WO2010035463A1 - 薄膜トランジスター及び薄膜トランジスター中間体 - Google Patents

薄膜トランジスター及び薄膜トランジスター中間体 Download PDF

Info

Publication number
WO2010035463A1
WO2010035463A1 PCT/JP2009/004822 JP2009004822W WO2010035463A1 WO 2010035463 A1 WO2010035463 A1 WO 2010035463A1 JP 2009004822 W JP2009004822 W JP 2009004822W WO 2010035463 A1 WO2010035463 A1 WO 2010035463A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
copper alloy
oxygen
thin film
mol
Prior art date
Application number
PCT/JP2009/004822
Other languages
English (en)
French (fr)
Inventor
森曉
小見山昌三
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN200980137645.7A priority Critical patent/CN102165596B/zh
Priority to US12/737,797 priority patent/US8502285B2/en
Priority to KR1020117002472A priority patent/KR101527626B1/ko
Publication of WO2010035463A1 publication Critical patent/WO2010035463A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Definitions

  • the present invention relates to a thin film transistor used for various displays and a thin film transistor intermediate for producing the transistor, and more particularly to a thin film transistor and a thin film transistor intermediate having a drain electrode and a source electrode excellent in adhesion.
  • Liquid crystal displays, plasma displays, organic EL displays, inorganic EL displays and the like are known as flat panel displays using thin film transistors driven by an active matrix method.
  • wiring made of a metal film is formed in close contact with the surface of the glass substrate, and thin film transistors are provided at the intersections of the grid wiring made of the metal film.
  • the thin film transistor is formed on the gate electrode film 2 made of a pure copper film formed on the surface of the glass substrate 1 and on the gate electrode film 2 and the glass substrate 1 as shown in the schematic cross-sectional explanatory view of FIG. an amorphous Si semiconductor film 4, the n - - silicon nitride (SiN x) film 3, n formed on the silicon nitride (SiN x) film 3 is formed on the amorphous Si semiconductor film 4 An n + amorphous Si ohmic film 4 ′, and a drain electrode film 5 and a source electrode film 6 made of pure copper formed on the n + amorphous Si ohmic film 4 ′ are included.
  • a gate electrode film 2 made of pure copper is formed on the surface of a glass substrate 1 as shown in the sectional view of FIG. 2 and a silicon nitride (SiN x) film 3 is formed on the glass substrate 1, further n on the silicon nitride (SiN x) film 3 - amorphous Si semiconductor film 4 is formed, the n - amorphous Si semiconductor film An n + amorphous Si ohmic film 4 ′ is formed on 4, and a pure copper film 8 is formed so as to cover the entire surface of the n + amorphous Si ohmic film 4 ′.
  • the pure copper film 8 immediately above the gate electrode 2 of the stacked body 9 shown in FIG. 6 is wet-etched, and the n + amorphous Si ohmic film 4 ′ is plasma-etched. Thus forming a separation groove 7 n - exposing the amorphous Si semiconductor film 4. Thereby, the drain electrode film 5 and the source electrode film 6 are formed. Thus, the conventional thin film transistor intermediate 10 shown in the cross-sectional view of FIG. 5 is produced.
  • separating n grooves 7 are exposed to form - the surface of the amorphous Si semiconductor film 4 and the hydrogen plasma treatment, by the hydrogen plasma treatment, n - the surface of the amorphous Si semiconductor film 4
  • the hydrogen plasma treatment is performed by gas: 100% hydrogen gas, hydrogen gas flow rate: 10 to 1000 SCCM, hydrogen gas pressure: 10 to 500 Pa, RF current density: 0.005 to 0.5 W / cm 2 , treatment time: 1 to It is said that it is good to carry out on the conditions for 60 minutes (refer patent document 1).
  • Si in the n + amorphous Si ohmic film 4 ′ diffuses into the drain electrode film 5 and the source electrode film 6 to increase the specific resistance of the drain electrode film 5 and the source electrode film 6.
  • a barrier film is formed between the n + amorphous Si ohmic film 4 ′ and the drain electrode film 5 and between the n + amorphous Si ohmic film 4 ′ and the source electrode film 6. It is known that a Mo or Mo alloy film or a Ti or Ti alloy film is usually used as the barrier film (see Patent Document 2).
  • a pure copper film is often used for the drain electrode film 5 and the source electrode film 6, but the pure copper film has low adhesion to a ceramic substrate made of glass, alumina, or silicon dioxide.
  • a copper film containing oxygen is first formed as a base film on the surface of the ceramic substrate, and a pure copper film is formed on the base film made of the copper film containing oxygen.
  • a technique for obtaining a composite copper film is also known (see Patent Document 3).
  • the composite copper film the copper film containing oxygen is in contact with the ceramic substrate, whereby adhesion to the ceramic substrate can be improved.
  • n - hydrogen plasma treatment step necessary step to stabilize the dangling bonds of the surface of the amorphous Si semiconductor film 4 (dangling bonds) is bonded to hydrogen atom It is.
  • this hydrogen plasma treatment is performed, the adhesion of the drain electrode film and the source electrode film made of a pure copper film to the n + amorphous Si ohmic film 4 ′ is lowered.
  • a conventional copper film containing oxygen is used as a base layer, and a composite copper film in which a pure copper film is formed on this base layer is formed as a drain electrode film and a source. I tried to use it as an electrode film.
  • the composite copper film after the hydrogen plasma treatment still does not provide sufficient adhesion to the n + amorphous Si ohmic film 4 ′, which may cause peeling and cause a thin film transistor failure. I understood.
  • An object of the present invention is to provide a thin film transistor and a thin film transistor intermediate having a drain electrode and a source electrode excellent in adhesion.
  • the present inventors have produced a thin film transistor intermediate having a drain electrode film and a source electrode film having further excellent adhesion, and using this thin film transistor intermediate, a drain electrode film and a source electrode film having further excellent adhesion. Research was carried out to produce a thin film transistor having As a result, the following research results were obtained.
  • the thin film transistor intermediate 110 according to the first aspect of the present invention having the drain electrode film 5 and the source electrode film 6 having excellent adhesion shown in the sectional view of FIG. 1 can be produced by the following method.
  • a silicon oxide (SiO x ) film as a barrier film rather than a metal film such as a Mo film or a Ti film conventionally known as a barrier film of a thin film transistor, the adhesion between the drain electrode film and the source electrode film is improved. Can be further improved, which is preferable. Therefore, first, as shown in the cross-sectional view of FIG. 2, the gate electrode film 2 is formed on the glass substrate 1, and the silicon nitride film 3 is formed on the glass substrate 1 and the gate electrode film 2.
  • the composite copper alloy film 114 is constituted by the oxygen-calcium-containing copper alloy underlayer 112 and the Cu layer 113.
  • the oxygen-calcium-containing copper alloy underlayer 112 contains Ca: 0.01 to 10 mol% and oxygen: 1 to 20 mol%, and has a component composition including Cu and inevitable impurities as the balance.
  • the laminate 109 is manufactured.
  • the composite copper alloy film 114 immediately above the gate electrode 2 is wet-etched, and the barrier film 11 made of the silicon oxide film and the n + amorphous Si ohmic film 4 'are plasma-etched.
  • the thin film transistor intermediate body 110 of the first aspect shown in the cross-sectional view of FIG. 1 can be manufactured.
  • a first embodiment of the present invention having a drain electrode film and a source electrode film having further excellent adhesion by performing a hydrogen plasma treatment on the thin film transistor intermediate 110 of the first embodiment shown in FIG.
  • the thin film transistor can be manufactured.
  • a concentrated layer having higher Ca and oxygen concentrations is formed in the oxygen-calcium-containing copper alloy underlayer 112.
  • This concentrated layer contains Ca: 2 to 30 mol% and oxygen: 20 to 50 mol%, and has a component composition including Cu and inevitable impurities as the balance.
  • the oxygen-calcium-containing copper alloy underlayer 112 is changed to an oxygen-calcium-enriched layer-containing copper alloy underlayer (not shown) having this concentrated layer, and the oxygen-calcium-enriched layer-containing copper alloy underlayer and Cu A composite copper alloy film composed of layers is formed. Since the drain electrode film and the source electrode film have the composite copper alloy film composed of the oxygen-calcium enriched layer-containing copper alloy underlayer and the Cu layer, adhesion to the barrier film 11 is remarkably improved.
  • the thin film transistor intermediate 210 of the second aspect of the present invention having the drain electrode film 5 and the source electrode film 6 having excellent adhesion shown in the cross-sectional view of FIG. 3 can be produced by the following method.
  • a silicon oxide (SiO x ) film as a barrier film rather than a metal film such as a Mo film or a Ti film conventionally known as a barrier film of a thin film transistor, the adhesion between the drain electrode film and the source electrode film is improved. Can be further improved, which is preferable. Therefore, first, as shown in the cross-sectional view of FIG. 4, a gate electrode film 2 is formed on the glass substrate 1, and a silicon nitride film 3 is formed on the glass substrate 1 and the gate electrode film 2.
  • the on the silicon nitride film 3 n - to form an amorphous Si semiconductor film 4 the n - amorphous Si semiconductor film n + amorphous Si ohmic film 4 'is formed on the 4, the n + amorphous Si ohmic film
  • a barrier film 11 made of a silicon oxide (SiO x ) film is formed on 4 ′.
  • an oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 is formed on the barrier film 11 made of the silicon oxide (SiO x ) film, and the oxygen-Ca (Al, Sn, Sb)
  • a Cu alloy layer 213 is formed on the copper alloy intermediate base layer 212.
  • This oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 and Cu alloy layer 213 constitute a composite copper alloy film 214.
  • the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 is composed of Ca: 0.2 to 10 mol%, one or more selected from Al, Sn, and Sb in a total of 0.001.
  • a copper alloy underlayer having a component composition containing 05 to 2 mol% and oxygen: 1 to 20 mol% and containing Cu and unavoidable impurities as the balance hereinafter referred to as a “copper alloy underlayer having this component composition” Ca (Al, Sn, Sb) copper alloy intermediate underlayer ”).
  • the stacked body 209 is manufactured.
  • the composite copper alloy film 214 immediately above the gate electrode 2 is wet-etched, and the barrier film 11 made of the silicon oxide film and the n + amorphous Si ohmic film 4 ′ are plasma-etched.
  • the thin film transistor intermediate 210 of the second embodiment shown in the cross-sectional view of FIG. 3 can be manufactured.
  • the second embodiment of the present invention having a drain electrode film and a source electrode film having further excellent adhesion by performing a hydrogen plasma treatment on the thin film transistor intermediate 210 of the second embodiment shown in FIG.
  • the thin film transistor can be manufactured.
  • the concentrations of Ca, Al, Sn, Sb and oxygen in the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 are increased.
  • a higher concentrated layer is formed.
  • This concentrated layer contains Ca: 2 to 30 mol%, one or more selected from Al, Sn and Sb in total, 1 to 10 mol%, and oxygen: 20 to 50 mol%, and the balance As a component composition containing Cu and inevitable impurities.
  • the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 is converted into a copper alloy underlayer having this concentrated layer (hereinafter referred to as “oxygen-Ca (Al, (Sn, Sb) enriched layer-containing copper alloy underlayer ”(not shown), and a composite copper comprising an oxygen-Ca (Al, Sn, Sb) enriched layer-containing copper alloy underlayer and a Cu alloy layer An alloy film is formed. Since the drain electrode film and the source electrode film have a composite copper alloy film comprising the oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer and Cu alloy layer, the adhesion to the barrier film 11 is remarkably high. To improve.
  • a thin film transistor includes a glass substrate, a gate electrode film formed on the glass substrate, and a silicon nitride film formed on the glass substrate and the gate electrode film.
  • n formed on the silicon nitride film - and the amorphous Si semiconductor film, the n - and n + amorphous Si ohmic film formed on the amorphous Si semiconductor film, on the n + amorphous Si ohmic film A barrier film made of the silicon oxide film formed, and a drain electrode film and a source electrode film formed on the barrier film made of the silicon oxide film.
  • the drain electrode film and the source electrode film are formed of an oxygen-calcium enriched layer-containing copper alloy underlayer formed in contact with at least the barrier film made of the silicon oxide film, and the oxygen-calcium enriched layer-containing copper alloy underlayer. It has a composite copper alloy film comprising a Cu layer formed thereon.
  • the oxygen-calcium concentrated layer-containing copper alloy underlayer has a concentrated layer. The concentrated layer contains Ca: 2 to 30 mol% and oxygen: 20 to 50 mol%, and the remainder contains Cu and inevitable impurities.
  • a thin film transistor intermediate according to the first aspect of the present invention includes a glass substrate, a gate electrode film formed on the glass substrate, and silicon nitride formed on the glass substrate and the gate electrode film.
  • amorphous Si semiconductor film, the n - - the film, n formed on the silicon nitride film and the n + amorphous Si ohmic film formed on the amorphous Si semiconductor film, the n + amorphous Si ohmic film A barrier film formed on the silicon oxide film; and a drain electrode film and a source electrode film formed on the barrier film formed of the silicon oxide film.
  • the drain electrode film and the source electrode film are formed on the oxygen-calcium-containing copper alloy underlayer formed in contact with the barrier film made of the silicon oxide film and the oxygen-calcium-containing copper alloy underlayer. It has a composite copper alloy film composed of a Cu layer.
  • the oxygen-calcium-containing copper alloy underlayer contains Ca: 0.01 to 10 mol% and oxygen: 1 to 20 mol%, and the remainder includes Cu and inevitable impurities.
  • a thin film transistor includes a glass substrate, a gate electrode film formed on the glass substrate, a silicon nitride film formed on the glass substrate and the gate electrode film, , n formed on the silicon nitride film - and the amorphous Si semiconductor film, the n - and n + amorphous Si ohmic film formed on the amorphous Si semiconductor film, on the n + amorphous Si ohmic film A barrier film made of the silicon oxide film formed, and a drain electrode film and a source electrode film formed on the barrier film made of the silicon oxide film.
  • the drain electrode film and the source electrode film include an oxygen-Ca (Al, Sn, Sb) enriched layer-containing copper alloy underlayer formed in contact with at least a barrier film made of the silicon oxide film, and the oxygen-Ca ( Al, Sn, Sb) having a composite copper alloy film comprising a Cu alloy layer formed on a copper alloy underlayer containing a concentrated layer.
  • the oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer is a copper alloy underlayer having a concentrated layer.
  • the concentrated layer contains Ca: 2 to 30 mol%, one or more selected from Al, Sn and Sb in total, 1 to 10 mol%, and oxygen: 20 to 50 mol%, and the balance Cu and unavoidable impurities.
  • the Cu alloy layer formed on the oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer is made of Al, Sn, and Sb.
  • One or two or more selected may be contained in a total amount of 0.05 to 2 mol%, and the balance may include Cu and inevitable impurities.
  • the thin film transistor intermediate according to the second aspect of the present invention includes a glass substrate, a gate electrode film formed on the glass substrate, and silicon nitride formed on the glass substrate and the gate electrode film.
  • amorphous Si semiconductor film, the n - - the film, n formed on the silicon nitride film and the n + amorphous Si ohmic film formed on the amorphous Si semiconductor film, the n + amorphous Si ohmic film A barrier film formed on the silicon oxide film; and a drain electrode film and a source electrode film formed on the barrier film formed of the silicon oxide film.
  • the drain electrode film and the source electrode film include an oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer formed in contact with the barrier film made of the silicon oxide film, and the oxygen-Ca (Al , Sn, Sb) having a composite copper alloy film comprising a Cu alloy layer formed on a copper alloy intermediate underlayer.
  • the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer is composed of Ca: 0.2 to 10 mol%, one or more selected from Al, Sn, and Sb in a total of 0.05. It contains ⁇ 2 mol% and oxygen: 1 to 20 mol%, and the remainder contains Cu and inevitable impurities.
  • the Cu alloy layer formed on the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer includes Al, Sn, and Sb.
  • One or two or more selected from the above may be added in a total amount of 0.05 to 2 mol%, and the balance may include Cu and inevitable impurities.
  • a silicon oxide (SiO x ) film is used as the barrier film.
  • a composite copper alloy film comprising an oxygen-calcium copper alloy base film containing oxygen and Ca and a Cu layer is used, so that a barrier film comprising a silicon oxide (SiO x ) film is used. Adhesion to is even better. For this reason, for example, even when vibration is applied during the transport of the thin film transistor intermediate of the first aspect, the possibility of failure due to peeling of the drain electrode film and the source electrode film is further reduced.
  • the silicon oxide (SiO x ) film as the barrier film can be formed only by performing sputter sputtering on the surface of the n + amorphous Si ohmic film 4 ′, the manufacturing cost can be reduced.
  • the thin film transistor according to the first aspect of the present invention is obtained by subjecting the thin film transistor intermediate according to the first aspect to hydrogen plasma treatment, and a concentrated layer containing Ca and oxygen at higher concentrations is generated.
  • a concentrated layer containing Ca and oxygen at higher concentrations is generated.
  • the adhesion to the barrier film made of the silicon oxide (SiO x ) film is further improved, and the thin film transistor of this first aspect is provided. Even if intense vibration is applied, there is no possibility of failure due to separation of the drain electrode film and the source electrode film.
  • a silicon oxide (SiO x ) film is used as the barrier film.
  • a composite copper alloy film composed of an oxygen-Ca (Al, Sn, Sb) copper alloy intermediate base film containing Ca, Al, Sn, Sb and oxygen and a Cu alloy layer is used as a drain electrode film and a source electrode film. Therefore, adhesion to a barrier film made of a silicon oxide (SiO x ) film is further excellent. For this reason, for example, even when vibration is applied during the transportation of the thin film transistor intermediate of the second aspect, the possibility of failure due to peeling of the drain electrode film and the source electrode film is further reduced. Furthermore, since the silicon oxide (SiO x ) film as the barrier film can be formed only by performing sputter sputtering on the surface of the n + amorphous Si ohmic film 4 ′, the manufacturing cost can be reduced.
  • the thin film transistor of the second aspect of the present invention is obtained by subjecting the above-described thin film transistor intermediate of the second aspect to hydrogen plasma treatment, and is a concentrated layer containing Ca, Al, Sn, Sb, and oxygen at a higher concentration. Is generated.
  • the oxygen-Ca (Al, Sn, Sb) enriched layer-containing copper alloy base film including the enriched layer the adhesion to the barrier film made of the silicon oxide (SiO x ) film is further improved. Even if intense vibration is applied to the thin film transistor according to the second aspect, there is no possibility of failure due to peeling of the drain electrode film and the source electrode film.
  • FIG. 1 is a cross-sectional view of a thin film transistor intermediate body according to the first embodiment
  • FIG. 2 is a cross-sectional view of a stacked body for producing the thin film transistor intermediate body according to the first embodiment.
  • a gate electrode film 2 made of a copper film is formed on the surface of the glass substrate 1. and, the gate electrode film 2 and silicon nitride on the glass substrate 1 to form a (SiN x) film 3, further n on the silicon nitride (SiN x) film 3 - to form an amorphous Si semiconductor film 4, a barrier film 11 of n + amorphous Si ohmic film 4 'is formed on the amorphous Si semiconductor film 4, made of further silicon oxide (SiO x) film on the n + amorphous Si ohmic film 4' - wherein n To do.
  • the barrier film 11 made of this silicon oxide (SiO x ) film can also be formed by ordinary PVD or CVD, but is sputtered while maintaining the atmosphere in the sputtering apparatus so as to be an inert gas atmosphere containing oxygen or oxygen. By doing so, the surface of the n + amorphous Si ohmic film 4 ′ is oxidized, and thereby the barrier film 11 can be formed.
  • the oxygen-calcium-containing copper alloy underlayer 112 contains Ca: 0.01 to 10 mol% and oxygen: 1 to 20 mol%, and has a component composition including Cu and inevitable impurities as the balance. Thereby, the laminated body 109 shown in FIG. 2 is produced.
  • the composite copper alloy film 114 composed of the oxygen-calcium-containing copper alloy underlayer 112 and the Cu layer 113 contains Ca: 0.01 to 15 mol%, and the copper having a component composition containing Cu and inevitable impurities as the balance. It can be formed by the following method using an alloy target. First, the oxygen-calcium-containing copper alloy base film 112 is formed by sputtering in an inert gas atmosphere containing oxygen. Thereafter, the supply of oxygen is stopped, the atmosphere is changed to an inert gas atmosphere, and the Cu layer 113 is formed by sputtering in the inert gas atmosphere.
  • a Cu layer 113 is formed. Since the Cu layer 113 is thus formed by sputtering using a copper alloy target containing Ca: 0.01 to 15 mol%, a trace amount of Ca may be mixed into the Cu layer 113. The amount is very small, 0.05 mol% or less, and is within the range of inevitable impurities. Therefore, the Cu layer 113 has substantially the same composition as copper.
  • the composite copper alloy film 114 immediately above the gate electrode 2 is wet-etched, and the barrier film 11 and the n + amorphous Si ohmic film 4 ′ are plasma-etched.
  • the drain electrode film 5 and the source electrode film 6 made of the composite copper alloy film 114 located on both sides of the separation groove 7 are formed.
  • the thin film transistor intermediate body 110 of the first embodiment shown in the cross-sectional view of FIG. 1 can be manufactured.
  • the thin film transistor of the first embodiment can be manufactured by performing hydrogen plasma treatment on the thin film transistor intermediate 110 of the first embodiment having the plasma-etched separation groove 7.
  • the thin film transistor according to the first embodiment is subjected to hydrogen plasma treatment, so that the oxygen-calcium-containing copper alloy underlayer 112 in the thin-film transistor intermediate 110 shown in FIG. Since it is produced by changing to a copper alloy underlayer, its cross-sectional shape structure is the same as FIG. Therefore, the description based on the drawings of the thin film transistor of the first embodiment is omitted.
  • the conditions for hydrogen plasma treatment of the thin film transistor intermediate of the first embodiment are the same as the hydrogen plasma treatment conditions described in the background art.
  • the composition of the thin film transistor intermediate of the first embodiment containing Ca: 0.01 to 10 mol% and oxygen: 1 to 20 mol%, with the balance including Cu and inevitable impurities.
  • the oxygen-calcium-containing copper alloy underlayer 112 has an oxygen-calcium enriched layer-containing copper alloy underlayer (not shown) having a concentrated layer having a higher component composition of Ca and oxygen.
  • the concentrated layer contains Ca: 2 to 30 mol%, oxygen: 20 to 50 mol%, and the remainder contains Cu and inevitable impurities.
  • the concentration layer of the above-described component composition having a higher concentration of Ca and oxygen is obtained.
  • the oxygen-calcium enriched layer-containing copper alloy underlayer is produced because the Ca and oxygen contained in the oxygen-calcium-containing copper alloy underlayer 112 having the above-described composition are obtained by performing hydrogen plasma treatment. This is because a concentrated layer having a higher Ca and oxygen concentration is generated near the barrier film 11 by diffusing and moving in the direction of the barrier film 11.
  • the following points can be considered as the reason why the alloy underlayer is remarkably excellent in adhesion to a barrier film made of silicon oxide.
  • an oxygen-calcium-containing copper alloy underlayer 112 having a component composition containing Ca: 0.01 to 10 mol% and oxygen: 1 to 20 mol%, and the remainder including Cu and inevitable impurities is formed. Hydrogen diffuses and reacts with oxygen in the film to generate water. This water and calcium oxide in the film react to produce calcium hydroxide. Then, calcium ions and hydroxide ions react with the barrier film made of the silicon oxide film, and a strong calcium silicate is generated in contact with the barrier film made of the silicon oxide film. This is considered to significantly improve the adhesion to the barrier film.
  • the component composition of the oxygen-calcium-containing copper alloy underlayer in the composite copper alloy film constituting the drain electrode film and the source electrode film of the thin film transistor intermediate of the first embodiment, and the thin film transistor of the first embodiment The reason for limiting the component composition of the concentrated layer contained in the oxygen-calcium concentrated layer-containing copper alloy underlayer in the composite copper alloy film constituting the drain electrode film and the source electrode film as described above will be described.
  • Oxygen-calcium-containing copper alloy underlayer of the thin film transistor intermediate according to the first embodiment By incorporating Ca and oxygen in the oxygen-calcium-containing copper alloy underlayer in the composite copper alloy film constituting the drain electrode film and the source electrode film of the thin film transistor intermediate of the present invention, silicon oxide (SiO x ) The adhesion to the barrier film made of a film can be improved.
  • Ca: less than 0.01 mol% or oxygen: less than 1 mol% is not preferable because the effect of preventing adhesion deterioration during hydrogen plasma treatment is insufficient.
  • a copper alloy target containing Ca in excess of 15 mol% must be prepared. Further, even when reactive sputtering using oxygen is introduced using a copper alloy target containing more than 15 mol% of Ca, since discharge does not occur at the start of sputtering, sputtering cannot be performed efficiently. Note that a copper alloy containing more than 2.5 mol% of Ca is cracked during hot rolling and cannot produce a target. Therefore, it is preferable to produce a target containing Ca in excess of 2.5 mol% by hot pressing Cu—Ca master alloy powder.
  • the Ca content is 0.01 to 10 mol%
  • the thin film transistor intermediate according to the first embodiment when the amount of Ca contained in the oxygen-calcium-containing copper alloy underlayer constituting the composite copper alloy film is small, a thin film produced by performing hydrogen plasma treatment It is considered that the amount of Ca contained in the oxygen-calcium enriched layer-containing copper alloy underlayer of the transistor is reduced and the amount of Ca does not reach 2 mol%.
  • the thickness of the oxygen-calcium-containing copper alloy underlayer should be further increased.
  • the amount of Ca contained in the enriched layer in the oxygen-calcium enriched layer-containing copper alloy underlayer of the thin film transistor to be produced can be 2 mol% or more.
  • the thickness of the oxygen-calcium-containing copper alloy underlayer is preferably 10 to 100 nm.
  • the amount of Ca contained in the oxygen-calcium-containing copper alloy underlayer is at least stable, and the amount of Ca contained in the concentrated layer in the oxygen-calcium-enriched layer-containing copper alloy underlayer of the thin film transistor to be produced is stabilized. It can be 2 to 30 mol%.
  • the oxygen-calcium-containing copper alloy underlayer 112 having the above-described composition of the thin film transistor intermediate has Ca: 2 to 30 mol%, and oxygen: 20 to 50 mol%. It has a component composition containing Cu and unavoidable impurities as the balance, and changes so as to have a concentrated layer in which the concentration of Ca and oxygen is higher.
  • adhesion to a barrier film made of a silicon oxide (SiO x ) film can be further improved.
  • FIG. 3 is a cross-sectional view of the thin film transistor intermediate body of the second embodiment
  • FIG. 4 is a cross-sectional view of a stacked body for producing the thin film transistor intermediate body of the second embodiment.
  • the gate electrode film 2 made of a copper film is formed on the surface of the glass substrate 1. and, the gate electrode film 2 and silicon nitride on the glass substrate 1 to form a (SiN x) film 3, further n on the silicon nitride (SiN x) film 3 - to form an amorphous Si semiconductor film 4, a barrier film 11 of n + amorphous Si ohmic film 4 'is formed on the amorphous Si semiconductor film 4, made of further silicon oxide (SiO x) film on the n + amorphous Si ohmic film 4' - wherein n To do.
  • the barrier film 11 made of this silicon oxide (SiO x ) film can also be formed by ordinary PVD or CVD, but is sputtered while maintaining the atmosphere in the sputtering apparatus so as to be an inert gas atmosphere containing oxygen or oxygen. By doing so, the surface of the n + amorphous Si ohmic film 4 ′ is oxidized, and thereby the barrier film 11 can be formed.
  • a composite copper alloy film 214 composed of an oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 and a Cu alloy layer 213 is formed on the barrier film 11.
  • the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 is composed of Ca: 0.2 to 10 mol%, one or more selected from Al, Sn, and Sb in a total of 0.001. It has a component composition containing 05 to 2 mol% and oxygen: 1 to 20 mol%, with the balance including Cu and inevitable impurities. Thereby, the laminated body 209 shown in FIG. 4 is produced.
  • the composite copper alloy film 214 composed of the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 and the Cu alloy layer 213 is composed of Ca: 0.2 to 15 mol% and Al, Sn, and Sb. It can be formed by the following method using a copper alloy target having a component composition containing 0.1 to 2 mol% in total of one or more selected, with the remainder including Cu and inevitable impurities.
  • the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate base layer 212 is formed by sputtering in an inert gas atmosphere containing oxygen. Thereafter, the supply of oxygen is stopped, the atmosphere is changed to an inert gas atmosphere not containing oxygen, and the Cu alloy layer 213 is formed by sputtering in the inert gas atmosphere not containing oxygen.
  • a copper alloy target having Ca one or two or more selected from Ca: 0.2 to 10 mol%, Al, Sn, and Sb is 0 in total.
  • An oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer having a component composition containing 0.05 to 2 mol% and oxygen: 1 to 20 mol% and containing Cu and inevitable impurities as the balance is formed.
  • a calcium-containing copper alloy film containing Ca is not formed.
  • Ca a copper alloy containing 0.2 to 15 mol% and a total of 0.1 to 2 mol% of one or more selected from Al, Sn and Sb, with the balance being Cu and inevitable impurities
  • the Cu alloy layer 213 is formed by sputtering in an inert gas atmosphere not containing oxygen using a target.
  • a trace amount of Ca may be mixed in the Cu alloy layer 213, but the amount thereof is extremely small, 0.05 mol% or less, and is in the range of inevitable impurities. Therefore, Ca: 0.2 to 15 mol%, and one or more selected from Al, Sn and Sb are contained in a total of 0.1 to 2 mol%, and the balance includes Cu and inevitable impurities.
  • the Cu alloy layer 213 formed by sputtering in an inert gas atmosphere not containing oxygen using a copper alloy target is 0.05% in total of one or more selected from Al, Sn, and Sb. It has a component composition containing ⁇ 2 mol% and containing Cu and inevitable impurities as the balance.
  • the composite copper alloy film 214 immediately above the gate electrode 2 is wet-etched, and the barrier film 11 and the n + amorphous Si ohmic film 4 ′ are plasma-etched.
  • the drain electrode film 5 and the source electrode film 6 made of the composite copper alloy film 214 located on both sides of the separation groove 7 are formed.
  • the thin film transistor intermediate 210 of the second embodiment shown in the cross-sectional view of FIG. 3 can be produced.
  • the thin film transistor of the second embodiment can be manufactured by performing hydrogen plasma treatment on the thin film transistor intermediate 210 of the second embodiment having the plasma-etched separation groove 7.
  • the thin film transistor according to the second embodiment is subjected to hydrogen plasma treatment so that the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate base layer 212 in the thin film transistor intermediate 210 shown in FIG.
  • the oxygen-calcium enriched layer-containing copper alloy underlayer having the above structure is produced by changing to the same shape as that of FIG. Therefore, the description based on the drawings of the thin film transistor of the second embodiment is omitted.
  • the conditions for hydrogen plasma treatment of the thin film transistor intermediate of the second embodiment are the same as the hydrogen plasma treatment conditions described in the background art.
  • Ca in the thin film transistor intermediate according to the second embodiment 0.2 to 10 mol%, and one or more selected from Al, Sn and Sb are added in a total amount of 0.05 to 2.
  • the concentration of Sn, Sb, and oxygen changes to an oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer (not shown) having a concentrated layer having a higher component composition.
  • the concentrated layer contains Ca: 2 to 30 mol%, one or more selected from Al, Sn and Sb in total, 1 to 10 mol%, oxygen: 20 to 50 mol%, and the balance Contains Cu and inevitable impurities.
  • Ca produced in this way 2 to 30 mol%, one or more selected from Al, Sn and Sb in total 1 to 10 mol%, and oxygen: 20 to 50 mol%
  • the oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer having a concentrated layer of the component composition containing Cu and unavoidable impurities as the balance has excellent adhesion to the barrier film made of silicon oxide. The following points can be considered as reasons.
  • Ca 0.2 to 10 mol%, one or more selected from Al, Sn and Sb in total of 0.05 to 2 mol%, and oxygen: 1 to 20 mol%
  • oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer 212 having a composition containing Cu and the inevitable impurities as the balance, and water reacts with oxygen in the film to generate water.
  • This water and calcium oxide in the film react to produce calcium hydroxide.
  • calcium ions and hydroxide ions react with the barrier film made of the silicon oxide film, and a strong calcium silicate is generated in contact with the barrier film made of the silicon oxide film. This is considered to significantly improve the adhesion to the barrier film.
  • the component composition of the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer in the composite copper alloy film constituting the drain electrode film and the source electrode film of the thin film transistor intermediate according to the second embodiment and The component composition of the concentrated layer contained in the oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer in the composite copper alloy film constituting the drain electrode film and source electrode film of the thin film transistor of the second embodiment.
  • Oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer in the thin film transistor intermediate of the second embodiment Ca, Al, Sn, Sb and oxygen coexist in the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer in the composite copper alloy film constituting the drain electrode film and the source electrode film of the thin film transistor intermediate.
  • the adhesion to the barrier film made of a silicon oxide (SiO x ) film can be improved.
  • the resistance value of the formed Cu alloy film increases, and the drain electrode film and the source electrode film It is not preferable to use as. Further, when sputtering is performed in an inert gas atmosphere containing oxygen exceeding 20%, abnormal discharge occurs. Therefore, under the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate containing oxygen exceeding 20 mol%. The formation cannot be formed.
  • the Ca content is 0.2 to
  • the content of one or more selected from Al, Sn and Sb was 0.05 to 2 mol% in total, and the oxygen content was set to 1 to 20 mol%.
  • Oxygen-Ca (Al, Sn, Sb) enriched layer-containing copper alloy underlayer of the thin film transistor of the second embodiment By performing hydrogen plasma treatment on the thin film transistor intermediate, the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate base layer 212 having the above-described composition of the thin film transistor intermediate is subjected to Ca: 2 to 30 mol%, 1 or more selected from Al, Sn and Sb, or a total of 1 to 10 mol%, and oxygen: 20 to 50 mol%, with the balance including Cu and inevitable impurities It has a component composition and changes so as to have a concentrated layer with higher concentrations of Ca, Al, Sn, Sb and oxygen.
  • Oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer having a concentrated layer of this component composition is generated, thereby further improving adhesion to a barrier film made of a silicon oxide (SiO x ) film. Can do.
  • oxygen-free copper 99.99 mass% oxygen-free copper was prepared, and this oxygen-free copper was high-frequency dissolved in a high-purity graphite mold in an Ar gas atmosphere. Components were adjusted so that Ca was added to the obtained molten metal and dissolved to obtain a molten metal having the component composition shown in Table 1. The obtained molten metal was cast into a cooled carbon mold, further hot-rolled, and finally subjected to strain relief annealing. The surface of the obtained rolled body was turned to prepare targets 1A to 1O having dimensions of an outer diameter of 152 mm and a thickness of 5 mm and having the composition shown in Table 1. Furthermore, pure copper target 1P was produced from oxygen-free copper having a purity of 99.999 mass%.
  • a glass plate (length: 50 mm, width: 50 mm, thickness: Corning 1737 glass plate having dimensions of 0.7 mm) and a 100 nm thick n + amorphous Si film formed on the surface thereof
  • the substrate was placed in a sputtering apparatus. Furthermore, the targets 1A to 1P were placed in the sputtering apparatus so that the distance between the substrate and the target was 70 mm.
  • a DC system was adopted as the power source of the sputtering apparatus, and the vacuum container of the sputtering apparatus was evacuated until the ultimate vacuum was 4 ⁇ 10 ⁇ 5 Pa.
  • an oxygen-Ar mixed gas containing oxygen at a ratio shown in Tables 2 to 3 was flowed into the vacuum vessel as a sputtering gas, and the sputtering atmosphere pressure was set to 0.67 Pa. Thereafter, discharge (empty sputtering) was performed with an output of 600 W for 1 minute with the shutter closed, and a silicon oxide film having a thickness of about 10 nm was formed on the surface of the n + amorphous Si film. Then, by opening the shutter and discharging at an output of 600 W, an oxygen-calcium-containing copper alloy underlayer having the thickness and component composition shown in Tables 2 to 3 was formed.
  • the composite copper alloy films 101 to 114 for the thin film transistor intermediate of the present invention, the composite copper alloy films 101 to 103 for the thin film transistor intermediate of the comparative example, and the composite copper alloy film 101 for the thin film transistor intermediate of the conventional example are obtained. A film was formed.
  • a cross-cut adhesion test was performed on the composite copper alloy film for a thin film transistor intermediate thus obtained under the following conditions.
  • Cross-cut adhesion test In accordance with JIS-K5400, using a cutter, the surface of the composite copper alloy film for thin film transistor intermediates is cut at 11 mm length and width at 1 mm intervals to make 100 square films (films divided into squares). It was. After the scotch tape made by 3M was brought into close contact, it was peeled off at once, and the number of grid films in which peeling occurred in the grid film adhered to the glass substrate within 10 mm square at the center of the glass substrate was measured. The obtained results are shown in the item “Number of peeled cells (pieces / 100)” in Tables 2 and 3, and used to evaluate the adhesion to the glass substrate.
  • the composite copper alloy films 101 to 114 for thin film transistor intermediates according to the present invention have better adhesion than the composite copper alloy film 101 for thin film transistor intermediates according to the conventional example. I found out.
  • the composite copper alloy films 101 to 102 for the thin film transistor intermediates of the comparative example having values outside the conditions of the first embodiment are not preferable because the adhesion is slightly inferior.
  • the discharge became unstable and abnormal discharge occurred. This is considered to be because an oxide film was formed on the target surface because the oxygen concentration contained in the oxygen-Ar mixed sputtering gas was 25% by volume.
  • the discharge was stopped a plurality of times due to the occurrence of the abnormal discharge, but the discharge was restarted each time to form a composite copper alloy film having a predetermined thickness.
  • the oxygen-calcium-containing copper alloy underlayer containing oxygen exceeding 20 mol% is stable because abnormal discharge occurs during the film formation. The film could not be formed.
  • composite copper alloy films 101 to 114 for thin film transistor intermediates of the present invention examples shown in Tables 2 to 3 shown in Tables 2 to 3, the composite copper alloy films 101 to 102 for thin film transistor intermediates of the comparative examples, and the conventional examples.
  • the composite copper alloy film 101 for thin film transistor intermediate was subjected to hydrogen plasma treatment under the following conditions.
  • composite copper alloy films 101 to 114 for thin film transistors of the present invention example, composite copper alloy films 101 to 102 for thin film transistors of comparative examples, and composite copper alloy film 101 for thin film transistors of conventional examples were produced.
  • These composite copper alloy films for thin film transistors are composed of an oxygen-calcium concentrated layer-containing copper alloy underlayer and a Cu layer having concentrated layers having the composition shown in Tables 4 to 5.
  • Hydrogen gas flow rate 500 SCCM
  • Hydrogen gas pressure 100Pa Processing temperature: 300 ° C
  • RF power flow density 0.1 W / cm 2 Processing time: 2 minutes
  • the composite copper alloy films 101 to 114 for thin film transistors of the present invention example have the same specific resistance and no significant difference compared to the composite copper alloy film 101 for thin film transistors of the conventional example. I understood. However, it was found that the composite copper alloy films 101 to 114 for thin film transistors of the present invention example have much better adhesion than the conventional composite copper alloy film 101 for thin film transistors. Therefore, it can be seen that the thin film transistor of the first embodiment of the present invention incorporating the electrode film composed of the composite copper alloy films 101 to 114 for the thin film transistor of the present invention has extremely few failures due to peeling of the electrode film. .
  • the composite copper alloy films 101 to 102 for thin film transistors of the comparative example having values outside the conditions of the first embodiment are not preferable as electrode films of thin film transistors because they are inferior in specific resistance and adhesion. I understood.
  • Cu—Ca master alloy ingots having different Ca contents After evacuation, Ar gas was introduced and the atmosphere was changed to Ar gas atmosphere to melt and cast in a high-frequency melting furnace to prepare Cu—Ca master alloy ingots having different Ca contents.
  • Table 6 shows the results of re-melting these Cu—Ca master alloy ingots having different Ca contents and gas atomizing them with an Ar gas flow at a pressure of 3 MPa while maintaining the temperature at 1250 ° C.
  • Cu-Ca master alloy powder having a composition as described above was prepared. The obtained Cu—Ca master alloy powder was classified to prepare a Cu—Ca master alloy powder having a maximum particle size of 100 ⁇ m or less.
  • this Cu—Ca master alloy powder is filled into a graphite mold coated with a release agent, and hot pressed under the conditions of temperature: 800 ° C., pressure: 15 MPa, holding time: 30 minutes. Produced.
  • This hot press body was machined to prepare targets 1a to 1n having the component compositions shown in Table 6.
  • a glass plate (vertical: 50 mm, horizontal: 50 mm, thickness: 1737 glass plate made by Corning Co., Ltd.) and a 100 nm thick n + amorphous Si film formed on the surface thereof
  • a substrate consisting of Furthermore, the targets 1a to 1n shown in Table 6 were placed in the sputtering apparatus so that the distance between the substrate and the target was 70 mm.
  • a DC system was adopted as the power source of the sputtering apparatus, and the vacuum container of the sputtering apparatus was evacuated until the ultimate vacuum was 4 ⁇ 10 ⁇ 5 Pa.
  • an oxygen-Ar mixed gas containing oxygen at a ratio shown in Table 7 was flowed as a sputtering gas into the vacuum vessel, and the sputtering atmosphere pressure was set to 0.67 Pa. Thereafter, discharge (empty sputtering) was performed with an output of 600 W for 1 minute with the shutter closed, and a silicon oxide film having a thickness of about 10 nm was formed on the surface of the n + amorphous Si film. Then, by opening the shutter and discharging at an output of 600 W, an oxygen-calcium-containing copper alloy underlayer having a thickness of 50 nm and a component composition shown in Table 7 was formed.
  • the analysis of Ca and oxygen contained in the oxygen-calcium-containing copper alloy underlayer in the thin film transistor intermediate composite copper alloy films 115 to 127 of the present invention was performed under the same conditions as in Example 1 under the conditions of scanning Auger electrons.
  • a spectroscopic analysis apparatus (type: PHI700, manufactured by ULVAC-PHI Co., Ltd.) was used.
  • the composite copper alloy films 115 to 127 for thin film transistor intermediates of the present invention examples have better adhesion than the conventional composite copper alloy film 101 for thin film transistor intermediates of Table 3. I found out.
  • the hydrogen plasma treatment was performed under the same conditions as in Example 2 on the composite copper alloy films 115 to 127 for thin film transistor intermediates of the present invention examples shown in Table 7 that could be formed.
  • composite copper alloy films 115 to 127 for thin film transistors of the present invention were produced.
  • These composite copper alloy films for thin film transistors are composed of an oxygen-calcium concentrated layer-containing copper alloy underlayer and a Cu layer having a concentrated layer having the component composition shown in Table 8.
  • the specific resistances of the composite copper alloy films 115 to 127 for thin film transistors of the present invention example are the same as the composite copper alloy film 101 for thin film transistors of Table 5 and are not significantly different. I understood it. However, it was found that the composite copper alloy films 115 to 127 for thin film transistors of the present invention example have much better adhesion than the conventional composite copper alloy film 101 for thin film transistors. Therefore, it can be seen that the thin film transistor of the first embodiment of the present invention incorporating the electrode film composed of the composite copper alloy films 115 to 127 for the thin film transistor of the present invention example has extremely few failures due to peeling of the electrode film. .
  • oxygen-free copper 99.99 mass% oxygen-free copper was prepared, and this oxygen-free copper was high-frequency dissolved in a high-purity graphite mold in an Ar gas atmosphere. Ingredients were adjusted such that one or more selected from Ca and Al, Sn, and Sb were added to the obtained molten metal and dissolved to obtain a molten metal having the component composition shown in Table 9. The obtained molten metal was cast into a cooled carbon mold, further hot-rolled, and finally subjected to strain relief annealing. The surface of the obtained rolled body was turned to prepare targets 2A to 2M having dimensions of an outer diameter of 152 mm and a thickness of 6 mm and having the composition shown in Table 9. Further, a pure copper target 2N was produced from oxygen-free copper having a purity of 99.99% by mass.
  • a glass plate (length: 50 mm, width: 50 mm, thickness: Corning 1737 glass plate having dimensions of 0.7 mm) and a 100 nm thick n + amorphous Si film formed on the surface thereof
  • the substrate was placed in a sputtering apparatus. Furthermore, the targets 2A to 2M were placed in the sputtering apparatus so that the distance between the substrate and the target was 70 mm.
  • a DC system was adopted as the power source of the sputtering apparatus, and the vacuum container of the sputtering apparatus was evacuated until the ultimate vacuum was 4 ⁇ 10 ⁇ 5 Pa.
  • an oxygen-Ar mixed gas containing oxygen at a ratio shown in Table 10 was flowed as a sputtering gas into the vacuum vessel, and the sputtering atmosphere pressure was set to 0.67 Pa. Thereafter, discharge (empty sputtering) was performed with an output of 600 W for 1 minute with the shutter closed, and a silicon oxide film having a thickness of about 10 nm was formed on the surface of the n + amorphous Si film. Then, by opening the shutter and discharging at an output of 600 W, an oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer having a thickness of 50 nm and the component composition shown in Table 10 is formed. Filmed.
  • the composite copper alloy films 201 to 212 for the thin film transistor intermediate of the present invention, the composite copper alloy films 201 to 203 for the thin film transistor intermediate of the comparative example, and the composite copper alloy film 201 for the thin film transistor intermediate of the conventional example are obtained. A film was formed.
  • the composite copper alloy films 201 to 212 for thin film transistor intermediates of the present invention have better adhesion than the conventional composite copper alloy film 201 for thin film transistor intermediates. I understood.
  • the composite copper alloy films 201 to 202 for thin film transistor intermediates of the comparative example having values outside the conditions of the second embodiment are not preferable because of poor adhesion.
  • the discharge became unstable and abnormal discharge occurred. This is considered to be because an oxide film was formed on the target surface because the oxygen concentration contained in the oxygen-Ar mixed sputtering gas was 25% by volume.
  • the discharge was stopped a plurality of times due to the occurrence of the abnormal discharge, but the discharge was restarted each time to form a composite copper alloy film having a predetermined thickness.
  • the oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer containing oxygen exceeding 20 mol% is abnormal during film formation. Since discharge occurred, the film could not be formed stably.
  • the composite copper alloy film 201 for intermediate was subjected to hydrogen plasma treatment under the same conditions as in Example 2.
  • composite copper alloy films 201 to 212 for thin film transistors of the present invention example, composite copper alloy films 201 to 202 for thin film transistors of a comparative example, and composite copper alloy film 201 for thin film transistors of a conventional example were produced.
  • These composite copper alloy films for thin film transistors have an oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer including a concentrated layer having the component composition shown in Table 11.
  • the composite copper alloy films 201 to 212 for thin film transistors of the present invention have the same specific resistance and no significant difference compared to the composite copper alloy film 201 for thin film transistors of the conventional example. It was. However, it was found that the composite copper alloy films 201 to 212 for thin film transistors of the present invention example had much better adhesion than the conventional composite copper alloy film 201 for thin film transistors. For this reason, it can be seen that the thin film transistor of the second embodiment of the present invention incorporating the electrode film composed of the composite copper alloy films 201 to 212 for the thin film transistor of the present invention has extremely few failures due to peeling of the electrode film. . Since the composite copper alloy films 201 to 202 for thin film transistors of comparative examples having values outside the conditions of the second embodiment are inferior in specific resistance and adhesion, they are not preferable as electrode films of thin film transistors. I understood.
  • Cu master alloy ingots having different Ca, Al, Sn, and Sb contents.
  • the component compositions shown in Table 12 were obtained by remelting these Cu mother alloy ingots having different contents, and gas atomizing with an Ar gas flow at a pressure of 3 MPa while maintaining the obtained molten metal at a temperature of 1250 ° C.
  • Cu mother alloy powder having the following was prepared. The obtained Cu mother alloy powder was classified to prepare a Cu mother alloy powder having a maximum particle size of 100 ⁇ m or less.
  • this Cu mother alloy powder was filled in a graphite mold coated with a release agent, and hot pressed under the conditions of temperature: 800 ° C., pressure: 15 MPa, holding time: 30 minutes, thereby producing a hot press body. .
  • This hot press body was machined to prepare targets 2a to 2n having the component compositions shown in Table 12.
  • a glass plate (vertical: 50 mm, horizontal: 50 mm, thickness: 1737 glass plate made by Corning Co., Ltd.) and a 100 nm thick n + amorphous Si film formed on the surface thereof
  • a substrate consisting of Furthermore, the targets 2a to 2n in Table 12 were placed in the sputtering apparatus so that the distance between the substrate and the target was 70 mm.
  • a DC system was adopted as the power source of the sputtering apparatus, and the vacuum container of the sputtering apparatus was evacuated until the ultimate vacuum was 4 ⁇ 10 ⁇ 5 Pa.
  • an oxygen-Ar mixed gas containing oxygen at a ratio shown in Table 13 was allowed to flow as a sputtering gas into the vacuum vessel, and the sputtering atmosphere pressure was set to 0.67 Pa. Thereafter, discharge (empty sputtering) was performed with an output of 600 W for 1 minute with the shutter closed, and a silicon oxide film having a thickness of about 10 nm was formed on the surface of the n + amorphous Si film. Then, by opening the shutter and discharging at an output of 600 W, an oxygen-Ca (Al, Sn, Sb) copper alloy intermediate underlayer having a thickness of 50 nm and a component composition shown in Table 13 is formed. A film was formed.
  • the composite copper alloy films 212 to 224 for the thin film transistor intermediate of the example of the present invention were formed.
  • Comparative Example 204 an attempt was made to form a film using a target n containing more than 15 mol% of Ca in Table 12, but no discharge occurred at the start of sputtering. For this reason, the composite copper alloy film 204 for a thin film transistor intermediate in the comparative example could not be formed.
  • the composite copper alloy films 212 to 224 for thin film transistor intermediates of the present invention have superior adhesion compared to the conventional composite copper alloy film 201 for thin film transistor intermediates of Table 10. I found out.
  • composite copper alloy films 212 to 224 for thin film transistor intermediates of the present invention examples shown in Table 13 that could be formed.
  • composite copper alloy films 212 to 224 for thin film transistors of the present invention were produced.
  • These composite copper alloy films for thin film transistors are composed of an oxygen-Ca (Al, Sn, Sb) concentrated layer-containing copper alloy underlayer and Cu alloy layer having a concentrated layer having the composition shown in Table 14.
  • the specific resistances of the composite copper alloy films 212 to 224 for thin film transistors of the present invention are the same as the conventional composite copper alloy film 201 for thin film transistors of Table 11 and are not significantly different. I understood it. However, it was found that the composite copper alloy films 212 to 224 for thin film transistors of the present invention example have much better adhesion than the conventional composite copper alloy film 201 for thin film transistors. Therefore, it can be seen that the thin film transistor according to the second embodiment of the present invention, in which the electrode film composed of the composite copper alloy films 212 to 224 for the thin film transistor of the example of the present invention is built, has extremely few failures due to peeling of the electrode film. .
  • the thin film transistor and thin film transistor intermediate of the present invention have excellent adhesion between the drain electrode film and the source electrode film. For this reason, even if vibration is applied during transportation, there is almost no possibility of failure due to peeling of the drain electrode film and the source electrode film. Therefore, the present invention can be applied to a thin film transistor used for a flat panel display or the like and an intermediate body of the thin film transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 この薄膜トランジスターの一態様は、ドレイン電極膜およびソース電極膜が、バリア膜に接して形成された酸素-カルシウム濃縮層含有銅合金下地層と、その上に形成されたCu層とからなる複合銅合金膜を有し、酸素-カルシウム濃縮層含有銅合金下地層は、濃縮層を有し、濃縮層は、Ca:2~30モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む。  この薄膜トランジスターの他の態様は、ドレイン電極膜およびソース電極膜が、バリア膜に接して形成された酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層と、その上に形成されたCu合金層とからなる複合銅合金膜を有し、酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層は、濃縮層を有する銅合金下地層であり、濃縮層は、Ca:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む。

Description

薄膜トランジスター及び薄膜トランジスター中間体
 この発明は、各種ディスプレイに使用される薄膜トランジスターおよびこのトランジスターを製造するための薄膜トランジスター中間体に関し、特に密着性に優れたドレイン電極およびソース電極を有する薄膜トランジスターおよび薄膜トランジスター中間体に関する。
 本願は、2008年9月26日に、日本に出願された特願2008-247460号に基づき優先権を主張し、その内容をここに援用する。
 アクティブマトリックス方式で駆動する薄膜トランジスターを用いたフラットパネルディスプレイとして、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイなどが知られている。これら薄膜トランジスターを用いたフラットパネルディスプレイにはガラス基板表面に格子状に金属膜からなる配線が密着形成されており、この金属膜からなる格子状配線の交差点に薄膜トランジスターが設けられている。
 この薄膜トランジスターは、図5の断面概略説明図に示されるように、ガラス基板1の表面に形成された純銅膜からなるゲート電極膜2と、このゲート電極膜2およびガラス基板1の上に形成された窒化珪素(SiN)膜3と、前記窒化珪素(SiN)膜3の上に形成されたnアモルファスSi半導体膜4と、このnアモルファスSi半導体膜4の上に形成されたnアモルファスSiオーミック膜4´と、前記nアモルファスSiオーミック膜4´の上に形成された純銅からなるドレイン電極膜5およびソース電極膜6とを有する。
 このような積層膜構造を有する薄膜トランジスターを作製するには、まず、図6の断面図に示されるような、ガラス基板1の表面に純銅からなるゲート電極膜2を形成し、このゲート電極膜2およびガラス基板1の上に窒化珪素(SiN)膜3を形成し、さらに窒化珪素(SiN)膜3の上にnアモルファスSi半導体膜4を形成し、このnアモルファスSi半導体膜4の上にnアモルファスSiオーミック膜4´を形成し、前記nアモルファスSiオーミック膜4´の全面を被覆するように純銅膜8を形成して積層体9を作製する。
 次いで、この図6に示される積層体9のゲート電極2の真上の部分の純銅膜8を湿式エッチングし、さらにnアモルファスSiオーミック膜4´をプラズマエッチングする。これにより分離溝7を形成してnアモルファスSi半導体膜4を露出させる。これによってドレイン電極膜5およびソース電極膜6を形成する。以上により図5の断面図に示される従来の薄膜トランジスター中間体10を作製する。
 分離溝7を形成するために前記積層体9におけるnアモルファスSiオーミック膜4´のみをプラズマエッチンしようとしても、nアモルファスSi半導体膜4の表面は、プラズマエッチングに曝されるため、その影響を受けることは避けることが出来ない。このため、分離溝7を形成して露出されたnアモルファスSi半導体膜4の表面は荒れて、未結合手(ダングリングボンド)が増大しており、これが表面欠陥となる。この表面欠陥は、薄膜トランジスターのオフ電流を増加させるため、その結果、LCDのコントラストの低減や視野角を小さくするなどの問題点があった。
 この問題点を解決するために、分離溝7を形成して露出されたnアモルファスSi半導体膜4の表面を水素プラズマ処理し、この水素プラズマ処理によって、nアモルファスSi半導体膜4の表面の未結合手(ダングリングボンド)を水素原子と結合させて安定化し、リーク電流を低減できることも知られている。そして前記水素プラズマ処理は、ガス:100%水素ガス、水素ガス流量:10~1000SCCM、水素ガス圧:10~500Pa、RF電流密度:0.005~0.5W/cm、処理時間:1~60分の条件で行なうのが良いとされている(特許文献1参照)。
 また、図示してはいないが、nアモルファスSiオーミック膜4´のSiがドレイン電極膜5およびソース電極膜6に拡散してドレイン電極膜5およびソース電極膜6の比抵抗が上昇することを阻止するために、nアモルファスSiオーミック膜4´とドレイン電極膜5との間およびnアモルファスSiオーミック膜4´とソース電極膜6との間に、それぞれバリア膜を形成すること、並びにこのバリア膜として、通常、MoもしくはMo合金膜またはTiもしくはTi合金膜を使用することが知られている(特許文献2参照)。
 さらに、一般に、ドレイン電極膜5およびソース電極膜6には純銅膜が多く使用されていたが、純銅膜は、ガラス、アルミナ、又は二酸化珪素からなるセラミック基板に対する密着性が弱い。このセラミック基板に対する密着性を向上させるために、セラミック基板の表面に、まず酸素を含む銅膜を下地膜として形成し、この酸素を含む銅膜からなる下地膜の上に純銅膜を形成して複合銅膜を得る技術も知られている(特許文献3参照)。この複合銅膜のうち、酸素を含む銅膜がセラミック基板に接触していることによって、セラミック基板に対する密着性を向上させることができる。
 前述のように、薄膜トランジスターの製造工程において、nアモルファスSi半導体膜4の表面の未結合手(ダングリングボンド)を水素原子と結合させて安定化させるための水素プラズマ処理工程は必要な工程である。しかしこの水素プラズマ処理を行うと、純銅膜からなるドレイン電極膜およびソース電極膜のnアモルファスSiオーミック膜4´に対する密着性が低下する。
 この密着性が低下することを阻止するために、従来から知られている酸素を含む銅膜を下地層とし、この下地層の上に純銅膜を形成した複合銅膜を、ドレイン電極膜およびソース電極膜として使用してみた。しかし、水素プラズマ処理後の複合銅膜では、依然としてnアモルファスSiオーミック膜4´に対して十分な密着性は得られず、剥離が生じて薄膜トランジスター不良の原因となる可能性があることが分かった。
特開平4-349637号公報 特開2004-163901号公報 特開平8-26889号公報
 本発明は、密着性に優れたドレイン電極およびソース電極を有する薄膜トランジスターおよび薄膜トランジスター中間体の提供を目的とする。
 本発明者等は、更に密着性に優れたドレイン電極膜およびソース電極膜を有する薄膜トランジスター中間体を作製し、この薄膜トランジスター中間体を用いて更に密着性に優れたドレイン電極膜およびソース電極膜を有する薄膜トランジスター作製すべく研究を行った。その結果、以下の研究結果が得られた。
(a)図1の断面図に示される密着性に優れたドレイン電極膜5およびソース電極膜6を有する本発明の第1の態様の薄膜トランジスター中間体110は、以下の方法により作製できる。
 薄膜トランジスターのバリア膜として従来から知られているMo膜、Ti膜などの金属膜よりも、酸化ケイ素(SiO)膜をバリア膜として使用することによって、ドレイン電極膜およびソース電極膜の密着性を更に向上させることができるため、好ましい。
 このことから、まず、図2の断面図に示されるように、ガラス基板1の上にゲート電極膜2を形成し、前記ガラス基板1およびゲート電極膜2の上に窒化珪素膜3を形成し、前記窒化珪素膜3の上にnアモルファスSi半導体膜4を形成し、前記nアモルファスSi半導体膜4の上にnアモルファスSiオーミック膜4´を形成し、前記nアモルファスSiオーミック膜4´の上に酸化ケイ素(SiO)膜からなるバリア膜11を形成する。
 次に、前記酸化ケイ素(SiO)膜からなるバリア膜11の上に、酸素-カルシウム含有銅合金下地層112を形成し、前記酸素-カルシウム含有銅合金下地層112の上にCu層113を形成する。この酸素-カルシウム含有銅合金下地層112とCu層113によって、複合銅合金膜114が構成される。前記酸素-カルシウム含有銅合金下地層112は、Ca:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する。以上により、積層体109が作製される。
 この積層体109において、ゲート電極2の真上の部分の複合銅合金膜114を湿式エッチングし、さらに前記酸化ケイ素膜からなるバリア膜11およびnアモルファスSiオーミック膜4´をプラズマエッチングする。これにより分離溝7を形成して、nアモルファスSi半導体膜4を露出させ、それによってドレイン電極膜5およびソース電極膜6を形成する。以上により図1の断面図に示される第1の態様の薄膜トランジスター中間体110を作製できる。
(b)この図1に示される第1の態様の薄膜トランジスター中間体110に水素プラズマ処理を施すことによって、更に密着性に優れたドレイン電極膜およびソース電極膜を有する本発明の第1の態様の薄膜トランジスターを作製できる。
 第1の態様の薄膜トランジスター中間体110に水素プラズマ処理を施すと、酸素-カルシウム含有銅合金下地層112中において、Caおよび酸素の濃度が更に高い濃縮層が形成される。この濃縮層は、Ca:2~30モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する。
 これにより酸素-カルシウム含有銅合金下地層112は、この濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層(図示せず)に変化して、酸素-カルシウム濃縮層含有銅合金下地層およびCu層とからなる複合銅合金膜が生成する。ドレイン電極膜およびソース電極膜は、この酸素-カルシウム濃縮層含有銅合金下地層およびCu層とからなる複合銅合金膜を有するため、バリア膜11に対する密着性が格段に向上する。
(c)図3の断面図に示される密着性に優れたドレイン電極膜5およびソース電極膜6を有する本発明の第2の態様の薄膜トランジスター中間体210は、以下の方法により作製できる。
 薄膜トランジスターのバリア膜として従来から知られているMo膜、Ti膜などの金属膜よりも、酸化ケイ素(SiO)膜をバリア膜として使用することによって、ドレイン電極膜およびソース電極膜の密着性を更に向上させることができるため、好ましい。
 このことから、まず、図4の断面図に示されるように、ガラス基板1の上にゲート電極膜2を形成し、前記ガラス基板1およびゲート電極膜2の上に窒化珪素膜3を形成し、前記窒化珪素膜3の上にnアモルファスSi半導体膜4を形成し、前記nアモルファスSi半導体膜4の上にnアモルファスSiオーミック膜4´を形成し、前記nアモルファスSiオーミック膜4´の上に酸化ケイ素(SiO)膜からなるバリア膜11を形成する。
 次に、前記酸化ケイ素(SiO)膜からなるバリア膜11の上に、酸素-Ca(Al、Sn、Sb)銅合金中間体下地層212を形成し、前記酸素-Ca(Al、Sn、Sb)銅合金中間体下地層212の上にCu合金層213を形成する。この酸素-Ca(Al、Sn、Sb)銅合金中間体下地層212とCu合金層213によって、複合銅合金膜214が構成される。前記酸素-Ca(Al、Sn、Sb)銅合金中間体下地層212は、Ca:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する銅合金下地層(以下、この成分組成を有する銅合金下地層を「酸素-Ca(Al、Sn、Sb)銅合金中間体下地層」という)である。以上により、積層体209が作製される。
 この積層体209において、ゲート電極2の真上の部分の複合銅合金膜214を湿式エッチングし、さらに前記酸化ケイ素膜からなるバリア膜11およびnアモルファスSiオーミック膜4´をプラズマエッチングする。これにより分離溝7を形成して、nアモルファスSi半導体膜4を露出させ、それによってドレイン電極膜5およびソース電極膜6を形成する。以上により図3の断面図に示される第2の態様の薄膜トランジスター中間体210を作製できる。
(d)この図3に示される第2の態様の薄膜トランジスター中間体210に水素プラズマ処理を施すことによって、更に密着性に優れたドレイン電極膜およびソース電極膜を有する本発明の第2の態様の薄膜トランジスターを作製できる。
 第2の態様の薄膜トランジスター中間体210に水素プラズマ処理を施すと、酸素-Ca(Al、Sn、Sb)銅合金中間体下地層212中において、Ca、Al、Sn、Sbおよび酸素の濃度が更に高い濃縮層が形成される。この濃縮層は、Ca:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する。
 これにより酸素-Ca(Al、Sn、Sb)銅合金中間体下地層212は、この濃縮層を有する銅合金下地層(以下、この濃縮層を有する銅合金下地層を「酸素-Ca(Al、Sn、Sb)濃縮層含有銅合金下地層」という)(図示せず)に変化して、酸素-Ca(Al、Sn、Sb)濃縮層含有銅合金下地層およびCu合金層とからなる複合銅合金膜が生成する。ドレイン電極膜およびソース電極膜は、この酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層およびCu合金層とからなる複合銅合金膜を有するため、バリア膜11に対する密着性が格段に向上する。
 本発明は、かかる研究結果に基づいてなされたものであって、以下の要件を有する。
(1)本発明の第1の態様の薄膜トランジスターは、ガラス基板と、前記ガラス基板の上に形成されたゲート電極膜と、前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有する。
 前記ドレイン電極膜および前記ソース電極膜は、少なくとも前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-カルシウム濃縮層含有銅合金下地層と、前記酸素-カルシウム濃縮層含有銅合金下地層の上に形成されたCu層とからなる複合銅合金膜を有する。
 前記酸素-カルシウム濃縮層含有銅合金下地層は、濃縮層を有する。
 前記濃縮層は、Ca:2~30モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む。
(2)本発明の第1の態様の薄膜トランジスター中間体は、ガラス基板と、前記ガラス基板の上に形成されたゲート電極膜と、前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有する。
 前記ドレイン電極膜および前記ソース電極膜は、前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-カルシウム含有銅合金下地層と、前記酸素-カルシウム含有銅合金下地層の上に形成されたCu層とからなる複合銅合金膜を有する。
 前記酸素-カルシウム含有銅合金下地層は、Ca:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む。
(3)本発明の第2の態様の薄膜トランジスターは、ガラス基板と、前記ガラス基板の上に形成されたゲート電極膜と、前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有する。
 前記ドレイン電極膜および前記ソース電極膜は、少なくとも前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層と、前記酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層の上に形成されたCu合金層とからなる複合銅合金膜を有する。
 前記酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層は、濃縮層を有する銅合金下地層である。
 前記濃縮層は、Ca:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む。
(4)本発明の第2の態様の薄膜トランジスターでは、前記酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層の上に形成されたCu合金層は、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%を含有し、残部としてCuおよび不可避不純物を含んでもよい。
(5)本発明の第2の態様の薄膜トランジスター中間体は、ガラス基板と、前記ガラス基板の上に形成されたゲート電極膜と、前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有する。
 前記ドレイン電極膜および前記ソース電極膜は、前記酸化ケイ素膜からなるバリア膜に接して形成されている酸素-Ca(Al,Sn,Sb)銅合金中間体下地層と、前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層の上に形成されたCu合金層とからなる複合銅合金膜を有する。
 前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層は、Ca:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む。
(6)本発明の第2の態様の薄膜トランジスター中間体では、前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層の上に形成されたCu合金層は、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%を含有し、残部としてCuおよび不可避不純物を含んでもよい。
 本発明の第1の態様の薄膜トランジスター中間体では、バリア膜として、酸化ケイ素(SiO)膜が使用されている。さらにドレイン電極膜およびソース電極膜として、酸素およびCaを含む酸素-カルシウム銅合金下地膜とCu層とからなる複合銅合金膜が使用されているので、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性がさらに優れている。このため、例えば、この第1の態様の薄膜トランジスター中間体の搬送時に振動が付与されても、ドレイン電極膜およびソース電極膜の剥離による故障が起こる可能性が一段と少ない。さらにnアモルファスSiオーミック膜4´の表面を空スパッタするだけでバリア膜の酸化ケイ素(SiO)膜を形成することができるので、製造コストを下げることができる。
 本発明の第1の態様の薄膜トランジスターは、前記した第1の態様の薄膜トランジスター中間体を水素プラズマ処理して得られ、Caおよび酸素をさらに高濃度で含有する濃縮層が生成している。この濃縮層を含む酸素-カルシウム濃縮層含有銅合金下地膜を有することにより、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性が更に優れたものとなり、この第1の態様の薄膜トランジスターに激しい振動が付与されても、ドレイン電極膜およびソース電極膜の剥離による故障が起こる可能性が皆無となる。
 本発明の第2の態様の薄膜トランジスター中間体では、バリア膜として、酸化ケイ素(SiO)膜が使用されている。さらにドレイン電極膜およびソース電極膜として、Ca、Al、Sn、Sbおよび酸素を含む酸素-Ca(Al、Sn、Sb)銅合金中間体下地膜とCu合金層とからなる複合銅合金膜が使用されているので、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性がさらに優れている。このため、例えば、この第2の態様の薄膜トランジスター中間体の搬送時に振動が付与されても、ドレイン電極膜およびソース電極膜の剥離による故障が起こる可能性が一段と少ない。さらにnアモルファスSiオーミック膜4´の表面を空スパッタするだけでバリア膜の酸化ケイ素(SiO)膜を形成することができるので、製造コストを下げることができる。
 本発明の第2の態様の薄膜トランジスターは、前記した第2の態様の薄膜トランジスター中間体を水素プラズマ処理して得られ、Ca、Al、Sn、Sbおよび酸素をさらに高濃度で含有する濃縮層が生成している。この濃縮層を含む酸素-Ca(Al、Sn、Sb)濃縮層含有銅合金下地膜を有することにより、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性が更に優れたものとなり、この第2の態様の薄膜トランジスターに激しい振動が付与されても、ドレイン電極膜およびソース電極膜の剥離による故障が起こる可能性が皆無となる。
本発明の第1の態様(実施形態)の薄膜トランジスター中間体の断面概略説明図である。 本発明の第1の態様(実施形態)の薄膜トランジスター中間体を作製するための積層体の断面概略説明図である。 本発明の第2の態様(実施形態)の薄膜トランジスター中間体の断面概略説明図である。 本発明の第2の態様(実施形態)の薄膜トランジスター中間体を作製するための積層体の断面概略説明図である。 従来の薄膜トランジスター中間体の断面概略説明図である。 従来の薄膜トランジスター中間体を作製するための積層体の断面概略説明図である。
 次に、本発明の構成について図面を参照して説明する。
(第1の実施形態)
 この第1の実施形態は、前述した本発明の第1の態様に相当する。
 第1の実施形態の薄膜トランジスターおよび薄膜トランジスター中間体について、その製造方法と共に図面に基づいて詳細に説明する。
 図1は、第1の実施形態の薄膜トランジスター中間体の断面図であり、図2は、第1の実施形態の薄膜トランジスター中間体を作製するための積層体の断面図である。
 図1に示される第1の実施形態の薄膜トランジスター中間体を作製するには、まず、図2の断面図に示されるように、ガラス基板1の表面に銅膜からなるゲート電極膜2を形成し、このゲート電極膜2およびガラス基板1の上に窒化珪素(SiN)膜3を形成し、さらにこの窒化珪素(SiN)膜3の上にnアモルファスSi半導体膜4を形成し、前記nアモルファスSi半導体膜4の上にnアモルファスSiオーミック膜4´を形成し、さらにこのnアモルファスSiオーミック膜4´の上に酸化ケイ素(SiO)膜からなるバリア膜11を形成する。
 この酸化ケイ素(SiO)膜からなるバリア膜11は、通常のPVDまたはCVDによっても形成できるが、スパッタ装置内の雰囲気を酸素または酸素を含む不活性ガス雰囲気となるように保持しながら空スパッタすることにより、nアモルファスSiオーミック膜4´の表面を酸化させ、これによりバリア膜11を形成することができる。
 このバリア膜11の上に、酸素-カルシウム含有銅合金下地層112とCu層113とからなる複合銅合金膜114を形成する。前記酸素-カルシウム含有銅合金下地層112は、Ca:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する。これにより図2に示される積層体109を作製する。
 この酸素-カルシウム含有銅合金下地層112およびCu層113とからなる複合銅合金膜114は、Ca:0.01~15モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する銅合金ターゲットを用い、以下の方法により形成できる。
 まず、酸素を含む不活性ガス雰囲気中でスパッタすることにより、酸素-カルシウム含有銅合金下地膜112を形成する。その後、酸素の供給を停止して、雰囲気を不活性ガス雰囲気とし、この不活性ガス雰囲気中においてスパッタすることにより、Cu層113を形成する。
 Ca:0.01~15モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する銅合金ターゲットを用いて、酸素を含む不活性ガス雰囲気中においてスパッタすると、Ca:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する酸素-カルシウム含有銅合金下地層が形成される。
 上記組成と同じ成分組成を有する銅合金ターゲットを用いて、不活性ガス雰囲気中においてスパッタしても、Caを含有するカルシウム含有銅合金膜は形成されず、純銅に近いCaを含まない成分組成を有するCu層113が形成される。
 このようにCu層113は、Ca:0.01~15モル%を含有する銅合金ターゲットを用いてスパッタすることにより成膜するため、Cu層113には微量のCaが混入することがあるが、その量は極めて少なく、0.05モル%以下であり、不可避不純物の範囲内である。したがって、Cu層113は、ほぼ銅と同じ組成を有する。
 図2に示される積層体109において、ゲート電極2の真上の部分の複合銅合金膜114を湿式エッチングし、さらにバリア膜11およびnアモルファスSiオーミック膜4´をプラズマエッチングする。これにより分離溝7を形成してnアモルファスSi半導体膜4を露出させる。これによって分離溝7の両側に位置する複合銅合金膜114からなるドレイン電極膜5およびソース電極膜6を形成する。以上により図1の断面図に示される第1の実施形態の薄膜トランジスター中間体110を作製できる。
 プラズマエッチングした分離溝7を有する第1の実施形態の薄膜トランジスター中間体110を水素プラズマ処理することにより、第1の実施形態の薄膜トランジスターを作製できる。
 この第1の実施形態の薄膜トランジスターは、水素プラズマ処理することにより、図1に示される薄膜トランジスター中間体110における酸素-カルシウム含有銅合金下地層112が、濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層に変化して作製されたものであるから、その断面形状構造は図1と同じである。したがって、第1の実施形態の薄膜トランジスターの図面に基づく説明は省略した。
 第1の実施形態の薄膜トランジスター中間体を水素プラズマ処理する条件は、背景技術で述べた水素プラズマ処理の条件と同じである。
 この水素プラズマ処理によって、第1の実施形態の薄膜トランジスター中間体のCa:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する酸素-カルシウム含有銅合金下地層112は、Caおよび酸素の濃度が更に高い成分組成の濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層(図示せず)に変化する。前記濃縮層は、Ca:2~30モル%、酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む。
 この酸素-カルシウム濃縮層含有銅合金下地層が生成することによって、薄膜トランジスターにおいて、ドレイン電極膜5およびソース電極膜6のバリア膜に対する密着性が格段に向上する。
 前記成分組成を有する酸素-カルシウム含有銅合金下地層112を有する第1の実施形態の薄膜トランジスター中間体に水素プラズマ処理を施すと、Caおよび酸素の濃度がさらに高い前記成分組成の濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層が生成するが、その理由は、水素プラズマ処理を施すことにより、前記成分組成を有する酸素-カルシウム含有銅合金下地層112に含まれているCaおよび酸素が、バリア膜11の方向に拡散移動して、Caおよび酸素の濃度がさらに高い濃縮層がバリア膜11近傍に生成するからである。
 また、このようにして生成したCa:2~30モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成の濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層が、酸化ケイ素からなるバリア膜に対する密着性が格段に優れている理由としては、以下の点が考えられる。
 水素プラズマ処理中に、Ca:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する酸素-カルシウム含有銅合金下地層112に水素が拡散し、膜中の酸素と反応して水が発生する。この水と膜中の酸化カルシウムが反応して水酸化カルシウムが生成する。そして、カルシウムイオンと水酸化イオンとなって酸化ケイ素膜からなるバリア膜と反応し、強固なカルシウムシリケートが、酸化ケイ素膜からなるバリア膜に接して生成する。これによってバリア膜に対する密着性が格段に向上するものと考えられる。
 次に、第1の実施形態の薄膜トランジスター中間体のドレイン電極膜およびソース電極膜を構成する複合銅合金膜における酸素-カルシウム含有銅合金下地層の成分組成、および第1の実施形態の薄膜トランジスターのドレイン電極膜およびソース電極膜を構成する複合銅合金膜における酸素-カルシウム濃縮層含有銅合金下地層に含まれる濃縮層の成分組成を前述のごとく限定した理由を説明する。
(1)第1の実施形態の薄膜トランジスター中間体の酸素-カルシウム含有銅合金下地層:
 この発明の薄膜トランジスター中間体のドレイン電極膜およびソース電極膜を構成する複合銅合金膜における酸素-カルシウム含有銅合金下地層にCaおよび酸素を共存させて含ませることにより、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性を向上させることができる。
 しかし、Ca:0.01モル%未満、又は酸素:1モル%未満では、水素プラズマ処理時の密着性低下防止作用が不足するので好ましくない。
 一方、Caを10モル%を越えて含有するためには、Caを15モル%を越えて含有する銅合金ターゲットを作製しなければならない。またCaを15モル%を越えて含有する銅合金ターゲットを用いて、酸素を導入する反応性スパッタを行っても、スパッタ開始時に放電が立たなくなるので、効率良くスパッタをおこなうことできない。
 なお、Caを2.5モル%を越えて含有する銅合金は、熱間圧延時に割れが発生してターゲットを作製することができなくなる。したがって、Caを2.5モル%を越えて含有するターゲットは、Cu-Ca母合金粉末をホットプレスすることにより作製することが好ましい。
 また、20%を越えて酸素を含む不活性ガス雰囲気中でスパッタリングすると、異常放電が生じるため、酸素を20モル%を越えて含有する酸素-カルシウム含有銅合金下地層を形成できない。
 これらの理由から、第1の実施形態の薄膜トランジスター中間体の複合銅合金膜を構成する酸素-カルシウム含有銅合金下地層において、Caの含有量を0.01~10モル%とし、酸素:の含有量を1~20モル%に定めた。
 なお、第1の実施形態の薄膜トランジスター中間体において、複合銅合金膜を構成する酸素-カルシウム含有銅合金下地層に含まれるCaの量が少ない場合、水素プラズマ処理を施すことにより作製される薄膜トランジスターの酸素-カルシウム濃縮層含有銅合金下地層に含まれるCaの量が少なくなり、そのCaの量が2モル%に達しないと考えられる。しかし薄膜トランジスター中間体において、複合銅合金膜を構成する酸素-カルシウム含有銅合金下地層に含まれるCaの量が少ないときは、その酸素-カルシウム含有銅合金下地層の厚さをさらに厚くすることによって、作製される薄膜トランジスターの酸素-カルシウム濃縮層含有銅合金下地層中の濃縮層に含まれるCaの量を2モル%以上とすることができることを確認している。
 酸素-カルシウム含有銅合金下地層の厚さは、好ましくは10~100nmである。この場合、酸素-カルシウム含有銅合金下地層に含まれるCaの量が少なくとも、作製される薄膜トランジスターの酸素-カルシウム濃縮層含有銅合金下地層中の濃縮層に含まれるCaの量を安定して2~30モル%とすることができる。
(2)第1の実施形態の薄膜トランジスターの酸素-カルシウム濃縮層含有銅合金下地層:
 この薄膜トランジスター中間体を水素プラズマ処理することにより、薄膜トランジスター中間体の前記成分組成を有する酸素-カルシウム含有銅合金下地層112は、Ca:2~30モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有し、Caおよび酸素の濃度がさらに高い濃縮層を有するように変化する。
 この成分組成の濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層が生成することにより、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性をさらに向上させることができる。
(第2の実施形態)
 この第2の実施形態は、前述した本発明の第2の態様に相当する。
 第2の実施形態の薄膜トランジスターおよび薄膜トランジスター中間体について、その製造方法と共に図面に基づいて詳細に説明する。
 図3は、第2の実施形態の薄膜トランジスター中間体の断面図であり、図4は、第2の実施形態の薄膜トランジスター中間体を作製するための積層体の断面図である。
 図3に示される第2の実施形態の薄膜トランジスター中間体を作製するには、まず、図4の断面図に示されるように、ガラス基板1の表面に銅膜からなるゲート電極膜2を形成し、このゲート電極膜2およびガラス基板1の上に窒化珪素(SiN)膜3を形成し、さらにこの窒化珪素(SiN)膜3の上にnアモルファスSi半導体膜4を形成し、前記nアモルファスSi半導体膜4の上にnアモルファスSiオーミック膜4´を形成し、さらにこのnアモルファスSiオーミック膜4´の上に酸化ケイ素(SiO)膜からなるバリア膜11を形成する。
 この酸化ケイ素(SiO)膜からなるバリア膜11は、通常のPVDまたはCVDによっても形成できるが、スパッタ装置内の雰囲気を酸素または酸素を含む不活性ガス雰囲気となるように保持しながら空スパッタすることにより、nアモルファスSiオーミック膜4´の表面を酸化させ、これによりバリア膜11を形成することができる。
 このバリア膜11の上に、酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212とCu合金層213とからなる複合銅合金膜214を形成する。前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212は、Ca:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する。これにより図4に示される積層体209を作製する。
 この酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212およびCu合金層213とからなる複合銅合金膜214は、Ca:0.2~15モル%、及びAl、SnおよびSbから選択される1種または2種以上を合計で0.1~2モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する銅合金ターゲットを用い、以下の方法により形成できる。
 まず、酸素を含む不活性ガス雰囲気中でスパッタすることにより、酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212を形成する。その後、酸素の供給を停止して、雰囲気を、酸素を含まない不活性ガス雰囲気とし、この酸素を含まない不活性ガス雰囲気中においてスパッタすることにより、Cu合金層213を形成する。
 Ca:0.2~15モル%、及びAl、SnおよびSbから選択される1種または2種以上を合計で0.1~2モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する銅合金ターゲットを用いて、酸素を含む不活性ガス雰囲気中においてスパッタすると、Ca:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層が形成される。
 なお、後述するように、上記組成と同じ成分組成を有する銅合金ターゲットを用いて、酸素を含まない不活性ガス雰囲気中においてスパッタしても、Caを含有するカルシウム含有銅合金膜は形成されない。
 Ca:0.2~15モル%、及びAl、SnおよびSbから選択される1種または2種以上を合計で0.1~2モル%を含有し、残部としてCuおよび不可避不純物を含む銅合金ターゲットを用いて、酸素を含まない不活性ガス雰囲気中においてスパッタすることによって、Cu合金層213は形成される。
 Cu合金層213には、微量のCaが混入することがあるが、その量は極めて少なく、0.05モル%以下であり、不可避不純物の範囲内である。したがって、Ca:0.2~15モル%、及びAl、SnおよびSbから選択される1種または2種以上を合計で0.1~2モル%を含有し、残部としてCuおよび不可避不純物を含む銅合金ターゲットを用いて、酸素を含まない不活性ガス雰囲気中においてスパッタして形成されるCu合金層213は、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有するようになる。
 図4に示される積層体209において、ゲート電極2の真上の部分の複合銅合金膜214を湿式エッチングし、さらにバリア膜11およびnアモルファスSiオーミック膜4´をプラズマエッチングする。これにより分離溝7を形成してnアモルファスSi半導体膜4を露出させる。これによって分離溝7の両側に位置する複合銅合金膜214からなるドレイン電極膜5およびソース電極膜6を形成する。以上により図3の断面図に示される第2の実施形態の薄膜トランジスター中間体210を作製できる。
 プラズマエッチングした分離溝7を有する第2の実施形態の薄膜トランジスター中間体210を水素プラズマ処理することにより、第2の実施形態の薄膜トランジスターを作製できる。
 この第2の実施形態の薄膜トランジスターは、水素プラズマ処理することにより、図3に示される薄膜トランジスター中間体210における酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212が、濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層に変化して作製されたものであるから、その断面の形状構造は図3と同じである。したがって、第2の実施形態の薄膜トランジスターの図面に基づく説明は省略した。
 第2の実施形態の薄膜トランジスター中間体を水素プラズマ処理する条件は、背景技術で述べた水素プラズマ処理の条件と同じである。
 この水素プラズマ処理によって、第2の実施形態の薄膜トランジスター中間体のCa:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212は、Ca、Al、Sn、Sbおよび酸素の濃度が更に高い成分組成の濃縮層を有する酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層(図示せず)に変化する。前記濃縮層は、Ca:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む。
 この酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層が生成することによって、薄膜トランジスターにおいて、ドレイン電極膜5およびソース電極膜6のバリア膜に対する密着性が格段に向上する。
 前述のように、前記成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212を有する第2の実施形態の薄膜トランジスター中間体に水素プラズマ処理を施すと、Ca、Al、Sn、Sbおよび酸素の濃度がさらに高い前記成分組成を有する濃縮層を有する酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層が生成するが、その理由は、水素プラズマ処理を施すことにより、前記成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212に含まれているCa、Al、Sn、Sbおよび酸素が、バリア膜11の方向に拡散移動して、Ca、Al、Sn、Sbおよび酸素の濃度がさらに高い濃縮層がバリア膜11近傍に生成するからである。
 また、このようにして生成したCa:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成の濃縮層を有する酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層が、酸化ケイ素からなるバリア膜に対する密着性が格段に優れている理由としては、以下の点が考えられる。
 水素プラズマ処理中に、Ca:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212に水素が拡散し、膜中の酸素と反応して水が発生する。この水と膜中の酸化カルシウムが反応して水酸化カルシウムが生成する。そして、カルシウムイオンと水酸化イオンとなって酸化ケイ素膜からなるバリア膜と反応し、強固なカルシウムシリケートが、酸化ケイ素膜からなるバリア膜に接して生成する。これによってバリア膜に対する密着性が格段に向上するものと考えられる。
 また、Al,Sn,Sbについても、同様に、拡散した水素と膜中の酸素との反応で発生した水と、膜中の酸化Al、酸化Sn、酸化Sbが反応して水酸化Al、水酸化Sn、水酸化Sbがそれぞれ生成する。そしてAlイオン、Snイオン、Sbイオンと水酸化イオンとなって酸化ケイ素膜からなるバリア膜と反応し、強固なAlシリケート、Snシリケート、Sbシリケートが、酸化ケイ素膜からなるバリア膜に接して生成する。これによってバリア膜に対する密着性が格段に向上するものと考えられる。
 次に、第2の実施形態の薄膜トランジスター中間体のドレイン電極膜およびソース電極膜を構成する複合銅合金膜における酸素-Ca(Al,Sn,Sb)銅合金中間体下地層の成分組成、および第2の実施形態の薄膜トランジスターのドレイン電極膜およびソース電極膜を構成する複合銅合金膜における酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層に含まれる濃縮層の成分組成を前述のごとく限定した理由を説明する。
(1)第2の実施形態の薄膜トランジスター中間体における酸素-Ca(Al,Sn,Sb)銅合金中間体下地層:
 この薄膜トランジスター中間体のドレイン電極膜およびソース電極膜を構成する複合銅合金膜における酸素-Ca(Al,Sn,Sb)銅合金中間体下地層にCa、Al、Sn、Sbおよび酸素を共存させて含ませることにより、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性を向上させることができる。
 しかし、Ca:0.2モル%未満、Al、SnおよびSbから選択される1種または2種以上を合計で0.05モル%未満、又は酸素:1モル%未満では、水素プラズマ処理時の密着性低下防止作用が不足するので好ましくない。
 一方、Caを10モル%を越えて含有するためには、Caを15モル%を越えて含有する銅合金ターゲットを作製しなければならない。またCaを15モル%を越えて含有する銅合金ターゲットを用いて、酸素を導入する反応性スパッタを行っても、スパッタ開始時に放電が立たなくなるので、効率良くスパッタを行うことができない。
 なお、Caを2.5モル%を越えて含有する銅合金は、熱間圧延時に割れが発生してターゲットを作製することができなくなる。したがって、Caを2.5モル%を越えて含有するターゲットは、Cu母合金粉末をホットプレスすることにより作製することが好ましい。
 さらに、Al、SnおよびSbから選択される1種または2種以上を合計で2モル%を越えて含有すると、成膜されたCu合金膜の抵抗値が上昇し、ドレイン電極膜およびソース電極膜として使用するには好ましくない。
 また、20%を越えて酸素を含む不活性ガス雰囲気中でスパッタリングすると、異常放電が生じるため、酸素を20モル%を越えて含有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層を形成できない。
 これらの理由から、第2の実施形態の薄膜トランジスター中間体の複合銅合金膜を構成する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層において、Caの含有量を0.2~10モル%とし、Al、SnおよびSbから選択される1種または2種以上の含有量を合計で0.05~2モル%とし、酸素の含有量を1~20モル%に定めた。
(2)第2の実施形態の薄膜トランジスターの酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層:
 この薄膜トランジスター中間体を水素プラズマ処理することにより、薄膜トランジスター中間体の前記成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層212は、水素プラズマ処理中に、Ca:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含む成分組成を有し、Ca、Al、Sn、Sbおよび酸素の濃度がさらに高い濃縮層を有するように変化する。
 この成分組成の濃縮層を有する酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層が生成することにより、酸化ケイ素(SiO)膜からなるバリア膜に対する密着性をさらに向上させることができる。
 純度:99.99質量%の無酸素銅を用意し、この無酸素銅をArガス雰囲気中、高純度グラファイトモールド内で高周波溶解した。得られた溶湯にCaを添加し溶解して表1に示される成分組成を有する溶湯となるように成分調整した。
 得られた溶湯を、冷却されたカーボン鋳型に鋳造し、さらに熱間圧延し、その後、最終的に歪取り焼鈍した。
 得られた圧延体の表面を旋盤加工して外径:152mm、厚さ:5mmの寸法を有し、表1に示される成分組成を有するターゲット1A~1Oを作製した。さらに、純度:99.999質量%の無酸素銅から純銅ターゲット1Pを作製した。
Figure JPOXMLDOC01-appb-T000001
 ガラス板(縦:50mm、横:50mm、厚さ:0.7mmの寸法を有するコーニング社製1737のガラス板)と、その表面に形成された100nmの厚さのnアモルファスSi膜とからなる基板をスパッタ装置に設置した。さらにターゲット1A~1Pを、基板とターゲットの距離が70mmとなるようにスパッタ装置に設置した。スパッタ装置の電源として直流方式を採用し、スパッタ装置の真空容器を到達真空度4×10-5Paになるまで真空引きした。
 次に、酸素を表2~3に示される割合で含む酸素-Ar混合ガスをスパッタガスとして真空容器内に流し、スパッタ雰囲気圧力を0.67Paとした。その後、出力:600Wで1分間シャッターを閉じた状態で放電(空スパッタ)して、nアモルファスSi膜表面に約10nm厚のシリコン酸化膜を形成した。
 そして、シャッターを開き、出力:600Wで放電することにより、表2~3に示される厚さおよび成分組成を有する酸素-カルシウム含有銅合金下地層を成膜した。引き続いて酸素の供給を停止し、Arガスのみで0.67Paの圧力でスパッタすることにより、厚さ:250nmを有し、Cuおよび不可避不純物からなるCu層を成膜した。
 以上により、本発明例の薄膜トランジスター中間体用複合銅合金膜101~114、比較例の薄膜トランジスター中間体用複合銅合金膜101~103および従来例の薄膜トランジスター中間体用複合銅合金膜101を成膜した。
 このようにして得られた薄膜トランジスター中間体用複合銅合金膜について、下記の条件で碁盤目付着試験を行った。
 碁盤目付着試験:
 JIS-K5400に準じ、薄膜トランジスター中間体用複合銅合金膜の表面に、カッターを用いて、縦横11本ずつ1mm間隔で切り込みを入れ、100個の升目膜(正方形に区切られた膜)を作った。3M社製スコッチテープを密着させたのち一気に引き剥がし、ガラス基板中央部の10mm角内でガラス基板に付着していた升目膜において、剥離が生じた升目膜の数を測定した。
 得られた結果を、表2,3中の項目『剥離した升目の数(個/100)』に示し、ガラス基板に対する密着性を評価するために用いた。
 なお、薄膜トランジスター中間体用複合銅合金膜における酸素-カルシウム含有銅合金下地層に含まれるCaおよび酸素の分析は、走査型オージェ電子分光分析装置(形式:PHI700、アルバック・ファイ株式会社製)を用い、以下の条件で行った。
(電子銃)
 加速電圧:5kV
 照射電流:10nA(ファラデーカップで測定)
 ビーム径:10μm(直径)
(イオン銃)
 加速電圧:1kV
 エミッション電流:10mA
 ラスター幅:1×1mm
(試料ステージ)
 傾斜:30°
 ローテーション:Zalar
 回転スピード:0.8rpm
(分析条件)
 スパッターモード:Alternating W/Zalar
 スパッターインターバル:1分
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2~3に示される結果から、本発明例の薄膜トランジスター中間体用複合銅合金膜101~114は、従来例の薄膜トランジスター中間体用複合銅合金膜101に比べて、密着性が優れていることがわかった。
 第1の実施形態の条件から外れた値を有する比較例の薄膜トランジスター中間体用複合銅合金膜101~102は、密着性がやや劣るので好ましくない。
 比較例の薄膜トランジスター中間体用複合銅合金膜103を成膜する際には、放電が不安定となり、異常放電が発生した。これは、酸素-Ar混合スパッタガス中に含まれる酸素濃度が25体積%であったために、ターゲット表面に酸化膜が形成されたためであると考えられる。異常放電の発生により、複数回、放電が停止したが、その度に放電を再開し、所定の厚さの複合銅合金膜を形成した。比較例の薄膜トランジスター中間体用複合銅合金膜103のように、酸素を20モル%を越えて含有する酸素-カルシウム含有銅合金下地層は、成膜中に異常放電が発生するため、安定して成膜できなかった。
 成膜することができた表2~3に示される本発明例の薄膜トランジスター中間体用複合銅合金膜101~114、比較例の薄膜トランジスター中間体用複合銅合金膜101~102および従来例の薄膜トランジスター中間体用複合銅合金膜101に、以下の条件で水素プラズマ処理を施した。これにより、本発明例の薄膜トランジスター用複合銅合金膜101~114、比較例の薄膜トランジスター用複合銅合金膜101~102および従来例の薄膜トランジスター用複合銅合金膜101を作製した。これら薄膜トランジスター用複合銅合金膜は、表4~5に示される成分組成の濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層およびCu層からなる。
(水素プラズマ処理の条件)
 ガス:100%水素ガス
 水素ガス流量:500SCCM
 水素ガス圧:100Pa
 処理温度:300℃
 RF電力流密度:0.1W/cm
 処理時間:2分
 これら薄膜トランジスター用複合銅合金膜について、四探針法により比抵抗値を測定した。さらに前述した実施例1と同じ条件で碁盤目付着試験を行った。
 得られた結果を表4~5に示し、薄膜トランジスター用複合銅合金膜の評価を行った。
 なお、薄膜トランジスター用複合銅合金膜の酸素-カルシウム濃縮層含有銅合金下地層に含まれる濃縮層のCaおよび酸素の分析は、実施例1と同じ条件で行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4~5に示される結果から、本発明例の薄膜トランジスター用複合銅合金膜101~114は、従来例の薄膜トランジスター用複合銅合金膜101に比べて、比抵抗は同等で大差は無いことがわかった。しかし、本発明例の薄膜トランジスター用複合銅合金膜101~114は、従来例の薄膜トランジスター用複合銅合金膜101よりも密着性が格段に優れていることがわかった。このため、本発明例の薄膜トランジスター用複合銅合金膜101~114からなる電極膜を内蔵した本発明の第1の実施形態の薄膜トランジスターは、電極膜の剥離による故障が極めて少なくなることがわかる。
 第1の実施形態の条件から外れた値を有する比較例の薄膜トランジスター用複合銅合金膜101~102は、比抵抗および密着性の少なくともいずれかが劣るので、薄膜トランジスターの電極膜として好ましくないことがわかった。
 真空排気後にArガスを導入して雰囲気をArガス雰囲気にした高周波溶解炉により溶解し鋳造して、Ca含有量の異なるCu-Ca母合金インゴットを作製した。これらCa含有量の異なるCu-Ca母合金インゴットを再溶解し、得られた溶湯を、温度:1250℃に保持しながら、圧力:3MPaのArガス流にてガスアトマイズすることにより、表6に示される成分組成を有するCu-Ca母合金粉末を作製した。
 得られたCu-Ca母合金粉末を分級して、最大粒径:100μm以下のCu-Ca母合金粉末を作製した。次いで、このCu-Ca母合金粉末を、離型剤を塗布した黒鉛モールドに充填し、温度:800℃、圧力:15MPa、保持時間:30分間の条件でホットプレスすることにより、ホットプレス体を作製した。
 このホットプレス体を機械加工して、表6に示される成分組成を有するターゲット1a~1nを作製した。
Figure JPOXMLDOC01-appb-T000006
 次に、ガラス板(縦:50mm、横:50mm、厚さ:0.7mmの寸法を有するコーニング社製1737のガラス板)と、その表面に形成された100nmの厚さのnアモルファスSi膜とからなる基板をスパッタ装置に設置した。さらに表6のターゲット1a~1nを、基板とターゲットの距離が70mmとなるようにスパッタ装置に設置した。スパッタ装置の電源として直流方式を採用し、スパッタ装置の真空容器を到達真空度4×10-5Paになるまで真空引きした。
 次に、酸素を表7に示される割合で含む酸素-Ar混合ガスをスパッタガスとして真空容器内に流し、スパッタ雰囲気圧力を0.67Paとした。その後、出力:600Wで1分間シャッターを閉じた状態で放電(空スパッタ)して、nアモルファスSi膜表面に約10nm厚のシリコン酸化膜を形成した。
 そして、シャッターを開き、出力:600Wで放電することにより、厚さ:50nmを有し、かつ表7に示される成分組成を有する酸素-カルシウム含有銅合金下地層を成膜した。引き続いて酸素の供給を停止し、Arガスのみで0.67Paの圧力でスパッタすることにより、厚さ:250nmを有し、Cuおよび不可避不純物からなるCu層を成膜した。
 以上により、本発明例の薄膜トランジスター中間体用複合銅合金膜115~127を成膜した。なお、比較例104において、表6のCaを15モル%を越えて含むターゲット1nを用いて、成膜を試みたが、スパッタ開始時に放電が立たなかった。このため、比較例の薄膜トランジスター中間体用複合銅合金膜104は成膜できなかった。
 このようにして得られた薄膜トランジスター中間体用複合銅合金膜について、実施例1と同じ条件で碁盤目付着試験を行った。得られた結果を、表7中の項目『剥離した升目の数(個/100)』に示し、ガラス基板に対する密着性を評価するために用いた。
 なお、本発明例の薄膜トランジスター中間体用複合銅合金膜115~127における酸素-カルシウム含有銅合金下地層に含まれるCaおよび酸素の分析は、実施例1と同様の条件で、走査型オージェ電子分光分析装置(形式:PHI700、アルバック・ファイ株式会社製)を用いて行った。
Figure JPOXMLDOC01-appb-T000007
 表7に示される結果から、本発明例の薄膜トランジスター中間体用複合銅合金膜115~127は、表3の従来例の薄膜トランジスター中間体用複合銅合金膜101に比べて密着性が優れていることがわかった。
 成膜することができた表7の本発明例の薄膜トランジスター中間体用複合銅合金膜115~127に、実施例2と同じ条件で水素プラズマ処理を施した。これにより、本発明例の薄膜トランジスター用複合銅合金膜115~127を作製した。これら薄膜トランジスター用複合銅合金膜は、表8に示される成分組成の濃縮層を有する酸素-カルシウム濃縮層含有銅合金下地層およびCu層からなる。
 これら薄膜トランジスター用複合銅合金膜について、四探針法により比抵抗値を測定した。さらに前述した実施例1と同じ条件で碁盤目付着試験を行った。
 得られた結果を表8に示し、薄膜トランジスター用複合銅合金膜の評価を行った。
 なお、薄膜トランジスター用複合銅合金膜に含まれる濃縮層のCaおよび酸素の分析は、実施例1と同じ条件で行った。
Figure JPOXMLDOC01-appb-T000008
 表8に示される結果から、本発明例の薄膜トランジスター用複合銅合金膜115~127は、表5の従来例の薄膜トランジスター用複合銅合金膜101に比べて、比抵抗は同等で大差は無いことがわかった。しかし、本発明例の薄膜トランジスター用複合銅合金膜115~127は、従来例の薄膜トランジスター用複合銅合金膜101よりも密着性が格段に優れていることがわかった。このため、本発明例の薄膜トランジスター用複合銅合金膜115~127からなる電極膜を内蔵した本発明の第1の実施形態の薄膜トランジスターは、電極膜の剥離による故障が極めて少なくなることがわかる。
 純度:99.99質量%の無酸素銅を用意し、この無酸素銅をArガス雰囲気中、高純度グラファイトモールド内で高周波溶解した。得られた溶湯に、CaおよびAl、Sn、Sbから選択される1種または2種以上を添加し溶解して表9に示される成分組成を有する溶湯となるように成分調整した。
 得られた溶湯を、冷却されたカーボン鋳型に鋳造し、さらに熱間圧延し、その後、最終的に歪取り焼鈍した。
 得られた圧延体の表面を旋盤加工して外径:152mm、厚さ:6mmの寸法を有し、表9に示される成分組成を有するターゲット2A~2Mを作製した。さらに、純度:99.99質量%の無酸素銅から純銅ターゲット2Nを作製した。
Figure JPOXMLDOC01-appb-T000009
 ガラス板(縦:50mm、横:50mm、厚さ:0.7mmの寸法を有するコーニング社製1737のガラス板)と、その表面に形成された100nmの厚さのnアモルファスSi膜とからなる基板をスパッタ装置に設置した。さらにターゲット2A~2Mを、基板とターゲットの距離が70mmとなるようにスパッタ装置に設置した。スパッタ装置の電源として直流方式を採用し、スパッタ装置の真空容器を到達真空度4×10-5Paになるまで真空引きした。
 次に、酸素を表10に示される割合で含む酸素-Ar混合ガスをスパッタガスとして真空容器内に流し、スパッタ雰囲気圧力を0.67Paとした。その後、出力:600Wで1分間シャッターを閉じた状態で放電(空スパッタ)して、nアモルファスSi膜表面に約10nm厚のシリコン酸化膜を形成した。
 そして、シャッターを開き、出力:600Wで放電することにより、厚さ:50nmであり、かつ表10に示される成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層を成膜した。引き続いて酸素の供給を停止し、Arガスのみで0.67Paの圧力でスパッタすることにより、厚さ:250nmを有し、Cuおよび不可避不純物からなるCu合金層を成膜した。
 以上により、本発明例の薄膜トランジスター中間体用複合銅合金膜201~212、比較例の薄膜トランジスター中間体用複合銅合金膜201~203および従来例の薄膜トランジスター中間体用複合銅合金膜201を成膜した。
 このようにして得られた薄膜トランジスター中間体用複合銅合金膜について、実施例1と同一の条件で碁盤目付着試験を行った。
 得られた結果を、表10中の項目『剥離した升目の数(個/100)』に示し、ガラス基板に対する密着性を評価するために用いた。
 なお、薄膜トランジスター中間体用複合銅合金膜における酸素-Ca(Al,Sn,Sb)銅合金中間体下地層に含まれるCa、Al、Sn、Sbおよび酸素の分析は、走査型オージェ電子分光分析装置(形式:PHI700、アルバック・ファイ株式会社製)を用い、実施例1と同一の条件で行った。
Figure JPOXMLDOC01-appb-T000010
 表10に示される結果から、本発明例の薄膜トランジスター中間体用複合銅合金膜201~212は、従来例の薄膜トランジスター中間体用複合銅合金膜201に比べて、密着性が優れていることがわかった。
 第2の実施形態の条件から外れた値を有する比較例の薄膜トランジスター中間体用複合銅合金膜201~202は、密着性がやや劣るので好ましくない。
 比較例の薄膜トランジスター中間体用複合銅合金膜203を成膜する際には、放電が不安定となり、異常放電が発生した。これは、酸素-Ar混合スパッタガス中に含まれる酸素濃度が25体積%であったために、ターゲット表面に酸化膜が形成されたためであると考えられる。異常放電の発生により、複数回、放電が停止したが、その度に放電を再開し、所定の厚さの複合銅合金膜を形成した。比較例の薄膜トランジスター中間体用複合銅合金膜103のように、酸素を20モル%を越えて含有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層は、成膜中に異常放電が発生するため、安定して成膜できなかった。
 成膜することができた表10に示される本発明例の薄膜トランジスター中間体用複合銅合金膜201~212、比較例の薄膜トランジスター中間体用複合銅合金膜201~202および従来例の薄膜トランジスター中間体用複合銅合金膜201に、実施例2と同一の条件で水素プラズマ処理を施した。これにより、本発明例の薄膜トランジスター用複合銅合金膜201~212、比較例の薄膜トランジスター用複合銅合金膜201~202および従来例の薄膜トランジスター用複合銅合金膜201を作製した。これら薄膜トランジスター用複合銅合金膜は、表11に示される成分組成の濃縮層を含む酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層を有する。
 これら薄膜トランジスター用複合銅合金膜について、四探針法により比抵抗値を測定した。さらに前述した実施例1と同じ条件で碁盤目付着試験を行った。
 得られた結果を表11に示し、薄膜トランジスター用複合銅合金膜の評価を行った。
 なお、薄膜トランジスター用複合銅合金膜の酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層に含まれる濃縮層のCa、Al、Sn、Sbおよび酸素の分析は実施例1と同じ条件で行った。
Figure JPOXMLDOC01-appb-T000011
 表11に示される結果から、本発明例の薄膜トランジスター用複合銅合金膜201~212は、従来例の薄膜トランジスター用複合銅合金膜201に比べて、比抵抗は同等で大差は無いことがわかった。しかし、本発明例の薄膜トランジスター用複合銅合金膜201~212は、従来例の薄膜トランジスター用複合銅合金膜201よりも密着性が格段に優れていることがわかった。このため、本発明例の薄膜トランジスター用複合銅合金膜201~212からなる電極膜を内蔵した本発明の第2の実施形態の薄膜トランジスターは、電極膜の剥離による故障が極めて少なくなることがわかる。
 第2の実施形態の条件から外れた値を有する比較例の薄膜トランジスター用複合銅合金膜201~202は、比抵抗および密着性の少なくともいずれかが劣るので、薄膜トランジスターの電極膜として好ましくないことがわかった。
 真空排気後にArガスを導入して雰囲気をArガス雰囲気にした高周波溶解炉により溶解し鋳造して、Ca、Al、Sn、Sb含有量の異なるCu母合金インゴットを作製した。これら含有量の異なるCu母合金インゴットを再溶解し、得られた溶湯を、温度:1250℃に保持しながら、圧力:3MPaのArガス流にてガスアトマイズすることにより、表12に示される成分組成を有するCu母合金粉末を作製した。
 得られたCu母合金粉末を分級して、最大粒径:100μm以下のCu母合金粉末を作製した。次いで、このCu母合金粉末を、離型剤を塗布した黒鉛モールドに充填し、温度:800℃、圧力:15MPa、保持時間:30分間の条件でホットプレスすることにより、ホットプレス体を作製した。
 このホットプレス体を機械加工して、表12に示される成分組成を有するターゲット2a~2nを作製した。
Figure JPOXMLDOC01-appb-T000012
 次に、ガラス板(縦:50mm、横:50mm、厚さ:0.7mmの寸法を有するコーニング社製1737のガラス板)と、その表面に形成された100nmの厚さのnアモルファスSi膜とからなる基板をスパッタ装置に設置した。さらに表12のターゲット2a~2nを、基板とターゲットの距離が70mmとなるようにスパッタ装置に設置した。スパッタ装置の電源として直流方式を採用し、スパッタ装置の真空容器を到達真空度4×10-5Paになるまで真空引きした。
 次に、酸素を表13に示される割合で含む酸素-Ar混合ガスをスパッタガスとして真空容器内に流し、スパッタ雰囲気圧力を0.67Paとした。その後、出力:600Wで1分間シャッターを閉じた状態で放電(空スパッタ)して、nアモルファスSi膜表面に約10nm厚のシリコン酸化膜を形成した。
 そして、シャッターを開き、出力:600Wで放電することにより、厚さ:50nmを有し、かつ表13に示される成分組成を有する酸素-Ca(Al,Sn,Sb)銅合金中間体下地層を成膜した。引き続いて酸素の供給を停止し、Arガスのみで0.67Paの圧力でスパッタすることにより、厚さ:250nmを有し、Cuおよび不可避不純物からなるCu層を成膜した。
 以上により、本発明例の薄膜トランジスター中間体用複合銅合金膜212~224を成膜した。なお、比較例204において、表12のCaを15モル%を越えて含むターゲットnを用いて、成膜を試みたが、スパッタ開始時に放電が立たなかった。このため、比較例の薄膜トランジスター中間体用複合銅合金膜204は成膜できなかった。
 このようにして得られた薄膜トランジスター中間体用複合銅合金膜について、実施例1と同じ条件で碁盤目付着試験を行った。得られた結果を、表13中の項目『剥離した升目の数(個/100)』に示し、ガラス基板に対する密着性を評価するために用いた。
 なお、本発明例の薄膜トランジスター中間体用複合銅合金膜212~224における酸素-Ca(Al,Sn,Sb)銅合金中間体下地層に含まれるCa、Al,Sn,Sbおよび酸素の分析は、実施例1と同様の条件で、走査型オージェ電子分光分析装置(形式:PHI700、アルバック・ファイ株式会社製)を用いて行った。
Figure JPOXMLDOC01-appb-T000013
 表13に示される結果から、本発明例の薄膜トランジスター中間体用複合銅合金膜212~224は、表10の従来例の薄膜トランジスター中間体用複合銅合金膜201に比べて密着性が優れていることがわかった。
 成膜することができた表13の本発明例の薄膜トランジスター中間体用複合銅合金膜212~224に、実施例2と同じ条件で水素プラズマ処理を施した。これにより、本発明例の薄膜トランジスター用複合銅合金膜212~224を作製した。これら薄膜トランジスター用複合銅合金膜は、表14に示される成分組成の濃縮層を有する酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層およびCu合金層からなる。
 これら薄膜トランジスター用複合銅合金膜について、四探針法により比抵抗値を測定した。さらに前述した実施例1と同じ条件で碁盤目付着試験を行った。
 得られた結果を表14に示し、薄膜トランジスター用複合銅合金膜の評価を行った。
 なお、薄膜トランジスター用複合銅合金膜に含まれる濃縮層のCa、Al,Sn,Sbおよび酸素の分析は、実施例1と同じ条件で行った。
Figure JPOXMLDOC01-appb-T000014
 表14に示される結果から、本発明例の薄膜トランジスター用複合銅合金膜212~224は、表11の従来例の薄膜トランジスター用複合銅合金膜201に比べて、比抵抗は同等で大差は無いことがわかった。しかし、本発明例の薄膜トランジスター用複合銅合金膜212~224は、従来例の薄膜トランジスター用複合銅合金膜201よりも密着性が格段に優れていることがわかった。このため、本発明例の薄膜トランジスター用複合銅合金膜212~224からなる電極膜を内蔵した本発明の第2の実施形態の薄膜トランジスターは、電極膜の剥離による故障が極めて少なくなることがわかる。
 本発明の薄膜トランジスターおよび薄膜トランジスター中間体では、ドレイン電極膜およびソース電極膜の密着性が優れている。このため、搬送時に振動が付与されても、ドレイン電極膜およびソース電極膜の剥離による故障が起こる可能性がほとんど無い。従って、本発明は、フラットパネルディスプレイなどに使用される薄膜トランジスターやその薄膜トランジスター中間体に適用できる。
 1:ガラス基板、2:ゲート電極、3:SiN膜、4:nアモルファスSiオーミック膜、4´:nアモルファスSi半導体膜、5:ドレイン電極、6:ソース電極、7:分離溝、8:純銅膜、9:従来の薄膜トランジスター中間体を作製するための積層体、10:従来の薄膜トランジスター中間体、11:バリア膜、109:第1の態様(実施形態)の薄膜トランジスター中間体を作製するための積層体、110:第1の態様(実施形態)の薄膜トランジスター中間体、112:第1の態様(実施形態)の酸素-カルシウム含有銅合金下地膜、113:第1の態様(実施形態)のCu層、114:第1の態様(実施形態)の複合銅合金膜、209:第2の態様(実施形態)の薄膜トランジスター中間体を作製するための積層体、210:第2の態様(実施形態)の薄膜トランジスター中間体、212:第2の態様(実施形態)の酸素-Ca(Al,Sn,Sb)銅合金中間体下地層、213:第2の態様(実施形態)のCu合金層、214:第2の態様(実施形態)の複合銅合金膜。

Claims (6)

  1.  ガラス基板と、
     前記ガラス基板の上に形成されたゲート電極膜と、
     前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、
     前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、
     前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、
     前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、
     前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有し、
     前記ドレイン電極膜および前記ソース電極膜は、少なくとも前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-カルシウム濃縮層含有銅合金下地層と、前記酸素-カルシウム濃縮層含有銅合金下地層の上に形成されたCu層とからなる複合銅合金膜を有し、
     前記酸素-カルシウム濃縮層含有銅合金下地層は、濃縮層を有し、
     前記濃縮層は、Ca:2~30モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含むことを特徴とする薄膜トランジスター。
  2.  ガラス基板と、
     前記ガラス基板の上に形成されたゲート電極膜と、
     前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、
     前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、
     前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、
     前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、
     前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有し、
     前記ドレイン電極膜および前記ソース電極膜は、前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-カルシウム含有銅合金下地層と、前記酸素-カルシウム含有銅合金下地層の上に形成されたCu層とからなる複合銅合金膜を有し、
     前記酸素-カルシウム含有銅合金下地層は、Ca:0.01~10モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含むことを特徴とする薄膜トランジスター中間体。
  3.  ガラス基板と、
     前記ガラス基板の上に形成されたゲート電極膜と、
     前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、
     前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、
     前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、
     前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、
     前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有し、
     前記ドレイン電極膜および前記ソース電極膜は、少なくとも前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層と、前記酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層の上に形成されたCu合金層とからなる複合銅合金膜を有し、
     前記酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層は、濃縮層を有する銅合金下地層であり、
     前記濃縮層は、Ca:2~30モル%、Al、SnおよびSbから選択される1種または2種以上を合計で1~10モル%、及び酸素:20~50モル%を含有し、残部としてCuおよび不可避不純物を含むことを特徴とする薄膜トランジスター。
  4.  前記酸素-Ca(Al,Sn,Sb)濃縮層含有銅合金下地層の上に形成されたCu合金層は、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%を含有し、残部としてCuおよび不可避不純物を含むことを特徴とする請求項3記載の薄膜トランジスター。
  5.  ガラス基板と、
     前記ガラス基板の上に形成されたゲート電極膜と、
     前記ガラス基板およびゲート電極膜の上に形成された窒化珪素膜と、
     前記窒化珪素膜の上に形成されたnアモルファスSi半導体膜と、
     前記nアモルファスSi半導体膜の上に形成されたnアモルファスSiオーミック膜と、
     前記nアモルファスSiオーミック膜の上に形成された酸化ケイ素膜からなるバリア膜と、
     前記酸化ケイ素膜からなるバリア膜の上に形成されたドレイン電極膜およびソース電極膜を有し、
     前記ドレイン電極膜および前記ソース電極膜は、前記酸化ケイ素膜からなるバリア膜に接して形成された酸素-Ca(Al,Sn,Sb)銅合金中間体下地層と、前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層の上に形成されたCu合金層とからなる複合銅合金膜を有し、
     前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層は、Ca:0.2~10モル%、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%、及び酸素:1~20モル%を含有し、残部としてCuおよび不可避不純物を含むことを特徴とする薄膜トランジスター中間体。
  6.  前記酸素-Ca(Al,Sn,Sb)銅合金中間体下地層の上に形成されたCu合金層は、Al、SnおよびSbから選択される1種または2種以上を合計で0.05~2モル%を含有し、残部としてCuおよび不可避不純物を含むことを特徴とする請求項5記載の薄膜トランジスター中間体。
PCT/JP2009/004822 2008-09-26 2009-09-24 薄膜トランジスター及び薄膜トランジスター中間体 WO2010035463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980137645.7A CN102165596B (zh) 2008-09-26 2009-09-24 薄膜晶体管及薄膜晶体管中间体
US12/737,797 US8502285B2 (en) 2008-09-26 2009-09-24 Thin-film transistor and intermediate of thin-film transistor
KR1020117002472A KR101527626B1 (ko) 2008-09-26 2009-09-24 박막 트랜지스터 및 박막 트랜지스터 중간체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008247460A JP5269533B2 (ja) 2008-09-26 2008-09-26 薄膜トランジスター
JP2008-247460 2008-09-26

Publications (1)

Publication Number Publication Date
WO2010035463A1 true WO2010035463A1 (ja) 2010-04-01

Family

ID=42059476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004822 WO2010035463A1 (ja) 2008-09-26 2009-09-24 薄膜トランジスター及び薄膜トランジスター中間体

Country Status (6)

Country Link
US (1) US8502285B2 (ja)
JP (1) JP5269533B2 (ja)
KR (1) KR101527626B1 (ja)
CN (1) CN102165596B (ja)
TW (1) TWI476930B (ja)
WO (1) WO2010035463A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285710B2 (ja) * 2008-10-24 2013-09-11 三菱マテリアル株式会社 薄膜トランジスタの製造方法
JP5354781B2 (ja) * 2009-03-11 2013-11-27 三菱マテリアル株式会社 バリア層を構成層とする薄膜トランジスターおよび前記バリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
EP2426720A1 (en) * 2010-09-03 2012-03-07 Applied Materials, Inc. Staggered thin film transistor and method of forming the same
JP2012060015A (ja) * 2010-09-10 2012-03-22 Hitachi Cable Ltd 電子デバイス配線用Cu合金スパッタリングターゲット材、及び素子構造
KR20130139438A (ko) 2012-06-05 2013-12-23 삼성디스플레이 주식회사 박막 트랜지스터 기판
JP6274026B2 (ja) * 2013-07-31 2018-02-07 三菱マテリアル株式会社 銅合金スパッタリングターゲット及び銅合金スパッタリングターゲットの製造方法
CN104064454A (zh) * 2014-06-11 2014-09-24 京东方科技集团股份有限公司 薄膜及阵列基板的制备方法、阵列基板
JP6398594B2 (ja) * 2014-10-20 2018-10-03 三菱マテリアル株式会社 スパッタリングターゲット
CN106920749A (zh) * 2015-12-28 2017-07-04 昆山国显光电有限公司 一种薄膜晶体管及其制作方法
US10957644B2 (en) * 2018-02-02 2021-03-23 Micron Technology, Inc. Integrated structures with conductive regions having at least one element from group 2 of the periodic table
CN108807518B (zh) * 2018-05-28 2020-09-29 深圳市华星光电技术有限公司 电极结构及其制备方法、阵列基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094069A (ja) * 2000-09-13 2002-03-29 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2008205420A (ja) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793620B2 (ja) * 1989-02-27 1998-09-03 株式会社日立製作所 薄膜トランジスタ及びその製造方法並びにそれを用いたマトリクス回路基板と画像表示装置
JPH04349637A (ja) 1991-05-28 1992-12-04 Oki Electric Ind Co Ltd アモルファスシリコン薄膜トランジスタアレイ基板の製造方法
JPH0826889A (ja) 1994-07-15 1996-01-30 Fujitsu Ltd 金属膜の形成方法および配線用金属膜
US6181012B1 (en) * 1998-04-27 2001-01-30 International Business Machines Corporation Copper interconnection structure incorporating a metal seed layer
JP3562628B2 (ja) * 1999-06-24 2004-09-08 日本電気株式会社 拡散バリア膜、多層配線構造、およびそれらの製造方法
US6291348B1 (en) * 2000-11-30 2001-09-18 Advanced Micro Devices, Inc. Method of forming Cu-Ca-O thin films on Cu surfaces in a chemical solution and semiconductor device thereby formed
KR100883769B1 (ko) 2002-11-08 2009-02-18 엘지디스플레이 주식회사 액정표시장치용 어레이기판 제조방법
JP4017156B2 (ja) * 2003-01-27 2007-12-05 日東電工株式会社 粘着型光学補償層付偏光板および画像表示装置
CN100369268C (zh) * 2005-06-03 2008-02-13 友达光电股份有限公司 薄膜晶体管元件及其制造方法
JP4523535B2 (ja) * 2005-08-30 2010-08-11 富士通株式会社 半導体装置の製造方法
US7977149B2 (en) 2005-08-31 2011-07-12 Sumitomo Chemical Company, Limited Transistor, organic semiconductor device, and method for manufacture of the transistor or device
TW200805667A (en) * 2006-07-07 2008-01-16 Au Optronics Corp A display panel structure having a circuit element and a method of manufacture
KR101135418B1 (ko) * 2006-12-28 2012-04-17 가부시키가이샤 알박 배선막의 형성 방법, 트랜지스터, 및 전자 장치
JP4840172B2 (ja) * 2007-02-07 2011-12-21 三菱マテリアル株式会社 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用配線および電極
JP5234483B2 (ja) * 2007-06-12 2013-07-10 三菱マテリアル株式会社 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット
JP2009004518A (ja) * 2007-06-20 2009-01-08 Kobe Steel Ltd 薄膜トランジスタ基板、および表示デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094069A (ja) * 2000-09-13 2002-03-29 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2008205420A (ja) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット

Also Published As

Publication number Publication date
JP2010080681A (ja) 2010-04-08
CN102165596B (zh) 2014-07-09
CN102165596A (zh) 2011-08-24
KR101527626B1 (ko) 2015-06-09
JP5269533B2 (ja) 2013-08-21
KR20110063736A (ko) 2011-06-14
TWI476930B (zh) 2015-03-11
US20110133190A1 (en) 2011-06-09
TW201029185A (en) 2010-08-01
US8502285B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
WO2010035463A1 (ja) 薄膜トランジスター及び薄膜トランジスター中間体
US5913100A (en) Mo-W material for formation of wiring, Mo-W target and method for production thereof, and Mo-W wiring thin film
US8624397B2 (en) Electrode layer structure for a thin-film transistor and process for manufacture thereof
WO2010047105A1 (ja) 薄膜トランジスター用配線膜を形成するためのスパッタリングターゲット
WO2010047040A1 (ja) バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター
WO2010103587A1 (ja) バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
JP2011523978A (ja) モリブデン−ニオブ合金、かかる合金を含有するスパッタリングターゲット、かかるターゲットの製造方法、それから製造される薄膜、およびその使用
US20190148412A1 (en) Multilayer wiring film and thin film transistor element
JP2010248619A (ja) 酸素含有Cu合金膜の製造方法
JP4936560B2 (ja) 密着性に優れた銅合金複合膜の成膜方法およびこの成膜方法で使用するCa含有銅合金ターゲット
WO2014021173A1 (ja) Cu合金薄膜形成用スパッタリングターゲットおよびその製造方法
JP2001093862A (ja) 液晶ディスプレイ用の電極・配線材及びスパッタリングターゲット
JP5377914B2 (ja) 薄膜トランジスター
JP2008112989A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、及び薄膜トランジスタの製造方法
JP5008146B2 (ja) 密着性に優れた銅合金複合膜
JP2015061933A (ja) 被覆層形成用スパッタリングターゲット材およびその製造方法
JP5888501B2 (ja) 薄膜配線形成方法
JP2010040535A (ja) 薄膜トランジスター
JP3913694B2 (ja) 配線形成用Mo−Wターゲットとそれを用いたMo−W配線薄膜および液晶表示装置
JP2007224397A (ja) 平面表示パネル及びCuスパッタリングターゲット
JP2010040536A (ja) 薄膜トランジスター
WO2020262322A1 (ja) 酸化物半導体の加工方法及び薄膜トランジスタの製造方法
JP2003517514A (ja) アルミニウム含有膜のスパッタ蒸着において水素及び酸素ガスを利用する方法及びそれによって得られるアルミニウム含有膜
JP2022124997A (ja) スパッタリングターゲット、および、Ag膜
CN112055888A (zh) Cu合金靶材、配线膜、半导体装置、液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137645.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12737797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815885

Country of ref document: EP

Kind code of ref document: A1