WO2013018619A1 - 液晶表示パネル、電子機器および液晶表示パネルの製造方法 - Google Patents

液晶表示パネル、電子機器および液晶表示パネルの製造方法 Download PDF

Info

Publication number
WO2013018619A1
WO2013018619A1 PCT/JP2012/068843 JP2012068843W WO2013018619A1 WO 2013018619 A1 WO2013018619 A1 WO 2013018619A1 JP 2012068843 W JP2012068843 W JP 2012068843W WO 2013018619 A1 WO2013018619 A1 WO 2013018619A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
crystal display
substrate
alignment film
Prior art date
Application number
PCT/JP2012/068843
Other languages
English (en)
French (fr)
Inventor
寿史 渡辺
坂井 彰
裕一 居山
亜希子 宮崎
佐藤 英次
康 浅岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/236,128 priority Critical patent/US20140168581A1/en
Publication of WO2013018619A1 publication Critical patent/WO2013018619A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars

Definitions

  • the present invention relates to a liquid crystal display panel, an electronic device, and a method for manufacturing a liquid crystal display panel.
  • the liquid crystal display device has advantages such as light weight, thinness and low power consumption, and is used not only as a large television but also as a small display device such as a display unit of a mobile phone.
  • the liquid crystal display device includes a liquid crystal display panel, a backlight device, a circuit and a power source for supplying various electric signals to the liquid crystal display panel, and a housing for housing these.
  • the liquid crystal display panel has a display area in which a plurality of pixels are arranged and a frame area around the display area.
  • a display area (active area) of a general liquid crystal display device In a display area (active area) of a general liquid crystal display device, a pixel electrode, a thin film transistor (TFT), and the like are provided, and an image or a video is displayed.
  • the frame area is connected to the seal part that bonds the substrates so that the liquid crystal material is sealed between the substrates, the wiring connected to the gate and source electrodes of the TFT, and the external drive circuit that inputs the signal / scan voltage Terminals are provided for this purpose.
  • a region where wiring connected to a gate electrode or a source electrode of a TFT, a terminal for connecting to an external drive circuit for inputting a signal / scanning voltage, and the like are sometimes referred to as a connection region.
  • the frame region is a region that does not contribute to display (invalid display portion), and the narrowing of the frame of the liquid crystal display device is progressing year by year, but it is difficult to eliminate the frame region.
  • a general liquid crystal display panel for example, a TN (Twisted Nematic) type liquid crystal panel
  • FIGS. 12 (a) and 12 (b) the limit of the narrowing of the frame region 81a of a general liquid crystal display panel (for example, a TN (Twisted Nematic) type liquid crystal panel) 500 will be described with reference to FIGS. 12 (a) and 12 (b).
  • . 12A is a schematic plan view of the liquid crystal display panel 500
  • FIG. 12B is a schematic cross-sectional view of a portion ⁇ shown in FIG. 12A.
  • the liquid crystal display panel 500 includes a display area 81 and a frame area 81 a located on the periphery of the display area 81.
  • a plurality of pixel electrodes 4 are formed in the display area 81 of the liquid crystal display panel 500.
  • the frame area 81a is an area that does not contribute to display.
  • a seal portion 99 formed so as to surround the liquid crystal layer 1 is formed in the frame area 81 a of the liquid crystal display panel 500.
  • the width Ds of the frame region 81a is represented by the sum of the width D1 of the seal portion 99 and the distance D2 between the pixel electrode 4 adjacent to the seal portion 99 and the seal portion 99.
  • the sealing portion 99 is formed by applying a sealing material to form a predetermined pattern on the substrate by a dispenser device, a screen printing machine, or the like, and bonding the adhesive to another substrate and then curing the sealing material.
  • the final seal portion 99 has a width D1 of about 1 mm or more.
  • Patent Document 1 discloses a method of manufacturing a plurality of liquid crystal display panels by bonding a pair of substrates through a sealing material provided so as to form a predetermined pattern and then dividing the substrate together with the sealing material. It is disclosed. A method is disclosed in which the width D1 of the seal portion 99 is about 1 mm or less. According to the method disclosed in Patent Document 1, the width of the seal portion 99 can be reduced to about 1 mm or less. However, if the width D1 of the seal portion 99 is excessively thin, the strength is insufficient. The defect that 99 peels occurs.
  • the width D1 of the seal portion 99 is about 0.5 mm or less, the occurrence of the above-described defect is remarkable, and the seal portion 99 of the liquid crystal display panel currently mass-produced by the present applicant has a width exceeding 0.5 mm. have.
  • the distance D2 necessary for maintaining the orientation of the liquid crystal material contained in the liquid crystal layer 1 is about 0.2 mm or more. This is because, when the distance D2 is less than about 0.2 mm, the alignment of the liquid crystal material is disturbed due to the influence of the seal portion 99, which causes display defects such as a reduction in contrast ratio. Therefore, in order to make the width Ds of the frame region 81a about 0.5 mm or less, the width D1 of the seal portion 99 must be about 0.3 mm or less. On the other hand, when the width D1 of the seal portion 99 is about 0.1 mm or less, the seal portion 99 is peeled off due to insufficient strength, causing a display defect. Considering the accuracy of the dispenser device for forming the seal portion 99, it is very difficult to control the width D1 of the seal portion 99 to about 0.2 mm to 0.3 mm with a high yield.
  • Patent Document 2 discloses a liquid crystal display device including a polymer dispersed liquid crystal (PDLC) layer using a curable vinyl compound.
  • PDLC polymer dispersed liquid crystal
  • Patent Document 2 describes that when a polymer-dispersed liquid crystal layer is formed from a curable vinyl compound, there is an effect of bonding a pair of substrates without forming a seal portion 99 as the liquid crystal display panel 500 has. ing.
  • Patent Document 2 has a description that it is not necessary to form a seal portion, but does not disclose a method for manufacturing a liquid crystal display device that does not have a seal portion.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display panel that is suitable for narrowing the frame region and has high mass production efficiency, and a method for manufacturing such a liquid crystal display panel. .
  • a liquid crystal display panel is a liquid crystal display panel including a display region having a plurality of pixel regions, and a plurality of liquid crystal regions having a nematic liquid crystal material and the liquid crystal regions adjacent to each other.
  • a liquid crystal layer having a polymer-containing wall between the liquid crystal regions, and a first substrate and a second substrate holding the liquid crystal layer therebetween, wherein the liquid crystal layer is formed on a side surface of the liquid crystal display panel.
  • At least one of the side surfaces of the second substrate and a pixel region located at the outermost edge of the plurality of pixel regions, wherein the at least one side surface The distance from the pixel region located on the side surface side is less than 0.2 mm.
  • the liquid crystal display panel described above is formed between the liquid crystal layer and the first substrate and the second substrate, respectively, and a first alignment film formed so as to be in contact with the liquid crystal layer, and
  • the liquid crystal display device further includes a second alignment film, and polarizing plates disposed on opposite sides of the first substrate and the second substrate from the liquid crystal layer side.
  • the nematic liquid crystal material has positive dielectric anisotropy
  • at least one of the first alignment film and the second alignment film is a horizontal alignment film
  • the horizontal alignment film has an alignment.
  • the in-plane orientation of the liquid crystal molecules at the interface of the horizontal orientation film subjected to the orientation treatment is parallel to the orientation defined by the orientation treatment. It is.
  • the nematic liquid crystal material has positive dielectric anisotropy
  • the first alignment film and the second alignment film are each a vertical alignment film.
  • the alignment state of the nematic liquid crystal material is controlled by a lateral electric field.
  • the liquid crystal display panel described above has a tilt azimuth of liquid crystal molecules at an interface on the first alignment film side and a tilt azimuth of liquid crystal molecules on an interface on the second alignment film side when no voltage is applied. It includes two different liquid crystal regions.
  • the above-described liquid crystal display panel further includes a ⁇ / 4 plate disposed between the first substrate and the polarizing plate and between the second substrate and the polarizing plate.
  • the liquid crystal display panel includes a connection region that is electrically connected to an external circuit, and the first substrate and the second substrate are disposed between the connection region and the display region. It has a seal part to be bonded.
  • the above-described liquid crystal display panel has a drive circuit arranged outside the display area, and has the seal portion between the drive circuit and the display area.
  • the side surfaces of the liquid crystal layer when viewed from the normal direction of the liquid crystal display panel, at least a part of the side surfaces of the liquid crystal layer is aligned with the side surfaces of the first substrate and the second substrate.
  • the above-described liquid crystal display panel further includes a side sealing resin portion formed so as to be in contact with the side surface of the liquid crystal layer, the side surface of the first substrate, and the side surface of the second substrate.
  • An electronic apparatus includes first and second liquid crystal display panels, each of which is the above-described liquid crystal display panel, and the liquid crystal layer extends on a side surface of the first liquid crystal display panel.
  • the first and second liquid crystal display panels are arranged such that a first side surface and a second side surface of the side surface of the second liquid crystal display panel where the liquid crystal layer extends are adjacent to each other.
  • the electronic device described above is foldable with a boundary between the first side surface and the second side surface as an axis.
  • a method of manufacturing a liquid crystal display panel includes: (A) preparing a first substrate having a plurality of pixel electrodes and a connection region formed outside the plurality of pixel electrodes; A seal portion that surrounds the plurality of pixel electrodes, the pixel electrode being located on the outermost edge of the plurality of pixel electrodes, and located between the pixel electrode located on the connection region side and the connection region A liquid crystal having a step of forming a seal portion including a portion to be formed, (C) a plurality of liquid crystal regions having a nematic liquid crystal material, and a wall including a polymer between adjacent liquid crystal regions of the plurality of liquid crystal regions A step of forming a layer, and (D) a step of cutting off portions other than a portion of the seal portion.
  • a liquid crystal display panel suitable for narrowing the frame region and having high mass production efficiency is provided.
  • (A) is a schematic plan view of a liquid crystal display panel 100A according to an embodiment of the present invention
  • (b) is a schematic plan view of the liquid crystal display panel 100A along the line II ′ of FIG. 1 (a).
  • (C) is a typical sectional view for explaining the liquid crystal layer 1 of the liquid crystal display panel 100A. It is an enlarged view of the area
  • (A) is typical sectional drawing explaining liquid crystal display panel 100B in other embodiment by this invention,
  • (b) is a typical top view explaining liquid crystal display panel 100B.
  • (A) is typical sectional drawing explaining the liquid crystal display panel 100C in further another embodiment by this invention,
  • (b) is a typical top view explaining the liquid crystal display panel 100C.
  • FIG. 1 is a schematic plan view of a liquid crystal display panel 100D according to still another embodiment of the present invention
  • (b) is a schematic plan view of the liquid crystal display panel 100D taken along line II-II ′ of (a).
  • FIG. It is a typical top view explaining the modification of liquid crystal display panel 100D.
  • (A) And (b) is a typical perspective view explaining the electronic device 200.
  • FIG. (A) And (b) is a typical perspective view explaining the manufacturing method of 100 A of liquid crystal display panels
  • (c) is typical sectional drawing along the III-III 'line of (b). is there.
  • FIG. 4D is a schematic cross-sectional view illustrating a method
  • FIG. 4D is a schematic cross-sectional view illustrating a method for manufacturing the liquid crystal display panel 100A along the line VV ′ in FIG.
  • A) And (b) is a typical perspective view explaining the modification of the manufacturing method of 100 A of liquid crystal display panels.
  • A) And (c) is a typical perspective view explaining the manufacturing method of liquid crystal display panel 100D
  • (b) is typical sectional drawing along the VI-VI 'line of (a).
  • (D) is a schematic cross-sectional view taken along line VII-VII ′ of (c).
  • (A) is a typical top view of the conventional liquid crystal display panel 500,
  • (b) is typical sectional drawing of the part shown by (alpha) of (a).
  • FIG. 1A shows a schematic plan view of the liquid crystal display panel 100A
  • FIG. 1B shows a schematic cross section of the liquid crystal display panel 100A along the line II ′ of FIG. The figure is shown.
  • FIG.1 (c) is typical sectional drawing to which a part of liquid crystal layer 1 shown in FIG.1 (b) was expanded.
  • FIG. 2 is a schematic plan view in which a region A in FIG.
  • the liquid crystal display panel 100A includes a display region 81 having a plurality of pixel regions 31.
  • the pixel region 31 is a minimum unit region constituting each primary color (for example, blue, green, and red).
  • the liquid crystal display panel 100 ⁇ / b> A includes a liquid crystal layer 1 having a plurality of liquid crystal regions 11 having a nematic liquid crystal material and a wall 12 containing a polymer between adjacent liquid crystal regions 11 among the plurality of liquid crystal regions 11.
  • the liquid crystal display panel 100A includes a first substrate 2 and a second substrate 3, and the first substrate 2 and the second substrate 3 are arranged so as to hold the liquid crystal layer 1 therebetween.
  • the liquid crystal layer 1 extends to at least one of the side surfaces of the liquid crystal display panel 100A. That is, when viewed from the normal direction of the display region 81 of the liquid crystal display panel 100 ⁇ / b> A, at least a part of the side surfaces of the liquid crystal layer 1 is aligned with the side surfaces of the first substrate 2 and the second substrate 3. Further, the wall 12 containing a polymer contributes to the adhesion between the first substrate 2 and the second substrate 3. Further, as shown in FIG. 2, in the liquid crystal display panel 100A, since the seal portion 91 does not have to be formed so as to surround the liquid crystal layer 1, it is close to at least one of the side surfaces of the liquid crystal display panel 100A. A pixel region 31 can be formed.
  • the liquid crystal display panel 100A can reduce the width of the frame area that does not contribute to display. Specifically, at least one side surface 3a of the side surfaces of the second substrate 3 and the pixel region 31 located at the outermost edge of the plurality of pixel regions 31 are located on the side of at least one side surface 3a.
  • the distance Ds from the pixel region 31a is preferably 0.2 mm or less.
  • the liquid crystal display panel 100 ⁇ / b> A has at least one alignment film (not shown) formed on the first substrate 2 and the second substrate 3 so as to be in contact with the liquid crystal layer 1.
  • the liquid crystal display panel 100 ⁇ / b> A is formed on the first substrate 2, a first horizontal alignment film (for example, manufactured by Hitachi Chemical DuPont Microsystems, Inc .: product number PLX1400) formed so as to be in contact with the liquid crystal layer 1, and the second substrate 3.
  • a second horizontal alignment film formed on and in contact with the liquid crystal layer 1.
  • the first horizontal alignment film and the second horizontal alignment film are each subjected to an alignment process (for example, a rubbing process).
  • the alignment treatment is performed so that the alignment treatment direction applied to the first horizontal alignment film and the alignment treatment direction applied to the second horizontal alignment film are orthogonal to each other.
  • the liquid crystal display panel 100A includes two liquid crystal regions in which the tilt azimuth of the liquid crystal molecules at the interface on the first alignment film side and the tilt azimuth of the liquid crystal molecules at the interface on the second alignment film side are different from each other.
  • the liquid crystal display panel 100A is a TN (Twisted Nematic) type liquid crystal display panel.
  • the liquid crystal display panel 100A includes polarizing plates 22a and 22b disposed on the opposite sides of the first substrate 2 and the second substrate 3 from the liquid crystal layer 1 side, respectively.
  • a liquid crystal display panel having such a configuration is disclosed in International Publication No.
  • the liquid crystal display panel 100A does not perform alignment processing on the respective alignment films, and ⁇ / 4 plates are provided between the polarizing plate 22a and the first substrate 2 and between the polarizing plate 22b and the second substrate 3, respectively.
  • the liquid crystal display panel can be modified.
  • the ⁇ / 4 plate and the polarizing plate 22a or 22b each function as a circularly polarizing plate.
  • a liquid crystal display panel having such a configuration is disclosed in International Publication No. 2009/069249.
  • the liquid crystal display panel 100A has a pixel electrode 4 formed on the first substrate 2, a color filter layer 32 formed on the second substrate 3, and a common electrode 5 formed on the color filter layer 32. .
  • the outer edge of the display area 81 is defined by the pixel electrode 4 located at the outermost edge of the plurality of pixel electrodes 4. It is preferable that the common electrode 5 is formed over almost the entire display area 81 and is not formed outside the display area 81. This is because, if the common electrode 5 is formed to the outside of the display region 81, for example, there is a possibility of short-circuiting with the electrode formed on the first substrate 2.
  • the liquid crystal display panel 100 ⁇ / b> A includes a side sealing resin 52 formed so as to be in contact with the side surface of the liquid crystal layer 1, the side surface of the first substrate 2, and the side surface of the second substrate 3.
  • the side sealing resin 52 further increases the mechanical strength of the liquid crystal display panel 100 ⁇ / b> A and prevents moisture and the like from entering the liquid crystal layer 1, thereby improving reliability. Even when the side sealing resin 52 is not provided, the effect of narrowing the frame region can be obtained. However, from the viewpoint of improving the reliability of the liquid crystal display panel 100A, it is preferable to provide the side sealing resin 52.
  • the side sealing resin 52 is made of, for example, a photocurable resin (for example, product name: Photorec A-780 manufactured by Sekisui Chemical Co., Ltd.).
  • a thin film transistor (not shown) having, for example, a low-temperature polysilicon semiconductor layer is formed on the first substrate 2 for each pixel, and drive circuits 92a and 92b electrically connected to the p-SiTFT. Is formed.
  • the drive circuits 92a and 92b are formed outside the display area 81, respectively.
  • the drive circuit 92 b is connected to an external circuit in the connection region 82 via, for example, an FPC (Flexible Printed Circuits) 95.
  • the drive circuit 92b may be connected to an external circuit through an LSI (Large Scale Integration) driver, TAB (Tape Automated Automated Bonding), and COF (Chip On Film).
  • a seal portion 91 for bonding the first substrate 2 and the second substrate 3 is formed between the display region 81 and the connection region 82.
  • the seal portion 91 is made of, for example, a photo-curing resin (for example, product name: Photorec S-WB, manufactured by Sekisui Chemical Co., Ltd.).
  • a photo-curing resin for example, product name: Photorec S-WB, manufactured by Sekisui Chemical Co., Ltd.
  • connection region 82 when the liquid crystal material or the polymer material leaks into the connection region 82 and the connection region 82 is contaminated, a mounting defect such as the FPC 95 occurs. Depending on the degree of contamination, even if a separate cleaning step is provided, the improvement may not be achieved. Therefore, it is preferable to form the seal portion 91 in consideration of the yield and manufacturing cost during mass production.
  • the liquid crystal display panel 100A is disposed on the side opposite to the liquid crystal layer 1 side of the second substrate 3 and the polarizing plate 22a disposed on the side opposite to the liquid crystal layer 1 side of the first substrate 2.
  • a polarizing plate 22b is preferably arranged so that the transmission axis of the polarizing plate 22a is parallel to the alignment treatment direction applied to the alignment film formed on the first substrate 2, and the transmission axis of the polarizing plate 22b is It is preferable to arrange the polarizing plate 22b so as to be parallel to the alignment treatment direction applied to the alignment film formed on the two substrates 3.
  • FIG. 3A is a schematic cross-sectional view illustrating the liquid crystal display panel 100B
  • FIG. 3B is a schematic plan view of the liquid crystal display panel 100B.
  • the liquid crystal display panel 100B and a liquid crystal display panel 100C described later have a display mode different from that of the liquid crystal display panel 100A.
  • the 3A and 3B has a pair of comb electrodes 4a and 5a instead of the pixel electrode 4 and the common electrode 5 of the liquid crystal display panel 100A.
  • the pair of comb electrodes 4 a and 5 a are both formed on the first substrate 2.
  • the liquid crystal display panel 100B includes a first horizontal alignment film formed on the first substrate 2 and a second horizontal alignment film formed on the second substrate 3.
  • each horizontal alignment film is subjected to alignment treatment so that the direction of alignment treatment applied to each horizontal alignment film is antiparallel.
  • the liquid crystal display panel 100B controls the alignment state of the nematic liquid crystal material of the liquid crystal layer 1 by a lateral electric field.
  • Such a liquid crystal display panel 100B is called an IPS (In Plane Switching) type liquid crystal display panel.
  • An IPS-type liquid crystal display panel is disclosed in, for example, Japanese Patent Laid-Open No. 8-313938. Further, instead of forming a horizontal alignment film on each of the first substrate 2 and the second substrate 3, a vertical alignment film may be formed on each of the first substrate 2 and the second substrate 3.
  • FIG. 4A is a schematic cross-sectional view illustrating the liquid crystal display panel 100C
  • FIG. 4B is a schematic plan view illustrating the liquid crystal display panel 100C.
  • the liquid crystal display panel 100C shown in FIGS. 4A and 4B is formed over the entire display region 31 of the first substrate 2 instead of forming the pair of comb electrodes 4a and 5a of the liquid crystal display panel 100B.
  • the lower electrode 4b, the insulating layer 7 formed on the lower electrode 4b, and the comb electrode 5b formed on the insulating layer 7 are provided.
  • the liquid crystal display panel 100C controls the alignment state of the nematic liquid crystal material of the liquid crystal layer 1 by a lateral electric field.
  • Such a liquid crystal display panel 100C is called an FFS (Fringe Field Switching) type liquid crystal display panel.
  • a vertical alignment film may be formed on each of the first substrate 2 and the second substrate 3 instead of the horizontal alignment film formed on each of the first substrate 2 and the second substrate 3. Good.
  • FIG. 5A is a schematic plan view for explaining the liquid crystal display panel 100D
  • FIG. 5B is a schematic cross-sectional view taken along the line II-II ′ of FIG. .
  • the liquid crystal display panel 100D is a liquid crystal display panel including a thin film transistor (a-Si TFT) having an amorphous silicon semiconductor layer instead of the p-Si TFT included in the liquid crystal display panel 100A.
  • the a-Si TFT is formed on the first substrate 2 for each pixel.
  • drive circuits 92c and 92d for driving the a-Si TFT are mounted outside the display area 81.
  • the drive circuit 92d is connected to the external circuit through, for example, the FPC 95 in the connection region 82 that is electrically connected to the external circuit.
  • the drive circuit 92d may be connected to an external circuit via an LSI driver, TAB, and COF.
  • the liquid crystal display panel 100D has seal portions 91 between the display area 81 and the drive circuits 92c and 92d. By forming the seal portion 91 in this way, it is possible to prevent the liquid crystal layer 1 from extending in a region where the drive circuits 92c and 92d are mounted when the liquid crystal display panel 100D is formed. Moreover, as shown in FIG. 6, it can change into the structure which forms the seal
  • a large display panel can be manufactured by combining the liquid crystal display panels 100A to 100D described above.
  • the liquid crystal display panels 100A to 100D described above can be used in an electronic device 200 that can be spread like a book.
  • the electronic device 200 includes, for example, a first liquid crystal display panel 100A1 and a second liquid crystal display panel 100A2 that have the same configuration as the liquid crystal display panel 100A.
  • Each of the liquid crystal display panels 100A1 and 100A2 included in the electronic device 200 includes a first side surface where the liquid crystal layer 1 extends among the side surfaces of one liquid crystal display panel 100A1, and a liquid crystal layer among the side surfaces of the other liquid crystal display panel 100A2.
  • the method for manufacturing the liquid crystal display panel 100A includes: (A) preparing a first substrate 2 having a plurality of pixel electrodes 4 and connection regions 82 formed outside the plurality of pixel electrodes 4; (B) Among the plurality of pixel electrodes 4, a part of the seal portion 91 is formed between the pixel electrode 4 located on the outermost edge and between the pixel electrode 4 located on the connection region 82 side and the connection region 81. A step of forming a seal portion 91 so as to surround the plurality of pixel electrodes 4, (C) a plurality of liquid crystal regions 11 having a nematic liquid crystal material, and a liquid crystal region 11 adjacent to each other among the plurality of liquid crystal regions 11. A step of forming the liquid crystal layer 1 having the wall 12 containing a polymer, and a step (D) of cutting off a portion other than a part of the seal portion 91.
  • the liquid crystal display panel 100A is manufactured by such a method.
  • FIG. 8A and FIG. 8B are schematic perspective views for explaining a manufacturing method of the liquid crystal display panel 100A.
  • FIG. 8C is a schematic cross-sectional view taken along the line III-III ′ of FIG.
  • FIG. 9A and FIG. 9C are schematic perspective views for explaining a manufacturing method of the liquid crystal display panel 100A.
  • 9B is a schematic cross-sectional view taken along line IV-IV ′ of FIG. 9A
  • FIG. 9D is taken along line VV ′ of FIG. 9B. It is typical sectional drawing.
  • a first mother substrate 42 and a second mother substrate 43 are prepared.
  • a plurality of TFT substrates 44 are formed on the first mother substrate 42.
  • a p-Si TFT is formed for each pixel by a known method, and a horizontal alignment film is formed by a known method over almost the entire TFT substrate 44.
  • a plurality of color filter substrates 45 having color filter layers are formed on the second mother substrate 43 by a known method, and a horizontal alignment film is formed by a known method over almost the entire color filter substrate 45.
  • a sealing material for example, an ultraviolet curable resin
  • the sealing material 91 is applied so as to surround the display area 81. At this time, a part of the sealing material 91 is formed between the display area 81 and the connection area 82, and the other part is formed away from the display area 81 (for example, separated by 0.2 mm or more).
  • a mixed liquid 35 in which the nematic liquid crystal material and the monomer are mixed is dropped into an area surrounded by the sealing material 91 by an ODF (One Drop Drop Fill) method.
  • the mass ratio is not limited to this, and a mixed solution 35 having a monomer concentration of 10% by mass to 30% by mass may be used.
  • the polymer wall 12 formed from the monomer is a region that does not contribute to display.
  • the monomer concentration is less than 10% by mass
  • the transmittance of the liquid crystal display panel 100A that is, the luminance of display increases, but the mechanical strength of the liquid crystal display panel 100A decreases.
  • the monomer concentration exceeds 30% by mass
  • the mechanical strength of the liquid crystal display panel 100A increases, but the transmittance of the liquid crystal display panel 100A, that is, the display brightness decreases.
  • the sealing material 91 is provided so as to surround the display area 81, the dropped mixed liquid 35 does not leak out of the sealing portion 91.
  • the sealing material 91 and the display region 81 are placed.
  • Each monomer is irradiated with ultraviolet rays to be cured.
  • the seal portion 91 and the liquid crystal layer 1 including the wall 12 including the polymer and the liquid crystal region 11 are obtained.
  • the integrated light amount for curing the sealing material 91 and the monomer is about 1 to 4 J / cm 2 with respect to light having a wavelength of 365 nm, depending on the material.
  • the mother panel on which the first mother substrate 42 and the second mother substrate 43 are bonded together is a liquid crystal display panel 100A ′ by a known method. Divide every time. At this time, portions of the seal portion 91 other than the portion formed between the display region 81 and the connection region 82 are cut off by division. Further, as shown in FIG. 2, at least one of the side surfaces of the second substrate 3 of the divided liquid crystal display panel 100 ⁇ / b> A ′ and the pixel region 31 located at the outermost edge of the plurality of pixel regions 31. And it is preferable to divide
  • the resolution of the human eye is said to be 0.2 mm, and if the distance Ds is less than 0.2 mm, the human eye cannot recognize the frame area and it appears that there is no frame area.
  • the liquid crystal layer 1 has a liquid crystal region 11 partitioned by a wall 12 containing a polymer, a part of the wall 12 located between the adjacent liquid crystal regions 11 of the liquid crystal layer 1 is broken by the division.
  • the liquid crystal material in the liquid crystal region 11 in contact with the broken wall 12 only leaks, and not all the liquid crystal material in the liquid crystal layer 1 leaks, so there is no problem as a display.
  • the side surface of the liquid crystal display panel 100 ⁇ / b> A ′ other than the side surface where the seal portion 91 is formed is sealed with the side surface sealing resin 52.
  • the side sealing resin 52 is made of, for example, an ultraviolet curable resin.
  • polarizing plates 22a and 22b are disposed on the opposite side of the liquid crystal display panel 100A 'from the first substrate 2 and the second substrate 3 on the liquid crystal layer 1 side, respectively.
  • an optical compensation film or the like may be arranged on the opposite side of the first substrate 2 and the second substrate 3 from the liquid crystal layer 1 side.
  • 10 (a) and 10 (b) are schematic perspective views for explaining a modified example of the manufacturing method of the liquid crystal display panel 100A.
  • the first mother substrate 42 and the second mother substrate 43 are prepared.
  • a sealing material (for example, thermosetting resin) 91 ' is applied to each TFT substrate 44 by a known method.
  • the sealing material 91 ′ is applied so as to surround the display area 81.
  • a part of the sealing material 91 ′ is applied between the display area 81 and the connection area 82, and the other part is applied away from the display area 81 (for example, 0.2 mm or more away).
  • the sealing material 91 ′ is applied so as to form an injection port 91 a for injecting the liquid mixture 35 of the liquid crystal material and the monomer.
  • the first mother substrate 42 and the second mother substrate 43 are bonded together by a known method, and the sealing material 91 ′ is cured by a known method to obtain a seal portion 91 ′ (for simplicity, a seal portion 91 ′).
  • the mother panel on which the first mother substrate 42 and the second mother substrate 43 are bonded is divided into strips by a known method, and the sub-mother cell 50 is manufactured.
  • the liquid mixture 35 of the liquid crystal material and the monomer described above is injected into each liquid crystal cell 50A by a vacuum injection method.
  • the injection port 91a is sealed with an ultraviolet curable resin. Thereafter, ultraviolet rays are irradiated to cure the monomer in the mixed solution 35.
  • the strip-shaped sub-mother cell 50 is divided for each liquid crystal display panel, and then the side surface sealing resin 52 is formed, and the polarizing plates 22a and 22b are disposed to manufacture the liquid crystal display panel 100A (see FIG. 1 (b)).
  • FIG. 11A and FIG. 11C are schematic perspective views for explaining a manufacturing method of the liquid crystal display panel 100D.
  • FIG. 11B is a schematic cross-sectional view taken along line VI-VI ′ of FIG. 11A
  • FIG. 11D is taken along line VII-VII ′ of FIG. It is typical sectional drawing.
  • the first mother substrate 42 and the second mother substrate 43 are prepared.
  • a sealing material (for example, an ultraviolet curable resin) 91 is applied to each TFT substrate 44 by a known method.
  • the seal portion 91 is provided so as to surround the display area 81.
  • a part of the sealing material 91 is provided between the display region 81 and the connection region 82 and between the region 92c ′ where the drive circuit 92c is mounted and the display region 81, and the other part is the display region. It is given away from 81 (for example, separated by 0.2 mm or more).
  • the liquid mixture 35 in which the nematic liquid crystal material and the monomer are mixed is dropped into the region surrounded by the sealing material 91 by the ODF method.
  • the sealing material 91 and the monomer are irradiated with ultraviolet rays to be cured.
  • the mother panel on which the first mother substrate 42 and the second mother substrate 43 are bonded together is a liquid crystal display panel 100D ′ by a known method. Divide every time. At this time, a part of the seal part 91 formed between the display area 81 and the connection area 82 and the seal part 91 formed between the display area 81 and the connection area 92c ′ where the drive circuit 92c is mounted. The parts other than the part are cut off by dividing.
  • side surfaces other than the side surface on which the seal portion 91 is formed among the side surfaces of the liquid crystal display panel 100D ′ are sealed with the side surface sealing resin 52.
  • the side sealing resin 52 for example, an ultraviolet curable resin is used.
  • polarizing plates 22a and 22b are disposed on the opposite side of the liquid crystal display panel 100D 'from the first substrate 2 and the second substrate 3 on the liquid crystal layer side, respectively.
  • an optical compensation film or the like may be disposed on the side opposite to the liquid crystal layer side of the first substrate 2 and the second substrate 3 (see FIG. 5B).
  • the liquid crystal display panel 100D is manufactured.
  • the liquid crystal display panels 100A to 100D provide a liquid crystal display panel that is suitable for narrowing the frame area and has high mass production efficiency.
  • liquid crystal display panel suitable for narrowing the frame area.
  • a liquid crystal display panel is suitably used for small and medium devices such as electronic books, mobile phones, and smartphones.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

 液晶表示パネル(100A)は、複数の画素領域(31)を有する表示領域(81)を備えた液晶表示パネルであって、ネマチック液晶材料を有する複数の液晶領域(11)と、複数の液晶領域(11)のうちの隣接する液晶領域(11)の間に高分子を含む壁(12)とを有する液晶層(1)と、液晶層(1)を間に保持する第1基板(2)および第2基板(3)とを有する。液晶層(1)は、液晶表示パネル(100A)の側面のうちの少なくとも1つの側面まで延在されており、第2基板(3)の側面のうちの少なくとも1つの側面と、複数の画素領域(11)のうちの最外縁に位置する画素領域(11)であって、少なくとも1つの側面側に位置する画素領域(11)との距離は、0.2mm未満である。

Description

液晶表示パネル、電子機器および液晶表示パネルの製造方法
 本発明は、液晶表示パネル、電子機器および液晶表示パネルの製造方法に関する。
 液晶表示装置は、軽量、薄型および低消費電力等の利点を有しており、大型テレビジョンだけでなく携帯電話の表示部等の小型の表示装置としても利用されている。
 液晶表示装置は、液晶表示パネル、バックライト装置、液晶表示パネルに各種の電気信号を供給する回路や電源、およびこれらを収容する筐体を備えている。液晶表示パネルは、複数の画素が配列された表示領域と、その周辺の額縁領域とを有している。
 一般的な液晶表示装置の表示領域(アクティブエリア)には、画素電極や薄膜トランジスタ(TFT)などが設けられており、画像や映像などが表示される。一方、額縁領域には、液晶材料を基板間に封止するように基板を貼り合わせるシール部、TFTのゲート電極やソース電極に繋がる配線、および、信号/走査電圧を入力する外部駆動回路に接続させるための端子などが配置されている。本明細書において、TFTのゲート電極やソース電極に繋がる配線、および、信号/走査電圧を入力する外部駆動回路に接続させるための端子などが配置されている領域を接続領域という場合がある。バックライトからの光漏れや、液晶分子の配向の乱れなどに起因するアクティブエリア外周部での表示品位の低下を防止するために、通常、額縁領域にはブラックマスク(遮光部材)が設けられている。このように、額縁領域は表示に寄与しない領域(無効表示部分)であり、液晶表示装置の狭額縁化は年々進んでいるが、額縁領域をなくすことは困難である。
 ここで、一般的な液晶表示パネル(例えば、TN(Twisted Nematic)型の液晶パネル)500の額縁領域81aの狭小化の限界について図12(a)および図12(b)を参照しながら説明する。図12(a)は、液晶表示パネル500の模式的な平面図であり、図12(b)は、図12(a)に示すα部分の模式的な断面図である。
 液晶表示パネル500は、表示領域81と表示領域81の周縁に位置する額縁領域81aとを有する。液晶表示パネル500の表示領域81には複数の画素電極4が形成されている。額縁領域81aは、表示に寄与しない領域である。液晶表示パネル500の額縁領域81aには、液晶層1を囲むように形成されたシール部99が形成されている。額縁領域81aの幅Dsは、シール部99の幅D1と、シール部99に近接する画素電極4とシール部99との距離D2との和で表される。シール部99は、シール材をディスペンサ装置やスクリーン印刷機などによって基板上に所定のパターンを形成するように付与され、もう一枚の基板と貼りあわせた後、シール材を硬化することによって形成される。最終的なシール部99の幅D1は約1mm以上である。
 特許文献1には、一対の基板を所定のパターンを形成するように付与されたシール材を介して貼りあわせた後、シール材とともに基板を分断して、複数の液晶表示パネルを製造する方法が開示されている。シール部99の幅D1を約1mm以下にする方法が開示されている。特許文献1に開示されている方法によれば、シール部99の幅を約1mm以下にできるが、シール部99の幅D1を細くしすぎると強度不足のため、高温高湿下において、シール部99が剥がれるという不良が発生する。特に、シール部99の幅D1が約0.5mm以下になると、上記不良の発生は顕著であり、本出願人が現在量産している液晶表示パネルのシール部99は、0.5mm超の幅を有している。
 次に、液晶表示パネル500の額縁領域81aの幅Dsを約0.5mm以下にすることが困難な理由を説明する。
 液晶表示パネル500において、液晶層1に含まれる液晶材料の配向を維持するために必要な距離D2は、約0.2mm以上である。距離D2が約0.2mm未満であると、シール部99の影響により、液晶材料の配向が乱れ、コントラスト比の低下など表示不良の原因となるからである。従って、額縁領域81aの幅Dsを約0.5mm以下にするには、シール部99の幅D1を約0.3mm以下にしなければならない。また、シール部99の幅D1が約0.1mm以下となると、強度不足によりシール部99が剥がれ、表示不良の原因となる。シール部99を形成するためのディスペンサ装置の精度を考慮すると、シール部99の幅D1を約0.2mm~0.3mm程度に歩留まりよく制御することは非常に困難である。
 一方、特許文献2には、硬化性ビニル化合物を用いた高分子分散型液晶(PDLC)層を備える液晶表示装置が開示されている。特許文献2には、硬化性ビニル化合物から高分子分散型液晶層を形成すると、液晶表示パネル500が有するようなシール部99を形成しなくとも、一対の基板を接着する効果があると記載されている。
特許第3389461号公報 特許第2550627号公報
 しかしながら、特許文献2には、シール部を形成しなくともよい旨の記載はあるが、シール部を有しない液晶表示装置の製造方法は開示されていない。
 本発明は、上記課題を鑑みてなされたものであり、その目的は、額縁領域の狭小化に適し、量産効率のよい液晶表示パネルおよびそのような液晶表示パネルの製造方法を提供することにある。
 本発明の実施形態による液晶表示パネルは、複数の画素領域を有する表示領域を備えた液晶表示パネルであって、ネマチック液晶材料を有する複数の液晶領域と、前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層と、前記液晶層を間に保持する第1基板および第2基板とを有し、前記液晶層は、前記液晶表示パネルの側面のうちの少なくとも1つの側面まで延在されており、前記第2基板の側面のうちの少なくとも1つの側面と、前記複数の画素領域のうちの最外縁に位置する画素領域であって、前記少なくとも1つの側面側に位置する画素領域との距離は、0.2mm未満である。
 ある実施形態において、上述の液晶表示パネルは、前記液晶層と前記第1基板および前記第2基板との間にそれぞれ形成され、それぞれが前記液晶層と接するように形成された第1配向膜および第2配向膜と、前記第1基板および前記第2基板の前記液晶層側とは反対側にそれぞれ配置された偏光板をさらに有する。
 ある実施形態において、前記ネマチック液晶材料は、正の誘電率異方性を有し、前記第1配向膜および前記第2配向膜の少なくとも一方は水平配向膜であり、前記水平配向膜には配向処理が施されており、前記複数の液晶領域は、電圧無印加時において、前記配向処理を施された水平配向膜の界面における液晶分子の面内方位が前記配向処理によって規定された方位と平行である。
 ある実施形態において、前記ネマチック液晶材料は、正の誘電率異方性を有し、前記第1配向膜および前記第2配向膜は、それぞれ垂直配向膜である。
 ある実施形態において、前記ネマチック液晶材料の配向状態は、横電界によって制御される。
 ある実施形態において、上述の液晶表示パネルは、電圧無印加時において、前記第1配向膜側の界面における液晶分子のチルト方位と前記第2配向膜側の界面における液晶分子のチルト方位とが互いに異なる2つの液晶領域を含む。
 ある実施形態において、上述の液晶表示パネルは、前記第1基板と前記偏光板との間および前記第2基板と前記偏光板との間に配置されたλ/4板をさらに有する。
 ある実施形態において、上述の液晶表示パネルは、外部回路に電気的に接続される接続領域を有し、前記接続領域と前記表示領域との間に、前記第1基板と前記第2基板とを接着させるシール部を有する。
 ある実施形態において、上述の液晶表示パネルは、前記表示領域の外側に配置された駆動回路を有し、前記駆動回路と前記表示領域との間に、前記シール部を有する。
 ある実施形態において、前記液晶表示パネルの法線方向から見たとき、前記液晶層の側面のうちの少なくとも一部は、前記第1基板の側面および前記第2基板の側面と整合している。
 ある実施形態において、上述の液晶表示パネルは、前記液晶層の側面、前記第1基板の側面および前記第2基板の側面と接するように形成された側面封止樹脂部をさらに有する。
 本発明の実施形態による電子機器は、それぞれが上述の液晶表示パネルである第1および第2液晶表示パネルを有し、前記第1液晶表示パネルの側面のうち前記液晶層が延在している第1側面と、前記第2液晶表示パネルの側面のうち前記液晶層が延在している第2側面とが互いに隣接するように、前記第1および第2液晶表示パネルが配置されている。
 ある実施形態において、上述の電子機器は、前記第1側面と前記第2側面との境界を軸として折り畳み可能である。
 本発明の実施形態による液晶表示パネルの製造方法は、(A)複数の画素電極と前記複数の画素電極の外側に形成された接続領域とを有する第1基板を用意する工程と、(B)前記複数の画素電極を包囲するシール部であって、前記複数の画素電極のうち最外縁に位置する画素電極であって、前記接続領域側に位置する画素電極と前記接続領域との間に位置する部分を含むシール部を形成する工程と、(C)ネマチック液晶材料を有する複数の液晶領域と、前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層を形成する工程と、(D)前記シール部の一部以外の部分を切り落とす工程とを包含する。
 本発明の実施形態によれば、額縁領域の狭小化に適し、量産効率のよい液晶表示パネルが提供される。
(a)は、本発明による実施形態における液晶表示パネル100Aの模式的な平面図であり、(b)は、図1(a)のI-I’線に沿った液晶表示パネル100Aの模式的な断面図であり、(c)は、液晶表示パネル100Aの液晶層1を説明する模式的な断面図である。 図1(a)の領域Aの拡大図である。 (a)は、本発明による他の実施形態における液晶表示パネル100Bを説明する模式的な断面図であり、(b)は、液晶表示パネル100Bを説明する模式的な平面図である。 (a)は、本発明によるさらに他の実施形態における液晶表示パネル100Cを説明する模式的な断面図であり、(b)は、液晶表示パネル100Cを説明する模式的な平面図である。 (a)は、本発明によるさらに他の実施形態における液晶表示パネル100Dの模式的な平面図であり、(b)は、(a)のII-II’線に沿った液晶表示パネル100Dの模式的な断面図である。 液晶表示パネル100Dの改変例を説明する模式的な平面図である。 (a)および(b)は、電子機器200を説明する模式的な斜視図である。 (a)および(b)は、液晶表示パネル100Aの製造方法を説明する模式的な斜視図であり、(c)は、(b)のIII-III’線に沿った模式的な断面図である。 (a)および(c)は、液晶表示パネル100Aの製造方法を説明する模式的な斜視図であり、(b)は、(a)のIV-IV’線に沿った液晶表示パネル100Aの製造方法を説明する模式的な断面図であり、(d)は、(c)のV-V’線に沿った液晶表示パネル100Aの製造方法を説明する模式的な断面図である。 (a)および(b)は、液晶表示パネル100Aの製造方法の改変例を説明する模式的な斜視図である。 (a)および(c)は、液晶表示パネル100Dの製造方法を説明する模式的な斜視図であり、(b)は、(a)のVI-VI’線に沿った模式的な断面図であり、(d)は、(c)のVII-VII’線に沿った模式的な断面図である。 (a)は、従来の液晶表示パネル500の模式的な平面図であり、(b)は、(a)のαで示した部分の模式的な断面図である。
 以下、図面を参照して、本発明の実施形態による液晶表示パネルを説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
 図1および図2を参照しながら、本発明による実施形態の液晶表示パネル100Aを説明する。図1(a)に、液晶表示パネル100Aの模式的な平面図を示し、図1(b)に、図1(a)のI-I’線に沿った液晶表示パネル100Aの模式的な断面図を示す。図1(c)は、図1(b)に示した液晶層1の一部を拡大した模式的な断面図である。図2は、図1(a)の領域Aを拡大した模式的な平面図である。
 図1(a)、図1(b)および図1(c)に示すように、液晶表示パネル100Aは、複数の画素領域31を有する表示領域81を備える。なお、画素領域31とは、各原色(例えば、青色、緑色、および赤色)を構成する最小単位の領域をいう。さらに、液晶表示パネル100Aは、ネマチック液晶材料を有する複数の液晶領域11と、複数の液晶領域11のうちの隣接する液晶領域11の間に高分子を含む壁12とを有する液晶層1を有する。さらに、液晶表示パネル100Aは、第1基板2および第2基板3を有し、液晶層1を間に保持するように第1基板2および第2基板3は配置されている。液晶層1は、液晶表示パネル100Aの側面のうちの少なくとも1つの側面まで延在している。つまり、液晶表示パネル100Aの表示領域81の法線方向からみたとき、液晶層1の側面のうちの少なくとも一部が第1基板2の側面および第2基板3の側面と整合している。また、高分子を含む壁12が第1基板2および第2基板3の接着に寄与している。さらに、図2に示すように、液晶表示パネル100Aにおいて、シール部91を液晶層1を囲むように形成しなくてもよいので、液晶表示パネル100Aの側面のうち少なくとも1つの側面の近くにまで画素領域31を形成することができる。従って、液晶表示パネル100Aは、表示に寄与しない額縁領域の幅を小さくできる。具体的には、第2基板3の側面のうちの少なくとも1つの側面3aと、複数の画素領域31のうちの最外縁に位置する画素領域31であって、少なくとも1つの側面3a側に位置する画素領域31aとの距離Dsは、0.2mm以下であるであることが好ましい。詳細は後述するが、このような構成を有する液晶表示パネル100Aは、額縁領域の狭小化に適し、量産効率のよい製造方法で製造される。
 液晶表示パネル100Aは、第1基板2および第2基板3上に形成され、液晶層1と接するように形成された少なくとも1つの配向膜(不図示)を有する。液晶表示パネル100Aは、第1基板2上に形成され、液晶層1と接するように形成された第1水平配向膜(例えば、日立化成デュポンマイクロシステムズ社製:品番PLX1400)と、第2基板3上に形成され、液晶層1と接するように形成された第2水平配向膜とを有する。第1水平配向膜および第2水平配向膜は、それぞれ配向処理(例えば、ラビング処理)が施されている。さらに、第1水平配向膜に施された配向処理の方向と第2水平配向膜に施された配向処理の方向とが直交するように、それぞれ配向処理が施されている。つまり、液晶表示パネル100Aは、第1配向膜側の界面における液晶分子のチルト方位と第2配向膜側の界面における液晶分子のチルト方位とが互いに異なる2つの液晶領域を含む。液晶表示パネル100Aは、TN(Twisted Nematic)型の液晶表示パネルである。液晶表示パネル100Aは、第1基板2および第2基板3のそれぞれ液晶層1側とは反対側に配置された偏光板22aおよび22bを有している。なお、このような構成を有する液晶表示パネルは、国際公開第2010/044246号に開示されている。また、液晶表示パネル100Aは、それぞれの配向膜に配向処理を施さず、偏光板22aと第1基板2との間および偏光板22bと第2基板3との間に、それぞれλ/4板を配置した液晶表示パネルに改変し得る。λ/4板と偏光板22aまたは22bとがそれぞれ円偏光板として機能する。このような構成を有する液晶表示パネルは、国際公開第2009/069249号に開示されている。
 液晶表示パネル100Aは、第1基板2上に形成された画素電極4と、第2基板3上に形成されたカラーフィルタ層32と、カラーフィルタ層32上に形成された共通電極5とを有する。なお、表示領域81の外縁は、複数の画素電極4のうちの最外縁に位置する画素電極4で規定される。共通電極5は、表示領域81のほぼ全面にわたり形成され、表示領域81の外側には形成されていないことが好ましい。共通電極5が表示領域81の外側まで形成されると、例えば、第1基板2に形成された電極と短絡するおそれがあるからである。液晶表示パネル100Aは、液晶層1の側面、第1基板2の側面、および第2基板3の側面と接するように形成された側面封止樹脂52を有する。側面封止樹脂52により液晶表示パネル100Aの機械的強度がより高まり、水分等が液晶層1に侵入することを抑制される結果、信頼性が高まる。側面封止樹脂52を設けない場合でも、額縁領域の狭小化の効果は得ることができる。ただし、液晶表示パネル100Aの信頼性の向上の観点からは、側面封止樹脂52を設けたほうが好ましい。側面封止樹脂52は、例えば光硬化性樹脂(例えば、積水化学工業社製、商品名:フォトレックA-780)から形成されている。
 第1基板2上には、画素ごとに、例えば低温ポリシリコン半導体層を有する薄膜トランジスタ(p-SiTFT)(不図示)が形成されおり、p-SiTFTに電気的に接続された駆動回路92aおよび92bが形成されている。駆動回路92aおよび92bは、それぞれ表示領域81の外側に形成されている。さらに、駆動回路92bは、接続領域82において、例えばFPC(Flexible Printed Circuits)95を介して、外部回路に接続されている。FPCの他、LSI(Large Scale Integration)ドライバ、TAB(Tape Automated Bonding)、COF(Chip On Film)を介して、駆動回路92bは、外部回路に接続される場合もある。
 表示領域81と接続領域82との間に、第1基板2と第2基板3とを貼り合わせるシール部91が形成されている。シール部91は、例えば光硬化性樹脂(例えば、積水化学工業社製、商品名:フォトレックS-WB)から形成されている。シール部91を形成することにより、液晶表示パネル100Aを製造する際に液晶層1が接続領域82に入り込むのを防ぐことができ、接続領域82に液晶材料が漏れ出すことを防ぐことができる。シール部91の幅は、例えば約1mmである。なお、液晶材料や高分子材料が接続領域82に漏れ出し、接続領域82が汚染されると、FPC95等の実装不良が発生する。汚染の度合いによっては、別途洗浄工程を設けても改善されないこともあるので、量産時の歩留まりや製造コストを考慮するとシール部91を形成したほうが好ましい。
 上述したように、液晶表示パネル100Aは、第1基板2の液晶層1側とは反対側に配置された偏光板22aと、第2基板3の液晶層1側とは反対側に配置された偏光板22bとを有する。偏光板22aの透過軸が、第1基板2に形成された配向膜に施された配向処理方向と平行になるように偏光板22aを配置することが好ましく、偏光板22bの透過軸が、第2基板3に形成された配向膜に施された配向処理方向と平行になるように偏光板22bを配置することが好ましい。
 次に、図3を参照しながら、本発明による他の実施形態における液晶表示パネル100Bを説明する。液晶表示パネル100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。図3(a)は、液晶表示パネル100Bを説明する模式的な断面図であり、図3(b)は、液晶表示パネル100Bの模式的な平面図である。なお、液晶表示パネル100Bおよび後述する液晶表示パネル100Cは、液晶表示パネル100Aと表示モードが異なる。
 図3(a)および図3(b)に示す液晶表示パネル100Bは、液晶表示パネル100Aの画素電極4および共通電極5の代わりに、一対の櫛歯電極4aおよび5aを有している。一対の櫛歯電極4aおよび5aは、いずれも第1基板2上に形成されている。また、液晶表示パネル100Bも液晶表示パネル100Aと同様に、第1基板2上に形成された第1水平配向膜と第2基板3上に形成された第2水平配向膜とを有する。しかしながら、液晶表示パネル100Bは、液晶表示パネル100Aと異なり、それぞれの水平配向膜に施される配向処理の方向が反平行になるようにそれぞれの水平配向膜に配向処理が施されている。液晶表示パネル100Bは、横電界により液晶層1のネマチック液晶材料の配向状態を制御する。このような液晶表示パネル100Bは、IPS(In Plane Switching)型駆動方式の液晶表示パネルと呼ばれる。IPS型駆動方式の液晶表示パネルは、例えば特開平8-313938号公報に開示されている。また、第1基板2および第2基板3にそれぞれ水平配向膜を形成する代わりに、第1基板2および第2基板3にそれぞれ垂直配向膜を形成してもよい。
 次に、図4を参照しながら、本発明による他の実施形態における液晶表示パネル100Cを説明する。液晶表示パネル100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。図4(a)は、液晶表示パネル100Cを説明する模式的な断面図であり、図4(b)は、液晶表示パネル100Cを説明する模式的な平面図である。
 図4(a)および図4(b)に示す液晶表示パネル100Cは、液晶表示パネル100Bの一対の櫛歯電極4aおよび5aを形成する代わりに、第1基板2の表示領域31の全体にわたり形成された下電極4bと、下電極4b上に形成された絶縁層7と、絶縁層7上に形成された櫛歯電極5bとを有している。液晶表示パネル100Cも液晶表示パネル100Bと同様に、横電界により液晶層1のネマチック液晶材料の配向状態を制御する。このような液晶表示パネル100Cは、FFS(Fringe Field Switching)型駆動方式の液晶表示パネルと呼ばれる。また、液晶表示パネル100Cにおいて、第1基板2および第2基板3のそれぞれに形成された水平配向膜の代わりに、第1基板2および第2基板3のそれぞれに垂直配向膜を形成してもよい。
 次に、図5を参照しながら、本発明による他の実施形態における液晶表示パネル100Dを説明する。液晶表示パネル100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。図5(a)は、液晶表示パネル100Dを説明する模式的な平面図であり、図5(b)は、図5(a)のII-II’線に沿った模式的な断面図である。
 液晶表示パネル100Dは、液晶表示パネル100Aが有するp-SiTFTの代わりにアモルファスシリコン半導体層を有する薄膜トランジスタ(a-SiTFT)を備える液晶表示パネルである。a-SiTFTは画素ごとに第1基板2上に形成されている。さらに、液晶表示パネル100Dは、a-SiTFTを駆動させる駆動回路92cおよび92dが表示領域81の外側に実装されている。駆動回路92dは、外部回路に電気的に接続される接続領域82において、例えばFPC95を介して、外部回路に接続されている。FPCの他、LSIドライバ、TAB、COFを介して、駆動回路92dは、外部回路に接続される場合もある。液晶表示パネル100Dは、表示領域81と駆動回路92cおよび92dとの間にそれぞれシール部91を有している。このようにシール部91を形成すると、液晶表示パネル100Dを形成する際に駆動回路92cおよび92dが実装される領域に液晶層1が延在することを防ぐことができる。また、図6に示すように、液晶表示パネル100Dの使用用途により、コの字(U字)状にシール部91を形成する構成に改変し得る。
 例えば、上述した液晶表示パネル100A~100Dを組み合わせて大型の表示パネルを製造できる。この他、図7(a)および図7(b)に示すように、上述した液晶表示パネル100A~100Dは、本のように見開き可能な電子機器200に利用され得る。電子機器200は、例えば、液晶表示パネル100Aと同じ構成を有する第1液晶表示パネル100A1と第2液晶表示パネル100A2とを有する。電子機器200が有する各液晶表示パネル100A1および100A2は、一方の液晶表示パネル100A1の側面のうち液晶層1が延在している第1側面と、他方の液晶表示パネル100A2の側面のうち液晶層1が延在している第2側面とが互いに隣接するように、配置されている。このような電子機器200では、各液晶表示パネル100A1および100A2を配置しても、1つの液晶表示パネルのような連続的な表示が可能となる。また、第1側面と第2側面との境界T1を軸として折り畳み可能にすれば、電子機器200の表示画面の大型化が可能であって、かつ携帯性に優れる。
 次に、液晶表示パネル100Aの製造方法を説明する。
 本発明の実施形態による液晶表示パネル100Aの製造方法は、(A)複数の画素電極4と複数の画素電極4の外側に形成された接続領域82とを有する第1基板2を用意する工程と、(B)複数の画素電極4のうち最外縁に位置する画素電極4であって、接続領域82側に位置する画素電極4と接続領域81との間にシール部91の一部を形成し、複数の画素電極4を囲むようにシール部91を形成する工程と、(C)ネマチック液晶材料を有する複数の液晶領域11と、複数の液晶領域11のうちの隣接する液晶領域11の間に高分子を含む壁12とを有する液晶層1を形成する工程と、(D)シール部91の一部以外の部分を切り落とす工程とを包含する。このような方法により、液晶表示パネル100Aは、製造される。
 次に、図8および図9を参照しながら、本発明の実施形態による液晶表示パネル100Aの製造方法を具体的に説明する。図8(a)および図8(b)は、液晶表示パネル100Aの製造方法を説明する模式的な斜視図である。図8(c)は、図8(b)のIII-III’線に沿った模式的な断面図である。図9(a)および図9(c)は、液晶表示パネル100Aの製造方法を説明する模式的な斜視図である。図9(b)は、図9(a)のIV-IV’線に沿った模式的な断面図であり、図9(d)は、図9(b)のV-V’線に沿った模式的な断面図である。
 図8(a)に示すように、第1マザー基板42および第2マザー基板43を用意する。第1マザー基板42には、複数のTFT基板44が形成されている。複数のTFT基板44のそれぞれには、例えば、画素ごとにp-SiTFTが公知の方法で形成され、TFT基板44のほぼ全体にわたり水平配向膜が公知の方法により形成されている。第2マザー基板43には、カラーフィルタ層を有する複数のカラーフィルタ基板45が公知の方法で形成され、カラーフィルタ基板45のほぼ全体にわたり水平配向膜が公知の方法で形成されている。
 次に、図8(b)に示すように、TFT基板44ごとに、シール材(例えば、紫外線硬化樹脂)91(簡単のために、シール部91と同じ参照符号を付す。)を公知の方法で付与する。シール材91は表示領域81を囲むように付与される。このとき、シール材91の一部は表示領域81と接続領域82との間に形成され、それ以外の部分は表示領域81から離されて(例えば、0.2mm以上離されて)形成される。
 次に、図8(c)に示すように、ネマチック液晶材料とモノマーとが混合された混合液35をODF(One Drop Fill)法により、シール材91で囲まれた領域内に滴下させる。このとき、ネマチック液晶材料とモノマーとの質量比は、80:20(ネマチック液晶材料:モノマー=80:20)である。質量比はこれに限定されず、モノマー濃度が10質量%以上30質量%以下である混合液35を用いてもよい。モノマーから形成される高分子の壁12は、表示に寄与しない領域である。したがって、モノマー濃度が10質量%未満であると、液晶表示パネル100Aの透過率、つまり表示の輝度が高くなるが、液晶表示パネル100Aの機械的な強度が低下する。モノマー濃度が30質量%超であると、液晶表示パネル100Aの機械的な強度が高くなるが、液晶表示パネル100Aの透過率、つまり表示の輝度が低くなる。また、シール材91は表示領域81を囲むように付与されているので、滴下した混合液35がシール部91の外に漏れ出すことがない。
 次に、図9(a)および図9(b)に示すように、公知の方法で、第1マザー基板42と第2マザー基板43とを貼り合わせた後、シール材91および表示領域81内のモノマーに紫外線を照射して、それぞれを硬化させる。その結果、シール部91、および高分子を含む壁12と液晶領域11とを含む液晶層1が得られる。なお、シール材91およびモノマーを硬化させる積算光量は、材料にもよるが波長365nmの光に対し1~4J/cm2程度である。
 次に、図9(c)および図9(d)に示すように、第1マザー基板42と第2マザー基板43とが貼りあわされたマザーパネルを、公知の方法で、液晶表示パネル100A’ごとに分断する。このとき、シール部91のうち表示領域81と接続領域82との間に形成された部分以外の部分は、分断により切り落とされる。また、図2に示したように、分断された液晶表示パネル100A’の第2基板3の側面のうちの少なくとも1つの側面と、複数の画素領域31のうちの最外縁に位置する画素領域31であって、少なくとも1つの側面側に位置する画素領域82aとの距離Dsが、0.2mm未満となるように、分断を行うことが好ましい。人間の目の分解能は0.2mmといわれており、距離Dsが、0.2mm未満であると、人の目が額縁領域を認識できず、額縁領域が無いように見えるからである。なお、液晶層1は高分子を含む壁12で区画された液晶領域11を有しているので、分断により液晶層1の隣接する液晶領域11の間に位置する壁12の一部が破壊されても、破壊された壁12に接した液晶領域11内の液晶材料が漏れ出すだけであり、液晶層1内のすべての液晶材料が漏れ出すということはないので、表示として問題はない。
 次に、図1(b)に示したように、液晶表示パネル100A’の側面のうちシール部91が形成されている側面以外の側面を、側面封止樹脂52にて封止する。側面封止樹脂52は、例えば、紫外線硬化性樹脂から形成されている。その後、液晶表示パネル100A’の第1基板2および第2基板3の液晶層1側とは反対側にそれぞれ偏光板22aおよび22bを配置する。なお、偏光板22aおよび22bの他、光学補償フィルムなどを第1基板2および第2基板3の液晶層1側とは反対側に配置してもよい。
 上述した製造方法では、混合液35をODF法にて滴下する液晶表示パネルの製造方法を説明したが、混合液35を真空注入法にて注入させて液晶表示パネルを製造する場合、上記製造方法は、以下のように改変し得る。
 図10(a)および図10(b)は、液晶表示パネル100Aの製造方法の改変例を説明する模式的な斜視図である。
 まず、上述したように、第1マザー基板42および第2マザー基板43を用意する。
 次に、図10(a)に示すように、TFT基板44ごとに、シール材(例えば、熱硬化樹脂)91’を公知の方法で付与する。シール材91’は表示領域81を囲むように付与される。このとき、シール材91’の一部は表示領域81と接続領域82との間に付与され、それ以外の部分は表示領域81から離されて(例えば、0.2mm以上離されて)付与される。また、シール材91’は、液晶材料とモノマーとの混合液35を注入させる注入口91aが形成されるように付与される。
 次に、上述したように、第1マザー基板42と第2マザー基板43とを公知の方法で貼りあわせ、公知の方法で、シール材91’を硬化させてシール部91’(簡単のためシール材91’と同じ参照符号を付す。)を形成する。
 次に、図10(b)に示すように。第1マザー基板42と第2マザー基板43とが貼りあわされたマザーパネルを短冊状に公知の方法で分断し、副マザーセル50を製造する。
 次に、上述した液晶材料とモノマーとの混合液35を真空注入法にて、それぞれの液晶セル50Aに注入させる。混合液35を注入した後、注入口91aを紫外線硬化樹脂にて封止する。その後、紫外線を照射させて、混合液35中のモノマーを硬化させる。
 次に、短冊状の副マザーセル50を液晶表示パネルごとに分断し、その後、側面封止樹脂52を形成し、偏光板22aおよび22b等を配置して、液晶表示パネル100Aは製造される(図1(b)参照)。
 次に、図11を参照しながら、本発明による他の実施形態における液晶表示パネル100Dの製造方法を説明する。また、以下に示す方法は、上述した液晶材料とモノマーとの混合液35をODF法にて滴下させて液晶表示パネル100Dを製造する方法を説明する。図11(a)および図11(c)は、液晶表示パネル100Dの製造方法を説明する模式的な斜視図である。図11(b)は、図11(a)のVI-VI’線に沿った模式的な断面図であり、図11(d)は、図11(c)のVII-VII’線に沿った模式的な断面図である。
 上述したように、第1マザー基板42および第2マザー基板43を用意する。
 次に、図11(a)および図11(b)に示すように、TFT基板44ごとに、シール材(例えば、紫外線硬化樹脂)91を公知の方法で付与する。シール部91は表示領域81を囲むように付与される。このとき、シール材91の一部は表示領域81と接続領域82との間、および駆動回路92cが実装される領域92c’と表示領域81との間に付与され、それ以外の部分は表示領域81から離されて(例えば、0.2mm以上離されて)付与される。
 次に、上述したように、ネマチック液晶材料とモノマーとが混合された混合液35をODF法により、シール材91で囲まれた領域内に滴下させる。
 次に、公知の方法で、第1マザー基板42と第2マザー基板43とを貼り合わせた後、シール材91およびモノマーに紫外線を照射して、それぞれを硬化させる。
 次に、図11(c)および図11(d)に示すように、第1マザー基板42と第2マザー基板43とが貼りあわされたマザーパネルを、公知の方法で、液晶表示パネル100D’ごとに分断する。このとき、表示領域81と接続領域82との間に形成されたシール部91の一部および駆動回路92cが実装される接続領域92c’と表示領域81との間に形成されたシール部91の一部以外の部分は、分断により切り落とされる。
 次に、液晶表示パネル100D’の側面のうちシール部91が形成されている側面以外の側面を、側面封止樹脂52にて封止する。側面封止樹脂52は、例えば、紫外線硬化性樹脂を用いる。その後、液晶表示パネル100D’の第1基板2および第2基板3の液晶層側とは反対側にそれぞれ偏光板22aおよび22bを配置する。なお、偏光板22aおよび22bの他、光学補償フィルムなどを第1基板2および第2基板3の液晶層側とは反対側に配置してもよい(図5(b)参照)。
 以上により、液晶表示パネル100Dが製造される。
 以上、本発明の実施形態による液晶表示パネル100A~100Dにより、額縁領域の狭小化に適し、量産効率のよい液晶表示パネルが提供される。
 本発明の実施形態によれば、額縁領域の狭小化に適した液晶表示パネルを提供できる。特に、このような液晶表示パネルは、例えば、電子ブック、携帯電話およびスマートフォンなどの中小型のデバイスに好適に用いられる。
 1   液晶層
 2、3   基板
 4   画素電極
 5   共通電極
 11   液晶領域
 12   壁
 22a、22b   偏光板
 32   カラーフィルタ層
 52   側面封止樹脂
 81   表示領域
 82   接続領域
 100A   液晶表示パネル

Claims (14)

  1.  複数の画素領域を有する表示領域を備えた液晶表示パネルであって、
     ネマチック液晶材料を有する複数の液晶領域と、前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層と、
     前記液晶層を間に保持する第1基板および第2基板とを有し、
     前記液晶層は、前記液晶表示パネルの側面のうちの少なくとも1つの側面まで延在されており、
     前記第2基板の側面のうちの少なくとも1つの側面と、前記複数の画素領域のうちの最外縁に位置する画素領域であって、前記少なくとも1つの側面側に位置する画素領域との距離は、0.2mm未満である、液晶表示パネル。
  2.  前記液晶層と前記第1基板および前記第2基板との間にそれぞれ形成され、それぞれが前記液晶層と接するように形成された第1配向膜および第2配向膜と、
     前記第1基板および前記第2基板の前記液晶層側とは反対側にそれぞれ配置された偏光板をさらに有する、請求項1に記載の液晶表示パネル。
  3.  前記ネマチック液晶材料は、正の誘電率異方性を有し、
     前記第1配向膜および前記第2配向膜の少なくとも一方は水平配向膜であり、
     前記水平配向膜には配向処理が施されており、
     前記複数の液晶領域は、電圧無印加時において、前記配向処理を施された水平配向膜の界面における液晶分子の面内方位が前記配向処理によって規定された方位と平行である、請求項2に記載の液晶表示パネル。
  4.  前記ネマチック液晶材料は、正の誘電率異方性を有し、
     前記第1配向膜および前記第2配向膜は、それぞれ垂直配向膜である、請求項2に記載の液晶表示パネル。
  5.  前記ネマチック液晶材料の配向状態は、横電界によって制御される、請求項2から4のいずれかに記載の液晶表示パネル。
  6.  電圧無印加時において、前記第1配向膜側の界面における液晶分子のチルト方位と前記第2配向膜側の界面における液晶分子のチルト方位とが互いに異なる2つの液晶領域を含む、請求項3に記載の液晶表示パネル。
  7.  前記第1基板と前記偏光板との間および前記第2基板と前記偏光板との間に配置されたλ/4板をさらに有する、請求項1に記載の液晶表示パネル。
  8.  外部回路に電気的に接続される接続領域を有し、
     前記接続領域と前記表示領域との間に、前記第1基板と前記第2基板とを接着させるシール部を有する、請求項1から7のいずれかに記載の液晶表示パネル。
  9.  前記表示領域の外側に配置された駆動回路を有し、
     前記駆動回路と前記表示領域との間に、前記シール部を有する、請求項8に記載の液晶表示パネル。
  10.  前記液晶表示パネルの法線方向から見たとき、前記液晶層の側面のうちの少なくとも一部は、前記第1基板の側面および前記第2基板の側面と整合している、請求項1から9のいずれかに記載の液晶表示パネル。
  11.  前記液晶層の側面、前記第1基板の側面および前記第2基板の側面と接するように形成された側面封止樹脂部をさらに有する、請求項10に記載の液晶表示パネル。
  12.  それぞれが請求項1から11のいずれかに記載の液晶表示パネルである第1および第2液晶表示パネルを有し、
     前記第1液晶表示パネルの側面のうち前記液晶層が延在している第1側面と、前記第2液晶表示パネルの側面のうち前記液晶層が延在している第2側面とが互いに隣接するように、前記第1および第2液晶表示パネルが配置されている、電子機器。
  13.  前記第1側面と前記第2側面との境界を軸として折り畳み可能な、請求項12に記載の電子機器。
  14.  (A)複数の画素電極と前記複数の画素電極の外側に形成された接続領域とを有する第1基板を用意する工程と、
     (B)前記複数の画素電極を包囲するシール部であって、前記複数の画素電極のうち最外縁に位置する画素電極であって、前記接続領域側に位置する画素電極と前記接続領域との間に位置する部分を含むシール部を形成する工程と、
     (C)ネマチック液晶材料を有する複数の液晶領域と、前記複数の液晶領域のうちの隣接する液晶領域の間に高分子を含む壁とを有する液晶層を形成する工程と、
     (D)前記シール部の一部以外の部分を切り落とす工程とを包含する液晶表示パネルの製造方法。
PCT/JP2012/068843 2011-08-02 2012-07-25 液晶表示パネル、電子機器および液晶表示パネルの製造方法 WO2013018619A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/236,128 US20140168581A1 (en) 2011-08-02 2012-07-25 Lcd panel, electronic device, and method for producing lcd panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-169565 2011-08-02
JP2011169565 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013018619A1 true WO2013018619A1 (ja) 2013-02-07

Family

ID=47629145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068843 WO2013018619A1 (ja) 2011-08-02 2012-07-25 液晶表示パネル、電子機器および液晶表示パネルの製造方法

Country Status (2)

Country Link
US (1) US20140168581A1 (ja)
WO (1) WO2013018619A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215492A (ja) * 2014-05-12 2015-12-03 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
JP2017102452A (ja) * 2015-11-30 2017-06-08 エルジー ディスプレイ カンパニー リミテッド ディスプレイ
JP2017102451A (ja) * 2015-11-30 2017-06-08 エルジー ディスプレイ カンパニー リミテッド ディスプレイ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100153B2 (ja) * 2013-12-11 2017-03-22 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
CN105137671B (zh) * 2015-10-12 2018-09-07 京东方科技集团股份有限公司 液晶盒、液晶盒的制备方法以及显示面板
KR20210027626A (ko) 2019-08-29 2021-03-11 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287241A (ja) * 1994-02-23 1995-10-31 Sharp Corp 液晶表示素子及びその製造方法
JPH09222613A (ja) * 1996-02-16 1997-08-26 Matsushita Electric Ind Co Ltd 液晶パネル
JPH09255706A (ja) * 1996-03-26 1997-09-30 Sharp Corp 光重合開始剤
JP2003177408A (ja) * 2001-10-02 2003-06-27 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2003195273A (ja) * 2001-12-21 2003-07-09 Dainippon Printing Co Ltd 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473450A (en) * 1992-04-28 1995-12-05 Sharp Kabushiki Kaisha Liquid crystal display device with a polymer between liquid crystal regions
JP3271693B2 (ja) * 1996-04-05 2002-04-02 シャープ株式会社 液晶表示素子の製造方法
KR100218580B1 (ko) * 1996-07-09 1999-09-01 구자홍 고 밀도 대형 액정 표시 장치 제조 방법
JPH10153785A (ja) * 1996-09-26 1998-06-09 Toshiba Corp 液晶表示装置
JPH11202349A (ja) * 1998-01-12 1999-07-30 Semiconductor Energy Lab Co Ltd 表示装置
JP2002162633A (ja) * 2000-11-27 2002-06-07 Canon Inc 液晶素子
JP4379919B2 (ja) * 2005-03-14 2009-12-09 セイコーエプソン株式会社 表示装置の製造方法および電子機器
BRPI0914181A2 (pt) * 2008-09-12 2019-03-12 Sharp Kk método de fabricação de painel de vídeo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287241A (ja) * 1994-02-23 1995-10-31 Sharp Corp 液晶表示素子及びその製造方法
JPH09222613A (ja) * 1996-02-16 1997-08-26 Matsushita Electric Ind Co Ltd 液晶パネル
JPH09255706A (ja) * 1996-03-26 1997-09-30 Sharp Corp 光重合開始剤
JP2003177408A (ja) * 2001-10-02 2003-06-27 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2003195273A (ja) * 2001-12-21 2003-07-09 Dainippon Printing Co Ltd 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215492A (ja) * 2014-05-12 2015-12-03 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
JP2017102452A (ja) * 2015-11-30 2017-06-08 エルジー ディスプレイ カンパニー リミテッド ディスプレイ
JP2017102451A (ja) * 2015-11-30 2017-06-08 エルジー ディスプレイ カンパニー リミテッド ディスプレイ
US10288919B2 (en) 2015-11-30 2019-05-14 Lg Display Co., Ltd. Irregular shape display device having hole
US10371973B2 (en) 2015-11-30 2019-08-06 Lg Display Co., Ltd. Irregular shape display device having hole

Also Published As

Publication number Publication date
US20140168581A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP5107905B2 (ja) 液晶パネルの製造方法
US9664948B2 (en) Liquid crystal display
US8274635B2 (en) Display device with sufficient adhesive strength for sealing material
US9298052B2 (en) Display apparatus
JP6011133B2 (ja) 液晶表示装置
KR100220550B1 (ko) 액정 표시 패널 및 액정 표시 장치
WO2013018619A1 (ja) 液晶表示パネル、電子機器および液晶表示パネルの製造方法
US20180173033A1 (en) Method of producing display device, and display device
WO1997000462A1 (fr) Afficheur a cristaux liquides convenant a un cadre etroit
US20090015779A1 (en) Liquid crystal display panel and method of manufacturing same
US20040252266A1 (en) Liquid crystal display device
KR102348373B1 (ko) 액정 표시 장치
KR101107165B1 (ko) 액정 표시 패널
KR20110101906A (ko) 액정 표시 장치
JP5042467B2 (ja) 液晶表示装置および液晶パネル
US20100053533A1 (en) System for displaying images and manufacturing method of the same
JP2010266711A (ja) 液晶表示装置及びその製造方法
WO2013018617A1 (ja) 液晶表示パネル、電子機器および液晶表示パネルの製造方法
WO2016157399A1 (ja) 液晶パネル及び液晶表示装置
WO2013042705A1 (ja) 液晶表示装置および液晶表示装置の製造方法
WO2013038984A1 (ja) 液晶表示パネルおよび液晶表示装置
JP4362220B2 (ja) Uvキュアラブル液晶を用いた液晶セルの製造方法
KR20130026072A (ko) 액정표시장치 및 이의 제조방법
KR20100006462A (ko) 액정표시패널 및 그 제조방법
JP4200721B2 (ja) 電気光学装置の製造方法、電気光学装置、および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236128

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP