WO2010024641A2 - 신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자 - Google Patents

신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자 Download PDF

Info

Publication number
WO2010024641A2
WO2010024641A2 PCT/KR2009/004883 KR2009004883W WO2010024641A2 WO 2010024641 A2 WO2010024641 A2 WO 2010024641A2 KR 2009004883 W KR2009004883 W KR 2009004883W WO 2010024641 A2 WO2010024641 A2 WO 2010024641A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
present
formula
thermoelectric
conversion material
Prior art date
Application number
PCT/KR2009/004883
Other languages
English (en)
French (fr)
Other versions
WO2010024641A3 (ko
Inventor
박철희
손세희
권원종
홍승태
김태훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2010549589A priority Critical patent/JP5283713B2/ja
Priority to EP09810246.0A priority patent/EP2320485B1/en
Priority to CN2009801080161A priority patent/CN101960627B/zh
Publication of WO2010024641A2 publication Critical patent/WO2010024641A2/ko
Publication of WO2010024641A3 publication Critical patent/WO2010024641A3/ko
Priority to US12/900,240 priority patent/US8173097B2/en
Priority to US13/463,511 priority patent/US8535637B2/en
Priority to US14/014,088 priority patent/US20140000671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/885Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a thermoelectric conversion material, a manufacturing method thereof, and a thermoelectric conversion element using the same.
  • thermoelectric conversion elements are used for thermoelectric conversion power generation and thermoelectric conversion cooling.
  • thermoelectric conversion power generation is a type of power generation that converts thermal energy into electrical energy by using thermoelectric power generated by placing a temperature difference in a thermoelectric conversion element.
  • thermoelectric conversion efficiency of the thermoelectric conversion element is determined by the Seebeck coefficient, the electrical conductivity and the thermal conductivity of the thermoelectric conversion material. More specifically, the thermoelectric conversion performance of the thermoelectric conversion material is proportional to the square of the Seebeck coefficient and the electrical conductivity, Inversely proportional to thermal conductivity Therefore, in order to increase the energy conversion efficiency of the thermoelectric conversion element, it is necessary to develop a thermoelectric conversion material having high Seebeck coefficient or high electrical conductivity or low thermal conductivity.
  • An object of the present invention is to provide a thermoelectric conversion material having good thermoelectric conversion performance.
  • Another object of the present invention is to provide a method for producing the thermoelectric conversion material.
  • an object of this invention is to provide the thermoelectric conversion element which uses the said thermoelectric conversion material.
  • the present inventors have succeeded in synthesizing the compound semiconductor represented by the following formula (1) after repeated studies on the thermoelectric conversion material, and confirmed that the compound can be used as a thermoelectric conversion material of the thermoelectric conversion element, and completed the present invention.
  • thermoelectric conversion material represented by the formula (1) by mixing and then sintering each powder of Bi 2 O 3 , Bi, Cu and Te.
  • the sintering temperature is preferably 400 to 570 °C.
  • thermoelectric conversion material according to the present invention has good thermoelectric conversion performance
  • thermoelectric conversion material can be usefully used in a thermoelectric conversion element in place of or in addition to the conventional thermoelectric conversion material.
  • 1 is a graph showing a Rietveld profile comparing the theoretical pattern of the structural model with the X-ray diffraction pattern of BiCuOTe.
  • FIG. 3 is a graph depicting X-ray diffraction patterns of compounds according to Examples 2, 4 and 6 of the present invention.
  • thermoelectric conversion material of the present invention is represented by the following formula (1).
  • thermoelectric conversion material according to the present invention is characterized by relatively deficiency of at least one of Bi, Cu, and O of BiCuOTe.
  • thermoelectric conversion performance is higher as the Seebeck coefficient and electrical conductivity is larger, and as the thermal conductivity is smaller.
  • BiCuOTe which will be described later, is a superlattice structure in which a Cu 2 Te 2 layer and a Bi 2 O 2 layer are repeated along a c-crystal axis, and have a significantly lower thermal conductivity than Bi 2 Te 3 , a typical commercial thermoelectric conversion material. Seebeck coefficient is also similar or larger than Bi 2 Te 3 .
  • BiCuOTe is very useful as a thermoelectric conversion material, but its electrical conductivity is relatively low. Electrical conductivity may be improved by increasing the concentration of holes, which are carriers, which is achieved by relatively lacking at least one of Bi, Cu, and O in the present invention.
  • thermoelectric conversion material of the present invention is a new material different from the conventional thermoelectric conversion material, and is excellent in thermoelectric conversion performance so that it can be usefully used in thermoelectric conversion elements in place of the conventional thermoelectric conversion material or in addition to the conventional thermoelectric conversion material. Can be.
  • thermoelectric conversion material of Formula 1 may be prepared by mixing and then sintering Bi 2 O 3 , Bi, Cu, and Te powder, but is not limited thereto.
  • the compound semiconductor of the present invention can be produced by sintering in a vacuum or by flowing a gas such as Ar, He, N 2 , which contains a part of hydrogen, or does not contain hydrogen.
  • the temperature during sintering can be as low as 400 to 750 ° C., and even lower to 400 to 570 ° C.
  • Te of the thermoelectric conversion material of the present invention has been described as being used stoichiometrically, even when a part of Te is substituted with other elements such as S, Se, As, Sb, and so on.
  • the concept of the present invention which improves the thermoelectric conversion performance by increasing the carrier concentration by partially depleting at least one of the elements, is equally applied, and the scope of the present invention is a part deficient in the range that does not impair the basic concept of the present invention. It is to be construed that some of the other elements are extended even if they are replaced by another element.
  • Bi 2 O 3 (Aldrich, 99.9%, 100 mesh) 1.1198 g, Bi (Aldrich, 99.99%, ⁇ 10 m), 0.5022 g, Cu (Aldrich, 99.7%, 3 m) 0.4581 g, Te (Aldrich, 99.99%, ⁇ 100 mesh) 0.9199g was mixed well using agate mortar. The mixed material was placed in a silica tube and vacuum sealed, and heated at 510 ° C. for 15 hours to obtain BiCuOTe powder.
  • the measurement was performed by scanning at 0.02 degree intervals with a current of 40 mA.
  • FIG. 1 is a graph showing a Rietveld profile comparing the theoretical pattern of the structural model with the X-ray diffraction pattern of BiCuOTe. Referring to FIG. 1, it can be seen that the measured pattern agrees well with the calculated pattern according to the results of Table 1, thereby identifying that the material obtained by this reference example is BiCuOTe.
  • this BiCuOTe compound semiconductor exhibits a naturally superlattice in which the Cu 2 Te 2 layer and the Bi 2 O 2 layer repeat along the c-crystal axis.
  • Bi 1-x CuOTe was synthesized in the same manner as in the reference example described above, except that the amount of each raw powder was adjusted and mixed as follows in order to deflect a part of Bi of BiCuOTe.
  • the mixing amount of each raw material powder for synthesis is as follows (unit: g).
  • BiCu 1-y OTe was synthesized in the same manner as in the reference example described above, except that the amount of each raw powder was adjusted and mixed as follows to deprive a part of Cu of BiCuOTe.
  • the mixing amount of each raw material powder for synthesis is as follows (unit: g).
  • Bi 0.96 CuO 0.94 Te was synthesized in the same manner as in the reference example described above, except that Bi and O were partially depleted at the same time by reducing the mixing amount of Bi 2 O 3 .
  • the mixing amount of each raw material powder for synthesis is as follows (unit: g).
  • ZEM-2 (Ulvac-Rico, Inc) was used to measure the electrical conductivity and Seebeck coefficient of each sample at predetermined temperature intervals, and the product of the square of the Seebeck coefficient and the electrical conductivity as an indicator of thermoelectric conversion performance. The defined power factor is calculated and shown in FIGS. 4 to 6.
  • thermoelectric conversion materials according to Examples 1 to 6 it can be seen that the power factor of the thermoelectric conversion materials according to Examples 1 to 6 is remarkably improved compared to BiCuOTe of the reference example, and thus, the thermoelectric conversion performance of the thermoelectric conversion material of the present invention is excellent. Able to know.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Powder Metallurgy (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 다음 화학식으로 표시되는 신규한 열전 변환 재료를 제공한다(Bi1-xCu1-yO1-zTe). 상기 화학식 1에서, 0≤x<1, 0≤y<1, 0≤z<1 및 x+y+z>0이다. 이 열전 변환 재료를 이용한 열전 변환 소자는 양호한 에너지 변환 효율을 나타낸다.

Description

신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자
본 발명은 열전 변환 재료 및 그 제조방법과, 이를 이용한 열전 변환 소자에 관한 것이다.
열전 변환 발전이나 열전 변환 냉각 등에 열전 변환 소자가 사용된다. 예를 들어, 열전 변환 발전은 열전 변환 소자에 온도차를 둠으로서 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키는 발전 형태이다.
열전 변환 소자의 에너지 변환 효율은 열전 변환 재료의 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도에 따라 결정되는데, 보다 구체적으로 열전 변환 재료의 열전 변환 성능은 제벡 계수의 제곱 및 전기 전도도에 비례하고, 열 전도도에 반비례한다. 따라서, 열전 변환 소자의 에너지 변환 효율을 높이기 위하여, 제벡 계수 또는 전기 전도도가 높거나 열 전도도가 낮은 열전 변환 재료의 개발이 필요하다.
본 발명은 열전 변환 성능이 양호한 열전 변환 재료를 제공하는데 그 목적이 있다.
또한, 본 발명은 상기 열전 변환 재료의 제조방법을 제공하는데 그 목적이 있다.
나아가, 본 발명은 상기 열전 변환 재료를 이용하는 열전 변환 소자를 제공하는 데에 그 목적이 있다.
본 발명자는 열전 변환 재료에 관한 거듭된 연구 끝에 하기 화학식 1로 표시되는 화합물 반도체를 합성하는데 성공하고, 이 화합물이 열전 변환 소자의 열전 변환 재료로 사용될 수 있음을 확인하고 본 발명을 완성하였다.
<화학식 1>
Bi1-xCu1-yO1-zTe
상기 화학식 1에서, 0≤x<1, 0≤y<1, 0≤z<1 및 x+y+z>0이다.
또한, 상기 화학식 1의 x, y 및 z는 각각 0≤x≤0.5, 0≤y≤0.5 및 0≤z≤0.5 인 것이 바람직하고, 각각 0≤x≤0.2, 0≤y≤0.2 및 0≤z≤0.2 인 것이 더욱 바람직하다.
또한, 본 발명은 Bi2O3, Bi, Cu 및 Te의 각 분말을 혼합한 후, 소결함으로써 상기 화학식 1로 표시되는 열전 변환 재료를 제조하는 방법을 제공한다.
본 발명의 제조 방법에 있어서, 상기 소결시 온도는 400 내지 570 ℃인 것이 바람직하다.
본 발명에 따른 열전 변환 재료는 열전 변환 성능이 양호하므로, 종래의 열전 변환 재료를 대체하거나 종래의 열전 변환 재료에 더하여 열전 변환 소자에 유용하게 사용할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 BiCuOTe의 X-선 회절 패턴과 구조모델의 이론 패턴을 비교한 리트벨트 프로화일(Rietveld profile)을 도시한 그래프이다.
도 2는 BiCuOTe의 결정구조도이다.
도 3은 본 발명의 실시예 2, 4 및 6에 따른 화합물의 X-선 회절 패턴을 도시한 그래프이다.
도 4는 본 발명의 실시예 1, 2와 참조예에 따른 화합물의 파워 팩터(power factor)를 도시한 그래프이다.
도 5는 본 발명의 실시예 3~5와 참조예에 따른 화합물의 파워 팩터를 도시한 그래프이다.
도 6은 본 발명의 실시예 1, 2, 6과 참조예에 따른 화합물의 파워 팩터를 도시한 그래프이다.
본 발명의 열전 변환 재료는 하기 화학식 1로 표시된다.
<화학식 1>
Bi1-xCu1-yO1-zTe
상기 화학식 1에서, 0≤x<1, 0≤y<1, 0≤z<1 및 x+y+z>0이다. 또한, 상기 화학식 1의 x, y 및 z는 각각 0≤x≤0.5, 0≤y≤0.5 및 0≤z≤0.5 인 것이 바람직하고, 각각 0≤x≤0.2, 0≤y≤0.2 및 0≤z≤0.2 인 것이 더욱 바람직하다.
즉, 본 발명에 따른 열전 변환 재료는 BiCuOTe의 Bi, Cu, O 중 적어도 어느 하나의 원소를 상대적으로 결핍(deficiency)시킨 것을 특징으로 한다. 구체적으로, 상기 화학식 1에서 x, y 및 z는, 각각 0<x≤0.1, y=0 및 z=0일 수 있고(Bi만을 결핍시킨 경우), 각각 x=0, 0<y≤0.2 및 z=0일 수 있으며(Cu만을 결핍시킨 경우), 각각 0<x≤0.1, y=0 및 0<z≤0.1일 수 있다(Bi와 O를 동시에 결핍시킨 경우).
전술한 바와 같이, 열전 변환 성능은 제벡 계수 및 전기 전도도가 클수록, 열 전도도가 작을수록 높아진다. BiCuOTe는, 후술하지만, Cu2Te2층과 Bi2O2층이 c-결정축을 따라 반복되는 초격자(superlattice) 구조로서, 전형적인 상용 열전 변환 재료인 Bi2Te3에 비해 열 전도도가 현저히 낮고 제벡 계수도 Bi2Te3와 유사하거나 크다. 따라서, BiCuOTe는 열전 변환 재료로 매우 유용하지만, 전기 전도도가 상대적으로 낮다. 전기 전도도는 캐리어(carrier)인 정공(hole)의 농도를 증가시킴으로써 향상시킬 수 있는데, 본 발명에서는 Bi, Cu, O 중 적어도 어느 하나의 원소를 상대적으로 결핍시킴으로써 이를 달성한다.
따라서, 본 발명의 열전 변환 재료는 종래의 열전 변환 재료와는 다른 새로운 재료로서, 열전 변환 성능이 우수하여 종래의 열전 변환 재료를 대체하거나 종래의 열전 변환 재료에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
상기 화학식 1의 열전 변환 재료는, Bi2O3, Bi, Cu 및 Te의 각 분말을 혼합한 후, 소결함으로써 제조할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 화합물 반도체는 진공 중 또는 수소를 일부 포함하고 있거나 수소를 포함하지 않는 Ar, He, N2 등의 기체를 흘리면서 소결하여 제조할 수 있다. 소결 시 온도는 상당히 낮은 400 내지 750 ℃ 정도로 할 수 있고, 400 내지 570 ℃로 더욱 낮출 수 있다.
한편, 상술한 설명에서 본 발명의 열전 변환 재료의 Te는 화학량론적으로 정량 사용한 것으로 설명하였지만, Te의 일부가 S, Se, As, Sb 등의 다른 원소로 치환된 경우에도, Bi, Cu, O 중 적어도 어느 하나의 원소를 일부 결핍시킴으로써 캐리어 농도를 증가시켜 열전 변환 성능을 향상시킨다는 본 발명의 개념이 동일하게 적용되며, 본 발명의 범위는 본 발명의 기본 개념을 해치지 않는 범위에서 일부 결핍된 원소 이외의 다른 원소의 일부가 또 다른 원소에 의해 치환된 경우에도 미친다고 해석하여야 한다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실시예를 들어 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 의해 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
<참조예>
BiCuOTe의 합성
먼저, BiCuOTe의 합성을 위해, Bi2O3 (Aldrich, 99.9%, 100 mesh) 1.1198g, Bi (Aldrich, 99.99%, < 10 m), 0.5022g, Cu (Aldrich, 99.7 %, 3 m) 0.4581g, Te (Aldrich, 99.99%, ~100 mesh) 0.9199g을 아게이트 몰타르(agate mortar)를 이용하여 잘 혼합하였다. 혼합된 재료는 실리카 튜브(silica tube)에 넣고 진공 밀봉하여, 510℃에서 15시간 동안 가열함으로써 BiCuOTe 분말을 얻었다.
X-선 회절 분석을 위해 시료를 잘 분쇄하여 X-선 회절 분석기(Bruker D8-Advance XRD)의 샘플 홀더에 충전하였으며, X-선은 Cu Kα1 (λ=1.5405Å), 인가 전압 50kV, 인가 전류 40mA로 0.02도 간격으로 스캔하여 측정하였다.
얻어진 물질의 결정 구조를 알아내기 위해서, TOPAS 프로그램(R.W. Cheary, A. Coelho, J. Appl. Crystallogr. 25 (1992) 109-121; Bruker AXS, TOPAS 3, Karlsruhe, Germany (2000))을 사용하여 결정 구조를 분석하였고, 그 결과를 표 1과 도 2에 나타냈다.
표 1
Atom site x y z Occup. Beq
Bi 2c 0.25 0.25 0.37257(5) 1 0.56(1)
Cu 2a 0.75 0.25 0 1 0.98(3)
O 2b 0.75 0.25 0.5 1 0.26(12)
Te 2c 0.25 0.25 0.81945(7) 1 0.35(1)
BiCuOTe의 리트벨트 구조분석(Rietveld refinement)으로부터 얻은 결정학적 데이터 [Space group I4/nmm (No.129), a = 4.04138(6) Å, c = 9.5257(2) Å]
도 1은 BiCuOTe의 X-선 회절 패턴과 구조모델의 이론 패턴을 비교한 리트벨트 프로화일(Rietveld profile)을 도시한 그래프이다. 도 1을 참조하면, 측정된 패턴과 표 1의 결과에 따른 계산된 패턴이 잘 일치한다는 것을 알 수 있고, 이로써 본 참조예에 의해 얻어진 물질이 BiCuOTe임이 동정되었다.
도 2에 도시된 바와 같이, 이러한 BiCuOTe 화합물 반도체는 Cu2Te2 층과 Bi2O2층이 c-결정축을 따라 반복되는 자연적 초격자 구조(naturally superlattice)를 나타낸다.
<실시예 1 및 2>
Bi 1-x CuOTe의 합성
BiCuOTe의 Bi의 일부를 결핍시키기 위해 각 원료 분말의 혼합량을 다음과 같이 조절하여 혼합한 것을 제외하고는, 전술한 참조예와 기본적으로 동일한 방법으로 Bi1-xCuOTe를 합성하였다. 합성을 위한 각 원료 분말의 혼합량은 다음과 같다(단위: g).
표 2
구분 Bi2O3 Bi Cu Te
실시예 1 (x=0.01) 1.6881 0.7344 0.6907 1.3868
실시예 2 (x=0.04) 1.7141 0.6765 0.7013 1.4082
<실시예 3~5>
BiCu 1-y OTe의 합성
BiCuOTe의 Cu의 일부를 결핍시키기 위해 각 원료 분말의 혼합량을 다음과 같이 조절하여 혼합한 것을 제외하고는, 전술한 참조예와 기본적으로 동일한 방법으로 BiCu1-yOTe를 합성하였다. 합성을 위한 각 원료 분말의 혼합량은 다음과 같다(단위: g).
표 3
구분 Bi2O3 Bi Cu Te
실시예 3 (y=0.01) 1.6822 0.7545 0.6814 1.3820
실시예 4 (y=0.04) 1.6900 0.7579 0.6638 1.3884
실시예 5 (y=0.1) 1.7057 0.7650 0.6281 1.4013
<실시예 6>
Bi 0.96 CuO 0.94 Te의 합성
Bi2O3의 혼합량을 상대적으로 줄여 Bi와 O의 일부를 동시에 결핍시킨 것을 제외하고는, 전술한 참조예와 기본적으로 동일한 방법으로 Bi0.96CuO0.94Te를 합성하였다. 합성을 위한 각 원료 분말의 혼합량은 다음과 같다(단위: g).
표 4
구분 Bi2O3 Bi Cu Te
실시예 6 1.6150 0.7706 0.7029 1.4115
또한, 실시예 2, 4, 6의 화합물에 대하여, 참조예와 동일한 방법으로 시료를 준비하여 X-선 회절 분석을 실시하였고, 도 3에 도시된 결과로부터 각 물질을 동정하였다.
<열전 변환 성능 평가>
전술한 방법으로 합성한 참조예와 실시예의 각 시료들 중 일부를 각각 직경 4 mm, 길이 15 mm의 원기둥으로 성형한 다음, CIP를 사용하여 200 MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 510 ℃에서 10시간 동안 진공 소결하였다.
소결한 시료에 대해 ZEM-2 (Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 각 시료들의 전기 전도도와 제벡 계수를 측정하였고, 열전 변환 성능의 지표로서 제벡 계수의 제곱과 전기 전도도의 곱으로 정의되는 파워 팩터(power factor)를 계산하여 도 4 내지 도 6에 나타내었다.
도 4 내지 도 6을 참조하면, 참조예의 BiCuOTe에 비해 실시예 1~6에 따른 열전 변환 재료의 파워 팩터가 현저하게 향상됨을 알 수 있고, 따라서 본 발명의 열전 변환 재료의 열전 변환 성능이 우수함을 알 수 있다.

Claims (9)

  1. 하기 화학식 1로 표시되는 열전 변환 재료.
    <화학식 1>
    Bi1-xCu1-yO1-zTe
    상기 화학식 1에서, 0≤x<1, 0≤y<1, 0≤z<1 및 x+y+z>0이다.
  2. 제1항에 있어서,
    상기 화학식 1의 x, y 및 z는 각각 0≤x≤0.5, 0≤y≤0.5 및 0≤z≤0.5 인 것을 특징으로 하는 열전 변환 재료.
  3. 제2항에 있어서,
    상기 화학식 1의 x, y 및 z는 각각 0≤x≤0.2, 0≤y≤0.2 및 0≤z≤0.2 인 것을 특징으로 하는 열전 변환 재료.
  4. 제3항에 있어서,
    상기 화학식 1의 x, y 및 z는 각각 0<x≤0.1, y=0 및 z=0인 것을 특징으로 하는 열전 변환 재료.
  5. 제3항에 있어서,
    상기 화학식 1의 x, y 및 z는 각각 x=0, 0<y≤0.2 및 z=0인 것을 특징으로 하는 열전 변환 재료.
  6. 제3항에 있어서,
    상기 화학식 1의 x, y 및 z는 각각 0<x≤0.1, y=0 및 0<z≤0.1인 것을 특징으로 하는 열전 변환 재료.
  7. Bi2O3, Bi, Cu 및 Te의 각 분말을 혼합한 후, 소결함으로써 제1항의 화학식 1로 표시되는 열전 변환 재료를 제조하는 방법.
  8. 제7항에 있어서, 상기 소결 시 온도는 400 내지 570 ℃인 것을 특징으로 하는 열전 변환 재료를 제조하는 방법.
  9. 제1항 내지 제6항 중 어느 한 항의 열전 변환 재료를 포함하는 열전 변환 소자.
PCT/KR2009/004883 2008-08-29 2009-08-31 신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자 WO2010024641A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010549589A JP5283713B2 (ja) 2008-08-29 2009-08-31 新規な熱電変換材料及びその製造方法、並びにそれを用いた熱電変換素子
EP09810246.0A EP2320485B1 (en) 2008-08-29 2009-08-31 New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
CN2009801080161A CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
US12/900,240 US8173097B2 (en) 2008-08-29 2010-10-07 Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same
US13/463,511 US8535637B2 (en) 2008-08-29 2012-05-03 Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same
US14/014,088 US20140000671A1 (en) 2008-08-29 2013-08-29 Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0085240 2008-08-29
KR20080085240 2008-08-29
KR20080097779 2008-10-06
KR10-2008-0097779 2008-10-06
KR10-2008-0111557 2008-11-11
KR20080111557 2008-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/900,240 Continuation US8173097B2 (en) 2008-08-29 2010-10-07 Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same

Publications (2)

Publication Number Publication Date
WO2010024641A2 true WO2010024641A2 (ko) 2010-03-04
WO2010024641A3 WO2010024641A3 (ko) 2010-07-01

Family

ID=41721647

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2008/007041 WO2010024500A1 (en) 2008-08-28 2008-11-28 New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
PCT/KR2009/004883 WO2010024641A2 (ko) 2008-08-29 2009-08-31 신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자
PCT/KR2009/004872 WO2010024637A2 (ko) 2008-08-29 2009-08-31 신규한 화합물 반도체 및 그 제조 방법과, 이를 이용한 열전 변환 소자

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/007041 WO2010024500A1 (en) 2008-08-28 2008-11-28 New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004872 WO2010024637A2 (ko) 2008-08-29 2009-08-31 신규한 화합물 반도체 및 그 제조 방법과, 이를 이용한 열전 변환 소자

Country Status (7)

Country Link
US (7) US8173097B2 (ko)
EP (3) EP2319082B1 (ko)
JP (4) JP5414700B2 (ko)
KR (3) KR101117847B1 (ko)
CN (6) CN101946323B (ko)
TW (1) TWI472487B (ko)
WO (3) WO2010024500A1 (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319082B1 (en) * 2008-08-29 2017-11-15 LG Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
KR101114252B1 (ko) * 2010-05-21 2012-02-20 부경대학교 산학협력단 열전재료의 제조방법
CN102339946B (zh) * 2010-07-20 2014-06-18 中国科学院上海硅酸盐研究所 一种高性能热电复合材料及其制备方法
KR101463195B1 (ko) * 2011-04-28 2014-11-21 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
JP5774141B2 (ja) * 2011-04-28 2015-09-02 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
JP5774131B2 (ja) * 2011-05-13 2015-09-02 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
EP2708503B1 (en) * 2011-05-13 2017-02-15 LG Chem, Ltd. Novel compound semiconductor and usage for same
CN103534201B (zh) * 2011-05-13 2016-10-19 Lg化学株式会社 新的化合物半导体及其用途
JP5767395B2 (ja) * 2011-05-13 2015-08-19 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
EP2708496B1 (en) * 2011-05-13 2018-02-28 LG Chem, Ltd. Novel compound semiconductor and usage for same
CN103050618B (zh) * 2011-10-17 2015-08-12 中国科学院福建物质结构研究所 一种热电材料及其制备方法
KR102001062B1 (ko) 2012-01-16 2019-10-01 삼성전자주식회사 나노복합체형 열전재료, 이를 포함하는 열전모듈과 열전장치
KR101323321B1 (ko) * 2012-02-10 2013-10-29 한국전기연구원 Sb가 도핑된 MnTe계 열전재료 및 그 제조방법
KR20130126035A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 왜곡된 전자 상태 밀도를 갖는 열전소재, 이를 포함하는 열전모듈과 열전 장치
KR101995917B1 (ko) 2012-05-14 2019-07-03 삼성전자주식회사 파워팩터 증대된 열전소재 및 그 제조 방법
FR2996355B1 (fr) * 2012-09-28 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
KR101446424B1 (ko) * 2013-04-15 2014-10-30 서강대학교산학협력단 열전 변환 물질
CN103236493B (zh) * 2013-05-13 2017-10-24 中国科学院福建物质结构研究所 TmCuTe2化合物及其制备和用途
JP6460352B2 (ja) 2013-09-09 2019-01-30 エルジー・ケム・リミテッド 熱電材料
KR101612494B1 (ko) * 2013-09-09 2016-04-14 주식회사 엘지화학 열전 재료
KR101612489B1 (ko) * 2013-09-27 2016-04-14 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
CN105308766B (zh) * 2013-10-04 2017-12-05 株式会社Lg化学 新化合物半导体及其用途
KR101629509B1 (ko) * 2013-10-17 2016-06-10 주식회사 엘지화학 열전 재료 및 그 제조 방법
KR101626933B1 (ko) 2013-11-29 2016-06-02 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR102138527B1 (ko) * 2014-01-20 2020-07-28 엘지전자 주식회사 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
FR3019539B1 (fr) * 2014-04-04 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
FR3019540A1 (fr) 2014-04-04 2015-10-09 Rhodia Operations Oxydes et sulfures mixtes de bismuth et argent pour application photovoltaique
CN104674046B (zh) * 2015-02-03 2017-11-03 河南理工大学 一种BiCuζO热电材料的制备方法
JP6704577B2 (ja) * 2015-02-23 2020-06-03 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体
CN104831344A (zh) * 2015-04-29 2015-08-12 河南鸿昌电子有限公司 一种半导体晶棒的拉晶方法
KR101917914B1 (ko) 2015-08-26 2018-11-12 주식회사 엘지화학 화합물 반도체 및 그 제조방법
CN105552202B (zh) * 2015-12-08 2018-04-10 中国科学院福建物质结构研究所 晶体材料、制备方法以及含有该晶体材料的热电材料、其制备方法及热电转换器和应用
CN107146676B (zh) * 2016-03-01 2019-03-08 中国科学院物理研究所 镉基铁磁半导体材料及其制备方法
CN106601837B (zh) * 2016-11-23 2018-06-22 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN106784038B (zh) * 2017-01-05 2018-03-13 上海应用技术大学 一种组分可调光电薄膜的制备方法
KR102381761B1 (ko) * 2017-12-15 2022-03-31 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전 소자
JP7314927B2 (ja) * 2018-02-27 2023-07-26 住友化学株式会社 熱電変換モジュール用部材、熱電変換モジュール及び熱電変換モジュール用部材の製造方法
CN108640683B (zh) * 2018-04-04 2019-07-05 乐清市风杰电子科技有限公司 一种纳米复合热电材料的制备方法
CN109273584B (zh) * 2018-07-16 2022-06-28 永康市天峰工具有限公司 一种汽车尾气温差发电装置用热电材料及发电装置
CN112136221A (zh) * 2018-10-17 2020-12-25 松下知识产权经营株式会社 热电转换材料及使用热电转换材料得到电力的方法
JP7148636B2 (ja) 2018-12-04 2022-10-05 住友化学株式会社 化合物及び熱電変換材料
WO2020116366A1 (ja) 2018-12-04 2020-06-11 住友化学株式会社 化合物及び熱電変換材料
KR102688628B1 (ko) * 2019-02-26 2024-07-24 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전 소자
CN110627502B (zh) * 2019-10-22 2020-12-22 中南大学 一种低温p型复合热电材料及制备方法
CN112397634B (zh) * 2020-11-16 2023-02-28 昆明理工大学 一种提升Bi-Sb-Te基热电材料性能的方法
CN114133245B (zh) * 2021-11-15 2022-12-20 清华大学 热电陶瓷材料及其制备方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366336A (en) * 1980-10-16 1982-12-28 Chevron Research Company Age and heat stabilized photovoltaic cells
US4661071A (en) * 1984-04-03 1987-04-28 Denpac Corp. Vacuum sintered powder alloy dental prosthetic device and oven to form same
US5336558A (en) * 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
WO1994012833A1 (en) * 1992-11-27 1994-06-09 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
KR960006241B1 (ko) * 1993-11-20 1996-05-11 국방과학연구소 p-n 전이방지 특성을 갖는 Bi₂Te₃계 열전재료 조성물
JP3092463B2 (ja) * 1994-10-11 2000-09-25 ヤマハ株式会社 熱電材料及び熱電変換素子
US6458319B1 (en) * 1997-03-18 2002-10-01 California Institute Of Technology High performance P-type thermoelectric materials and methods of preparation
JP3572939B2 (ja) * 1997-05-15 2004-10-06 ヤマハ株式会社 熱電材料及びその製造方法
WO1999022410A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Thermoelectric transducing material and method of producing the same
JP3484960B2 (ja) * 1997-12-22 2004-01-06 松下電工株式会社 熱電変換素子及び熱電変換素子の製造方法
AU4806499A (en) * 1998-06-18 2000-01-05 Industrial Research Limited Critical doping in high-tc superconductors for maximal flux pinning and critical currents
JP2000261043A (ja) * 1999-03-10 2000-09-22 Sumitomo Special Metals Co Ltd 熱電変換材料とその製造方法
US6091014A (en) * 1999-03-16 2000-07-18 University Of Kentucky Research Foundation Thermoelectric materials based on intercalated layered metallic systems
DE19955788A1 (de) * 1999-11-19 2001-05-23 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
US6251701B1 (en) * 2000-03-01 2001-06-26 The United States Of America As Represented By The United States Department Of Energy All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof
JP3594008B2 (ja) 2000-11-30 2004-11-24 ヤマハ株式会社 熱電材料、その製造方法及びペルチェモジュール
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
EP1428243A4 (en) * 2001-04-16 2008-05-07 Bulent M Basol METHOD OF FORMING A THIN LAYER OF SEMICONDUCTOR COMPOUND FOR THE MANUFACTURE OF AN ELECTRONIC DEVICE, AND THIN LAYER PRODUCED THEREBY
US6660925B1 (en) * 2001-06-01 2003-12-09 Marlow Industries, Inc. Thermoelectric device having co-extruded P-type and N-type materials
US7166796B2 (en) * 2001-09-06 2007-01-23 Nicolaou Michael C Method for producing a device for direct thermoelectric energy conversion
WO2003105244A1 (ja) * 2002-01-01 2003-12-18 古河電気工業株式会社 熱電素子モジュール及びその作製方法
JP2004288841A (ja) * 2003-03-20 2004-10-14 Rikogaku Shinkokai オキシカルコゲナイドおよび熱電材料
EP1737053B1 (en) 2004-03-25 2012-02-29 National Institute of Advanced Industrial Science and Technology Thermoelectric conversion element and thermoelectric conversion module
CN1278941C (zh) * 2004-12-08 2006-10-11 浙江大学 一种Bi2Te3纳米囊及其制备方法
JP2007158191A (ja) * 2005-12-07 2007-06-21 Toshiba Corp 熱電材料およびこの材料を用いた熱電変換素子
JP2007258200A (ja) * 2006-03-20 2007-10-04 Univ Nagoya 熱電変換材料及びそれを用いた熱電変換膜
JP4967772B2 (ja) * 2006-08-24 2012-07-04 住友化学株式会社 熱電変換材料およびその製造方法
JP2008085309A (ja) * 2006-08-29 2008-04-10 Okano Electric Wire Co Ltd 熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料
WO2008028852A2 (de) * 2006-09-05 2008-03-13 Basf Se Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
KR101008035B1 (ko) * 2007-06-14 2011-01-13 주식회사 엘지화학 신규한 화합물 반도체 물질 및 그 제조 방법과, 이를이용한 태양 전지
EP2319082B1 (en) * 2008-08-29 2017-11-15 LG Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.W. CHEARY; A. COELHO, J. APPL. CRYSTALLOGR., vol. 25, 1992, pages 109 - 121

Also Published As

Publication number Publication date
CN103178202B (zh) 2016-06-01
CN103178202A (zh) 2013-06-26
JP2011523394A (ja) 2011-08-11
KR20100027079A (ko) 2010-03-10
EP2320485B1 (en) 2014-11-19
KR20100027081A (ko) 2010-03-10
US9620696B2 (en) 2017-04-11
TWI472487B (zh) 2015-02-11
CN103400932B (zh) 2016-08-10
EP2319082A1 (en) 2011-05-11
US20120326100A1 (en) 2012-12-27
EP2319082B1 (en) 2017-11-15
EP2320485A2 (en) 2011-05-11
KR101117847B1 (ko) 2012-03-16
US8226843B2 (en) 2012-07-24
US8715538B2 (en) 2014-05-06
US20110079751A1 (en) 2011-04-07
CN101946323B (zh) 2013-08-21
CN101960627A (zh) 2011-01-26
US20140190544A1 (en) 2014-07-10
US8029703B2 (en) 2011-10-04
JP2011513986A (ja) 2011-04-28
EP2316793A4 (en) 2013-11-20
CN101960627B (zh) 2013-03-27
WO2010024637A2 (ko) 2010-03-04
CN103400932A (zh) 2013-11-20
US20110017935A1 (en) 2011-01-27
KR20100027080A (ko) 2010-03-10
CN103130199B (zh) 2015-03-18
US8173097B2 (en) 2012-05-08
JP2011516370A (ja) 2011-05-26
CN103130199A (zh) 2013-06-05
CN101977846B (zh) 2013-03-13
CN101977846A (zh) 2011-02-16
US20110079750A1 (en) 2011-04-07
US20140000671A1 (en) 2014-01-02
KR101117845B1 (ko) 2012-03-16
KR101128304B1 (ko) 2012-03-23
WO2010024637A3 (ko) 2010-07-01
JP5414700B2 (ja) 2014-02-12
US8535637B2 (en) 2013-09-17
CN101946323A (zh) 2011-01-12
JP2013145895A (ja) 2013-07-25
EP2316793A2 (en) 2011-05-04
EP2320485A4 (en) 2013-10-30
EP2319082A4 (en) 2013-12-04
EP2316793B1 (en) 2014-11-05
JP5462858B2 (ja) 2014-04-02
TW201008877A (en) 2010-03-01
WO2010024641A3 (ko) 2010-07-01
US20120211045A1 (en) 2012-08-23
JP5537688B2 (ja) 2014-07-02
WO2010024500A1 (en) 2010-03-04
JP5283713B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2010024641A2 (ko) 신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자
WO2015080527A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157904A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157913A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012148197A2 (ko) 신규한 화합물 반도체 및 그 활용
Huang et al. Synthesis, structure, electrical conductivity, and band structure of the rare-earth copper oxychalcogenide La5Cu6O4S7
EP0371780A1 (en) Multi-element metal chalcogenide
US9660165B2 (en) Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
Tatsumi et al. Synthesis of new tungsten bronze phases from peroxo-polytungstate precursors
JP3867136B2 (ja) ナトリウムコバルト酸化物の単結晶及びその製造方法
KR101427194B1 (ko) 크롬이 첨가된 망간-규소계 열전재료 및 그 제조방법
WO2023243962A1 (ko) 열전 재료 및 그 형성 방법
CN100492668C (zh) 一系列半导体材料
WEN et al. SYNTHESIS, STRUCTURE AND ELECTRICAL CONDUCTIVITY OF SINGLE CRYSTAL OF SrAlo. 61V5. 39011
CN115806822A (zh) 一种环境稳定的钙钛矿核壳结构复合材料及其制备方法与应用
EP2603458A2 (en) Paste for contacts and solar cell using the same
Kubat-Martin et al. Cubic new compound in the Ba-Ca-Cu-O system: Preliminary phase relationships
Suthanthiraraj et al. A study of formation of solid ionic conductors in the mixed system (CdI 2) b [(Ag 2 O)·(CrO 3)] 100-b (20≤ b≤ 80)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108016.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810246

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010549589

Country of ref document: JP

Ref document number: 2009810246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE