WO2020262322A1 - 酸化物半導体の加工方法及び薄膜トランジスタの製造方法 - Google Patents

酸化物半導体の加工方法及び薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2020262322A1
WO2020262322A1 PCT/JP2020/024450 JP2020024450W WO2020262322A1 WO 2020262322 A1 WO2020262322 A1 WO 2020262322A1 JP 2020024450 W JP2020024450 W JP 2020024450W WO 2020262322 A1 WO2020262322 A1 WO 2020262322A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
oxide semiconductor
film
oxide
semiconductor
Prior art date
Application number
PCT/JP2020/024450
Other languages
English (en)
French (fr)
Inventor
松尾 大輔
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to KR1020217039350A priority Critical patent/KR20220003603A/ko
Priority to CN202080042357.XA priority patent/CN114008752A/zh
Publication of WO2020262322A1 publication Critical patent/WO2020262322A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Definitions

  • the present invention relates to a method for processing an oxide semiconductor and a method for manufacturing a thin film transistor.
  • TFTs thin film transistors
  • an oxide semiconductor layer such as In—Ga—Zn—O system (IGZO) as a channel layer
  • IGZO In—Ga—Zn—O system
  • Patent Document 1 in order to form an oxide semiconductor layer having an excellent film quality at a high film formation rate, a first oxide semiconductor having low crystallinity is supplied by supplying only argon as a sputtering gas when sputtering is performed. It is described that a layer is first formed, and then a second oxide semiconductor layer having high crystallinity is formed by supplying a mixed gas of argon and oxygen as a sputtering gas.
  • the oxide semiconductor layer having high crystallinity when the oxide semiconductor layer having high crystallinity is laminated on the oxide semiconductor layer having low crystallinity, when chemical etching is performed on these, the oxide semiconductor layer in the upper layer is formed.
  • the lower oxide semiconductor layer may be deeply scraped in the direction perpendicular to the stacking direction, and the processed cross section may be deepened. Therefore, for example, when a protective film or the like is applied in a subsequent process, it may be difficult for the protective film to reach the processed cross section of the oxide semiconductor layer underneath.
  • the present invention has been made in view of such a problem, and provides a processing method for easily obtaining a desired shape in the processing of an oxide semiconductor layer in which two oxide semiconductors having different crystallinities are laminated. This is the main issue.
  • the present invention when the ion milling method is used as the etching method, oxidizes even if two oxide semiconductors having different crystallinities are laminated. It has been found that etching can be performed at the same etching rate regardless of the difference in crystallinity of the physical semiconductor. That is, since the ion milling method is a physical etching that does not involve a chemical reaction, it was found that the etching rate does not differ greatly depending on the difference in crystallinity, and the present invention was conceived.
  • the method for processing an oxide semiconductor of the present invention includes a first semiconductor layer made of an oxide semiconductor and a second semiconductor layer made of an oxide semiconductor having a higher crystallinity than the oxide semiconductor constituting the first semiconductor layer. Is characterized in that semiconductor laminates laminated in order from the substrate side are processed and formed by an ion milling method.
  • the semiconductor laminate is processed by the ion milling method, so that the first semiconductor layer and the second semiconductor layer having different crystallinity can be etched at the same speed. .. Therefore, it is possible to prevent a situation in which only the first semiconductor layer having relatively low crystallinity is deeply scraped in the direction perpendicular to the stacking direction, which may occur when wet etching is performed, and it becomes easy to obtain a desired cross-sectional shape. .. Further, since the first semiconductor layer and the second semiconductor layer can be etched at the same speed, the step at the boundary between the processed cross sections of the first semiconductor layer and the second semiconductor layer should be reduced. Can be done. Therefore, when a protective film or the like is applied in a subsequent step, the protective film can be easily spread over any of the processed cross sections of the first semiconductor layer and the second semiconductor layer.
  • the semiconductor laminate processed by the processing method comprises the first semiconductor layer made of an amorphous oxide semiconductor and the second semiconductor layer.
  • the first semiconductor layer made of an amorphous oxide semiconductor
  • the second semiconductor layer can be mentioned as being composed of a crystalline oxide semiconductor.
  • the composition of the oxide semiconductor constituting the first semiconductor layer and the composition of the oxide semiconductor constituting the second semiconductor layer are the same. Some can be mentioned.
  • the oxide semiconductor constituting the first semiconductor layer and the second semiconductor layer may be IGZO.
  • the method for manufacturing a thin film of the present invention is a method for manufacturing a thin film in which a gate electrode, a gate insulating layer, an oxide semiconductor layer, a source electrode and a drain electrode are sequentially arranged on a substrate, and is an oxide.
  • the vertical sectional view which shows typically the structure of the thin film transistor of this embodiment.
  • the cross-sectional view which shows typically the manufacturing process of the thin film transistor of the same embodiment.
  • the cross-sectional view which shows typically the manufacturing process of the thin film transistor of the same embodiment.
  • the thin film transistor and the manufacturing method thereof according to the embodiment of the present invention will be described below.
  • the thin film transistor 1 of the present embodiment is a so-called bottom gate type. Specifically, as shown in FIG. 1, it has a substrate 2, a gate electrode 3, a gate insulating layer 4, an oxide semiconductor layer 5 as a channel layer, a source electrode 6, and a drain electrode 7. They are arranged (formed) in this order from the substrate 2 side. Each part will be described in detail below.
  • the substrate 2 is made of a material capable of transmitting light, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic, polyimide and other plastics (synthetic resin). It may be composed of glass or the like.
  • a gate electrode 3 is provided on the surface of the substrate 2.
  • the gate electrode 3 is made of a material having high conductivity, and may be made of one or more metals selected from, for example, Si, Al, Mo, Cr, Ta, Ti, Pt, Au, Ag and the like. Further, the conductivity of metal oxides such as Al-Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and In-Ga-Zn-O (IGZO). It may be composed of a membrane.
  • the gate electrode 3 may be composed of a single-layer structure of these conductive films or a laminated structure of two or more layers.
  • a gate insulating layer 4 is arranged on the gate electrode 3.
  • the gate insulating layer 4 is made of a material having high insulating properties, and is selected from, for example, SiO 2 , SiNx, SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Hf 2 and the like. It may be an insulating film containing the above oxides.
  • the gate insulating layer 4 may have a single-layer structure or a laminated structure of two or more layers of these conductive films.
  • the oxide semiconductor layer 5 is arranged on the gate insulating layer 4.
  • the oxide semiconductor layer 5 has a two-layer structure in which a first semiconductor layer 5a and a second semiconductor layer 5b made of an oxide semiconductor are arranged in order from the substrate 2 side.
  • the first semiconductor layer 5a and the second semiconductor layer 5b are preferably composed of oxide semiconductors having the same composition as each other, and preferably composed of oxide semiconductors composed of the same constituent elements and unavoidable impurities. ..
  • both the first semiconductor layer 5a and the second semiconductor layer 5b are made of an oxide semiconductor containing an oxide containing In as a main component.
  • the oxide containing In is, for example, an oxide such as In—Ga—Zn—O, In—Al—Mg—O, In—Al—Zn—O or In—Hf—Zn—O.
  • the first semiconductor layer 5a and the second semiconductor layer 5b are composed of oxide semiconductors having different degrees of crystallinity. Specifically, the crystallinity of the oxide semiconductor constituting the second semiconductor layer 5b is configured to be higher than the crystallinity of the oxide semiconductor constituting the first semiconductor layer 5a.
  • the oxide semiconductor constituting the first semiconductor layer a is preferably as low as its crystallinity, and more preferably amorphous.
  • the second semiconductor layer 5b is made of a crystalline oxide semiconductor, and the higher the crystallinity, the more preferable.
  • the high degree of crystallinity of the oxide semiconductors constituting the first semiconductor layer 5a and the second semiconductor layer 5b is determined by, for example, XRD (X-ray diffraction) by the ⁇ -2 ⁇ method using a Cu light source (Cu—K ⁇ ray). ) It can be confirmed by the half-value full width (FWHM) of the peak that can be observed by measurement.
  • the first semiconductor layer 5a and the second semiconductor layer 5b contain an oxide containing In such as In-Ga-Zn-O (IGZO) as a main component (meaning that it contains 90% or more in terms of body integration rate).
  • IGZO In-Ga-Zn-O
  • IGZO In—Ga—Zn—O
  • a source electrode 6 and a drain electrode 7 are arranged on the oxide semiconductor layer 5.
  • the source electrode 6 and the drain electrode 7 are each made of a material having high conductivity so as to function as an electrode. For example, it may be made of the same material as the gate electrode 2, or it may be made of a different material.
  • the source electrode 6 and the drain electrode 7 may be composed of a single-layer structure of a metal or a conductive oxide, or may be composed of a laminated structure of two or more layers.
  • a protective film for protecting the oxide semiconductor 5, the source electrode 6, and the drain electrode 7 may be arranged.
  • the protective film may be composed of, for example, a silicon oxide film (SiO 2 ), a fluorinated silicon nitride film (SiN: F) containing fluorine in the silicon nitride film, or the like.
  • the method for manufacturing the thin film transistor 1 of the present embodiment includes a gate electrode forming step, a gate insulating layer forming step, a semiconductor layer forming step, and a source / drain electrode forming step. Hereinafter, each step will be described.
  • a substrate 2 made of, for example, quartz glass is prepared, and a gate electrode 3 is formed on the surface of the substrate 2.
  • the method for forming the gate electrode 3 is not particularly limited, and the gate electrode 3 may be formed by a known method such as a vacuum vapor deposition method or a DC sputtering method.
  • the gate insulating layer 4 is formed so as to cover the surfaces of the substrate 2 and the gate electrode 3.
  • the method for forming the gate insulating layer 4 is not particularly limited, and the gate insulating layer 4 may be formed by a known method.
  • the semiconductor layer forming step includes a semiconductor laminating step of laminating two types of oxide semiconductor films in order from the substrate 2 side, and a semiconductor processing step of processing the laminated oxide semiconductor film.
  • the semiconductor laminating step includes a first film forming step of forming the first oxide semiconductor film S1 and a second film forming step of forming the second oxide semiconductor film S2.
  • both the first film forming step and the second film forming step form an oxide semiconductor film by sputtering the target using plasma.
  • a sputtering apparatus 100 that sputters the target T using an inductively coupled plasma P as shown in FIG.
  • the sputtering apparatus 100 includes a vacuum vessel 20, a substrate holding portion 30 that holds the substrate 2 in the vacuum vessel 20, a target holding portion 40 that holds the target T facing the substrate 2 in the vacuum vessel 20, and a substrate holding unit.
  • a plurality of antennas 50 arranged along the surface of the substrate 2 held by the portion 30 and generating the plasma P are provided.
  • the high frequency voltage supplied to the antenna 50 and the bias voltage of the target T can be set independently. Therefore, the bias voltage can be set to a low voltage such that ions in the plasma are drawn into the target and sputtered independently of the generation of the plasma P, and the negative bias voltage applied to the target T during sputtering is -1 kV. It is possible to set the negative voltage to the above (that is, the absolute value is 1 kV or less).
  • the target T is arranged in the target holding portion 40, and the substrate 2 is arranged in the substrate holding portion 30.
  • a conductive oxide sintered body such as InGaZnO, which is a raw material for the oxide semiconductor layer 5, is used.
  • the first oxide semiconductor film S1 is formed on the gate insulating layer 4.
  • the pressure inside the vacuum vessel 20 is 0.5 Pa or more and 3 while introducing the sputtering gas at 50 sccm or more and 200 sccm or less. .Adjust to 1 Pa or less.
  • high-frequency power of 1 kW or more and 10 kW or less is supplied to the plurality of antennas 50 to generate and maintain inductively coupled plasma.
  • a DC voltage pulse is applied to the target to sputter the target.
  • the voltage applied to the target T is set to a negative voltage of -1 kV or more and less than 0 V.
  • the pressure in the vacuum vessel 20, the flow rate of the sputtering gas, and the amount of electric power supplied to the antenna may be changed as appropriate.
  • the second oxide semiconductor film S2 is formed on the first oxide semiconductor film S1 as shown in FIG. 2D. .. Specifically, the second oxide semiconductor film S2 is formed by sputtering the target T using the sputtering apparatus 100 as in the first film forming step. Similar to the first film forming step, in the second film forming step, it is preferable that the voltage applied to the target T is a negative voltage of -1 kV or more and less than 0 V. Conditions such as the pressure in the vacuum vessel 20, the flow rate of the sputtering gas, and the amount of power supplied to the antenna in the second film forming step may be the same as those in the first film forming step, and may be changed as appropriate.
  • the oxygen gas concentration contained in the sputtering gas supplied in the second film forming step is included in the sputtering gas supplied in the first film forming step. Make it higher than the oxygen gas concentration.
  • the second film forming step as compared with the first film forming step, the generation of sputtered particles desorbed from oxygen can be further suppressed, and the film can be formed while maintaining the oxidized state of the target. Therefore, the crystallinity of the second oxide semiconductor film S2 can be made higher than the crystallinity of the first oxide semiconductor film S1.
  • the oxygen gas concentration in the sputtering gas supplied in the first film forming step may be lower than the oxygen gas concentration in the sputtering gas supplied in the second film forming step.
  • the concentration of oxygen gas contained in the sputtering gas is preferably 2v Popel% or less in terms of volume fraction, and only argon gas is used as the sputtering gas. It is preferable to be supplied.
  • the oxygen gas concentration contained in the sputtering gas supplied in the second film forming step is preferably 20 v Popel% or more in terms of volume fraction, and is preferably 50 v Popel%. The above is more preferable. Most preferably, only oxygen gas (that is, a volume fraction of 99.999v Popel% or more) is supplied as the sputtering gas.
  • the resist R1 is applied onto the second oxide semiconductor film S2. After that, exposure, development, and the like are performed so that the resist R1 is left only in the portion to be the oxide semiconductor layer 5 later, as shown in FIG. 3 (e). Then, as shown in FIG. 3 (f), the first oxide semiconductor film S1 and the second oxide semiconductor film S2 are etched, and the first semiconductor layer 5a and the second semiconductor layer 5b are sequentially arranged from the substrate 2 side. The laminated oxide semiconductor layer 5 is formed.
  • the second oxide semiconductor film S2 and the first oxide semiconductor film S1 are processed by physical etching by the ion milling method. Specifically, it is performed by irradiating the second oxide semiconductor film S2 and the first oxide semiconductor film S1 with an ion beam from the second oxide semiconductor film S2 side using an ion milling apparatus.
  • the ion beam irradiates the second oxide semiconductor film S2 and the first oxide semiconductor film S1 in a direction parallel to the stacking direction (thickness direction).
  • the processed cross sections of the formed first semiconductor layer 5a and second semiconductor layer 5b can be made parallel to the stacking direction.
  • the shape of the processed cross section of the first semiconductor layer 5a and the second semiconductor layer 5b is not limited to this, and may be formed so as to be tapered so as to spread toward the substrate 2.
  • the ionic material used in the ion milling method is not particularly limited, and examples thereof include Ne, Ar, Kr, and Xe.
  • other conditions for implementing the ion milling method are not particularly limited and can be exemplified as follows: ⁇ Ion acceleration voltage: 230 eV ⁇ Acceleration current: 100mA ⁇ Beam irradiation angle: 0 ° to ⁇ 30 °
  • Source electrode 6 and the drain electrode 7 are formed on the oxide semiconductor layer 5.
  • the source electrode 6 and the drain electrode 7 can be formed by, for example, a known method using RF magnetron sputtering or the like.
  • a protective film may be formed by using, for example, a plasma CVD method so as to cover the upper surfaces of the formed oxide semiconductor layer 5, the source electrode 6, and the drain electrode 7. If necessary, the heat treatment may be performed in an atmosphere containing oxygen under atmospheric pressure.
  • the thin film transistor 1 of the present embodiment can be obtained.
  • the pressure in the vacuum vessel is reduced to 0.9 Pa or less, high-frequency power of 7 kW is supplied to a plurality of antennas, and a DC pulse voltage of ⁇ 400 V is applied to the target.
  • the target was sputtered.
  • an amorphous first oxide semiconductor film S1 (a-IGZO) is formed on the silicon substrate, and the amorphous first oxide semiconductor film S1 (a-IGZO) is formed on the first oxide semiconductor film S1.
  • a crystalline second oxide semiconductor film S2 (c-IGZO) was formed.
  • wet etching (chemical etching) is performed on one sample and the other sample is subjected to wet etching (chemical etching).
  • wet etching (chemical etching)
  • wet etching (chemical etching)
  • Performed ion milling (physical etching). The specific conditions of the wet etching and ion milling performed are as follows.
  • the second oxide semiconductor film S2 and the first oxide semiconductor film S1 are processed by the ion milling method, so that the second oxide semiconductor film S2 and the first oxide semiconductor film S1 having different crystallinity can be formed.
  • etching can be performed at the same speed. Therefore, it is possible to prevent a situation in which only the amorphous first oxide semiconductor film S1 is deeply scraped in the direction perpendicular to the laminating direction, which may occur when wet etching is performed, and the crystalline second oxide semiconductor film S1 can be prevented. Together with the oxide semiconductor film S2, it becomes easy to obtain a desired cross-sectional shape.
  • the second oxide semiconductor film S2 and the first oxide semiconductor film S1 can be etched at the same speed, the obtained first semiconductor layer 5a and the second semiconductor layer 5b can be etched, respectively. It is possible to reduce the step at the boundary of the machined cross section of. Therefore, in the source / drain electrode forming step, which is a subsequent step, when the conductive film is formed so as to cover the oxide semiconductor layer 5 by sputtering or the like, either the processed cross section of the first semiconductor layer or the second semiconductor layer is processed. In addition, it becomes easy to form a conductive film.
  • the first semiconductor layer 5a and the second semiconductor layer 5b are composed of oxide semiconductors having the same composition, but the present invention is not limited to this. In another embodiment, the first semiconductor layer 5a and the second semiconductor layer 5b may be composed of oxide semiconductors having different compositions.
  • the crystallinity of the first oxide semiconductor film S1 and the second oxide semiconductor film S2 is changed by changing the oxygen concentration in the sputtering gas in the first film forming step and the second film forming step. I was allowed to do it, but it is not limited to this. If the first oxide semiconductor film S1 can be formed and the second oxide semiconductor film S2 having higher crystallinity can be formed on the film, the first film forming step and the second forming step can be carried out by other methods. May be done.
  • the first semiconductor layer 5a is not limited to an amorphous one, and may be made of a crystalline oxide semiconductor. Any semiconductor having lower crystallinity than the oxide semiconductor constituting the second semiconductor layer 5b may be used.
  • the oxide semiconductor layer 5 of the above embodiment is obtained by laminating two oxide semiconductor layers having different crystallinities, but the present invention is not limited to this.
  • the oxide semiconductor layer 5 of the other embodiment may be one in which three or more oxide semiconductor layers having different crystallinities are laminated.
  • the configuration has a plurality of target holding units 40, but a configuration having one target holding unit 40 may be used. Even in this case, a configuration having a plurality of antennas 50 is desirable, but a configuration having one antenna 50 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

結晶性の異なる2つの酸化物半導体が積層された酸化物半導体層の加工において、所望の形状を得やすい加工方法を提供する。酸化物半導体から成る第1半導体層と、前記第1半導体層を構成する酸化物半導体よりも結晶性が高い酸化物半導体から成る第2半導体層とが基板側から順に積層された半導体積層体を、イオンミリング法により加工して成形する加工方法。

Description

[規則26に基づく補充 21.08.2020] 酸化物半導体の加工方法及び薄膜トランジスタの製造方法
  本発明は、酸化物半導体の加工方法及び薄膜トランジスタの製造方法に関するものである。
  近年、In-Ga-Zn-O系(IGZO)等の酸化物半導体層をチャネル層に用いた薄膜トランジスタ(TFT)の開発が活発に行われている。酸化物半導体層をチャネル層に用いた薄膜トランジスタの製造方法として、例えば特許文献1には、スパッタリングによりゲート絶縁層の上に酸化物半導体層を形成した後、酸化物半導体層の上に金属膜を形成し、この金属膜をエッチングすることによりソース電極及びドレイン電極を形成する方法が開示されている。この特許文献1では、優れた膜質の酸化物半導体層を大きな成膜速度で形成するため、スパッタリングを行う際に、スパッタリングガスとしてアルゴンのみを供給することで結晶性の低い第1の酸化物半導体層をまず形成し、その上に、スパッタリングガスとしてアルゴンと酸素の混合ガスを供給することで結晶性の高い第2の酸化物半導体層を形成することが記載されている。
国際公開WO2018/225822号公報
  ところで、上記したような結晶性の異なる複数の酸化物半導体層を積層したものに対してウェットエッチング等の化学エッチングにより加工を行う場合、積層方向(膜厚方向)における膜質の違いに起因して、所望の形状を得ることが難しいことがある。すなわち、結晶性が低い酸化物半導体層では、結晶性がより高い酸化物半導体層に比べて化学エッチングに対するエッチング速度が大きいため、これらに対して化学エッチングを行うと、エッチング速度の違いによって2つの酸化物半導体層の境界で段差が生じてしまうことがある。特に、上記したように、結晶性が低い酸化物半導体層の上に結晶性が高い酸化物半導体層を積層した場合には、これらに対して化学エッチングを行うと、上層の酸化物半導体層に比べて下層の酸化物半導体層が、積層方向に垂直な方向に深く削られてしまい、その加工断面が奥まってしまうことがある。そのため、後工程で例えば保護膜等を塗布する場合、下層の酸化物半導体層の加工断面にまで保護膜が行き渡りにくいことがある。
  本発明はこのような問題に鑑みてなされたものであり、結晶性の異なる2つの酸化物半導体が積層された酸化物半導体層の加工において、所望の形状を得やすい加工方法を提供することを主たる課題とするものである。
  本発明は上記課題を解決するために鋭意検討した結果、エッチングの手法としてイオンミリング法を用いた場合には、結晶性の異なる2つの酸化物半導体が積層されたものであっても、その酸化物半導体の結晶性の違いによらず、同程度のエッチング速度でエッチングを行うことができることを見出した。すなわち、イオンミリング法であれば、化学的な反応を伴わない物理的なエッチングであるので、結晶性の違いによってエッチング速度に大きな差異が出ないことを見出し、本発明に想到したのである。
  すなわち本発明の酸化物半導体の加工方法は、酸化物半導体から成る第1半導体層と、前記第1半導体層を構成する酸化物半導体よりも結晶性が高い酸化物半導体から成る第2半導体層とが基板側から順に積層された半導体積層体を、イオンミリング法により加工して成形することを特徴とする。
  このような加工方法であれば、イオンミリング法により半導体積層体の加工を行うので、結晶性の異なる第1半導体層と第2半導体層とに対して同程度の速度でエッチングを行うことができる。そのため、ウェットエッチングを行った場合に生じ得る、結晶性が比較的低い第1半導体層だけが積層方向に垂直な方向に深く削られてしまうといった事態を防止でき、所望の断面形状を得やすくなる。
  また、第1半導体層と第2半導体層とに対して同程度の速度でエッチングを行うことができるので、第1半導体層と第2半導体層のそれぞれの加工断面の境界における段差を小さくすることができる。そのため、後工程で例えば保護膜等を塗布した場合に、第1半導体層と第2半導体層のいずれの加工断面にも、保護膜を行き渡らせやすくできる。
  前記した本発明の効果を顕著にする前記半導体積層体の態様として、前記加工方法により加工する半導体積層体が、前記第1半導体層が非晶質の酸化物半導体から成り、前記第2半導体層が結晶質の酸化物半導体から成るものを挙げることができる。
  前記した本発明の効果を顕著にする前記半導体積層体の態様として、前記第1半導体層を構成する酸化物半導体の組成と、前記第2半導体層を構成する酸化物半導体の組成とが同じであるものを挙げることができる。
  前記酸化物半導体の加工方法における半導体積層体の具体的態様として、前記第1半導体層及び前記第2半導体層を構成する酸化物半導体がIGZOであるものを挙げることができる。
  前記酸化物半導体の加工方法における半導体積層体の具体的態様として、前記第2半導体層に対するCu‐Kα線を用いたθ-2θ法によるX線回折測定における回折角2θ=31°近傍において確認されるピークの半値全幅が、前記第1半導体層に対する前記X線回折測定における回折角2θ=31°近傍において確認されるピークの半値全幅よりも小さいことが好ましい。
  また本発明の薄膜トランジスタの製造方法は、基板上に、ゲート電極と、ゲート絶縁層と、酸化物半導体層と、ソース電極及びドレイン電極とが順に配置された薄膜トランジスタの製造方法であって、酸化物半導体から成る第1半導体層と、前記第1半導体層を構成する酸化物半導体よりも結晶性が高い酸化物半導体から成る第2半導体層と、を前記基板側から順に積層する半導体積層工程と、積層された前記第1半導体層及び前記第2半導体層をイオンミリング法により加工して前記酸化物半導体層を形成する半導体加工工程と、を有することを特徴とする。
  このような薄膜トランジスタの製造方法であれば、前記した酸化物半導体の加工方法と同様の効果を得ることができる。
  このように構成した本発明によれば、結晶性の異なる2つの酸化物半導体が積層された酸化物半導体層の加工において、所望の形状を得やすい加工方法を提供することができる。
本実施形態の薄膜トランジスタの構成を模式的に示す縦断面図。 同実施形態の薄膜トランジスタの製造工程を模式的に示す断面図。 同実施形態の薄膜トランジスタの製造工程を模式的に示す断面図。 同実施形態の薄膜トランジスタの半導体層形成工程で用いられるスパッタリング装置の構成を模式的に示す図。 加工方法の違いによる酸化物半導体層の加工断面への影響を説明するSEM写真。
  以下に、本発明の一実施形態に係る薄膜トランジスタおよびその製造方法について説明する。
<1.薄膜トランジスタ>
  本実施形態の薄膜トランジスタ1は所謂ボトムゲート型のものである。具体的には図1に示すように、基板2と、ゲート電極3と、ゲート絶縁層4と、チャネル層たる酸化物半導体層5と、ソース電極6及びドレイン電極7とを有しており、基板2側からこの順に配置(形成)されている。以下、各部について詳述する。
  基板2は光を透過できるような材料から構成されており、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル、ポリイミド等のプラスチック(合成樹脂)やガラス等によって構成されてよい。
  基板2の表面にはゲート電極3が設けられている。ゲート電極3は高い導電性を有する材料から構成されており、例えばSi、Al、Mo、Cr、Ta、Ti、Pt、Au、Ag等から選択される1種以上の金属から構成されてよい。また、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O(IGZO)等の金属酸化物の導電性膜から構成されてよい。ゲート電極3は、これらの導電性膜の単層構造又は2層以上の積層構造から構成されてもよい。
  ゲート電極3の上にはゲート絶縁層4が配置されている。ゲート絶縁層4は高い絶縁性を有する材料から構成されており、例えば、SiO、SiNx、SiON、Al、Y、Ta、Hf等から選択される1つ以上の酸化物を含む絶縁膜であってよい。ゲート絶縁層4は、これらの導電性膜を単層構造又は2層以上の積層構造としたものであってよい。
  ゲート絶縁層4の上には酸化物半導体層5が配置されている。酸化物半導体層5は、いずれも酸化物半導体から成る第1半導体層5aと第2半導体層5bとが基板2側から順に配置された二層構造を成している。
  第1半導体層5aと第2半導体層5bは、互いに同一の組成の酸化物半導体から構成されており、互いに同一の構成元素及び不可避的な不純物から成る酸化物半導体から構成されていることが好ましい。本実施形態では、第1半導体層5aと第2半導体層5bはいずれも、Inを含む酸化物を主成分とする酸化物半導体から成る。Inを含む酸化物とは、例えばIn-Ga-Zn-O、In-Al-Mg-O、In-Al-Zn-O又はIn-Hf-Zn-O等の酸化物である。
  第1半導体層5aと第2半導体層5bは、結晶性の高さ(度合)が互いに異なる酸化物半導体から構成されている。具体的には、第2半導体層5bを構成する酸化物半導体の結晶性は、第1半導体層5aを構成する酸化物半導体の結晶性よりも高くなるように構成されている。
  第1半導体aは、その結晶性が低いほど、後述する第1成膜工程における成膜速度を早くし、生産性を向上することができる。そのため第1半導体層aを構成する酸化物半導体は、その結晶性が低いほど好ましく、非晶質(アモルファス)であることがより好ましい。
  ソース電極6及びドレイン電極7との間で界面を形成する第2半導体層5bは、その結晶性が高いほど界面における酸素欠陥を低減でき、薄膜トランジスタ1のゲート閾値電圧Vth(ドレイン電流Id=1nAにおけるゲート電圧Vg)を大きくすることができる。そのため第2半導体層5bは、結晶性の酸化物半導体から成り、その結晶性は高いほど好ましい。
  第1半導体層5aと第2半導体層5bを構成する酸化物半導体の結晶性の高さ(度合)は、例えばCu光源(Cu-Kα線)を用いたθ-2θ法によるXRD(X線回折)測定によって観測できるピークの半値全幅(FWHM)により確認することができる。具体的には、第1半導体層5a及び第2半導体層5bがIn-Ga-Zn-O(IGZO)等のInを含む酸化物を主成分(体積分率で90%以上含むことを言う)とする酸化物半導体から成る場合には、X線回折測定において2θ=31°近傍(例えば30°~32°)で確認できるピークの半値全幅の大きさにより評価することができる。より具体的には当該ピークの半値全幅が小さいほど結晶性が高いと評価できる。
  第2半導体層5bを構成する酸化物半導体の結晶性が、第1半導体層5aを構成する酸化物半導体の結晶性よりも高いことは、第2半導体層5bに対するX線回折測定における回折角2θ=31°近傍において確認されるピークの半値全幅が、第1半導体層5aに対するX線回折測定における回折角2θ=31°近傍において確認されるピークの半値全幅よりも小さいことにより確認することができる。
  第1半導体層5aが非晶質の酸化物半導体であることは、第1半導体層5aがIn-Ga-Zn-O(IGZO)からなる酸化物半導体である場合、上記したXRD(X線回折)による測定において2θ=31°近傍にピークが現れないことにより確認できる。
  薄膜トランジスタ1のゲート閾値電圧Vthを大きくする観点から、第2半導体層5bは、XRD(X線回折)による測定において2θ=31°近傍(例えば30°~32°)で確認できるピークの半値全幅が4.5°以下であることが好ましく、3.0°以下であることがより好ましく、2.5°以下であることがさらに好ましい。
  酸化物半導体層5の上には、ソース電極6およびドレイン電極7が配置されている。ソース電極6及びドレイン電極7はそれぞれ、電極として機能するように高い導電性を有する材料から構成されている。例えばゲート電極2と同様の材料により構成されてもよく、異なる材料により構成されてもよい。ソース電極6及びドレイン電極7は、金属や導電性酸化物の単層構造から構成されてもよく、2層以上の積層構造から構成されてもよい。
  必要に応じて、酸化物半導体5、ソース電極6およびドレイン電極7の上には、これらを保護するための保護膜が配置されていてもよい。保護膜は、例えばシリコン酸化膜(SiO)、シリコン窒化膜中にフッ素を含有するフッ素化シリコン窒化膜(SiN:F)等によって構成されてもよい。
<2.薄膜トランジスタの製造方法>
  次に、上述した構造の薄膜トランジスタ1の製造方法を、図2及び図3を参照して説明する。
  本実施形態の薄膜トランジスタ1の製造方法は、ゲート電極形成工程、ゲート絶縁層形成工程、半導体層形成工程、ソース・ドレイン電極形成工程を含む。以下、各工程について説明する。
(1)ゲート電極形成工程
  まず図2(a)に示すように、例えば石英ガラスからなる基板2を準備し、基板2の表面にゲート電極3を形成する。ゲート電極3の形成方法は特に制限されず、例えば真空蒸着法、DCスパッタリング法等の既知の方法により形成してよい。
(2)ゲート絶縁層形成工程
  次に、図2(b)に示すように、基板2及びゲート電極3の表面を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4の形成方法は特に限定されず、既知の方法により形成してよい。
(3)半導体層形成工程
  次に、図2(c)~図3(f)に示すように、ゲート絶縁層4上にチャネル層としての酸化物半導体層5を形成する。半導体層形成工程は、2種類の酸化物半導体膜を基板2側から順に積層する半導体積層工程と、積層した酸化物半導体膜を加工する半導体加工工程と、を含む。
(3-1)半導体積層工程
  半導体積層工程では、ゲート絶縁層4上に第1酸化物半導体膜S1を形成し、この上に、第1酸化物半導体膜S1よりも結晶性が高い第2酸化物半導体膜S2を形成する。半導体積層工程は、第1酸化物半導体膜S1を形成する第1成膜工程と、第2酸化物半導体膜S2を形成する第2成膜工程とを含む。
  本実施形態において、第1成膜工程及び第2成膜工程はいずれも、プラズマを用いてターゲットをスパッタリングすることにより酸化物半導体膜を成膜する。具体的には、図4に示すような、誘導結合型のプラズマPを用いてターゲットTをスパッタリングするスパッタリング装置100を用いて行われる。スパッタリング装置100は、真空容器20と、真空容器20内において基板2を保持する基板保持部30と、真空容器20内において基板2と対向してターゲットTを保持するターゲット保持部40と、基板保持部30に保持された基板2の表面に沿って配列され、プラズマPを発生させる複数のアンテナ50とを備える。スパッタリング装置100を使用することにより、アンテナ50に供給する高周波電圧とターゲットTのバイアス電圧との設定を独立して行うことができる。そのため、バイアス電圧をプラズマPの生成とは独立してプラズマ中のイオンをターゲットに引き込んでスパッタさせる程度の低電圧に設定することができ、スパッタリング時にターゲットTに印加する負のバイアス電圧を-1kV以上(すなわち絶対値が1kV以下)の負電圧に設定することが可能になる。第1成膜工程及び第2成膜工程では、ターゲット保持部40にターゲットTを配置し、基板保持部30に基板2を配置して行われる。ここではターゲットTとして、酸化物半導体層5の原料となるInGaZnO等の導電性酸化物焼結体が用いられる。
(3-1-1)第1成膜工程
  第1成膜工程ではまず、図2(c)に示すように、ゲート絶縁層4上に第1酸化物半導体膜S1を形成する。具体的には、スパッタリング装置100の真空容器20を3×10-6Torr以下に真空排気した後、50sccm以上200sccm以下でスパッタリングガスを導入しつつ、真空容器内20の圧力を0.5Pa以上3.1Pa以下に調整する。そして複数のアンテナ50に1kW以上10kW以下の高周波電力を供給し、誘導結合型のプラズマを生成し、これを維持する。ターゲットに直流電圧パルスを印加して、ターゲットのスパッタリングを行う。酸素が脱離したスパッタ粒子の生成を抑制し、膜中の酸素欠陥が少ない酸化物半導体膜を形成する観点から、ターゲットTに印加する電圧を-1kV以上0V未満の負電圧とする。なお、真空容器20内の圧力、スパッタリングガスの流量、アンテナに供給する電力量は適宜変更されてもよい。
(3-1-2)第2成膜工程
  第1成膜工程の後、図2(d)に示すように、第1酸化物半導体膜S1の上に第2酸化物半導体膜S2を形成する。具体的には、第1成膜工程と同様に、スパッタリング装置100を用いて、ターゲットTのスパッタリングを行うことにより第2酸化物半導体膜S2を形成する。第1成膜工程と同様に、第2成膜工程においても、ターゲットTに印加する電圧を-1kV以上0V未満の負電圧とすることが好ましい。第2成膜工程における真空容器20内の圧力、スパッタリングガスの流量、アンテナに供給する電力量等の条件は第1成膜工程と同じであってよく、適宜変更してもよい。
  (3-1-3)スパッタリングガス中の酸素ガス濃度
  本実施形態では、第2成膜工程において供給するスパッタリングガスに含まれる酸素ガス濃度を、第1成膜工程において供給するスパッタリングガスに含まれる酸素ガス濃度よりも高くする。これにより第2成膜工程では、第1成膜工程に比べて、酸素が脱離したスパッタ粒子の生成をより抑えて、ターゲットの酸化状態をより維持したまま成膜することができる。そのため、第2酸化物半導体膜S2の結晶性を、第1酸化物半導体膜S1の結晶性よりも高くすることができる。
  第1成膜工程において供給されるスパッタリングガス中の酸素ガス濃度は、第2成膜工程において供給されるスパッタリングガス中の酸素ガス濃度よりも低ければよい。第1成膜工程において、非晶質の第1酸化物半導体膜S1を形成する観点から、スパッタリングガスに含まれる酸素ガス濃度は体積分率で2vоl%以下が好ましく、スパッタリングガスとしてアルゴンガスのみが供給されることが好ましい。
  第2酸化物半導体膜S2の結晶性を高くする観点から、第2成膜工程において供給されるスパッタリングガスに含まれる酸素ガス濃度は、体積分率で20vоl%以上であることが好ましく、50vоl%以上であることがより好ましい。スパッタリングガスとして酸素ガスのみ(すなわち、体積分率が99.999vоl%以上)が供給されることが最も好ましい。
(3-2)半導体加工工程
  次に、半導体加工工程において、積層した第1酸化物半導体膜S1及び第2酸化物半導体膜S2を加工して、酸化物半導体層5を形成する。
  具体的にはまず、第2酸化物半導体膜S2上にレジストR1を塗布する。その後露光・現像等を行い、図3の(e)に示すように、後に酸化物半導体層5とする部位にのみレジストR1を残すようにする。そして、図3の(f)に示すように、第1酸化物半導体膜S1及び第2酸化物半導体膜S2をエッチング加工し、第1半導体層5a及び第2半導体層5bが基板2側から順に積層した酸化物半導体層5を形成する。
  ここで、実施形態の製造方法では、イオンミリング法による物理的エッチングによって第2酸化物半導体膜S2及び第1酸化物半導体膜S1を加工する。具体的には、イオンミリング装置を用いて、第2酸化物半導体膜S2及び第1酸化物半導体膜S1に対して、第2酸化物半導体膜S2側からイオンビームを照射することにより行われる。
  イオンビームは、第2酸化物半導体膜S2及び第1酸化物半導体膜S1に対して、その積層方向(膜厚方向)に平行な方向に照射されることが好ましい。このようにすることで、形成された第1半導体層5a及び第2半導体層5bの加工断面を積層方向に対して平行にできる。第1半導体層5a及び第2半導体層5bの加工断面の形状はこれに限らず、基板2に向かって広がるようテーパ状になるように形成されてもよい。
  イオンミリング法において使用されるイオン材は特に限定されず、例えばNe、Ar、Kr、Xe等が挙げられる。またその他イオンミリング法の実施条件は特に限定されず、例えば次のように例示できる
・イオン加速電圧:230eV
・加速電流:100mA
・ビーム照射角度:0°~±30°
(4)ソース・ドレイン電極形成工程
  次に、酸化物半導体層5上のレジストR1を除去した後、酸化物半導体層5上にソース電極6およびドレイン電極7を形成する。ソース電極6およびドレイン電極7の形成は、例えば、RFマグネトロンスパッタリング等を用いた既知の方法により形成することができる。
(5)その他
  その後、必要に応じて、形成された酸化物半導体層5、ソース電極6及びドレイン電極7の上面を覆うように、例えばプラズマCVD法を用いて保護膜を形成してもよい。また必要に応じて、酸素を含む大気圧下の雰囲気中で熱処理を行ってもよい。
  以上により、本実施形態の薄膜トランジスタ1を得ることができる。
<3.酸化物半導体層の断面の観測>
  上記した半導体加工工程における加工方法の違いによる、酸化物半導体層5(第1半導体層5a及び第2半導体層5b)の断面形状への影響について評価した。
(1.サンプル作製)
  シリコン基板を2つ準備し、前記した製造方法の半導体積層工程に基づいて、In-Ga-Zn-O(IGZO1114)から成る酸化物半導体膜をシリコン基板上に成膜し、2つのサンプルを作製した。
  具体的には、スパッタリング装置100を用いて、真空容器内の圧力を0.9Pa以下まで減圧し、複数のアンテナに7kWの高周波電力を供給し、ターゲットに-400Vの直流パルス電圧を印加してターゲットのスパッタリングを行った。そして供給するスパッタリングガス中の酸素ガス濃度を変化させることで、シリコン基板上に非晶質の第1酸化物半導体膜S1(a-IGZO)を成膜し、第1酸化物半導体膜S1上に結晶質の第2酸化物半導体膜S2(c-IGZO)を成膜した。
(2.加工及び成形)
  次に、作成した2つのサンプルに対して、第2酸化物半導体膜側から第1酸化物半導体膜側へ向けてエッチング加工を行った。
  具体的には2つのサンプルの第2酸化物半導体膜S2の表面の所定領域にレジストを施した後、一方のサンプルに対してはウェットエッチング(化学的エッチング)を行い、他方のサンプルに対してはイオンミリング(物理的エッチング)を行った。行ったウェットエッチング及びイオンミリングの具体的な条件は、次のとおりである。
(ウェットエッチングの条件)
・エッチング液:HCl(0.05M)
・エッチング時間:210秒
・温度:25℃
(イオンミリングの条件)
・イオン加速電圧:230eV
・加速電流:100mA
・基板回転:12rpm
・エッチング時間:360秒
・ビーム照射角度:0°
(3.エッチング加工及び加工断面の観察)
  各サンプルにおける、エッチングによる第1酸化物半導体膜S1及び第2酸化物半導体膜S2の加工断面をSEM(走査型電子顕微鏡)により観察した。その結果を図5に示す。
  図5(a)に示すように、ウェットエッチングにより加工を行ったサンプルでは、第1酸化物半導体膜S1と第2酸化物半導体膜S2との境界において大きな段差が生じていた。具体的には、第2半導体膜S2よりも結晶性が低くエッチング速度が高い第1半導体膜S1では、第2半導体膜S2との境界付近において、積層方向に対して横方向に向けてのエッチングが進行していた。
  一方で図5(b)に示すように、イオンミリングにより加工を行ったサンプルでは、第1酸化物半導体膜S1と第2酸化物半導体膜S2との境界において大きな段差が生じず、滑らかな一続きの断面が形成されていた。
<4.本実施形態の効果>
  このようにした本実施形態の薄膜トランジスタ1の製造方法によれば、
半導体加工工程において、イオンミリング法によって第2酸化物半導体膜S2及び第1酸化物半導体膜S1を加工するので、結晶性の異なる第2酸化物半導体膜S2と第1酸化物半導体膜S1とに対して同程度の速度でエッチングを行うことができる。そのため、ウェットエッチングを行った場合に生じ得るような、非晶質の第1酸化物半導体膜S1だけが積層方向に垂直な方向に深く削られてしまうといった事態を防止でき、結晶質の第2酸化物半導体膜S2とともに所望の断面形状を得やすくなる。
  また、第2酸化物半導体膜S2と第1酸化物半導体膜S1とに対して同程度の速度でエッチングを行うことができるので、得られた第1半導体層5aと第2半導体層5bのそれぞれの加工断面の境界における段差を小さくすることができる。そのため、後工程であるソース・ドレイン電極形成工程において、スパッタリング等により酸化物半導体層5を覆うように導電性膜を製膜した際に、第1半導体層と第2半導体層のいずれの加工断面にも、導電性膜を成膜しやすくなる。
<その他の変形実施形態>
  なお、本発明は前記実施形態に限られるものではない。
  前記実施形態では、第1半導体層5aと第2半導体層5bは組成が同一の酸化物半導体から構成されていたが、これに限らない。他の実施形態では、第1半導体層5aと第2半導体層5bとは組成が異なる酸化物半導体から構成されてもよい。
  前記実施形態では、第1成膜工程及び第2成膜工程において、スパッタリングガス中の酸素濃度を変化させることにより、第1酸化物半導体膜S1及び第2酸化物半導体膜S2の結晶性を変化させていたが、これに限らない。第1酸化物半導体膜S1を成膜し、その上により結晶性の高い第2酸化物半導体膜S2を成膜できるものであれば、他の方法により第1成膜工程及び第2成膜工程を行ってもよい。
  第1半導体層5aは、非晶質のものに限らず、結晶質の酸化物半導体から構成されてもよい。第2半導体層5bを構成する酸化物半導体よりも結晶性が低いものであればよい。  
  前記実施形態の酸化物半導体層5は、結晶性の異なる2つの酸化物半導体層が積層されたものであったが、これに限らない。他の実施形態の酸化物半導体層5は、結晶性の異なる3つ以上の酸化物半導体層が積層されたものであってもよい。
  前記実施形態では、複数のターゲット保持部40を有する構成であったが、1つのターゲット保持部40を有する構成であってもよい。この場合であっても、複数のアンテナ50を有する構成が望ましいが、1つのアンテナ50を有する構成であってもよい。
  その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
  1    ・・・薄膜トランジスタ
  2    ・・・基板
  3    ・・・ゲート電極
  4    ・・・ゲート絶縁層
  5    ・・・酸化物半導体層
  5a  ・・・第1半導体層
  5b  ・・・第2半導体層
  6    ・・・ソース電極
  7    ・・・ドレイン電極

Claims (6)

  1.   酸化物半導体から成る第1半導体層と、前記第1半導体層を構成する酸化物半導体よりも結晶性が高い酸化物半導体から成る第2半導体層とが基板側から順に積層された半導体積層体を、イオンミリング法により加工して成形する加工方法。
  2.   前記第1半導体層が非晶質の酸化物半導体から成り、前記第2半導体層が結晶質の酸化物半導体から成る、請求項1に記載の加工方法。
  3.   前記第1半導体層を構成する酸化物半導体の組成と、前記第2半導体層を構成する酸化物半導体の組成とが同じである請求項1又は2に記載の加工方法。
  4.   前記第1半導体層及び前記第2半導体層を構成する酸化物半導体がIGZOである請求項1~3のいずれか1項に記載の加工方法。
  5.   前記第2半導体層に対するCu‐Kα線を用いたθ-2θ法によるX線回折測定における回折角2θ=31°近傍において確認されるピークの半値全幅が、前記第1半導体層に対する前記X線回折測定における回折角2θ=31°近傍において確認されるピークの半値全幅よりも小さい請求項1~4のいずれか1項に記載の加工方法。
  6.   基板上に、ゲート電極と、ゲート絶縁層と、酸化物半導体層と、ソース電極及びドレイン電極とが順に配置された薄膜トランジスタの製造方法であって、
      酸化物半導体から成る第1半導体層と、前記第1半導体層を構成する酸化物半導体よりも結晶性が高い酸化物半導体から成る第2半導体層と、を前記基板側から順に積層する半導体積層工程と、
      積層された前記第1半導体層及び前記第2半導体層をイオンミリング法により加工して前記酸化物半導体層を形成する半導体加工工程と、
    を有する薄膜トランジスタの製造方法。
PCT/JP2020/024450 2019-06-25 2020-06-22 酸化物半導体の加工方法及び薄膜トランジスタの製造方法 WO2020262322A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217039350A KR20220003603A (ko) 2019-06-25 2020-06-22 산화물 반도체의 가공 방법 및 박막 트랜지스터의 제조 방법
CN202080042357.XA CN114008752A (zh) 2019-06-25 2020-06-22 氧化物半导体的加工方法及薄膜晶体管的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-116880 2019-06-25
JP2019116880A JP2021002633A (ja) 2019-06-25 2019-06-25 酸化物半導体の加工法方法及び薄膜トランジスタの製造方法

Publications (1)

Publication Number Publication Date
WO2020262322A1 true WO2020262322A1 (ja) 2020-12-30

Family

ID=73995442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024450 WO2020262322A1 (ja) 2019-06-25 2020-06-22 酸化物半導体の加工方法及び薄膜トランジスタの製造方法

Country Status (5)

Country Link
JP (1) JP2021002633A (ja)
KR (1) KR20220003603A (ja)
CN (1) CN114008752A (ja)
TW (1) TWI739491B (ja)
WO (1) WO2020262322A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335712A (ja) * 2003-05-07 2004-11-25 Sharp Corp 酸化物半導体発光素子およびその加工方法
JP2011187506A (ja) * 2010-03-04 2011-09-22 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置
JP2011254003A (ja) * 2010-06-03 2011-12-15 Fujitsu Ltd 半導体装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201410904A (zh) * 2012-07-30 2014-03-16 Tosoh Corp 氧化物燒結體、濺鍍靶及其製造方法
TWI684283B (zh) * 2017-06-07 2020-02-01 日商日新電機股份有限公司 薄膜電晶體的製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335712A (ja) * 2003-05-07 2004-11-25 Sharp Corp 酸化物半導体発光素子およびその加工方法
JP2011187506A (ja) * 2010-03-04 2011-09-22 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置
JP2011254003A (ja) * 2010-06-03 2011-12-15 Fujitsu Ltd 半導体装置及びその製造方法

Also Published As

Publication number Publication date
TW202105516A (zh) 2021-02-01
KR20220003603A (ko) 2022-01-10
TWI739491B (zh) 2021-09-11
CN114008752A (zh) 2022-02-01
JP2021002633A (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP2022019923A (ja) 半導体装置
US9331207B2 (en) Oxide semiconductor device and manufacturing method therof
WO2014058019A1 (ja) 酸化物半導体薄膜および薄膜トランジスタ
WO2018225822A1 (ja) 薄膜トランジスタの製造方法
WO2020262322A1 (ja) 酸化物半導体の加工方法及び薄膜トランジスタの製造方法
TW201351503A (zh) 用於低蝕刻速率硬遮罩膜之具有氧摻雜之pvd氮化鋁膜
US6900083B2 (en) Method of forming multi-layers for a thin film transistor
JP2008283202A (ja) 絶縁膜及びその製造方法、並びに絶縁膜を備えた電子デバイス
TWI779254B (zh) 薄膜電晶體的製造方法
JP2009215613A (ja) 密着性に優れた銅合金複合膜の成膜方法およびこの成膜方法で使用するCa含有銅合金ターゲット
JP5037242B2 (ja) 半導体素子の製造方法
US11682556B2 (en) Methods of improving graphene deposition for processes using microwave surface-wave plasma on dielectric materials
WO2022130913A1 (ja) 酸化物半導体の成膜方法及び薄膜トランジスタの製造方法
CN114127956B (zh) 薄膜晶体管的制造方法
TWI835033B (zh) 氧化物半導體的成膜方法及薄膜電晶體的製造方法
WO2016074427A1 (zh) 一种多晶氧化物薄膜晶体管阵列基板及其制备方法
JP2021190590A (ja) 酸化物半導体の成膜方法及び薄膜トランジスタの製造方法
JP7247546B2 (ja) 薄膜トランジスタの製造方法
KR20180023938A (ko) 물질막 형성 방법
JP2016174186A (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217039350

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831079

Country of ref document: EP

Kind code of ref document: A1