の製造方法では、従来の方法に必要であった、大きい粒子径のDDR型ゼオライト粉体から、さらに粉砕・分級するという工程が省略できるため、時間的コスト及び設備的コストの点に優れている。第2に、図2と図5との比較から明らかなように、本発明の製造方法では、平均粒子径0.1μm以上2.5μm未満の粉体が、粒子径のバラツキが少なく製造できる点が優れている。第3に、本発明の製造方法では、DDR型ゼオライト結晶を含有する率が高く、非結晶を含有する率が低い粉体を製造できる点に優れている。以上より、本実施例は、本発明の製造方法によって、触媒、触媒担体、吸着剤、及び低分子ガスの分離などへの適用において、非常に優れた性能が発揮されるDDR型ゼオライト粉体を安定的に製造できることを示す。
 本発明は、本発明は、触媒、触媒担体、吸着剤、ガス分離膜、浸透気化膜などに利用されるDDR型ゼオライト粉体、及び、その製造方法として利用できる。

Claims (5)

  1.  平均粒子径が0.1μm以上2.5μm未満であり、全粒子の80%以上の粒子径が前記平均粒子径に対して-45%~+90%の範囲内に含まれる粒度分布を有するDDR型ゼオライト粉体。
  2.  前記平均粒子径が、0.2μm以上1.0μm未満である請求項1に記載のDDR型ゼオライト粉体。
  3.  X線回折分析により得られる回折強度に基づき、下記式(I)にて算出されるDDR型ゼオライト結晶に起因する回折ピークの回折強度Aと、下記式(II)にて算出されるDDR型ゼオライト粉体に含まれる非晶質に起因する回折強度Bとの比として下記式(III)にて算出されるYの値が、100以上である請求項1又は2に記載のDDR型ゼオライト粉体:
     A=Ca-{(C2-C1)/(θ2-θ1)×(θa-θ1)+C1}(I):
     B=Cb-{(C2-C1)/(θ2-θ1)×(θb-θ1)+C1}(II):
     Y=A/B (III)。
     (但し、C1は、DDR型ゼオライト結晶の(012)面に由来する回折ピークと同(104)面に由来する回折ピークとの間の回折強度の最小値、θ1は、C1を示す回折角(2θ)、C2は、DDR型ゼオライト結晶の(606)面に由来する回折ピークと同(1 2 20)面に由来する回折ピークとの間の回折強度の最小値、θ2は、C2を示す回折角(2θ)、Caは、DDR型ゼオライト結晶の(024)面に由来する回折ピークの回折強度、θaは、Caを示す回折角(2θ),Cbは、DDR型ゼオライト結晶の(122)面に由来する回折ピークと同(027)面に由来する回折ピークとの間の回折強度の最小値、θbは、Cbを示す回折角(2θ))
  4.  1-アダマンタンアミンを溶解させたエチレンジアミン、シリカ(SiO)、及び水が、モル比において1-アダマンタンアミン/SiOが0.002~0.5かつ水/SiOが10~500にて混合されており、さらに平均粒子径10~300nmのDDR型ゼオライト種結晶が0.001~1.0質量%にて分散されている原料溶液を、100~180℃にて加熱処理することにより、前記DDR型ゼオライト種結晶を核として平均粒子径が0.1μm以上2.5μm未満となるまで結晶成長させる工程を有するDDR型ゼオライト粉体の製造方法。
  5.  前記原料溶液に含まれる前記シリカの質量と前記DDR型ゼオライト種結晶の質量との合計に対する得られたDDR型ゼオライト粉体の質量の百分率比が、50%以上である請求項4に記載のDDR型ゼオライト粉体の製造方法。
PCT/JP2010/050113 2009-02-05 2010-01-07 Ddr型ゼオライト紛体、及びddr型ゼオライト粉体の製造方法 WO2010090049A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080006691.6A CN102307811B (zh) 2009-02-05 2010-01-07 Ddr型沸石粉体及ddr型沸石粉体的制造方法
JP2010549415A JP5632750B2 (ja) 2009-02-05 2010-01-07 Ddr型ゼオライト粉体、及びddr型ゼオライト粉体の製造方法
EP10738388.7A EP2394958B1 (en) 2009-02-05 2010-01-07 Ddr-type zeolite powder, and process for the production of ddr-type zeolite powder
US13/196,301 US9493362B2 (en) 2009-02-05 2011-08-02 DDR-type zeolite powder, and process for the production of DDR-type zeolite powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-024600 2009-02-05
JP2009024600 2009-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/196,301 Continuation US9493362B2 (en) 2009-02-05 2011-08-02 DDR-type zeolite powder, and process for the production of DDR-type zeolite powder

Publications (1)

Publication Number Publication Date
WO2010090049A1 true WO2010090049A1 (ja) 2010-08-12

Family

ID=42541956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050113 WO2010090049A1 (ja) 2009-02-05 2010-01-07 Ddr型ゼオライト紛体、及びddr型ゼオライト粉体の製造方法

Country Status (5)

Country Link
US (1) US9493362B2 (ja)
EP (1) EP2394958B1 (ja)
JP (1) JP5632750B2 (ja)
CN (1) CN102307811B (ja)
WO (1) WO2010090049A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058210A (zh) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 一种mcm-22分子筛的制备方法
WO2013147327A1 (ja) 2012-03-30 2013-10-03 日本碍子株式会社 Ddr型ゼオライト種結晶及びその製造方法並びにddr型ゼオライト膜の製造方法
WO2014157323A1 (ja) 2013-03-29 2014-10-02 日本碍子株式会社 Ddr型ゼオライト結晶の製造方法及びddr型ゼオライト膜の製造方法
CN105044242A (zh) * 2015-08-28 2015-11-11 保护伞环保科技成都有限公司 一种装修室内空气苯乙烯含量的测定方法
JP2016501178A (ja) * 2012-12-06 2016-01-18 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company 改善されたモルフォロジーを有するzsm−58結晶の合成
WO2017169425A1 (ja) * 2016-03-31 2017-10-05 日本碍子株式会社 ゼオライト粉末の製造方法
WO2017169427A1 (ja) * 2016-03-31 2017-10-05 日本碍子株式会社 ゼオライト粉末の製造方法
WO2018179959A1 (ja) * 2017-03-30 2018-10-04 日本碍子株式会社 分離膜構造体の検査方法、分離膜モジュールの製造方法、及び分離膜構造体の製造方法
DE112018001799T5 (de) 2017-03-31 2019-12-12 Ngk Insulators, Ltd. Zeolithmembran mit einer afx-struktur, membranstruktur und verfahren zur herstellung einer membranstruktur
DE112018001751T5 (de) 2017-03-31 2019-12-19 Ngk Insulators, Ltd. Zeolithmembran mit einer afx-struktur, membranstruktur und verfahren zur herstellung einer membranstruktur
DE112018001750T5 (de) 2017-03-31 2019-12-19 Ngk Insulators, Ltd. Zeolithkristall mit einer afx-struktur und syntheseverfahren dafür
JP2020164407A (ja) * 2019-03-26 2020-10-08 日本碍子株式会社 ゼオライトの種結晶、ゼオライトの種結晶の製造方法、ゼオライト膜複合体の製造方法および分離方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248880B1 (ko) * 2010-07-06 2013-03-29 한국에너지기술연구원 열균열이 방지된 제올라이트 분리막 및 그 제조 방법
CN102786065A (zh) * 2012-08-21 2012-11-21 浙江师范大学 一种制备纯相、晶体形貌和尺寸均一的全硅型dd3r沸石分子筛的方法
CN105142074B (zh) * 2015-08-19 2019-03-12 歌尔股份有限公司 扬声器模组
US10625240B2 (en) * 2016-06-23 2020-04-21 Asahi Kasei Kabushiki Kaisha MWF-type zeolite
CN106943889B (zh) * 2017-04-08 2018-02-23 郝至臻 一种片式膜的制备方法
CN109694083B (zh) * 2017-10-20 2020-12-29 中国石油化工股份有限公司 Ddr沸石分子筛的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083375A (ja) * 2002-08-29 2004-03-18 Ngk Insulators Ltd Ddr型ゼオライトの製造方法
WO2007068629A1 (de) * 2005-12-12 2007-06-21 Basf Se Formkörper enthaltend ein mikroporöses material und mindestens ein siliciumhaltiges bindemittel, verfahren zu seiner herstellung und seine verwendung als katalysator, insbesondere in einem verfahren zur kontinuierlichen synthese von methylaminen
WO2007105407A1 (ja) * 2006-03-14 2007-09-20 Ngk Insulators, Ltd. Ddr型ゼオライト膜の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698217A (en) * 1985-02-26 1987-10-06 Mobil Oil Corporation Crystalline silicate ZSM-58 and process for its preparation using a methyltropinium cation
US5785947A (en) * 1991-12-18 1998-07-28 Chevron U.S.A. Inc. Preparation of zeolites using organic template and amine
US7211239B2 (en) * 2005-04-22 2007-05-01 Basf Aktiengesellschaft Process for preparing a nanosized zeolitic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083375A (ja) * 2002-08-29 2004-03-18 Ngk Insulators Ltd Ddr型ゼオライトの製造方法
WO2007068629A1 (de) * 2005-12-12 2007-06-21 Basf Se Formkörper enthaltend ein mikroporöses material und mindestens ein siliciumhaltiges bindemittel, verfahren zu seiner herstellung und seine verwendung als katalysator, insbesondere in einem verfahren zur kontinuierlichen synthese von methylaminen
WO2007105407A1 (ja) * 2006-03-14 2007-09-20 Ngk Insulators, Ltd. Ddr型ゼオライト膜の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GASCON, J. ET AL.: "Accelerated synthesis of all- silica DD3R and its performance in the separation of propylene/propane mixtures", MICROPOROUS MESOPOROUS MATER, vol. 115, no. 3, 1 November 2008 (2008-11-01), pages 585 - 593, XP024523908 *
See also references of EP2394958A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058210B (zh) * 2011-10-21 2015-04-01 中国石油化工股份有限公司 一种mcm-22分子筛的制备方法
CN103058210A (zh) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 一种mcm-22分子筛的制备方法
US9901882B2 (en) 2012-03-30 2018-02-27 Ngk Insulators, Ltd. DDR zeolite seed crystal, method for producing same, and method for producing DDR zeolite membrane
WO2013147327A1 (ja) 2012-03-30 2013-10-03 日本碍子株式会社 Ddr型ゼオライト種結晶及びその製造方法並びにddr型ゼオライト膜の製造方法
CN104245586B (zh) * 2012-03-30 2016-08-24 日本碍子株式会社 Ddr型沸石晶种及其制造方法以及ddr型沸石膜的制造方法
CN104245586A (zh) * 2012-03-30 2014-12-24 日本碍子株式会社 Ddr型沸石晶种及其制造方法以及ddr型沸石膜的制造方法
JPWO2013147327A1 (ja) * 2012-03-30 2015-12-14 日本碍子株式会社 Ddr型ゼオライト種結晶及びその製造方法並びにddr型ゼオライト膜の製造方法
JP2016501178A (ja) * 2012-12-06 2016-01-18 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company 改善されたモルフォロジーを有するzsm−58結晶の合成
US10093547B2 (en) 2013-03-29 2018-10-09 Ngk Insulators, Ltd. Method for producing DDR type zeolite crystals and method for producing DDR type zeolite membrane
JPWO2014157323A1 (ja) * 2013-03-29 2017-02-16 日本碍子株式会社 Ddr型ゼオライト結晶の製造方法及びddr型ゼオライト膜の製造方法
WO2014157323A1 (ja) 2013-03-29 2014-10-02 日本碍子株式会社 Ddr型ゼオライト結晶の製造方法及びddr型ゼオライト膜の製造方法
CN105044242A (zh) * 2015-08-28 2015-11-11 保护伞环保科技成都有限公司 一种装修室内空气苯乙烯含量的测定方法
JPWO2017169427A1 (ja) * 2016-03-31 2019-02-14 日本碍子株式会社 ゼオライト粉末の製造方法
US10550005B2 (en) 2016-03-31 2020-02-04 Ngk Insulators, Ltd. Production method for zeolite powder
WO2017169427A1 (ja) * 2016-03-31 2017-10-05 日本碍子株式会社 ゼオライト粉末の製造方法
WO2017169425A1 (ja) * 2016-03-31 2017-10-05 日本碍子株式会社 ゼオライト粉末の製造方法
JPWO2017169425A1 (ja) * 2016-03-31 2019-01-17 日本碍子株式会社 ゼオライト粉末の製造方法
US10550004B2 (en) 2016-03-31 2020-02-04 Ngk Insulators, Ltd. Production method for zeolite powder
JPWO2018179959A1 (ja) * 2017-03-30 2020-02-06 日本碍子株式会社 分離膜構造体の検査方法、分離膜モジュールの製造方法、及び分離膜構造体の製造方法
WO2018179959A1 (ja) * 2017-03-30 2018-10-04 日本碍子株式会社 分離膜構造体の検査方法、分離膜モジュールの製造方法、及び分離膜構造体の製造方法
JP7096234B2 (ja) 2017-03-30 2022-07-05 日本碍子株式会社 分離膜構造体の検査方法、分離膜モジュールの製造方法、及び分離膜構造体の製造方法
US11402314B2 (en) 2017-03-30 2022-08-02 Ngk Insulators, Ltd. Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
DE112018001750T5 (de) 2017-03-31 2019-12-19 Ngk Insulators, Ltd. Zeolithkristall mit einer afx-struktur und syntheseverfahren dafür
DE112018001751T5 (de) 2017-03-31 2019-12-19 Ngk Insulators, Ltd. Zeolithmembran mit einer afx-struktur, membranstruktur und verfahren zur herstellung einer membranstruktur
DE112018001799T5 (de) 2017-03-31 2019-12-12 Ngk Insulators, Ltd. Zeolithmembran mit einer afx-struktur, membranstruktur und verfahren zur herstellung einer membranstruktur
JP2020164407A (ja) * 2019-03-26 2020-10-08 日本碍子株式会社 ゼオライトの種結晶、ゼオライトの種結晶の製造方法、ゼオライト膜複合体の製造方法および分離方法
JP7326191B2 (ja) 2019-03-26 2023-08-15 日本碍子株式会社 ゼオライトの種結晶、ゼオライトの種結晶の製造方法、ゼオライト膜複合体の製造方法および分離方法

Also Published As

Publication number Publication date
JPWO2010090049A1 (ja) 2012-08-09
US9493362B2 (en) 2016-11-15
CN102307811A (zh) 2012-01-04
CN102307811B (zh) 2014-07-09
EP2394958A1 (en) 2011-12-14
JP5632750B2 (ja) 2014-11-26
EP2394958A4 (en) 2015-07-08
EP2394958B1 (en) 2017-04-19
US20110287261A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5632750B2 (ja) Ddr型ゼオライト粉体、及びddr型ゼオライト粉体の製造方法
EP2837596B1 (en) Beta zeolite and method for producing same
TWI777925B (zh) 分子篩ssz-91、製備分子篩ssz-91之方法及ssz-91之用途
CN108439428B (zh) 一种磷改性的多级孔zsm-5分子筛及其制备方法
WO2016086362A1 (zh) 一种多级孔zsm-5分子筛的合成方法
KR20110042740A (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
JP5616125B2 (ja) 微細ゼオライトの製法
CN110787767B (zh) 一种疏水性吸附剂及其制备方法
KR101950552B1 (ko) 개선된 모폴로지를 갖는 zsm-5 결정의 합성
WO2016129555A1 (ja) ベータ型ゼオライトの製造方法
Li et al. Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals
CN109665539B (zh) 具有规整介孔-微孔的改性y分子筛及其制备方法
CN106430234B (zh) 一种纳米多级孔zsm-11分子筛的合成方法
CN107840913B (zh) 球形小粒径介孔复合材料和负载型催化剂及其制备方法
CN108017740B (zh) 球形多孔介孔复合材料和负载型催化剂及其制备方法
KR102416759B1 (ko) Cha 제올라이트 제조방법 및 이로부터 제조된 거대입자의 cha 제올라이트
JP7397076B2 (ja) ゼオライトrhoの高ケイ質形態
CN113559920A (zh) 一种zsm-5分子筛/二氧化钛复合材料及其制备方法
CN105435850B (zh) 伊利石介孔复合材料和负载型催化剂及其制备方法和应用以及环己酮甘油缩酮的制备方法
CN109052427B (zh) 一种体相介孔分布均匀的高介孔度h-zsm-5分子筛及制法和应用
JP6727884B2 (ja) アーモンド状の形状を有するzsm−5型ゼオライトおよびその製造方法
CN108623720B (zh) 球形介孔复合材料和负载型催化剂及其制备方法
CN115448324B (zh) 一种mfi结构分子筛多级孔材料及其制备方法
CN109665538B (zh) 具有规整介孔-微孔的NaY分子筛及其制备方法
JP2017222558A (ja) ベータ型ゼオライトの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006691.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549415

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010738388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010738388

Country of ref document: EP