WO2010073398A1 - 熱電変換素子の製造方法及び熱電変換素子 - Google Patents

熱電変換素子の製造方法及び熱電変換素子 Download PDF

Info

Publication number
WO2010073398A1
WO2010073398A1 PCT/JP2008/073826 JP2008073826W WO2010073398A1 WO 2010073398 A1 WO2010073398 A1 WO 2010073398A1 JP 2008073826 W JP2008073826 W JP 2008073826W WO 2010073398 A1 WO2010073398 A1 WO 2010073398A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
sheet
conversion element
thermoelectric conversion
manufacturing
Prior art date
Application number
PCT/JP2008/073826
Other languages
English (en)
French (fr)
Inventor
栗原 和明
肥田 勝春
山中 一典
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2010543730A priority Critical patent/JP5360072B2/ja
Priority to PCT/JP2008/073826 priority patent/WO2010073398A1/ja
Publication of WO2010073398A1 publication Critical patent/WO2010073398A1/ja
Priority to US13/150,399 priority patent/US8501518B2/en
Priority to US13/933,676 priority patent/US8940571B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion element such as a thermoelectric generation element and a Peltier element, and a structure of the thermoelectric conversion element.
  • Thermoelectric conversion elements include a thermoelectric generator that generates electricity by heat and a Peltier element that transfers heat by electricity.
  • the basic structures of these thermoelectric generators and Peltier elements are the same.
  • FIG. 1 shows an example of a thermoelectric conversion element.
  • the thermoelectric conversion element 100 has a structure in which a plurality of p-type semiconductor blocks 101 and a plurality of n-type semiconductor blocks 102 are sandwiched between two heat transfer plates 104a and 104b.
  • the p-type semiconductor block 101 and the n-type semiconductor block 102 are alternately arranged and connected in series by a conductor 103 provided between the semiconductor blocks 101 and 102 and the heat transfer plates 104a and 104b.
  • Electrodes 106a and 106b are provided at both ends of the assembly of the p-type semiconductor block 101 and the n-type semiconductor block 102 connected in series.
  • thermoelectric conversion elements mounted on these electronic devices In recent years, miniaturization and high performance of various electronic devices have been demanded, and further miniaturization and high integration have been demanded for thermoelectric conversion elements mounted on these electronic devices.
  • an object of the present invention is to provide a method for manufacturing a thermoelectric conversion element and a thermoelectric conversion element that can be further miniaturized and highly integrated.
  • a step of preparing a plurality of p-type semiconductor sheets including a p-type semiconductor material powder and a plurality of n-type semiconductor sheets including an n-type semiconductor material powder, and through holes provided with a predetermined pitch are provided.
  • a method for manufacturing a thermoelectric conversion element which includes a firing step of obtaining a semiconductor block assembly having a connected structure and a step of attaching a pair of heat transfer plates to the semiconductor block assembly.
  • the p-type semiconductor sheet and the n-type semiconductor sheet are alternately laminated with the separation sheet interposed therebetween, and cut into a predetermined size to obtain a laminate unit.
  • the p-type semiconductor sheet becomes a p-type semiconductor block
  • the n-type semiconductor sheet becomes an n-type semiconductor block
  • the conductive material filled in the through-holes of the separation sheet becomes an electrode, and the thermoelectric conversion element Is formed. Therefore, it is not necessary to handle fine semiconductor blocks individually, and miniaturization and high integration of thermoelectric conversion elements can be easily achieved.
  • FIG. 1 is a schematic diagram illustrating an example of a thermoelectric conversion element.
  • Drawing 2 is a mimetic diagram (the 1) showing the manufacturing method of the thermoelectric conversion element concerning a 1st embodiment.
  • Drawing 3 is a mimetic diagram (the 2) showing the manufacturing method of the thermoelectric conversion element concerning a 1st embodiment.
  • Drawing 4 is a mimetic diagram (the 3) showing a manufacturing method of a thermoelectric conversion element concerning a 1st embodiment.
  • Drawing 5 is a mimetic diagram (the 4) showing the manufacturing method of the thermoelectric conversion element concerning a 1st embodiment.
  • FIG. 6 is a schematic diagram (part 5) illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 5 is a schematic diagram (part 5) illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 7 is a schematic diagram (part 6) illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • FIG. 8A is a plan view of a semiconductor block of a thermoelectric conversion element of a comparative example
  • FIG. 8B is a sectional view of the same.
  • FIG. 9 is sectional drawing (the 1) which shows the manufacturing method of the thermoelectric conversion element which concerns on 2nd Embodiment.
  • FIG. 10 is sectional drawing (the 2) which shows the manufacturing method of the thermoelectric conversion element which concerns on 2nd Embodiment.
  • FIG. 11 is sectional drawing (the 1) which shows the manufacturing method of the thermoelectric conversion element which concerns on 3rd Embodiment.
  • FIG. 9 is sectional drawing (the 1) which shows the manufacturing method of the thermoelectric conversion element which concerns on 2nd Embodiment.
  • FIG. 10 is sectional drawing (the 2) which shows the manufacturing method of the thermoelectric conversion element which concerns on 2nd Embodiment.
  • FIG. 11 is sectional drawing (the 1) which shows
  • FIG. 12 is sectional drawing (the 2) which shows the manufacturing method of the thermoelectric conversion element which concerns on 3rd Embodiment.
  • FIG. 13 is sectional drawing (the 1) which shows the manufacturing method of the thermoelectric conversion element which concerns on 4th Embodiment.
  • FIG. 14 is sectional drawing (the 2) which shows the manufacturing method of the thermoelectric conversion element which concerns on 4th Embodiment.
  • thermoelectric conversion element 2 to 7 are schematic views showing the method for manufacturing the thermoelectric conversion element according to the first embodiment.
  • a p-type semiconductor green sheet 11 As shown in a perspective view in FIG. 2A and a cross-sectional view in FIG. 2B, a p-type semiconductor green sheet 11, an n-type semiconductor green sheet 13, and resin sheets (separation sheets) 12 and 14 are provided. Form.
  • the semiconductor green sheets 11 and 13 are formed by kneading, for example, p-type semiconductor material powder or n-type semiconductor material powder, a binder resin, a plasticizer, and a surfactant. In the present embodiment, it is assumed that the semiconductor green sheets 11 and 13 are both squares with a side of 15 cm and a thickness of 40 ⁇ m.
  • a powder of (BiO 0.25 Sb 0.75 ) (TeO 0.93 Se 0.07 ) can be used.
  • a powder of (Bi 2 Te 3 ) 0.975 (Bi 2 Se 3 ) 0.025 can be used.
  • the resin sheets 12 and 14 are formed, for example, by kneading a resin such as PMMA (polymethyl methacrylate) and a plasticizer. Similar to the semiconductor green sheets 11 and 13, these resin sheets 12 and 14 are squares with a side of 15 cm and a thickness of 30 ⁇ m.
  • Through holes 12a and 14a are formed in the resin sheets 12 and 14, and the through holes 12a and 14a are filled with a conductive paste 18 as shown in FIG.
  • Each of the through holes 12a and 14a has a width of, for example, 0.1 mm, a length of, for example, 12 mm, and an arrangement pitch in the width direction of, for example, 6.9 mm.
  • the through holes 12a of the resin sheet 12 are formed so as to be shifted by 1 ⁇ 2 pitch with respect to the through holes 14a of the resin sheet 14.
  • the p-type semiconductor green sheet 11, the resin sheet 12, the n-type semiconductor green sheet 13, and the resin sheet 14 are used. Are repeatedly laminated in this order from the top to obtain a laminate 16.
  • the laminated body 16 is hot-pressed at a temperature of 110 ° C. for 30 minutes, for example, and the laminated p-type semiconductor green sheet 11, resin sheet 12, n-type semiconductor green sheet 13 and resin sheet 14 are integrated.
  • the laminated body 16 is placed on the through holes 12a and 14a (for example, one point in FIG. 4 (b)) by a dicing saw.
  • the strip-shaped laminate 16 is obtained by cutting at a position indicated by a chain line.
  • the strip-shaped laminate 16 is cut to obtain a laminate unit having a desired size (for example, 1 cm ⁇ 1 cm).
  • FIG. 5 (a) is a perspective view of the laminate unit 20, and FIG. 5 (b) is a cross-sectional view thereof.
  • the height direction of FIGS. 4A and 4B is the horizontal direction.
  • resin sheets 12 and 14 are interposed between the p-type semiconductor green sheet 11 and the n-type semiconductor green sheet 13 of the multilayer unit 20.
  • a conductive paste 18 filled in the through holes 12a and 14a of the resin sheets 12 and 14 is interposed. ing.
  • this laminated body unit 20 is put into a vacuum degreasing and firing furnace, and is sufficiently degreased by raising the temperature under a reduced pressure of, for example, 0.1 atm or less. Thereafter, for example, firing is performed at a temperature of 500 ° C. under a reduced pressure of 1 Torr (about 1.33 ⁇ 10 2 Pa) or less for 1 hour.
  • the p-type semiconductor green sheet 11 is fired to form the p-type semiconductor block 21, and the n-type semiconductor green sheet 13. Is fired to form an n-type semiconductor block 23.
  • the high molecular compound which comprises the resin sheets 12 and 14 is thermally decomposed and lose
  • the conductive paste 18 filled in the through holes 12 a and 14 a of the resin sheets 12 and 14 is baked to form the electrodes 22. That is, the stacked unit 20 becomes a semiconductor block aggregate 20 a having a structure in which the p-type semiconductor blocks 21 and the n-type semiconductor blocks 23 are electrically connected alternately by the electrodes 22.
  • the heat transfer plates 25a and 25b are joined to the top and bottom of the semiconductor block assembly 20a.
  • These heat transfer plates 25a and 25b are preferably formed of a material having high thermal conductivity. However, it is necessary that at least the surface in contact with the semiconductor block aggregate 20a has an insulating property.
  • An insulating sheet may be disposed between the semiconductor block assembly 20a and the heat transfer plates 25a and 25b.
  • thermoelectric conversion element 30 is completed.
  • thermoelectric conversion element 30 the longitudinal direction of the semiconductor blocks 21 and 23 coincides with the longitudinal direction of the electrodes 22 as shown in FIG.
  • the longitudinal directions of the electrodes 22 are orthogonal.
  • thermoelectric conversion element According to the method for manufacturing a thermoelectric conversion element according to the present embodiment described above, the size of the p-type semiconductor block 21 and the n-type semiconductor block 23 can be reduced, and the semiconductor blocks 21 and 23 can be arranged at an extremely narrow pitch. Can do. Therefore, a small and high performance thermoelectric conversion element can be obtained.
  • a multilayer unit 20 having a structure in which a large number of p-type semiconductor green sheets 11, n-type semiconductor green sheets 13, and resin sheets 12 and 14 are laminated is formed. And this laminated body unit 20 is baked and the semiconductor block aggregate
  • the semiconductor blocks 21 and 22 and the electrode 22 are simultaneously formed by firing, the reliability of the connection between the semiconductor blocks 21 and 23 and the electrode 22 is high.
  • the semiconductor green sheets 11 and 13 and the resin sheets 12 and 14 can be formed by, for example, a known doctor blade method. In the doctor blade method, it is also possible to manufacture a sheet having a thickness of about 1 ⁇ m. By making the thickness of the semiconductor green sheets 11 and 13 and the resin sheets 12 and 14 thinner than those in the above example, the thermoelectric conversion element can be manufactured. Further miniaturization and high integration can be achieved. On the other hand, when the thickness of the semiconductor green sheets 11 and 13 and the resin sheets 12 and 14 exceeds 1 mm, the degree of integration of the p-type semiconductor block 21 and the n-type semiconductor block 23 decreases. For this reason, it is preferable that the thickness of the semiconductor green sheets 11 and 13 and the resin sheets 12 and 14 is 1 ⁇ m or more and 1 mm or less.
  • the semiconductor material powder examples include a powder of a heavy metal semiconductor material such as BiTe or PbTe, a powder of a silicide semiconductor material such as FeSi or MgSi, and a powder of an oxide semiconductor material such as CaCiO or CaMnO.
  • the temperature required for firing is determined depending on which semiconductor material powder is used.
  • the p-type semiconductor green sheet 11 and the n-type semiconductor green sheet 13 are fired simultaneously as described above. Therefore, it is preferable to select the semiconductor material powder so that the firing temperature of the p-type semiconductor green sheet 11 and the firing temperature of the n-type semiconductor green sheet 13 are close.
  • thermoelectric conversion element used at a relatively low temperature (for example, 100 ° C. to 200 ° C.)
  • a BiTe-based semiconductor material As the material of the semiconductor green sheets 11 and 13.
  • BiTe-based semiconductor materials have a low melting point and are easily oxidized. Therefore, when a BiTe-based semiconductor material is selected, firing is performed at a relatively low temperature (for example, about 500 ° C.) in a non-oxidizing atmosphere or vacuum.
  • the resin used for the semiconductor green sheets 11 and 13 and the resin sheets 12 and 14 includes a depolymerization resin that decomposes and scatters at a relatively low temperature.
  • a depolymerization resin that decomposes and scatters at a relatively low temperature.
  • acrylic resins such as PMMA and polystyrene resins.
  • the binder removal treatment is performed for a sufficient time at a temperature between 300 ° C. and 400 ° C. at which the resin decomposes and scatters. Vacuum firing at a temperature of about °C.
  • the conductive paste to be the electrode 22 is preferably baked at the above temperature, and for example, a conductive paste containing Bi as a main component is used.
  • thermoelectric conversion element used at a temperature of about 500 ° C.
  • a silicide-based semiconductor material used as the material of the semiconductor green sheets 11 and 13.
  • the firing temperature is set higher than when a BiTe based semiconductor material is selected.
  • the conductive paste to be the electrode 22 is preferably one having a metal such as Ni, Cu or Ag as a main component.
  • the semiconductor green sheets 11 and 13 are fired in a vacuum.
  • thermoelectric conversion element used at a higher temperature
  • an oxide-based semiconductor material As the material of the semiconductor green sheets 11 and 13, baking can be performed in the air, and a vacuum apparatus and a vacuum chamber are not necessary.
  • the resin used for the semiconductor green sheets 11 and 13 and the resin sheets 12 and 14 a general binder resin such as PVA (polyvinyl alcohol) or PVB (polyvinyl butyral) can be used.
  • the conductive paste to be the electrode 22 it is preferable to use a conductive paste mainly composed of a noble metal such as Ag or Ag—Pd.
  • thermoelectric conversion element thermoelectric generation element
  • Example 1 First, (BiO 0.25 Sb 0.75 ) (Te 0.93 Se 0.07 ) was prepared as a p-type semiconductor material powder, and (Bi 2 Te 3 ) 0.975 (Bi 2 Se 3 ) 0.025 was prepared as an n-type semiconductor material powder. Then, a p-type semiconductor material powder, a binder resin (PMMA), a plasticizer (dibutyl phthalate), and a surfactant (polycarburonic acid-based surfactant) are kneaded, and a thickness of 40 ⁇ m is obtained by a doctor blade method. A type semiconductor green sheet 11 was formed.
  • PMMA binder resin
  • a plasticizer dibutyl phthalate
  • surfactant polycarburonic acid-based surfactant
  • an n-type semiconductor material powder, a binder resin (PMMA), a plasticizer (dibutyl phthalate), and a surfactant (polycarboric acid type surfactant) are kneaded, and the thickness is increased by a doctor blade method.
  • a 40 ⁇ m n-type semiconductor green sheet 13 was formed.
  • punching was performed by a punching press, and the size of the semiconductor green sheets 11 and 13 was made a square having a side length of 15 cm.
  • a PMMA resin and a plasticizer (dibutyl phthalate) were kneaded, and a resin sheet having a thickness of 30 ⁇ m was formed by a doctor blade method. Thereafter, punching was performed by a punching press to form square resin sheets 12 and 14 each having a side length of 15 cm.
  • the resin sheets 12 and 14 were formed with through holes 12a and 14a during punching (see FIGS. 3A and 3B).
  • the widths of the through holes 12a and 14a are 0.1 mm, the length is 12 mm, and the arrangement pitch in the width direction is 6.9 mm. Further, the through holes 12 a of the resin sheet 12 are shifted from the through holes 14 a of the resin sheet 14 by 1 ⁇ 2 pitch.
  • a conductive paste mainly composed of Sn—Bi was filled into the through holes 12a and 14a of the resin sheets 12 and 14 by screen printing.
  • the laminated body 16 was hot pressed at a temperature of 110 ° C. for 30 minutes to integrate the laminated p-type semiconductor green sheet 11, resin sheet 12, n-type semiconductor green sheet 13, and resin sheet 14. Then, the laminated body 16 was cut
  • this laminated body unit 20 was put in a vacuum degreasing firing furnace, and the temperature was slowly raised to 400 ° C. while paying attention to pressure fluctuation under a reduced pressure of 0.1 atm or less, and degreasing treatment was performed over 48 hours. Thereafter, the pressure in the vacuum degreasing and firing furnace is set to 1 Torr (about 1.33 ⁇ 10 2 Pa) or less, and firing is performed at a temperature of 500 ° C. for 1 hour, so that the p-type semiconductor block 21 and the n-type semiconductor block 23 are electrodes As a result, a semiconductor block assembly 20a having a structure of being electrically connected alternately via 22 was obtained (see FIGS. 6A and 6B).
  • the alumina heat transfer plates 25a and 25b were joined to the upper and lower sides of the semiconductor block aggregate 20a with an adhesive (high thermal conductive adhesive). Further, lead electrodes 26a and 26b connected to the p-type semiconductor block 21 and the n-type semiconductor block 23 at both ends of the semiconductor block aggregate 20a were formed by silver paste (see FIGS. 7A and 7B).
  • thermoelectric conversion element 30 of Example 1 manufactured in this way has a size of 1 cm ⁇ 1 cm, a thickness of 3 mm, and 112 pn pairs.
  • a temperature difference of 50 ° C. was applied to the heat transfer plates 25a and 25b of the thermoelectric conversion element 30 of Example 1, an electromotive force of 1.9V was generated.
  • thermoelectric conversion element As a comparative example, a thermoelectric conversion element was manufactured by a known assembly method. That is, a Bi-Te p-type semiconductor plate and an n-type semiconductor plate having a thickness of 1.5 mm were prepared. Then, Ni was plated on both surfaces of these semiconductor plates to form a metallized layer, and a solder plating layer mainly composed of Sn—Bi was formed thereon. Thereafter, the p-type semiconductor plate and the n-type semiconductor plate after plating were cut into a size of 1 mm ⁇ 1 mm with a dicing saw to obtain a large number of p-type semiconductor blocks and n-type semiconductor blocks.
  • thermoelectric conversion element 40 of the comparative example was completed.
  • thermoelectric conversion element 40 of the comparative example is 1 cm ⁇ 1 cm, the thickness is 3 mm, and the number of pn pairs is 18.
  • a temperature difference of 50 ° C. was applied to the heat transfer plates 45a and 45b of the thermoelectric conversion element 40 of this comparative example, an electromotive force of 0.3V was generated.
  • thermoelectric conversion element 9 and 10 are cross-sectional views illustrating the method of manufacturing the thermoelectric conversion element according to the second embodiment in the order of steps.
  • a p-type semiconductor green sheet 51, an n-type semiconductor green sheet 53, and resin sheets (separation sheets) 52 and 54 are formed.
  • the through holes 12a and 14a are formed in the resin sheets 12 and 14, and the through holes are not formed in the semiconductor green sheets 11 and 13 (see FIG. 3).
  • the through holes 51a and 53a are also formed in the semiconductor green sheets 51 and 53.
  • the through holes 51 a and 53 a are formed at positions corresponding to both the through hole 52 a of the resin sheet 52 and the through hole 54 a of the resin sheet 54.
  • the through holes 51a, 52a, 53a, 54a of the semiconductor green sheets 51, 53 and the resin sheets 52, 54 are filled with the conductive paste 58 as in the first embodiment.
  • a p-type semiconductor green sheet 51, a resin sheet 52, an n-type semiconductor green sheet 53, and a resin sheet 54 are repeatedly laminated in this order from above, 56. Thereafter, the stacked p-type semiconductor green sheet 51, resin sheet 52, n-type semiconductor green sheet 53, and resin sheet 54 are integrated by hot pressing.
  • FIG. 10A is a cross-sectional view of the laminated unit 60 cut out from the laminated body 56.
  • the height direction of FIG. 9C is the horizontal direction.
  • the laminate unit 60 is fired.
  • the p-type semiconductor green sheet 51 becomes the p-type semiconductor block 61 and the n-type semiconductor green sheet 53 becomes the n-type semiconductor block 63 as shown in FIG.
  • the conductive paste 58 filled in the through holes 51 a, 52 a, 53 a, 54 a is fired and integrated to form the electrode 62.
  • the polymer compound constituting the resin sheets 52 and 54 is thermally decomposed and disappears. That is, the stacked unit 60 is a semiconductor block aggregate 60a having a structure in which the semiconductor blocks 61 and 63 are alternately connected in series by the electrodes 62 arranged on the upper or lower portion thereof.
  • thermoelectric conversion element 70 is completed.
  • thermoelectric conversion element 70 of this embodiment has the advantage that the reliability of joining of the semiconductor block aggregate 60a and the heat transfer plates 65a and 65b is higher than that of the thermoelectric conversion element of the first embodiment.
  • FIG. 11 and FIG. 12 are cross-sectional views showing the method of manufacturing a thermoelectric conversion element according to the third embodiment in the order of steps. 11 and 12, the same components as those in FIGS. 9 and 10 are denoted by the same reference numerals.
  • a p-type semiconductor green sheet 51, an n-type semiconductor green sheet 53, and resin sheets 52 and 54 are formed.
  • a through hole 52b is formed in the resin sheet 52 in addition to the through hole 52a.
  • a through hole 54b is formed in addition to the through hole 54a.
  • the through hole 52 b is formed at a position corresponding to the through hole 54 a of the resin sheet 54, and the through hole 54 b is formed at a position corresponding to the through hole 52 a of the resin sheet 52.
  • the through holes 51a and 53a of the semiconductor green sheets 51 and 53 and the through holes 52a and 54a of the resin sheet 52.54 are filled with the conductive paste 58 as in the second embodiment.
  • the through holes 52b and 54b of the resin sheets 52 and 54 are filled with an insulating paste 71 (for example, borosilicate glass-based paste or the like) that becomes glass after firing, for example.
  • a p-type semiconductor green sheet 51, a resin sheet 52, an n-type semiconductor green sheet 53, and a resin sheet 54 are repeatedly laminated in this order from above, 76. Thereafter, the stacked p-type semiconductor green sheet 51, resin sheet 52, n-type semiconductor green sheet 53, and resin sheet 54 are integrated by hot pressing.
  • FIG. 11C the laminated body 76 is cut by, for example, a dicing saw to obtain a laminated body unit.
  • the laminated body 76 is cut at the positions of the through holes 51a, 52a, 52b, 53a, 54a, 54b.
  • FIG. 12A is a cross-sectional view of the laminate unit 77 cut out from the laminate 76.
  • the height direction of FIG. 11C is the horizontal direction.
  • the laminate unit 77 is fired.
  • the p-type semiconductor green sheet 51 becomes the p-type semiconductor block 61 and the n-type semiconductor green sheet 53 becomes the n-type semiconductor block 63 as shown in FIG.
  • the conductive paste 58 filled in the through holes 51 a, 52 a, 53 a, 54 a is fired and integrated to form the electrode 62.
  • the insulating paste 71 filled in the through holes 52b and 54b is baked to form the insulator spacer 72.
  • the polymer compound constituting the resin sheets 52 and 54 is thermally decomposed and disappears.
  • the stacked unit 76a becomes a semiconductor block aggregate 77a having a structure in which the p-type semiconductor block 61 and the n-type semiconductor block 63 are alternately connected in series by the electrodes 62 arranged on the upper or lower portion thereof.
  • an insulator spacer 72 is interposed between the electrodes 62 adjacent in the lateral direction.
  • thermoelectric conversion element 79 is completed.
  • thermoelectric conversion element 79 manufactured according to the present embodiment can obtain the same effects as the thermoelectric conversion element manufactured according to the second embodiment.
  • thermoelectric conversion element 79 according to this embodiment has a structure in which the insulator spacer 72 is disposed between the adjacent electrodes 62, the mechanical strength is improved and a short circuit between the adjacent electrodes 62 can be prevented. There is an advantage.
  • thermoelectric conversion element thermoelectric generation element
  • Example 2 Ca 3 Co 4 O 9 was prepared as a p-type semiconductor material powder, and Ca 0.9 La 0.1 MnO 3 was prepared as an n-type semiconductor material powder. Then, a p-type semiconductor material powder, a binder resin (PVA binder resin), a plasticizer (dibutyl phthalate), and a surfactant (polycarboric acid surfactant) are kneaded, and the thickness is increased by a doctor blade method. A 20 ⁇ m p-type semiconductor green sheet 51 was formed.
  • PVA binder resin a binder resin
  • plasticizer dibutyl phthalate
  • surfactant polycarboric acid surfactant
  • an n-type semiconductor material powder, a binder resin (PVA binder resin), a plasticizer (dibutyl phthalate), and a surfactant (polycarburic acid surfactant) are kneaded, and a doctor blade method is used.
  • An n-type semiconductor green sheet 53 having a thickness of 20 ⁇ m was formed.
  • the through holes 51a and 53a were formed in the semiconductor green sheets 51 and 53 as shown in FIG.
  • the through holes 51a and 53a have a width of 0.06 mm, a length of 12 mm, and an arrangement pitch in the width direction of 3.45 mm.
  • the through-holes 51a and 53a were filled with a conductive paste 58 containing Ag—Pd as a main component by screen printing.
  • a PVA resin and a plasticizer (dibutyl phthalate) were kneaded, and resin sheets 52 and 54 having a thickness of 15 ⁇ m were formed by a doctor blade method. Thereafter, punching was performed by a punching press to form square resin sheets 52 and 54 each having a side of 15 cm. In this punching process, through holes 52a, 52b, 54a, 54b were formed in the resin sheets 52, 54 as shown in FIG. Thereafter, the conductive paste 58 was filled in the through holes 52a and 54a, and the borosilicate glass-based insulating paste 71 was filled in the through holes 52b and 54b by screen printing.
  • the p-type semiconductor green sheet 51, the resin sheet 52, the n-type semiconductor green sheet 53, and the resin sheet 54 were repeatedly laminated in this order from above to form a laminate 76 (see FIG. 11B).
  • the number of p-type semiconductor green sheets 51 and n-type semiconductor green sheets 53 was 224, respectively.
  • the laminated body 76 was hot-pressed at a temperature of 120 ° C. for 30 minutes, and the laminated p-type semiconductor green sheet 51, resin sheet 52, n-type semiconductor green sheet 53, and resin sheet 54 were integrated. Then, the laminated body 76 was cut
  • this laminate unit 77 was heated in air to a temperature of 500 ° C. over 24 hours, and then held for 12 hours for degreasing. Subsequently, the laminate unit 77 was baked in the air at a temperature of 950 ° C. for 1 hour. Thereby, the p-type semiconductor block 61 and the n-type semiconductor block 63 are alternately connected in series by the electrodes 62 disposed on the upper or lower portion thereof, and the insulator spacer 72 is interposed between the electrodes 62 adjacent in the lateral direction. A semiconductor block assembly 77a was obtained (see FIG. 12B).
  • thermoelectric conversion element 79 was completed.
  • thermoelectric conversion element 79 of Example 2 manufactured in this way has a size of 1 cm ⁇ 1 cm, a thickness of 3 mm, and a number of pn pairs of 224.
  • a temperature difference of 50 ° C. was applied between the heat transfer plates 65a and 65b of the thermoelectric conversion element 79 of Example 2, an electromotive force of 3.6V was generated.
  • thermoelectric conversion element 13 and 14 are cross-sectional views showing a method of manufacturing a thermoelectric conversion element according to the fourth embodiment in the order of steps.
  • a p-type semiconductor green sheet 81, an n-type semiconductor green sheet 83, and heat-resistant sheets (separation sheets) 82 and 84 are formed.
  • the semiconductor green sheets 81 and 83 are formed by kneading semiconductor material powder, a binder resin, a plasticizer, and a surfactant.
  • through holes 81a and 83a are formed as in the second and third embodiments. These through holes 81a and 83a are filled with a conductive paste 88.
  • the heat-resistant sheets 82 and 84 are made of an insulating material that does not disappear by firing.
  • the heat resistant sheets 82 and 84 for example, silica-based ceramic fiber sheets can be used.
  • Through holes 82a, 82b, 84a, 84b are formed in the heat-resistant sheets 82, 84 as in the third embodiment.
  • the through holes 82a and 84a are filled with a conductive paste 88, and the through holes 82b and 84b are filled with an insulating paste 71.
  • a p-type semiconductor green sheet 81, a heat-resistant sheet 82, an n-type semiconductor green sheet 83, and a heat-resistant sheet 84 are repeatedly laminated in this order from above, A laminate 76 is obtained. Thereafter, the laminated p-type semiconductor green sheet 81, heat-resistant sheet 82, n-type semiconductor green sheet 83, and heat-resistant sheet 84 are integrated by hot pressing.
  • FIG. 14A is a cross-sectional view of the laminate unit 87 cut out from the laminate 86.
  • the height direction of FIG. 13C is the horizontal direction.
  • the laminate unit 87 is fired. 14B, the p-type semiconductor green sheet 81 becomes the p-type semiconductor block 91, and the n-type semiconductor green sheet 83 becomes the n-type semiconductor block 93. Further, in this firing step, the conductive paste 88 filled in the through holes 81 a, 82 a, 83 a, 84 a is fired and integrated to form the electrode 95. Further, the insulating paste 71 filled in the through holes 82b and 84b is baked to form the insulator spacer 72. Furthermore, the heat resistant sheets 82 and 84 are fired to form the insulator block 92.
  • the stacked unit 87 becomes a semiconductor block aggregate 87a having a structure in which the p-type semiconductor blocks 91 and the n-type semiconductor blocks 93 are alternately arranged with the insulator blocks 92 interposed therebetween.
  • the semiconductor blocks 91 and 93 are alternately connected in series by electrodes 95 arranged at the upper or lower portion thereof.
  • thermoelectric conversion element 99 is completed. Also in this embodiment, the same effect as the third embodiment can be obtained.
  • thermoelectric conversion element thermoelectric generation element
  • Example 3 Ca 3 Co 4 O 9 was prepared as a p-type semiconductor material powder, and Ca 0.9 La 0.1 MnO 3 was prepared as an n-type semiconductor material powder. Then, a p-type semiconductor material powder, a binder resin (PVA binder resin), a plasticizer (dibutyl phthalate), and a surfactant (polycarboric acid surfactant) are kneaded, and the thickness is increased by a doctor blade method. A 20 ⁇ m p-type semiconductor green sheet 81 was formed.
  • PVA binder resin a binder resin
  • plasticizer dibutyl phthalate
  • surfactant polycarboric acid surfactant
  • an n-type semiconductor material powder, a binder resin (PVA binder resin), a plasticizer (dibutyl phthalate), and a surfactant (polycarburic acid surfactant) are kneaded, and a doctor blade method is used.
  • An n-type semiconductor green sheet 83 having a thickness of 20 ⁇ m was formed.
  • the through holes 81a and 83a have a width of 0.06 mm, a length of 12 mm, and a pitch in the width direction of 3.06 mm.
  • the conductive paste 88 mainly composed of Ag—Pd was filled into the through holes 81a and 83a by screen printing.
  • a fiber sheet in the form of a sheet of silica-based ceramic fiber (average diameter is about 2 ⁇ m, average length is about 30 ⁇ m) was prepared.
  • the thickness of the fiber sheet is 15 ⁇ m.
  • This fiber sheet was punched by a punching press to obtain square heat-resistant sheets 82 and 84 each having a side of 15 cm.
  • through holes 82a, 82b, 84a, 84b were formed in the heat resistant sheets 82, 84 as shown in FIG.
  • the conductive paste 88 was filled in the through holes 82a and 84a and the borosilicate glass-based insulating paste 71 was filled in the through holes 82b and 84b by screen printing.
  • the p-type semiconductor green sheet 81, the heat-resistant sheet 82, the n-type semiconductor green sheet 83, and the heat-resistant sheet 84 are repeatedly laminated in this order from above to form a laminated body 86 (see FIG. 13B). .
  • the number of p-type semiconductor green sheets 81 and n-type semiconductor green sheets 83 was 224, respectively.
  • the laminated body 86 was hot-pressed at a temperature of 120 ° C. for 30 minutes to integrate the laminated p-type semiconductor green sheet 81, heat-resistant sheet 82, n-type semiconductor green sheet 83, and heat-resistant sheet 84. . Then, the laminated body 84 was cut
  • this laminate unit 87 was heated in the atmosphere to a temperature of 500 ° C. over 24 hours, and then held for 12 hours for degreasing. Subsequently, the multilayer unit 87 was fired in the air at a temperature of 950 ° C. for 1 hour.
  • the p-type semiconductor block 91 and the n-type semiconductor block 93 are alternately arranged with the insulator block 92 interposed therebetween, and the semiconductor block set having a structure in which the semiconductor blocks 91 and 93 are alternately connected directly by the electrodes 95.
  • a body 97a was obtained.
  • an insulating spacer 92 is disposed between the electrodes 95 adjacent in the lateral direction (see FIG. 14B).
  • thermoelectric conversion element 99 was completed.
  • thermoelectric conversion element 99 of Example 3 manufactured in this way has a size of 1 cm ⁇ 1 cm, a thickness of 3 mm, and a pn pair number of 224.
  • a temperature difference of 50 ° C. was applied between the heat transfer plates 65a and 65b of the thermoelectric conversion element 99 of Example 3, an electromotive force of 3.6V was generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】より一層の小型化及び高集積化が可能な熱電変換素子の製造方法及び熱電変換素子を提供する。 【解決手段】半導体材料粉末と、バインダ樹脂と、可塑剤と界面活性剤とを混練して形成されたp型半導体シート11及びn型半導体シート13を用意する。また、PMMA等の樹脂と可塑剤とを混練して形成された分離シート12,14を用意する。分離シート12,14には貫通孔12a,14aを形成し、貫通孔12a,14a内に導電材料を充填する。その後、p型半導体シート11、分離シート12、n型半導体シート13及び分離シート14を積層し、所定の大きさに切断した後、焼成処理する。

Description

熱電変換素子の製造方法及び熱電変換素子
 本発明は、熱発電素子及びペルチェ素子等の熱電変換素子の製造方法及び熱電変換素子の構造に関する。
 熱電変換素子には、熱により発電する熱発電素子と、電気により熱を移送するペルチェ素子とが含まれる。これらの熱発電素子及びペルチェ素子の基本的な構造は同じである。図1に、熱電変換素子の一例を示す。
 熱電変換素子100は、2枚の伝熱板104a,104b間に複数のp型半導体ブロック101と複数のn型半導体ブロック102とを挟んだ構造を有している。p型半導体ブロック101及びn型半導体ブロック102は交互に並べられ、半導体ブロック101,102と伝熱板104a,104bとの間に設けられた導体103により直列接続される。また、直列接続されたp型半導体ブロック101及びn型半導体ブロック102の集合体の両端には、電極106a,106bが設けられる。
 電極106a,106bを電源に接続してp型半導体ブロック101及びn型半導体ブロック102に電流を流すと、ペルチェ効果により一方の伝熱板104aから他方の伝熱板104bに熱が移送される。また、2枚の伝熱板104a,104bに温度差を与えると、ゼーベック効果によりp型半導体ブロック101とn型半導体ブロック102との間に電位差が発生し、電極106a,106bから電流を取り出すことができる。
特開2001-217469号公報 特開2001-1894797号公報 特開2006-165273号公報
 近年、種々の電子機器の小型化及び高性能化が要求されており、それらの電子機器に搭載する熱電変換素子にもより一層の小型化及び高集積化が要求されている。
 よって、より一層の小型化及び高集積化が可能な熱電変換素子の製造方法及び熱電変換素子を提供することを目的とする。
 一観点によれば、p型半導体材料粉末を含む複数のp型半導体シート及びn型半導体材料粉末を含む複数のn型半導体シートを用意する工程と、所定のピッチで貫通孔が設けられ該貫通孔内に導電材料が充填された複数の分離シートを用意する工程と、前記p型半導体シート及び前記n型半導体シートを、前記分離シートを挟んで交互に積層し積層体とする積層工程と、前記積層体を前記分離シートの貫通孔の位置で切断して積層体ユニットを得る工程と、前記積層体ユニットを焼成して、p型半導体ブロックとn型半導体ブロックとが電極を介して交互に接続された構造の半導体ブロック集合体を得る焼成工程と、前記半導体ブロック集合体に一対の伝熱板を取り付ける工程とを有する熱電変換素子の製造方法が提供される。
 上記の一観点によれば、p型半導体シートとn型半導体シートとを分離シートを挟んで交互に積層し、所定の大きさに切断して積層体ユニットとする。この積層体ユニットを焼成すると、p型半導体シートはp型半導体ブロックとなり、n型半導体シートはn型半導体ブロックとなり、分離シートの貫通孔内に充填した導電材料が電極となって、熱電変換素子が形成される。従って、微細な半導体ブロックを個別にハンドリングする必要がなく、熱電変換素子の小型化及び高集積化が容易に達成される。
図1は、熱電変換素子の一例を示す模式図である。 図2は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図(その1)である。 図3は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図(その2)である。 図4は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図(その3)である。 図5は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図(その4)である。 図6は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図(その5)である。 図7は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図(その6)である。 図8(a)は比較例の熱電変換素子の半導体ブロックの平面図、図8(b)は同じくその断面図である。 図9は、第2の実施形態に係る熱電変換素子の製造方法を示す断面図(その1)である。 図10は、第2の実施形態に係る熱電変換素子の製造方法を示す断面図(その2)である。 図11は、第3の実施形態に係る熱電変換素子の製造方法を示す断面図(その1)である。 図12は、第3の実施形態に係る熱電変換素子の製造方法を示す断面図(その2)である。 図13は、第4の実施形態に係る熱電変換素子の製造方法を示す断面図(その1)である。 図14は、第4の実施形態に係る熱電変換素子の製造方法を示す断面図(その2)である。
 以下、実施形態について、添付の図面を参照して説明する。
 (第1の実施形態)
 図2~図7は、第1の実施形態に係る熱電変換素子の製造方法を示す模式図である。
 まず、図2(a)に斜視図を示し、図2(b)に断面図を示すように、p型半導体グリーンシート11、n型半導体グリーンシート13及び樹脂シート(分離シート)12,14を形成する。
 半導体グリーンシート11,13は、例えばp型半導体材料粉末又はn型半導体材料粉末と、バインダ樹脂と、可塑剤と、界面活性剤とを混練して形成される。本実施形態では、半導体グリーンシート11,13は、いずれも1辺が15cmの正方形であり、厚さは40μmであるとする。
 p型半導体材料粉末としては、例えば(BiO0.25Sb0.75)(TeO0.93Se0.07)の粉末を使用することができる。また、n型半導体材料粉末としては、例えば(Bi2Te30.975(Bi2Se30.025の粉末を使用することができる。
 樹脂シート12,14は、例えばPMMA(ポリメタクリル酸メチル)等の樹脂と可塑剤とを混練して形成される。これらの樹脂シート12,14は、半導体グリーンシート11,13と同様に1辺が15cmの正方形であり、厚さは30μmである。
 樹脂シート12,14には貫通孔12a,14aが形成されており、貫通孔12a,14a内には図2(b)に示すように導電ペースト18が充填されている。貫通孔12a,14aはいずれも幅が例えば0.1mm、長さが例えば12mmであり、幅方向の配列ピッチが例えば6.9mmである。但し、樹脂シート12の貫通孔12aは、樹脂シート14の貫通孔14aに対し1/2ピッチ分ずれて形成される。
 次に、図3(a)に斜視図を示し、図3(b)に断面図を示すように、これらのp型半導体グリーンシート11、樹脂シート12、n型半導体グリーンシート13及び樹脂シート14を上からこの順となるように繰り返し積層して積層体16とする。
 次に、積層体16を例えば110℃の温度で30分間熱間プレスして、積層されたp型半導体グリーンシート11、樹脂シート12、n型半導体グリーンシート13及び樹脂シート14を一体化する。その後、図4(a)に斜視図を示し、図4(b)に断面図を示すように、例えばダイシングソーにより積層体16を貫通孔12a,14aの部分(図4(b)中に一点鎖線で示す位置)で切断して帯状の積層体16を得る。その後、帯状の積層体16を切断して、所望の大きさ(例えば1cm×1cm)の積層体ユニットを得る。
 図5(a)は積層体ユニット20の斜視図、図5(b)は同じくその断面図である。但し、図5(a),(b)では図4(a),(b)の高さ方向を横方向としている。図5(a),(b)に示すように、積層体ユニット20のp型半導体グリーンシート11とn型半導体グリーンシート13との間には樹脂シート12,14が介在している。また、相互に隣接するp型半導体グリーンシート11及びn型半導体グリーンシート13の上部間又は下部間には、樹脂シート12,14の貫通孔12a,14a内に充填された導電ペースト18が介在している。
 次に、この積層体ユニット20を真空脱脂焼成炉に入れ、例えば0.1気圧以下の減圧下で温度を上げて十分に脱脂する。その後、例えば圧力が1Torr(約1.33×102Pa)以下の減圧下で500℃の温度で1時間かけて焼成する。
 この焼成工程では、図6(a)に斜視図、図6(b)に断面図を示すように、p型半導体グリーンシート11が焼成されてp型半導体ブロック21となり、n型半導体グリーンシート13が焼成されてn型半導体ブロック23となる。また、この焼成工程では、樹脂シート12,14を構成する高分子化合物が熱分解して消失する。更に、樹脂シート12,14の貫通孔12a,14a内に充填された導電ペースト18が焼成されて、電極22となる。すなわち、積層体ユニット20は、電極22によりp型半導体ブロック21とn型半導体ブロック23とが交互に電気的に接続された構造の半導体ブロック集合体20aとなる。
 次に、図7(a)に斜視図、図7(b)に断面図を示すように、半導体ブロック集合体20aの上下に伝熱板25a,25bを接合する。これらの伝熱板25a,25bは、熱伝導率が高い材料により形成することが好ましい。但し、少なくとも半導体ブロック集合体20aに接触する面が絶縁性を有することが必要である。半導体ブロック集合体20aと伝熱板25a,25bとの間に絶縁シートを配置してもよい。
 次いで、銀ペースト等により、半導体ブロック集合体20aの両端に引き出し電極26a,26bを形成する。これにより、熱電変換素子30が完成する。
 本実施形態に係る熱電変換素子30は、図7(a)に示すように半導体ブロック21,23の長手方向と電極22の長手方向とが一致し、かつ半導体ブロック21,23の配列方向に対し電極22の長手方向が直交している。
 上述した本実施形態に係る熱電変換素子の製造方法によれば、p型半導体ブロック21及びn型半導体ブロック23のサイズを小さくでき、かつそれらの半導体ブロック21,23を極めて狭いピッチで配列させることができる。従って、小型で高性能な熱電変換素子を得ることができる。
 また、本実施形態では、多数のp型半導体グリーンシート11、n型半導体グリーンシート13及び樹脂シート12,14を積層した構造の積層体ユニット20を形成する。そして、この積層体ユニット20を焼成して、多数のp型半導体ブロック21及びn型半導体ブロック23を有する半導体ブロック集合体20aを形成する。このため、本実施形態では半導体ブロックを個別にハンドリングする必要がなく、熱電変換素子を比較的容易に製造することができる。
 更に、本実施形態では、焼成により半導体ブロック21,22と電極22とを同時に形成するので、半導体ブロック21,23と電極22との間の接続の信頼性が高い。
 なお、半導体グリーンシート11,13及び樹脂シート12,14は、例えば公知のドクターブレード法により形成することができる。ドクターブレード法では厚さが1μm程度のシートを製造することも可能であり、半導体グリーンシート11,13及び樹脂シート12,14の厚さを上述の例よりも薄くすることにより、熱電変換素子をより一層小型化及び高集積化することができる。一方、半導体グリーンシート11,13及び樹脂シート12,14の厚さが1mmを超えると、p型半導体ブロック21及びn型半導体ブロック23の集積度が低くなる。このため、半導体グリーンシート11,13及び樹脂シート12,14の厚さは1μm以上、1mm以下とすることが好ましい。
 以下、半導体グリーンシート11,13の材料となる半導体材料粉末について説明する。
 半導体材料粉末には、例えばBiTeやPbTe等の重金属系半導体材料の粉末、FeSiやMgSi等のシリサイド系半導体材料の粉末、及びCaCiOやCaMnO等の酸化物系半導体材料の粉末などがある。どの半導体材料粉末を使用するのかにより、焼成に必要な温度が決まる。
 本実施形態では、前述したようにp型半導体グリーンシート11及びn型半導体グリーンシート13を同時に焼成する。そのため、p型半導体グリーンシート11の焼成温度とn型半導体グリーンシート13の焼成温度とが近くなるように半導体材料粉末を選択することが好ましい。
 比較的低い温度(例えば100℃~200℃)で使用する熱電変換素子を製造する場合は、半導体グリーンシート11,13の材料としてBiTe系半導体材料を使用することが好ましい。一般的にBiTe系半導体材料は融点が低く、酸化しやすいという性質を有する。そのため、BiTe系半導体材料を選択した場合は、非酸化性雰囲気又は真空中で比較的低い温度(例えば500℃程度)で焼成する。
 また、BiTe系半導体材料を選択した場合は、焼成温度が低くなるため、半導体グリーンシート11,13及び樹脂シート12,14に使用する樹脂には比較的低い温度で分解飛散する解重合型樹脂が適している。このような樹脂として、例えばPMMAなどのアクリル系樹脂やポリスチレン系樹脂がある。
 上述したBiTe系半導体材料及び解重合型樹脂を選択した場合、焼成工程では例えば樹脂が分解飛散する300℃から400℃の間の温度で十分に時間をかけて脱バインダ処理を行い、その後例えば500℃程度の温度で真空焼成する。電極22となる導電ペーストは上記の温度で焼成されるものであることが好ましく、例えばBiを主成分とする導電ペーストを使用する。
 500℃程度の温度で使用する熱電変換素子を製造する場合は、半導体グリーンシート11,13の材料としてシリサイド系半導体材料を使用することが好ましい。シリサイド系半導体材料を選択した場合は、BiTe系半導体材料を選択した場合よりも焼成温度を高く設定する。
 シリサイド系半導体材料を選択した場合、半導体グリーンシート11,13及び樹脂シート12,14に使用する樹脂には、解重合型樹脂が適している。また、電極22となる導電ペーストは、Ni、Cu又はAgなどの金属を主成分とするものが好ましい。なお、半導体グリーンシート11,13の焼成は真空中で行う。
 更に高温で使用する熱電変換素子を製造する場合は、半導体グリーンシート11,13の材料として酸化物系半導体材料を使用することが好ましい。酸化物系半導体材料を選択した場合は、焼成を大気中で行うことができ、真空装置や真空チャンバが不要になる。また、焼成温度が必然的に高くなるので、半導体グリーンシート11,13及び樹脂シート12,14に使用する樹脂についての制約は少ない。これらの半導体グリーンシート11,13及び樹脂シート12,14に使用する樹脂として、例えばPVA(ポリビニルアルコール)やPVB(ポリビニルブチラール)などの一般的なバインダ樹脂を使用することができる。
 酸化物系半導体材料及び樹脂を用いた場合は、焼成工程だけでなく、脱バインダ処理も大気中で行うことができる。電極22となる導電ペーストには、Ag又はAg-Pdなどの貴金属を主成分とする導電ペーストを使用することが好ましい。
 以下、本実施形態の製造方法により実際に熱電変換素子(熱発電素子)を製造し、その起電力を調べた結果について、比較例と比較して説明する。
 (実施例1)
 まず、p型半導体材料粉末として(BiO0.25Sb0.75)(Te0.93Se0.07)を用意し、n型半導体材料粉末として(Bi2Te30.975(Bi2Se30.025を用意した。そして、p型半導体材料粉末と、バインダ樹脂(PMMA)と、可塑剤(ジブチルフタレート)と、界面活性剤(ポリカルボル酸系界面活性剤)とを混練し、ドクターブレード法により厚さが40μmのp型半導体グリーンシート11を形成した。
 これと同様に、n型半導体材料粉末と、バインダ樹脂(PMMA)と、可塑剤(ジブチルフタレート)と、界面活性剤(ポリカルボル酸系界面活性剤)とを混練し、ドクターブレード法により厚さが40μmのn型半導体グリーンシート13を形成した。
 その後、打ち抜きプレス機により打ち抜き加工して、半導体グリーンシート11,13の大きさを1辺の長さが15cmの正方形とした。
 一方、PMMA樹脂と可塑剤(ジブチルフタレート)とを混練し、ドクターブレード法により厚さが30μmの樹脂シートを形成した。その後、打ち抜きプレス機により打ち抜き加工して、1辺の長さが15cmの正方形の樹脂シート12,14を形成した。なお、樹脂シート12,14には、打ち抜き加工時に貫通孔12a,14aを形成した(図3(a),(b)参照)。貫通孔12a,14aの幅は0.1mm、長さは12mm、幅方向の配列ピッチは6.9mmである。また、樹脂シート12の貫通孔12aは、樹脂シート14の貫通孔14aに対し1/2ピッチ分ずれている。
 その後、スクリーン印刷法により、樹脂シート12,14の貫通孔12a,14a内にSn-Biを主成分とする導電ペーストを充填した。
 これらのp型半導体グリーンシート11、樹脂シート12、n型半導体グリーンシート13及び樹脂シート14をこの順で繰り返し積層して積層体16とした(図3(a),(b)参照)。p型半導体グリーンシート11及びn型半導体グリーンシート13の数はそれぞれ112枚とした。
 次に、積層体16を110℃の温度で30分間熱間プレスして、積層されたp型半導体グリーンシート11、樹脂シート12、n型半導体グリーンシート13及び樹脂シート14を一体化した。その後、ダイシングソーにより積層体16を切断して積層体ユニット20を得た(図5(a),(b)参照)。
 次に、この積層体ユニット20を真空脱脂焼成炉内に入れ、0.1気圧以下の減圧下で圧力変動に注意しながら400℃まで温度をゆっくり上げ、48時間かけて脱脂処理した。その後、真空脱脂焼成炉内の圧力を1Torr(約1.33×102Pa)以下とし、500℃の温度で1時間かけて焼成し、p型半導体ブロック21とn型半導体ブロック23とが電極22を介して交互に電気的に接続された構造の半導体ブロック集合体20aを得た(図6(a),(b)参照)。
 次いで、半導体ブロック集合体20aの上下にアルミナ製伝熱板25a,25bを接着剤(高熱伝導性接着剤)により接合した。また、半導体ブロック集合体20aの両端のp型半導体ブロック21及びn型半導体ブロック23に接続する引き出し電極26a,26bを銀ペーストにより形成した(図7(a),(b)参照)。
 このようにして製造した実施例1の熱電変換素子30は、大きさが1cm×1cm、厚さが3mmであり、pnペア数は112である。この実施例1の熱電変換素子30の伝熱板25a,25bに50℃の温度差を与えると、1.9Vの起電力が発生した。
 (比較例)
 比較例として、公知のアセンブル法により熱電変換素子を製造した。すなわち、厚さが1.5mmのBi-Te系p型半導体板及びn型半導体板を用意した。そして、これらの半導体板の両面にNiをめっきしてメタライズ層を形成し、更にその上にSn-Biを主成分とするはんだめっき層を形成した。その後、めっき後のp型半導体板及びn型半導体板をダイシングソーにより1mm×1mmの大きさに切断し、多数のp型半導体ブロック及びn型半導体ブロックを得た。
 一方、大きさが1cm×1cmのアルミナ製の伝熱板を2枚用意した。そして、これらの伝熱板の表面上に、所定形状のCu薄膜からなる電極パターンを形成した。その後、冶具を用いて、図8(a)に平面図を示すように、一方の伝熱板45aの電極パターン42上にp型半導体ブロック41及びn型半導体ブロック43を位置合わせしながら配置した。各半導体ブロック41,43間の間隔は0.5mmとした。この場合、伝熱板45a上にはp型半導体ブロック41及びn型半導体ブロック43をそれぞれ18個づつ配置することができた。
 次いで、図8(b)の断面図に示すように、半導体ブロック41,43の上に両面アライナーを用いて他方の伝熱板45bを位置合わせしながら配置した。そして、半導体ブロック41,43に付着したはんだを加熱して溶融させ、半導体ブロック41,43と伝熱板45a,45bの電極パターン42とを接合した。このようにして、比較例の熱電変換素子40が完成した。
 比較例の熱電変換素子40の大きさは1cm×1cm、厚さは3mm、pnペア数は18である。この比較例の熱電変換素子40の伝熱板45a,45bに50℃の温度差を与えると、0.3Vの起電力が発生した。
 (第2の実施形態)
 図9,図10は、第2の実施形態に係る熱電変換素子の製造方法を工程順に示す断面図である。
 まず、図9(a)に示すように、p型半導体グリーンシート51、n型半導体グリーンシート53及び樹脂シート(分離シート)52,54を形成する。第1の実施形態では樹脂シート12,14に貫通孔12a,14aを形成し、半導体グリーンシート11,13には貫通孔を形成しなかった(図3参照)。これに対し、本実施形態では、樹脂シート52,54に第1の実施形態と同様の貫通孔52a,54aを形成するのに加えて、半導体グリーンシート51,53にも貫通孔51a,53aを形成する。貫通孔51a,53aは、樹脂シート52の貫通孔52a及び樹脂シート54の貫通孔54aの両方に対応する位置に形成する。これらの半導体グリーンシート51,53及び樹脂シート52,54の貫通孔51a,52a,53a,54a内には、第1の実施形態と同様に導電ペースト58を充填する。
 次に、図9(b)に示すように、p型半導体グリーンシート51、樹脂シート52、n型半導体グリーンシート53及び樹脂シート54を上からこの順となるように繰り返し積層して、積層体56とする。その後、熱間プレスにより、積層されたp型半導体グリーンシート51、樹脂シート52、n型半導体グリーンシート53及び樹脂シート54を一体化する。
 次に、図9(c)に示すように、例えばダイシングソーにより積層体56を切断して、積層体ユニットを得る。積層体56の切断は、貫通孔51a,52a,53a,54aの位置で行う。図10(a)は、積層体56から切り出した積層ユニット60の断面図である。但し、図10(a)では、図9(c)の高さ方向を横方向としている。
 次に、積層体ユニット60を焼成する。この焼成工程により、図10(b)に示すようにp型半導体グリーンシート51はp型半導体ブロック61となり、n型半導体グリーンシート53はn型半導体ブロック63となる。また、この焼成工程では、貫通孔51a,52a,53a,54a内に充填された導電ペースト58が焼成されて一体化し、電極62となる。更に、この焼成工程では、樹脂シート52,54を構成する高分子化合物が熱分解して消失する。すなわち、積層体ユニット60は、半導体ブロック61,63がその上部又は下部に配置された電極62により交互に直列接続された構造の半導体ブロック集合体60aとなる。
 次いで、図10(c)に示すように、半導体ブロック集合体60aの上下に伝熱板65a,65bを接合する。また、銀ペースト等により、半導体ブロック集合体60aの両端に引き出し電極66a、66bを形成する。これにより、熱電変換素子70が完成する。
 本実施形態においても、第1の実施形態と同様の効果が得られる。また、第1の実施形態では伝熱板25a,25bが異なる材質の複数の部材(半導体ブロック21,23及び電極22)に接合されているのに対し、本実施形態では伝熱板65a,65bが単一の部材(電極62)のみと接合されている。このため、本実施形態の熱電変換素子70は、第1の実施形態の熱電変換素子に比べて半導体ブロック集合体60aと伝熱板65a,65bとの接合の信頼性が高いという利点がある。
 (第3の実施形態)
 図11,図12は、第3の実施形態に係る熱電変換素子の製造方法を工程順に示す断面図である。なお、図11,図12において、図9,図10と同一物には同一符号を付している。
 まず、図11(a)に示すように、p型半導体グリーンシート51、n型半導体グリーンシート53及び樹脂シート52,54を形成する。樹脂シート52には、貫通孔52aに加えて貫通孔52bを形成する。また、樹脂シート54には、貫通孔54aに加えて貫通孔54bを形成する。貫通孔52bは樹脂シート54の貫通孔54aに対応する位置に形成し、貫通孔54bは樹脂シート52の貫通孔52aに対応する位置に形成する。
 半導体グリーンシート51,53の貫通孔51a,53a及び樹脂シート52.54の貫通孔52a,54aには、第2の実施形態と同様に導電ペースト58を充填する。また、樹脂シート52,54の貫通孔52b,54bには、例えば焼成後にガラスとなる絶縁ペースト(例えば、ホウケイ酸ガラス系ペースト等)71を充填する。
 次に、図11(b)に示すように、p型半導体グリーンシート51、樹脂シート52、n型半導体グリーンシート53及び樹脂シート54を上からこの順となるように繰り返し積層して、積層体76とする。その後、熱間プレスにより、積層されたp型半導体グリーンシート51、樹脂シート52、n型半導体グリーンシート53及び樹脂シート54を一体化する。
 次に、図11(c)に示すように、例えばダイシングソーにより積層体76を切断して積層体ユニットを得る。積層体76の切断は、貫通孔51a,52a,52b,53a,54a,54bの位置で行う。図12(a)は、積層体76から切り出した積層体ユニット77の断面図である。但し、図12(a)では、図11(c)の高さ方向を横方向としている。
 次に、積層体ユニット77を焼成する。この焼成工程により、図12(b)に示すように、p型半導体グリーンシート51はp型半導体ブロック61となり、n型半導体グリーンシート53はn型半導体ブロック63となる。また、この焼成工程では、貫通孔51a,52a,53a,54a内に充填された導電ペースト58が焼成されて一体化し、電極62となる。更に、貫通孔52b,54b内に充填された絶縁ペースト71が焼成されて絶縁体スペーサ72となる。更にまた、樹脂シート52,54を構成する高分子化合物が熱分解して消失する。すなわち、積層体ユニット76aは、p型半導体ブロック61及びn型半導体ブロック63がその上部又は下部に配置された電極62により交互に直列接続された構造の半導体ブロック集合体77aとなる。但し、本実施形態では第2の実施形態と異なり、図12(b)に示すように横方向に隣接する電極62間には絶縁体スペーサ72が介在する。
 次いで、図12(c)に示すように、半導体ブロック集合体77aの上下に伝熱板65a,65bを接合する。これにより、熱電変換素子79が完成する。
 本実施形態により製造された熱電変換素子79は、第2の実施形態で製造された熱電変換素子と同様の効果を得ることができる。また、本実施形態の熱電変換素子79は、隣接する電極62間に絶縁体スペーサ72が配置された構造となるので、機械的な強度が向上するとともに、隣接する電極62間の短絡を防止できるという利点がある。
 以下、第3の実施形態により実際に熱電変換素子(熱発電素子)を製造し、その起電力を調べた結果について説明する。
 (実施例2)
 まず、p型半導体材料粉末としてCa3Co49を用意し、n型半導体材料粉末としてCa0.9La0.1MnO3を用意した。そして、p型半導体材料粉末と、バインダ樹脂(PVA系バインダ樹脂)と、可塑剤(ジブチルフタレート)と、界面活性剤(ポリカルボル酸系界面活性剤)とを混練し、ドクターブレード法により厚さが20μmのp型半導体グリーンシート51を形成した。
 これと同様に、n型半導体材料粉末と、バインダ樹脂(PVA系バインダ樹脂)と、可塑剤(ジブチルフタレート)と、界面活性剤(ポリカルボル酸系界面活性剤)とを混練し、ドクターブレード法により厚さが20μmのn型半導体グリーンシート53を形成した。
 その後、打ち抜きプレス機により打ち抜き加工して、半導体グリーンシート51,53の大きさを1辺が15cmの正方形とした。この打ち抜き加工工程において、半導体グリーンシート51,53には、図11(a)に示すように貫通孔51a,53aを形成した。貫通孔51a,53aの大きさは、幅が0.06mm、長さが12mm、幅方向の配列ピッチは3.45mmである。その後、スクリーン印刷法により、貫通孔51a,53a内にAg-Pdを主成分とする導電ペースト58を充填した。
 一方、PVA樹脂と可塑剤(ジブチルフタレート)とを混練し、ドクターブレード法により厚さが15μmの樹脂シート52,54を形成した。その後、打ち抜きプレス機により打ち抜き加工して、1辺が15cmの正方形の樹脂シート52,54を形成した。この打ち抜き加工工程において、樹脂シート52,54には、図11(a)に示すように貫通孔52a,52b,54a,54bを形成した。その後、スクリーン印刷法により、貫通孔52a,54a内に導電ペースト58を充填し、貫通孔52b,54b内にホウケイ酸ガラス系絶縁ペースト71を充填した。
 これらのp型半導体グリーンシート51、樹脂シート52、n型半導体グリーンシート53及び樹脂シート54を上からこの順になるように繰り返し積層して積層体76とした(図11(b)参照)。p型半導体グリーンシート51及びn型半導体グリーンシート53の枚数はそれぞれ224枚とした。
 次に、積層体76を120℃の温度で30分間熱間プレスして、積層されたp型半導体グリーンシート51、樹脂シート52、n型半導体グリーンシート53及び樹脂シート54を一体化した。その後、ダイシングソーにより積層体76を切断して積層体ユニット77を得た(図12(a)参照)。
 次に、この積層体ユニット77を大気中で500℃の温度まで24時間かけて昇温し、その後12時間保持して脱脂した。続いて、積層体ユニット77を大気中で950℃の温度で1時間かけて焼成した。これにより、p型半導体ブロック61及びn型半導体ブロック63がその上部又は下部に配置された電極62により交互に直列接続され、かつ横方向に隣接する電極62間に絶縁体スペーサ72が介在する構造の半導体ブロック集合体77aを得た(図12(b)参照)。
 次いで、半導体ブロック集合体77aの上下にアルミナ製伝熱板65a,65bを接着剤(高熱伝導性接着剤)により接合した。また、半導体ブロック集合体77aの両側のp型半導体ブロック61及びn型半導体ブロック63に接続する引き出し電極66a,66bを銀ペーストにより形成した(図12(c)参照)。これにより、熱電変換素子79が完成した。
 このようにして製造した実施例2の熱電変換素子79は、大きさが1cm×1cm、厚さが3mmであり、pnペア数は224である。この実施例2の熱電変換素子79の伝熱板65a,65b間に50℃の温度差を与えると、3.6Vの起電力が発生した。
 (第4の実施形態)
 図13,図14は、第4の実施形態に係る熱電変換素子の製造方法を工程順に示す断面図である。
 まず、図13(a)に示すように、p型半導体グリーンシート81、n型半導体グリーンシート83及び耐熱性シート(分離シート)82,84を形成する。半導体グリーンシート81,83は、半導体材料粉末と、バインダ樹脂と、可塑剤と、界面活性剤とを混練して形成する。これらの半導体グリーンシート81,83には、第2,第3の実施形態と同様に貫通孔81a,83aを形成する。そして、これらの貫通孔81a,83aには、導電ペースト88を充填する。
 一方、耐熱性シート82,84は焼成により消失しない絶縁材料からなる。耐熱性シート82,84として、例えばシリカ系セラミックスファイバーシートを使用することができる。耐熱性シート82,84には、第3の実施形態と同様に、貫通孔82a,82b,84a,84bを形成する。貫通孔82a,84aには導電ペースト88を充填し、貫通孔82b,84bには絶縁ペースト71を充填する。
 次に、図13(b)に示すように、p型半導体グリーンシート81、耐熱性シート82、n型半導体グリーンシート83及び耐熱性シート84を上からこの順となるように繰り返し積層して、積層体76とする。その後、熱間プレスにより、積層されたp型半導体グリーンシート81、耐熱性シート82、n型半導体グリーンシート83及び耐熱性シート84を一体化する。
 次に、図13(c)に示すように、例えばダイシングソーにより積層体86を切断して積層体ユニットを得る。積層体86の切断は、貫通孔81a,82a,82b,83a,84a,84bの位置で行う。図14(a)は、積層体86から切り出した積層体ユニット87の断面図である。但し、図14(a)では、図13(c)の高さ方向を横方向としている。
 次に、積層体ユニット87を焼成する。この焼成工程により、図14(b)に示すように、p型半導体グリーンシート81はp型半導体ブロック91となり、n型半導体グリーンシート83はn型半導体ブロック93となる。また、この焼成工程では、貫通孔81a,82a,83a,84a内に充填された導電ペースト88が焼成されて一体化し、電極95となる。更に、貫通孔82b、84b内に充填された絶縁ペースト71が焼成されて絶縁体スペーサ72となる。更にまた、耐熱性シート82,84が焼成されて絶縁体ブロック92となる。すなわち、積層体ユニット87は、p型半導体ブロック91及びn型半導体ブロック93が絶縁体ブロック92を挟んで交互に配置された構造の半導体ブロック集合体87aとなる。半導体ブロック91,93は、その上部又は下部に配置された電極95により交互に直列接続されている。
 次いで、図14(c)に示すように、半導体ブロック集合体87aの上下に伝熱板95a,95bを接合する。これにより、熱電変換素子99が完成する。本実施形態においても、第3の実施形態と同様の効果が得られる。
 以下、第4の実施形態により実際に熱電変換素子(熱発電素子)を製造し、その起電力を調べた結果について説明する。
 (実施例3)
 まず、p型半導体材料粉末としてCa3Co49を用意し、n型半導体材料粉末としてCa0.9La0.1MnO3を用意した。そして、p型半導体材料粉末と、バインダ樹脂(PVA系バインダ樹脂)と、可塑剤(ジブチルフタレート)と、界面活性剤(ポリカルボル酸系界面活性剤)とを混練し、ドクターブレード法により厚さが20μmのp型半導体グリーンシート81を形成した。
 これと同様に、n型半導体材料粉末と、バインダ樹脂(PVA系バインダ樹脂)と、可塑剤(ジブチルフタレート)と、界面活性剤(ポリカルボル酸系界面活性剤)とを混練し、ドクターブレード法により厚さが20μmのn型半導体グリーンシート83を形成した。
 その後、打ち抜きプレス機により打ち抜き加工して、半導体グリーンシート81,83の大きさを1辺が15cmの正方形とした。この打ち抜き加工工程において、半導体グリーンシート81,83には、図13(a)に示すように貫通孔81a,83aを形成した。貫通孔81a,83aの大きさは、幅が0.06mm、長さが12mm、幅方向のピッチが3.06mmである。その後スクリーン印刷法により、貫通孔81a,83a内にAg-Pdを主成分とする導電ペースト88を充填した。
 一方、シリカ系セラミックファイバー(平均直径が約2μm、平均長さが約30μm)をシート状にしたファイバーシートを用意した。ファイバーシートの厚さは15μmである。このファイバーシートを打ち抜きプレス機により打ち抜き加工して、1辺が15cmの正方形の耐熱性シート82,84を得た。この打ち抜き加工工程において、耐熱性シート82,84には、図12(a)に示すように貫通孔82a,82b,84a,84bを形成した。その後、スクリーン印刷法により、貫通孔82a,84a内に導電ペースト88を充填し、貫通孔82b,84b内にホウケイ酸ガラス系絶縁ペースト71を充填した。
 これらのp型半導体グリーンシート81、耐熱性シート82、n型半導体グリーンシート83及び耐熱性シート84を上からこの順になるように繰り返し積層して積層体86とした(図13(b)参照)。p型半導体グリーンシート81及びn型半導体グリーンシート83の枚数はそれぞれ224枚とした。
 次に、積層体86を120℃の温度で30分間熱間プレスして、積層されたp型半導体グリーンシート81、耐熱性シート82、n型半導体グリーンシート83及び耐熱性シート84を一体化した。その後、ダイシングソーにより積層体84を切断して積層体ユニット87を得た(図14(a)参照)。
 次に、この積層体ユニット87を大気中で500℃の温度まで24時間かけて昇温し、その後12時間保持して脱脂した。続いて、積層体ユニット87を大気中で950℃の温度で1時間かけて焼成した。これにより、p型半導体ブロック91及びn型半導体ブロック93が絶縁体ブロック92を挟んで交互に配置され、それらの半導体ブロック91,93がその電極95により交互に直接接続された構造の半導体ブロック集合体97aを得た。この半導体ブロック集合体97aにおいて、横方向に隣接する電極95間には絶縁スペーサ92が配置されている(図14(b)参照)。
 次いで、半導体ブロック集合体97aの上下にアルミナ製伝熱板65a,65bを接着剤(高熱伝導性接着剤)により接合した。また、半導体ブロック集合体97aの両側のp型半導体ブロック91及びn型半導体ブロック93に接続する引き出し電極66a,66bを銀ペーストにより形成した(図14(c)参照)。これにより、熱電変換素子99が完成した。
 このようにして製造した実施例3の熱電変換素子99は、大きさが1cm×1cm、厚さが3mmであり、pnペア数は224である。この実施例3の熱電変換素子99の伝熱板65a,65b間に50℃の温度差を与えると、3.6Vの起電力が発生した。
                                                                                

Claims (17)

  1. p型半導体材料粉末を含む複数のp型半導体シート及びn型半導体材料粉末を含む複数のn型半導体シートを用意する工程と、
     所定のピッチで貫通孔が設けられ該貫通孔内に導電材料が充填された複数の分離シートを用意する工程と、
     前記p型半導体シート及び前記n型半導体シートを、前記分離シートを挟んで交互に積層し積層体とする積層工程と、
     前記積層体を前記分離シートの貫通孔の位置で切断して積層体ユニットを得る工程と、
     前記積層体ユニットを焼成して、p型半導体ブロックとn型半導体ブロックとが電極を介して交互に接続された構造の半導体ブロック集合体を得る焼成工程と、
     前記半導体ブロック集合体に一対の伝熱板を取り付ける工程と
     を有することを特徴とする熱電変換素子の製造方法。
  2. 前記積層工程の前に、
     前記p型半導体シート及び前記n型半導体シートの前記分離シートの前記貫通孔に対応する位置にそれぞれ貫通孔を形成する工程と、
     前記p型半導体シート及び前記n型半導体シートの貫通孔内に導電材料を充填する工程とを有することを特徴とする請求項1に記載の熱電変換素子の製造方法。
  3. 前記分離シートは、前記導電材料が充填された第1の貫通孔と、絶縁材料が充填された第2の貫通孔とを有し、前記半導体ブロック集合体の電極間には前記絶縁材料が焼成されてなる絶縁スペーサが形成されることを特徴とする請求項2に記載の熱電変換素子の製造方法。
  4. 前記分離シートを、前記焼成時の熱により熱分解して消失する材料により形成することを特徴とする請求項1に記載の熱電変換素子の製造方法。
  5. 前記分離シートが、解重合型樹脂を主成分とする樹脂により形成されていることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  6. 前記分離シートが、セラミックファイバーシートであることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  7. 前記p型半導体シート及び前記n型半導体シートの厚さが1μm以上、1mm以下であることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  8. 前記分離シートの厚さが1μm以上、1mm以下であることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  9. 前記p型半導体材料及び前記n型半導体材料が、重金属系半導体材料であることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  10. 前記p型半導体材料及び前記n型半導体材料が、シリサイド系半導体材料であることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  11. 前記p型半導体材料及び前記n型半導体材料が、酸化物系半導体材料であることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  12. 前記p型半導体シート及びn型半導体シートは、半導体材料粉末と、バインダ樹脂と、可塑剤と、界面活性剤とを混練して形成されたものであることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  13. 前記p型半導体シート及びn型半導体シートは、ドクターブレード法により形成されたものであることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  14. 前記p型半導体シート及び前記n型半導体シートは、いずれもグリーンシートであることを特徴とする請求項1に記載の熱電変換素子の製造方法。
  15. 第1の方向に沿って交互に配置されたp型半導体ブロック及びn型半導体ブロックと、
     前記p型半導体ブロック及びn型半導体ブロック間を接続する複数の電極と、
     前記p型半導体ブロック及び前記n型半導体ブロックを前記第1の方向に直交する第2の方向から挟むように配置された一対の伝熱板とを有し、
     前記複数の電極は前記p型半導体ブロック及びn型半導体ブロック内に前記第2の方向に電流が流れるように配置され、
     前記p型半導体ブロック及び前記n型半導体ブロックの長手方向と前記電極の長手方向が一致し、かつ前記p型半導体ブロック及び前記n型半導体ブロックの配列方向と前記電極の長手方向とが直交することを特徴とする熱電変換素子。
  16. 前記電極が、相互に隣接するp型半導体ブロック及びn型半導体ブロックの壁面の上部又は下部間に配置されていることを特徴とする請求項15に記載の熱電変換素子。
  17. 前記p型半導体ブロック及び前記n型半導体ブロックは、いずれも半導体材料粉末をバインダ樹脂及び可塑剤と混練して形成されたグリーンシートを焼成して形成されたものであることを特徴とする請求項15に記載の熱電変換素子。
                                                                                    
PCT/JP2008/073826 2008-12-26 2008-12-26 熱電変換素子の製造方法及び熱電変換素子 WO2010073398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010543730A JP5360072B2 (ja) 2008-12-26 2008-12-26 熱電変換素子の製造方法
PCT/JP2008/073826 WO2010073398A1 (ja) 2008-12-26 2008-12-26 熱電変換素子の製造方法及び熱電変換素子
US13/150,399 US8501518B2 (en) 2008-12-26 2011-06-01 Method of manufacturing thermoelectric conversion element and thermoelectric conversion element
US13/933,676 US8940571B2 (en) 2008-12-26 2013-07-02 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073826 WO2010073398A1 (ja) 2008-12-26 2008-12-26 熱電変換素子の製造方法及び熱電変換素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/150,399 Continuation US8501518B2 (en) 2008-12-26 2011-06-01 Method of manufacturing thermoelectric conversion element and thermoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2010073398A1 true WO2010073398A1 (ja) 2010-07-01

Family

ID=42287065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073826 WO2010073398A1 (ja) 2008-12-26 2008-12-26 熱電変換素子の製造方法及び熱電変換素子

Country Status (3)

Country Link
US (2) US8501518B2 (ja)
JP (1) JP5360072B2 (ja)
WO (1) WO2010073398A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049713A (ja) * 2012-09-04 2014-03-17 Hitachi Chemical Co Ltd 熱電変換モジュールおよびその製造方法
JP2018060971A (ja) * 2016-10-07 2018-04-12 株式会社デンソー 熱電変換装置の製造方法
JP2021125580A (ja) * 2020-02-06 2021-08-30 三菱マテリアル株式会社 熱流スイッチング素子
JP2021125578A (ja) * 2020-02-06 2021-08-30 三菱マテリアル株式会社 熱流スイッチング素子
JP2021125579A (ja) * 2020-02-06 2021-08-30 三菱マテリアル株式会社 熱流スイッチング素子
JP2021132085A (ja) * 2020-02-19 2021-09-09 三菱マテリアル株式会社 熱流スイッチング素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058988A1 (en) * 2012-10-11 2014-04-17 Gmz Energy Inc. Methods of fabricating thermoelectric elements
EP2975659B1 (en) 2014-07-17 2019-10-16 TDK Electronics AG Thermoelectric generator comprising a thermoelectric element
DE102014110065A1 (de) * 2014-07-17 2016-01-21 Epcos Ag Material für ein thermoelektrisches Element und Verfahren zur Herstellung eines Materials für ein thermoelektrisches Element
CN113285009A (zh) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 一种通过沉积金锡焊料组装的tec及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306967A (ja) * 1995-05-08 1996-11-22 Koji Hayashi 熱電発電素子とその製造方法,及び熱電発電装置
JP2003298128A (ja) * 2002-03-28 2003-10-17 Shizuoka Prefecture 熱電変換素子の製造方法
JP2004221375A (ja) * 2003-01-16 2004-08-05 Sony Corp 熱電半導体の製造方法、熱電変換素子の製造方法及び熱電変換装置の製造方法
JP2004281928A (ja) * 2003-03-18 2004-10-07 Yamaha Corp 積層熱電素子およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465895A (en) * 1983-06-01 1984-08-14 Ecd-Anr Energy Conversion Company Thermoelectric devices having improved elements and element interconnects and method of making same
JPS59222975A (ja) * 1983-06-02 1984-12-14 Nippon Denso Co Ltd 熱電変換素子
JPH01194479A (ja) * 1988-01-29 1989-08-04 Murata Mfg Co Ltd 積層熱電素子およびその製造方法
JPH0376278A (ja) * 1989-08-18 1991-04-02 Murata Mfg Co Ltd 積層半導体セラミック素子の製造方法
JPH0629581A (ja) * 1992-07-09 1994-02-04 Matsushita Electric Ind Co Ltd 熱電素子
US5318743A (en) * 1992-11-27 1994-06-07 Idemitsu Petrochemical Co., Ltd. Processes for producing a thermoelectric material and a thermoelectric element
US6025554A (en) * 1995-10-16 2000-02-15 Macris; Chris Thermoelectric device and method of manufacture
JP3724133B2 (ja) * 1997-08-26 2005-12-07 松下電工株式会社 熱電変換モジュールの製造方法
RU2225460C2 (ru) * 1999-09-27 2004-03-10 Ситизен Вотч Ко., Лтд. Способ нанесения покрытия химическим путем (варианты)
US6347521B1 (en) * 1999-10-13 2002-02-19 Komatsu Ltd Temperature control device and method for manufacturing the same
JP2001189497A (ja) 1999-12-28 2001-07-10 Sumitomo Special Metals Co Ltd 熱電変換素子とその製造方法
JP2001217469A (ja) 2000-02-04 2001-08-10 Sumitomo Special Metals Co Ltd 熱電変換素子とその製造方法
JP2003174203A (ja) * 2001-12-07 2003-06-20 Sony Corp 熱電変換装置
KR20030064292A (ko) * 2002-01-25 2003-07-31 가부시키가이샤 고마쓰 세이사쿠쇼 열전모듈
US7632369B2 (en) * 2003-01-29 2009-12-15 Tdk Corporation Green sheet slurry, green sheet, production method of green sheet slurry, production method of green sheet, and production method of electronic device
JP3803365B2 (ja) * 2003-11-17 2006-08-02 松下電器産業株式会社 結晶膜の製造方法、結晶膜付き基体の製造方法、および熱電変換素子の製造方法
JP2006086510A (ja) * 2004-08-17 2006-03-30 Nagoya Institute Of Technology 熱電変換装置及びその製造方法
JP2006165273A (ja) 2004-12-07 2006-06-22 Denso Corp 熱電変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306967A (ja) * 1995-05-08 1996-11-22 Koji Hayashi 熱電発電素子とその製造方法,及び熱電発電装置
JP2003298128A (ja) * 2002-03-28 2003-10-17 Shizuoka Prefecture 熱電変換素子の製造方法
JP2004221375A (ja) * 2003-01-16 2004-08-05 Sony Corp 熱電半導体の製造方法、熱電変換素子の製造方法及び熱電変換装置の製造方法
JP2004281928A (ja) * 2003-03-18 2004-10-07 Yamaha Corp 積層熱電素子およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049713A (ja) * 2012-09-04 2014-03-17 Hitachi Chemical Co Ltd 熱電変換モジュールおよびその製造方法
JP2018060971A (ja) * 2016-10-07 2018-04-12 株式会社デンソー 熱電変換装置の製造方法
JP2021125580A (ja) * 2020-02-06 2021-08-30 三菱マテリアル株式会社 熱流スイッチング素子
JP2021125578A (ja) * 2020-02-06 2021-08-30 三菱マテリアル株式会社 熱流スイッチング素子
JP2021125579A (ja) * 2020-02-06 2021-08-30 三菱マテリアル株式会社 熱流スイッチング素子
JP7412703B2 (ja) 2020-02-06 2024-01-15 三菱マテリアル株式会社 熱流スイッチング素子
JP7412702B2 (ja) 2020-02-06 2024-01-15 三菱マテリアル株式会社 熱流スイッチング素子
JP7435972B2 (ja) 2020-02-06 2024-02-21 三菱マテリアル株式会社 熱流スイッチング素子
JP2021132085A (ja) * 2020-02-19 2021-09-09 三菱マテリアル株式会社 熱流スイッチング素子
JP7421164B2 (ja) 2020-02-19 2024-01-24 三菱マテリアル株式会社 熱流スイッチング素子

Also Published As

Publication number Publication date
US20130284229A1 (en) 2013-10-31
JP5360072B2 (ja) 2013-12-04
US8940571B2 (en) 2015-01-27
US8501518B2 (en) 2013-08-06
JPWO2010073398A1 (ja) 2012-05-31
US20110226303A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5360072B2 (ja) 熱電変換素子の製造方法
JP5609967B2 (ja) 発電装置、発電方法及び発電装置の製造方法
JP4912931B2 (ja) 熱電変換モジュールの製造方法及び熱電変換モジュール
JP2008147323A (ja) 熱電変換モジュールおよびその製造方法
US20200144472A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP5109766B2 (ja) 熱電モジュール
JP5007748B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP5537202B2 (ja) 熱電変換モジュール
JP6822227B2 (ja) 熱電変換モジュール
JP2009049165A (ja) 熱電変換モジュールおよび熱電変換モジュールアセンブリ
WO2007141890A1 (ja) 熱電変換モジュールおよびその製造方法
KR20180093366A (ko) 열전 발전 모듈 및 그 제조 방법
JP5126518B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
US9543494B2 (en) Thermoelectric conversion module and method of manufacturing the same
JPH04199755A (ja) 積層熱電素子
JP4882855B2 (ja) 熱電変換モジュールとその製造方法
JPH0521635A (ja) 多層基板
JP4493619B2 (ja) 積層型圧電素子の製造方法
JPH02178958A (ja) 電子冷却素子とその製造方法
JP5056544B2 (ja) 熱電モジュール
JP4124150B2 (ja) 熱電モジュールの製造方法
JP5418080B2 (ja) 熱電変換素子の製造方法
JPH01183863A (ja) 積層熱電素子
JP4497032B2 (ja) 電子部品
JPH0974227A (ja) 熱電モジュールの組み立て方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543730

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879193

Country of ref document: EP

Kind code of ref document: A1