WO2010103587A1 - バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット - Google Patents

バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット Download PDF

Info

Publication number
WO2010103587A1
WO2010103587A1 PCT/JP2009/005576 JP2009005576W WO2010103587A1 WO 2010103587 A1 WO2010103587 A1 WO 2010103587A1 JP 2009005576 W JP2009005576 W JP 2009005576W WO 2010103587 A1 WO2010103587 A1 WO 2010103587A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
thin film
film transistor
semiconductor layer
Prior art date
Application number
PCT/JP2009/005576
Other languages
English (en)
French (fr)
Inventor
牧一誠
谷口兼一
中里洋介
森曉
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US13/138,159 priority Critical patent/US8658009B2/en
Priority to KR1020117017282A priority patent/KR101261786B1/ko
Priority to CN200980157928.8A priority patent/CN102349157B/zh
Publication of WO2010103587A1 publication Critical patent/WO2010103587A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Definitions

  • the present invention relates to a thin film transistor used for various displays, and in particular, a barrier layer positioned between a pure copper wiring layer (drain electrode layer and source electrode layer) which is a constituent layer of the thin film transistor and an n-type Si semiconductor layer. And a Cu alloy sputtering target used for forming the barrier layer. More specifically, it has a high adhesion strength to the n-type Si semiconductor layer as well as the wiring layer, and a function of sufficiently preventing mutual diffusion of Si and Cu as constituent components of the upper and lower layers ( The following relates to a barrier layer having a barrier function) and a Cu alloy sputtering target used for forming the barrier layer.
  • This application claims priority based on Japanese Patent Application No. 2009-057359 filed in Japan on March 11, 2009, the contents of which are incorporated herein by reference.
  • Liquid crystal displays, plasma displays, organic EL displays, inorganic EL displays and the like are known as flat panel displays using thin film transistors driven by an active matrix method.
  • a wiring made of a metal layer in a lattice form is formed in close contact with the surface of the glass substrate, and a thin film transistor is provided at an intersection of the lattice shaped wiring made of the metal layer. .
  • the thin film transistor includes a pure copper gate electrode layer 3 bonded to the surface of the glass substrate 1 from the substrate side through a metal Mo adhesion layer 2 as illustrated in FIG.
  • Silicon gate insulating layer 4 Si semiconductor layer 5, n-type Si semiconductor layer 6, a barrier layer formed by sputtering a Cu alloy target in an oxidizing atmosphere, and a pure copper drain electrode layer partitioned by separation grooves 8 It is also well known that it has a layer structure in which a wiring layer 9 composed of 9a and a source electrode layer 9b, and a passivation layer of silicon nitride and a transparent electrode layer are sequentially laminated, although not shown.
  • a separation groove 8 is formed in the wiring layer 9 by wet etching to divide it into a drain electrode layer 9a and a source electrode layer 9b.
  • the portion of the n-type Si semiconductor layer exposed on the bottom surface of the dispersion groove (separation groove 8) formed in the wiring layer 9 is removed by dry etching.
  • hydrogen atoms are lost from the surface particularly in the dry etching process. Therefore, the surface becomes extremely unstable, that is, dangling bonds (dangling bonds) increase, which becomes a surface defect.
  • the barrier layer which is a constituent layer of the thin film transistor is atomic% (hereinafter,% indicates atomic%), and contains one or more of Mg, Ti, Al, and Cr: 0.5 to 20% The remainder is formed by a method in which a Cu alloy sputtering target having a component composition consisting of Cu and inevitable impurities (however, 1% or less) is used, and after sputtering film formation, heat oxidation treatment is performed in an oxidizing atmosphere (air). It is also known that.
  • An object of the present invention is to provide a thin film transistor including a barrier film having high adhesion strength between the barrier layer and the n-type Si semiconductor layer, and a Cu alloy sputtering target capable of forming the barrier layer.
  • the present inventors have studied from the above viewpoint to ensure high adhesion strength between the barrier layer and the n-type Si semiconductor layer in the conventional thin film transistor. As a result, the following research results were obtained.
  • gas 100% hydrogen gas
  • hydrogen gas flow rate 10 to 1000 SCCM
  • hydrogen gas pressure 10 to 500 Pa
  • output 0.005 to 0.5 W / cm 2
  • processing temperature 250 to 350 ° C.
  • processing time 1
  • hydrogen plasma treatment under high temperature and extended conditions, such as ⁇ 5 minutes.
  • the oxygen component is activated, diffuses and moves to the wiring layer side and the n-type Si semiconductor layer side, and the oxygen content ratio of the barrier layer decreases (oxygen deficiency). There seems to be a cause.
  • the present invention has been made based on the above research results and has the following requirements.
  • the thin film transistor having a high adhesion strength between the barrier layer and the n-type Si semiconductor layer of the present invention includes a gate electrode layer, a gate insulating layer, a Si semiconductor layer, and an n-type Si bonded to the surface of the glass substrate via the adhesion layer.
  • the barrier layer contains, in atomic%, Al: 1-10%, Ca: 0.1-2%, and a Cu alloy sputtering target having a composition containing Cu and 1% or less of inevitable impurities as the balance. Used and sputtered in an oxidizing atmosphere.
  • the Cu alloy sputtering target used for sputter deposition of the barrier layer of the present invention is used for sputter deposition of the barrier layer constituting the thin film transistor in an oxidizing atmosphere, and is atomic%, Al: 1 to 10%, Ca : Containing 0.1 to 2%, with the balance being Cu alloy having a component composition containing Cu and 1% or less inevitable impurities.
  • the barrier layer located between the upper pure copper wiring layer and the lower n-type Si semiconductor layer has Al: 1 to 10%, Ca: 0.1 to 2%.
  • a Cu alloy sputtering target having a component composition containing Cu and 1% or less of inevitable impurities is used as the balance, and the film is formed by sputtering in an oxidizing atmosphere.
  • the adhesion with the upper wiring layer the adhesion with the n-type Si semiconductor layer of the lower layer is excellent, and this excellent adhesion is applied during the manufacturing process of the thin film transistor. It is maintained even after hydrogen plasma treatment under high temperature and prolonged conditions. Furthermore, it also has an excellent barrier function.
  • the thin film transistor of the present invention can sufficiently satisfy the large screen and high integration of the flat panel display.
  • the Cu alloy sputtering target of the present invention can form a barrier film of the above-described thin film transistor.
  • FIG. 1 is a schematic vertical sectional view of an essential part of a thin film transistor.
  • Al ensures strong adhesion between the barrier layer and the upper wiring layer, and between the barrier layer and the lower n-type Si semiconductor layer, and has an excellent barrier function. It has the effect of providing the barrier layer to be formed. However, if the content is less than 1%, a desired improvement effect cannot be obtained in the above action. On the other hand, when the content ratio exceeds 10%, a decreasing tendency appears in conductivity. Therefore, the content ratio is set to 1 to 10%, desirably 2 to 8%.
  • the Ca component stabilizes the barrier layer formed by sputtering film formation in an oxidizing atmosphere, and prevents adhesion deterioration even when the hydrogen plasma treatment conditions are increased in temperature and time. There is.
  • oxygen as a constituent component diffuses and moves to the upper copper wiring layer and the lower n-type Si semiconductor layer, so that the oxygen content in the barrier layer is reduced. In some cases, oxygen itself was insufficient.
  • the Ca component has an effect of preventing the barrier layer itself from being deficient in oxygen particularly by suppressing the above-described oxygen diffusion movement, and this is considered to suppress a decrease in adhesion.
  • the content ratio is set to 0.1 to 2%.
  • the content ratio of inevitable impurities in the sputtered barrier layer also exceeds 1%. In this case, a downward tendency appears in the adhesion. For this reason, the content of inevitable impurities must be 1% or less.
  • FIG. 1 shows a longitudinal section of a main part of a thin film transistor of the present invention.
  • the thin film transistor of the present invention comprises a gate electrode layer 3, a gate insulating layer 4, a Si semiconductor layer 5, an n-type Si semiconductor layer 6, a barrier layer 7, and a mutual separation bonded to the surface of the glass substrate 1 through an adhesion layer 2.
  • the barrier layer 7 is formed by sputtering in an oxidizing atmosphere using the above-described Cu alloy sputtering target of the present invention.
  • the adhesiveness between the barrier layer 7 and the wiring layer 9 and between the barrier layer 7 and the n-type Si semiconductor layer 6 is excellent. Furthermore, this excellent adhesion can be maintained even after hydrogen plasma treatment under high temperature and long time conditions. Also, an excellent barrier function can be obtained.
  • the adhesion strength between the barrier layer and the n-type Si semiconductor layer of the thin film transistor of the present invention will be specifically described with reference to examples.
  • bonding was performed from the surface side of a glass substrate having dimensions of length: 320 mm ⁇ width: 400 mm ⁇ thickness: 0.7 mm through a metal Mo adhesion layer having a thickness of 50 nm.
  • a gate electrode layer made of pure copper having a thickness of 250 nm, a gate electrode layer made of silicon nitride having a thickness of 300 nm, a Si semiconductor layer having a thickness of 150 nm, and an n-type Si semiconductor layer having a thickness of 10 nm were sequentially stacked.
  • a Cu alloy sputtering target of the present invention example of a Cu—Al—Ca alloy having the composition shown in Tables 1 and 2 (hereinafter referred to as a target of the present invention example) and a Cu example of a Cu—Al alloy comparative example
  • An alloy sputtering target (hereinafter, referred to as a comparative target) was produced.
  • the inevitable impurity content of the target was 1% or less.
  • atmosphere pressure 0.4 Pa
  • substrate heating Sputtering was performed at a temperature of 100 ° C. to form a barrier layer having a thickness of 50 nm. Further, a pure copper wiring layer was formed to a thickness of 250 nm.
  • the obtained thin film transistor samples 1 to 20 of the present invention and the thin film transistor samples 1 to 10 of the comparative example were subjected to hydrogen plasma treatment under the following conditions.
  • the above conditions are hydrogen plasma processing conditions corresponding to the increase in screen size and integration of flat panel displays, and the processing temperature is relatively higher than the conventional hydrogen plasma processing conditions. High and processing time is long.
  • the cross-cut adhesion test is in accordance with JIS-K5400, using 11 cutters on the surface of the sample at intervals of 0.5 mm, 1 mm, 1.5 mm, and 2 mm, respectively, vertically and horizontally, n-type from the surface. Grooves (cuts) were made at a depth reaching the Si semiconductor layer and a groove width of 0.1 mm. As a result, 100 cells were formed at each interval. A 3M scotch tape was adhered and adhered over the entire mesh, and then peeled off at once. And the number (pieces / 100) of the squares which peeled among 100 squares of the sample surface was measured. The measurement results are shown in Tables 1 to 3.
  • the thin film transistor of the present invention can sufficiently satisfy the large screen and high integration of the flat panel display.
  • a thin film transistor including a barrier film having excellent barrier function and excellent adhesion between the barrier layer and the wiring layer and between the barrier layer and the n-type Si semiconductor layer.
  • This excellent adhesion can be maintained even after hydrogen plasma treatment at high temperature for a long time. Therefore, it can be suitably applied as a thin film transistor that can satisfactorily cope with the large screen and high integration of flat panel displays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 このCu合金スパッタリングターゲットは、原子%で、Al:1~10%、Ca:0.1~2%を含有し、残部として、Cuと1%以下の不可避不純物を含む。この薄膜トランジスターは、ガラス基板の表面に密着層を介して接合されたゲート電極層、ゲート絶縁層、Si半導体層、n型Si半導体層、バリア層、相互分離されたドレイン電極層とソース電極層からなる配線層、パッシベーション層、および透明電極層を有し、上記バリア層は、上記Cu合金スパッタリングターゲットを用い、酸化雰囲気でスパッタ成膜されている。

Description

バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
 この発明は、各種ディスプレイに使用される薄膜トランジスターに係り、特に薄膜トランジスターの構成層である純銅の配線層(ドレイン電極層およびソース電極層)とn型Si半導体層との間に位置するバリア層、および前記バリア層の形成に用いられるCu合金スパッタリングターゲットに関する。さらに詳細には、前記配線層は勿論のこと、前記n型Si半導体層に対して高い密着強度を有すると共に、上下側層の構成成分であるSiやCuの相互拡散を十分に防止する機能(以下、バリア機能という)を有するバリア層、および前記バリア層の形成に用いられるCu合金スパッタリングターゲットに関する。
 本願は、2009年3月11日に、日本に出願された特願2009-057359号に基づき優先権を主張し、その内容をここに援用する。
 アクティブマトリックス方式で駆動する薄膜トランジスターを用いたフラットパネルディスプレイとして、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイなどが知られている。これら薄膜トランジスターを用いたフラットパネルディスプレイには、ガラス基板表面に、格子状に金属層からなる配線が密着形成されており、この金属層からなる格子状配線の交差点に薄膜トランジスターが設けられている。
 この薄膜トランジスターは、図1に要部縦断面模式図で例示した通り、ガラス基板1の表面に、基板側から、金属Moの密着層2を介して接合された純銅のゲート電極層3、窒化珪素のゲート絶縁層4、Si半導体層5、n型Si半導体層6、Cu合金ターゲットを酸化雰囲気でスパッタすることにより成膜されたバリア層、および分離溝8で仕切られた純銅のドレイン電極層9aとソース電極層9bからなる配線層9、さらに図示されてはいないが、窒化珪素のパッシベーション層および透明電極層を順次積層形成してなる層構造を有することも良く知られる。
 また、かかる積層構造を有する薄膜トランジスターの製造に際しては、湿式エッチング処理により、配線層9に分離溝8を形成してドレイン電極層9aとソース電極層9bに区分する。次いで配線層9に形成された分散溝(分離溝8)の底面に露出する部分のn型Si半導体層をドライエッチング処理により除去する。
 前記湿式エッチング処理およびドライエッチング処理後の分離溝8の底面に露出する部分のSi半導体層5においては、特に前記ドライエッチング処理で表面から水素原子が失われる。このため、その表面がきわめて不安定な状態となり、すなわち未結合手(ダングリングボンド)が増大し、これが表面欠陥となる。この表面欠陥が、薄膜トランジスターのオフ電流を増加させ、その結果、LCDのコントラストの低減や視野角を小さくするなどの問題点の発生が避けられない不安定な状態になる。このため、このSi半導体層5の露出表面に、ガス:100%水素ガス、水素ガス流量:10~1000SCCM、水素ガス圧:10~500Pa、処理温度:200~250℃、出力:0.005~0.5W/cm、処理時間:0.5~1分の条件で水素プラズマ処理を施して、Si半導体層5の表面の未結合手(ダングリングボンド)を水素原子と結合させて安定化する処理が施されている。
 さらに、薄膜トランジスターの構成層であるバリア層が、原子%(以下、%は原子%を示す)で、Mg、Ti、Al、およびCrのうちの1種以上:0.5~20%を含有し、残りがCuと不可避不純物(ただし、1%以下)からなる成分組成を有するCu合金スパッタリングターゲットを用い、スパッタ成膜した後、酸化雰囲気(空気)中で加熱酸化処理を施す方法により形成されることも知られている。
 一方、近年の各種フラットパネルディスプレイの大画面化および高集積化は、めざましく、これに伴い、薄膜トランジスターを構成する積層相互間には、一段と高い密着強度が要求される傾向にある。
 上記の従来の薄膜トランジスターにおいては、ガラス基板1と純銅のゲート電極層3との間、前記ゲート電極層3と窒化珪素のゲート絶縁層4との間、前記ゲート絶縁層4とSi半導体層5との間、前記Si半導体層5とn型Si半導体層6との間、およびバリア層と純銅の配線層9との間、さらに純銅の配線層9と図示されていない窒化珪素のパッシベーション層、前記パッシベーション層と透明電極層との間には、上記の要求に十分満足に対応できる高い密着強度が確保されている。しかし、上記のバリア層とn型Si半導体層6との間の密着強度は、相対的に低く、上記の要求に満足に対応できる高い密着強度を具備していないのが現状である。
特開平4-349637号公報 特開2005-166757号公報
 本発明は、バリア層とn型Si半導体層との間に高い密着強度を有するバリア膜を具備する薄膜トランジスター、及びそのバリア層を形成できるCu合金スパッタリングターゲットの提供を目的とする。
 そこで、本発明者等は、上述の観点から、上記の従来の薄膜トランジスターにおけるバリア層とn型Si半導体層間に高い密着強度を確保すべく研究を行った。その結果、以下の研究結果が得られた。
(a)薄膜トランジスターの構成層であるバリア層のn型Si半導体層に対する密着強度が、フラットパネルディスプレイの大画面化および高集積化に伴って低くなる原因としては、特に上記の水素プラズマ処理条件が、高温化および長時間化することが挙げられる。例えば、ガス:100%水素ガス、水素ガス流量:10~1000SCCM、水素ガス圧:10~500Pa、出力:0.005~0.5W/cm、処理温度:250~350℃、処理時間:1~5分のように、高温化および長時間化した条件での水素プラズマ処理の必要性が生じる。この結果、バリア層の構成成分のうち、特に、酸素成分が活性化し、配線層側およびn型Si半導体層側に拡散移動し、前記バリア層の酸素含有割合が低下すること(酸素不足)に原因があると考えられる。
(b)前述した従来のバリア層の形成に用いられる従来のCu合金スパッタリングターゲットの合金成分のうち、Alに着目した。このAlに、Caを合金成分として0.1~2%の割合で含有させたCu合金スパッタリングターゲットを用いて研究を行った。
 すなわち、Al:1~10%、Ca:0.1~2%を含有し、残部として、Cuと1%以下の不可避不純物を含む成分組成を有するCu合金スパッタリングターゲットを用いて、酸化雰囲気でスパッタ成膜することによりバリア層を形成し、特性を評価した。その結果、フラットパネルディスプレイの大画面化および高集積化に伴う高温で長時間の条件での水素プラズマ処理後でも、バリア層と配線層との間、およびバリア層とn型Si半導体層との間に高い密着強度が保持され、かつ優れたバリア機能も保持されたバリア層を形成できることが確認できた。
 この理由は、合金成分であるCaの作用によって、配線層側およびn型Si半導体層側への酸素の拡散移動が著しく抑制されるようになるためであると考えられる。
 この発明は、上記の研究結果に基づいてなされたものであって、以下の要件を有する。
 本発明のバリア層とn型Si半導体層とが高い密着強度を有する薄膜トランジスターは、ガラス基板の表面に密着層を介して接合されたゲート電極層、ゲート絶縁層、Si半導体層、n型Si半導体層、バリア層、相互分離されたドレイン電極層とソース電極層からなる配線層、パッシベーション層、および透明電極層を有し、前記層は、この順に、前記ガラス基板側から順次積層形成され、上記バリア層は、原子%で、Al:1~10%、Ca:0.1~2%を含有し、残部として、Cuと1%以下の不可避不純物を含む成分組成を有するCu合金スパッタリングターゲットを用い、酸化雰囲気でスパッタ成膜されている。
 本発明のバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲットは、薄膜トランジスターを構成するバリア層を酸化雰囲気でスパッタ成膜するために用いられ、原子%で、Al:1~10%、Ca:0.1~2%を含有し、残部として、Cuと1%以下の不可避不純物を含む成分組成を有するCu合金からなる。
 この発明の薄膜トランジスターは、上側層の純銅の配線層と下側層のn型Si半導体層との間に位置するバリア層が、Al:1~10%、Ca:0.1~2%を含有し、残部として、Cuと1%以下の不可避不純物を含む成分組成を有するCu合金スパッタリングターゲットを用い、酸化雰囲気でスパッタ成膜されている。
 前記上側層の配線層との密着性は勿論のこと、前記下側層のn型Si半導体層との密着性にも優れ、この優れた密着性は、薄膜トランジスターの製造工程中に施される高温化および長時間化した条件での水素プラズマ処理後でも保持される。更に、優れたバリア機能も具備する。以上により、本発明の薄膜トランジスターは、フラットパネルディスプレイの大画面化および高集積化に十分満足に対応できる。
 この発明のCu合金スパッタリングターゲットは、上記した薄膜トランジスターのバリア膜を形成できる。
図1は、薄膜トランジスターの要部縦断面模式図である。
(Cu合金スパッタリングターゲット)
 次に、この発明のCu合金スパッタリングターゲットの成分組成を上記の通りに限定した理由を説明する。
(a)Al
 Al成分には、バリア層と上側層の配線層との間、およびバリア層と下側層のn型Si半導体層との間に、強固な密着性を確保すると共に、優れたバリア機能を、形成するバリア層に具備せしめる作用がある。しかし、その含有割合が1%未満では、前記作用に所望の向上効果が得られない。一方、その含有割合が10%を越えると、導電性に低下傾向が現れるようになる。このため、その含有割合を1~10%、望ましくは2~8%と定めた。
(b)Ca
 Ca成分には、上記の通り、酸化雰囲気でのスパッタ成膜で形成されたバリア層自体を安定化し、上記水素プラズマ処理条件が高温化および長時間化しても、密着性の低下を防止する作用がある。
 水素プラズマ処理の際、構成成分である酸素が、上側層の純銅の配線層および下側層のn型Si半導体層に拡散移動して、前記バリア層における酸素の含有割合が低減し、すなわち層自体が酸素不足となる場合があった。Ca成分には、特に上記した酸素の拡散移動を抑制してバリア層自体が酸素不足となるのを防止する作用があり、これにより密着性の低下が抑制されると考えられる。
 その含有割合が0.1%未満では、前記作用に所望の向上効果が得られない。一方、その含有割合が2%を越えても、より一層の向上効果が得られない。このため、その含有割合を0.1~2%と定めた。
(c)残部:Cuおよび不可避不純物
 ターゲットの不可避不純物が1%を越えると、スパッタ成膜されたバリア層における不可避不純物の含有割合も1%を越えて多くなってしまう。この場合、密着性に低下傾向が現れるようになる。このため、不可避不純物の含有割合は、1%以下にしなければならない。
(薄膜トランジスター)
 図1は、本発明の薄膜トランジスターの要部縦断面を示す。
 この発明の薄膜トランジスターは、ガラス基板1の表面に密着層2を介して接合されたゲート電極層3、ゲート絶縁層4、Si半導体層5、n型Si半導体層6、バリア層7、相互分離されたドレイン電極層9aとソース電極層9bからなる配線層9、パッシベーション層、および透明電極層を有する。これら層は、この順に、ガラス基板側から順次積層形成されている。
 上記バリア層7は、前述した本発明のCu合金スパッタリングターゲットを用い、酸化雰囲気でスパッタ成膜されている。このため、前述したように、バリア層7と配線層9との間、およびバリア層7とn型Si半導体層6との間の密着性に優れる。さらに、この優れた密着性は、高温で長時間の条件での水素プラズマ処理後でも保持できる。また、優れたバリア機能も得られる。
 次に、この発明の薄膜トランジスターについて、バリア層とn型Si半導体層との間の密着強度に関し、実施例により具体的に説明する。
 従来の膜形成条件にしたがって、縦:320mm×横:400mm×厚さ:0.7mmの寸法をもったガラス基板の表面側から、膜厚:50nmの金属Moの密着層を介して接合された膜厚:250nmの純銅のゲート電極層、膜厚:300nmの窒化珪素のゲート電極層、膜厚:150nmのSi半導体層、および膜厚:10nmのn型Si半導体層を順次積層形成した。
 溶解調製によって、表1,2に示される成分組成を有するCu-Al-Ca合金の本発明例のCu合金スパッタリングターゲット(以下、本発明例のターゲットという)およびCu-Al合金の比較例のCu合金スパッタリングターゲット(以下、比較例のターゲットという)を作製した。なお、前記ターゲットの不可避不純物含有量はいずれも1%以下であった。
 前記積層体を有するガラス基板をスパッタ装置に装入し、前記ターゲットを用い、雰囲気:Ar+酸素(容量%で、Ar/酸素=90/10)の酸化雰囲気、雰囲気圧力:0.4Pa、基板加熱温度:100℃の条件でスパッタを行い、膜厚:50nmのバリア層を形成した。
 さらに、純銅の配線層を250nmの膜厚で形成した。
 以上により、本発明例の薄膜トランジスター試料1~20および比較例の薄膜トランジスター試料1~10をそれぞれ製造した。
 次いで、得られた本発明例の薄膜トランジスター試料1~20および比較例の薄膜トランジスター試料1~10に、以下の条件で水素プラズマ処理を施した。
 ガス:100%水素ガス
 水素ガス流量:500sccm
 水素ガス圧:250Pa
 処理温度:275℃
 出力:0.1W/cm
 処理時間:3分
 上記条件は、フラットパネルディスプレイの大画面化および高集積化に対応する水素プラズマ処理条件であり、従来行われている水素プラズマ処理条件に比して、相対的に処理温度が高く、かつ、処理時間が長い。
 前記バリア層のn型Si半導体層に対する密着性について、水素プラズマ処理前後の変化を、碁盤目付着試験を行うことにより確認した。
 碁盤目付着試験は、JIS-K5400に準じ、上記試料の表面に、カッターを用いて、0.5mm、1mm、1.5mm、および2mmの間隔で、それぞれ縦横に11本ずつ、表面からn型Si半導体層に達する深さで、かつ0.1mmの溝幅で、溝(切り込み)を入れた。これにより、それぞれの間隔で100個の升目を形成した。この升目全体に亘って、3M社製スコッチテープを密着して貼り付け、次いで一気に引き剥がした。そして、試料表面の100個の升目のうち、剥離した升目の数(個/100)を測定した。この測定結果を表1~3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示される結果から、本発明例のターゲットを用いて酸化雰囲気でスパッタ成膜されたバリア層を構成層とする本発明例の薄膜トランジスター試料1~20においては、いずれも相対的に高い処理温度および長い処理時間での水素プラズマ処理にもかかわらず、バリア層とn型Si半導体層との間にはきわめて高い付着強度(密着性)が確保された。
 これに対して、従来Cu合金スパッタリングターゲットに相当する成分組成を有する比較例のターゲット1~10を用いて、同じスパッタ条件で形成されたバリア層を構成層とする比較例の薄膜トランジスター試料1~10においては、いずれも通常条件に比して高い処理温度および長い処理時間での水素プラズマ処理では、バリア層とn型Si半導体層との間の付着強度(密着性)は低いことがわかった。
 上述のように、この発明の薄膜トランジスターは、フラットパネルディスプレイの大画面化および高集積化に十分満足に対応できる。
 本発明では、バリア層と配線層との間、およびバリア層とn型Si半導体層との間の密着性に優れ、かつ優れたバリア機能を有するバリア膜を備えた薄膜トランジスターを実現できる。この優れた密着性は、高温で長時間の条件での水素プラズマ処理後でも保持できる。従って、フラットパネルディスプレイの大画面化および高集積化に十分満足に対応できる薄膜トランジスターとして好適に適用できる。
 1:ガラス基板、2:密着層、3:ゲート電極層、4:ゲート絶縁層、5:Si半導体層、6:n型Si半導体層、7:バリア層、8:分離溝、9:配線層、9a:ドレイン電極層、9b:ソース電極層。

Claims (2)

  1.  ガラス基板の表面に密着層を介して接合されたゲート電極層、ゲート絶縁層、Si半導体層、n型Si半導体層、バリア層、相互分離されたドレイン電極層とソース電極層からなる配線層、パッシベーション層、および透明電極層を有し、
     前記層は、この順に、前記ガラス基板側から順次積層形成され、
     上記バリア層は、原子%で、Al:1~10%、Ca:0.1~2%を含有し、残部として、Cuと1%以下の不可避不純物を含む成分組成を有するCu合金スパッタリングターゲットを用い、酸化雰囲気でスパッタ成膜されたことを特徴とする、バリア層とn型Si半導体層とが高い密着強度を有する薄膜トランジスター。
  2.  薄膜トランジスターを構成するバリア層を酸化雰囲気でスパッタ成膜するために用いられ、
     原子%で、
     Al:1~10%、
     Ca:0.1~2%を含有し、
     残部として、Cuと1%以下の不可避不純物を含む成分組成を有するCu合金からなることを特徴とするバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット。
PCT/JP2009/005576 2009-03-11 2009-10-22 バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット WO2010103587A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/138,159 US8658009B2 (en) 2009-03-11 2009-10-22 Thin film transistor having a barrier layer as a constituting layer and Cu-alloy sputtering target used for sputter film formation of the barrier layer
KR1020117017282A KR101261786B1 (ko) 2009-03-11 2009-10-22 배리어층을 구성층으로 하는 박막 트랜지스터 및 배리어층의 스퍼터 성막에 사용되는 Cu 합금 스퍼터링 타깃
CN200980157928.8A CN102349157B (zh) 2009-03-11 2009-10-22 以阻挡层为构成层的薄膜晶体管以及用于阻挡层的溅射成膜的Cu合金溅射靶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009057359A JP5354781B2 (ja) 2009-03-11 2009-03-11 バリア層を構成層とする薄膜トランジスターおよび前記バリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
JP2009-057359 2009-03-11

Publications (1)

Publication Number Publication Date
WO2010103587A1 true WO2010103587A1 (ja) 2010-09-16

Family

ID=42727896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005576 WO2010103587A1 (ja) 2009-03-11 2009-10-22 バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット

Country Status (6)

Country Link
US (1) US8658009B2 (ja)
JP (1) JP5354781B2 (ja)
KR (1) KR101261786B1 (ja)
CN (1) CN102349157B (ja)
TW (1) TWI484638B (ja)
WO (1) WO2010103587A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021426A1 (ja) * 2011-08-10 2013-02-14 パナソニック株式会社 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
JP6108210B2 (ja) 2012-01-31 2017-04-05 日立金属株式会社 電子部品用積層配線膜
JP5888501B2 (ja) * 2012-02-16 2016-03-22 三菱マテリアル株式会社 薄膜配線形成方法
KR20130139438A (ko) 2012-06-05 2013-12-23 삼성디스플레이 주식회사 박막 트랜지스터 기판
US8772934B2 (en) 2012-08-28 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Aluminum interconnection apparatus
JP5842806B2 (ja) 2012-12-28 2016-01-13 三菱マテリアル株式会社 スパッタリングターゲット用銅合金製熱間圧延板、およびスパッタリングターゲット
KR102025103B1 (ko) 2013-07-22 2019-09-26 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN103545379B (zh) * 2013-11-06 2016-01-27 京东方科技集团股份有限公司 一种晶体管、像素单元、阵列基板和显示装置
US9455184B2 (en) 2014-06-17 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Aluminum interconnection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191541A (ja) * 2007-02-07 2008-08-21 Mitsubishi Materials Corp 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用配線および電極
JP2008205420A (ja) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット
JP2009043797A (ja) * 2007-08-07 2009-02-26 Mitsubishi Materials Corp 薄膜トランジスター
JP2009070881A (ja) * 2007-09-11 2009-04-02 Mitsubishi Materials Corp 薄膜トランジスター

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349637A (ja) 1991-05-28 1992-12-04 Oki Electric Ind Co Ltd アモルファスシリコン薄膜トランジスタアレイ基板の製造方法
CN100446102C (zh) 2003-05-16 2008-12-24 三菱麻铁里亚尔株式会社 光记录介质的反射层形成用的银合金溅射靶
EP1656467A2 (en) * 2003-08-21 2006-05-17 Honeywell International Inc. Copper-containing pvd targets and methods for their manufacture
JP2005166757A (ja) 2003-11-28 2005-06-23 Advanced Lcd Technologies Development Center Co Ltd 配線構造体、配線構造体の形成方法、薄膜トランジスタ、薄膜トランジスタの形成方法、及び表示装置
JPWO2008018478A1 (ja) 2006-08-09 2009-12-24 三井金属鉱業株式会社 素子の接合構造
WO2008047726A1 (en) 2006-10-13 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho Thin film transistor substrate and display device
CN101529566B (zh) * 2006-12-28 2011-11-16 株式会社爱发科 布线膜的形成方法、晶体管及电子装置
JP5269533B2 (ja) * 2008-09-26 2013-08-21 三菱マテリアル株式会社 薄膜トランジスター
JP5541651B2 (ja) * 2008-10-24 2014-07-09 三菱マテリアル株式会社 薄膜トランジスター用配線膜形成用スパッタリングターゲット
JP5285710B2 (ja) * 2008-10-24 2013-09-11 三菱マテリアル株式会社 薄膜トランジスタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205420A (ja) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット
JP2008191541A (ja) * 2007-02-07 2008-08-21 Mitsubishi Materials Corp 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用配線および電極
JP2009043797A (ja) * 2007-08-07 2009-02-26 Mitsubishi Materials Corp 薄膜トランジスター
JP2009070881A (ja) * 2007-09-11 2009-04-02 Mitsubishi Materials Corp 薄膜トランジスター

Also Published As

Publication number Publication date
KR20110097997A (ko) 2011-08-31
US8658009B2 (en) 2014-02-25
TW201034200A (en) 2010-09-16
CN102349157A (zh) 2012-02-08
JP5354781B2 (ja) 2013-11-27
US20110309444A1 (en) 2011-12-22
CN102349157B (zh) 2014-09-10
KR101261786B1 (ko) 2013-05-07
JP2010212465A (ja) 2010-09-24
TWI484638B (zh) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2010103587A1 (ja) バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
JP5360959B2 (ja) バリア膜とドレイン電極膜およびソース電極膜が高い密着強度を有する薄膜トランジスター
TWI437697B (zh) Wiring structure and a display device having a wiring structure
JP5017282B2 (ja) 配線膜の形成方法
JP5548396B2 (ja) 薄膜トランジスタ用配線層構造及びその製造方法
KR101527626B1 (ko) 박막 트랜지스터 및 박막 트랜지스터 중간체
US20190148412A1 (en) Multilayer wiring film and thin film transistor element
TWI445095B (zh) 薄膜電晶體的製造方法,薄膜電晶體
JP5888501B2 (ja) 薄膜配線形成方法
JPWO2010143609A1 (ja) 電子装置の形成方法、電子装置、半導体装置及びトランジスタ
JP2021064655A (ja) 配線構造及びターゲット材
WO2019093348A1 (ja) 配線構造及びターゲット材
JP2010040536A (ja) 薄膜トランジスター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157928.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138159

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117017282

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841419

Country of ref document: EP

Kind code of ref document: A1