WO2010035459A1 - エピスルフィド化合物、エピスルフィド化合物含有混合物、エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体 - Google Patents

エピスルフィド化合物、エピスルフィド化合物含有混合物、エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体 Download PDF

Info

Publication number
WO2010035459A1
WO2010035459A1 PCT/JP2009/004797 JP2009004797W WO2010035459A1 WO 2010035459 A1 WO2010035459 A1 WO 2010035459A1 JP 2009004797 W JP2009004797 W JP 2009004797W WO 2010035459 A1 WO2010035459 A1 WO 2010035459A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
above formula
compound
groups
carbon atoms
Prior art date
Application number
PCT/JP2009/004797
Other languages
English (en)
French (fr)
Inventor
久保田敬士
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN2009801376033A priority Critical patent/CN102164907A/zh
Priority to JP2009540944A priority patent/JP4730695B2/ja
Publication of WO2010035459A1 publication Critical patent/WO2010035459A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D331/00Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
    • C07D331/02Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention is an episulfide compound that can be rapidly cured at a low temperature, and can be efficiently connected to the connection target member and can suppress the formation of voids after the connection when used for connection of the connection target member. And an episulfide compound-containing mixture containing the episulfide compound, a method for producing the episulfide compound-containing mixture, a curable composition, and a connection structure.
  • Anisotropic conductive materials such as anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, or anisotropic conductive sheet are widely known.
  • An anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, or between an IC chip and a circuit board having an ITO electrode.
  • an anisotropic conductive material is arranged between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be connected by heating and pressurizing.
  • Patent Document 1 discloses a different material containing a thermosetting insulating adhesive, conductive particles, an imidazole-based latent curing agent, and an amine-based latent curing agent.
  • An isotropic conductive adhesive film is disclosed.
  • Patent Document 1 describes that the connection reliability is excellent even when this anisotropic conductive adhesive film is cured at a relatively low temperature.
  • the heating temperature necessary to start curing is relatively low.
  • the curing reaction may not proceed sufficiently at low temperatures.
  • the object of the present invention can be quickly cured at a low temperature, and further, when used for connection of a connection target member, the connection target member can be efficiently connected, and generation of voids after connection can be suppressed.
  • An object is to provide an episulfide compound, an episulfide compound-containing mixture containing the episulfide compound, a method for producing the episulfide compound-containing mixture, a curable composition, and a connection structure.
  • an episulfide compound having a structure represented by the following formula (1-1), (2-1) or (3).
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms, and 2 to 4 groups out of the four groups R3, R4, R5 and R6 represent hydrogen. , R3, R4, R5 and R6 are not hydrogen and represent a group represented by the following formula (4).
  • R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R53, R54, R55, R56, R57 and R58.
  • R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms, and 6 to 8 of 8 groups of R103, R104, R105, R106, R107, R108, R109 and R110
  • the group of represents hydrogen, and the group which is not hydrogen among R103, R104, R105, R106, R107, R108, R109 and R110 represents a group represented by the following formula (6).
  • R7 represents an alkylene group having 1 to 5 carbon atoms.
  • R59 represents an alkylene group having 1 to 5 carbon atoms.
  • R111 represents an alkylene group having 1 to 5 carbon atoms.
  • the episulfide compound has a structure represented by the following formula (1) or (2).
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms
  • 2 to 4 groups out of 4 groups of R3, R4, R5 and R6 represent hydrogen
  • R3 , R4, R5 and R6, which are not hydrogen, represent a group represented by the following formula (4).
  • R51 and R52 each represents an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R53, R54, R55, R56, R57 and R58 are hydrogen.
  • the group which is not hydrogen among R53, R54, R55, R56, R57 and R58 represents a group represented by the following formula (5).
  • R7 represents an alkylene group having 1 to 5 carbon atoms.
  • R59 represents an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (1) or (2) is a structure represented by the following formula (1A) or (2A).
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
  • R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms.
  • the episulfide compound-containing mixture according to the present invention contains the episulfide compound of the present invention and an epoxy compound represented by the following formula (11-1), (12-1) or (13).
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms, and 2 to 4 groups out of the four groups R13, R14, R15 and R16 represent hydrogen.
  • R13, R14, R15 and R16 are a group which is not hydrogen and represents a group represented by the following formula (14).
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R63, R64, R65, R66, R67 and R68. Represents hydrogen, and the non-hydrogen group in R63, R64, R65, R66, R67 and R68 represents a group represented by the following formula (15).
  • R121 and R122 each represent an alkylene group having 1 to 5 carbon atoms, and 6 to 8 of 8 groups of R123, R124, R125, R126, R127, R128, R129 and R130
  • the group of represents hydrogen, and the group which is not hydrogen among R123, R124, R125, R126, R127, R128, R129 and R130 represents a group represented by the following formula (16).
  • R17 represents an alkylene group having 1 to 5 carbon atoms.
  • R69 represents an alkylene group having 1 to 5 carbon atoms.
  • R131 represents an alkylene group having 1 to 5 carbon atoms.
  • the epoxy compound is an epoxy compound represented by the following formula (11) or (12).
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms, 2 to 4 groups out of 4 groups of R13, R14, R15 and R16 represent hydrogen, and R13 , R14, R15 and R16 which are not hydrogen represent a group represented by the following formula (14).
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R63, R64, R65, R66, R67 and R68 are hydrogen.
  • the group which is not hydrogen among R63, R64, R65, R66, R67 and R68 represents a group represented by the following formula (15).
  • R17 represents an alkylene group having 1 to 5 carbon atoms.
  • R69 represents an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (11) or (12) is a structure represented by the following formula (11A) or (12A).
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms.
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
  • an epoxy compound represented by the above formula (11-1), (12-1) or (13) or the epoxy compound is added to the first solution containing thiocyanate.
  • the second solution containing thiocyanate is further added continuously or intermittently to convert some epoxy groups of the epoxy compound into episulfide groups. Convert.
  • the epoxy compound or the epoxy compound represented by the formula (11) or (12) is used as the epoxy compound or a solution containing the epoxy compound.
  • a containing solution is used.
  • the curable composition according to the present invention contains the episulfide compound of the present invention and a curing agent.
  • the curable composition according to the present invention contains the episulfide compound-containing mixture of the present invention and a curing agent.
  • This curable composition also contains the episulfide compound in the episulfide compound-containing mixture.
  • a photocurable compound and a photopolymerization initiator are further contained.
  • conductive particles are further contained.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection Part is formed by the curable composition of the present invention.
  • the curable composition contains conductive particles, and the first and second connection target members are electrically connected by the conductive particles. Yes.
  • the episulfide compound according to the present invention has a structure represented by the above formula (1-1), (2-1) or (3), it can be quickly cured at a low temperature.
  • the episulfide compound according to the present invention has a structure represented by the above formula (1) or (2), it can be cured more rapidly at a low temperature.
  • the episulfide compound-containing mixture according to the present invention contains an episulfide compound having a structure represented by the above formula (1-1) or (2-1), it can be rapidly cured at a low temperature.
  • the episulfide compound-containing mixture according to the present invention has a structure represented by the above formula (1) or (2), it can be cured more rapidly at a low temperature.
  • connection target member can be efficiently connected by using the episulfide compound according to the present invention or the episulfide compound-containing mixture according to the present invention for connection of the connection target members. Furthermore, it can suppress that a void arises after a connection. Even if the connection target member having irregularities on the surface is connected, generation of voids can be suppressed.
  • FIG. 1 is a partially cutaway cross-sectional view schematically showing an example of a connection structure using a curable composition according to an embodiment of the present invention.
  • the episulfide compound according to the present invention has a structure represented by the following formula (1-1), (2-1) or (3).
  • the bonding sites of the six groups bonded to the benzene ring are not particularly limited.
  • the bonding sites of the eight groups bonded to the naphthalene ring are not particularly limited.
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
  • R3, R4, R5 and R6, 2 to 4 groups represent hydrogen.
  • the group which is not hydrogen among R3, R4, R5 and R6 represents a group represented by the following formula (4).
  • All four groups of R3, R4, R5 and R6 may be hydrogen.
  • One or two of the four groups of R3, R4, R5 and R6 is a group represented by the following formula (4), and among the four groups of R3, R4, R5 and R6
  • the group that is not a group represented by the following formula (4) may be hydrogen.
  • R51 and R52 each represents an alkylene group having 1 to 5 carbon atoms.
  • R53, R54, R55, R56, R57 and R58 4 to 6 groups represent hydrogen.
  • the group which is not hydrogen among R53, R54, R55, R56, R57 and R58 represents a group represented by the following formula (5).
  • All of the six groups of R53, R54, R55, R56, R57 and R58 may be hydrogen.
  • One or two of the six groups of R53, R54, R55, R56, R57 and R58 are groups represented by the following formula (5), and R53, R54, R55, R56, R57 and R58. Of these, a group that is not a group represented by the following formula (5) may be hydrogen.
  • R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms.
  • Six to eight groups out of the eight groups R103, R104, R105, R106, R107, R108, R109 and R110 represent hydrogen.
  • the group which is not hydrogen among R103, R104, R105, R106, R107, R108, R109 and R110 represents a group represented by the following formula (6). All of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 may be hydrogen.
  • R103, R104, R105, R106, R107, R108, R109 and R110 are groups represented by the following formula (6), and R103, R104, R105, R106 , R107, R108, R109 and R110, which is not a group represented by the following formula (6), may be hydrogen.
  • R7 represents an alkylene group having 1 to 5 carbon atoms.
  • R59 represents an alkylene group having 1 to 5 carbon atoms.
  • R111 represents an alkylene group having 1 to 5 carbon atoms.
  • the episulfide compound according to the present invention preferably has a structure represented by the following formula (1), the following formula (2), or the above formula (3). From the viewpoint of curing more rapidly at a low temperature, the episulfide compound according to the present invention preferably has a structure represented by the following formula (1) or (2).
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms. Of the four groups of R3, R4, R5 and R6, 2 to 4 groups represent hydrogen. The group which is not hydrogen among R3, R4, R5 and R6 represents a group represented by the above formula (4).
  • R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms.
  • R53, R54, R55, R56, R57 and R58 4 to 6 groups represent hydrogen.
  • the group which is not hydrogen among R53, R54, R55, R56, R57 and R58 represents a group represented by the above formula (5).
  • any of the episulfide compounds having the structure represented by the above formula (1-1), (2-1) or (3) and the above formula (1) or (2) has at least two episulfide groups.
  • a group having an episulfide group is bonded to a benzene ring, a naphthalene ring, or an anthracene ring. Since it has such a structure, the mixture can be rapidly cured at a low temperature by heating a mixture in which, for example, a curing agent is added to the episulfide compound.
  • the episulfide compound having the structure represented by the above formula (1-1), (2-1) or (3) has an episulfide group in the above formula (1-1), (2-1) or (3). Reactivity is higher than compounds that are epoxy groups.
  • the episulfide compound having a structure represented by the above formula (1) or (2) has a higher reactivity than a compound in which the episulfide group in the above formula (1) or (2) is an epoxy group. This is because the episulfide group is easier to open and more reactive than the epoxy group.
  • the episulfide compound having the structure represented by the above formula (1-1), (2-1) or (3) and the episulfide compound having the structure represented by the above formula (1) or (2) have reactivity. Since it is high, it can be quickly cured at a low temperature.
  • R1 and R2 in the above formulas (1-1) and (1), R51 and R52 in the above formulas (2-1) and (2), R101 and R102 in the above formula (3), and the above formula (4) R7 in the formula, R59 in the formula (5), and R111 in the formula (6) are all alkylene groups having 1 to 5 carbon atoms. If the alkylene group has more than 5 carbon atoms, the curing rate of the episulfide compound tends to decrease.
  • R1 and R2 in the above formulas (1-1) and (1), R51 and R52 in the above formulas (2-1) and (2), R101 and R102 in the above formula (3), and the above formula (4) R7 in the formula, R59 in the formula (5), and R111 in the formula (6) are each preferably an alkylene group having 1 to 3 carbon atoms, and more preferably a methylene group.
  • the alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
  • the structure represented by the above (1) is preferably a structure represented by the following formula (1A).
  • An episulfide compound having a structure represented by the following formula (1A) is excellent in curability.
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (1) is more preferably a structure represented by the following formula (1B).
  • An episulfide compound having a structure represented by the following formula (1B) is more excellent in curability.
  • the structure represented by the above (2) is preferably a structure represented by the following formula (2A).
  • An episulfide compound having a structure represented by the following formula (2A) is excellent in curability.
  • R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (2) is more preferably a structure represented by the following formula (2B).
  • An episulfide compound having a structure represented by the following formula (2B) is more excellent in curability.
  • the structure represented by the above (3) is preferably a structure represented by the following formula (3A).
  • An episulfide compound having a structure represented by the following formula (3A) is excellent in curability.
  • R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (3) is more preferably a structure represented by the following formula (3B).
  • An episulfide compound having a structure represented by the following formula (3B) is more excellent in curability.
  • the episulfide compound-containing mixture according to the present invention includes an episulfide compound represented by the above formula (1-1), (2-1) or (3) and the following formula (11-1), (12-1) or ( And an epoxy compound represented by 13).
  • the bonding sites of the six groups bonded to the benzene ring are not particularly limited.
  • the bonding sites of the eight groups bonded to the naphthalene ring are not particularly limited.
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms. Of the four groups of R13, R14, R15 and R16, 2 to 4 groups represent hydrogen. The group which is not hydrogen among R13, R14, R15 and R16 represents a group represented by the following formula (14). All four groups of R13, R14, R15 and R16 may be hydrogen. One or two of the four groups of R13, R14, R15 and R16 is a group represented by the following formula (14), and among the four groups of R13, R14, R15 and R16 The group that is not a group represented by the following formula (14) may be hydrogen.
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
  • R63, R64, R65, R66, R67 and R68 4 to 6 groups represent hydrogen.
  • the group which is not hydrogen among R63, R64, R65, R66, R67 and R68 represents a group represented by the following formula (15). All of the six groups of R63, R64, R65, R66, R67 and R68 may be hydrogen.
  • One or two of the six groups R63, R64, R65, R66, R67 and R68 are groups represented by the following formula (15), and R63, R64, R65, R66, R67 and R68. Of these six groups, the group that is not the group represented by the following formula (15) may be hydrogen.
  • R121 and R122 each represent an alkylene group having 1 to 5 carbon atoms.
  • 6 to 8 groups out of 8 groups of R123, R124, R125, R126, R127, R128, R129 and R130 represent hydrogen.
  • the group which is not hydrogen among R123, R124, R125, R126, R127, R128, R129 and R130 represents a group represented by the following formula (16). All of the eight groups of R123, R124, R125, R126, R127, R128, R129, and R130 may be hydrogen.
  • R123, R124, R125, R126, R127, R128, R129, and R130 are groups represented by the following formula (16), and R123, R124, R125, R126 Of the eight groups R127 and R128, a group that is not a group represented by the following formula (16) may be hydrogen.
  • R17 represents an alkylene group having 1 to 5 carbon atoms.
  • R69 represents an alkylene group having 1 to 5 carbon atoms.
  • R131 represents an alkylene group having 1 to 5 carbon atoms.
  • the episulfide compound-containing mixture according to the present invention comprises a compound represented by the above formula (1), the above formula (2) or the above formula (3), and the following formula (11): ), And an epoxy compound represented by the following formula (12) or the above formula (13).
  • the episulfide compound-containing mixture according to the present invention is represented by the compound represented by the above formula (1) or (2) and the following formula (11) or (12). It is preferable to contain an epoxy compound.
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms. Of the four groups of R13, R14, R15 and R16, 2 to 4 groups represent hydrogen. The group which is not hydrogen among R13, R14, R15 and R16 represents a group represented by the above formula (14).
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
  • R63, R64, R65, R66, R67 and R68 4 to 6 groups represent hydrogen.
  • the group which is not hydrogen among R63, R64, R65, R66, R67 and R68 represents a group represented by the above formula (15).
  • R17 in the formula, R69 in the formula (15), and R131 in the formula (16) are all alkylene groups having 1 to 5 carbon atoms. When carbon number of this alkylene group exceeds 5, the hardening rate of the said episulfide compound containing mixture will fall easily.
  • R17 in the formula, R69 in the formula (15), and R131 in the formula (16) are each preferably an alkylene group having 1 to 3 carbon atoms, and more preferably a methylene group.
  • the alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
  • the structure represented by the above (11) is preferably a structure represented by the following formula (11A).
  • An epoxy compound having a structure represented by the following formula (11A) is commercially available and can be easily obtained.
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (11) is more preferably a structure represented by the following formula (11B).
  • the epoxy compound having a structure represented by the following formula (11B) is resorcinol diglycidyl ether. Resorcinol diglycidyl ether is commercially available and can be easily obtained.
  • the structure represented by (12) is preferably a structure represented by the following formula (12A).
  • An epoxy compound having a structure represented by the following formula (12A) can be easily obtained.
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (12) is more preferably a structure represented by the following formula (12B).
  • An epoxy compound having a structure represented by the following formula (12B) can be easily obtained.
  • the structure represented by (13) is preferably a structure represented by the following formula (13A).
  • An epoxy compound having a structure represented by the following formula (13A) can be easily obtained.
  • R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (13) is more preferably a structure represented by the following formula (13B).
  • An epoxy compound having a structure represented by the following formula (13B) can be easily obtained.
  • the episulfide compound-containing mixture according to the present invention contains 10 to 99.9% by weight of an episulfide compound having a structure represented by the above formula (1-1), (2-1) or (3), and the above formula It is preferable to contain 90 to 0.01% by weight of the epoxy compound represented by (11-1), (12-1) or (13).
  • the episulfide compound-containing mixture according to the present invention contains 80 to 99.9 wt% of an episulfide compound having a structure represented by the above formula (1-1), (2-1) or (3), and More preferably, the epoxy compound represented by (11-1), (12-1) or (13) is contained in an amount of 0.1 to 20% by weight.
  • the episulfide compound-containing mixture according to the present invention contains 10 to 99.9% by weight of an episulfide compound having a structure represented by the above formula (1) or (2), and the above formula (11) or (12) It is preferable to contain 90 to 0.1% by weight of the represented epoxy compound.
  • the episulfide compound-containing mixture according to the present invention contains 80 to 99.9% by weight of an episulfide compound having a structure represented by the above formula (1) or (2), and the above formula (11) or (12) More preferably, the epoxy compound is contained in an amount of 0.1 to 20% by weight.
  • the content of the episulfide compound having the structure represented by the above formula (1-1), (2-1) or (3) and the episulfide compound having the structure represented by the above formula (1) or (2) If the amount is too small, the curing rate of the episulfide compound-containing mixture may not be sufficiently high.
  • the method for producing the episulfide compound and the method for producing the episulfide compound-containing mixture are not particularly limited.
  • As the production method for example, an epoxy compound represented by the above formula (11-1), (12-1) or (13) or the above formula (11) or (12) is prepared, and the epoxy compound The manufacturing method which converts all or one part epoxy groups into an episulfide group is mentioned.
  • an epoxy represented by the formula (11-1), (12-1) or (13) is added to the first solution containing thiocyanate.
  • a method in which a compound or a solution containing the epoxy compound is continuously or intermittently added, and then a second solution containing thiocyanate is further added continuously or intermittently is preferable.
  • all or one part epoxy groups of the said epoxy compound can be converted into an episulfide group.
  • the epoxy compound or the solution containing the epoxy compound is preferably an epoxy compound represented by the formula (1) or (2) or a solution containing the epoxy compound.
  • an episulfide compound having a structure represented by the above formula (1-1), (2-1) or (3) can be obtained. Furthermore, an episulfide compound having a structure represented by the above formula (1) or (2) can also be obtained. As a result of converting some of the epoxy groups into episulfide groups, an episulfide compound having a structure represented by the above formula (1-1), (2-1) or (3), and the above formula (11-1), An episulfide compound-containing mixture containing the epoxy compound represented by (12-1) or (13) can be obtained. Furthermore, an episulfide compound-containing mixture containing an episulfide compound having a structure represented by the above formula (1) or (2) and an epoxy compound represented by the above formula (11) or (12) can also be obtained. .
  • the episulfide compound and the episulfide compound-containing mixture can be produced as follows.
  • a solvent, water, and thiocyanate are added to dissolve the thiocyanate, thereby preparing a first solution in the container.
  • the solvent include methanol or ethanol.
  • the thiocyanate include ammonium thiocyanate, potassium thiocyanate, and sodium thiocyanate.
  • the concentration of thiocyanate in the first solution is preferably in the range of 0.001 to 0.2 g / mL, and more preferably in the range of 0.005 to 0.1 g / mL. If the concentration of thiocyanate is too high, the epoxy compound may be polymerized. If the thiocyanate concentration is too low, epoxy groups may not be converted to episulfide groups.
  • an epoxy compound having a structure represented by the formula (11-1), (12-1), (13), (11) or (12) or the epoxy compound Prepare a solution containing.
  • the first solution contains an epoxy compound having the structure represented by the formula (11-1), (12-1), (13), (11) or (12) or the epoxy compound
  • the solution is added continuously or intermittently.
  • the temperature of the first solution at this time is preferably in the range of 15 to 30 ° C. It is preferable to stir for 0.5 to 12 hours after the addition of the epoxy compound. You may add the said epoxy compound or the solution containing this epoxy compound in several steps. For example, after adding a part of the epoxy compound or the solution containing the epoxy compound, the mixture is stirred for at least 0.5 hour, and then the remaining epoxy compound or the solution containing the epoxy compound is further added. Stir for up to 12 hours.
  • concentration of the epoxy compound of this solution is not specifically limited.
  • the addition rate of the epoxy compound or the solution containing the epoxy compound in the first solution is preferably in the range of 1 to 10 mL / min, and more preferably in the range of 2 to 8 mL / min. . If the addition rate of the epoxy compound or the solution containing the epoxy compound is too fast, the epoxy compound may be polymerized. If the addition rate of the epoxy compound or the solution containing the epoxy compound is too slow, the production efficiency of the episulfide compound may be reduced.
  • the concentration of the epoxy compound is preferably in the range of 0.05 to 0.8 g / mL, More preferably, it is in the range of 1 to 0.5 g / mL. If the concentration of the epoxy compound is too high, the epoxy compound may be polymerized.
  • the second solution containing a solvent, water, and thiocyanate is continuously or intermittently added to the mixed solution in which the epoxy compound or the solution containing the epoxy compound is added to the first solution. Add more. It is preferable to stir for 0.5 to 12 hours after the addition of the second solution. Further, it is preferable to stir within the range of 15 to 60 ° C. after the addition of the second solution.
  • the second solution may be added in multiple stages. For example, a part of the second solution may be added and then stirred for at least 0.5 hour, and then the remaining second solution may be further added and stirred for 0.5 to 12 hours.
  • the concentration of thiocyanate in the second solution is preferably in the range of 0.001 to 0.7 g / mL, and more preferably in the range of 0.005 to 0.5 g / mL. If the concentration of thiocyanate is too high, the epoxy compound may be polymerized. If the thiocyanate concentration is too low, epoxy groups may not be converted to episulfide groups.
  • the addition rate of the second solution to the mixed solution is preferably in the range of 1 to 10 mL / min, and more preferably in the range of 2 to 8 mL / min. If the addition rate of the second solution is too fast, the epoxy compound may be polymerized. If the addition rate of the second solution is too slow, the production efficiency of the episulfide compound may decrease.
  • a method for removing water, solvent or unreacted thiocyanate a conventionally known method is used.
  • the first solution or the second solution may contain a catalyst such as palladium metal particles or titanium oxide.
  • the conversion of episulfide groups can be adjusted by using a solution containing the catalyst. Moreover, since an epoxy group can be converted into an episulfide group in a low temperature environment, the polymerization reaction of the epoxy compound can be suppressed.
  • the concentration of the catalyst in the first solution or the concentration of the catalyst in the second solution is preferably in the range of 0.05 to 1.0 g / mL.
  • an episulfide compound or an episulfide compound-containing mixture can be obtained.
  • an episulfide compound containing 100% by weight of an episulfide compound having a structure represented by the above formula (1-1), (2-1), (3), (1) or (2) Obtainable.
  • the curable composition concerning this invention contains the episulfide compound of this invention, and a hardening
  • the curable composition concerning this invention contains the episulfide compound containing mixture of this invention, and a hardening
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • the curable composition according to the present invention contains at least one episulfide compound.
  • the curable composition concerning this invention contains at least 1 sort (s) of the said episulfide compound containing mixture.
  • the curable composition according to the present invention contains at least one episulfide compound and at least one episulfide compound-containing mixture. Accordingly, two or more of the above-mentioned episulfide compounds may be used in combination as the curable resin, or two or more of the above-mentioned episulfide compound-containing mixture may be used together, and the above-mentioned episulfide compound and the above-mentioned episulfide compound-containing mixture are used in combination. May be.
  • the curing agent is not particularly limited.
  • the curing agent include an imidazole curing agent, an amine curing agent, a phenol curing agent, a polythiol curing agent, and an acid anhydride.
  • curing agent is preferable.
  • a storage stability can be improved when the said episulfide compound or the said episulfide compound containing mixture and the said hardening
  • the latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent. Only 1 type may be used for these hardening
  • the imidazole curing agent is not particularly limited, but 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine or 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
  • the polythiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol hexa-3-mercaptopropionate, and the like. .
  • the amine curing agent is not particularly limited, but is hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraspiro [5.5] undecane. Bis (4-aminocyclohexyl) methane, metaphenylenediamine, diaminodiphenylsulfone and the like.
  • polythiol compounds or acid anhydrides are preferably used. More preferably, a polythiol compound is used because the curing rate of the curable composition can be further increased.
  • pentaerythritol tetrakis-3-mercaptopropionate is more preferable.
  • the curing rate of the curable composition can be further increased.
  • the content of the curing agent is not particularly limited. 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture ((when the epoxy compound is not included, 100 parts by weight of the episulfide compound is shown, and when the epoxy compound is contained, 100 parts by weight of the episulfide compound-containing mixture)
  • the curing agent is preferably contained in the range of 1 to 40 parts by weight, and the curable composition is sufficiently cured when the content of the curing agent is less than 1 part by weight. When the content of the curing agent exceeds 40 parts by weight, the heat resistance of the cured product of the curable composition may be reduced, based on 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture.
  • the more preferable lower limit of the content of the curing agent is 30 parts by weight, and the still more preferable lower limit is 45 parts by weight.
  • a more preferable upper limit is 100 parts by weight, and an even more preferable upper limit is 75 parts by weight. If the content of the curing agent is too small, the curable composition is hard to be cured sufficiently. In some cases, an excessive curing agent that did not participate in curing may remain after curing.
  • the imidazole curing agent or the phenol curing agent is in the range of 1 to 15 parts by weight with respect to 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture. It is preferable to contain.
  • curing agent is an amine hardening
  • curing agent, or an acid anhydride is 15 with respect to 100 weight part of the said episulfide compound or the said episulfide compound containing mixture. It is preferably contained in the range of ⁇ 40 parts by weight.
  • the curable composition according to the present invention preferably further contains a storage stabilizer.
  • the curable composition according to the present invention preferably further contains at least one selected from the group consisting of phosphate ester, phosphite ester and borate ester as the storage stabilizer. It is more preferable to contain.
  • a phosphite the storage stability of the episulfide compound or the episulfide compound-containing mixture can be further enhanced.
  • the said storage stabilizer only 1 type may be used and 2 or more types may be used together.
  • phosphite examples include trimethyl phosphite, triethyl phosphite, tri n-butyl phosphite, tris (2-ethylhexyl) phosphite, triisooctyl phosphite, tridecyl phosphite, triisodecyl phosphite, tris (Tridecyl) phosphite, trioleyl phosphite, tristearyl phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, phenyl diisooctyl phosphite Phyto, phenyl diisodecyl phosphite, diphenyl mono (2-ethylhexyl) phos
  • diphenyl mono (2-ethylhexyl) phosphite diphenyl monodecyl phosphite or diphenyl mono (tridecyl) phosphite is preferable, diphenyl monodecyl phosphite or diphenyl mono (tridecyl) phosphite is more preferable, and diphenyl mono (tridecyl) More preferred are phosphites.
  • boric acid ester examples include trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, and trioctyl.
  • the content of the storage stabilizer is preferably in the range of 0.001 to 0.1 parts by weight with respect to 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture.
  • the more preferable lower limit of the content of the storage stabilizer is 0.005 parts by weight and the more preferable upper limit is 0.05 parts by weight with respect to 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture.
  • the curable composition according to the present invention preferably further contains a curing accelerator.
  • a curing accelerator By using a curing accelerator, the curing rate of the curable composition can be further increased.
  • a hardening accelerator only 1 type may be used and 2 or more types may be used together.
  • the curing accelerator examples include imidazole curing accelerators and amine curing accelerators. Of these, imidazole curing accelerators are preferred. In addition, an imidazole hardening accelerator or an amine hardening accelerator can be used also as an imidazole hardening agent or an amine hardening agent.
  • imidazole curing accelerator examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino- 6- [2′-Methylimidazolyl- (1 ′)]-ethyl-s-triazine or 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid addition Thing etc. are mentioned.
  • the preferable lower limit of the content of the curing accelerator is 0.5 parts by weight, the more preferable lower limit is 1 part by weight, and the preferable upper limit is 6 parts by weight, more preferably 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture.
  • the upper limit is 4 parts by weight.
  • the curable composition according to the present invention preferably further contains a filler.
  • a filler By using the filler, latent heat expansion of the cured product of the curable composition can be suppressed.
  • a filler only 1 type may be used and 2 or more types may be used together.
  • the filler include silica, aluminum nitride, and alumina.
  • the filler is preferably filler particles.
  • the average particle diameter of the filler particles is preferably in the range of 0.1 to 1.0 ⁇ m. When the average particle diameter of the filler particles is within the above range, latent heat expansion of the cured product of the curable composition can be further suppressed.
  • Average particle diameter refers to a volume average diameter measured by a dynamic laser scattering method.
  • the content of the filler is preferably in the range of 50 to 900 parts by weight with respect to 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture.
  • the filler content is within the above range, the latent thermal expansion of the cured product of the curable composition can be further suppressed.
  • the curable composition according to the present invention may further contain a solvent, an ion scavenger or a silane coupling agent as necessary.
  • the solvent is not particularly limited.
  • the solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran or diethyl ether.
  • a solvent only 1 type may be used and 2 or more types may be used together.
  • the silane coupling agent is not particularly limited.
  • Examples of the silane coupling agent include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N- (2-amino).
  • the ion scavenger is not particularly limited. Specific examples of the ion scavenger include aluminosilicate, hydrous titanium oxide, hydrous bismuth oxide, zirconium phosphate, titanium phosphate, hydrotalcite, ammonium molybdate, hexacyanozinc or ion exchange resin. Only one type of ion scavenger may be used, or two or more types may be used in combination.
  • the curable composition according to the present invention may further contain a photocurable compound and a photopolymerization initiator so as to be cured by light irradiation.
  • a photocurable compound and a photopolymerization initiator By using the photocurable compound and the photopolymerization initiator, the curable composition can be cured by light irradiation. Furthermore, the curable composition can be semi-cured to reduce the fluidity of the curable composition.
  • the photocurable compound is not particularly limited.
  • a (meth) acrylic resin or a cyclic ether group-containing resin is preferably used.
  • the (meth) acrylic resin indicates a methacrylic resin and an acrylic resin.
  • an ester compound obtained by reacting (meth) acrylic acid and a compound having a hydroxyl group an epoxy (meth) acrylate obtained by reacting (meth) acrylic acid and an epoxy compound, or Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with isocyanate is preferably used.
  • the ester compound obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group is not particularly limited.
  • the ester compound any of a monofunctional ester compound, a bifunctional ester compound, and a trifunctional or higher functional ester compound can be used.
  • the photocurable compound preferably contains a light and thermosetting compound (hereinafter also referred to as a partially (meth) acrylated epoxy resin) having at least one kind of epoxy group and a (meth) acryl group.
  • a light and thermosetting compound hereinafter also referred to as a partially (meth) acrylated epoxy resin
  • the partial (meth) acrylated epoxy resin can be obtained, for example, by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. It is preferable that 20% or more of the epoxy groups are converted to (meth) acryloyl groups (conversion rate) and partially (meth) acrylated. More preferably, 50% of the epoxy groups are converted to (meth) acryloyl groups.
  • the (meth) acryloyl refers to acryloyl and methacryloyl.
  • the preferable lower limit of the content of the partially (meth) acrylated epoxy resin is 0.1% by weight and the more preferable lower limit is 0.1% in 100% by weight of the curable compound. 5 wt%, the preferred upper limit is 2 wt%, and the more preferred upper limit is 1.5 wt%.
  • epoxy (meth) acrylate examples include bisphenol type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, carboxylic acid anhydride-modified epoxy (meth) acrylate, and phenol novolac type epoxy (meth) acrylate. .
  • Examples of the epoxy compound used for obtaining the epoxy (meth) acrylate, and commercial products of the epoxy compound include bisphenol A type epoxy resins such as Epicoat 828EL and Epicoat 1004 (both manufactured by Japan Epoxy Resin Co., Ltd.), and Epicoat.
  • Epicoat 4004 (both manufactured by Japan Epoxy Resin Co., Ltd.) and other bisphenol F type epoxy resins, Epicron EXA1514 (manufactured by DIC Co., Ltd.), bisphenol S type epoxy resins, 2'-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin such as Epicron EXA7015 (manufactured by DIC), propylene oxide-added bisphenol A type epoxy such as EP-4000S (manufactured by ADEKA) Fat, Resorcinol type epoxy resin such as EX-201 (manufactured by Nagase ChemteX), biphenyl type epoxy resin such as Epicoat YX-4000H (manufactured by Japan Epoxy Resin), sulfide type such as YSLV-50TE (manufactured by Toto Kasei) Epoxy resin, ether type epoxy resin such as YSLV-80DE (manufactured by Toto Kasei Co., Ltd.),
  • Examples of commercially available products of the epoxy (meth) acrylate include Evecryl 3700, Evekril 3600, Evekril 3701, Evekril 3703, Evekrill 3200, Evekrill 3201, Evekril 3600, Evekril 3412, Evekril 860, Evekril RDX63182, Evecril 3800 (all manufactured by Daicel UCB), EA-1020, EA-1010, EA-5520, EA-5323, EA-CHD and EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), Epoxy ester M- 600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy Steal 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA and Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA
  • the photocurable compound may be a crosslinkable compound or a non-crosslinkable compound.
  • crosslinkable compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, (poly ) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, glycerol methacrylate acrylate, pentaerythritol tri (meth) acrylate, tri Examples include methylolpropane trimethacrylate, allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, polyester (meth) acrylate, and urethane (meth) acrylate.
  • non-crosslinkable compound examples include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, decyl Examples include (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, and tetradecyl (meth)
  • the preferred lower limit of the content of the photocurable compound is 1 part by weight and more preferred lower limit with respect to 100 parts by weight of the episulfide compound or episulfide compound-containing mixture. Is 10 parts by weight, more preferably the lower limit is 50 parts by weight, the preferred upper limit is 10,000 parts by weight, the more preferred upper limit is 1000 parts by weight, and the more preferred upper limit is 500 parts by weight.
  • the photopolymerization initiator is not particularly limited. As for the said photoinitiator, only 1 type may be used and 2 or more types may be used together.
  • the photopolymerization initiator examples include acetophenone photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone, ketal photopolymerization initiator, halogenated ketone, acyl phosphinoxide, or acyl phosphonate.
  • Specific examples of the acetophenone photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone.
  • Specific examples of the ketal photopolymerization initiator include benzyl dimethyl ketal.
  • the content of the photopolymerization initiator is not particularly limited.
  • the preferable lower limit of the content of the photopolymerization initiator is 0.1 parts by weight, the more preferable lower limit is 0.2 parts by weight, and the more preferable lower limit is 2 parts by weight with respect to 100 parts by weight of the photocurable composition.
  • the upper limit is 10 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • the curable resin composition may further contain an epoxy compound other than the epoxy compound represented by the formula (11-1), (12-1), (13), (11) or (12). Good.
  • this epoxy compound the epoxy compound used in order to obtain the above-mentioned epoxy (meth) acrylate can be used.
  • the epoxy compound represented by the formula (11-1), (12-1), (13), (11) or (12) and the other epoxy compound the epoxy compound represented by the formula (11-1), (12-1), (13), (11) or (12) and the other epoxy compound.
  • the preferable lower limit of the content of the episulfide compound is 10% by weight, the more preferable lower limit is 25% by weight, the preferable upper limit is 100% by weight, and the more preferable upper limit is 50% by weight.
  • the curable composition concerning this invention can be used for adhesion
  • the curable composition may be a paste-like adhesive or a film-like adhesive.
  • the method for processing the curable composition according to the present invention into a film adhesive is not particularly limited. For example, after applying a curable composition to a substrate such as a release paper and processing it into a film-like adhesive, or adding a solvent to the curable composition and applying to a substrate such as a release paper, Examples thereof include a method of volatilizing the solvent at a temperature lower than the activation temperature of the curing agent and processing it into a film-like adhesive.
  • a method of curing the curable composition according to the present invention a method of heating the curable composition, a method of heating the curable composition irradiated with light after irradiating the curable composition with light, or The method etc. which heat a curable composition simultaneously with irradiating light to a curable composition are mentioned.
  • the heating temperature for curing the curable composition according to the present invention is preferably in the range of 160 to 250 ° C., and more preferably in the range of 160 to 200 ° C. Since the curable composition can be quickly cured at a low temperature, the amount of energy required for heating can be reduced.
  • a curable composition containing a conventional epoxy resin has a long curing time when the heating temperature is 200 ° C. or less. For example, if the heating temperature is 200 ° C., the curing time exceeds 10 seconds. In contrast, the curable composition according to the present invention can be cured in a short time even when the heating temperature is 200 ° C. or lower.
  • the light source used when irradiating the curable composition with light is not particularly limited.
  • the light source include a light source having a sufficient light emission distribution at a wavelength of 420 nm or less.
  • Specific examples of the light source include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, and the like.
  • a chemical lamp is preferable.
  • the chemical lamp efficiently emits light in the active wavelength region of the photopolymerization initiator and emits less light in the light absorption wavelength region of the composition components other than the photopolymerization initiator.
  • light can efficiently reach the photocuring component present in the composition.
  • the light irradiation intensity in the wavelength region of 365 nm to 420 nm is preferably in the range of 0.1 to 100 mW / cm 2 .
  • the curable composition according to the present invention when the curable composition according to the present invention further contains conductive particles, the curable composition can be used as an anisotropic conductive material.
  • the conductive particles electrically connect, for example, electrodes between a circuit board and a semiconductor chip.
  • the conductive particles are not particularly limited as long as at least the surface has conductivity.
  • Examples of the conductive particles include conductive particles whose surfaces are coated with a metal layer, such as organic particles, inorganic particles, organic-inorganic hybrid particles, or metal particles, or metal particles that are substantially composed of only metal. It is done.
  • the metal layer is not particularly limited. Examples of the metal layer include a gold layer, a silver layer, a copper layer, a nickel layer, a palladium layer, or a metal layer containing tin.
  • the content of the conductive particles is not particularly limited.
  • the preferred lower limit of the content of the conductive particles is 0.1 parts by weight, more preferably the lower limit is 0.5 parts by weight, and the preferred upper limit is 10 parts by weight with respect to 100 parts by weight of the episulfide compound or the episulfide compound-containing mixture. A more preferred upper limit is 5 parts by weight.
  • the viscosity (25 ° C.) of the curable composition is preferably in the range of 20000 to 100,000 mPa ⁇ s. If the viscosity is too low, the conductive particles may settle. If the viscosity is too high, the conductive particles may not be sufficiently dispersed.
  • the curable composition concerning this invention can be used for adhere
  • the anisotropic conductive material includes an anisotropic conductive paste, an anisotropic conductive ink, and an anisotropic conductive adhesive. It can be used as an adhesive, an anisotropic conductive film, or an anisotropic conductive sheet.
  • the anisotropic conductive material is used as a film-like adhesive such as an anisotropic conductive film or anisotropic conductive sheet
  • the film-like adhesive containing the conductive particles contains conductive particles.
  • the anisotropic conductive material is preferably used for obtaining a connection structure in which the first and second connection target members are electrically connected.
  • FIG. 1 schematically shows a cross-sectional view of an example of a connection structure using a curable composition according to an embodiment of the present invention.
  • connection structure shown in FIG. 1 includes a first connection target member 2, a second connection target member 4, and a connection part 3 connecting the first and second connection target members 2 and 4. .
  • the connection part 3 is formed by hardening the curable composition containing the electroconductive particle 5, ie, an anisotropic conductive material.
  • a plurality of electrodes 2 b are provided on the upper surface 2 a of the first connection target member 2.
  • a plurality of electrodes 4 b are provided on the lower surface 4 a of the second connection target member 4.
  • the electrode 2b and the electrode 4b are electrically connected by one or a plurality of conductive particles 5. Therefore, the first and second connection target members 2 and 4 are electrically connected by the conductive particles 5.
  • connection structure an electronic component chip such as a semiconductor chip, a capacitor chip or a diode chip is mounted on a circuit board, and the electrode of the electronic component chip is connected to an electrode on the circuit board.
  • Examples include electrically connected structures.
  • a circuit board various printed circuit boards, such as various printed circuit boards, such as a flexible printed circuit board, a glass substrate, or a board
  • the first and second connection target members are preferably electronic components or circuit boards.
  • connection structure is not particularly limited.
  • the anisotropic conductive material is disposed between a first connection target member such as an electronic component or a circuit board and a second connection target member such as an electronic component or a circuit board. And after obtaining a laminated body, the method etc. which heat and pressurize this laminated body are mentioned.
  • the said curable composition does not need to contain electroconductive particle.
  • the curable composition is used to bond and connect the first and second connection target members without electrically connecting the first and second connection target members.
  • Example 1 (1) Preparation of episulfide compound-containing mixture In a 2 L vessel equipped with a stirrer, a cooler and a thermometer, ethanol 250 mL, pure water 250 mL, and potassium thiocyanate 20 g were added to dissolve potassium thiocyanate, and the vessel A first solution was prepared inside. Thereafter, the temperature in the container was kept within the range of 20 to 25 ° C.
  • a second solution in which 20 g of potassium thiocyanate was dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol was prepared.
  • the prepared second solution was added to the obtained epoxy compound-containing solution at a rate of 5 mL / min, and then stirred for 30 minutes.
  • a second solution prepared by dissolving 20 g of potassium thiocyanate in a solution containing 100 mL of pure water and 100 mL of ethanol is further prepared, and the second solution is further added at a rate of 5 mL / min. Stir for minutes. Thereafter, the temperature in the container was cooled to 10 ° C., and stirred for 2 hours to be reacted.
  • magnesium sulfate was added to the supernatant liquid to which toluene was added and stirred for 5 minutes. After stirring, magnesium sulfate was removed with a filter paper to separate the solution. The remaining solvent was removed by drying the separated solution under reduced pressure at 80 ° C. using a vacuum dryer. In this way, an episulfide compound-containing mixture was obtained.
  • the resulting episulfide compound-containing mixture was subjected to 1 H-NMR measurement using chloroform as a solvent.
  • the signal in the 6.5 to 7.5 ppm region indicating the presence of the epoxy group decreased, and the signal appeared in the 2.0 to 3.0 ppm region indicating the presence of the episulfide group.
  • the episulfide compound-containing mixture contained 70% by weight of resorcinol diglycidyl ether and 30% by weight of the episulfide compound represented by the above formula (1B). did.
  • curable composition 33 parts by weight of the resulting episulfide compound-containing mixture, 20 parts by weight of pentaerythritol tetrakis-3-mercaptopropionate as a curing agent, and diphenyl mono (tridecyl) as a phosphite ) 0.01 part by weight of phosphite, 1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator, 20 parts by weight of silica having an average particle diameter of 0.25 ⁇ m as filler, and an average particle diameter of 0.5 ⁇ m 20 parts by weight of alumina and 2 parts by weight of conductive particles having an average particle diameter of 3 ⁇ m are added and stirred for 5 minutes at 2000 rpm using a planetary stirrer to obtain a curable composition as an anisotropic conductive paste. It was.
  • the conductive particles used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinyl
  • Example 2 In the same manner as in Example 1, except that pentaerythritol tetrakis-3-mercaptopropionate and diphenylmono (tridecyl) phosphite were not added during the preparation of the curable composition, anisotropic conductive properties were obtained. A curable composition as a paste was obtained.
  • the conductive particles used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinylbenzene resin particles and a gold plating layer is formed on the surface of the nickel plating layer. .
  • the curable composition as an anisotropic conductive paste was obtained by filtering the obtained compound with a nylon filter paper (pore diameter: 10 ⁇ m).
  • the obtained curable composition was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form a curable composition layer.
  • the semiconductor chip was laminated on the curable composition layer so that the electrodes face each other and are connected. Thereafter, while adjusting the temperature of the heating head so that the temperature of the curable composition layer becomes 185 ° C., the heating head is placed on the upper surface of the semiconductor chip, the curable composition layer is cured at 185 ° C., and the connection structure Got.
  • the time until the curable composition layer was cured by heating was measured.
  • Example 3 In preparing the curable composition, 5 parts by weight of epoxy acrylate (“EBECRYL 3702” manufactured by Daicel-Cytec) and an acylphosphine oxide compound (“DAROCUR TPO” manufactured by Ciba Japan) as a photopolymerization initiator 0 A curable composition as an anisotropic conductive paste was obtained in the same manner as in Example 1 except that 1 part by weight was further added.
  • epoxy acrylate (“EBECRYL 3702” manufactured by Daicel-Cytec) and an acylphosphine oxide compound (“DAROCUR TPO” manufactured by Ciba Japan)
  • Example 4 In preparing the curable composition, 5 parts by weight of urethane acrylate (“EBECRYL8804” manufactured by Daicel-Cytec) and an acylphosphine oxide compound (“DAROCUR TPO” manufactured by Ciba Japan) as a photopolymerization initiator 0
  • EBECRYL8804 urethane acrylate
  • DAROCUR TPO acylphosphine oxide compound manufactured by Ciba Japan
  • the obtained curable composition was applied on the upper surface of the transparent glass substrate so as to have a thickness of 30 ⁇ m, thereby forming a curable composition layer. Furthermore, while applying the anisotropic conductive paste, the ultraviolet ray at 420 nm was applied to the curable composition layer using an ultraviolet irradiation lamp so that the light irradiation intensity was 50 mW / cm 2, and the curable composition was obtained by photopolymerization. The material layer was B-staged. The time T from coating to when the coated curable composition layer was in contact with the transparent glass substrate until the curable composition layer was irradiated with light was 0.5 seconds. It was.
  • the semiconductor chip was laminated on the upper surface of the B-staged curable composition layer so that the electrodes faced and connected. Then, while adjusting the temperature of the head so that the temperature of the curable composition layer is 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 10 kg / cm 2 is applied to form a B stage. The cured curable composition layer was completely cured at 185 ° C. to obtain a connection structure. When obtaining this connection structure, the time until the curable composition layer was cured by heating was measured.
  • Examples 5 to 24 (1) Preparation of episulfide compound or episulfide compound-containing mixture
  • the episulfide compound represented by the above formula (1), (2) or (3) and the above formula (11), (12) or (13) An episulfide compound or an episulfide compound-containing mixture containing the epoxy compound at the following content was prepared in the same manner as in Example 1.
  • the episulfide compound or episulfide compound-containing mixture of each example was obtained by appropriately adjusting the amount of potassium thiocyanate used and adjusting the conversion rate.
  • Example 25 In preparation of the curable composition, 33 parts by weight of the episulfide compound-containing mixture used in Example 1, 10 parts by weight of the episulfide compound-containing mixture used in Example 1, and the episulfide compound-containing mixture used in Example 9 A curable composition was obtained in the same manner as in Example 1 except that the content was changed to 20 parts by weight.
  • Example 26 In preparing the curable composition, 33 parts by weight of the episulfide compound-containing mixture used in Example 1 was changed to 20 parts by weight of the episulfide compound-containing mixture used in Example 1 and 10 parts by weight of resorcinol glycidyl ether. Except for this, a curable composition was obtained in the same manner as in Example 1.
  • Example 27 In preparation of the curable composition, 33 parts by weight of the episulfide compound-containing mixture used in Example 1 was replaced with 20 parts by weight of the episulfide compound-containing mixture used in Example 1 and 10 parts by weight of bisphenol A glycidyl ether. Except having changed, it carried out similarly to Example 1, and obtained the curable composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Paints Or Removers (AREA)

Abstract

 低温で速やかに硬化させることができ、さらに接続対象部材の接続に用いられた場合に、該接続対象部材を効率的に接続でき、かつ接続後にボイドが生じるのを抑制できるエピスルフィド化合物を提供する。  下記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物。  下記式(1-1)、(2-1)又は(3)中、R1及びR2、R51及びR52、並びにR101及びR102はそれぞれ、炭素数1~5のアルキレン基を表す。R3~R6の4個の基の内の2~4個の基は水素を表し、他の基はエピスルフィド基を含む基を表す。R53~R58の6個の基の内の4~6個の基は水素を表し、他の基はエピスルフィド基を含む基を表す。R103~R110の8個の基の内の6~8個の基は水素を表し、他の基はエピスルフィド基を含む基を表す。

Description

エピスルフィド化合物、エピスルフィド化合物含有混合物、エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体
 本発明は、低温で速やかに硬化させることができ、さらに接続対象部材の接続に用いられた場合に、該接続対象部材を効率的に接続でき、かつ接続後にボイドが生じるのを抑制できるエピスルフィド化合物、並びに該エピスルフィド化合物を含有するエピスルフィド化合物含有混合物、該エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体に関する。
 異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、又は異方性導電シート等の異方性導電材料が広く知られている。
 異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、又はICチップとITO電極を有する回路基板との接続等に使用されている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極同士を接続できる。
 上記異方性導電材料の一例として、下記の特許文献1には、熱硬化性絶縁接着剤と、導電性粒子と、イミダゾール系潜在性硬化剤と、アミン系潜在性硬化剤とを含有する異方性導電接着フィルムが開示されている。特許文献1には、この異方性導電接着フィルムを比較的低温で硬化させた場合であっても、接続信頼性が優れていることが記載されている。
特開平9-115335号公報
 近年、電子部品の電極間を効率的に接続するために、接続に要する加熱温度を低くし、かつ加圧時間を短くすることが求められている。また、電子部品は加熱により劣化しやすいため、加熱温度を低くすることが強く求められている。
 特許文献1に記載の異方性導電接着フィルムでは、硬化を開始させるのに必要な加熱温度が比較的低い。しかしながら、この異方性導電接着フィルムは、低温では硬化反応が充分に進行しないことがある。このため、異方性導電接着フィルムを用いて、回路基板及び電子部品の電極間を接続するために、加熱温度を高くしたり、長時間加熱したりしなければならないことがある。従って、電極間を効率的に接続できないことがある。
 さらに、近年、回路基板等に形成される電極の微細化が進行している。すなわち、電極が形成されているラインの幅方向の寸法(L)と、電極が形成されていないスペースの幅方向の寸法(S)とを示すL/Sが、より一層小さくされている。このような微細な電極が形成された回路基板を、上記の異方性導電接着フィルムにより接続した場合、異方性導電接着フィルムの硬化速度が遅いため、電極間のスペースにボイドが生じることがある。
 本発明の目的は、低温で速やかに硬化させることができ、さらに接続対象部材の接続に用いられた場合に、該接続対象部材を効率的に接続でき、かつ接続後にボイドが生じるのを抑制できるエピスルフィド化合物、並びに該エピスルフィド化合物を含有するエピスルフィド化合物含有混合物、該エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体を提供することにある。
 本発明の広い局面によれば、下記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物が提供される。
Figure JPOXMLDOC01-appb-C000001
 上記式(1-1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表し、R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表し、R3、R4、R5及びR6の内の水素ではない基は下記式(4)で表される基を表す。
Figure JPOXMLDOC01-appb-C000002
 上記式(2-1)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表し、R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表し、R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(5)で表される基を表す。
Figure JPOXMLDOC01-appb-C000003
 上記式(3)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表し、R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の6~8個の基は水素を表し、R103、R104、R105、R106、R107、R108、R109及びR110の内の水素ではない基は、下記式(6)で表される基を表す。
Figure JPOXMLDOC01-appb-C000004
 上記式(4)中、R7は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000005
 上記式(5)中、R59は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000006
 上記式(6)中、R111は炭素数1~5のアルキレン基を表す。
 本発明に係るエピスルフィド化合物のある特定の局面では、該エピスルフィド化合物は、下記式(1)又は(2)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表し、R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表し、R3、R4、R5及びR6の内の水素ではない基は下記式(4)で表される基を表す。
Figure JPOXMLDOC01-appb-C000008
 上記式(2)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表し、R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表し、R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(5)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
 上記式(4)中、R7は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000010
 上記式(5)中、R59は炭素数1~5のアルキレン基を表す。
 本発明に係るエピスルフィド化合物の他の特定の局面では、上記式(1)又は(2)で表される構造は、下記式(1A)又は(2A)で表される構造である。
Figure JPOXMLDOC01-appb-C000011
 上記式(1A)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000012
 上記式(2A)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。
 本発明に係るエピスルフィド化合物含有混合物は、本発明のエピスルフィド化合物と、下記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物とを含有する。
Figure JPOXMLDOC01-appb-C000013
 上記式(11-1)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表し、R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表し、R13、R14、R15及びR16の内の水素ではない基は下記式(14)で表される基を表す。
Figure JPOXMLDOC01-appb-C000014
 上記式(12-1)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表し、R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表し、R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(15)で表される基を表す。
Figure JPOXMLDOC01-appb-C000015
 上記式(13)中、R121及びR122はそれぞれ炭素数1~5のアルキレン基を表し、R123、R124、R125、R126、R127、R128、R129及びR130の8個の基の内の6~8個の基は水素を表し、R123、R124、R125、R126、R127、R128、R129及びR130の内の水素ではない基は、下記式(16)で表される基を表す。
Figure JPOXMLDOC01-appb-C000016
 上記式(14)中、R17は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000017
 上記式(15)中、R69は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000018
 上記式(16)中、R131は炭素数1~5のアルキレン基を表す。
 本発明に係るエピスルフィド化合物含有混合物のある特定の局面では、上記エポキシ化合物は、下記式(11)又は(12)で表されるエポキシ化合物である。
Figure JPOXMLDOC01-appb-C000019
 上記式(11)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表し、R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表し、R13、R14、R15及びR16の内の水素ではない基は下記式(14)で表される基を表す。
Figure JPOXMLDOC01-appb-C000020
 上記式(12)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表し、R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表し、R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(15)で表される基を表す。
Figure JPOXMLDOC01-appb-C000021
 上記式(14)中、R17は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000022
 上記式(15)中、R69は炭素数1~5のアルキレン基を表す。
 本発明に係るエピスルフィド化合物含有混合物の他の特定の局面では、上記式(11)又は(12)で表される構造は、下記式(11A)又は(12A)で表される構造である。
Figure JPOXMLDOC01-appb-C000023
 上記式(11A)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000024
 上記式(12A)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。
 本発明に係るエピスルフィド化合物含有混合物の製造方法では、チオシアン酸塩を含む第1の溶液に、上記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液を連続的又は断続的に添加した後、チオシアン酸塩を含む第2の溶液を連続的又は断続的にさらに添加することにより、上記エポキシ化合物の一部のエポキシ基をエピスルフィド基に変換する。
 本発明に係るエピスルフィド化合物含有混合物の製造方法のある特定の局面では、上記エポキシ化合物又は該エポキシ化合物を含む溶液として、上記式(11)又は(12)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液が用いられる。
 本発明に係る硬化性組成物は、本発明のエピスルフィド化合物と、硬化剤とを含有する。
 または、本発明に係る硬化性組成物は、本発明のエピスルフィド化合物含有混合物と、硬化剤とを含有する。この硬化性組成物も、上記エピスルフィド化合物含有混合物中に、上記エピスルフィド化合物を含有する。
 本発明に係る硬化性組成物のある特定の局面では、光硬化性化合物と、光重合開始剤とがさらに含有される。
 本発明に係る硬化性組成物の他の特定の局面では、導電性粒子がさらに含有される。
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備えており、該接続部が、本発明の硬化性組成物により形成されている。
 本発明に係る接続構造体のある特定の局面では、上記硬化性組成物が導電性粒子を含有し、上記第1,第2の接続対象部材は、上記導電性粒子により電気的に接続されている。
 本発明に係るエピスルフィド化合物は、上記式(1-1)、(2-1)又は(3)で表される構造を有するので、低温で速やかに硬化させることができる。
 本発明に係るエピスルフィド化合物が、上記式(1)又は(2)で表される構造を有する場合には、低温でより一層速やかに硬化させることができる。
 本発明に係るエピスルフィド化合物含有混合物は、上記式(1-1)又は(2-1)で表される構造を有するエピスルフィド化合物を含有するので、低温で速やかに硬化させることができる。
 本発明に係るエピスルフィド化合物含有混合物が、上記式(1)又は(2)で表される構造を有する場合には、低温でより一層速やかに硬化させることができる。
 また、本発明に係るエピスルフィド化合物又は本発明に係るエピスルフィド化合物含有混合物を、接続対象部材の接続に用いることにより、該接続対象部材を効率的に接続できる。さらに、接続後にボイドが生じるのを抑制できる。表面に凹凸を有する接続対象部材を接続しても、ボイドが生じるのを抑制できる。
図1は、本発明の一実施形態に係る硬化性組成物を用いた接続構造体の一例を模式的に示す部分切欠断面図である。
 以下、本発明を詳細に説明する。
 (エピスルフィド化合物)
 本発明に係るエピスルフィド化合物は、下記式(1-1)、(2-1)又は(3)で表される構造を有する。下記式(1-1)において、ベンゼン環に結合している6つの基の結合部位は特に限定されない。下記式(2-1)において、ナフタレン環に結合している8つの基の結合部位は特に限定されない。
Figure JPOXMLDOC01-appb-C000025
 上記式(1-1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表す。R3、R4、R5及びR6の内の水素ではない基は下記式(4)で表される基を表す。R3、R4、R5及びR6の4個の基の全てが水素であってもよい。R3、R4、R5及びR6の4個の基の内の1個又は2個が下記式(4)で表される基であり、かつR3、R4、R5及びR6の4個の基の内の下記式(4)で表される基ではない基は水素であってもよい。
Figure JPOXMLDOC01-appb-C000026
 上記式(2-1)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表す。R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(5)で表される基を表す。R53、R54、R55、R56、R57及びR58の6個の基の全てが水素であってもよい。R53、R54、R55、R56、R57及びR58の6個の基の内の1個又は2個が下記式(5)で表される基であり、かつR53、R54、R55、R56、R57及びR58の内の下記式(5)で表される基ではない基は水素であってもよい。
Figure JPOXMLDOC01-appb-C000027
 上記式(3)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表す。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の6~8個の基は水素を表す。R103、R104、R105、R106、R107、R108、R109及びR110の内の水素ではない基は、下記式(6)で表される基を表す。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の全てが水素であってもよい。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の1個又は2個が下記式(6)で表される基であり、かつR103、R104、R105、R106、R107、R108、R109及びR110の内の下記式(6)で表される基ではない基は水素であってもよい。
Figure JPOXMLDOC01-appb-C000028
 上記式(4)中、R7は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000029
 上記式(5)中、R59は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000030
 上記式(6)中、R111は炭素数1~5のアルキレン基を表す。
 低温でより一層速やかに硬化させる観点からは、本発明に係るエピスルフィド化合物は、下記式(1)、下記式(2)又は上記式(3)で表される構造を有することが好ましい。低温でさらに一層速やかに硬化させる観点からは、本発明に係るエピスルフィド化合物は、下記式(1)又は(2)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000031
 上記式(1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表す。R3、R4、R5及びR6の内の水素ではない基は上記式(4)で表される基を表す。
Figure JPOXMLDOC01-appb-C000032
 上記式(2)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表す。R53、R54、R55、R56、R57及びR58の内の水素ではない基は、上記式(5)で表される基を表す。
 上記式(1-1)、(2-1)又は(3)、並びに上記式(1)又は(2)で表される構造を有するエピスルフィド化合物はいずれも、エピスルフィド基を少なくとも2つ有する。また、エピスルフィド基を有する基が、ベンゼン環、ナフタレン環又はアントラセン環に結合されている。このような構造を有するので、エピスルフィド化合物に例えば硬化剤を添加した混合物を加熱することにより、混合物を低温で速やかに硬化させることができる。
 上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物は、上記式(1-1)、(2-1)又は(3)中のエピスルフィド基がエポキシ基である化合物に比べて、反応性が高い。上記式(1)又は(2)で表される構造を有するエピスルフィド化合物は、上記式(1)又は(2)中のエピスルフィド基がエポキシ基である化合物に比べて、反応性が高い。これは、エピスルフィド基はエポキシ基よりも、開環しやすく、反応性が高いためである。上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物、並びに上記式(1)又は(2)で表される構造を有するエピスルフィド化合物は反応性が高いので、低温で速やかに硬化させることができる。
 上記式(1-1)及び(1)中のR1及びR2、上記式(2-1)及び(2)中のR51及びR52、上記式(3)中のR101及びR102、上記式(4)中のR7、上記式(5)中のR59、並びに上記式(6)中のR111はいずれも、炭素数1~5のアルキレン基である。該アルキレン基の炭素数が5を超えると、上記エピスルフィド化合物の硬化速度が低下しやすくなる。
 上記式(1-1)及び(1)中のR1及びR2、上記式(2-1)及び(2)中のR51及びR52、上記式(3)中のR101及びR102、上記式(4)中のR7、上記式(5)中のR59、並びに上記式(6)中のR111はそれぞれ、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。上記アルキレン基は直鎖構造を有するアルキレン基であってもよく、分岐構造を有するアルキレン基であってもよい。
 上記(1)で表される構造は、下記式(1A)で表される構造であることが好ましい。下記式(1A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。
Figure JPOXMLDOC01-appb-C000033
 上記式(1A)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。
 上記式(1)で表される構造は、下記式(1B)で表される構造であることがより好ましい。下記式(1B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。
Figure JPOXMLDOC01-appb-C000034
 上記(2)で表される構造は、下記式(2A)で表される構造であることが好ましい。下記式(2A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。
Figure JPOXMLDOC01-appb-C000035
 上記式(2A)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。
 上記式(2)で表される構造は、下記式(2B)で表される構造であることがより好ましい。下記式(2B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。
Figure JPOXMLDOC01-appb-C000036
 上記(3)で表される構造は、下記式(3A)で表される構造であることが好ましい。下記式(3A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。
Figure JPOXMLDOC01-appb-C000037
 上記式(3A)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表す。
 上記式(3)で表される構造は、下記式(3B)で表される構造であることがより好ましい。下記式(3B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。
Figure JPOXMLDOC01-appb-C000038
 (エピスルフィド化合物含有混合物)
 本発明に係るエピスルフィド化合物含有混合物は、上記式(1-1)、(2-1)又は(3)で表されるエピスルフィド化合物と、下記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物とを含有する。下記式(11-1)において、ベンゼン環に結合している6つの基の結合部位は特に限定されない。下記式(12-1)において、ナフタレン環に結合している8つの基の結合部位は特に限定されない。
Figure JPOXMLDOC01-appb-C000039
 上記式(11-1)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表す。R13、R14、R15及びR16の内の水素ではない基は下記式(14)で表される基を表す。R13、R14、R15及びR16の4個の基の全てが水素であってもよい。R13、R14、R15及びR16の4個の基の内の1個又は2個が下記式(14)で表される基であり、かつR13、R14、R15及びR16の4個の基の内の下記式(14)で表される基ではない基は水素であってもよい。
Figure JPOXMLDOC01-appb-C000040
 上記式(12-1)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表す。R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(15)で表される基を表す。R63、R64、R65、R66、R67及びR68の6個の基の全てが水素であってもよい。R63、R64、R65、R66、R67及びR68の6個の基の内の1個又は2個が下記式(15)で表される基であり、かつR63、R64、R65、R66、R67及びR68の6個の基の内の下記式(15)で表される基ではない基は水素であってもよい。
Figure JPOXMLDOC01-appb-C000041
 上記式(13)中、R121及びR122はそれぞれ炭素数1~5のアルキレン基を表す。R123、R124、R125、R126、R127、R128、R129及びR130の8個の基の内の6~8個の基は水素を表す。R123、R124、R125、R126、R127、R128、R129及びR130の内の水素ではない基は、下記式(16)で表される基を表す。R123、R124、R125、R126、R127、R128、R129及びR130の8個の基の全てが水素であってもよい。R123、R124、R125、R126、R127、R128、R129及びR130の8個の基の内の1個又は2個が下記式(16)で表される基であり、かつR123、R124、R125、R126、R127及びR128の8個の基の内の下記式(16)で表される基ではない基は水素であってもよい。
Figure JPOXMLDOC01-appb-C000042
 上記式(14)中、R17は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000043
 上記式(15)中、R69は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000044
 上記式(16)中、R131は炭素数1~5のアルキレン基を表す。
 低温でより一層速やかに硬化させる観点からは、本発明に係るエピスルフィド化合物含有混合物は、上記式(1)、上記式(2)又は上記式(3)で表される化合物と、下記式(11)、下記式(12)又は上記式(13)で表されるエポキシ化合物とを含有することが好ましい。低温でさらに一層速やかに硬化させる観点からは、本発明に係るエピスルフィド化合物含有混合物は、上記式(1)又は(2)で表される化合物と、下記式(11)又は(12)で表されるエポキシ化合物とを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000045
 上記式(11)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表す。R13、R14、R15及びR16の内の水素ではない基は上記式(14)で表される基を表す。
Figure JPOXMLDOC01-appb-C000046
 上記式(12)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表す。R63、R64、R65、R66、R67及びR68の内の水素ではない基は、上記式(15)で表される基を表す。
 上記式(11-1)及び(11)中のR11及びR12、上記式(12-1)及び(12)中のR61及びR62、上記式(13)中のR121及びR122、上記式(14)中のR17、上記式(15)中のR69、並びに上記式(16)中のR131はいずれも、炭素数1~5のアルキレン基である。該アルキレン基の炭素数が5を超えると、上記エピスルフィド化合物含有混合物の硬化速度が低下しやすくなる。
 上記式(11-1)及び(11)中のR11及びR12、上記式(12-1)及び(12)中のR61及びR62、上記式(13)中のR121及びR122、上記式(14)中のR17、上記式(15)中のR69、並びに上記式(16)中のR131はそれぞれ、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。上記アルキレン基は直鎖構造を有するアルキレン基であってもよく、分岐構造を有するアルキレン基であってもよい。
 上記(11)で表される構造は、下記式(11A)で表される構造であることが好ましい。下記式(11A)で表される構造を有するエポキシ化合物は、市販されており、容易に入手できる。
Figure JPOXMLDOC01-appb-C000047
 上記式(11A)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。
 上記式(11)で表される構造は、下記式(11B)で表される構造であることがより好ましい。下記式(11B)で表される構造を有するエポキシ化合物は、レゾルシノールジグリシジルエーテルである。レゾルシノールジグリシジルエーテルは市販されており、容易に入手できる。
Figure JPOXMLDOC01-appb-C000048
 上記(12)で表される構造は、下記式(12A)で表される構造であることが好ましい。下記式(12A)で表される構造を有するエポキシ化合物は、容易に入手できる。
Figure JPOXMLDOC01-appb-C000049
 上記式(12A)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。
 上記式(12)で表される構造は、下記式(12B)で表される構造であることがより好ましい。下記式(12B)で表される構造を有するエポキシ化合物は、容易に入手できる。
Figure JPOXMLDOC01-appb-C000050
 上記(13)で表される構造は、下記式(13A)で表される構造であることが好ましい。下記式(13A)で表される構造を有するエポキシ化合物は、容易に入手できる。
Figure JPOXMLDOC01-appb-C000051
 上記式(13A)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表す。
 上記式(13)で表される構造は、下記式(13B)で表される構造であることがより好ましい。下記式(13B)で表される構造を有するエポキシ化合物は、容易に入手できる。
Figure JPOXMLDOC01-appb-C000052
 本発明に係るエピスルフィド化合物含有混合物は、上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物を10~99.9重量%含有し、かつ上記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物を90~0.01重量%含有することが好ましい。本発明に係るエピスルフィド化合物含有混合物は、上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物を80~99.9重量%含有し、かつ上記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物を0.1~20重量%含有することがより好ましい。
 本発明に係るエピスルフィド化合物含有混合物は、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物を10~99.9重量%含有し、かつ上記式(11)又は(12)で表されるエポキシ化合物を90~0.1重量%含有することが好ましい。本発明に係るエピスルフィド化合物含有混合物は、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物を80~99.9重量%含有し、かつ上記式(11)又は(12)で表されるエポキシ化合物を0.1~20重量%含有することがより好ましい。
 上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物、並びに上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が少なすぎると、エピスルフィド化合物含有混合物の硬化速度が充分に速くならないことがある。上記式(11-1)、(12-1)又は(13)で表される構造を有するエピスルフィド化合物、並びに上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が多すぎると、エピスルフィド化合物含有混合物の粘度が高くなりすぎたり、エピスルフィド化合物含有混合物が固体になったりすることがある。
 (エピスルフィド化合物の製造方法及びエピスルフィド化合物含有混合物の製造方法)
 上記エピスルフィド化合物の製造方法及び上記エピスルフィド化合物含有混合物の製造方法は特に限定されない。この製造方法としては、例えば、上記式(11-1)、(12-1)もしくは(13)、又は上記式(11)もしくは(12)で表されるエポキシ化合物を用意し、該エポキシ化合物の全部又は一部のエポキシ基をエピスルフィド基に変換する製造方法が挙げられる。
 上記エピスルフィド化合物の製造方法及び上記エピスルフィド化合物含有混合物の製造方法は、チオシアン酸塩を含む第1の溶液に、上記式(11-1)又は(12-1)又は(13)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液を連続的又は断続的に添加した後、チオシアン酸塩を含む第2の溶液を連続的又は断続的にさらに添加する方法が好ましい。上記方法により、上記エポキシ化合物の全部又は一部のエポキシ基をエピスルフィド基に変換できる。上記エポキシ化合物又は該エポキシ化合物を含む溶液は、上記式(1)又は(2)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液であることが好ましい。
 全部のエポキシ基がエピスルフィド基に変換された結果、上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物を得ることができる。さらに、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物を得ることもできる。一部のエポキシ基がエピスルフィド基に変換された結果、上記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物と、上記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物とを含有するエピスルフィド化合物含有混合物を得ることができる。さらに、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物と、上記式(11)又は(12)で表されるエポキシ化合物とを含有するエピスルフィド化合物含有混合物を得ることもできる。
 上記エピスルフィド化合物及び上記エピスルフィド化合物含有混合物は、具体的には、以下のようにして製造できる。
 攪拌機、冷却機及び温度計を備えた容器内に、溶剤と、水と、チオシアン酸塩とを加え、チオシアン酸塩を溶解させ、容器内に第1の溶液を調製する。溶剤としては、メタノール又はエタノール等が挙げられる。チオシアン酸塩としては、チオシアン酸アンモニウム、チオシアン酸カリウム又はチオシアン酸ナトリウム等が挙げられる。
 第1の溶液のチオシアン酸塩の濃度は、0.001~0.2g/mLの範囲内にあることが好ましく、0.005~0.1g/mLの範囲内にあることがより好ましい。チオシアン酸塩の濃度が高すぎると、エポキシ化合物が重合してしまうことがある。チオシアン酸塩の濃度が低すぎると、エポキシ基をエピスルフィド基に変換できないことがある。
 さらに、上記第1の溶液とは別に、上記式(11-1)、(12-1)、(13)、(11)又は(12)で表される構造を有するエポキシ化合物又は該エポキシ化合物を含む溶液を用意する。
 次に、第1の溶液中に、上記式(11-1)、(12-1)、(13)、(11)又は(12)で表される構造を有するエポキシ化合物又は該エポキシ化合物を含む溶液を連続的又は断続的に添加する。このときの第1の溶液の温度は、15~30℃の範囲内にあることが好ましい。上記エポキシ化合物の添加の後、0.5~12時間攪拌することが好ましい。上記エポキシ化合物又は該エポキシ化合物を含む溶液を複数の段階で添加してもよい。例えば、一部の上記エポキシ化合物又は該エポキシ化合物を含む溶液を添加した後、少なくとも0.5時間攪拌し、その後、残りの上記エポキシ化合物又は該エポキシ化合物を含む溶液をさらに添加し、0.5~12時間攪拌してもよい。上記エポキシ化合物を含む溶液を用いる場合、該溶液のエポキシ化合物の濃度は特に限定されない。
 第1の溶液中への上記エポキシ化合物又は該エポキシ化合物を含む溶液の添加速度は、1~10mL/分の範囲内にあることが好ましく、2~8mL/分の範囲内にあることがより好ましい。上記エポキシ化合物又は該エポキシ化合物を含む溶液の添加速度が速すぎると、エポキシ化合物が重合してしまうことがある。上記エポキシ化合物又は該エポキシ化合物を含む溶液の添加速度が遅すぎると、エピスルフィド化合物の生成効率が低下することがある。
 上記エポキシ化合物又は該エポキシ化合物を含む溶液が上記第1の溶液に添加された混合液において、上記エポキシ化合物の濃度は、0.05~0.8g/mLの範囲内にあることが好ましく、0.1~0.5g/mLの範囲内にあることがより好ましい。エポキシ化合物の濃度が高すぎると、エポキシ化合物が重合してしまうことがある。
 次に、上記エポキシ化合物又は該エポキシ化合物を含む溶液が上記第1の溶液に添加された混合液に、溶剤と、水と、チオシアン酸塩とを含む第2の溶液を連続的又は断続的にさらに添加する。上記第2の溶液の添加の後、0.5~12時間攪拌することが好ましい。また、上記第2の溶液の添加の後、15~60℃の範囲内で攪拌することが好ましい。上記第2の溶液を複数の段階で添加してもよい。例えば、一部の上記第2の溶液を添加した後、少なくとも0.5時間攪拌し、その後、残りの上記第2の溶液をさらに添加し、0.5~12時間攪拌してもよい。
 上記第2の溶液のチオシアン酸塩の濃度は、0.001~0.7g/mLの範囲内にあることが好ましく、0.005~0.5g/mLの範囲内にあることがより好ましい。チオシアン酸塩の濃度が高すぎると、エポキシ化合物が重合してしまうことがある。チオシアン酸塩の濃度が低すぎると、エポキシ基をエピスルフィド基に変換できないことがある。
 上記混合液中への上記第2の溶液の添加速度は、1~10mL/分の範囲内にあることが好ましく、2~8mL/分の範囲内にあることがより好ましい。上記第2の溶液の添加速度が速すぎると、エポキシ化合物が重合してしまうことがある。上記第2の溶液の添加速度が遅すぎると、エピスルフィド化合物の生成効率が低下することがある。
 第1の溶液中に上記エポキシ化合物が添加された混合液に、上記第2の溶液を添加した後、水、溶剤又は未反応のチオシアン酸塩を除去することが好ましい。水、溶剤又は未反応のチオシアン酸塩を除去する方法として、従来公知の方法が用いられる。
 第1の溶液、又は、第2の溶液は、パラジウム金属粒子、酸化チタン等の触媒を含有してもよい。上記触媒を含有する溶液の使用により、エピスルフィド基の変換率を調整できる。また、低温環境においてエポキシ基をエピスルフィド基に変換できるため、エポキシ化合物の重合反応を抑制できる。上記第1の溶液の触媒の濃度、又は、上記第2の溶液の触媒の濃度は、0.05~1.0g/mLの範囲内にあることが好ましい。
 上記のようにして、上記エポキシ化合物の全部又は一部のエポキシ基をエピスルフィド基に変換できる。この結果、エピスルフィド化合物又はエピスルフィド化合物含有混合物を得ることができる。具体的には、例えば、上記式(1-1)、(2-1)、(3)、(1)又は(2)で表される構造を有するエピスルフィド化合物を100重量%含有するエピスルフィド化合物を得ることができる。さらに、例えば、上記式(1-1)、(2-1)、(3)、(1)又は(2)で表される構造を有するエピスルフィド化合物を10~99.9重量%又は10~50重量%含有し、かつ上記式(11-1)、(12-1)、(13)、(11)又は(12)で表されるエポキシ化合物を90~0.1重量%又は90~50重量%含有するエピスルフィド化合物含有混合物を得ることができる。
 (硬化性組成物)
 本発明に係る硬化性組成物は、本発明のエピスルフィド化合物と、硬化剤とを含有する。または、本発明に係る硬化性組成物は、本発明のエピスルフィド化合物含有混合物と、硬化剤とを含有する。すなわち、本発明に係る硬化性組成物は、本発明のエピスルフィド化合物又はエピスルフィド化合物含有混合物と、硬化剤とを含有する。硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 本発明に係る硬化性組成物は、上記エピスルフィド化合物を少なくとも1種含有する。または、本発明に係る硬化性組成物は上記エピスルフィド化合物含有混合物を少なくとも1種含有する。または、本発明に係る硬化性組成物は、上記エピスルフィド化合物を少なくとも1種と、上記エピスルフィド化合物含有混合物を少なくとも1種含有する。従って、硬化性樹脂として、上記エピスルフィド化合物の2種以上が併用されてもよく、上記エピスルフィド化合物含有混合物の2種以上が併用されてもよく、上記エピスルフィド化合物と上記エピスルフィド化合物含有混合物とが併用されてもよい。
 上記硬化剤は特に限定されない。上記硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤又は酸無水物等が挙げられる。なかでも、硬化性組成物を低温でより一層速やかに硬化させることができるので、イミダゾール硬化剤、ポリチオール硬化剤又はアミン硬化剤が好ましい。また、上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物と上記硬化剤とを混合したときに保存安定性を高めることができるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性ポリチオール硬化剤又は潜在性アミン硬化剤であることが好ましい。これらの硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。なお、上記硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
 上記イミダゾール硬化剤としては、特に限定されないが、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン又は2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。
 上記ポリチオール硬化剤としては、特に限定されないが、トリメチロールプロパン トリス-3-メルカプトプロピオネート、ペンタエリスリトール テトラキス-3-メルカプトプロピオネート又はジペンタエリスリトール ヘキサ-3-メルカプトプロピオネート等が挙げられる。
 上記アミン硬化剤としては、特に限定されないが、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン又はジアミノジフェニルスルホン等が挙げられる。
 上記硬化剤の中でもポリチオール化合物又は酸無水物等が好ましく用いられる。さらに好ましくは、硬化性組成物の硬化速度をより一層速くできるので、ポリチオール化合物が用いられる。
 上記ポリチオール化合物の中でもペンタエリスリトール テトラキス-3-メルカプトプロピオネートがより好ましい。このポリチオール化合物の使用により、硬化性組成物の硬化速度をより一層速くできる。
 上記硬化剤の含有量は特に限定されない。上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物100重量部((上記エポキシ化合物が含まれない場合には上記エピスルフィド化合物100重量部を示し、上記エポキシ化合物が含まれる場合には上記エピスルフィド化合物含有混合物100重量部を示す)に対して、上記硬化剤は1~40重量部の範囲内で含有されることが好ましい。上記硬化剤の含有量が1重量部未満であると、硬化性組成物が充分に硬化しないことがある。上記硬化剤の含有量が40重量部を超えると、硬化性組成物の硬化物の耐熱性が低下することがある。上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物100重量部に対して、上記硬化剤の含有量のより好ましい下限は30重量部、さらにより好ましい下限は45重量部、より好ましい上限は100重量部、さらにより好ましい上限は75重量部である。硬化剤の含有量が少なすぎると、硬化性組成物が充分に硬化しにくくなる。硬化剤の含有量が多すぎると、硬化後に硬化に関与しなかった余剰の硬化剤が残存することがある。
 なお、上記硬化剤がイミダゾール硬化剤又はフェノール硬化剤である場合、上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物100重量部に対して、イミダゾール硬化剤又はフェノール硬化剤は、1~15重量部の範囲内で含有されることが好ましい。また、上記硬化剤がアミン硬化剤、ポリチオール硬化剤又は酸無水物である場合、上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物100重量部に対して、アミン硬化剤、ポリチオール硬化剤又は酸無水物は15~40重量部の範囲内で含有されることが好ましい。
 本発明に係る硬化性組成物は、貯蔵安定剤をさらに含有することが好ましい。本発明に係る硬化性組成物は、上記貯蔵安定剤として、リン酸エステル、亜リン酸エステル及びホウ酸エステルからなる群から選択された少なくとも一種をさらに含有することが好ましく、亜リン酸エステルを含有することがより好ましい。亜リン酸エステルの使用により、上記エピスルフィド化合物又はエピスルフィド化合物含有混合物の貯蔵安定性をより一層高めることができる。上記貯蔵安定剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記リン酸エステルとしては、ジエチルベンジルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリn-ブチルホスフェート、トリス(ブトキシエチル)ホスフェート、トリス(2-エチルヘキシル)ホスフェート、(RO)P=O[R=ラウリル基、セチル基、ステアリル基又はオレイル基]、トリス(2-クロロエチル)ホスフェート、トリス(2-ジクロロプロピル)ホスフェート、トリフェニルホスフェート、ブチルピロホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、クレジルジフェニルホスフェート、キシレニルジホスフェート、モノブチルホスフェート、ジブチルホスフェート、ジ-2-エチルヘキシルホスフェート、モノイソデシルホスフェート、アンモニウムエチルアシッドホスフェート、及び2-エチルヘキシルアシッドホスフェート塩等が挙げられる。中でもジエチルベンジルホスフェートが好ましく用いられる。
 上記亜リン酸エステルとしては、トリメチルホスファイト、トリエチルホスファイト、トリn-ブチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリイソオクチルホスファイト、トリデシルホスファイト、トリイソデシルホスファイト、トリス(トリデシル)ホスファイト、トリオレイルホスファイト、トリステアリルホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、フェニルジイソオクチルホスファイト、フェニルジイソデシルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノイソデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、ビス(ノニルフェニル)ジノニルフェニルホスファイト、テトラフェニルジプロピレングリコールジホスファイト、ポリ(ジプロピレングリコール)フェニルホスファイト、ジイソデシルペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラホスファイト、テトラ(トリデシル)-4,4’-イソプロピリデンジフェニルホスファイト、トリラウリルトリチオホスファイト、ジメチルハイドロジエンホスファイト、ジブチルハイドロジエンホスファイト、ジ(2-エチルヘキシル)ハイドロジエンホスファイト、ジラウリルハイドロジエンホスファイト、ジオレイルハイドロジエンホスファイト、ジフェニルハイドロジエンホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、及びジフェニルモノ(トリデシル)ホスファイト等が挙げられる。中でも、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト又はジフェニルモノ(トリデシル)ホスファイトが好ましく、ジフェニルモノデシルホスファイト又はジフェニルモノ(トリデシル)ホスファイトがより好ましく、ジフェニルモノ(トリデシル)ホスファイトがさらに好ましい。
 上記ホウ酸エステルとしては、例えばトリメチルボレート、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、2-(β-ジメチルアミノイソプロポキシ)-4,5-ジメチル-1,3,2-ジオキサボロラン、2-(β-ジエチルアミノエトキシ)-4,4,6-トリメチル-1,3,2-ジオキサボリナン、2-(β-ジメチルアミノエトキシ)-4,4,6-トリメチル-1,3,2-ジオキサボリナン、2-(β-ジイソプロピルアミノエトキシ)-1,3,2-ジオキサボリナン、2-(β-ジイソプロピルアミノエトキシ)-4-メチル-1,3,2-ジオキサボリナン、2-(γ-ジメチルアミノプロポキシ)-1,3,6,9-テトラプキサ-2-ボラシクロウンデカン、および2-(β-ジメチルアミノエトキシ)-4,4-(4-ヒドロキシブチル)-1,3,2-ジオキサボリナン、2,2-オキシビス(5,5-ジメチル-1,3,2-ジオキサボナリン、及びエポキシ-フェノール-ホウ酸エステル配合物等が挙げられる。
 上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物100重量部に対して、上記貯蔵安定剤の含有量は0.001~0.1重量部の範囲内であることが好ましい。上記エピスルフィド化合物又上記エピスルフィド化合物含有混合物100重量部に対して、上記貯蔵安定剤の含有量のより好ましい下限は0.005重量部、より好ましい上限は0.05重量部である。貯蔵安定剤、特に亜リン酸エステルの含有量が上記範囲内であると、上記エピスルフィド化合物又上記エピスルフィド化合物含有混合物の貯蔵安定性をより一層高めることができる。
 本発明に係る硬化性組成物は、硬化促進剤をさらに含有することが好ましい。硬化促進剤の使用により、硬化性組成物の硬化速度をより一層速くすることができる。硬化促進剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化促進剤の具体例としては、イミダゾール硬化促進剤又はアミン硬化促進剤等が挙げられる。なかでも、イミダゾール硬化促進剤が好ましい。なお、イミダゾール硬化促進剤又はアミン硬化促進剤は、イミダゾール硬化剤又はアミン硬化剤としても用いることができる。
 上記イミダゾール硬化促進剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン又は2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。
 上記エピスルフィド化合物又上記エピスルフィド化合物含有混合物100重量部に対して、上記硬化促進剤の含有量の好ましい下限は0.5重量部、より好ましい下限は1重量部、好ましい上限は6重量部、より好ましい上限は4重量部である。硬化促進剤の含有量が少なすぎると、硬化性組成物が充分に硬化しにくくなる。硬化促進剤の含有量が多すぎると、硬化後に硬化に関与しなかった余剰の硬化促進剤が残存することがある。
 本発明に係る硬化性組成物は、フィラーをさらに含有することが好ましい。フィラーの使用により、硬化性組成物の硬化物の潜熱膨張を抑制できる。フィラーは1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記フィラーの具体例としては、シリカ、窒化アルミニウム又はアルミナ等が挙げられる。上記フィラーはフィラー粒子であることが好ましい。フィラー粒子の平均粒子径は、0.1~1.0μmの範囲内であることが好ましい。フィラー粒子の平均粒子径が上記範囲内であると、硬化性組成物の硬化物の潜熱膨張をより一層抑制できる。「平均粒子径」とは、動的レーザー散乱法によって測定される体積平均径を示す。
 上記エピスルフィド化合物又上記エピスルフィド化合物含有混合物100重量部に対して、上記フィラーの含有量は50~900重量部の範囲内であることが好ましい。フィラーの含有量が上記範囲内であると、硬化性組成物の硬化物の潜熱膨張をより一層抑制できる。
 本発明に係る硬化性組成物は、必要に応じて、溶剤、イオン捕捉剤又はシランカップリング剤をさらに含有してもよい。
 上記溶剤は特に限定されない。上記溶剤としては、例えば、酢酸エチル、メチルセロソルブ、トルエン、アセトン、メチルエチルケトン、シクロヘキサン、n-ヘキサン、テトラヒドロフラン又はジエチルエーテル等が挙げられる。溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記シランカップリング剤は特に限定されない。上記シランカップリング剤としては、例えば、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメチルエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ドデシルトリエトキシシラン、ヘキシルトリメトキシシラン、イソブチルジエトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジメトキシシラン又はイミダゾールシラン等が挙げられる。なかでも、イミダゾールシランが好ましい。シランカップリング剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記イオン捕捉剤は特に限定されない。上記イオン捕捉剤の具体例としては、アルミノケイ酸塩、含水酸化チタン、含水酸化ビスマス、リン酸ジルコニウム、リン酸チタン、ハイドロタルサイト、モリブドリン酸アンモニウム、ヘキサシアノ亜鉛又はイオン交換樹脂等が挙げられる。イオン捕捉剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 本発明に係る硬化性組成物は、光照射によっても硬化するように、光硬化性化合物と、光重合開始剤とをさらに含有していてもよい。上記光硬化性化合物と上記光重合開始剤との使用により、光の照射により硬化性組成物を硬化させることができる。さらに、硬化性組成物を半硬化させ、硬化性組成物の流動性を低下させることができる。
 上記光硬化性化合物は特に限定されない。該光硬化性化合物として、(メタ)アクリル樹脂又は環状エーテル基含有樹脂等が好適に用いられる。上記(メタ)アクリル樹脂は、メタクリル樹脂とアクリル樹脂とを示す。
 上記(メタ)アクリル樹脂として、(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させて得られるエポキシ(メタ)アクリレート、又はイソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させて得られるウレタン(メタ)アクリレート等が好適に用いられる。
 上記(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物は特に限定されない。該エステル化合物として、単官能のエステル化合物、2官能のエステル化合物及び3官能以上のエステル化合物のいずれも用いることができる。
 上記光硬化性化合物は、エポキシ基の少なくとも一種の基と、(メタ)アクリル基とを有する光及び熱硬化性化合物(以下、部分(メタ)アクリレート化エポキシ樹脂ともいう)を含むことが好ましい
 上記部分(メタ)アクリレート化エポキシ樹脂は、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られる。エポキシ基の20%以上が(メタ)アクリロイル基に変換され(転化率)、部分(メタ)アクリル化されていることが好ましい。エポキシ基の50%が(メタ)アクリロイル基に変換されていることがより好ましい。上記(メタ)アクリロイルは、アクリロイルとメタクリロイルとを示す。
 硬化性組成物の硬化性を高める観点からは、上記硬化性化合物100重量%中、上記部分(メタ)アクリレート化エポキシ樹脂の含有量の好ましい下限は0.1重量%、より好ましい下限は0.5重量%、好ましい上限は2重量%、より好ましい上限は1.5重量%である。
 上記エポキシ(メタ)アクリレートとしては、ビスフェノール型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、カルボン酸無水物変性エポキシ(メタ)アクリレート、及びフェノールノボラック型エポキシ(メタ)アクリレート等が挙げられる。
 上記エポキシ(メタ)アクリレートを得るために用いられるエポキシ化合物、並びに該エポキシ化合物の市販品としては、例えば、エピコート828ELとエピコート1004(いずれもジャパンエポキシレジン社製)等のビスフェノールA型エポキシ樹脂、エピコート806とエピコート4004(いずれもジャパンエポキシレジン社製)等のビスフェノールF型エポキシ樹脂、エピクロンEXA1514(DIC社製)等のビスフェノールS型エポキシ樹脂、RE-810NM(日本化薬社製)等の2,2’-ジアリルビスフェノールA型エポキシ樹脂、エピクロンEXA7015(DIC社製)等の水添ビスフェノール型エポキシ樹脂、EP-4000S(ADEKA社製)等のプロピレンオキシド付加ビスフェノールA型エポキシ樹脂、EX-201(ナガセケムテックス社製)等のレゾルシノール型エポキシ樹脂、エピコートYX-4000H(ジャパンエポキシレジン社製)等のビフェニル型エポキシ樹脂、YSLV-50TE(東都化成社製)等のスルフィド型エポキシ樹脂、YSLV-80DE(東都化成社製)等のエーテル型エポキシ樹脂、EP-4088S(ADEKA社製)等のジシクロペンタジエン型エポキシ樹脂、エピクロンHP4032とエピクロンEXA-4700(いずれもDIC社製)等のナフタレン型エポキシ樹脂、エピクロンN-770(DIC社製)等のフェノールノボラック型エポキシ樹脂、エピクロンN-670-EXP-S(DIC社製)等のオルトクレゾールノボラック型エポキシ樹脂、エピクロンHP7200(DIC社製)等のジシクロペンタジエンノボラック型エポキシ樹脂、NC-3000P(日本化薬社製)等のビフェニルノボラック型エポキシ樹脂、ESN-165S(東都化成社製)等のナフタレンフェノールノボラック型エポキシ樹脂、エピコート630(ジャパンエポキシレジン社製)、エピクロン430(DIC社製)及びTETRAD-X(三菱ガス化学社製)等のグリシジルアミン型エポキシ樹脂、ZX-1542(東都化成社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)及びデナコールEX-611(ナガセケムテックス社製)等のアルキルポリオール型エポキシ樹脂、YR-450とYR-207(いずれも東都化成社製)及びエポリードPB(ダイセル化学社製)等のゴム変性型エポキシ樹脂、デナコールEX-147(ナガセケムテックス社製)等のグリシジルエステル化合物、エピコートYL-7000(ジャパンエポキシレジン社製)等のビスフェノールA型エピスルフィド樹脂、並びにYDC-1312とYSLV-80XYとYSLV-90CR(いずれも東都化成社製)、XAC4151(旭化成社製)、エピコート1031とエピコート1032(いずれもジャパンエポキシレジン社製)、EXA-7120(DIC社製)及びTEPIC(日産化学社製)等の他のエポキシ樹脂などが挙げられる。
 上記エポキシ(メタ)アクリレートの市販品としては、例えば、エベクリル3700、エベクリル3600、エベクリル3701、エベクリル3703、エベクリル3200、エベクリル3201、エベクリル3600、エベクリル3702、エベクリル3412、エベクリル860、エベクリルRDX63182、エベクリル6040及びエベクリル3800(いずれもダイセルユーシービー社製)、EA-1020、EA-1010、EA-5520、EA-5323、EA-CHD及びEMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA及びエポキシエステル400EA(いずれも共栄社化学社製)、並びにデナコールアクリレートDA-141、デナコールアクリレートDA-314及びデナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。
 上述した光硬化性化合物以外の光硬化性化合物が含まれる場合には、該光硬化性化合物は、架橋性化合物であってもよく、非架橋性化合物であってもよい。
 上記架橋性化合物の具体例としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、ポリエステル(メタ)アクリレート、及びウレタン(メタ)アクリレート等が挙げられる。
 上記非架橋性化合物の具体例としては、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、及びテトラデシル(メタ)アクリレート等が挙げられる。
 上記硬化性組成物を効率的に光硬化させる観点からは、上記エピスルフィド化合物又エピスルフィド化合物含有混合物100重量部に対して、上記光硬化性化合物の含有量の好ましい下限は1重量部、より好ましい下限は10重量部、さらに好ましい下限は50重量部、好ましい上限は10000重量部、より好ましい上限は1000重量部、さらに好ましい上限は500重量部である。
 上記光重合開始剤は特に限定されない。上記光重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光重合開始剤の具体例としては、アセトフェノン光重合開始剤、ベンゾフェノン光重合開始剤、チオキサントン、ケタール光重合開始剤、ハロゲン化ケトン、アシルホスフィノキシド又はアシルホスフォナート等が挙げられる。
 上記アセトフェノン光重合開始剤の具体例としては、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、メトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、又は2-ヒドロキシ-2-シクロヘキシルアセトフェノン等が挙げられる。上記ケタール光重合開始剤の具体例としては、ベンジルジメチルケタール等が挙げられる。
 上記光重合開始剤の含有量は特に限定されない。上記光硬化性組成物100重量部に対して、上記光重合開始剤の含有量の好ましい下限は0.1重量部、より好ましい下限は0.2重量部、さらに好ましい下限は2重量部、好ましい上限は10重量部、より好ましい上限は5重量部である。光重合開始剤の含有量が少なすぎると、光重合開始剤を添加した効果が充分に得られないことがある。光重合開始剤の含有量が多すぎると、硬化性組成物の硬化物の接着力が低下することがある。
 硬化性樹脂組成物は、上記式(11-1)、(12-1)、(13)、(11)又は(12)で表されるエポキシ化合物以外の他のエポキシ化合物をさらに含有してもよい。該エポキシ化合物として、上述のエポキシ(メタ)アクリレートを得るために用いられるエポキシ化合物を用いることができる。
 エピスルフィド化合物と、上記式(11-1)、(12-1)、(13)、(11)又は(12)で表されるエポキシ化合物と、上記他のエポキシ化合物との合計100重量%中、エピスルフィド化合物の含有量の好ましい下限は10重量%、より好ましい下限は25重量%、好ましい上限は100重量%、より好ましい上限は50重量%である。
 本発明に係る硬化性組成物は、一液型接着剤として、液晶パネル又は半導体チップ等の接着に用いることができる。硬化性組成物は、ペースト状の接着剤であってもよく、フィルム状の接着剤であってもよい。
 本発明に係る硬化性組成物をフィルム状の接着剤に加工する方法は特に限定されない。例えば、硬化性組成物を離型紙等の基材に塗工し、フィルム状の接着剤に加工する方法、又は硬化性組成物に溶剤を加え、離型紙等の基材に塗工した後、上記硬化剤の活性温度よりも低い温度で溶剤を揮発させ、フィルム状の接着剤に加工する方法等が挙げられる。
 本発明に係る硬化性組成物を硬化させる方法としては、硬化性組成物を加熱する方法、硬化性組成物に光を照射した後、光が照射された硬化性組成物を加熱する方法、又は硬化性組成物に光を照射すると同時に、硬化性組成物を加熱する方法等が挙げられる。
 本発明に係る硬化性組成物を硬化させる際の加熱温度は、160~250℃の範囲内にあることが好ましく、160~200℃の範囲内にあることがより好ましい。硬化性組成物は低温で速やかに硬化させることができるので、加熱に要するエネルギー量を低減できる。
 従来のエポキシ樹脂を含む硬化性組成物等は、上記加熱温度が200℃以下であると、硬化時間が長くなり、例えば加熱温度が200℃であれば硬化時間が10秒を超えてしまう。これに対し、本発明に係る硬化性組成物では、上記加熱温度が200℃以下であっても、短時間で硬化させることができる。
 本発明に係る硬化性組成物が光硬化する場合、硬化性組成物に光を照射する際に用いる光源は特に限定されない。該光源としては、例えば、波長420nm以下に充分な発光分布を有する光源等が挙げられる。該光源の具体例としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯又はメタルハライドランプ等が挙げられる。なかでも、ケミカルランプが好ましい。ケミカルランプは、光重合開始剤の活性波長領域の光を効率よく発光するとともに、光重合開始剤以外の組成物成分の光吸収波長領域の発光量が少ない。さらに、ケミカルランプを用いた場合には、組成物の内部に存在する光硬化成分まで効率よく光を到達させることができる。
 例えば、アセトフェノン基を有する開裂型の光重合開始剤が含有されている場合、365nm~420nmの波長領域での光照射強度は、0.1~100mW/cmの範囲内にあることが好ましい。
 本発明に係る硬化性組成物が導電性粒子をさらに含有する場合、硬化性組成物を異方性導電材料として用いることができる。
 上記導電性粒子は、例えば回路基板と半導体チップとの電極間を電気的に接続する。上記導電性粒子は、少なくとも表面が導電性を有する粒子であれば特に限定されない。上記導電性粒子としては、例えば、有機粒子、無機粒子、有機無機ハイブリッド粒子もしくは金属粒子等の表面を金属層で被覆した導電性粒子、又は実質的に金属のみで構成される金属粒子等が挙げられる。上記金属層は特に限定されない。上記金属層としては、金層、銀層、銅層、ニッケル層、パラジウム層又は錫を含有する金属層等が挙げられる。
 上記導電性粒子の含有量は特に限定されない。上記エピスルフィド化合物又は上記エピスルフィド化合物含有混合物100重量部に対して、上記導電性粒子の含有量の好ましい下限は0.1重量部、より好ましい下限は0.5重量部、好ましい上限は10重量部、より好ましい上限は5重量部である。上記導電性粒子の含有量が少なすぎると、電極同士等を確実に導通させることができないことがある。上記導電性粒子の含有量が多すぎると、導通されてはならない、隣接する電極間の短絡が生じることがある。
 硬化性組成物が液状又はペースト状である場合、硬化性組成物の粘度(25℃)は、20000~100000mPa・sの範囲内にあることが好ましい。上記粘度が低すぎると、導電性粒子が沈降することがある。上記粘度が高すぎると、導電性粒子が充分に分散しないことがある。
 (硬化性組成物の用途)
 本発明に係る硬化性組成物は、様々な接続対象部材を接着するのに使用できる。
 本発明に係る硬化性組成物が、導電性粒子を含む異方性導電材料である場合、該異方性導電材料は、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、又は異方性導電シート等として使用され得る。異方性導電材料が、異方性導電フィルムや異方性導電シート等のフィルム状の接着剤として使用される場合、該導電性粒子を含有するフィルム状の接着剤に、導電性粒子を含有しないフィルム状の接着剤が積層されていてもよい。
 上記異方性導電材料は、第1,第2の接続対象部材を電気的に接続している接続構造体を得るのに好適に用いられる。
 図1に、本発明の一実施形態に係る硬化性組成物を用いた接続構造体の一例を模式的に断面図で示す。
 図1に示す接続構造体は、第1の接続対象部材2と、第2の接続対象部材4と、第1,第2の接続対象部材2,4を接続している接続部3とを備える。接続部3は、導電性粒子5を含む硬化性組成物、すなわち異方性導電材料を硬化させることにより形成されている。
 第1の接続対象部材2の上面2aには、複数の電極2bが設けられている。第2の接続対象部材4の下面4aには、複数の電極4bが設けられている。電極2bと電極4bとが、1つ又は複数の導電性粒子5により電気的に接続されている。従って、第1,第2の接続対象部材2,4が導電性粒子5により電気的に接続されている。
 上記接続構造体としては、具体的には、回路基板上に、半導体チップ、コンデンサチップ又はダイオードチップ等の電子部品チップが搭載されており、該電子部品チップの電極が、回路基板上の電極と電気的に接続されている接続構造体等が挙げられる。回路基板としては、フレキシブルプリント基板等の様々なプリント基板、ガラス基板、又は金属箔が積層された基板等の様々な回路基板が挙げられる。第1,第2の接続対象部材は、電子部品又は回路基板であることが好ましい。
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、電子部品又は回路基板等の第1の接続対象部材と、電子部品又は回路基板等の第2の接続対象部材との間に上記異方性導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。
 なお、上記硬化性組成物は、導電性粒子を含有していなくてもよい。この場合には、第1,第2の接続対象部材を電気的に接続することなく、第1,第2の接続対象部材を接着して接続するために、上記硬化性組成物が用いられる。
 以下、本発明について、実施例および比較例を挙げて具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 (1)エピスルフィド化合物含有混合物の調製
 攪拌機、冷却機及び温度計を備えた2Lの容器内に、エタノール250mLと、純水250mLと、チオシアン酸カリウム20gとを加え、チオシアン酸カリウムを溶解させ、容器内に第1の溶液を調製した。その後、容器内の温度を20~25℃の範囲内に保持した。
 次に、20~25℃に保持された第1の溶液を攪拌しながら、該第1の溶液中に、レゾルシノールジグリシジルエーテル160gを5mL/分の速度で滴下した。滴下後、30分間さらに攪拌し、エポキシ化合物含有溶液を得た。
 次に、純水100mLと、エタノール100mLとを含む溶液に、チオシアン酸カリウム20gを溶解させた第2の溶液を用意した。得られたエポキシ化合物含有溶液に、用意した第2の溶液を5mL/分の速度で添加した後、30分攪拌した。攪拌後、純水100mLと、エタノール100mLとを含む溶液に、チオシアン酸カリウム20gを溶解させた第2の溶液をさらに用意し、該第2の溶液を5mL/分の速度でさらに添加し、30分間攪拌した。その後、容器内の温度を10℃に冷却し、2時間攪拌し、反応させた。
 次に、容器内に飽和食塩水100mLを加え、10分間攪拌した。攪拌後、容器内にトルエン300mLを加え、10分間攪拌した。その後、容器内の溶液を分液ロートに移し、2時間静置し、溶液を分離させた。分液ロート内の下方の溶液を排出し、上澄み液を取り出した。取り出された上澄み液にトルエン100mLを加え、攪拌し、2時間静置した。更に、トルエン100mLをさらに加え、攪拌し、2時間静置した。
 次に、トルエンが加えられた上澄み液に、硫酸マグネシウム50gを加え、5分間攪拌した。攪拌後、ろ紙により硫酸マグネシウムを取り除いて、溶液を分離した。真空乾燥機を用いて、分離された溶液を80℃で減圧乾燥することにより、残存している溶剤を除去した。このようにして、エピスルフィド化合物含有混合物を得た。
 クロロホルムを溶媒として、得られたエピスルフィド化合物含有混合物のH-NMRの測定を行った。この結果、エポキシ基の存在を示す6.5~7.5ppmの領域のシグナルが減少し、エピスルフィド基の存在を示す2.0~3.0ppmの領域にシグナルが現れた。これにより、レゾルシノールジグリシジルエーテルの一部のエポキシ基がエピスルフィド基に変換されていることを確認した。また、H-NMRの測定結果の積分値より、エピスルフィド化合物含有混合物は、レゾルシノールジグリシジルエーテル70重量%と、上記式(1B)で表されるエピスルフィド化合物30重量%とを含有することを確認した。
 (2)硬化性組成物の調製
 得られたエピスルフィド化合物含有混合物33重量部に、硬化剤としてのペンタエリスリトール テトラキス-3-メルカプトプロピオネート20重量部と、亜リン酸エステルとしてのジフェニルモノ(トリデシル)ホスファイト0.01重量部と、硬化促進剤としての2-エチル-4-メチルイミダゾール1重量部と、フィラーとしての平均粒子径0.25μmのシリカ20重量部及び平均粒子径0.5μmのアルミナ20重量部と、平均粒子径3μmの導電性粒子2重量部とを添加し、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、異方性導電ペーストとしての硬化性組成物を得た。なお、用いた導電性粒子は、ジビニルベンゼン樹脂粒子の表面にニッケルめっき層が形成されており、かつ該ニッケルめっき層の表面に金めっき層が形成されている金属層を有する導電性粒子である。
 (実施例2)
 硬化性組成物の調製の際に、ペンタエリスリトール テトラキス-3-メルカプトプロピオネートと、ジフェニルモノ(トリデシル)ホスファイトとを添加しなかったこと以外は実施例1と同様にして、異方性導電ペーストとしての硬化性組成物を得た。
 (比較例1)
 ビスフェノールA型エポキシ樹脂100重量部と、硬化剤としての1,2-ジメチルイミダゾール5重量部とを添加し、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、混合物を得た。
 得られた混合物に、平均粒子径0.02μmのシリカ粒子7重量部と、平均粒子径3μmの導電性粒子2重量部とを添加し、遊星式攪拌機を用いて2000rpmで8分間攪拌することにより、配合物を得た。なお、用いた導電性粒子は、ジビニルベンゼン樹脂粒子の表面にニッケルめっき層が形成されており、かつ該ニッケルめっき層の表面に金めっき層が形成されている金属層を有する導電性粒子である。
 得られた配合物を、ナイロン製濾紙(孔径10μm)により濾過することにより、異方性導電ペーストとしての硬化性組成物を得た。
 (実施例1,2及び比較例1の評価)
 (1)硬化時間
 L/Sが10μm/10μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmの銅電極パターンが下面に形成された半導体チップを用意した。
 上記透明ガラス基板上に、得られた硬化性組成物を厚さ30μmとなるように塗工し、硬化性組成物層を形成した。次に、硬化性組成物層上に上記半導体チップを、電極同士が互いに対向し、接続するように積層した。その後、硬化性組成物層の温度が185℃となるように加熱ヘッドの温度を調整しながら、半導体チップの上面に加熱ヘッドを載せ、硬化性組成物層を185℃で硬化させ、接続構造体を得た。この接続構造体を得る際に、加熱により硬化性組成物層が硬化するまでの時間を測定した。
 (2)ボイドの有無
 上記硬化時間の評価で得られた接続構造体において、硬化性組成物層により形成された硬化物層にボイドが生じているか否かを、透明ガラス基板の下面側から目視により観察した。
 結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例3)
 硬化性組成物の調製の際に、エポキシアクリレート(ダイセル・サイテック社製「EBECRYL3702」)5重量部と、光重合開始剤としてのアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)0.1重量部とをさらに添加したこと以外は実施例1と同様にして、異方性導電ペーストとしての硬化性組成物を得た。
 (実施例4)
 硬化性組成物の調製の際に、ウレタンアクリレート(ダイセル・サイテック社製「EBECRYL8804」)5重量部と、光重合開始剤としてのアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)0.1重量部とをさらに添加したこと以外は実施例1と同様にして、異方性導電ペーストとしての硬化性組成物を得た。
 (実施例3,4の評価)
 (1)硬化時間
 実施例1,2及び比較例1の評価で用いた透明ガラス基板と半導体チップとを用意した。
 上記透明ガラス基板の上面に、得られた硬化性組成物を厚さ30μmとなるように塗工し、硬化性組成物層を形成した。さらに、異方性導電ペーストを塗布しながら、硬化性組成物層に紫外線照射ランプを用いて、420nmの紫外線を光照射強度が50mW/cmとなるように照射し、光重合によって硬化性組成物層をBステージ化した。塗工してから、すなわち塗工された硬化性組成物層が上記透明ガラス基板に接したときから、硬化性組成物層に光が照射されるまでの時間Tは、0.5秒であった。
 次に、Bステージ化された硬化性組成物層の上面に上記半導体チップを、電極同士が対向し、接続するように積層した。その後、硬化性組成物層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、10kg/cmの圧力をかけて、Bステージ化された硬化性組成物層を185℃で完全硬化させ、接続構造体を得た。この接続構造体を得る際に、加熱により硬化性組成物層が硬化するまでの時間を測定した。
 (2)ボイドの有無
 上記硬化時間の評価で得られた接続構造体において、実施例1,2及び比較例1と同様にして、ボイドの有無を評価した。
 結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (実施例5~24)
 (1)エピスルフィド化合物、又はエピスルフィド化合物含有混合物の調製
 上記式(1)、(2)又は(3)で表されるエピスルフィド化合物と、上記式(11)、(12)又は(13)で表されるエポキシ化合物とを下記の含有量で含むエピスルフィド化合物又はエピスルフィド化合物含有混合物を、実施例1と同様の手順により調製した。各実施例のエピスルフィド化合物又はエピスルフィド化合物含有混合物は、チオシアン酸カリウムの使用量を適宜調整し、転化率を調整することにより得た。
 (2)硬化性組成物の調製
 硬化性組成物の調製の際に、実施例1で用いたエピスルフィド化合物含有混合物33重量部を、下記の表3~5に示すエピスルフィド化合物又はエピスルフィド化合物含有混合物に変更したこと以外は実施例1と同様にして、異方性導電ペーストとしての硬化性組成物を得た。
 (実施例25)
 硬化性組成物の調製の際に、実施例1で用いたエピスルフィド化合物含有混合物33重量部を、実施例1で用いたエピスルフィド化合物含有混合物10重量部と、実施例9で用いたエピスルフィド化合物含有混合物20重量部とに変更したこと以外は実施例1と同様にして、硬化性組成物を得た。
 (実施例26)
 硬化性組成物の調製の際に、実施例1で用いたエピスルフィド化合物含有混合物33重量部を、実施例1で用いたエピスルフィド化合物含有混合物20重量部と、レゾルシノールグリシジルエーテル10重量部とに変更したこと以外は実施例1と同様にして、硬化性組成物を得た。
 (実施例27)
 硬化性組成物の調製の際に、実施例1で用いたエピスルフィド化合物含有混合物33重量部を、実施例1で用いたエピスルフィド化合物含有混合物20重量部と、ビスフェノールA型グリシジルエーテル10重量部とに変更したこと以外は実施例1と同様にして、硬化性組成物を得た。
 (実施例5~27の評価)
 実施例1,2及び比較例1の評価と同様にして、硬化時間及びボイドの有無を評価した。
 結果を下記の表3~6に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1…接続構造体
 2…第1の接続対象部材
 2a…上面
 2b…電極
 3…接続部
 4…第2の接続対象部材
 4a…下面
 4b…電極
 5…導電性粒子

Claims (14)

  1.  下記式(1-1)、(2-1)又は(3)で表される構造を有するエピスルフィド化合物。
    Figure JPOXMLDOC01-appb-C000053
     上記式(1-1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表し、R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表し、R3、R4、R5及びR6の内の水素ではない基は下記式(4)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000054
     上記式(2-1)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表し、R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表し、R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(5)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000055
     上記式(3)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表し、R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の6~8個の基は水素を表し、R103、R104、R105、R106、R107、R108、R109及びR110の内の水素ではない基は、下記式(6)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000056
     上記式(4)中、R7は炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000057
     上記式(5)中、R59は炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000058
     上記式(6)中、R111は炭素数1~5のアルキレン基を表す。
  2.  下記式(1)又は(2)で表される構造を有する、請求項1に記載のエピスルフィド化合物。
    Figure JPOXMLDOC01-appb-C000059
    上記式(1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表し、R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表し、R3、R4、R5及びR6の内の水素ではない基は下記式(4)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000060
     上記式(2)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表し、R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表し、R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(5)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000061
     上記式(4)中、R7は炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000062
    上記式(5)中、R59は炭素数1~5のアルキレン基を表す。
  3.  前記式(1)又は(2)で表される構造が、下記式(1A)又は(2A)で表される構造である、請求項2に記載のエピスルフィド化合物。
    Figure JPOXMLDOC01-appb-C000063
     上記式(1A)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000064
     上記式(2A)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。
  4.  請求項1~3のいずれか1項に記載のエピスルフィド化合物と、下記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物とを含有する、エピスルフィド化合物含有混合物。
    Figure JPOXMLDOC01-appb-C000065
     上記式(11-1)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表し、R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表し、R13、R14、R15及びR16の内の水素ではない基は下記式(14)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000066
     上記式(12-1)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表し、R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表し、R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(15)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000067
     上記式(13)中、R121及びR122はそれぞれ炭素数1~5のアルキレン基を表し、R123、R124、R125、R126、R127、R128、R129及びR130の8個の基の内の6~8個の基は水素を表し、R123、R124、R125、R126、R127、R128、R129及びR130の内の水素ではない基は、下記式(16)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000068
     上記式(14)中、R17は炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000069
     上記式(15)中、R69は炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000070
    上記式(16)中、R131は炭素数1~5のアルキレン基を表す。
  5.  前記エポキシ化合物が、下記式(11)又は(12)で表されるエポキシ化合物である、請求項4に記載のエピスルフィド化合物含有混合物。
    Figure JPOXMLDOC01-appb-C000071
     上記式(11)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表し、R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表し、R13、R14、R15及びR16の内の水素ではない基は下記式(14)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000072
     上記式(12)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表し、R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表し、R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(15)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000073
     上記式(14)中、R17は炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000074
     上記式(15)中、R69は炭素数1~5のアルキレン基を表す。
  6.  前記式(11)又は(12)で表される構造が、下記式(11A)又は(12A)で表される構造である、請求項5に記載のエピスルフィド化合物含有混合物。
    Figure JPOXMLDOC01-appb-C000075
     上記式(11A)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000076
     上記式(12A)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。
  7.  請求項4~6のいずれか1項に記載のエピスルフィド化合物含有混合物の製造方法であって、
     チオシアン酸塩を含む第1の溶液に、前記式(11-1)、(12-1)又は(13)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液を連続的又は断続的に添加した後、チオシアン酸塩を含む第2の溶液を連続的又は断続的にさらに添加することにより、前記エポキシ化合物の一部のエポキシ基をエピスルフィド基に変換する、エピスルフィド化合物含有混合物の製造方法。
  8.  前記エポキシ化合物又は該エポキシ化合物を含む溶液として、前記式(11)又は(12)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液を用いる、請求項7に記載のエピスルフィド化合物含有混合物の製造方法。
  9.  請求項1~3のいずれか1項に記載のエピスルフィド化合物と、硬化剤とを含有する、硬化性組成物。
  10.  請求項4~6のいずれか1項に記載のエピスルフィド化合物含有混合物と、硬化剤とを含有する、硬化性組成物。
  11.  光硬化性化合物と、光重合開始剤とをさらに含有する、請求項9又は10に記載の硬化性組成物。
  12.  導電性粒子をさらに含有する、請求項9~11のいずれか1項に記載の硬化性組成物。
  13.  第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備え、
     前記接続部が、請求項9~11のいずれか1項に記載の硬化性組成物により形成されている接続構造体。
  14.  前記硬化性組成物が導電性粒子を含有し、
     前記第1,第2の接続対象部材が、前記導電性粒子により電気的に接続されている、請求項13に記載の接続構造体。
PCT/JP2009/004797 2008-09-25 2009-09-24 エピスルフィド化合物、エピスルフィド化合物含有混合物、エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体 WO2010035459A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801376033A CN102164907A (zh) 2008-09-25 2009-09-24 环硫化合物、含有环硫化合物的混合物、含有环硫化合物的混合物的制造方法、固化性组合物和连接结构体
JP2009540944A JP4730695B2 (ja) 2008-09-25 2009-09-24 硬化性組成物及び接続構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-246365 2008-09-25
JP2008246365 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035459A1 true WO2010035459A1 (ja) 2010-04-01

Family

ID=42059472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004797 WO2010035459A1 (ja) 2008-09-25 2009-09-24 エピスルフィド化合物、エピスルフィド化合物含有混合物、エピスルフィド化合物含有混合物の製造方法、硬化性組成物及び接続構造体

Country Status (5)

Country Link
JP (3) JP4730695B2 (ja)
KR (1) KR101619558B1 (ja)
CN (2) CN102164907A (ja)
TW (1) TWI491601B (ja)
WO (1) WO2010035459A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090180A (ja) * 2008-10-03 2010-04-22 Kawasaki Kasei Chem Ltd 新規な1,4−ジヒドロアントラセン−9,10−ジエーテル化合物
JP2010120853A (ja) * 2008-11-17 2010-06-03 Kawasaki Kasei Chem Ltd 光カチオン重合性を有する光重合増感剤
WO2011021522A1 (ja) * 2009-08-19 2011-02-24 積水化学工業株式会社 硬化性組成物、接続構造体及びメルカプト基含有(メタ)アクリレート化合物
WO2011033872A1 (ja) * 2009-09-18 2011-03-24 株式会社Adeka 新規エピスルフィド化合物、該エピスルフィド化合物を含有する硬化性樹脂組成物及びその硬化物
JP2011225831A (ja) * 2010-03-31 2011-11-10 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012021114A (ja) * 2010-07-16 2012-02-02 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012072384A (ja) * 2010-08-31 2012-04-12 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012072383A (ja) * 2010-08-31 2012-04-12 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012072382A (ja) * 2010-08-31 2012-04-12 Sekisui Chem Co Ltd 異方性導電材料、bステージ状硬化物及び接続構造体の製造方法
JP2012111798A (ja) * 2010-11-19 2012-06-14 Sekisui Chem Co Ltd 電子部品用接着剤
JP2012126762A (ja) * 2010-12-13 2012-07-05 Sekisui Chem Co Ltd 熱伝導性接着剤
JP2012136697A (ja) * 2010-12-08 2012-07-19 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法
JP2012142271A (ja) * 2010-12-14 2012-07-26 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
JP2012162591A (ja) * 2011-02-03 2012-08-30 Sekisui Chem Co Ltd 熱硬化性化合物の混合物、硬化性組成物及び接続構造体
JP2012178441A (ja) * 2011-02-25 2012-09-13 Sekisui Chem Co Ltd 接続構造体の製造方法及び接続構造体
JP2012195294A (ja) * 2010-04-22 2012-10-11 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
JP2013016473A (ja) * 2011-06-10 2013-01-24 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
WO2013027541A1 (ja) * 2011-08-22 2013-02-28 デクセリアルズ株式会社 熱カチオン重合性組成物、異方性導電接着フィルム、接続構造体及びその製造方法
JP5697223B1 (ja) * 2014-06-24 2015-04-08 アイカ工業株式会社 紫外線硬化型樹脂組成物及びフィルム並びに導電性フィルム
JP2016108467A (ja) * 2014-12-08 2016-06-20 旭化成ケミカルズ株式会社 樹脂組成物の製造方法、樹脂組成物、硬化性樹脂組成物、硬化物、プリプレグ、及び繊維強化プラスチック
JP2016155901A (ja) * 2015-02-23 2016-09-01 旭化成株式会社 組成物、硬化性組成物、硬化物、プリプレグ、及び繊維強化プラスチック
WO2024171777A1 (ja) * 2023-02-16 2024-08-22 住友化学株式会社 化合物及びその製造方法、組成物、硬化物、表示装置、並びに固体撮像素子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491601B (zh) * 2008-09-25 2015-07-11 Sekisui Chemical Co Ltd A sulfide compound, a mixture containing a cyclic sulfide, a process for producing a mixture containing a cyclic sulfide, a hardened composition and a connecting structure
JP5953131B2 (ja) * 2011-06-10 2016-07-20 積水化学工業株式会社 異方性導電材料、接続構造体及び接続構造体の製造方法
CN102604088B (zh) * 2012-03-14 2013-11-13 北京化工大学 大分子硫醇及其合成方法
CN102659719B (zh) * 2012-05-23 2014-11-05 长春工业大学 蒽结构四官能团环氧树脂及其制备方法
JP6017363B2 (ja) * 2013-03-29 2016-10-26 本州化学工業株式会社 新規なジエポキシ化合物
JP6868555B2 (ja) * 2016-03-15 2021-05-12 古河電気工業株式会社 フィルム状接着剤用組成物、フィルム状接着剤、フィルム状接着剤の製造方法、フィルム状接着剤を用いた半導体パッケージおよびその製造方法
CN106108235B (zh) * 2016-07-05 2017-09-29 晋江市池店镇娇鹏贸易有限公司 一种浇注型聚氨酯鞋底材料
CN106108237B (zh) * 2016-07-05 2017-09-29 晋江市池店镇娇鹏贸易有限公司 一种耐弯曲的鞋底材料
CN106108234A (zh) * 2016-07-05 2016-11-16 晋江市池店镇娇鹏贸易有限公司 一种浇注型聚氨酯鞋底材料
CN107815245B (zh) * 2017-11-02 2019-12-10 深圳市华宇节耗电子有限公司 一种十二烷基三乙氧基硅烷的应用及用于pcb制造的锡面保护剂及锡面保护方法
CN108642592B (zh) * 2018-05-04 2021-02-09 浙江富胜达科技有限公司 一种异型截面纤维及其制作的吸湿速干织物
CN116396681B (zh) * 2023-03-29 2024-03-22 中科融志国际科技(北京)有限公司 防凝露防冰涂层以及风机叶片

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378522A (en) * 1961-11-29 1968-04-16 Shell Oil Co Epithio compounds, their preparation and polymers
JPS6173719A (ja) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc 新規なエポキシ樹脂組成物
JPH0790239A (ja) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト
JP2000080153A (ja) * 1998-09-04 2000-03-21 Ajinomoto Co Inc 硬化性樹脂組成物
WO2000046317A1 (en) * 1999-02-08 2000-08-10 The Yokohama Rubber Co., Ltd. Resin compositions
JP2002173533A (ja) * 2000-12-06 2002-06-21 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
JP2006124607A (ja) * 2004-11-01 2006-05-18 Denso Corp 導電性接着剤およびそれを用いた電子装置
JP2007140465A (ja) * 2005-10-18 2007-06-07 Dainippon Ink & Chem Inc 光配向膜用組成物、光配向膜の製造方法、及びこれを用いた光学異方体、光学素子、その製造方法
JP2008031344A (ja) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2269378C (en) 1998-04-17 2008-04-01 Ajinomoto Co., Inc. Curable resin composition
JP2006176716A (ja) * 2004-12-24 2006-07-06 Sumitomo Electric Ind Ltd 回路接続用接着剤
TWI491601B (zh) * 2008-09-25 2015-07-11 Sekisui Chemical Co Ltd A sulfide compound, a mixture containing a cyclic sulfide, a process for producing a mixture containing a cyclic sulfide, a hardened composition and a connecting structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378522A (en) * 1961-11-29 1968-04-16 Shell Oil Co Epithio compounds, their preparation and polymers
JPS6173719A (ja) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc 新規なエポキシ樹脂組成物
JPH0790239A (ja) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト
JP2000080153A (ja) * 1998-09-04 2000-03-21 Ajinomoto Co Inc 硬化性樹脂組成物
WO2000046317A1 (en) * 1999-02-08 2000-08-10 The Yokohama Rubber Co., Ltd. Resin compositions
JP2002173533A (ja) * 2000-12-06 2002-06-21 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
JP2006124607A (ja) * 2004-11-01 2006-05-18 Denso Corp 導電性接着剤およびそれを用いた電子装置
JP2007140465A (ja) * 2005-10-18 2007-06-07 Dainippon Ink & Chem Inc 光配向膜用組成物、光配向膜の製造方法、及びこれを用いた光学異方体、光学素子、その製造方法
JP2008031344A (ja) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUAKI YOKOTA ET AL.: "Synthesis of polymers with thiacrown ether units via cyclopolymerization of diepisulfides, Die Makromolekulare Chemie", RAPID COMMUNICATIONS, vol. 5, no. 11, 1984, pages 767 - 770 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090180A (ja) * 2008-10-03 2010-04-22 Kawasaki Kasei Chem Ltd 新規な1,4−ジヒドロアントラセン−9,10−ジエーテル化合物
JP2010120853A (ja) * 2008-11-17 2010-06-03 Kawasaki Kasei Chem Ltd 光カチオン重合性を有する光重合増感剤
WO2011021522A1 (ja) * 2009-08-19 2011-02-24 積水化学工業株式会社 硬化性組成物、接続構造体及びメルカプト基含有(メタ)アクリレート化合物
WO2011033872A1 (ja) * 2009-09-18 2011-03-24 株式会社Adeka 新規エピスルフィド化合物、該エピスルフィド化合物を含有する硬化性樹脂組成物及びその硬化物
JP2011225831A (ja) * 2010-03-31 2011-11-10 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012195294A (ja) * 2010-04-22 2012-10-11 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
JP2012021114A (ja) * 2010-07-16 2012-02-02 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012072384A (ja) * 2010-08-31 2012-04-12 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012072382A (ja) * 2010-08-31 2012-04-12 Sekisui Chem Co Ltd 異方性導電材料、bステージ状硬化物及び接続構造体の製造方法
JP2012072383A (ja) * 2010-08-31 2012-04-12 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
JP2012111798A (ja) * 2010-11-19 2012-06-14 Sekisui Chem Co Ltd 電子部品用接着剤
JP2012136697A (ja) * 2010-12-08 2012-07-19 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法
JP2012126762A (ja) * 2010-12-13 2012-07-05 Sekisui Chem Co Ltd 熱伝導性接着剤
JP2012142271A (ja) * 2010-12-14 2012-07-26 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
JP2012162591A (ja) * 2011-02-03 2012-08-30 Sekisui Chem Co Ltd 熱硬化性化合物の混合物、硬化性組成物及び接続構造体
JP2012178441A (ja) * 2011-02-25 2012-09-13 Sekisui Chem Co Ltd 接続構造体の製造方法及び接続構造体
JP2013016473A (ja) * 2011-06-10 2013-01-24 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
WO2013027541A1 (ja) * 2011-08-22 2013-02-28 デクセリアルズ株式会社 熱カチオン重合性組成物、異方性導電接着フィルム、接続構造体及びその製造方法
JP2013043898A (ja) * 2011-08-22 2013-03-04 Dexerials Corp 熱カチオン重合性組成物、異方性導電接着フィルム、接続構造体及びその製造方法
JP5697223B1 (ja) * 2014-06-24 2015-04-08 アイカ工業株式会社 紫外線硬化型樹脂組成物及びフィルム並びに導電性フィルム
JP2016008241A (ja) * 2014-06-24 2016-01-18 アイカ工業株式会社 紫外線硬化型樹脂組成物及びフィルム並びに導電性フィルム
JP2016108467A (ja) * 2014-12-08 2016-06-20 旭化成ケミカルズ株式会社 樹脂組成物の製造方法、樹脂組成物、硬化性樹脂組成物、硬化物、プリプレグ、及び繊維強化プラスチック
JP2016155901A (ja) * 2015-02-23 2016-09-01 旭化成株式会社 組成物、硬化性組成物、硬化物、プリプレグ、及び繊維強化プラスチック
WO2024171777A1 (ja) * 2023-02-16 2024-08-22 住友化学株式会社 化合物及びその製造方法、組成物、硬化物、表示装置、並びに固体撮像素子

Also Published As

Publication number Publication date
KR20110079612A (ko) 2011-07-07
TWI491601B (zh) 2015-07-11
KR101619558B1 (ko) 2016-05-10
JP5530392B2 (ja) 2014-06-25
TW201020243A (en) 2010-06-01
CN105175727A (zh) 2015-12-23
JPWO2010035459A1 (ja) 2012-02-16
JP2011173901A (ja) 2011-09-08
JP4729128B2 (ja) 2011-07-20
CN102164907A (zh) 2011-08-24
JP4730695B2 (ja) 2011-07-20
JP2011105942A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5530392B2 (ja) 硬化性組成物及び接続構造体
JP5602743B2 (ja) 異方性導電材料、接続構造体及び接続構造体の製造方法
JP4673933B2 (ja) 異方性導電材料及び接続構造体
WO2009116618A1 (ja) 硬化性組成物、異方性導電材料及び接続構造体
JP4673931B2 (ja) 異方性導電材料及び接続構造体
JP4673932B2 (ja) 接続構造体の製造方法及び異方性導電材料
WO2011024720A1 (ja) 接続構造体の製造方法
WO2016047387A1 (ja) ラジカル重合型接着剤組成物、及び電気接続体の製造方法
JP5746535B2 (ja) 硬化性組成物及び接続構造体
JP5767532B2 (ja) 硬化性組成物及び接続構造体
WO2019193961A1 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
KR101157781B1 (ko) 경화성 조성물, 접속 구조체 및 머캅토기 함유 (메트)아크릴레이트 화합물
WO2015029622A1 (ja) ラジカル重合型接着剤組成物、及び電気接続体の製造方法
JP5192950B2 (ja) 硬化性エポキシ組成物、異方性導電材料、積層体、接続構造体及び接続構造体の製造方法
JP5719206B2 (ja) 硬化性組成物及び接続構造体
JP5705003B2 (ja) 接続構造体の製造方法
JP5314713B2 (ja) 接続構造体の製造方法及び異方性導電材料
JP5764436B2 (ja) 硬化性組成物及び接続構造体
JP5879105B2 (ja) 異方性導電ペースト、異方性導電ペーストの製造方法、接続構造体及び接続構造体の製造方法
JP2012021114A (ja) 硬化性組成物及び接続構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009540944

Country of ref document: JP

Ref document number: 200980137603.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004390

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815881

Country of ref document: EP

Kind code of ref document: A1