WO2010047040A1 - バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター - Google Patents

バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター Download PDF

Info

Publication number
WO2010047040A1
WO2010047040A1 PCT/JP2009/004823 JP2009004823W WO2010047040A1 WO 2010047040 A1 WO2010047040 A1 WO 2010047040A1 JP 2009004823 W JP2009004823 W JP 2009004823W WO 2010047040 A1 WO2010047040 A1 WO 2010047040A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode film
oxygen
pure copper
barrier
Prior art date
Application number
PCT/JP2009/004823
Other languages
English (en)
French (fr)
Inventor
森曉
小見山昌三
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020117002192A priority Critical patent/KR101527625B1/ko
Priority to CN200980141877XA priority patent/CN102197488B/zh
Priority to US12/998,283 priority patent/US8384083B2/en
Publication of WO2010047040A1 publication Critical patent/WO2010047040A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Definitions

  • the present invention relates to a thin film transistor used for various displays, and more particularly to a thin film transistor excellent in adhesion strength between a barrier film, a drain electrode film, and a source electrode film.
  • Liquid crystal displays, plasma displays, organic EL displays, inorganic EL displays and the like are known as flat panel displays using thin film transistors driven by an active matrix method.
  • wirings made of a metal film are formed in close contact with the surface of the glass substrate, and thin film transistors are provided at intersections of the grid wiring made of the metal film.
  • the thin film transistor 110 includes a gate electrode film 2, a pure copper film 2, a silicon nitride film 3, a Si semiconductor film 4, and a silicon oxide, which are sequentially stacked on the surface of the glass substrate 1.
  • the electrode film 6 includes a drain electrode film of pure copper film and a source electrode film of pure copper film (both in FIG. It is well known that it is composed of electrode film 6 ”.
  • the separation groove 8 that partitions the drain electrode film and the source electrode film is formed by wet etching and plasma etching.
  • the surface of the Si semiconductor film 4 exposed on the bottom surface of the separation groove 8 is in an extremely unstable state, increasing dangling bonds (dangling bonds), which becomes a surface defect. This surface defect increases the off-state current of the thin film transistor. As a result, problems such as a reduction in LCD contrast and a reduction in viewing angle occur.
  • the surface of the Si semiconductor film 4 exposed on the bottom surface of the separation groove 8 is in an unstable state in which the above-described problems cannot be avoided.
  • gas 100% hydrogen gas
  • hydrogen gas flow rate 10 to 1000 SCCM
  • hydrogen gas pressure 10 to 500 Pa
  • RF current density 0.005 to 0.5 W / cm 2
  • the treatment time may be subjected to a hydrogen plasma treatment under conditions of 1 to 60 minutes, and a dangling bond on the surface of the Si semiconductor film 4 is bonded to hydrogen atoms to be stabilized. It is known (see Patent Document 1).
  • the increase in screen size and integration of various flat panel displays in recent years is remarkable, and accordingly, higher adhesion strength is required between the respective films of the laminated film constituting the thin film transistor 110. It is in.
  • the conventional thin film transistor 110 between the glass substrate 1 and the gate electrode film 2 made of a pure copper film, between the gate electrode film 2 and the silicon nitride film 3, and between the silicon nitride film 3 and the Si semiconductor film 4.
  • a high adhesion strength that can sufficiently satisfy the above requirements is secured between the Si semiconductor film 4 and the barrier film 5 of the silicon oxide film.
  • the adhesion strength between the barrier film 5 of the silicon oxide film and the drain electrode film and the source electrode film (electrode film 6) of the pure copper film partitioned by the separation groove 8 is relatively low.
  • the current situation is that it does not have high adhesion strength that can be satisfied.
  • An object of the present invention is to provide a thin film transistor having excellent adhesion strength between a barrier film and a drain electrode film and a source electrode film.
  • the present inventors made a barrier film of a silicon oxide film in a conventional thin film transistor and a drain electrode film and a source electrode film (hereinafter simply referred to as an electrode film) of a pure copper film partitioned by a separation groove. Research was conducted to ensure high adhesion strength. As a result, the following research results were obtained.
  • a Cu-Ca-oxygen-containing Cu component is formed between the barrier film 5 of the silicon oxide film and the electrode film 6 of the pure copper film shown in the schematic longitudinal sectional view of FIG.
  • An alloy film is formed.
  • the Cu alloy film is formed by performing sputtering using a Cu—Ca alloy target and setting the sputtering atmosphere to an Ar + oxygen gas atmosphere containing oxygen gas.
  • Ca contained as an alloy component during the hydrogen plasma treatment performed after the formation of the separation groove 8 together with the oxygen contained therein is in contact with the barrier film 5 of the silicon oxide film. It diffuses and moves to the interface.
  • the Cu alloy film after the hydrogen plasma treatment becomes an adhesion enhancing film 7 composed of the following two zones (a) and (b).
  • the adhesion reinforcing film 7 satisfying the conditions shown in the above (2) and (3) can be formed by the following method.
  • the Cu alloy film (1) is formed as follows. A Cu—Ca alloy target containing 0.1 to 12 atomic% of Ca and containing Cu and inevitable impurities as the balance is used as a target, and the sputtering atmosphere is in a proportion of 1 to 20 in the total amount of Ar and Ar. Sputtering is performed as an Ar + oxygen gas atmosphere containing a volume% of oxygen. As a result, a Cu alloy film having a composition containing oxygen: 1 to 20 atomic% and Ca: 0.1 to 10 atomic% and the balance including Cu and inevitable impurities is formed with a target film thickness of 10 to 100 nm. . Thus, the Cu alloy film (1) can be formed. Then, the adhesion reinforcing film 7 is formed by the hydrogen plasma treatment described above. The research results shown in (1) to (4) above were obtained.
  • the present invention has been made based on the above research results and has the following requirements.
  • the thin film transistor having excellent adhesion strength between the barrier film and the drain electrode film and the source electrode film of the present invention comprises a glass substrate, a gate electrode film of a pure copper film formed on the surface of the glass substrate, and nitrided. It has a silicon film, a Si semiconductor film, a barrier film of a silicon oxide film, and an electrode film of a pure copper film.
  • the electrode film includes a drain electrode film and a source electrode film.
  • An adhesion enhancing film having a thickness of 10 to 100 nm is interposed between the barrier film of the silicon oxide film and the drain electrode film and the source electrode film of the pure copper film.
  • the adhesion enhancing film is formed at an interface between (a) a pure copper zone formed on the drain electrode film and source electrode film side of the pure copper film, and (b) a barrier film of the silicon oxide film.
  • the component is composed of two zones including a component aggregation zone composed of Cu, Ca, oxygen and Si. In the concentration distribution of Ca and oxygen in the thickness direction of the component agglomeration zone, the maximum content of Ca and oxygen-containing peaks is Ca: 5 to 20 atomic% and oxygen: 30 to 50 atomic%, respectively.
  • the adhesion enhancing film is formed by the hydrogen plasma treatment described above, and the requirements for the adhesion enhancing film can be specified by measuring the cross-sectional structure in the thickness direction with a scanning Auger electron spectrometer. .
  • the adhesion strength of the both is dramatically improved by interposing the adhesion reinforcing film having the above structure between the barrier film of the silicon oxide film and the electrode film of the pure copper film.
  • each of the laminated films constituting the thin film transistor is bonded to each other with strong adhesion strength. For this reason, the extremely high film-to-film adhesion required for the large screen and high integration of the flat panel display can be provided throughout.
  • the adhesion enhancing film 7 constituting the thin film transistor 1 of the present invention is limited to the above-described conditions.
  • (1) Maximum content of oxygen-containing peak in component aggregation zone When the maximum oxygen content is less than 30 atomic%, a flat panel display is formed between the component aggregation zone and the adjacent silicon oxide film (barrier film 5). It is not possible to secure a strong adhesion strength that can be satisfactorily dealt with the increase in screen size and integration. On the other hand, when the maximum oxygen content exceeds 50 atomic%, the strength of the component agglomeration zone tends to decrease, which causes peeling. Based on the above, the maximum oxygen content was determined to be 30 to 50 atomic%.
  • Target film thickness of adhesion reinforcing film 7 When the target film thickness is less than 10 nm, it is possible to secure a strong adhesion strength between the barrier film 5 of the silicon oxide film and the electrode film 6 of the pure copper film. Can not. On the other hand, even if the target film thickness exceeds 100 nm, a further improvement effect cannot be obtained in the adhesion strength between the two. For this reason, the target film thickness is set to 10 to 100 nm in consideration of economy.
  • the adhesion strength between the barrier film of the silicon oxide film and the electrode film of the pure copper film will be specifically described with reference to the thin film transistor of the present invention.
  • the film thickness 300 nm in order from the surface side of the glass substrate to the surface of a 1737 glass substrate made by Corning Inc. having dimensions of length: 320 mm ⁇ width: 400 mm ⁇ thickness: 0.7 mm.
  • a pure copper film (gate electrode film), a silicon nitride film with a film thickness of 300 nm, a Si semiconductor film with a film thickness of 150 nm, and a silicon oxide film (barrier film) with a film thickness of 10 nm were sequentially laminated.
  • the glass substrate having the film was placed in a sputtering apparatus. Then, as a target, a Cu—Ca alloy (including Cu and unavoidable impurities other than Ca) dissolved and prepared so as to have the Ca content shown in Table 1 was used, and the sputtering atmosphere was adjusted to the total amount of Ar. Sputtering was performed in an Ar + oxygen atmosphere in which oxygen in the proportions shown in Table 1 was mixed with Ar. Thereby, Cu alloy films having the compositions shown in Table 1 were formed on the silicon oxide film (barrier film) with the target film thicknesses shown in Table 1, respectively. In addition, the composition of the Cu alloy film shown in Table 1 is a result of measurement using a scanning Auger electron spectrometer.
  • the thin film transistor samples 1 to 10 of the examples of the present invention were manufactured.
  • a thin film transistor sample of a conventional example was manufactured under the same conditions except that an adhesion reinforcing film (Cu alloy film) was not formed.
  • the cross section in the thickness direction was measured by a sample tilt rotation method (Zalar rotation method) using a scanning Auger electron spectroscopy analyzer. And the purity change of the film thickness direction in the pure copper film (electrode film) of the surface part was observed. Furthermore, the maximum content of the oxygen-containing peak and the Ca-containing peak in the component aggregation zone of the adhesion reinforcing film was measured, and the measurement results are shown in Table 1.
  • FIG. 2 shows the measurement results of the thin film transistor sample 4 of the present invention using a scanning Auger electron spectrometer.
  • a thin (10 nm) silicon oxide film (barrier film) cannot be confirmed, but in the structure observation by a transmission electron microscope, the adhesion enhancement film (component cohesive zone) and the Si semiconductor film are not observed. It was confirmed that a silicon oxide film (barrier film) was present.
  • the pure copper film (electrode film) on the surface portion of the sample 4 exhibits a purity of 99.9 atomic% or more along the thickness direction. However, like the sample 4, the pure copper film (electrode film) was found to have a purity of 99.9 atomic% or more.
  • cross-cut adhesion test According to JIS-K5400, on the surface of the sample, using a cutter, at a distance of 0.5 mm, 1 mm, 1.5 mm, and 2 mm, respectively, at a depth reaching the silicon oxide film from the surface in 11 vertical and horizontal directions, In addition, a groove (notch) was made with a groove width of 0.1 mm. As a result, 100 cells were formed at each interval.
  • a 3M scotch tape was adhered and pasted over the entire cell, and then peeled off at once. And the number (pieces / 100) of the squares which peeled among 100 squares of the sample surface was measured. The measurement results are shown in Table 2.
  • the thin film transistor samples 1 to 10 of the present invention example are formed by the adhesion reinforcing film interposed between the silicon oxide film (barrier film) and the pure copper film (electrode film). Compared to the conventional thin film transistor sample without the formation of the reinforcing layer, extremely high adhesion strength is ensured between them, and as a result, the adhesion between the constituent films is excellent overall. I understood it. As described above, the thin film transistor of the present invention can satisfactorily cope with the large screen and high integration of flat panel displays.
  • the thin film transistor of the present invention since the adhesion strength between the barrier film and the electrode film is extremely high, it can sufficiently meet the above requirements and is suitable as a thin film transistor for a flat panel display having a large screen and high integration. Can be used.
  • Transistor 110: Conventional thin film transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 この薄膜トランジスターは、バリア膜と電極膜との間に密着強化膜を有し、密着強化膜は、(a)電極膜側に形成された純銅化帯域と、(b)バリア膜との界面部に形成され、構成成分がCuとCaと酸素とSiからなる成分凝集帯域との2帯域で構成され、成分凝集帯域の厚さ方向におけるCaおよび酸素の濃度分布において、Caおよび酸素の含有ピークの最高含有量が、それぞれCa:5~20原子%、及び酸素:30~50原子%である。

Description

バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター
 この発明は、各種ディスプレイに使用される薄膜トランジスターに係り、特にバリア膜と、ドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスターに関する。
 本願は、2008年10月24日に、日本に出願された特願2008-273728号に基づき優先権を主張し、その内容をここに援用する。
 アクティブマトリックス方式で駆動する薄膜トランジスターを用いたフラットパネルディスプレイとして、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイなどが知られている。これら薄膜トランジスターを用いたフラットパネルディスプレイには、ガラス基板表面に金属膜からなる配線が格子状に密着形成されており、この金属膜からなる格子状配線の交差点に薄膜トランジスターが設けられている。
 図3に縦断面模式図で示される通り、薄膜トランジスター110は、ガラス基板1の表面に、順次積層形成された、純銅膜のゲート電極膜2、窒化珪素膜3、Si半導体膜4、酸化ケイ素膜のバリア膜5、および純銅膜の電極膜6を有し、前記電極膜6は、分離溝8で仕切られた純銅膜のドレイン電極膜と純銅膜のソース電極膜(図3ではいずれも「電極膜6」で示す)で構成されていることも良く知られるところである。
 このような積層膜構造を有する薄膜トランジスター110の製造に際しては、ドレイン電極膜とソース電極膜を仕切る分離溝8が、湿式エッチングおよびプラズマエッチングにより形成される。前記分離溝8の底面に露出したSi半導体膜4の表面は、極めて不安定な状態であり、未結合手(ダングリングボンド)が増大しており、これが表面欠陥となる。この表面欠陥は、薄膜トランジスターのオフ電流を増加させるため、その結果、LCDのコントラストの低減や視野角を小さくするなどの問題が生じる。このように、分離溝8の底面に露出したSi半導体膜4の表面は、前記した問題点の発生が避けられない不安定な状態になっている。
 このため、露出したSi半導体膜4の表面に、ガス:100%水素ガス、水素ガス流量:10~1000SCCM、水素ガス圧:10~500Pa、RF電流密度:0.005~0.5W/cm、処理時間:1~60分の条件で水素プラズマ処理を施して、Si半導体膜4の表面の未結合手(ダングリングボンド)を水素原子と結合させて安定化する処理が施されることも知られている(特許文献1参照)。
 一方、近年の各種フラットパネルディスプレイの大画面化および高集積化はめざましく、これに伴い、薄膜トランジスター110を構成する積層膜のそれぞれの膜の相互間には、一段と高い密着強度が要求される傾向にある。上記の従来の薄膜トランジスター110においては、ガラス基板1と純銅膜のゲート電極膜2との間、ゲート電極膜2と窒化珪素膜3との間、窒化珪素膜3とSi半導体膜4との間、およびSi半導体膜4と酸化ケイ素膜のバリア膜5との間には、上記の要求に十分満足に対応できる高い密着強度が確保されている。しかし、前記酸化ケイ素膜のバリア膜5と、分離溝8で仕切られた純銅膜のドレイン電極膜およびソース電極膜(電極膜6)との間の密着強度は相対的に低く、上記の要求に満足に対応できる高い密着強度を具備していないのが現状である。
特開平4-349637号公報
 本発明は、バリア膜と、ドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスターの提供を目的とする。
 本発明者等は、上述の観点から、従来の薄膜トランジスターにおける酸化ケイ素膜のバリア膜と、分離溝で仕切られた純銅膜のドレイン電極膜およびソース電極膜(以下、単に電極膜という)との間に高い密着強度を確保すべく研究を行った。その結果、以下の研究結果が得られた。
(1)上記の薄膜トランジスターの製造に際して、図1に縦断面模式図で示される酸化ケイ素膜のバリア膜5と純銅膜の電極膜6の間に、構成成分がCu-Ca-酸素からなるCu合金膜を形成しておく。前記Cu合金膜は、Cu-Ca合金ターゲットを用い、スパッタ雰囲気を酸素ガス配合のAr+酸素ガス雰囲気として、スパッタを行うことによって、形成される。
 このCu合金膜においては、上記の分離溝8の形成後に施される水素プラズマ処理中に、合金成分として含有されるCaが、同じく含有される酸素と共に、前記酸化ケイ素膜のバリア膜5との界面部に拡散移動する。これにより、水素プラズマ処理後の前記Cu合金膜は、以下の(a)および(b)の2帯域で構成された密着強化膜7となる。
(a)純銅膜の電極膜6側に形成された純銅化帯域
(b)酸化ケイ素膜のバリア膜5との界面部に形成され、構成成分がCuと酸素とCaとSiからなる成分凝集帯域
(2)前記(1)にて形成された密着強化膜7の厚さ方向縦断面を、走査型オージェ電子分光分析装置により測定した結果、図2に測定結果が例示される通り、以下の(c)及び(d)が明らかとなった。
(c)電極膜6側には純銅化帯域が形成されている。
(d)一方、バリア膜5側には、それぞれ酸素とCaの含有ピークが存在する成分凝集帯域が形成されている。
 なお、上記の走査型オージェ電子分光分析装置による測定では、膜厚が薄い酸化ケイ素膜(バリア膜5)の存在を確認することができないが、透過型電子顕微鏡による組織観察で、その存在を明確に確認することができる。
(3)試験結果によると、前記成分凝集帯域における前記酸素含有ピークの最高含有量が30~50原子%を示す場合に、電極膜6とバリア膜5との間にきわめて高い密着強度が得られ、この密着強度は、フラットパネルディスプレイの大画面化および高集積化に十分満足に対応できる強度である。
 さらに、前記Ca含有ピークの最高含有量が5~20原子%を示す場合に、Caによる酸素の前記バリア膜5側への拡散移動が十分に行われて、前記最高含有量が30~50原子%の酸素含有ピークの形成が可能となる。
 純銅化帯域と、隣接する電極膜6とは、界面が高純度(99.9原子%以上の純度)の純銅同士となるので、これら両者間にはきわめて高い密着強度が確保される。また、前記純銅膜の電極膜6は99.9原子%以上の高純度を保持することから、前記電極膜6に電気的特性の低下は見られない。
(4)前記(2)および(3)に示す条件を満足する密着強化膜7は、以下の方法により形成できる。
 前記(1)のCu合金膜は、以下のように形成される。ターゲットとして、Ca:0.1~12原子%を含有し、残部としてCuと不可避不純物を含むCu-Ca合金ターゲットを用い、スパッタ雰囲気を、ArにArとの合量に占める割合で1~20容量%の酸素を配合してなるAr+酸素ガス雰囲気として、スパッタを行う。これにより、酸素:1~20原子%、及びCa:0.1~10原子%を含有し、残部としてCuと不可避不純物を含む組成を有するCu合金膜を10~100nmの目標膜厚で形成する。以上により、前記(1)のCu合金膜が形成できる。そして、前述した水素プラズマ処理によって密着強化膜7が形成される。
 以上(1)~(4)に示される研究結果を得たのである。
 この発明は、上記の研究結果に基づいてなされたものであって、以下の要件を有する。
 本発明のバリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスターは、ガラス基板と、前記ガラス基板の表面に順次積層形成された、純銅膜のゲート電極膜、窒化珪素膜、Si半導体膜、酸化ケイ素膜のバリア膜、及び純銅膜の電極膜を有する。
 前記電極膜は、ドレイン電極膜とソース電極膜からなる。
 前記酸化ケイ素膜のバリア膜と、前記純銅膜のドレイン電極膜およびソース電極膜との間に、10~100nmの膜厚を有する密着強化膜が介在する。
 前記密着強化膜は、(a)前記純銅膜のドレイン電極膜およびソース電極膜の側に形成された純銅化帯域と、(b)前記酸化ケイ素膜のバリア膜との界面部に形成され、構成成分がCuとCaと酸素とSiからなる成分凝集帯域との2帯域で構成される。
 前記成分凝集帯域の厚さ方向におけるCaおよび酸素の濃度分布において、Caおよび酸素の含有ピークの最高含有量が、それぞれCa:5~20原子%、及び酸素:30~50原子%である。
 ここで、前記密着強化膜は、前述した水素プラズマ処理により形成され、前記密着強化膜にかかる要件は、厚さ方向の断面組織を、走査型オージェ電子分光分析装置により測定することによって、特定できる。
 この発明の薄膜トランジスターによると、酸化ケイ素膜のバリア膜と純銅膜の電極膜との間に、上記の構成の密着強化膜を介在させることにより、これら両者の密着強度が飛躍的に向上する。この結果、薄膜トランジスターを構成する積層膜のそれぞれの膜は、互いに強固な密着強度で接合される。このため、フラットパネルディスプレイの大画面化および高集積化に要求されるきわめて高い膜間密着性を全体に亘って具備できる。
この発明の薄膜トランジスターの縦断面模式図である。 本発明例の薄膜トランジスター試料4の走査型オージェ電子分光分析装置による測定結果を示すグラフである。 従来の薄膜トランジスターの縦断面模式図である。
 次に、本発明の構成について詳細に説明する。
 この発明の薄膜トランジスター1を構成する密着強化膜7を、上述の通りの条件に限定した理由を説明する。
(1)成分凝集帯域の酸素含有ピークの最高含有量
 酸素の最高含有量が30原子%未満の場合、成分凝集帯域と、隣接する酸化ケイ素膜(バリア膜5)との間に、フラットパネルディスプレイの大画面化および高集積化に十分満足に対応できる強固な密着強度を確保できない。一方、酸素の最高含有量が50原子%を越える場合、成分凝集帯域の強度に低下傾向が現れ、これが剥離の原因ともなる。以上により、酸素の最高含有量を30~50原子%と定めた。
(2)成分凝集帯域のCa含有ピークの最高含有量
 Caの最高含有量が5原子%未満の場合、水素プラズマ処理時に、バリア膜5側への酸素の拡散移動が十分に行われず、この結果、最高含有量が30~50原子%の酸素含有ピークを得ることが困難になる。一方、Caの最高含有量が20原子%を越える場合、成分凝集帯域の強度に低下傾向が現れる。以上により、Caの最高含有量を5~20原子%と定めた。
(3)密着強化膜7の目標膜厚
 その目標膜厚が、10nm未満の場合、前記酸化ケイ素膜のバリア膜5と純銅膜の電極膜6との間に強固な密着強度を確保することができない。一方、その目標膜厚が、100nmを超えても、両者間の密着強度において、より一層の向上効果は得られない。このため、経済性を考慮して、その目標膜厚を10~100nmと定めた。
 つぎに、この発明の薄膜トランジスターについて、酸化ケイ素膜のバリア膜と純銅膜の電極膜との間の密着強度に関し、実施例により具体的に説明する。
 従来の膜形成条件にしたがって、縦:320mm×横:400mm×厚さ:0.7mmの寸法をもったコーニング社製1737のガラス基板の表面に、ガラス基板の表面側から順に、膜厚:300nmの純銅膜(ゲート電極膜)、膜厚:300nmの窒化珪素膜、膜厚:150nmのSi半導体膜、および膜厚:10nmの酸化ケイ素膜(バリア膜)を順次積層した。
 前記膜を有するガラス基板をスパッタ装置に装入した。そして、ターゲットとして、いずれも表1に示されるCa含有量を有するように溶解調製したCu-Ca合金(Ca以外はCuと不可避不純物を含む)を用い、スパッタ雰囲気を、Arとの合計量に占める割合で、それぞれ表1に示される割合の酸素をArに配合してなるAr+酸素雰囲気として、スパッタを行った。これにより、表1にそれぞれ示される組成のCu合金膜を、表1に示される目標膜厚で、前記酸化ケイ素膜(バリア膜)上に形成した。なお、表1に示されたCu合金膜の組成は、走査型オージェ電子分光分析装置を用いて測定した結果である。
 さらに、前記の種々のCu合金膜上に、純度:99.9原子%の純銅膜(電極膜)を250nmの膜厚で形成した。引き続いて、以下の従来行われている条件で水素プラズマ処理を施して、前記Cu合金膜を密着強化膜とした。以上により、本発明例の薄膜トランジスター試料1~10をそれぞれ製造した。
(水素プラズマ処理の条件)
 ガス:100%水素ガス、水素ガス流量:500SCCM、水素ガス圧:100Pa、処理温度:300℃、RF電力流密度:0.1W/cm、処理時間:2分。
 また、比較の目的で、密着強化膜(Cu合金膜)の形成を行なわない以外は、同一の条件で、従来例の薄膜トランジスター試料を製造した。
 得られた本発明薄膜トランジスター試料1~10について、走査型オージェ電子分光分析装置を用い、試料傾斜回転方式(Zalar回転方式)にて厚さ方向断面を測定した。そして、表面部の純銅膜(電極膜)における膜厚方向の純度変化を観察した。さらに密着強化膜の成分凝集帯域における酸素含有ピークおよびCa含有ピークの最高含有量を測定し、この測定結果を表1に示した。
 図2は、本発明例の薄膜トランジスター試料4の走査型オージェ電子分光分析装置による測定結果を示す。この分析装置では、膜厚の薄い(10nm)酸化ケイ素膜(バリア膜)の存在は確認できないが、透過型電子顕微鏡による組織観察では、密着強化膜(成分凝集帯域)とSi半導体膜との間に酸化ケイ素膜(バリア膜)が存在することが確認された。
 また、図2に示される通り、前記試料4の表面部の純銅膜(電極膜)は、厚さ方向に沿って99.9原子%以上の純度を示しているが、これ以外のいずれの試料でも、前記試料4と同じく、純銅膜(電極膜)は99.9原子%以上の純度を有することがわかった。
 さらに、得られた薄膜トランジスター試料の酸化ケイ素膜(バリア膜)と純銅膜(電極膜)との間の密着強度を確認する目的で、以下の条件で碁盤目付着試験を行った。
 碁盤目付着試験:
 JIS-K5400に準じ、前記試料の表面に、カッターを用いて、0.5mm、1mm、1.5mm、および2mmの間隔で、それぞれ縦横11本ずつ、表面から酸化ケイ素膜に達する深さで、かつ0.1mmの溝幅で、溝(切り込み)を入れた。これにより、それぞれの間隔で100個の升目を形成した。この升目全体に亘って、3M社製スコッチテープを密着して貼り付けた後、一気に引き剥がした。そして、試料表面の100個の升目のうち、剥離した升目の数(個/100)を測定した。この測定結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2に示される結果から、本発明例の薄膜トランジスター試料1~10は、酸化ケイ素膜(バリア膜)と純銅膜(電極膜)との間に介在させた密着強化膜によって、前記密着強化層の形成がない従来例の薄膜トランジスター試料に比して、これら両者間にはきわめて高い密着強度が確保され、この結果、構成膜の相互間の密着性が全体的に優れたものとなることがわかった。
 上述のように、この発明の薄膜トランジスターは、フラットパネルディスプレイの大画面化および高集積化に十分満足に対応できるものである。
 近年、フラットパネルディスプレイの大画面化および高集積化に伴って、薄膜トランジスターを構成する積層膜には、一段と高い密着強度が要求されている。本発明の薄膜トランジスターでは、バリア膜と電極膜との間の密着強度が極めて高いため、上記要求に十分対応可能であり、大画面化および高集積化されたフラットパネルディスプレイ用の薄膜トランジスターとして好適に用いることができる。
 1:ガラス基板、2:ゲート電極膜、3:窒化珪素膜、4:Si半導体膜、5:バリア膜、6:電極膜、7:密着強化膜、8:分離溝、10:本発明の薄膜トランジスター、110:従来の薄膜トランジスター。

Claims (1)

  1.  ガラス基板と、前記ガラス基板の表面に順次積層形成された、純銅膜のゲート電極膜、窒化珪素膜、Si半導体膜、酸化ケイ素膜のバリア膜、及び純銅膜の電極膜を有し、
     前記電極膜は、ドレイン電極膜とソース電極膜からなり、
     前記酸化ケイ素膜のバリア膜と、前記純銅膜のドレイン電極膜およびソース電極膜との間に、10~100nmの膜厚を有する密着強化膜が介在し、
     前記密着強化膜は、(a)前記純銅膜のドレイン電極膜および前記ソース電極膜の側に形成された純銅化帯域と、(b)前記酸化ケイ素膜のバリア膜との界面部に形成され、構成成分がCuとCaと酸素とSiからなる成分凝集帯域との2帯域で構成され、
     前記成分凝集帯域の厚さ方向におけるCaおよび酸素の濃度分布において、Caおよび酸素の含有ピークの最高含有量が、それぞれCa:5~20原子%、及び酸素:30~50原子%であることを特徴とするバリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター。
PCT/JP2009/004823 2008-10-24 2009-09-24 バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター WO2010047040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117002192A KR101527625B1 (ko) 2008-10-24 2009-09-24 배리어막과 드레인 전극막 및 소스 전극막 사이의 밀착 강도가 우수한 박막 트랜지스터
CN200980141877XA CN102197488B (zh) 2008-10-24 2009-09-24 薄膜晶体管
US12/998,283 US8384083B2 (en) 2008-10-24 2009-09-24 Thin-film transistor having high adhesive strength between barrier film and drain electrode and source electrode films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008273728A JP5360959B2 (ja) 2008-10-24 2008-10-24 バリア膜とドレイン電極膜およびソース電極膜が高い密着強度を有する薄膜トランジスター
JP2008-273728 2008-10-24

Publications (1)

Publication Number Publication Date
WO2010047040A1 true WO2010047040A1 (ja) 2010-04-29

Family

ID=42119097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004823 WO2010047040A1 (ja) 2008-10-24 2009-09-24 バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター

Country Status (6)

Country Link
US (1) US8384083B2 (ja)
JP (1) JP5360959B2 (ja)
KR (1) KR101527625B1 (ja)
CN (1) CN102197488B (ja)
TW (1) TWI478350B (ja)
WO (1) WO2010047040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056173A1 (en) * 2010-09-03 2012-03-08 Applied Materials, Inc. Staggered thin film transistor and method of forming the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047326A1 (ja) * 2008-10-24 2010-04-29 三菱マテリアル株式会社 薄膜トランジスタの製造方法、薄膜トランジスタ
JP2012027159A (ja) 2010-07-21 2012-02-09 Kobe Steel Ltd 表示装置
JP5888501B2 (ja) 2012-02-16 2016-03-22 三菱マテリアル株式会社 薄膜配線形成方法
KR20130139438A (ko) 2012-06-05 2013-12-23 삼성디스플레이 주식회사 박막 트랜지스터 기판
JP5972317B2 (ja) 2014-07-15 2016-08-17 株式会社マテリアル・コンセプト 電子部品およびその製造方法
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
KR20210127188A (ko) 2019-02-21 2021-10-21 코닝 인코포레이티드 구리-금속화된 쓰루 홀을 갖는 유리 또는 유리 세라믹 물품 및 이를 제조하기 위한 공정

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224254A (ja) * 1989-02-27 1990-09-06 Hitachi Ltd 薄膜トランジスタ及びその製造方法並びにそれを用いたマトリクス回路基板と画像表示装置
JP2008205420A (ja) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349637A (ja) 1991-05-28 1992-12-04 Oki Electric Ind Co Ltd アモルファスシリコン薄膜トランジスタアレイ基板の製造方法
JPH0826889A (ja) 1994-07-15 1996-01-30 Fujitsu Ltd 金属膜の形成方法および配線用金属膜
US6181012B1 (en) * 1998-04-27 2001-01-30 International Business Machines Corporation Copper interconnection structure incorporating a metal seed layer
DE60036449T2 (de) * 1999-03-30 2008-06-19 Seiko Epson Corp. Verfahren zur hestellung eines dünnschichtfeldeffekttransistors
JP3562628B2 (ja) * 1999-06-24 2004-09-08 日本電気株式会社 拡散バリア膜、多層配線構造、およびそれらの製造方法
JP2002094069A (ja) 2000-09-13 2002-03-29 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US6291348B1 (en) * 2000-11-30 2001-09-18 Advanced Micro Devices, Inc. Method of forming Cu-Ca-O thin films on Cu surfaces in a chemical solution and semiconductor device thereby formed
KR100378259B1 (ko) * 2001-01-20 2003-03-29 주승기 결정질 활성층을 포함하는 박막트랜지스터 제작 방법 및장치
KR100883769B1 (ko) 2002-11-08 2009-02-18 엘지디스플레이 주식회사 액정표시장치용 어레이기판 제조방법
JP4017156B2 (ja) * 2003-01-27 2007-12-05 日東電工株式会社 粘着型光学補償層付偏光板および画像表示装置
JP4523535B2 (ja) * 2005-08-30 2010-08-11 富士通株式会社 半導体装置の製造方法
KR20080047543A (ko) * 2005-08-31 2008-05-29 스미또모 가가꾸 가부시끼가이샤 트랜지스터, 유기 반도체 소자, 및 이들의 제조 방법
TW200805667A (en) * 2006-07-07 2008-01-16 Au Optronics Corp A display panel structure having a circuit element and a method of manufacture
EP2096666A4 (en) * 2006-12-28 2015-11-18 Ulvac Inc METHOD FOR PRODUCING A WIRING FOIL, TRANSISTOR AND ELECTRONIC DEVICE
JP4840172B2 (ja) 2007-02-07 2011-12-21 三菱マテリアル株式会社 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用配線および電極
JP5234483B2 (ja) 2007-06-12 2013-07-10 三菱マテリアル株式会社 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット
JP2009004518A (ja) * 2007-06-20 2009-01-08 Kobe Steel Ltd 薄膜トランジスタ基板、および表示デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224254A (ja) * 1989-02-27 1990-09-06 Hitachi Ltd 薄膜トランジスタ及びその製造方法並びにそれを用いたマトリクス回路基板と画像表示装置
JP2008205420A (ja) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056173A1 (en) * 2010-09-03 2012-03-08 Applied Materials, Inc. Staggered thin film transistor and method of forming the same

Also Published As

Publication number Publication date
KR101527625B1 (ko) 2015-06-09
CN102197488A (zh) 2011-09-21
JP2010103324A (ja) 2010-05-06
TWI478350B (zh) 2015-03-21
US8384083B2 (en) 2013-02-26
TW201030979A (en) 2010-08-16
CN102197488B (zh) 2013-08-21
JP5360959B2 (ja) 2013-12-04
US20110193088A1 (en) 2011-08-11
KR20110074969A (ko) 2011-07-05

Similar Documents

Publication Publication Date Title
WO2010047040A1 (ja) バリア膜とドレイン電極膜およびソース電極膜との間の密着強度に優れた薄膜トランジスター
US8658009B2 (en) Thin film transistor having a barrier layer as a constituting layer and Cu-alloy sputtering target used for sputter film formation of the barrier layer
JP5017282B2 (ja) 配線膜の形成方法
US8624397B2 (en) Electrode layer structure for a thin-film transistor and process for manufacture thereof
TWI478308B (zh) Wiring construction and display device
JP5269533B2 (ja) 薄膜トランジスター
TW201131776A (en) Oxide semiconductor layer and semiconductor device
US20190148412A1 (en) Multilayer wiring film and thin film transistor element
JP2009215613A (ja) 密着性に優れた銅合金複合膜の成膜方法およびこの成膜方法で使用するCa含有銅合金ターゲット
JP5888501B2 (ja) 薄膜配線形成方法
JPWO2010143609A1 (ja) 電子装置の形成方法、電子装置、半導体装置及びトランジスタ
WO2020208904A1 (ja) Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
JP2020012190A (ja) 密着膜用ターゲット、配線層、半導体装置、液晶表示装置
JP2010040536A (ja) 薄膜トランジスター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141877.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002192

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12998283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821741

Country of ref document: EP

Kind code of ref document: A1