WO2010029660A1 - 表示パネルの製造方法 - Google Patents

表示パネルの製造方法 Download PDF

Info

Publication number
WO2010029660A1
WO2010029660A1 PCT/JP2009/002282 JP2009002282W WO2010029660A1 WO 2010029660 A1 WO2010029660 A1 WO 2010029660A1 JP 2009002282 W JP2009002282 W JP 2009002282W WO 2010029660 A1 WO2010029660 A1 WO 2010029660A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
bonded body
mother substrate
sealing material
manufacturing
Prior art date
Application number
PCT/JP2009/002282
Other languages
English (en)
French (fr)
Inventor
山岸慎治
森本光昭
佐原充彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2010528587A priority Critical patent/JP5070341B2/ja
Priority to EP09812809.3A priority patent/EP2354833A4/en
Priority to CN2009801236432A priority patent/CN102067017B/zh
Priority to BRPI0914181A priority patent/BRPI0914181A2/pt
Priority to US13/001,521 priority patent/US8216016B2/en
Publication of WO2010029660A1 publication Critical patent/WO2010029660A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a display panel, and more particularly to a technique for dividing a pair of glass substrates constituting a display panel on a sealing material.
  • the liquid crystal display panel includes, for example, a TFT (Thin Film Transistor) substrate, a CF (Color Filter) substrate disposed opposite to the TFT substrate, a liquid crystal layer provided between the TFT substrate and the CF substrate, and a TFT substrate. And a sealing material provided in a frame shape for sealing the liquid crystal layer between the TFT substrate and the CF substrate, and a display area for displaying an image is defined inside the sealing material. Yes.
  • TFT Thin Film Transistor
  • CF Color Filter
  • Patent Document 1 includes a step of applying a sealing material to at least one of a pair of glass substrates, a step of overlapping the pair of glass substrates, curing the sealing material, and bonding the pair of glass substrates with a gap between them, On the surface of the pair of glass substrates, after scribing at the approximate center on the cured sealing material, the step of heating the pair of glass substrates in a furnace and the impact or pressurization on the scribed surfaces of the pair of glass substrates.
  • the manufacturing method of the liquid crystal display element including the process of cut
  • FIG. 10 is a cross-sectional view when the CF mother substrate 120 side of the bonding body 130 for simultaneously manufacturing a plurality of conventional liquid crystal display panels by multi-chamfering
  • FIG. 11 is a TFT substrate of the bonding body 130. It is sectional drawing at the time of dividing 110 side.
  • the bonded body 130 includes a glass TFT mother substrate 110 having a plurality of display areas, and a glass CF mother substrate 120 having a plurality of display areas similarly configured.
  • the TFT mother substrate 110 and the CF mother substrate 120 are bonded to each other for each display region, and the liquid crystal layer 125 provided for each display region is sealed between the TFT mother substrate 110 and the CF mother substrate 120, respectively.
  • a plurality of frame-shaped sealing materials 115 are also be used to seal the TFT mother substrate 110 and the CF mother substrate 120, respectively.
  • the bonded body 130 from which the CF mother substrate 120 is divided is turned upside down, and the cutting edge of the super steel wheel H is brought into contact with the surface of the TFT mother substrate 110 on the sealing material 115.
  • a linear crack C is formed and the crack C is expanded in the substrate thickness direction.
  • the TFT mother substrate 110 to be divided later may not be divided. is there.
  • the adjacent mother cross-sections do not overlap each other due to the distortion of the cross-section and the inclusion of foreign matter.
  • the crack C formed on the surface of the TFT mother substrate 110 to be divided later does not expand in the substrate thickness direction due to the compressive stress Sb generated on the outer surface of the TFT mother substrate 110.
  • the former compressive residual stress Sa has a greater influence than the latter compressive stress Sb on the separability of the substrate to be later divided.
  • the present invention has been made in view of such a point, and an object thereof is to divide both a pair of glass substrates constituting a display panel on a sealing material.
  • the present invention divides the second mother substrate of the bonded body after relaxing the residual stress of the sealing material in the bonded body where the first mother substrate is divided. .
  • a glass-made first mother board having a plurality of display areas, the first mother board, the first mother board, and the first display board are arranged so as to face each other.
  • each of the above displays A splitting step of forming a crack on at least one side of the sealing material around the region and splitting the bonded body for each of the display regions, wherein the splitting step includes the pasting step On the outer surface of the combined first mother board. Then, after forming a crack on at least one side of the sealing material around each display region, the crack is enlarged in the substrate thickness direction, and the first mother substrate is divided into each display region.
  • a mother substrate cutting step a residual stress relaxation step for relaxing the residual stress of the sealing material in the bonded body in which the first mother substrate is divided, and a second mother substrate of the bonded body in which the residual stress of the sealing material is relaxed After forming a crack on at least one side of the sealing material around each display area on the outer surface of the display area, the crack is enlarged in the substrate thickness direction, and the second mother substrate is divided for each display area. And a second mother substrate cutting step.
  • the second mother substrate cutting step after forming a crack on at least one side of the sealing material around each display region on the outer surface of the second mother substrate of the bonded body, the crack is expanded in the substrate thickness direction. Therefore, the second mother substrate can be divided for each display area. Thereby, since both the 1st mother board of the side divided on the tip of a pasting object and the 2nd mother board of the side divided later are divided, both of a pair of glass substrates which constitute a display panel are sealed. It becomes possible to divide on the material.
  • the bonded body from which the first mother substrate is divided may be heated to the glass transition point of the sealing material.
  • the first mother substrate and the second mother substrate may have the same thickness.
  • the first mother substrate and the second mother substrate have the same thickness, after the crack is formed on the outer surface of the second mother substrate to be divided after the bonded body, Since it is difficult to bend the bonded body so that the substrate is on the inside, it is difficult to expand cracks on the second mother substrate in the thickness direction of the substrate, but the residual residual sealing material in the bonded body in the residual stress relaxation process By relieving the stress, the compressive residual stress due to the sealing material on the inner surface of the second mother substrate of the bonded body is relieved, so the cracks on the second mother substrate can be expanded in the substrate thickness direction. become.
  • the crack may be formed after the bonded body heated in the residual stress relaxation step is cooled.
  • the heated bonding body is cooled before forming a crack in the outer surface of the 2nd mother board
  • a liquid crystal layer may be sealed inside a sealing material around each display area.
  • the liquid crystal dropping bonding method so-called ODF (One Drop Drop Fill)
  • ODF One Drop Drop Fill
  • the sealing material may be provided so as to be shared between the adjacent display regions.
  • the sealing material is shared in each display region adjacent to the bonded body, the dead space in the bonded body is reduced, and the number of display panels in the bonded body can be increased.
  • the bonded body from which the first mother substrate is cut may be heated inside the heating furnace.
  • the bonded body since the bonded body is heated inside the heating furnace, the bonded body can be reliably heated to the glass transition point of the sealing material.
  • the bonded body may be divided by a disk-shaped dividing blade.
  • the bonded body is divided by the disk-shaped dividing blade, so the outer peripheral portion of the dividing blade is pressed against the outer surfaces of the first mother substrate and the second mother substrate on the sealing material.
  • the bonded body is specifically divided by rolling the dividing blade along the substrate surface.
  • the bonded body from which the first mother substrate is divided may be left until the residual stress of the sealing material is relaxed.
  • the bonded body from which the first mother substrate is divided is left until the residual stress of the sealing material is relaxed.
  • the compressive residual stress caused by the sealing material on the inner surface of the second mother substrate is specifically relaxed.
  • the second mother substrate in the bonded body is divided, so that the pair of glass members constituting the display panel Both of the substrates can be separated on the sealing material.
  • FIG. 1 is a plan view of a liquid crystal display panel 30a according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the liquid crystal display panel 30a taken along line II-II in FIG.
  • FIG. 3 is a plan view of the bonded body 30 for manufacturing the liquid crystal display panel 30a by multi-cavity as seen from the CF mother board 20.
  • FIG. FIG. 4 is a plan view of the bonded body 30 for manufacturing the liquid crystal display panel 30a by multi-cavity as viewed from the TFT mother substrate 10.
  • FIG. FIG. 5 is a cross-sectional view of the bonded body 30 in the CF mother substrate cutting step.
  • FIG. 6 is a perspective view of the oven A used in the residual stress relaxation process.
  • FIG. 7 is a cross-sectional view of the bonded body 30 in the TFT mother substrate cutting step.
  • FIG. 8 is an enlarged photograph of the end of the liquid crystal display panel Pa.
  • FIG. 9 is an enlarged photograph of the end of the liquid crystal display panel Pb.
  • FIG. 10 is a cross-sectional view when the CF mother substrate 120 side of the bonded body 130 for simultaneously manufacturing a plurality of conventional liquid crystal display panels by multi-chamfering.
  • FIG. 11 is a cross-sectional view when the TFT mother substrate 110 side of the bonded body 130 for simultaneously manufacturing a plurality of conventional liquid crystal display panels by multi-cavity cutting.
  • FIG. 1 is a plan view of the liquid crystal display panel 30a of the present embodiment
  • FIG. 2 is a cross-sectional view of the liquid crystal display panel 30a taken along line II-II in FIG.
  • the liquid crystal display panel 30a includes a TFT substrate 10a and a CF substrate 20a that are arranged to face each other, a liquid crystal layer 25 provided between the TFT substrate 10a and the CF substrate 20a, The TFT substrate 10a and the CF substrate 20a are adhered to each other, and a sealing material 15a provided in a frame shape is provided to enclose the liquid crystal layer 25.
  • the TFT substrate 10a includes a plurality of gate lines (not shown) provided so as to extend in parallel with each other on a glass substrate, a gate insulating film (not shown) provided so as to cover each gate line, and a gate insulating film A plurality of source lines (not shown) provided so as to extend in parallel to each other in a direction orthogonal to each gate line, and a plurality of TFTs (not shown) provided for each gate line and each intersection of the source lines.
  • An interlayer insulating film provided to cover each source line and each TFT, and a plurality of pixel electrodes (not shown) provided in a matrix on the interlayer insulating film and connected to each TFT. I have.
  • the pixel electrodes are arranged in a matrix to form the display region D. Further, as shown in FIG. 1, the lower side portion of the TFT substrate 10a protrudes from the CF substrate 20a to form a terminal region T. In the terminal region T, each display such as the gate line and the source line is displayed. A plurality of input terminals and the like connected to the wiring for operation are provided.
  • the CF substrate 20a includes a black matrix (not shown) provided in a frame shape on the glass substrate and in a lattice shape in the frame, and a red layer, a green layer, and a blue layer provided between the lattices of the black matrix. And a common electrode (not shown) provided so as to cover the black matrix and the color filter.
  • the red layer, the green layer, and the blue layer of the color filter are arranged in a matrix to form the display region D.
  • the thickness of the TFT substrate 10a is almost the same as the thickness of the CF substrate 20a.
  • the thicknesses of the substrates are substantially the same, that is, the thickness of one substrate is in the range of 0.9 to 1.1 times the thickness of the other substrate.
  • the liquid crystal layer 25 is made of a liquid crystal material including a nematic liquid crystal having electro-optical characteristics.
  • the sealing material 15a is formed such that portions extending along the upper side, the left side, and the right side of the CF substrate 20a are relatively thin (for example, 0.6 mm), and extend along the lower side of the CF substrate 20a.
  • the portion is formed relatively thick (for example, 1.2 mm).
  • the portions extending along the upper side, the left side and the right side of the CF substrate 20a are, as shown in FIG. 1, both end faces (upper side, left side and right side) of the TFT substrate 10a and the CF substrate 20a. On the right side).
  • liquid crystal display panel 30a having the above-described configuration, one pixel is formed for each pixel electrode.
  • the alignment state of the liquid crystal layer 25 is changed. For example, an image is displayed by adjusting the transmittance of light incident from the backlight.
  • FIG. 3 is a plan view of the bonding body 30 for manufacturing the liquid crystal display panel 30a by multi-cavity as seen from the CF mother board 20
  • FIG. 4 is a plan view of the bonding body 30 as seen from the TFT mother board 10.
  • FIG. 5 is sectional drawing of the bonding body 30 in the CF mother board
  • FIG. 6 is a perspective view of the oven A used in a residual stress relaxation process described later.
  • FIG. 7 is sectional drawing of the bonding body 30 in the TFT mother board
  • the manufacturing method of this embodiment is provided with the bonding body preparation process and the cutting process including a CF mother board cutting process, a residual stress relaxation process, and a TFT mother board cutting process.
  • a TFT or pixel electrode is patterned on a glass substrate having a thickness of 0.4 mm to form a plurality of active element layers each functioning as a display region D, and then an alignment film is formed on the surface. Then, a TFT mother substrate (second mother substrate) 10 having a plurality of display regions D formed in a matrix is manufactured (see TFT mother substrate 10 in FIG. 4).
  • a color filter, a common electrode, or the like is patterned on a glass substrate having a thickness of 0.4 mm to form a plurality of CF element layers each functioning as a display region D, and then an alignment film is formed on the surface thereof. Then, a CF mother substrate (first mother substrate) 20 having a plurality of display regions D formed in a matrix is manufactured (see CF mother substrate 20 in FIG. 3).
  • a UV / thermosetting type acrylic / epoxy resin is drawn by a seal dispenser around each display region D of the CF mother board 20 to form the sealing material 15 (FIGS. 3 and 4). reference).
  • the acrylic / epoxy resin is drawn so that the sealing material 15 is shared in the display area D adjacent to each other.
  • the TFT mother substrate 10 onto which the liquid crystal material is dropped and the CF mother substrate 20 on which the sealing material 15 is formed are bonded so that the display areas D overlap with each other, and then returned to the air atmosphere.
  • the outer surfaces of the TFT mother substrate 10 and the CF mother substrate 20 are pressurized, and then the sealing material 15 is cured by UV irradiation and thermal baking (for example, 180 ° C.), and a liquid crystal layer is formed for each display region D.
  • the bonded body 30 in which 25 is enclosed is produced.
  • ⁇ CF mother substrate cutting process> With respect to the bonded body 30 manufactured in the bonded body manufacturing process, as shown in FIG. 5, on the sealing material 15 on the outer surface of the CF mother board 20 of the bonded body 30 in the dividing lines L1 and L2 illustrated in FIG. While bringing the cutting edge of the super steel wheel H into contact with the central portion in the width direction, and while bringing the cutting edge of the super steel wheel H into contact with the position outside the sealing material 15 in the cutting line L3 shown in FIG. By rolling the super steel wheel H along each dividing line L1, L2, and L3, the crack C is formed on the surface of the CF mother substrate 20, and the crack C is expanded in the substrate thickness direction. The CF mother substrate 20 of the bonded body 30 is divided.
  • the super steel wheel H is, for example, a disc-shaped cutting blade made of a cemented carbide such as tungsten carbide, and is configured such that the side surface of the disc projects in a tapered shape toward the center in the thickness direction.
  • the super steel wheel H may have a protrusion formed on its tapered blade edge.
  • the bonded body 30 from which the CF mother board 20 has been cut in the CF mother board cutting step is housed in, for example, a hot air circulation type oven A set at 130 ° C. Heat to 15 glass transition point.
  • ⁇ TFT mother substrate cutting process> After cooling the bonded body 30 heated in the residual stress relaxation step to about room temperature, as shown in FIG. 7, the TFT 30 of the bonded body 30 in the dividing lines L4 and L5 shown in FIG. While the cutting edge of the super steel wheel H is brought into contact with the central portion of the outer surface of the mother board 10 in the width direction on the sealing material 15, the cutting edge L 6 shown in FIG. 4 is positioned outside the sealing material 15. While rolling the super steel wheel H along each dividing line L4, L5 and L6 while bringing the blade edge of the super steel wheel H into contact, a crack C is formed on the surface of the TFT mother substrate 10, and The crack C is expanded in the substrate thickness direction, and the TFT mother substrate 10 of the bonded body 30 is divided.
  • the sealing material 15a from which the sealing material 15 is divided is obtained by bending the bonded body 30 from which the TFT mother substrate 10 and the CF mother substrate 20 are divided so that the TFT mother substrate 10 or the CF mother substrate 20 is inside. Is formed, and the bonded body 30 is divided for each display region D.
  • the liquid crystal display panel 30a can be manufactured as described above.
  • a bonded body 30 is prepared by the same method as the above-described embodiment, and the liquid crystal display is attempted by cutting the bonded body under the cutting conditions (and heating conditions) shown in Table 1 below. Panels were manufactured.
  • the thicknesses of the TFT mother substrate 10 and the CF mother substrate 20 were 0.4 mm, and the glass transition point of the sealing material 15 was 130 ° C.
  • experiment No. 2, no. 3 and no. 4 first, the CF mother substrate 20 is divided, and then the bonded body 30 is heated at 130 ° C. for 20 minutes, 30 minutes, and 60 minutes, respectively, and further, the bonded body 30 is cooled to room temperature, and then the TFT mother substrate 10 is divided.
  • experiment No. 6 divides the CF mother substrate 20 and leaves it at room temperature for 60 minutes, and then divides the TFT mother substrate 10.
  • Test No. 1 in which the bonded body from which the CF mother substrate 20 was divided was heated at 130 ° C. for 20 minutes. 2, although the bonded body 30 could be divided somehow in units of panels, as shown in the photograph of FIG. 9, burrs B occurred along the dividing line L at the end of the liquid crystal display panel Pb. The appearance and external dimensions did not satisfy the product specifications.
  • experiment No. 3 and no. 4 for example, by using a cutter wheel with high permeation division such as Pennet (registered trademark) manufactured by Samsung Diamond Industrial Co., Ltd., with a scribe pressure of 0.03 MPa to 0.18 MPa and a scribe speed of 100 mm to 400 mm / sec. was able to break up.
  • Pennet registered trademark
  • the crack C is removed from the substrate thickness. Since it can be enlarged in the vertical direction, the TFT mother substrate 10 can be divided for each display region D. Thereby, since both the CF mother substrate 20 on the side to be divided at the tip of the bonded body 30 and the TFT mother substrate 10 on the side to be separated later can be divided, the glass TFT mother constituting the liquid crystal display panel 30a can be divided. Both the substrate 10 and the CF mother substrate 20 can be divided on the sealing material 15.
  • both the TFT mother substrate 10 and the CF mother substrate 20 can be divided on the sealing material 15, the frame of the liquid crystal display panel 30a can be reduced. Furthermore, since both the TFT mother substrate 10 and the CF mother substrate 20 can be stably divided on the sealing material 15, it is possible to improve the external dimension accuracy, the end face strength, and the manufacturing yield of the liquid crystal display panel 30a.
  • the TFT mother substrate 10 and the CF mother substrate 20 have the same thickness, so that the outer side of the TFT mother substrate 10 on the side to be separated after the bonded body 30 is removed.
  • After forming the crack C on the surface it is difficult to bend the bonded body 30 so that the CF mother substrate 20 is on the inside, and therefore it is difficult to expand the crack C on the TFT mother substrate 10 in the substrate thickness direction.
  • the bonding body 30 by heating the bonding body 30 with residual stress relaxation, the compressive residual stress due to the sealing material 15 on the inner surface of the TFT mother substrate 10 of the bonding body 30 is relieved. Can be enlarged in the substrate thickness direction.
  • the heated bonding body 30 is cooled before forming the crack C in the outer surface of the TFT mother substrate 10 of the bonding body 30
  • the crack C can be formed on the outer surface of the TFT mother substrate 10 of the bonded body 30, and the process of expanding the crack C in the substrate thickness direction can be facilitated.
  • the sealing material 15 is shared in each display area D which the bonding body 30 adjoins, the dead space in the bonding body 30 becomes small, and the bonding body 30 is.
  • the number of liquid crystal display panels 30a can be increased.
  • the bonding body 30 since the bonding body 30 is heated inside the oven A, the bonding body 30 can be reliably heated to the glass transition point of the sealing material 15.
  • the CF mother substrate 20 is divided as the first mother substrate, and then the bonding body 30 is heated to divide the TFT mother substrate 10 as the second mother substrate.
  • the bonded body (30) may be heated to divide the CF mother substrate (20) as the second substrate.
  • the thickness of the TFT substrate 10a TFT mother substrate 10
  • the thickness of the CF substrate 20a CF mother substrate 20
  • the thickness of the CF substrate (20a) are asymmetrical, the mother substrate on the side to be divided later can be stably divided. The production yield can be improved.
  • the residual stress of the sealing material 15 of the bonding body 30 was relieved by heating the bonding body 30 from which the CF mother substrate 20 was divided to the glass transition point of the sealing material 15 inside the oven A. Later, the method of dividing the TFT mother substrate 10 of the bonded body 30 was exemplified, but the residual stress of the sealing material 15 of the bonded body 30 is left by leaving the bonded body 30 from which the CF mother substrate 20 is divided for approximately 100 hours or more. In the same manner as above, the glass TFT mother substrate 10 and the CF mother substrate 20 constituting the liquid crystal display panel 30a are both sealed by the method of dividing the TFT mother substrate 10 of the bonded body 30 after relaxing the sealing material 15. Can be broken up above.
  • the method of manufacturing a liquid crystal display panel with multiple chamfers has been exemplified, but the present invention can also be applied to a method of manufacturing a liquid crystal display panel with single chamfering.
  • the method for manufacturing a liquid crystal display panel by the liquid crystal dropping bonding method is exemplified, but the present invention is also applied to a method for manufacturing a liquid crystal display panel by a dip injection method for forming a sealing material having a liquid crystal injection port. Can be applied.
  • an active matrix liquid crystal display panel is exemplified as the display panel.
  • the present invention includes a passive matrix liquid crystal display panel and a pair of glass substrates bonded together with a sealant. The present invention can be applied to all manufactured display panels.
  • the present invention can divide both the pair of glass substrates constituting the display panel on the seal material, a narrow frame such as a liquid crystal display panel for mobile phones is required. This is useful for display panels for mobile devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 貼合体(30)の第1母基板(20)及び第2母基板(10)の各外表面において、各表示領域(D)の周囲のシール材(15)の少なくとも一辺上にクラック(C)を形成して、貼合体(30)を各表示領域(D)毎に分断する分断工程は、第1母基板(20)の外表面において、各表示領域(D)の周囲のシール材(15)上にクラック(C)を形成した後に、クラック(C)を基板厚さ方向に拡大して、第1母基板(20)を各表示領域(D)毎に分断する第1母基板分断工程と、第1母基板(20)が分断された貼合体(30)におけるシール材(15)の残留応力を緩和させる残留応力緩和工程と、シール材(15)の残留応力が緩和された貼合体(30)の第2母基板(10)の外表面において、各表示領域(D)の周囲の各シール材(15)上にクラック(C)を形成した後に、クラック(C)を基板厚さ方向に拡大して、第2母基板(10)を各表示領域(D)毎に分断する第2母基板分断工程とを備える。

Description

表示パネルの製造方法
 本発明は、表示パネルの製造方法に関し、特に、表示パネルを構成するガラス製の一対の基板をシール材上で分断する技術に関するものである。
 液晶表示パネルは、例えば、TFT(Thin Film Transistor)基板と、TFT基板に対向して配置されたCF(Color Filter)基板と、TFT基板及びCF基板の間に設けられた液晶層と、TFT基板及びCF基板を互いに接着すると共にTFT基板及びCF基板の間に液晶層を封入するために枠状に設けられたシール材とを備え、シール材の内側に画像を表示する表示領域が規定されている。
 近年、携帯電話、携帯情報端末機器及び携帯用ゲーム機などのモバイル機器用途の液晶表示パネルでは、表示領域の周囲に規定された額縁領域を狭くする狭額縁化の要望が高まっている。そこで、上記のようなモバイル機器用途の液晶表示パネルでは、液晶表示パネルを構成する一対のガラス基板をシール材上で分断することにより、シール材が占有する幅を狭くして、狭額縁化を図る製造技術が提案されている。
 例えば、特許文献1には、一対のガラス基板の少なくとも一方にシール材を塗布する工程と、一対のガラス基板を重ね合わせ、シール材を硬化させ、一対のガラス基板を間隙をもって貼り合わせる工程と、一対のガラス基板表面において、硬化させたシール材上略中心でスクライブした後、一対のガラス基板を炉で加温する工程と、一対のガラス基板のスクライブされた面に衝撃を与え、または加圧を行うことによりガラス基板を切断し、ガラスエッジにシール材が露出する配置とする工程とを含む液晶表示素子の製造方法が開示されている。そして、これによれば、シール材周辺のデッドスペースを減らすことができる、と記載されている。
特開2008-26416号公報
 図10は、従来の複数の液晶表示パネルを多面取りで同時に製造するための貼合体130のCF母基板120側を分断する際の断面図であり、図11は、その貼合体130のTFT基板110側を分断する際の断面図である。
 貼合体130は、図10及び図11に示すように、複数の表示領域が構成されたガラス製のTFT母基板110と、複数の表示領域が同様に構成されたガラス製のCF母基板120と、TFT母基板110及びCF母基板120を各表示領域毎に互いに接着すると共に、TFT母基板110及びCF母基板120の間に各表示領域毎に設けられた液晶層125をそれぞれ封入するための複数の枠状のシール材115とを備えている。
 そして、貼合体130を各表示領域毎に分断する際には、まず、図10に示すように、例えば、シール材115上のCF母基板120の表面に超鋼ホイール(分断刃)Hの刃先を当接させながら、超鋼ホイールHをシール材115の延びる方向に転動させることにより、線状のクラックCを形成すると共に、そのクラックCを基板厚さ方向に拡大(浸透)させて、CF母基板120を各表示領域毎に分断する。
 続いて、図11に示すように、CF母基板120が分断された貼合体130を表裏反転させ、シール材115上のTFT母基板110の表面に超鋼ホイールHの刃先を当接させながら、超鋼ホイールHをシール材115の延びる方向に転動させることにより、線状のクラックCを形成すると共に、そのクラックCを基板厚さ方向に拡大させることになる。
 しかしながら、上記のような分断方法では、先に分断する側の貼合体130のCF母基板120を分断することができても、後に分断する側のTFT母基板110を分断することができないおそれがある。
 その具体的な原因としては、図11に示すように、TFT母基板110及びCF母基板120に挟持されたシール材115に起因するTFT母基板110の内表面の圧縮残留応力Sa、並びに先に分断する側のCF母基板120を分断した後に、その分断面の歪さや異物の挟み込みなどにより、隣り合う分断面同士が重なり合わないために、CF母基板120と共にTFT母基板110が僅かに反り上がって、TFT母基板110の外表面に発生する圧縮応力Sbにより、後に分断する側のTFT母基板110の表面に形成されたクラックCが基板厚さ方向に拡大しないことが考えられる。ここで、後に分断する側の基板の分断性については、後者の圧縮応力Sbよりも前者の圧縮残留応力Saが大きく影響すると考えられる。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、表示パネルを構成するガラス製の一対の基板の双方をシール材上で分断することにある。
 上記目的を達成するために、本発明は、第1母基板が分断された貼合体におけるシール材の残留応力を緩和させた後に、貼合体の第2母基板を分断するようにしたものである。
 具体的に本発明に係る表示パネルの製造方法は、複数の表示領域が構成されたガラス製の第1母基板、該第1母基板に対向して配置され、上記各表示領域にそれぞれ重なり合うように複数の表示領域が構成されたガラス製の第2母基板、並びに上記第1母基板及び第2母基板の間に上記各表示領域をそれぞれ包囲するように枠状に設けられ、該第1母基板及び第2母基板を互いに接着するためのシール材を有する貼合体を作製する貼合体作製工程と、上記貼合体の第1母基板及び第2母基板の各外表面において、上記各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成して、該貼合体を上記各表示領域毎に分断する分断工程とを備える表示パネルの製造方法であって、上記分断工程は、上記貼合体の第1母基板の外表面において、上記各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成した後に、該クラックを基板厚さ方向に拡大して、上記第1母基板を上記各表示領域毎に分断する第1母基板分断工程と、該第1母基板が分断された貼合体における上記シール材の残留応力を緩和させる残留応力緩和工程と、該シール材の残留応力が緩和された貼合体の第2母基板の外表面において、上記各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成した後に、該クラックを基板厚さ方向に拡大して、上記第2母基板を上記各表示領域毎に分断する第2母基板分断工程とを備えることを特徴とする。
 上記の方法によれば、先に分断する側の貼合体の第1母基板を分断する第1母基板分断工程と、後に分断する側の貼合体の第2母基板を分断する第2母基板分断工程との間に、貼合体におけるシール材の残留応力を緩和させる残留応力緩和工程を備えるので、第1母基板が分断された貼合体の第2母基板の内表面のシール材に起因する圧縮残留応力が緩和される。そのため、第2母基板分断工程で、貼合体の第2母基板の外表面において、各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成した後に、そのクラックを基板厚さ方向に拡大することが可能になるので、第2母基板を各表示領域毎に分断することが可能になる。これにより、貼合体の先に分断する側の第1母基板、及び後に分断する側の第2母基板の双方が分断されるので、表示パネルを構成するガラス製の一対の基板の双方をシール材上で分断することが可能になる。
 上記残留応力緩和工程では、上記第1母基板が分断された貼合体を上記シール材のガラス転移点まで加熱してもよい。
 上記の方法によれば、残留応力緩和工程では、第1母基板が分断された貼合体をシール材のガラス転移点まで加熱するので、第1母基板が分断された貼合体の第2母基板の内表面のシール材に起因する圧縮残留応力が具体的に緩和される。
 上記第1母基板及び第2母基板は、互いに同じ厚さを有してもよい。
 上記の方法によれば、第1母基板及び第2母基板が互いに同じ厚さであるので、貼合体の後に分断する側の第2母基板の外表面にクラックを形成した後に、第1母基板が内側になるように貼合体を屈曲させることが困難であるために、第2母基板上のクラックを基板厚さ方向に拡大させ難いものの、残留応力緩和工程で貼合体におけるシール材の残留応力を緩和させることにより、貼合体の第2母基板の内表面のシール材に起因する圧縮残留応力が緩和されるので、第2母基板上のクラックを基板厚さ方向に拡大させることが可能になる。
 上記第2母基板分断工程では、上記残留応力緩和工程で加熱された貼合体を冷却した後に、上記クラックを形成してもよい。
 上記の方法によれば、貼合体の第2母基板の外表面にクラックを形成する前に、加熱された貼合体が冷却されているので、貼合体の第2母基板の外表面にクラックを形成した後に、そのクラックを基板厚さ方向に拡大する処理が容易になる。
 上記貼合体作製工程では、上記各表示領域の周囲のシール材の内部に液晶層を封入してもよい。
 上記の方法によれば、貼合体作製工程で作製された貼合体において、各表示領域の周囲のシール材により液晶層が封入されるので、液晶滴下貼り合わせ法、いわゆる、ODF(One Drop Fill)法を用いた液晶表示パネルの製造方法が具体的に構成される。
 上記貼合体作製工程では、上記シール材を隣り合う上記各表示領域において共有するように設けてもよい。
 上記の方法によれば、貼合体の隣り合う各表示領域においてシール材が共有されるので、貼合体におけるデッドスペースが小さくなり、貼合体における表示パネルの取り数を増やすことが可能になる。
 上記残留応力緩和工程では、上記第1母基板が分断された貼合体を加熱炉の内部で加熱してもよい。
 上記の方法によれば、貼合体を加熱炉の内部で加熱するので、貼合体をシール材のガラス転移点まで確実に加熱することが可能になる。
 上記分断工程では、上記貼合体を円盤状の分断刃により分断してもよい。
 上記の方法によれば、分断工程において、貼合体を円盤状の分断刃により分断するので、シール材上の第1母基板及び第2母基板の外表面に、分断刃の外周部を押し当てながら、分断刃を基板表面に沿って転動させることにより、貼合体が具体的に分断される。
 上記残留応力緩和工程では、上記第1母基板が分断された貼合体を上記シール材の残留応力が緩和されるまで放置してもよい。
 上記の方法によれば、残留応力緩和工程では、シール材の残留応力が緩和されるまで、第1母基板が分断された貼合体を放置するので、第1母基板が分断された貼合体の第2母基板の内表面のシール材に起因する圧縮残留応力が具体的に緩和される。
 本発明によれば、第1母基板が分断された貼合体におけるシール材の残留応力を緩和させた後に、貼合体の第2母基板を分断するので、表示パネルを構成するガラス製の一対の基板の双方をシール材上で分断することができる。
図1は、本発明の実施形態に係る液晶表示パネル30aの平面図である。 図2は、図1中のII-II線に沿った液晶表示パネル30aの断面図である。 図3は、液晶表示パネル30aを多面取りで製造するための貼合体30をCF母基板20からみた平面図である。 図4は、液晶表示パネル30aを多面取りで製造するための貼合体30をTFT母基板10からみた平面図である。 図5は、CF母基板分断工程における貼合体30の断面図である。 図6は、残留応力緩和工程に用いるオーブンAの斜視図である。 図7は、TFT母基板分断工程における貼合体30の断面図である。 図8は、液晶表示パネルPaの端部を拡大した写真である。 図9は、液晶表示パネルPbの端部を拡大した写真である。 図10は、従来の複数の液晶表示パネルを多面取りで同時に製造するための貼合体130のCF母基板120側を分断する際の断面図である。 図11は、従来の複数の液晶表示パネルを多面取りで同時に製造するための貼合体130のTFT母基板110側を分断する際の断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
 図1は、本実施形態の液晶表示パネル30aの平面図であり、図2は、図1中のII-II線に沿った液晶表示パネル30aの断面図である。
 液晶表示パネル30aは、図1及び図2に示すように、互いに対向して配置されたTFT基板10a及びCF基板20aと、TFT基板10a及びCF基板20aの間に設けられた液晶層25と、TFT基板10a及びCF基板20aを互いに接着すると共に液晶層25を封入するために枠状に設けられたシール材15aとを備えている。
 TFT基板10aは、ガラス基板上に互いに平行に延びるように設けられた複数のゲート線(不図示)と、各ゲート線を覆うように設けられたゲート絶縁膜(不図示)と、ゲート絶縁膜上に各ゲート線と直交する方向に互いに平行に延びるように設けられた複数のソース線(不図示)と、各ゲート線及び各ソース線の交差部分毎にそれぞれ設けられた複数のTFT(不図示)と、各ソース線及び各TFTを覆うように設けられた層間絶縁膜と、層間絶縁膜上にマトリクス状に設けられ、各TFTにそれぞれ接続された複数の画素電極(不図示)とを備えている。ここで、TFT基板10aでは、各画素電極がマトリクス状に配列して表示領域Dを構成している。また、TFT基板10aの下辺部は、図1に示すように、CF基板20aよりも突出して端子領域Tを構成しており、その端子領域Tには、上記ゲート線やソース線などの各表示用配線にそれぞれ接続された複数の入力端子などが設けられている。
 CF基板20aは、ガラス基板上に枠状に且つその枠内に格子状に設けられたブラックマトリクス(不図示)と、ブラックマトリクスの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルター(不図示)と、ブラックマトリクス及びカラーフィルターを覆うように設けられた共通電極(不図示)とを備えている。なお、CF基板20aでは、カラーフィルターの赤色層、緑色層及び青色層がマトリクス状に配列して表示領域Dを構成している。
 TFT基板10aの厚さは、CF基板20aの厚さとほぼ同じになっている。ここで、基板の厚さがほぼ同じとは、一方の基板の厚さが他方の基板の厚さの0.9倍~1.1倍の範囲であることである。
 液晶層25は、電気光学特性を有するネマチック液晶を含む液晶材料により構成されている。
 シール材15aは、図1に示すように、CF基板20aの上辺、左辺及び右辺に沿って延びる部分が相対的に細く(例えば、0.6mm)形成され、CF基板20aの下辺に沿って延びる部分が相対的に太く(例えば、1.2mm)形成されている。また、シール材15aの外側の端面のうち、CF基板20aの上辺、左辺及び右辺に沿って延びる部分は、図1に示すように、TFT基板10a及びCF基板20aの両端面(上辺、左辺及び右辺)に一致している。
 上記構成の液晶表示パネル30aは、各画素電極毎に1つの画素が構成されており、各画素において液晶層25に所定の大きさの電圧を印加させることにより、液晶層25の配向状態を変えて、例えば、バックライトから入射する光の透過率を調整して画像が表示される。
 次に、上記構成の液晶表示パネル30aの製造方法について、図3~図7を用いて説明する。ここで、図3は、液晶表示パネル30aを多面取りで製造するための貼合体30をCF母基板20からみた平面図であり、図4は、その貼合体30をTFT母基板10からみた平面図である。そして、図5は、後述するCF母基板分断工程における貼合体30の断面図である。また、図6は、後述する残留応力緩和工程に用いるオーブンAの斜視図である。さらに、図7は、後述するTFT母基板分断工程における貼合体30の断面図である。なお、本実施形態の製造方法は、貼合体作製工程、並びにCF母基板分断工程、残留応力緩和工程及びTFT母基板分断工程を含む分断工程を備える。
 <貼合体作製工程>
 まず、例えば、厚さ0.4mmのガラス基板上に、TFTや画素電極などをパターニングして、それぞれが表示領域Dとして機能する複数のアクティブ素子層を形成した後に、その表面に配向膜を形成して、マトリクス状に複数の表示領域Dが構成されたTFT母基板(第2母基板)10を作製する(図4中のTFT母基板10参照)。
 また、例えば、厚さ0.4mmのガラス基板上に、カラーフィルターや共通電極などをパターニングして、それぞれが表示領域Dとして機能する複数のCF素子層を形成した後に、その表面に配向膜を形成して、マトリクス状に複数の表示領域Dが構成されたCF母基板(第1母基板)20を作製する(図3中のCF母基板20参照)。
 続いて、例えば、CF母基板20の各表示領域Dの周囲に、UV/熱硬化併用タイプのアクリル/エポキシ系樹脂をシールディスペンサーにより描画して、シール材15を形成する(図3及び図4参照)。ここで、本実施形態では、図3及び図4に示すように、シール材15が互いに隣り合う表示領域Dにおいて共有するように、上記アクリル/エポキシ系樹脂を描画している。
 その後、例えば、TFT母基板10の各表示領域Dの内側に液晶材料を滴下する。
 さらに、真空雰囲気で、液晶材料が滴下されたTFT母基板10と、シール材15が形成されたCF母基板20とを互いの各表示領域Dが重なり合うように貼り合わせた後に、大気雰囲気に戻すことにより、TFT母基板10及びCF母基板20の各外表面を加圧し、その後、シール材15をUV照射及び熱焼成(例えば、180℃)により硬化させて、各表示領域D毎に液晶層25が封入された貼合体30を作製する。
 <CF母基板分断工程>
 上記貼合体作製工程で作製された貼合体30に対し、図3に示す分断ラインL1及びL2において、図5に示すように、貼合体30のCF母基板20の外表面におけるシール材15上の幅方向における中央部分に超鋼ホイールHの刃先をそれぞれ当接させながら、また、図3に示す分断ラインL3において、シール材15の外側の位置に超鋼ホイールHの刃先を当接させながら、各分断ラインL1、L2及びL3に沿って超鋼ホイールHをそれぞれ転動させることにより、CF母基板20の表面にクラックCを形成すると共に、そのクラックCを基板厚さ方向に拡大して、貼合体30のCF母基板20を分断する。
 ここで、超鋼ホイールHは、例えば、タングステンカーバイドなどの超硬合金により構成された円盤状の分断刃であり、円盤の側面が厚さ方向の中央に向かってテーパー状に突出するように構成されている。また、超鋼ホイールHは、そのテーパー状の刃先に突起物が形成されていてもよい。
 <残留応力緩和工程>
 上記CF母基板分断工程でCF母基板20が分断された貼合体30を、図6に示すように、例えば、130℃に設定された熱風循環型のオーブンAの内部に収容して、シール材15のガラス転移点まで加熱する。
 <TFT母基板分断工程>
 上記残留応力緩和工程で加熱された貼合体30を室温程度まで冷却した後に、その貼合体30に対し、図4に示す分断ラインL4及びL5において、図7に示すように、貼合体30のTFT母基板10の外表面におけるシール材15上の幅方向における中央部分に超鋼ホイールHの刃先をそれぞれ当接させながら、また、図4に示す分断ラインL6において、シール材15の外側の位置に超鋼ホイールHの刃先を当接させながら、各分断ラインL4、L5及びL6に沿って超鋼ホイールHをそれぞれ転動させることにより、TFT母基板10の表面にクラックCを形成すると共に、そのクラックCを基板厚さ方向に拡大して、貼合体30のTFT母基板10を分断する。
 さらに、TFT母基板10及びCF母基板20がそれぞれ分断された貼合体30をTFT母基板10又はCF母基板20が内側になるように屈曲させることにより、シール材15が分断されたシール材15aを形成して、貼合体30を各表示領域D毎に分断する。
 以上のようにして、液晶表示パネル30aを製造することができる。
 次に、具体的に行った実験について説明する。
 本実施形態の実施例として、上記説明した実施形態と同じ方法により貼合体30を作製して、以下の表1に示す分断条件(及び加熱条件)により、貼合体の分断を試みて、液晶表示パネルを製造した。ここで、TFT母基板10及びCF母基板20の各厚さは、0.4mmとし、シール材15のガラス転移点は、130℃とした。
Figure JPOXMLDOC01-appb-T000001
 具体的に、表1中の実験No.1は、CF母基板20を分断した直後に、TFT母基板10を分断するものである。
 また、同実験No.2、No.3及びNo.4は、まず、CF母基板20を分断し、続いて、貼合体30を130℃で20分間、30分間及び60分間それぞれ加熱し、さらに、貼合体30を室温に冷却した後に、TFT母基板10を分断するものである。
 また、同実験No.5は、まず、CF母基板20を分断し、続いて、TFT母基板10を分断し、さらに、貼合体30を130℃で60分間加熱するものであり、上述した特許文献1に記載された発明に相当するものである。
 また、同実験No.6は、CF母基板20を分断して、室温で60分間放置した後に、TFT母基板10を分断するものである。
 結果は、上記表1の右側の欄のとおりであり、CF母基板20が分断された貼合体30を130℃で30分間及び60分間それぞれ加熱した実験No.3及びNo.4では、TFT母基板10上に形成されたクラックCが基板厚さ方向に拡大して、貼合体30を良好にパネル単位に分断することができ、図8の写真に示すように、液晶表示パネルPaの端部が分断ラインLに沿って真っ直ぐに形成された。ここで、製造された液晶表示パネルの分断端面には、その垂直な方向に不本意なクラックが形成されないので、端面強度を確保することができた。また、貼合体30を良好にパネル単位に分断して、液晶表示パネル30aを製造することができたので、量産性も良好であった。
 実験No.1、No.5及びNo.6では、TFT母基板10上に形成されたクラックCが基板厚さ方向に拡大せずに、貼合体30をパネル単位に分断することができなかった。
 CF母基板20が分断された貼合体を130℃で20分間加熱した実験No.2では、貼合体30をパネル単位に何とか分断することができたものの、図9の写真に示すように、液晶表示パネルPbの端部に、分断ラインLに沿って、バリBが発生して、外観及び外形寸法が製品のスペックを満足しなかった。
 なお、具体的に実験No.3及びNo.4では、例えば、三星ダイヤモンド工業株式会社製のペネット(登録商標)などの高浸透分断のカッターホイールにより、スクライブ圧力:0.03MPa~0.18MPa、スクライブ速度:100mm~400mm/秒で貼合体30を分断することができた。
 以上説明したように、本実施形態の液晶表示パネル30aの製造方法によれば、先に分断する側の貼合体30のCF母基板20を分断するCF母基板分断工程と、後に分断する側の貼合体30のTFT母基板10を分断するTFT母基板分断工程との間に、貼合体30をシール材15のガラス転移点まで加熱する残留応力緩和工程を備えるので、CF母基板20が分断された貼合体30のTFT母基板10の内表面のシール材15に起因する圧縮残留応力が緩和される。そのため、TFT母基板分断工程で、貼合体30のTFT母基板10の外表面において、各表示領域Dの周囲のシール材15の少なくとも一辺上にクラックCを形成した後に、そのクラックCを基板厚さ方向に拡大することができるので、TFT母基板10を各表示領域D毎に分断することができる。これにより、貼合体30の先に分断する側のCF母基板20、及び後に分断する側のTFT母基板10の双方を分断することができるので、液晶表示パネル30aを構成するガラス製のTFT母基板10及びCF母基板20の双方をシール材15上で分断することができる。また、TFT母基板10及びCF母基板20の双方をシール材15上で分断することができるので、液晶表示パネル30aの狭額縁化を図ることができる。さらに、TFT母基板10及びCF母基板20の双方をシール材15上で安定して分断することができるので、液晶表示パネル30aの外形寸法精度、端面強度、製造歩留まりを向上させることができる。
 また、本実施形態の液晶表示パネル30aの製造方法によれば、TFT母基板10及びCF母基板20が互いに同じ厚さであるので、貼合体30の後に分断する側のTFT母基板10の外表面にクラックCを形成した後に、CF母基板20が内側になるように貼合体30を屈曲させることが困難であるために、TFT母基板10上のクラックCを基板厚さ方向に拡大させ難いものの、残留応力緩和で貼合体30を加熱することにより、貼合体30のTFT母基板10の内表面のシール材15に起因する圧縮残留応力が緩和されるので、TFT母基板10上のクラックCを基板厚さ方向に拡大させることができる。
 また、本実施形態の液晶表示パネル30aの製造方法によれば、貼合体30のTFT母基板10の外表面にクラックCを形成する前に、加熱された貼合体30が冷却されているので、貼合体30のTFT母基板10の外表面にクラックCを形成して、そのクラックCを基板厚さ方向に拡大する処理を容易にすることができる。
 また、本実施形態の液晶表示パネル30aの製造方法によれば、貼合体30の隣り合う各表示領域Dにおいてシール材15が共有されるので、貼合体30におけるデッドスペースが小さくなり、貼合体30における液晶表示パネル30aの取り数を増やすことができる。
 また、本実施形態の液晶表示パネル30aの製造方法によれば、貼合体30をオーブンAの内部で加熱するので、貼合体30をシール材15のガラス転移点まで確実に加熱することができる。
 また、本実施形態では、第1母基板として、CF母基板20を分断した後に、貼合体30を加熱して、第2母基板として、TFT母基板10を分断する方法を例示したが、本発明は、第1母基板として、TFT母基板(10)を分断した後に、貼合体(30)を加熱して、第2基板として、CF母基板(20)を分断してもよい。
 また、本実施形態では、TFT基板10a(TFT母基板10)の厚さとCF基板20a(CF母基板20)の厚さとがほぼ同じである場合を例示したが、本発明は、TFT基板(10a)の厚さとCF基板(20a)の厚さとが非対称である場合であっても、後に分断する側の母基板を安定して分断することができるので、液晶表示パネルの外形寸法精度、端面強度、製造歩留まりを向上させることができる。
 また、本実施形態では、CF母基板20が分断された貼合体30をオーブンAの内部でシール材15のガラス転移点まで加熱することにより、貼合体30のシール材15の残留応力を緩和した後に、貼合体30のTFT母基板10を分断する方法を例示したが、CF母基板20が分断された貼合体30を概ね100時間以上放置することにより、貼合体30のシール材15の残留応力を緩和した後に、貼合体30のTFT母基板10を分断する方法によっても、上記と同様に、液晶表示パネル30aを構成するガラス製のTFT母基板10及びCF母基板20の双方をシール材15上で分断することができる。
 また、本実施形態では、多面取りで液晶表示パネルを製造する方法を例示したが、本発明は、単面取りで液晶表示パネルを製造する方法にも適用することができる。
 また、本実施形態では、液晶滴下貼り合わせ法による液晶表示パネルの製造方法を例示したが、本発明は、液晶注入口を有するシール材を形成するディップ注入法による液晶表示パネルの製造方法にも適用することができる。
 また、本実施形態では、表示パネルとしてアクティブマトリクス駆動方式の液晶表示パネルを例示したが、本発明は、パッシブマトリクス駆動方式の液晶表示パネル、及びガラス製の一対の基板をシール材で貼り合わせて製造される表示パネル全般について適用することができる。
 以上説明したように、本発明は、表示パネルを構成するガラス製の一対の基板の双方をシール材上で分断することができるので、携帯電話用途の液晶表示パネルなど、狭額縁化が要望されるモバイル機器用途の表示パネルについて有用である。
A    オーブン(加熱炉)
C    クラック
D    表示領域
H    超鋼ホイール(分断刃)
10   TFT母基板(第2母基板)
15,15a  シール材
20   CF母基板(第1母基板)
25   液晶層
30   貼合体
30a  液晶表示パネル

Claims (9)

  1.  複数の表示領域が構成されたガラス製の第1母基板、該第1母基板に対向して配置され、上記各表示領域にそれぞれ重なり合うように複数の表示領域が構成されたガラス製の第2母基板、並びに上記第1母基板及び第2母基板の間に上記各表示領域をそれぞれ包囲するように枠状に設けられ、該第1母基板及び第2母基板を互いに接着するためのシール材を有する貼合体を作製する貼合体作製工程と、
     上記貼合体の第1母基板及び第2母基板の各外表面において、上記各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成して、該貼合体を上記各表示領域毎に分断する分断工程とを備える表示パネルの製造方法であって、
     上記分断工程は、上記貼合体の第1母基板の外表面において、上記各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成した後に、該クラックを基板厚さ方向に拡大して、上記第1母基板を上記各表示領域毎に分断する第1母基板分断工程と、該第1母基板が分断された貼合体における上記シール材の残留応力を緩和させる残留応力緩和工程と、該シール材の残留応力が緩和された貼合体の第2母基板の外表面において、上記各表示領域の周囲のシール材の少なくとも一辺上にクラックを形成した後に、該クラックを基板厚さ方向に拡大して、上記第2母基板を上記各表示領域毎に分断する第2母基板分断工程とを備えることを特徴とする表示パネルの製造方法。
  2.  請求項1に記載された表示パネルの製造方法において、
     上記残留応力緩和工程では、上記第1母基板が分断された貼合体を上記シール材のガラス転移点まで加熱することを特徴とする表示パネルの製造方法。
  3.  請求項1又は2に記載された表示パネルの製造方法において、
     上記第1母基板及び第2母基板は、互いに同じ厚さを有することを特徴とする表示パネルの製造方法。
  4.  請求項2に記載された表示パネルの製造方法において、
     上記第2母基板分断工程では、上記残留応力緩和工程で加熱された貼合体を冷却した後に、上記クラックを形成することを特徴とする表示パネルの製造方法。
  5.  請求項1乃至4の何れか1つに記載された表示パネルの製造方法において、
     上記貼合体作製工程では、上記各表示領域の周囲のシール材の内部に液晶層を封入することを特徴とする表示パネルの製造方法。
  6.  請求項1乃至5の何れか1つに記載された表示パネルの製造方法において、
     上記貼合体作製工程では、上記シール材を隣り合う上記各表示領域において共有するように設けることを特徴とする表示パネルの製造方法。
  7.  請求項2に記載された表示パネルの製造方法において、
     上記残留応力緩和工程では、上記第1母基板が分断された貼合体を加熱炉の内部で加熱することを特徴とする表示パネルの製造方法。
  8.  請求項1乃至7の何れか1つに記載された表示パネルの製造方法において、
     上記分断工程では、上記貼合体を円盤状の分断刃により分断することを特徴とする表示パネルの製造方法。
  9.  請求項1に記載された表示パネルの製造方法において、
     上記残留応力緩和工程では、上記第1母基板が分断された貼合体を上記シール材の残留応力が緩和されるまで放置することを特徴とする表示パネルの製造方法。
PCT/JP2009/002282 2008-09-12 2009-05-25 表示パネルの製造方法 WO2010029660A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010528587A JP5070341B2 (ja) 2008-09-12 2009-05-25 表示パネルの製造方法
EP09812809.3A EP2354833A4 (en) 2008-09-12 2009-05-25 METHOD FOR MANUFACTURING DISPLAY PANEL
CN2009801236432A CN102067017B (zh) 2008-09-12 2009-05-25 显示面板的制造方法
BRPI0914181A BRPI0914181A2 (pt) 2008-09-12 2009-05-25 método de fabricação de painel de vídeo
US13/001,521 US8216016B2 (en) 2008-09-12 2009-05-25 Method of manufacturing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008234525 2008-09-12
JP2008-234525 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010029660A1 true WO2010029660A1 (ja) 2010-03-18

Family

ID=42004926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002282 WO2010029660A1 (ja) 2008-09-12 2009-05-25 表示パネルの製造方法

Country Status (7)

Country Link
US (1) US8216016B2 (ja)
EP (1) EP2354833A4 (ja)
JP (1) JP5070341B2 (ja)
CN (1) CN102067017B (ja)
BR (1) BRPI0914181A2 (ja)
RU (1) RU2467364C2 (ja)
WO (1) WO2010029660A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008172A (ja) * 2014-06-25 2016-01-18 三星ダイヤモンド工業株式会社 貼り合わせ基板の分断方法
JP2016008171A (ja) * 2014-06-25 2016-01-18 三星ダイヤモンド工業株式会社 貼り合わせ基板の分断方法
CN105388651A (zh) * 2014-08-29 2016-03-09 三星钻石工业股份有限公司 液晶显示面板的制造方法
KR20160046282A (ko) * 2014-10-20 2016-04-28 미쓰보시 다이야몬도 고교 가부시키가이샤 스크라이브 방법 및 스크라이브 장치
KR20160070672A (ko) * 2014-12-10 2016-06-20 미쓰보시 다이야몬도 고교 가부시키가이샤 기판 분단 방법 및 스크라이브 장치
JP2017122015A (ja) * 2016-01-05 2017-07-13 三星ダイヤモンド工業株式会社 基板分断方法
JPWO2016143328A1 (ja) * 2015-03-11 2018-02-22 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法
JP2018087131A (ja) * 2017-12-29 2018-06-07 三星ダイヤモンド工業株式会社 分断方法および分断装置
JP2021167257A (ja) * 2020-04-09 2021-10-21 三星ダイヤモンド工業株式会社 スクライブ方法及びスクライブ装置
WO2024018690A1 (ja) * 2022-07-22 2024-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラスパネルユニットの組立て品
WO2024018689A1 (ja) * 2022-07-22 2024-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラスパネルユニットの組立て品

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8121361B2 (en) 2006-05-19 2012-02-21 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
WO2013018619A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 液晶表示パネル、電子機器および液晶表示パネルの製造方法
WO2013032933A2 (en) 2011-08-26 2013-03-07 Kinecticor, Inc. Methods, systems, and devices for intra-scan motion correction
WO2013183216A1 (ja) * 2012-06-04 2013-12-12 シャープ株式会社 表示パネル及びその製造方法
CN102749746B (zh) * 2012-06-21 2015-02-18 深圳市华星光电技术有限公司 液晶基板切割装置及液晶基板切割方法
US9305365B2 (en) 2013-01-24 2016-04-05 Kineticor, Inc. Systems, devices, and methods for tracking moving targets
US9717461B2 (en) 2013-01-24 2017-08-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US10327708B2 (en) 2013-01-24 2019-06-25 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9782141B2 (en) 2013-02-01 2017-10-10 Kineticor, Inc. Motion tracking system for real time adaptive motion compensation in biomedical imaging
CN103926750B (zh) * 2013-12-31 2017-02-15 上海天马微电子有限公司 一种液晶显示面板
US10004462B2 (en) 2014-03-24 2018-06-26 Kineticor, Inc. Systems, methods, and devices for removing prospective motion correction from medical imaging scans
KR20150129156A (ko) * 2014-05-08 2015-11-19 삼성디스플레이 주식회사 표시 패널 제조 방법
CN103995385B (zh) * 2014-05-09 2017-12-05 京东方科技集团股份有限公司 显示母板及其切割方法
CN106714681A (zh) 2014-07-23 2017-05-24 凯内蒂科尔股份有限公司 用于在医学成像扫描期间追踪和补偿患者运动的系统、设备和方法
KR101623026B1 (ko) * 2014-10-06 2016-05-20 한국미쯔보시다이아몬드공업(주) 접합 기판의 커팅 방법
JP6384265B2 (ja) * 2014-10-20 2018-09-05 三星ダイヤモンド工業株式会社 スクライブ方法およびスクライブ装置
CN104536168A (zh) * 2014-12-31 2015-04-22 深圳市华星光电技术有限公司 一种母基板
CN104536212B (zh) * 2014-12-31 2018-09-04 深圳市华星光电技术有限公司 液晶显示装置、液晶显示面板母板及其制备方法
CN107615141B (zh) * 2015-05-27 2020-10-30 夏普株式会社 显示面板的制造方法
US9943247B2 (en) 2015-07-28 2018-04-17 The University Of Hawai'i Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan
WO2017091479A1 (en) 2015-11-23 2017-06-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
CN105810098A (zh) * 2016-05-06 2016-07-27 京东方科技集团股份有限公司 显示母板和显示基板的制备方法、显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104561A (ja) * 1996-09-27 1998-04-24 Toshiba Corp 液晶表示装置およびその製造方法
JP2000016826A (ja) * 1998-06-29 2000-01-18 Nippon Electric Glass Co Ltd フラットパネルディスプレイ用ガラス基板の製造方法
JP2008026416A (ja) 2006-07-18 2008-02-07 Stanley Electric Co Ltd 液晶表示素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147426A (ja) * 1985-12-21 1987-07-01 Stanley Electric Co Ltd 液晶表示素子の製造方法
JPH10268329A (ja) * 1997-03-21 1998-10-09 Optrex Corp 液晶表示素子の製造方法
US6147730A (en) * 1998-11-30 2000-11-14 International Business Machines Corporation Color filters formed sequentially with intervening protective films for flat panel displays
US7768623B2 (en) * 2006-07-31 2010-08-03 Casio Computer Co., Ltd. Liquid crystal display apparatus forming assembly, liquid crystal cell, and liquid crystal display apparatus, and manufacturing method thereof
JP2008078382A (ja) * 2006-09-21 2008-04-03 Toshiba Corp 半導体装置とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104561A (ja) * 1996-09-27 1998-04-24 Toshiba Corp 液晶表示装置およびその製造方法
JP2000016826A (ja) * 1998-06-29 2000-01-18 Nippon Electric Glass Co Ltd フラットパネルディスプレイ用ガラス基板の製造方法
JP2008026416A (ja) 2006-07-18 2008-02-07 Stanley Electric Co Ltd 液晶表示素子の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008171A (ja) * 2014-06-25 2016-01-18 三星ダイヤモンド工業株式会社 貼り合わせ基板の分断方法
JP2016008172A (ja) * 2014-06-25 2016-01-18 三星ダイヤモンド工業株式会社 貼り合わせ基板の分断方法
CN105388651B (zh) * 2014-08-29 2020-09-01 三星钻石工业股份有限公司 液晶显示面板的制造方法
CN105388651A (zh) * 2014-08-29 2016-03-09 三星钻石工业股份有限公司 液晶显示面板的制造方法
KR102365099B1 (ko) 2014-10-20 2022-02-18 미쓰보시 다이야몬도 고교 가부시키가이샤 스크라이브 방법 및 스크라이브 장치
TWI660921B (zh) * 2014-10-20 2019-06-01 日商三星鑽石工業股份有限公司 Scribing method and scribing device
JP2016079075A (ja) * 2014-10-20 2016-05-16 三星ダイヤモンド工業株式会社 スクライブ方法およびスクライブ装置
KR20160046282A (ko) * 2014-10-20 2016-04-28 미쓰보시 다이야몬도 고교 가부시키가이샤 스크라이브 방법 및 스크라이브 장치
KR20160070672A (ko) * 2014-12-10 2016-06-20 미쓰보시 다이야몬도 고교 가부시키가이샤 기판 분단 방법 및 스크라이브 장치
KR102383744B1 (ko) 2014-12-10 2022-04-05 미쓰보시 다이야몬도 고교 가부시키가이샤 기판 분단 방법 및 스크라이브 장치
JPWO2016143328A1 (ja) * 2015-03-11 2018-02-22 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法
JP2017122015A (ja) * 2016-01-05 2017-07-13 三星ダイヤモンド工業株式会社 基板分断方法
JP2018087131A (ja) * 2017-12-29 2018-06-07 三星ダイヤモンド工業株式会社 分断方法および分断装置
JP2021167257A (ja) * 2020-04-09 2021-10-21 三星ダイヤモンド工業株式会社 スクライブ方法及びスクライブ装置
WO2024018690A1 (ja) * 2022-07-22 2024-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラスパネルユニットの組立て品
WO2024018689A1 (ja) * 2022-07-22 2024-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラスパネルユニットの組立て品

Also Published As

Publication number Publication date
US8216016B2 (en) 2012-07-10
CN102067017A (zh) 2011-05-18
EP2354833A4 (en) 2013-09-25
RU2010152336A (ru) 2012-10-20
EP2354833A1 (en) 2011-08-10
JPWO2010029660A1 (ja) 2012-02-02
CN102067017B (zh) 2013-05-01
BRPI0914181A2 (pt) 2019-03-12
US20110104975A1 (en) 2011-05-05
RU2467364C2 (ru) 2012-11-20
JP5070341B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5070341B2 (ja) 表示パネルの製造方法
US10423035B2 (en) Liquid crystal display device and manufacturing method thereof
JP4961271B2 (ja) 液晶表示パネルの製造方法及び液晶表示パネル
WO2013183216A1 (ja) 表示パネル及びその製造方法
JP2008096836A (ja) 液晶表示パネルの製造方法、および液晶表示パネル
JP5357080B2 (ja) 液晶表示パネルの製造方法
WO2011125284A1 (ja) 液晶表示パネルの製造方法
JP2007114461A (ja) 液晶表示パネルの製造方法
JPH0720478A (ja) 液晶表示素子の製造方法
US10394066B1 (en) Method of producing display panel
JP2008026416A (ja) 液晶表示素子の製造方法
JP2014119675A (ja) 液晶表示装置の製造方法及びマザー基板
JP2007127787A (ja) 表示装置の製造方法
JP2008176204A (ja) 液晶表示装置の製造方法
JPH1144869A (ja) 液晶パネルおよびその作製方法
WO2011092926A1 (ja) 液晶パネル、液晶表示装置、液晶パネルの製造方法、及び、液晶表示装置の製造方法
JP2014048573A (ja) 液晶表示装置の製造方法
WO2016190234A1 (ja) 表示パネルの製造方法
JP2004325888A (ja) 液晶表示パネルの製造方法および液晶表示パネル
JPH1164864A (ja) 液晶表示装置の製造方法
JP2013029768A (ja) 液晶表示装置の製造方法及びマザー基板
JP2009288369A (ja) 表示パネルの製造方法
JP2008175944A (ja) 表示装置の製造方法及び貼合せ基板母材
CN115469475A (zh) 显示面板及其制作方法、显示装置
JP2009237512A (ja) 表示パネルの製造方法及び表示パネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123643.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13001521

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009812809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8567/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010152336

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0914181

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101221