WO2016157399A1 - 液晶パネル及び液晶表示装置 - Google Patents

液晶パネル及び液晶表示装置 Download PDF

Info

Publication number
WO2016157399A1
WO2016157399A1 PCT/JP2015/060057 JP2015060057W WO2016157399A1 WO 2016157399 A1 WO2016157399 A1 WO 2016157399A1 JP 2015060057 W JP2015060057 W JP 2015060057W WO 2016157399 A1 WO2016157399 A1 WO 2016157399A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
array substrate
region
groove
crystal panel
Prior art date
Application number
PCT/JP2015/060057
Other languages
English (en)
French (fr)
Inventor
希望 渡辺
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2015/060057 priority Critical patent/WO2016157399A1/ja
Publication of WO2016157399A1 publication Critical patent/WO2016157399A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • a liquid crystal layer is sealed with a sealing material between an array substrate and a counter substrate, and a plurality of grooves spaced apart from each other in the width direction of the sealing region are formed in the insulating layer in the sealing region where the sealing material is formed on the array substrate.
  • the present invention relates to a liquid crystal panel that is formed along the length direction of the seal region and includes a stopper layer for preventing the wiring from being exposed at the bottom of the groove, and a liquid crystal display device including the liquid crystal panel.
  • the liquid crystal display device includes a liquid crystal panel and a backlight unit provided on the back side of the liquid crystal panel.
  • the liquid crystal panel is configured by bonding a transparent glass array substrate and a transparent glass counter substrate disposed opposite to the array substrate with a sealing material, and a liquid crystal material is sealed between the substrates.
  • the counter substrate is slightly smaller than the array substrate, whereby a drive circuit is mounted via the exposed array substrate terminals and SOF (System (On Film).
  • the liquid crystal panel includes a display area that displays an image and a non-display area that surrounds the display area. In the display area, a large number of pixels are arranged in a matrix.
  • the array substrate is provided with a pixel electrode and a switching element such as a thin film transistor (TFT) connected to the pixel electrode corresponding to each pixel.
  • a common electrode is provided on the counter substrate so as to cover at least the entire surface of the display region. A current flows through each of the pixel electrodes in synchronization with the on / off of the switching element.
  • the common electrode provided on the counter substrate is electrically connected to the common transition electrode provided on the array substrate, and a common potential is applied to the common electrode from the common transition electrode lead line through the common transition electrode.
  • An alignment film for aligning liquid crystals at an applied voltage of 0 V at a predetermined angle is formed on the surface of the array substrate in contact with the liquid crystal layer so as to cover at least the display area.
  • an alignment film is formed on the surface of the counter substrate in contact with the liquid crystal layer so as to cover at least the display region.
  • the alignment film can be formed, for example, by performing a rubbing process or a photo-alignment process on the surface of a resin film such as polyimide formed by using a flexographic printing method or an inkjet method.
  • An inkjet method is frequently used for forming a resin film such as a polyimide film because of many advantages.
  • the alignment film is formed by the ink jet method, a resin having a lower viscosity is used as a raw material for the alignment film than in the case of the flexographic printing method. Therefore, the alignment film is formed in a region around the region to be printed (display region). Raw materials are likely to leak. For this reason, when the non-display area around the display area is small and a large space between the display area and the sealant area (seal area) cannot be secured, the alignment film flows out to the seal area.
  • a common transition electrode is provided in the sealing region, and the common transition electrode and the common electrode are electrically connected through a transfer material such as conductive beads mixed in the sealing material.
  • Patent Document 1 discloses that the alignment film is spread by providing a plurality of grooves for preventing the alignment film material from leaking and spreading in the insulating layer in the seal region of the array substrate. A liquid crystal display device that suppresses covering the common transition electrode is disclosed.
  • a plurality of first grooves provided along the length direction of the seal region and spaced apart from each other in the width direction of the seal region, and a region where the common transition electrode of the seal region is provided,
  • a plurality of second grooves provided along the width direction of the seal region and separated from each other in the length direction of the seal region and a wiring made of a conductive film are prevented from being exposed at the bottom of the first groove.
  • a stopper layer made of a conductive film.
  • the surface of the first groove is covered with a transparent electrode, and the stopper layer and the transparent electrode are in a floating state (insulated from the power source and the ground). State). Therefore, if the stopper layer and the transparent electrode made of conductive film are short-circuited by conductive dust, ESD (electrostatic discharge), etc., the stopper layer and the transparent electrode are not in a floating state and become part of the wiring. As a result, there is a case where the common electrode is electrically connected, and there is a problem in that a display defect due to current leakage occurs.
  • the present invention has been made in view of such circumstances, and has a plurality of grooves provided in the region of the sealing material of the array substrate to prevent the spread of the raw material of the alignment film.
  • An object of the present invention is to provide a liquid crystal panel capable of suppressing display defects caused by the above.
  • the present invention also has a plurality of grooves provided in the area of the sealing material of the array substrate for preventing the spread of the raw material of the alignment film, and a liquid crystal capable of suppressing display defects caused by the grooves.
  • An object of the present invention is to provide a liquid crystal display device including a panel.
  • a liquid crystal panel includes an array substrate having a display region and a non-display region surrounding the display region, a counter substrate disposed facing the array substrate and having a common electrode formed thereon, and the display region.
  • a sealing material that is provided in the non-display area so as to surround and adheres the array substrate and the counter substrate; a liquid crystal layer that is sealed between the array substrate and the counter substrate by the seal material; and on the array substrate A plurality of grooves formed along the length direction of the seal region, spaced apart from each other in the width direction of the seal region, and provided at the bottom of the groove, in the insulating layer of the seal region where the seal material is formed; And a stopper layer formed of a semiconductor layer.
  • the array substrate has a display region and a non-display region surrounding the display region, and the counter substrate is disposed to face the array substrate to form a common electrode.
  • a sealing material is provided in the non-display area so as to surround the display area, and the array substrate and the counter substrate are bonded together, and the liquid crystal layer is sealed between the array substrate and the counter substrate with the seal material.
  • the liquid crystal panel according to the present invention is characterized in that the groove is formed by etching the insulating layer by half exposure.
  • the liquid crystal panel according to the present invention is characterized in that the groove is configured such that an alignment film formed on the surface of the sealing material or the liquid crystal layer side of the array substrate directly covers the inner surface. .
  • the liquid crystal display device includes the liquid crystal panel according to the present invention.
  • the liquid crystal panel according to the present invention has a plurality of grooves provided in the region of the sealing material of the array substrate for preventing the spread of the raw material of the alignment film, and a display defect caused by the grooves. Can be realized.
  • the liquid crystal display device has a plurality of grooves provided in the region of the sealing material of the array substrate to prevent the raw material of the alignment film from spreading, and the display generated due to the grooves.
  • a liquid crystal display device including a liquid crystal panel that can suppress defects can be realized.
  • FIG. 3 is an exploded cross-sectional view showing the essential part of the display area of the liquid crystal panel and the liquid crystal display device according to the present invention in an exploded manner. It is a top view which shows the principal part structure of the Example of the liquid crystal panel and liquid crystal display device which concerns on this invention.
  • FIG. 3 is a cross-sectional view showing an example of a cross section taken along line II-II in FIG. 2. It is a top view which shows the example of schematic structure of an array board
  • FIG. 7 is a cross-sectional view showing an example of a cross section of the liquid crystal panel taken along line VI-VI in FIG. 6.
  • FIG. 7 is a cross-sectional view showing another example of the cross section of the liquid crystal panel taken along line VI-VI in FIG. 6.
  • FIG. 7 is a cross-sectional view showing an example of a cross section of the liquid crystal panel taken along line VII-VII in FIG. 6.
  • FIG. 8 is a cross-sectional view illustrating an example of a cross section of the liquid crystal panel taken along line VIII-VIII in FIG. 6.
  • FIG. 8 is a cross-sectional view showing another example of the cross section of the liquid crystal panel taken along line VIII-VIII in FIG. 6.
  • FIG. 7 is a cross-sectional view showing another example of the cross section of the liquid crystal panel taken along line VI-VI in FIG. 6.
  • FIG. 1 is an exploded cross-sectional view showing an essential cross section of a display area of an embodiment of a liquid crystal panel and a liquid crystal display device according to the present invention.
  • This liquid crystal display device includes a rectangular liquid crystal panel 50, a backlight unit 18 that irradiates light to the liquid crystal panel 50 from the back side, a polarizing plate 10 a that covers the front side of the liquid crystal panel 50, the liquid crystal panel 50, and the backlight unit. And a polarizing plate 10b disposed between the two.
  • the liquid crystal panel 50 is configured by enclosing a liquid crystal layer 16 between a pair of substrates 20 and 30 with a predetermined gap therebetween.
  • the array substrate 20 on the back side is schematically configured by switching elements 17 such as TFTs (Thin Film Transistors) connected to source lines and gate lines orthogonal to each other on the surface of the glass substrate 21 on the liquid crystal layer 16 side, and switching.
  • Transparent electrodes 19 connected to the element 17 are arranged, and an alignment film 27 is provided so as to cover them.
  • the counter substrate 30 on the front side is roughly a color display in which color filters such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement on the surface of the glass substrate 31 on the liquid crystal layer 16 side.
  • a filter 32, a transparent common electrode 34, and an alignment film 35 are stacked.
  • a spacer 15 is mixed in order to keep a predetermined distance between the array substrate 20 and the counter substrate 30.
  • FIG. 2 is a plan view showing a main configuration of an embodiment of a liquid crystal panel and a liquid crystal display device according to the present invention
  • FIG. 3 is a cross-sectional view showing an example of a cross section taken along line II-II in FIG.
  • a frame-like non-display area F is provided at the peripheral edge of the array substrate 20 and the counter substrate 30, and an area surrounded by the non-display area F is a display area D.
  • the array substrate 20 and the counter substrate 30 are bonded together by an annular sealing material 40 arranged in a frame shape over the entire circumference of the non-display area F, and the area where the sealing material 40 is bonded is defined as a sealing area SL.
  • a liquid crystal layer 16 is provided in a space surrounded by the sealing material 40 between the array substrate 20 and the counter substrate 30, and constitutes a display region D.
  • a large number of pixels are arranged in a matrix.
  • a part of the non-display area F around the display area D of the array substrate 20 protrudes from the outer edge of the counter substrate 30 and serves as a terminal area T for attaching external connection terminals such as mounted components.
  • FIG. 4 is a plan view showing an example of a schematic configuration of the array substrate 20.
  • FIG. 5 is an enlarged view showing the area AR1 of FIG. 4
  • FIG. 6 is an enlarged view of the area AR2 of FIG.
  • FIG. 7 is an enlarged view and
  • FIG. 7 is a cross-sectional view showing an example of a cross section of the liquid crystal panel taken along line VI-VI in FIG. 9 is a cross-sectional view showing an example of a cross section of the liquid crystal panel taken along line VII-VII in FIG. 6.
  • FIG. 10 is a cross-sectional view showing an example of the cross section of the liquid crystal panel taken along line VIII-VIII in FIG.
  • the array substrate 20 includes a first conductive film (first wiring) 22a including a gate signal line (not shown) on the surface of the glass substrate 21 (FIG. 1) on the liquid crystal layer 16 side, a gate.
  • An insulating film (first insulating film) 23 a silicon film (not shown), a second conductive film (second wiring) including a source signal line (not shown), an interlayer insulating film (second insulating film) 25, and
  • a third conductive film including the pixel electrode 26a is stacked.
  • the first conductive film (first wiring) 22a and the second conductive film (second wiring) are formed, for example, by laminating a titanium (Ti) film and an upper copper (Cu) film.
  • the gate insulating film (first insulating film) 23 is formed of, for example, a silicon nitride (SiNx) film.
  • the interlayer insulating film (second insulating film) 25 is formed by, for example, laminating an inorganic insulating film (for example, a silicon nitride (SiNx) film) as a passivation film and an organic insulating film (for example, an acrylic resin film) as an upper layer. Is formed.
  • a plurality of gate signal lines and a plurality of source signal lines are arranged in a matrix.
  • a region partitioned by the gate signal line and the source signal line constitutes a single pixel, and a thin film transistor is provided for each pixel, and a plurality of pixel electrodes 26a are arranged so as to correspond to the thin film transistor.
  • the interlayer insulating film 25 is provided so as to cover the entire surface of the array substrate 20 including the non-display area F. Further, in the non-display area F of the array substrate 20, the source signal line and the gate signal line are drawn out to the terminal area T by a lead line (for example, the wiring 22a in FIG. 7), and a gate driver (not shown) or a source is respectively provided. It is connected to a driver (not shown).
  • the array substrate 20 is provided with a plurality of common transition electrodes 26 c for applying a common potential to the common electrode 34 (FIG. 7) of the counter substrate 30 in the seal region SL. As shown in FIG. 5, the common transition electrode 26c is connected to a COM circuit (not shown) that emits a common signal provided in the terminal region T by a lead line 22b.
  • An alignment film 27 is provided on the surface of the array substrate 20 on the liquid crystal layer 16 side so as to cover a region including the entire display region D and a part of the non-display region F. As shown in FIG. 6, the alignment film 27 is provided on the outer side from the display region D so as to extend to a region overlapping with the seal region SL. The alignment film 27 extends to a region overlapping the seal region SL, but is formed so as not to completely cover the seal region SL (that is, not to reach the side 40b on the outer peripheral side of the seal material 40). ing.
  • the alignment film 27 is made of, for example, polyimide.
  • the counter substrate 30 is formed by laminating a color filter layer 32 a, a black matrix 33, and a common electrode 34 on the surface of the glass substrate 31 on the liquid crystal layer 16 side.
  • a black matrix 33 includes a light shielding area (not shown) as necessary.
  • the color filter layer 32a is provided so as to correspond to each pixel, and is colored, for example, red, green, and blue according to the emission color.
  • the black matrix 33 is provided in a light shielding region that partitions the color filter layer 32a.
  • the common electrode 34 is provided so as to cover the entire surface of the counter substrate 30 including the non-display area F, and the non-display area F of the array substrate 20 through the transfer material 42 mixed in the sealing material 40. Are held at a common potential applied from a common transition electrode 26c (FIGS. 4 and 6) provided on the substrate.
  • the common electrode 34 is formed on the entire surface of the counter substrate 30 and may be patterned as necessary.
  • the color filter layer 32b is formed of the same resin as the material constituting the color filter layer 32a.
  • the color filter layer 32b is formed so as to correspond to at least the seal region SL in the non-display region F.
  • An alignment film 35 is provided on the surface of the counter substrate 30 on the liquid crystal layer 16 side so as to cover a region including the entire display region D and a part of the non-display region F.
  • the alignment film 35 is provided on the outer side from the display region D so as to extend to a region overlapping with the seal region SL. Although the alignment film 35 extends to a region overlapping with the seal region SL, it is formed so as not to completely cover the seal region SL (so as not to reach the side 40b on the outer peripheral side of the seal material 40). ing.
  • the alignment film 35 is made of, for example, polyimide.
  • the sealing material 40 is made of a thermosetting resin or an ultraviolet curable resin.
  • the seal region SL is formed in a frame shape having a width of 0.3 to 1.2 mm, for example.
  • the sealing material 40 is mixed with crushed glass fiber as a spacer 15 (FIG. 1) for maintaining a constant distance between the array substrate 20 and the counter substrate 30.
  • a transfer material 42 is mixed in the sealing material 40 in order to electrically connect the common electrode 34 and the common transition electrode 26c and to apply a common potential from the common transition electrode 26c to the common electrode 34.
  • the pulverized glass fiber has, for example, a fiber diameter of about 4 to 8 ⁇ m and a length of about 10 to 100 ⁇ m.
  • the glass fiber pulverized product has a fiber diameter and a length that are both larger than the width of the first groove 28a and the first groove 36a so as not to be sandwiched between the first groove 28a and the first groove 36a described later. Use things.
  • the pulverized glass fiber is sandwiched between the surface of the interlayer insulating film 25 and the surface of the color filter layer 32b, and keeps the distance between the array substrate 20 and the counter substrate 30 constant.
  • the transfer material 42 for example, conductive beads having gold deposited on the outer surface of polymer beads are used.
  • the transfer material 42 has an outer diameter of about 5 to 60 ⁇ m, for example. As described above, the transfer material 42 is in direct contact with the common transition electrode 26c of the array substrate 20 and the common electrode 34 of the counter substrate 30, and electrically connects the two.
  • the array substrate 20 described above is provided with a plurality of first grooves 28a in an annular shape so as to surround the display region D in the seal region SL.
  • the first grooves 28 a are provided so as to be separated from each other in the width direction of the seal region SL and extend along the seal material 40.
  • the first grooves 28a are preferably formed in 2 to 20 rows.
  • the first groove 28a is formed by partially removing the interlayer insulating film 25 as shown in FIG. 7, but the common transition electrode 26c is formed. In the region, as shown in FIG. 9, the interlayer insulating film 25 and the gate insulating film 23 are partially removed.
  • the first groove 28a has a width of 2 to 50 ⁇ m, more preferably 4 to 20 ⁇ m.
  • the plurality of first grooves 28a are formed so as to be arranged at a pitch of 4 to 100 ⁇ m, for example.
  • the second groove 28b extends intermittently along the width direction of the seal region SL. Is provided.
  • the second grooves 28b are formed in a plurality of rows so as to be separated from each other in the length direction of the seal region SL.
  • the second trench 28 b is formed by partially removing the interlayer insulating film 25 and the gate insulating film 23.
  • the second groove 28b has a width of 2 to 50 ⁇ m, more preferably 4 to 20 ⁇ m.
  • the plurality of second grooves 28b are formed so as to be arranged at a pitch of 4 to 100 ⁇ m, for example.
  • the “region in which the common transition electrode 26c is formed” does not have to be the same area as the region in which the common transition electrode 26c is formed, and includes the vicinity of the region in which the common transition electrode 26c is formed. It's okay.
  • the second groove 28b located on the outermost side of the common transition electrode 26c may be provided in a region that does not overlap the common transition electrode 26c in plan view.
  • the array substrate 20 has a stopper layer 24a in a region corresponding to the bottom surface of the first groove 28a, corresponding to a portion where the wiring 22a and the first groove 28a intersect. Is formed.
  • the stopper layer 24a is composed of a semiconductor layer. Since the stopper layer 24a of the semiconductor layer is provided, the wiring 22a located on the bottom surface of the first groove 28a is not exposed on the surface of the first groove 28a and exists on the surface of the first groove 28a. There is no short circuit due to conductive dust, ESD (electrostatic discharge) or the like. In addition, there is no display defect due to current leakage due to conduction with the common electrode 34.
  • the inner surface of the first groove 28a and the surface of the stopper layer 24a inside the first groove 28a are not covered with a conductive layer such as a transparent conductive film, and are directly covered with the sealing material 40 or the alignment film 27. Yes. Thereby, since no conductor other than the transfer material 42 exists between the wiring 22a and the counter substrate 30, no short circuit occurs between the wiring 22a and the counter substrate 30. Further, since the stopper layer 24a is a semiconductor layer, there is no possibility of deterioration even if it is not covered with a transparent conductive film or the like.
  • FIG. 8 is a cross-sectional view showing another example of the cross section of the liquid crystal panel taken along the line VI-VI in FIG.
  • a transparent conductive film 26b is formed on the surface of the interlayer insulating film 25 on the sealing material 40 side as compared with that of the liquid crystal panel shown in FIG. 7 (however, the inner surface of the first groove 28a is not formed on the inner surface of the first groove 28a).
  • the transparent conductive film 26b is not formed). Since the transparent conductive film 26b on the surface of the interlayer insulating film 25 is separated from the wiring 22a, there is no possibility of short circuit.
  • the transparent conductive film 26b having low wettability with the material of the alignment film 27 can easily prevent wetting and spreading during the formation of the alignment film 27, and the alignment film 27 spreads in the seal region SL (FIG. 2). Can be suppressed.
  • the lead line 22b is formed in the region serving as the bottom surface of the first groove 28a and the second groove 28b. Has been. The surfaces of the first groove 28a and the second groove 28b are covered with a common transition electrode 26c. Thus, the lead line 22b and the common transition electrode 26c are electrically connected using the first groove 28a and the second groove 28b as contact holes.
  • the surfaces of some of the plurality of first grooves 28 a are each covered with an alignment film 27. .
  • the sealing material 40 is filled in the first groove 28 a covered with the alignment film 27 and is in contact with the alignment film 27.
  • the alignment film 27 does not exist. Therefore, on the array substrate 20 side, the sealing material 40 includes the interlayer insulating film 25 and the transparent conductive film 26b. In direct contact.
  • the second groove 28b restricts the alignment film 27 from flowing out toward the center of the common transition electrode 26c, as shown in FIG. Therefore, the portion where the second groove 28b does not exist is a region (FIG. 6) including the side 40a on the inner peripheral side of the sealing material 40 covered with the alignment film 27 in the seal region SL.
  • the central portion of the common transition electrode 26c is not covered with the alignment film 27, and the sealing material 40 and the common transition electrode 26c are in direct contact with each other.
  • the widths of the first groove 28 a and the second groove 28 b are preferably smaller than the diameter of the transfer material 42.
  • the transfer material 42 may be fitted into the first groove 28a and the second groove 28b.
  • the transfer material 42 cannot contact the common electrode 34 of the counter substrate 30, and the conduction between the common transition electrode 26 c and the common electrode 34 is insufficient. There is a risk of becoming.
  • the counter substrate 30 is provided with a plurality of first grooves 36a in an annular shape so as to surround the display region D in the seal region SL, as in the array substrate 20.
  • the first grooves 36a are formed so as to extend along the sealing material 40 while being spaced apart from each other in the width direction of the sealing region SL, and preferably formed in 2 to 20 rows.
  • the first groove 36a is formed by partially removing the color filter layer 32b.
  • the first groove 36a has a width of 2 to 50 ⁇ m, more preferably 4 to 20 ⁇ m.
  • the plurality of first grooves 36a are formed to be arranged at a pitch of 4 to 100 ⁇ m, for example.
  • the counter substrate 30 has a second region extending intermittently along the width direction of the seal region SL in a region corresponding to the region where the common transfer electrode 26 c is formed.
  • a groove 36b is provided.
  • the second grooves 36b are formed in a plurality of rows so as to be separated from each other in the length direction of the seal region SL. As shown in FIG. 10, the second groove 36b is formed by partially removing the color filter layer 32b.
  • the second grooves 36b have a width of 2 to 50 ⁇ m, more preferably 4 to 20 ⁇ m, and are formed so as to be arranged at a pitch of 4 to 100 ⁇ m, for example.
  • the detailed configuration of the first groove 36 a and the second groove 36 b provided in the counter substrate 30 and the details of the region where the alignment film 35 exists are based on the array substrate 20.
  • the transmittance of light incident from the outside is adjusted by utilizing the change in the alignment state of liquid crystal molecules according to the magnitude of the applied voltage, and a pixel having a desired brightness and color is displayed. Then, an image that is an aggregate of pixels is displayed.
  • a first conductive film including gate signal lines and wirings 22a, a gate is formed on the glass substrate 21 using a known method.
  • the insulating film 23, the silicon film, the second conductive film including the source signal line, and the semiconductor layer that is the stopper layer 24a are sequentially stacked.
  • a silicon nitride (SiNx) film is formed as an inorganic insulating film so as to cover the entire surface of the glass substrate 21, and an acrylic resin film is further formed as an organic insulating film to form an interlayer insulating film 25.
  • SiNx silicon nitride
  • development processing is performed to remove the acrylic resin film in the first groove 28a, and further, silicon nitride ( The first groove 28a is formed by dry etching the SiNx) film and removing the silicon nitride film in the first groove 28a.
  • a third conductive film including the pixel electrode 26a and the transparent conductive film 26b is stacked using a transparent conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • the alignment film 27 is applied and formed using an inkjet method so as to cover the display region D, and the array substrate 20 is completed.
  • the transparent conductive film 26b is not an essential component.
  • the color filter layers 32a and 32b and the black matrix 33 are formed on the glass substrate 31 using a known method, and the color filter layer 32b is exposed and then developed to obtain a color filter.
  • the layer 32b is partially removed to provide a first groove 36a.
  • a development process is performed after applying a resist material, and then etching is performed to remove the color filter layer 32b, thereby providing a first groove 36a.
  • the common electrode 34 is laminated so as to cover them.
  • the alignment film 35 is applied and formed in the same manner as the alignment film 27 of the array substrate 20 to complete the counter substrate 30.
  • a sealing material 40 is applied to one of the surfaces of the completed array substrate 20 and the counter substrate 30, and a liquid crystal material is dropped on a region surrounded by the sealing material 40, and then the array substrate 20 and the counter substrate 30. And the sealing material 40 is cured and bonded.
  • polarizing plates 10a and 10b are attached to the display panel 50, mounting members are mounted, and the backlight unit is mounted.
  • the liquid crystal display device 10 is completed by performing modularization processing of 18 and the like.
  • FIG. 11 is a cross-sectional view showing another example of the cross section of the liquid crystal panel taken along line VIII-VIII in FIG.
  • a transparent conductive film 26b is formed on the surface of the interlayer insulating film 25 on the sealing material 40 side as compared with that of the liquid crystal panel shown in FIG. 10 (however, the inner surface of the second groove 28b is formed on the inner surface of the second groove 28b).
  • the transparent conductive film 26b is not formed). Since the transparent conductive film 26b on the surface of the interlayer insulating film 25 is separated from the wiring 22a, there is no possibility of short circuit.
  • the transparent conductive film 26b having low wettability with the material of the alignment film 27 can easily prevent wetting and spreading during the formation of the alignment film 27, and the alignment film 27 spreads in the seal region SL (FIG. 2). Can be suppressed.
  • FIG. 12 is a cross-sectional view showing another example of the cross section of the liquid crystal panel taken along the line VI-VI in FIG.
  • the interlayer insulating film 25 is formed with the silicon nitride (SiNx) film and the acrylic resin film
  • the acrylic resin film is exposed and the acrylic resin film in the first groove 28a is removed by development processing.
  • the silicon nitride (SiNx) film was dry etched to remove the silicon nitride film in the first groove 28a, thereby forming the first groove 28a.
  • the acrylic resin film in the first groove 28a is semi-exposed.
  • the acrylic resin film in the first groove 28a is only removed by development processing.
  • the acrylic resin film is not removed until the silicon nitride film is reached, and the first groove 28a is formed in the acrylic resin film, and as shown in FIG. Not reach.
  • a third conductive film including the pixel electrode 26a and the transparent conductive film 26b is laminated using a transparent conductive material such as ITO and IZO, and then an alignment film 27 is formed so as to cover the display region D. Then, the array substrate 20 is completed. As described above, by forming the first groove 28a in the acrylic resin film, the interlayer insulating film 25 remains, and the first conductive film including the gate signal line and the wiring 22a is further protected.
  • the present invention can be used for a liquid crystal display device used for a television receiver, a mobile terminal, a computer display, and the like, and a liquid crystal panel included in the liquid crystal display device.

Abstract

 アレイ基板のシール材の領域に設けられ、配向膜の原料の漏れ広がりを防止する為の複数の溝を有し、この溝に起因して発生する表示不良を抑止できる液晶パネルを提供する。 表示領域D及び表示領域Dを囲繞する非表示領域Fを有するアレイ基板20と、アレイ基板20に対向して配置され、共通電極34が形成された対向基板30と、表示領域Dを囲繞するように非表示領域Fに設けられ、アレイ基板20及び対向基板30を接着するシール材40と、アレイ基板20及び対向基板30間にシール材40で封止された液晶層16と、アレイ基板20上のシール材40が形成されたシール領域SLの絶縁層25に、互いにシール領域SLの幅方向に離間しシール領域SLの長さ方向に沿って形成された複数の溝28aと、溝28aの底部に設けられ、半導体層により形成されたストッパ層24aとを備えている。

Description

液晶パネル及び液晶表示装置
 本発明は、液晶層がアレイ基板及び対向基板間にシール材で封止され、アレイ基板上のシール材が形成されたシール領域の絶縁層に、互いにシール領域の幅方向に離間した複数の溝が、シール領域の長さ方向に沿って形成され、溝の底部に配線が露出するのを防止する為のストッパ層を備える液晶パネル、及びこの液晶パネルを備える液晶表示装置に関するものである。
 液晶表示装置は、液晶パネルと液晶パネルの背面側に設けられたバックライトユニットとを備えている。液晶パネルは、透明ガラス製のアレイ基板とアレイ基板に対向配置された透明ガラス製の対向基板とがシール材で貼り合わされて構成されており、両基板間には液晶材料が封入されている。対向基板はアレイ基板よりも一回り小さく、これにより、露出したアレイ基板の端子及びSOF(System On Film)等を介して、駆動回路が実装されている。
 液晶パネルは、画像を表示する表示領域と、表示領域を囲繞する非表示領域とで構成され、表示領域には、多数の画素がマトリクス状に配置されている。アレイ基板には、各画素に対応して、画素電極と画素電極に接続された薄膜トランジスタ(TFT(Thin Film Transistor))等のスイッチング素子とが設けられている。対向基板には、少なくとも表示領域の全面を覆うように共通電極が設けられている。
 画素電極のそれぞれには、スイッチング素子のオン/オフに同期して電流が流れる。対向基板上に設けられた共通電極は、アレイ基板上に設けられたコモン転移電極と電気的に接続され、コモン転移電極引き出し線からコモン転移電極を通じて共通電極に共通電位が与えられる。
 アレイ基板の液晶層に接する面には、印加電圧0V時の液晶を所定角度に整列させる為の配向膜が、少なくとも表示領域を覆うように形成されている。同様に、対向基板の液晶層に接する面にも、配向膜が少なくとも表示領域を覆うように形成されている。
 配向膜は、例えば、フレキソ印刷法又はインクジェット法等を用いて成膜したポリイミド等の樹脂膜の表面に、ラビング処理又は光配向処理を行って形成できる。ポリイミド膜等の樹脂膜の成膜には、多くの利点からインクジェット法が多用されている。
 ところで、インクジェット法で配向膜を形成する場合、フレキソ印刷法の場合よりも、配向膜の原料として粘度の低い樹脂を用いるので、印刷しようとする領域(表示領域)の周辺の領域に配向膜の原料が漏れ広がり易い。その為、表示領域の周囲の非表示領域が小さく、表示領域とシール材の領域(シール領域)との間隔を大きく確保できない場合には、シール領域にまで配向膜が流出してしまう。
 近年、特に携帯用電子機器においては、液晶表示装置全体としての小型化と、表示領域の大型化の要求を同時に満たす為、表示領域の周縁部の非表示領域幅を狭くする狭額縁化が求められている。この狭額縁化の為に、コモン転移電極をシール領域に設け、シール材中に混入された導電性ビーズ等のトランスファ材を通じてコモン転移電極と共通電極とを電気的に接続することが行われている。
 しかし、狭額縁化でシール材と表示領域との距離を狭めることにより、シール領域にまで配向膜が広がってコモン転移電極を覆ってしまうと、コモン転移電極と共通電極との導通が十分に確保できなくなる虞がある。
 この問題を解決する技術として、引用文献1には、アレイ基板のシール領域の絶縁層に、配向膜の原料が漏れ広がるのを防止する為の複数の溝を備えることにより、配向膜が広がってコモン転移電極を覆うのを抑止する液晶表示装置が開示されている。
 この液晶表示装置では、互いにシール領域の幅方向に離間してシール領域の長さ方向に沿って設けられた複数の第1の溝と、シール領域のコモン転移電極が設けられた領域に、互いにシール領域の長さ方向に離間してシール領域の幅方向に沿って設けられた複数の第2の溝と、導電膜からなる配線が第1の溝の底部に露出するのを防止する為の導電膜製のストッパ層とを備えている。
国際公開第2014/038159号パンフレット
 特許文献1に開示された液晶表示装置では、ストッパ層の腐食を防ぐために、第1の溝の表面を透明電極で覆っており、ストッパ層及び透明電極はフローティング状態(電源及びグランドと絶縁された状態)になっている。その為、導電膜製のストッパ層及び透明電極が、導電性のダスト、ESD(静電気放電)等により短絡してしまうと、ストッパ層及び透明電極が、フローティング状態ではなくなり、配線の一部と化して、共通電極と導通する場合があり、電流リークに起因する表示不良が生じるという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、アレイ基板のシール材の領域に設けられ、配向膜の原料の漏れ広がりを防止する為の複数の溝を有し、この溝に起因して発生する表示不良を抑止できる液晶パネルを提供することを目的とする。
 本発明は、また、アレイ基板のシール材の領域に設けられ、配向膜の原料の漏れ広がりを防止する為の複数の溝を有し、この溝に起因して発生する表示不良を抑止できる液晶パネルを備えた液晶表示装置を提供することを目的とする。
 本発明に係る液晶パネルは、表示領域及び該表示領域を囲繞する非表示領域を有するアレイ基板と、該アレイ基板に対向して配置され、共通電極が形成された対向基板と、前記表示領域を囲繞するように前記非表示領域に設けられ、前記アレイ基板及び対向基板を接着するシール材と、前記アレイ基板及び対向基板間に前記シール材で封止された液晶層と、前記アレイ基板上の前記シール材が形成されたシール領域の絶縁層に、互いに該シール領域の幅方向に離間し該シール領域の長さ方向に沿って形成された複数の溝と、該溝の底部に設けられ、半導体層により形成されたストッパ層とを備えることを特徴とする。
 この液晶パネルは、アレイ基板が、表示領域及び表示領域を囲繞する非表示領域を有し、対向基板が、アレイ基板に対向して配置されて共通電極が形成されている。シール材が、表示領域を囲繞するように非表示領域に設けられて、アレイ基板及び対向基板を接着し、液晶層が、アレイ基板及び対向基板間にシール材で封止されている。アレイ基板上のシール材が形成されたシール領域の絶縁層に、複数の溝が、互いにシール領域の幅方向に離間しシール領域の長さ方向に沿って形成され、半導体層により形成されたストッパ層が、溝の底部に設けられている。
 本発明に係る液晶パネルは、前記溝は、前記絶縁層を半露光によりエッチングして形成してあることを特徴とする。
 本発明に係る液晶パネルは、前記溝は、前記シール材、又は前記アレイ基板の前記液晶層側表面に形成された配向膜が、内部表面を直接覆うように構成してあることを特徴とする。
 本発明に係る液晶表示装置は、本発明に係る液晶パネルを備えることを特徴とする。
 本発明に係る液晶パネルによれば、アレイ基板のシール材の領域に設けられ、配向膜の原料の漏れ広がりを防止する為の複数の溝を有し、この溝に起因して発生する表示不良を抑止できる液晶パネルを実現することができる。
 本発明に係る液晶表示装置によれば、アレイ基板のシール材の領域に設けられ、配向膜の原料の漏れ広がりを防止する為の複数の溝を有し、この溝に起因して発生する表示不良を抑止できる液晶パネルを備えた液晶表示装置を実現することができる。
本発明に係る液晶パネル及び液晶表示装置の実施例の表示領域の要部断面を分解して示す分解断面図である。 本発明に係る液晶パネル及び液晶表示装置の実施例の要部構成を示す平面図である。 図2のII-II線における断面の例を示す断面図である。 アレイ基板の概略構成の例を示す平面図である。 図4の領域AR1を拡大して示す拡大図である。 図5の領域AR2を拡大して示す拡大図である。 図6のVI-VI線における液晶パネルの断面の例を示す断面図である。 図6のVI-VI線における液晶パネルの断面の他の例を示す断面図である。 図6のVII-VII線における液晶パネルの断面の例を示す断面図である。 図6のVIII-VIII線における液晶パネルの断面の例を示す断面図である。 図6のVIII-VIII線における液晶パネルの断面の他の例を示す断面図である。 図6のVI-VI線における液晶パネルの断面の他の例を示す断面図である。
 以下に、本発明をその実施例を示す図面に基づいて説明する。
 図1は、本発明に係る液晶パネル及び液晶表示装置の実施例の表示領域の要部断面を分解して示す分解断面図である。
 この液晶表示装置は、長方形の液晶パネル50と、液晶パネル50へ裏面側から光を照射するバックライトユニット18と、液晶パネル50の表面側を覆う偏光板10aと、液晶パネル50及びバックライトユニット18間に配置された偏光板10bとを備えている。
 液晶パネル50は、所定のギャップを隔てた一対の基板20,30間に、液晶層16が封入されて構成されている。裏面側のアレイ基板20は、概略して、ガラス基板21の液晶層16側表面に、互いに直交するソース配線とゲート配線とに接続されたTFT(Thin Film Transistor)等のスイッチング素子17、及びスイッチング素子17に接続された透明電極19が配列され、それらを覆うように配向膜27が設けられている。
 表面側の対向基板30は、概略して、ガラス基板31の液晶層16側表面に、R(赤)、G(緑)、B(青)等の各色フィルタが所定配列で配置されたカラ―フィルタ32と、透明な共通電極34と、配向膜35とが積層されている。
 液晶層16には、アレイ基板20及び対向基板30間を所定間隔に保つ為に、スペーサ15が混入されている。
 図2は、本発明に係る液晶パネル及び液晶表示装置の実施例の要部構成を示す平面図であり、図3は、図2のII-II線における断面の例を示す断面図である。
 この液晶表示装置10は、アレイ基板20及び対向基板30の周縁部に枠状の非表示領域Fが設けられ、非表示領域Fに囲繞された領域が表示領域Dとなっている。アレイ基板20及び対向基板30は、非表示領域F全周に亘って枠状に配置された環状のシール材40で貼り合わされ、シール材40が貼り付けられた領域をシール領域SLとしている。
 アレイ基板20及び対向基板30間のシール材40に囲繞された空間には、液晶層16が設けられ、表示領域Dを構成している。表示領域Dには、多数の画素がマトリクス状に配置されている。
 アレイ基板20の表示領域Dの周囲の非表示領域Fの一部は、対向基板30の外縁からはみ出しており、実装部品等の外部接続端子を取り付ける為の端子領域Tとなっている。
 図4は、アレイ基板20の概略構成の例を示す平面図であり、図5は、図4の領域AR1を拡大して示す拡大図、図6は、図5の領域AR2を拡大して示す拡大図、図7は、図6のVI-VI線における液晶パネルの断面の例を示す断面図である。
 また、図9は、図6のVII-VII線における液晶パネルの断面の例を示す断面図、図10は、図6のVIII-VIII線における液晶パネルの断面の例を示す断面図である。
 このアレイ基板20は、図7に示すように、ガラス基板21(図1)の液晶層16側表面に、ゲート信号線(図示せず)を含む第1導電膜(第1配線)22a、ゲート絶縁膜(第1絶縁膜)23、シリコン膜(図示せず)、ソース信号線(図示せず)を含む第2導電膜(第2配線)、層間絶縁膜(第2絶縁膜)25、及び画素電極26aを含む第3導電膜が積層形成されている。
 第1導電膜(第1配線)22a及び第2導電膜(第2配線)は、例えば、チタン(Ti)膜とその上層の銅(Cu)膜とが積層されて形成されている。ゲート絶縁膜(第1絶縁膜)23は、例えば、窒化シリコン(SiNx)膜で形成されている。
 層間絶縁膜(第2絶縁膜)25は、例えば、パッシベーション膜としての無機絶縁膜(例えば、窒化シリコン(SiNx)膜)と、その上層の有機絶縁膜(例えば、アクリル樹脂膜)とが積層されて形成されている。
 アレイ基板20の表示領域Dでは、複数のゲート信号線及び複数のソース信号線がマトリクス状に配設されている。ゲート信号線及びソース信号線で区画された領域が単一の画素を構成し、各画素毎に薄膜トランジスタが設けられ、その薄膜トランジスタに対応するように複数の画素電極26aが配置されている。
 層間絶縁膜25は、非表示領域Fを含めたアレイ基板20全面を覆うように設けられている。また、アレイ基板20の非表示領域Fでは、ソース信号線及びゲート信号線が引き出し線(例えば、図7における配線22a)で端子領域Tに引き出され、それぞれ、ゲートドライバ(図示せず)やソースドライバ(図示せず)に接続されている。
 アレイ基板20は、図4に示すように、シール領域SLに、対向基板30の共通電極34(図7)に共通電位を付与するための複数のコモン転移電極26cが設けられている。コモン転移電極26cは、図5に示すように、引き出し線22bにより、端子領域Tに設けられたコモン信号を発するCOM回路(図示せず)に接続されている。
 アレイ基板20の液晶層16側表面には、表示領域Dの全域と非表示領域Fの一部とを含む領域を覆うように、配向膜27が設けられている。配向膜27は、図6に示すように、表示領域Dから外側に、シール領域SLと重なる領域にまで広がるように設けられている。尚、配向膜27は、シール領域SLと重なる領域にまで広がるものの、シール領域SLを完全には覆わないように(つまり、シール材40の外周側の辺40bには到達しないように)形成されている。配向膜27は、例えばポリイミド等で形成されている。
 対向基板30は、図7に示すように、ガラス基板31の液晶層16側表面に、カラーフィルタ層32a及びブラックマトリクス33、並びに共通電極34が積層形成されており、対向基板30の外周縁部の非表示領域Fにおいては、ブラックマトリクス33で遮光領域(図示せず)が必要に応じて構成されている。
 具体的には、対向基板30の表示領域Dでは、カラーフィルタ層32aは、各画素に対応するように設けられ、発光色に応じて例えば赤色、緑色及び青色に着色されている。また、ブラックマトリクス33は、カラーフィルタ層32aを区画する遮光領域に設けられている。
 共通電極34は、図7に示すように、非表示領域Fを含めた対向基板30全面を覆うように設けられ、シール材40に混入されたトランスファ材42を通じて、アレイ基板20の非表示領域Fに設けられたコモン転移電極26c(図4,6)から与えられた共通電位に保持されている。
 尚、共通電極34は、対向基板30全面に形成される他、必要に応じてパターニングされていてもよい。また、対向基板30の非表示領域Fでは、カラーフィルタ層32aを構成する材料と同一の樹脂でカラーフィルタ層32bが形成されている。カラーフィルタ層32bは、非表示領域Fのうち少なくともシール領域SLに対応するように形成されている。
 対向基板30の液晶層16側表面には、表示領域Dの全域と非表示領域Fの一部とを含む領域を覆って配向膜35が設けられている。配向膜35は、表示領域Dから外側に、シール領域SLと重なる領域にまで広がるように設けられている。なお、配向膜35は、シール領域SLと重なる領域にまで広がるものの、シール領域SLを完全には覆ってしまわないように(シール材40の外周側の辺40bには達しないように)形成されている。配向膜35は、例えばポリイミド等で形成されている。
 シール材40は、熱硬化性樹脂又は紫外線硬化性樹脂等で構成されている。シール領域SLは、例えば幅が0.3~1.2mmの枠状に形成されている。
 シール材40には、アレイ基板20と対向基板30との間の距離を一定に保持するためのスペーサ15(図1)として、ガラス繊維粉砕物が混入されている。また、シール材40には、共通電極34とコモン転移電極26cとを電気的に接続して、コモン転移電極26cから共通電極34に共通電位を与えるために、トランスファ材42が混入されている。
 ガラス繊維粉砕物は、例えば、繊維径が4~8μm程度、長さが10~100μm程度である。ガラス繊維粉砕物は、後述する第1の溝28a及び第1の溝36aに挟まらないように、繊維径と長さが、共に第1の溝28a及び第1の溝36aの幅よりも大きいものを使用する。ガラス繊維粉砕物は、層間絶縁膜25の表面と、カラーフィルタ層32bの表面とで挟まれて、アレイ基板20及び対向基板30の基板間距離を一定に保持する。
 トランスファ材42には、例えば、ポリマービーズの外面に金が蒸着された導電性ビーズ等が用いられる。トランスファ材42は、例えば外径が5~60μm程度である。トランスファ材42は、上述したように、アレイ基板20のコモン転移電極26cと対向基板30の共通電極34とに直接接触し、両者間を電気的に接続している。
 上述したアレイ基板20には、図4及び図5に示すように、シール領域SLにおいて、表示領域Dを囲うように環状に複数の第1の溝28aが設けられている。第1の溝28aは、互いにシール領域SLの幅方向に離間し、シール材40に沿って延びるように設けられている。第1の溝28aは、2~20列形成されていることが好ましい。
 第1の溝28aは、コモン転移電極26cが形成されていない領域では、図7に示すように、層間絶縁膜25が部分除去されて形成されているが、コモン転移電極26cが形成されている領域では、図9に示すように、層間絶縁膜25及びゲート絶縁膜23が部分除去されて形成されている。第1の溝28aは、幅が2~50μm、より好ましくは4~20μmとなっている。また、複数の第1の溝28aは、例えば4~100μmのピッチで並ぶように形成されている。
 アレイ基板20のうち、コモン転移電極26cが形成された領域には、図6の拡大図に示すように、シール領域SLの幅方向に沿って断続的に延びるように、第2の溝28bが設けられている。
 第2の溝28bは、シール領域SLの長さ方向に互いに離間するように、複数列が形成されている。第2の溝28bは、図10に示すように、層間絶縁膜25及びゲート絶縁膜23が部分除去されて形成されている。第2の溝28bは、幅が2~50μm、より好ましくは4~20μmとなっている。また、複数の第2の溝28bは、例えば4~100μmのピッチで並ぶように形成されている。
 尚、「コモン転移電極26cが形成された領域」とは、コモン転移電極26cが形成された領域と全く同一のエリアである必要はなく、コモン転移電極26cが形成された領域の近傍領域も含めてよい。具体的には、図6に示すように、コモン転移電極26cの最外側に位置する第2の溝28bが、平面視でコモン転移電極26cと重ならない領域に設けられていてもよい。
 アレイ基板20には、第1の溝28aの底面となる領域に、図6及び図7に示すように、配線22aと第1の溝28aとが交差する部分に対応して、ストッパ層24aが形成されている。ストッパ層24aは半導体層で構成されている。
 半導体層のストッパ層24aが設けられているので、第1の溝28aの底面に位置する配線22aが、第1の溝28aの表面に露出することがなく、第1の溝28a表面に存在する導電性のダスト、ESD(静電気放電)等により短絡することもない。また、共通電極34と導通して、電流リークに起因する表示不良が生じることもない。
 第1の溝28aの内部表面、及び第1の溝28aの内部のストッパ層24a表面は、透明導電膜等の導電層が形成されておらず、シール材40又は配向膜27により直接覆われている。これにより、配線22a及び対向基板30間にはトランスファ材42以外の導電体が存在しないので、配線22a及び対向基板30間で短絡が発生しない。また、ストッパ層24aは、半導体層であるので、透明導電膜等で覆わなくても、劣化する虞はない。
 図8は、図6のVI-VI線における液晶パネルの断面の他の例を示す断面図である。
 このアレイ基板20では、図7に示す液晶パネルのそれに比べて、層間絶縁膜25のシール材40側表面に透明導電膜26bが形成されている(但し、第1の溝28aの内部表面には、透明導電膜26bは形成されていない)。層間絶縁膜25表面の透明導電膜26bは、配線22aから離れているので、短絡する虞はない。
 これにより、配向膜27の材料との濡れ性が低い透明導電膜26bが、配向膜27形成時の濡れ広がりを堰き止め易くなり、配向膜27がシール領域SL(図2)内に広がることを抑制できる。
 シール領域SLのうちコモン転移電極26cが設けられた領域では、図9及び図10に示すように、第1の溝28a及び第2の溝28bの底面となる領域には、引き出し線22bが形成されている。また、第1の溝28a及び第2の溝28bの表面は、コモン転移電極26cで覆われている。これにより、第1の溝28a及び第2の溝28bをコンタクトホールとして、引き出し線22bとコモン転移電極26cとが電気的に接続される。
 図7に示すように、複数の第1の溝28aのうちの一部(図7では、6つの第1の溝28aのうちの4つ)の表面は、それぞれ配向膜27で覆われている。シール領域SLのうちシール材40の内周側の辺40aを含む領域では、シール材40は、配向膜27で覆われた第1の溝28aに充填されて配向膜27と接触している。
 一方、シール領域SLのうちシール材40の外周側の辺40bを含む領域では、配向膜27が存在しないので、アレイ基板20側においては、シール材40は、層間絶縁膜25及び透明導電膜26bと直接接触している。
 また、コモン転移電極26cが形成された領域では、図10に示すように、第2の溝28bにより、配向膜27がコモン転移電極26cの中心方向に流出するのが制限される。その為、第2の溝28bが存在しない部分においては、シール領域SLのうち配向膜27で覆われているようなシール材40の内周側の辺40aを含む領域(図6)であっても、コモン転移電極26cの中央部は配向膜27に覆われず、シール材40とコモン転移電極26cとが直接接触している。
 尚、第1の溝28a及び第2の溝28bの幅は、トランスファ材42の径よりも小さいことが好ましい。第1の溝28a及び第2の溝28bの幅がトランスファ材42の径よりも大きい場合、トランスファ材42が第1の溝28a及び第2の溝28bに嵌り込む虞がある。トランスファ材42が、第1の溝28a及び第2の溝28bに嵌り込むと、対向基板30の共通電極34と接触することができず、コモン転移電極26cと共通電極34との導通が不十分になる虞がある。
 対向基板30には、図7~図9に示すように、アレイ基板20と同様に、シール領域SLにおいて、表示領域Dを囲繞するように環状に複数の第1の溝36aが設けられている。第1の溝36aは、互いにシール領域SLの幅方向に離間してシール材40に沿って延びるように形成されており、2~20列形成されていることが好ましい。
 第1の溝36aは、カラーフィルタ層32bが部分除去されて形成されている。第1の溝36aは、幅が2~50μm、より好ましくは4~20μmとなっている。複数の第1の溝36aは、例えば4~100μmのピッチで並ぶように形成されている。
 また、対向基板30には、アレイ基板20と同様に、コモン転移電極26cが形成された領域に対応する領域には、シール領域SLの幅方向に沿って断続的に延びるように、第2の溝36bが設けられている。第2の溝36bは、シール領域SLの長さ方向に互いに離間するように、複数列形成されている。第2の溝36bは、図10に示すように、カラーフィルタ層32bが部分除去されて形成されている。
 第2の溝36bは、幅が2~50μm、より好ましくは4~20μmとなっており、例えば、4~100μmのピッチで並ぶように形成されている。対向基板30に設けられた第1の溝36a及び第2の溝36bの詳細な構成、及び配向膜35が存在する領域の詳細については、アレイ基板20に準じる。
 上述したような構成の液晶表示装置10では、各画素において、TFTがオン状態になると、画素電極26aに電流が流れる。画素電極26aに電流が流れると、画素電極26aと共通電位に保持された共通電極34との間で電位差が生じ、液晶層16からなる液晶容量に所定の電圧が印加される。液晶表示装置10では、その印加電圧の大きさに応じて液晶分子の配向状態が変わることを利用して、外部から入射する光の透過率が調整され、所望の明るさ及び色彩の画素が表示され、画素の集合体である画像が表示される。
 上述したような構成の液晶表示装置10を製造する際、アレイ基板20側では、先ず、公知の方法を用いて、ガラス基板21上に、ゲート信号線及び配線22aを含む第1導電膜、ゲート絶縁膜23、シリコン膜、ソース信号線を含む第2導電膜、並びにストッパ層24aである半導体層を順番に積層する。
 次に、ガラス基板21全面を覆うように、無機絶縁膜として例えば窒化シリコン(SiNx)膜を成膜し、更に、有機絶縁膜としてアクリル樹脂膜を成膜して、層間絶縁膜25を形成する。次いで、有機絶縁膜として感光性のアクリル樹脂膜を露光した後、現像処理を行って第1の溝28aの部分のアクリル樹脂膜を除去し、更に、そのアクリル樹脂膜をマスクにして窒化シリコン(SiNx)膜をドライエッチングして、第1の溝28aの部分の窒化シリコン膜を除去することで、第1の溝28aを形成する。
 次に、例えばITO(Indium Tin Oxide)及びIZO(Indium Zinc Oxide)等の透明導電材料を用いて、画素電極26a及び透明導電膜26bを含む第3導電膜を積層する。
 次に、表示領域Dを覆うように、インクジェット法を用いて配向膜27を塗布形成して、アレイ基板20を完成させる。尚、透明導電膜26bは必須の構成要素ではない。
 一方、対向基板30側では、ガラス基板31上に、公知の方法を用いて、カラーフィルタ層32a,32b及びブラックマトリクス33を形成し、カラーフィルタ層32bを露光した後、現像処理してカラーフィルタ層32bを部分除去し、第1の溝36aを設ける。
 カラーフィルタ層32bが感光性を有しない場合には、レジスト材料を塗布した後に現像処理を行い、次いで、エッチングを行ってカラーフィルタ層32bを除去し、第1の溝36aを設ける。
 次に、これらを覆うように共通電極34を積層する。
 次に、アレイ基板20の配向膜27と同様にして、配向膜35を塗布形成して、対向基板30を完成させる。
 次に、完成したアレイ基板20及び対向基板30の何れか一方の表面に、シール材40を塗布し、シール材40で囲繞された領域に液晶材料を滴下した後、アレイ基板20及び対向基板30を重ね合わせて、シール材40を硬化させて接着する。
 次に、接着したアレイ基板20及び対向基板30をセルサイズの表示パネル50(図1)に分断した後、表示パネル50に偏光板10a,10bを貼り付け、実装部材を実装し、バックライトユニット18等のモジュール化処理等を行い、液晶表示装置10が完成する。
 図11は、図6のVIII-VIII線における液晶パネルの断面の他の例を示す断面図である。
 このアレイ基板20では、図10に示す液晶パネルのそれに比べて、層間絶縁膜25のシール材40側表面に透明導電膜26bが形成されている(但し、第2の溝28bの内部表面には、透明導電膜26bは形成されていない)。層間絶縁膜25表面の透明導電膜26bは、配線22aから離れているので、短絡する虞はない。
 これにより、配向膜27の材料との濡れ性が低い透明導電膜26bが、配向膜27形成時の濡れ広がりを堰き止め易くなり、配向膜27がシール領域SL(図2)内に広がることを抑制できる。
 図12は、図6のVI-VI線における液晶パネルの断面の他の例を示す断面図である。
 上述した実施例では、窒化シリコン(SiNx)膜及びアクリル樹脂膜により層間絶縁膜25を形成した後、アクリル樹脂膜を露光して、現像処理により第1の溝28aの部分のアクリル樹脂膜を除去し、更に、窒化シリコン(SiNx)膜をドライエッチングして、第1の溝28aの部分の窒化シリコン膜を除去して、第1の溝28aを形成した。
 ここでは、露光及び現像処理により第1の溝28aの部分のアクリル樹脂膜を除去し、ドライエッチングにより第1の溝28aの部分の窒化シリコン膜を除去する代わりに、アクリル樹脂膜を半露光して現像処理により第1の溝28aの部分のアクリル樹脂膜を除去するにとどめる。この際、半露光するので、アクリル樹脂膜は窒化シリコン膜に達するまでは除去されず、第1の溝28aは、アクリル樹脂膜内で形成され、図12に示すように、ストッパ層24aには達しない。
 次に、ITO及びIZO等の透明導電材料を用いて、画素電極26a及び透明導電膜26bを含む第3導電膜を積層した後、表示領域Dを覆うように、配向膜27を塗布形成して、アレイ基板20を完成させる。
 このように、第1の溝28aをアクリル樹脂膜内で形成することにより、層間絶縁膜25が残り、ゲート信号線及び配線22aを含む第1導電膜が更に保護される。
 本実施例は、全ての点で例示であって制限的なものではないと考えるべきである。本発明の範囲は上述の説明ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 本発明は、テレビジョン受像機、モバイル端末及びコンピュータディスプレイ等に使用される液晶表示装置、並びにこの液晶表示装置が備える液晶パネルに利用することができる。
 10 液晶表示装置
 10a,10b 偏光板
 16 液晶層
 17 スイッチング素子
 18 バックライトユニット
 19 透明電極
 20 アレイ基板
 21,31 ガラス基板
 22a 配線(第1配線)
 23 ゲート絶縁膜(第1絶縁膜)
 24a ストッパ層
 25 層間絶縁膜(第2絶縁膜)
 26b 透明導電膜
 26c コモン転移電極
 27,35 配向膜
 28a,36a 第1の溝
 28b,36b 第2の溝
 30 対向基板
 32 カラ―フィルタ
 32a,32b カラーフィルタ層
 34 共通電極
 40 シール材
 42 トランスファ材
 50 液晶パネル
 D 表示領域
 F 非表示領域
 
 
 
 
 
 
 
 
 
 
 
 

Claims (4)

  1.  表示領域及び該表示領域を囲繞する非表示領域を有するアレイ基板と、該アレイ基板に対向して配置され、共通電極が形成された対向基板と、前記表示領域を囲繞するように前記非表示領域に設けられ、前記アレイ基板及び対向基板を接着するシール材と、前記アレイ基板及び対向基板間に前記シール材で封止された液晶層と、前記アレイ基板上の前記シール材が形成されたシール領域の絶縁層に、互いに該シール領域の幅方向に離間し該シール領域の長さ方向に沿って形成された複数の溝と、該溝の底部に設けられ、半導体層により形成されたストッパ層とを備えることを特徴とする液晶パネル。
  2.  前記溝は、前記絶縁層を半露光によりエッチングして形成してある請求項1に記載の液晶パネル。
  3.  前記溝は、前記シール材、又は前記アレイ基板の前記液晶層側表面に形成された配向膜が、内部表面を直接覆うように構成してある請求項1又は2に記載の液晶パネル。
  4.  請求項1乃至3の何れか1項に記載された液晶パネルを備えることを特徴とする液晶表示装置。 
     
     
     
     
     
     
PCT/JP2015/060057 2015-03-31 2015-03-31 液晶パネル及び液晶表示装置 WO2016157399A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060057 WO2016157399A1 (ja) 2015-03-31 2015-03-31 液晶パネル及び液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060057 WO2016157399A1 (ja) 2015-03-31 2015-03-31 液晶パネル及び液晶表示装置

Publications (1)

Publication Number Publication Date
WO2016157399A1 true WO2016157399A1 (ja) 2016-10-06

Family

ID=57006589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060057 WO2016157399A1 (ja) 2015-03-31 2015-03-31 液晶パネル及び液晶表示装置

Country Status (1)

Country Link
WO (1) WO2016157399A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110335873A (zh) * 2019-06-24 2019-10-15 深圳市华星光电技术有限公司 一种显示面板及其制备方法
WO2020164312A1 (en) * 2019-02-13 2020-08-20 Boe Technology Group Co., Ltd. Display panel and display apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145461A (ja) * 2006-12-06 2008-06-26 Hitachi Displays Ltd 液晶表示装置
WO2011129065A1 (ja) * 2010-04-16 2011-10-20 シャープ株式会社 表示装置
WO2014038159A1 (ja) * 2012-09-04 2014-03-13 シャープ株式会社 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145461A (ja) * 2006-12-06 2008-06-26 Hitachi Displays Ltd 液晶表示装置
WO2011129065A1 (ja) * 2010-04-16 2011-10-20 シャープ株式会社 表示装置
WO2014038159A1 (ja) * 2012-09-04 2014-03-13 シャープ株式会社 液晶表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164312A1 (en) * 2019-02-13 2020-08-20 Boe Technology Group Co., Ltd. Display panel and display apparatus
CN110335873A (zh) * 2019-06-24 2019-10-15 深圳市华星光电技术有限公司 一种显示面板及其制备方法
US11296129B2 (en) 2019-06-24 2022-04-05 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display panel and fabricating method thereof

Similar Documents

Publication Publication Date Title
US11852923B2 (en) Liquid crystal display device
US9575370B2 (en) Liquid crystal display device
JP5857125B2 (ja) 液晶表示装置
KR102628939B1 (ko) 액정 표시장치
US9417485B2 (en) Liquid crystal display device
US8310609B2 (en) Liquid crystal device, electronic apparatus, and method of manufacturing liquid crystal device
US10001676B2 (en) Display device
US20180173033A1 (en) Method of producing display device, and display device
US20160004110A1 (en) Display panel and method of producing display panel
WO2017022609A1 (ja) 表示パネル
JP2017167478A (ja) 液晶表示装置及びそのマザー基板
WO2011108044A1 (ja) 表示装置及びその製造方法
WO2018051878A1 (ja) 実装基板及び表示パネル
WO2016157399A1 (ja) 液晶パネル及び液晶表示装置
JP5247615B2 (ja) 横電界方式の液晶表示装置
US8773630B2 (en) Display device
KR20170063308A (ko) 액정 표시장치
JP2011002609A (ja) 横電界方式の液晶表示装置
JP5275650B2 (ja) 液晶表示装置
US20200363687A1 (en) Circuit substrate and display apparatus
JP2007072016A (ja) 液晶表示装置
WO2016151860A1 (ja) 液晶パネルのコンタクトホール形成方法、液晶パネル及び液晶表示装置
JP2019082738A (ja) 液晶表示装置
KR20170026011A (ko) 액정 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP