CN101946323A - 新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件 - Google Patents

新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件 Download PDF

Info

Publication number
CN101946323A
CN101946323A CN2008801266927A CN200880126692A CN101946323A CN 101946323 A CN101946323 A CN 101946323A CN 2008801266927 A CN2008801266927 A CN 2008801266927A CN 200880126692 A CN200880126692 A CN 200880126692A CN 101946323 A CN101946323 A CN 101946323A
Authority
CN
China
Prior art keywords
compound semiconductor
general formula
aldrich
cuote
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801266927A
Other languages
English (en)
Other versions
CN101946323B (zh
Inventor
朴哲凞
孙世姬
洪承泰
权元锺
金兑训
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Corp
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Priority to CN201310309148.9A priority Critical patent/CN103400932B/zh
Publication of CN101946323A publication Critical patent/CN101946323A/zh
Application granted granted Critical
Publication of CN101946323B publication Critical patent/CN101946323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/885Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明涉及由以下通式表示的化合物半导体:Bi1-xMxCuwOa-yQ1yTeb-zQ2z。在此,M为选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb中的至少一种元素;Q1和Q2为选自S、Se、As和Sb中的至少一种元素;x、y、z、w、a和b为0≤x<1、0<w≤1、0.2<a<4、0≤y<4、0.2<b<4和0≤z<4。这些化合物半导体可用在各种应用中,如太阳能电池或热电转换元件,其中它们可以取代常规使用的化合物半导体,或者与常规使用的化合物半导体一起使用。

Description

新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件
技术领域
本发明提供了一类新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件。
背景技术
化合物半导体不是像锗一样的单一元素,而是通过结合至少两种元素得到并由此作为半导体运行的化合物。在许多领域中已经开发并应用了各种各样的化合物半导体。化合物半导体典型地应用于发光器件(如使用光电转换效应的LED或激光二极管)、太阳能电池以及使用珀尔帖效应(Peltier Effect)的热电转换元件中。
其中,集中研究了除了太阳光以外不需要其他任何能源的环境友好的太阳能电池作为未来的替代能源。太阳能电池通常分为使用主要为硅的单一元素的硅太阳能电池、使用化合物半导体的化合物半导体太阳能电池以及具有至少两个有不同带隙能级的叠层太阳能电池的串联太阳能电池。
化合物半导体太阳能电池在吸收太阳光以产生电子-空穴对的光吸收层中使用化合物半导体。化合物半导体包括III-V族化合物半导体,如GaAs、InP、GaAlAs和GaInAs;II-VI族化合物半导体,如CdS、CdTe和ZnS;以及I-III-VI族化合物半导体,如CuInSe2
太阳能电池的光吸收层需要优异的长期电-光稳定性、高的光电转换效率和通过掺杂或改变组成而对带隙能级或导电性的轻松控制。此外,在实际应用中,光吸收层需要满足制备成本和产率上的需求。以上所述的各种化合物半导体并不能满足所有的这些条件,因此,需要根据它们的优点和缺点对它们进行适当的选择和应用。
此外,热电转换元件应用于热电转换发电或热电转换冷却。例如,对于热电转换发电,在热电转换元件上施加温度差以产生温差电动势,然后此温差电动势用于将热能转换为电能。
热电转换元件的能量转换效率取决于热电转换材料的性能指标ZT值。ZT值取决于塞贝克系数(Seebeck coefficient)、电导率和热导率。更具体地说,ZT值与电导率和塞贝克系数的平方成正比,与热导率成反比。因此,为了提高热电转换元件的能量转换效率,需要开发具有高塞贝克系数、高电导率或低热导率的热电转换材料。
发明内容
技术问题
本发明的一个目的是提供一类新型化合物半导体,其可用于不同的应用中,如太阳能电池和热电转换元件的热电转换材料。
本发明的另一目的是提供一种制备上述新型化合物半导体的方法。
此外,本发明的再一目的是提供一种使用该新型化合物半导体材料的太阳能电池或热电转换元件。
技术方案
作为新型化合物半导体的研究结果,本发明提出了通式1的组合物。结果发现,这些新型化合物可以用作太阳能电池的光吸收层,热电转换元件的热电转换材料等。
通式1
Bi1-xMxCuwOa-yQ1yTeb-zQ2z
其中,M为选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb中的至少一种元素,Q1和Q2为选自S、Se、As和Sb中的至少一种元素,且0≤x<1、0<w≤1、0.2<a<4、0≤y<4、0.2<b<4和0≤z<4。
根据本发明,由通式1表示的化合物半导体的优选组成为BiCu0.8-1.2O0.8-1.2Te0.8-1.2
根据本发明,通式1中的x、y和z满足x+y+z>0,且优选地,a、y、b和z分别为a=1、0≤y<1、b=1和0≤z<1。
在其他情况下,x、w、a、y、b和z分别优选为0≤x<0.15、0.8≤w≤1、a=1、0≤y<0.2、b=1和0≤z<0.5。在此,M优选为选自Sr、Cd、Pb和Tl中的任意一种,且Q1和Q2分别优选为Se或Sb。
在本发明的另一个实施方式中,提供了一种通过加热Bi2O3、Bi、Cu和Te的混合物制备由以上通式1表示的化合物半导体的方法。
或者,本发明提供了通过加热Bi2O3、Bi、Cu、Te和选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb元素或其氧化物中的至少一种的混合物制备由通式1表示的化合物半导体的方法。
又或者,本发明提供了通过加热Bi2O3、Bi、Cu、Te、选自S、Se、As和Sb元素或其氧化物中的至少一种、和选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb元素或其氧化物中的至少一种的混合物制备由通式1表示的化合物半导体的方法。
在根据本发明的方法中,烧结工艺优选在400~570℃温度下进行。
有益效果
本发明的新型化合物半导体可以取代常规使用的化合物半导体,或者与常规使用的化合物半导体一起使用。特别地,该化合物半导体由于其优异的热电转换性能可用于热电转换元件,且可用于太阳能电池中的光吸收层的应用中。此外,本发明的化合物半导体预计可用于选择性地通过红外线(IR)的IR窗口或IR传感器。
附图说明
参照附图,从下面对实施方式的描述中,本发明的其他目的和技术方案将更明晰:
图1显示出比较X射线衍射图与由结构模型计算出的图的BiCuOTe的Rietveld精修图谱;
图2显示出BiCuOTe的晶体结构;
图3显示出BiCu0.9OTe的X射线衍射图;
图4显示出比较X射线衍射图与由结构模型计算出的图的Bi0.98Pb0.02CuOTe的Rietveld精修图谱;
图5显示出Bi0.98Pb0.02CuOTe的晶体结构;
图6显示出Bi0.9Pb0.1CuOTe的X射线衍射图;
图7显示出Bi0.9Cd0.1CuOTe的X射线衍射图;
图8显示出Bi0.9Sr0.1CuOTe的X射线衍射图;
图9显示出比较X射线衍射图与由结构模型计算出的图的BiCuOSe0.5Te0.5的Rietveld精修图谱;
图10显示出BiCuOSe0.5Te0.5的晶体结构;
图11显示出Bi0.9Tl0.1CuOTe的X射线衍射图;
图12显示出BiCuOTe0.9Sb0.1的X射线衍射图;
图13显示出BiCuOTe、BiCuOSe和BiCuOS的漫反射谱,以说明获得化合物的带隙能级的过程;
图14显示出BiCuOTe在不同温度下的电导率、塞贝克系数、热导率和ZT值;
图15显示出Bi0.9Sr0.1CuOTe在不同温度下的电导率、塞贝克系数、热导率和ZT值;
图16显示出Bi0.9Cd0.1CuOTe在不同温度下的电导率、塞贝克系数、热导率和ZT值;
图17显示出Bi0.9Pb0.1CuOTe在不同温度下的电导率、塞贝克系数、热导率和ZT值;
图18显示出Bi0.98Pb0.02CuOTe在不同温度下的电导率、塞贝克系数、热导率和ZT值;
图19显示出Bi0.9Tl0.1CuOTe在不同温度下的电导率、塞贝克系数、热导率和ZT值。
具体实施方式
本发明的化合物半导体的组成由以下通式1表示。
通式1
Bi1-xMxCuwOa-yQ1yTeb-zQ2z
在通式1中,M为选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb中的至少一种元素,Q1和Q2为选自S、Se、As和Sb中的至少一种元素,且0≤x<1、0<w≤1、0.2<a<4、0≤y<4、0.2<b<4和0≤z<4。
在通式1中,x、y和z分别优选为0≤x≤1/2、0≤y≤a/2和0≤z≤b/2。
在通式1中,x、y和z可以分别为x=0、y=0和z=0。通式1的组成优选为BiCu0.8-1.2O0.8-1.2Te0.8-1.2,且特别优选为BiCuOTe。
在通式1中,x、y和z满足x+y+z>0,且优选地,通式1中的a、y、b和z分别为a=1、0≤y<1、b=1和0≤z<1。在其他情况下,x、w、a、y、b和z可以分别为0≤x<0.15、0.8≤w≤1、a=1、0≤y<0.2、b=1和0≤z<0.5。在此,M优选为选自Sr、Cd、Pb和Tl中的任意一种,且Q1和Q2分别优选为Se或Sb。更优选地,通式1中的x、w、a、y、b和z分别为0≤x<0.15、0.8≤w≤1、a=1、0≤y<0.2、b=1和0≤z<0.5,M为选自Sr、Cd、Pb和Tl中的任意一种,且Q1和Q2分别为Se或Sb。
对于通式1的组成,更优选地,通式1中的x、w、a、y、b和z分别为0<x<0.15、w=1、a=1、y=0、b=1和z=0,且M为选自Sr、Cd、Pb和Tl中的任意一种。此外,在通式1中,当通式1中的x、w、y和z分别为x=0、w=1、a=1、y=0、b=1和0<z≤0.5,且Q2为Se或Sb时,更优选地,通式1中的x、w、a、y、b和z分别为0<x<0.15、w=1、a=1、y=0、b=1和z=0,且M为选自Sr、Cd、Pb和Tl中的任意一种。
同时,由通式1表示的化合物半导体可以通过混合Bi2O3、Bi、Cu和Te粉末,然后真空烧结该混合物来制备,但本发明并不限于此。
此外,由通式1表示的化合物半导体可以通过在真空石英管中加热Bi2O3、Bi、Cu、Te和选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb或其氧化物中的至少一种的混合物以制备,然而本发明并不限于此。
此外,由通式1表示的化合物半导体可以通过在真空石英管中加热Bi2O3、Bi、Cu、Te、选自S、Se、As和Sb或其氧化物中的至少一种、和选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb或其氧化物中的至少一种的混合物以制备,然而本发明并不限于此。
本发明的化合物半导体可以通过在流动气体(如部分包括氢或不包括氢的Ar、He或N2)中烧结混合物以制备。烧结工艺优选在400~750℃,更优选在400~570℃下进行。
接着说明使用本发明的化合物半导体作为光吸收层的太阳能电池。使用根据本发明的化合物半导体的太阳能电池可以制备为以下结构:前透明电极、缓冲层、光吸收层、后电极和基板依次层叠。现将简要说明此结构。
位于最底层位置的基板通常由玻璃制成,在基板的整个表面上形成的后电极通过沉积如Mo的金属而形成。随后,本发明的化合物半导体通过电子束沉积法、溶胶凝胶法、脉冲激光沉积法(PLD)等层压在后电极上。用于缓冲光吸收层和ZnO层(通常用作前透明电极)之间的带隙差异和晶格常数的缓冲层在光吸收层上形成。缓冲层可以以化学浴沉积法(CBD)等通过沉积如CdS的材料以形成。随后,前透明电极通过溅射ZnO层压膜或ZnO和ITO层压膜在缓冲层上形成。用作光吸收层的本发明的化合物半导体主要为p型半导体,因此,n型半导体的前透明电极的ZnO用作前电极,且与光吸收层形成p-n结。
同时,上述太阳能电池可以以各种形式修改。例如,本发明的化合物半导体可以在串联太阳能电池中用作光吸收层。在串联太阳能电池中,可层叠由具有不同带隙能级的材料制成的太阳能电池,且层叠的太阳能电池可以使用本领域中所熟知的硅或其他化合物半导体。此外,本发明的化合物半导体的带隙可以变化,从而层压使用具有不同带隙的化合物半导体作为光吸收层的多个太阳能电池。根据本发明的化合物半导体的带隙可通过改变化合物的组成,特别是替换化合物中组分(尤其是Te)的组成比例而轻易控制。
已知包含Se以代替Te的化合物BiCuOSe[A.M.Kusainova,P.S.Berdonosov,L.N.Kholodkovskaya,L.G.Akselrud,V.A.Dolgikh和B.A.Popovkin,″Powder X-Ray and IR Studies of the New Oxyselenides MOCuSe(M=Bi,Gd,Dy)″,J.Solid State Chemistry,118,74-77(1995)]。此外,包含La、Ce或Nd以代替Bi的化合物LnCuOTe也已报导[M.L.Liu,L.B.Wu,F.Q.Huang,L.D.Chen,J.A.Ibers,″Syntheses,Crystal and Electronic Structure,and Some Optical and Transport Properties of LnCuOTe(Ln=La,Ce,Nd)″,J.Solid State Chemistry,180,62-69(2007)]。
然而,这些化合物从组成上看与本发明的化合物半导体不同。
同时,本发明的化合物半导体显示出很高的热电转换材料的性能指标ZT值。即,本发明的化合物半导体显示出优异的热电转换性能。因此,本发明的化合物半导体可以取代常规使用的化合物半导体,或者与常规使用的化合物半导体一起用于热电转换元件。
此外,本发明的化合物半导体预计可用于选择性地通过红外线(IR)的IR窗口或传感器。
实施例
以下将基于实施例详述本发明的优选实施方式。然而,本发明的实施方式可以以不同方式修改,且本发明的范围不应解释为限于这些实施例。本发明提供的实施方式仅用于向所属领域的技术人员更完善的解释本发明。
实施例1
BiCuOTe
为了制备BiCuOTe,通过使用玛瑙研钵充分混合1.1198g的Bi2O3(Aldrich,99.9%,100目)、0.5022g的Bi(Aldrich,99.99%,<10m),0.4581g的Cu(Aldrich,99.7%,3m)和0.9199g的Te(Aldrich,99.99%,约100目),然后在510℃真空石英管中加热15小时,以获得BiCuOTe粉末。
在室温下在Bragg-Brentano衍射仪(Bruker Advance D8 XRD)上用Cu X射线管(50kV,40mA)测定粉末X射线衍射(XRD)数据。步长为0.02度。
使用TOPAS程序(R.W.Cheary,A.Coelho,J.Appl.Crystallogr.25(1992)109-121;Bruker AXS,TOPAS 3,Karlsruhe,Germany(2000))以测定得到的材料的晶体结构。分析结果示于表1和图2中。
【表1】
  原子   位置   x   y   z   占有率   Beq
  Bi   2c   0.25   0.25   0.37257(5)   1   0.56(1)
  Cu   2a   0.75   0.25   0   1   0.98(3)
  O   2b   0.75   0.25   0.5   1   0.26(12)
  Te   2c   0.25   0.25   0.81945(7)   1   0.35(1)
由BiCuOTe的Rietveld精修[空间群I4/nmm(No.129),
Figure BPA00001197522900072
Figure BPA00001197522900073
]得到的结晶学数据。
图1显示出比较观察到的BiCuOTe的X射线衍射图与由结构模型计算出的X射线衍射图的Rietveld精修图谱。图1显示出测量的图与根据表1计算的图良好吻合,这说明此实施例中得到的材料为BiCuOTe。
如图2所示,BiCuOTe化合物半导体显示出天然超晶格结构,其中,Cu2Te2层和Bi2O2层沿c晶轴重复。
实施例2
BiCu 0.9 OTe
为了制备BiCu0.9OTe,通过使用玛瑙研钵充分混合1.1371g的Bi2O3(Aldrich,99.9%,100目)、0.51g的Bi(Aldrich,99.99%,<10m),0.4187g的Cu(Aldrich,99.7%,3m)和0.9342g的Te(Aldrich,99.99%,约100目),然后在510℃真空石英管中加热15小时,以获得BiCu0.9OTe粉末。
此样品的X射线衍射分析以与实施例1相同的方法进行。如图3所示,在实施例2中得到的材料被鉴定为BiCu0.9TeO。
实施例3
Bi 0.98 Pb 0.02 CuOTe
为了制备Bi0.98Pb0.02CuOTe,通过使用玛瑙研钵充分混合2.5356g的Bi2O3(Aldrich,99.9%,100目)、1.1724g的Bi(Aldrich,99.99%,<10m),1.0695g的Cu(Aldrich,99.7%,3m)、0.0751g的PbO(Canto,99.5%)和2.1475g的Te(Aldrich,99.99%,约100目),然后在510℃真空石英管中加热15小时,以获得Bi0.98Pb0.02CuOTe粉末。
在室温下在Bragg-Brentano衍射仪(Bruker D4-Endeavor XRD)上用Cu X射线管(
Figure BPA00001197522900081
50kV,40mA)测定粉末X射线衍射(XRD)数据。步长为0.02度。
使用TOPAS程序(R.W.Cheary,A.Coelho,J.Appl.Crystallogr.25(1992)109-121;Bruker AXS,TOPAS 3,Karlsruhe,Germany(2000))以测定得到的材料的晶体结构。分析结果示于表2和图5中。
【表2】
  原子   位置   x   y   z   占有率   Beq
  Bi   2c   0.25   0.25   0.37225(12)   0.98   0.59(4)
  Pb   2c   0.25   0.25   0.37225(12)   0.02   0.59(4)
  Cu   2a   0.75   0.25   0   1   1.29(10)
  O   2b   0.75   0.25   0.5   1   0.9(4)
  Te   2c   0.25   0.25   0.81955(17)   1   0.55(5)
由Bi0.98Pb0.02CuOTe的Rietveld精修[空间群P4/nmm(No.129),
Figure BPA00001197522900082
Figure BPA00001197522900083
Figure BPA00001197522900084
]得到的结晶学数据。
图4显示出比较观察到的Bi0.98Pb0.02CuOTe的X射线衍射图与由结构模型计算出的图的Rietveld精修图谱。图4显示出测量的图与根据表2计算的图良好吻合,这说明此实施例中得到的材料为Bi0.98Pb0.02CuOTe。
如图5所示,Bi0.98Pb0.02CuOTe显示出天然超晶格结构,其中,Cu2Te2层和由Pb部分取代了Bi的(Bi,Pb)2O2层沿c晶轴重复。
实施例4
Bi 0.9 Pb 0.1 CuOTe
为了制备Bi0.9Pb0.1CuOTe,通过使用玛瑙研钵充分混合1.2721g的Bi2O3(Aldrich,99.9%,100目)、0.6712g的Bi(Aldrich,99.99%,<10m),0.6133g的Cu(Aldrich,99.7%,3m)、0.215g的PbO(Canto,99.5%)和1.2294g的Te(Aldrich,99.99%,约100目),然后在510℃真空石英管中加热15小时,以获得Bi0.9Pb0.1CuOTe粉末。
此样品的X射线衍射分析以与实施例3相同的方法进行。如图4所示,在实施例4中得到的材料被鉴定为Bi0.9Pb0.1CuOTe。
实施例5
Bi 0.9 Cd 0.1 CuOTe
为了制备Bi0.9Cd0.1CuOTe,通过使用玛瑙研钵充分混合1.3018g的Bi2O3(Aldrich,99.9%,100目)、0.6869g的Bi(Aldrich,99.99%,<10m),0.6266g的Cu(Aldrich,99.7%,3m)、0.1266g的CdO(Strem,99.999%)和1.2582g的Te(Aldrich,99.99%,约100目),然后在510℃真空石英管中加热15小时,以获得Bi0.9Cd0.1CuOTe粉末。
此样品的X射线衍射分析以与实施例3相同的方法进行。如图7所示,在实施例5中得到的材料被鉴定为Bi0.9Cd0.1CuOTe。
实施例6
Bi 0.9 Sr 0.1 CuOTe
为了制备Bi0.9Sr0.1CuOTe,通过使用玛瑙研钵充分混合1.0731g的Bi2O3(Aldrich,99.9%,100目)、0.5662g的Bi(Aldrich,99.99%,<10m),0.5165g的Cu(Aldrich,99.7%,3m),1.0372g的Te(Aldrich,99.99%,约100目)和0.0842g的SrO。在此,SrO是通过在1125℃下在空气中热处理SrCO3(Alfa,99.994%)12小时制备的。通过热处理获得的材料由X射线衍射分析被确定为SrO。
然后将该混合物在510℃的真空石英管中加热15小时,以获得Bi0.9Cd0.1CuOTe粉末。
在室温下在Bragg-Brentano衍射仪(Bruker D8 Advance XRD)上用Cu X射线管(50kV,40mA)测定粉末X射线衍射(XRD)数据。步长为0.02度。图8显示出在实施例6中得到的材料为Bi0.9Sr0.1CuOTe。
实施例7
BiCuOSe 0.5 Te 0.5
为了制备BiCuOSe0.5Te0.5,通过使用玛瑙研钵充分混合1.9822g的Bi2O3(Aldrich,99.9%,100目)、0.889g的Bi(Aldrich,99.99%,<10m),0.811g的Cu(Aldrich,99.7%,3m)、0.5036g的Se(Aldrich,99.99%)和0.8142g的Te(Aldrich,99.99%,约100目),然后在510℃真空石英管中加热15小时,以获得BiCuOSe0.5Te0.5粉末。
在室温下在Bragg-Brentano衍射仪(Bruker D4-Endeavor XRD)上用Cu X射线管(40kV,40mA)测定粉末X射线衍射(XRD)数据。步长为0.02度。同时,使用可变的6mm狭缝作为发散狭缝。其结果示于图9中。晶体结构分析以与实施例3相同的方法进行。分析结果示于表3和图10中。
【表3】
  原子   位置   x   y   z   占有率   Beq
  Bi   2c   0.25   0.25   0.36504(9)   1   0.86(2)
  Cu   2a   0.75   0.25   0   1   2.00(9)
  O   2b   0.75   0.25   0.5   1   1.9(3)
  Te   2c   0.25   0.25   0.82272(14)   0.5   0.61(4)
  Se   2c   0.25   0.25   0.82252(14)   0.5   0.55(5)
由BiCuOSe0.5Te0.5的Rietveld精修[空间群P4/nmm(No.129),
Figure BPA00001197522900102
Figure BPA00001197522900103
Figure BPA00001197522900104
]得到的结晶学数据。
图9显示出测量的图与根据表3计算的图良好吻合,因此,在此实施例中得到的材料被鉴定为BiCuOSe0.5Te0.5
如图10所示,BiCuOSe0.5Te0.5化合物半导体显示出天然超晶格结构,其中,Cu2(Te,Se)2层和Bi2O2层沿c晶轴重复。
实施例8
Bi 0.9 Tl 0.1 CuOTe
为了制备Bi0.9Tl0.1CuOTe,通过使用玛瑙研钵充分混合1.227g的Bi2O3(Aldrich,99.9%,100目)、0.7114g的Bi(Aldrich,99.99%,<10m),0.6122g的Cu(Aldrich,99.7%,3m),1.2293g的Te(Aldrich,99.99%,约100目)和0.22g的Tl2O3(Aldrich)。
然后将该混合物在510℃的真空石英管中加热15小时,以获得Bi0.9Tl0.1CuOTe粉末。
此样品的X射线衍射分析以与实施例3相同的方法进行。如图11所示,在实施例8中得到的材料被鉴定为Bi0.9Tl0.1CuOTe。
实施例9
BiCuOTe 0.9 Sb 0.1
为了制备BiCuOTe0.9Sb0.1,通过使用玛瑙研钵充分混合1.4951g的Bi2O3(Aldrich,99.9%,100目)、0.6705g的Bi(Aldrich,99.99%,<10m),0.6117g的Cu(Aldrich,99.7%,3m),1.1054g的Te(Aldrich,99.99%,约100目)和0.1172g的Sb(Kanto chemical,Cat.No.01420-02)。
然后将该混合物在510℃的真空石英管中加热15小时,以获得BiCuOTe0.9Sb0.1粉末。
此样品的X射线衍射分析以与实施例3相同的方法进行。如图12所示,在实施例9中得到的材料被鉴定为BiCuOTe0.9Sb0.1
光学带隙能级的测量
通过使用Shimadzu UV-3600获得实施例1中制备的样品的漫反射谱。测量范围为650~2500nm,步长(step size)为1nm。图13显示出BiCuOS和BiCuOSe的反射光谱以进行比较。观察到BiCuOS的带隙能级约为1.1eV,而BiCuOTe在低至2500nm(=0.496eV)处未观察到吸收边沿,这说明实施例1的BiCuOTe的带隙能级小于0.5eV。
热电转换性能的评价
通过使用CIP在200MPa的压力下将粉末样品成型以得到直径4mm且长度15mm的圆柱形(以测量电导率及塞贝克系数),以及直径10mm且厚度1mm的圆盘形(以测量热导率)。随后,将得到的圆盘和圆柱在510℃真空石英管中加热10小时。
对于烧结的圆柱,通过使用ZEM-2(Ulvac-Rico有限公司)测量电导率和塞贝克系数。测量结果示于图14~19中。例如,在346K下,测得BiCuOTe和Bi0.98Pb0.02CuOTe的热导率分别为0.25W/m/K和0.35W/m/K,其显著低于典型的热电转换材料Bi2Te3的热导率(1.9W/m/K,T.M.Tritt,M.A.Subramanian,MRS Bulletin 31(2006)188-194)和Co4Sb12:In0.2(2W/m/K,T.He,J.Chen,D.Rosenfeld,M.A.Subramanian,Chem.Mater.18(2006)759-762)。
同时,对于烧结的圆盘,通过使用TC-9000(Ulvac-Rico有限公司)测量热导率。测量结果示于图14~19中。
使用测得的值计算各个样品的ZT值。计算结果示于图14~19中。

Claims (19)

1.由以下通式1表示的化合物半导体:
通式1
Bi1-xMxCuwOa-yQ1yTeb-zQ2z
其中,M为选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb中的至少一种元素;Q1和Q2为选自S、Se、As和Sb中的至少一种元素;x、y、z、w、a和b为0≤x<1、0<w≤1、0.2<a<4、0≤y<4、0.2<b<4和0≤z<4。
2.根据权利要求1所述的化合物半导体,
其中,通式1中的x、y和z分别为0≤x≤1/2、0≤y≤a/2和0≤z≤b/2。
3.根据权利要求1所述的化合物半导体,
其中,通式1中的x、y和z分别为x=0、y=0和z=0。
4.根据权利要求1所述的化合物半导体,
其中,由通式1表示的化合物半导体为BiCu0.8-1.2O0.8-1.2Te0.8-1.2
5.根据权利要求1所述的化合物半导体,
其中,由通式1表示的化合物半导体为BiCuOTe。
6.根据权利要求1所述的化合物半导体,
其中,通式1中的x、y和z为x+y+z>0。
7.根据权利要求6所述的化合物半导体,
其中,通式1中的a、y、b和z分别为a=1、0≤y<1、b=1和0≤z<1。
8.根据权利要求6所述的化合物半导体,
其中,通式1中的x、w、a、y、b和z分别为0≤x<0.15、0.8≤w≤1、a=1、0≤y<0.2、b=1和0≤z<0.5。
9.根据权利要求6所述的化合物半导体,
其中,通式1中的M为选自Sr、Cd、Pb和Tl中的任意一种。
10.根据权利要求6所述的化合物半导体,
其中,通式1中的Q1和Q2分别为Se或Sb。
11.根据权利要求6所述的化合物半导体,
其中,通式1中的x、w、a、y、b和z分别为0≤x<0.15、0.8≤w≤1、a=1、0≤y<0.2、b=1和0≤z<0.5;M为选自Sr、Cd、Pb和Tl中的任意一种;且Q1和Q2分别为Se或Sb。
12.根据权利要求11所述的化合物半导体,
其中,通式1中的x、w、a、y、b和z分别为0<x<0.15、w=1、a=1、y=0、b=1和z=0,且M为选自Sr、Cd、Pb和Tl中的任意一种。
13.根据权利要求11所述的化合物半导体,
其中,通式1中的x、w、y和z分别为x=0、w=1、a=1、y=0、b=1和0<z≤0.5,且Q2为Se或Sb。
14.一种制备化合物半导体的方法,
其中,混合然后烧结Bi2O3、Bi、Cu和Te的粉末以制备由权利要求1中的通式1表示的化合物半导体。
15.一种制备化合物半导体的方法,
其中,混合然后烧结Bi2O3、Bi、Cu、Te和选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb或其氧化物中的至少一种以制备由权利要求1中的通式1表示的化合物半导体。
16.一种制备化合物半导体的方法,
其中,将Bi2O3、Bi、Cu和Te与选自S、Se、As和Sb或其氧化物中的至少一种混合,然后选择性地向其中进一步混入选自Ba、Sr、Ca、Mg、Cs、K、Na、Cd、Hg、Sn、Pb、Eu、Sm、Mn、Ga、In、Tl、As和Sb或其氧化物中的至少一种,然后烧结以制备由权利要求1中的通式1表示的化合物半导体。
17.根据权利要求14~16中任一项所述的制备化合物半导体的方法,
其中,所述烧结工序在400~570℃的温度下进行。
18.一种太阳能电池,其使用由权利要求1~13中任一项所述的化合物半导体作为光吸收层。
19.一种热电转换元件,其使用由权利要求1~13中任一项所述的化合物半导体作为热电转换材料。
CN2008801266927A 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件 Active CN101946323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310309148.9A CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR10-2008-0085240 2008-08-29
KR20080085240 2008-08-29
KR20080097779 2008-10-06
KR10-2008-0097779 2008-10-06
KR10-2008-0111557 2008-11-11
KR20080111557 2008-11-11
PCT/KR2008/007041 WO2010024500A1 (en) 2008-08-29 2008-11-28 New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310309148.9A Division CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件

Publications (2)

Publication Number Publication Date
CN101946323A true CN101946323A (zh) 2011-01-12
CN101946323B CN101946323B (zh) 2013-08-21

Family

ID=41721647

Family Applications (6)

Application Number Title Priority Date Filing Date
CN2008801266927A Active CN101946323B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN201310309148.9A Active CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN2009801080161A Active CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN201310054899.0A Active CN103178202B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN201310021769.7A Active CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
CN2009801103604A Active CN101977846B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件

Family Applications After (5)

Application Number Title Priority Date Filing Date
CN201310309148.9A Active CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN2009801080161A Active CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN201310054899.0A Active CN103178202B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN201310021769.7A Active CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
CN2009801103604A Active CN101977846B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件

Country Status (7)

Country Link
US (7) US8173097B2 (zh)
EP (3) EP2319082B1 (zh)
JP (4) JP5414700B2 (zh)
KR (3) KR101117845B1 (zh)
CN (6) CN101946323B (zh)
TW (1) TWI472487B (zh)
WO (3) WO2010024500A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459310A (zh) * 2011-05-13 2013-12-18 Lg化学株式会社 新型化合物半导体及其应用
CN103517872A (zh) * 2011-05-13 2014-01-15 Lg化学株式会社 新的化合物半导体及其用途
CN106488885A (zh) * 2014-04-04 2017-03-08 罗地亚经营管理公司 用于光电用途的混合的铋和银的氧化物和硫化物
CN106601837A (zh) * 2016-11-23 2017-04-26 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN106660821A (zh) * 2014-04-04 2017-05-10 罗地亚经营管理公司 用于光电用途的混合的铋和铜的氧化物和硫化物
CN106784038A (zh) * 2017-01-05 2017-05-31 上海应用技术大学 一种组分可调光电薄膜的制备方法
CN107146676A (zh) * 2016-03-01 2017-09-08 中国科学院物理研究所 镉基铁磁半导体材料及其制备方法
CN109776093A (zh) * 2018-04-04 2019-05-21 史国民 纳米复合热电材料的制备方法
CN114133245A (zh) * 2021-11-15 2022-03-04 清华大学 热电陶瓷材料及其制备方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
CN101946323B (zh) 2008-08-29 2013-08-21 Lg化学株式会社 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
KR101114252B1 (ko) * 2010-05-21 2012-02-20 부경대학교 산학협력단 열전재료의 제조방법
CN102339946B (zh) * 2010-07-20 2014-06-18 中国科学院上海硅酸盐研究所 一种高性能热电复合材料及其制备方法
EP2703345B1 (en) * 2011-04-28 2018-07-25 LG Chem, Ltd. Novel semiconductor compound and usage thereof
EP2703344B1 (en) * 2011-04-28 2016-08-31 LG Chem, Ltd. Novel compound semiconductor and use thereof
CN103517871B (zh) * 2011-05-13 2015-08-19 Lg化学株式会社 化合物半导体及其用途
CN103534201B (zh) * 2011-05-13 2016-10-19 Lg化学株式会社 新的化合物半导体及其用途
WO2012157905A1 (ko) * 2011-05-13 2012-11-22 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
CN103050618B (zh) * 2011-10-17 2015-08-12 中国科学院福建物质结构研究所 一种热电材料及其制备方法
KR102001062B1 (ko) 2012-01-16 2019-10-01 삼성전자주식회사 나노복합체형 열전재료, 이를 포함하는 열전모듈과 열전장치
KR101323321B1 (ko) * 2012-02-10 2013-10-29 한국전기연구원 Sb가 도핑된 MnTe계 열전재료 및 그 제조방법
KR20130126035A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 왜곡된 전자 상태 밀도를 갖는 열전소재, 이를 포함하는 열전모듈과 열전 장치
KR101995917B1 (ko) 2012-05-14 2019-07-03 삼성전자주식회사 파워팩터 증대된 열전소재 및 그 제조 방법
FR2996355B1 (fr) * 2012-09-28 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
KR101446424B1 (ko) * 2013-04-15 2014-10-30 서강대학교산학협력단 열전 변환 물질
CN103236493B (zh) * 2013-05-13 2017-10-24 中国科学院福建物质结构研究所 TmCuTe2化合物及其制备和用途
US9705060B2 (en) 2013-09-09 2017-07-11 Lg Chem, Ltd. Thermoelectric materials
KR101612494B1 (ko) * 2013-09-09 2016-04-14 주식회사 엘지화학 열전 재료
KR101612489B1 (ko) * 2013-09-27 2016-04-14 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
CN105308766B (zh) * 2013-10-04 2017-12-05 株式会社Lg化学 新化合物半导体及其用途
KR101629509B1 (ko) * 2013-10-17 2016-06-10 주식회사 엘지화학 열전 재료 및 그 제조 방법
KR101626933B1 (ko) * 2013-11-29 2016-06-02 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR102138527B1 (ko) 2014-01-20 2020-07-28 엘지전자 주식회사 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
CN104674046B (zh) * 2015-02-03 2017-11-03 河南理工大学 一种BiCuζO热电材料的制备方法
JP6704577B2 (ja) * 2015-02-23 2020-06-03 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体
CN104831344A (zh) * 2015-04-29 2015-08-12 河南鸿昌电子有限公司 一种半导体晶棒的拉晶方法
KR101917914B1 (ko) 2015-08-26 2018-11-12 주식회사 엘지화학 화합물 반도체 및 그 제조방법
CN105552202B (zh) * 2015-12-08 2018-04-10 中国科学院福建物质结构研究所 晶体材料、制备方法以及含有该晶体材料的热电材料、其制备方法及热电转换器和应用
KR102381761B1 (ko) * 2017-12-15 2022-03-31 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전 소자
CN109273584B (zh) * 2018-07-16 2022-06-28 永康市天峰工具有限公司 一种汽车尾气温差发电装置用热电材料及发电装置
CN113226981B (zh) * 2018-12-04 2024-03-05 住友化学株式会社 化合物和热电转换材料
CN110627502B (zh) * 2019-10-22 2020-12-22 中南大学 一种低温p型复合热电材料及制备方法
CN112397634B (zh) * 2020-11-16 2023-02-28 昆明理工大学 一种提升Bi-Sb-Te基热电材料性能的方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366336A (en) * 1980-10-16 1982-12-28 Chevron Research Company Age and heat stabilized photovoltaic cells
US4661071A (en) * 1984-04-03 1987-04-28 Denpac Corp. Vacuum sintered powder alloy dental prosthetic device and oven to form same
US5336558A (en) * 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
AU5683294A (en) * 1992-11-27 1994-06-22 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
KR960006241B1 (ko) * 1993-11-20 1996-05-11 국방과학연구소 p-n 전이방지 특성을 갖는 Bi₂Te₃계 열전재료 조성물
JP3092463B2 (ja) * 1994-10-11 2000-09-25 ヤマハ株式会社 熱電材料及び熱電変換素子
US6458319B1 (en) * 1997-03-18 2002-10-01 California Institute Of Technology High performance P-type thermoelectric materials and methods of preparation
JP3572939B2 (ja) * 1997-05-15 2004-10-06 ヤマハ株式会社 熱電材料及びその製造方法
EP1039556A4 (en) * 1997-10-24 2007-02-21 Neomax Co Ltd THERMOELECTRIC TRANSMISSION MATERIAL AND ITS MANUFACTURE
JP3484960B2 (ja) * 1997-12-22 2004-01-06 松下電工株式会社 熱電変換素子及び熱電変換素子の製造方法
EP1090398A4 (en) * 1998-06-18 2007-05-02 Ind Res Ltd CRITICAL DOPING OF HIGH CRITICAL TEMPERATURE SUPERCONDUCTORS FOR MAXIMUM CURRENT FLUX AND CURRENT CURRENT LAMINATION
JP2000261043A (ja) * 1999-03-10 2000-09-22 Sumitomo Special Metals Co Ltd 熱電変換材料とその製造方法
US6091014A (en) * 1999-03-16 2000-07-18 University Of Kentucky Research Foundation Thermoelectric materials based on intercalated layered metallic systems
DE19955788A1 (de) 1999-11-19 2001-05-23 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
US6251701B1 (en) * 2000-03-01 2001-06-26 The United States Of America As Represented By The United States Department Of Energy All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof
JP3594008B2 (ja) * 2000-11-30 2004-11-24 ヤマハ株式会社 熱電材料、その製造方法及びペルチェモジュール
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
WO2002084708A2 (en) * 2001-04-16 2002-10-24 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US6660925B1 (en) * 2001-06-01 2003-12-09 Marlow Industries, Inc. Thermoelectric device having co-extruded P-type and N-type materials
US7166796B2 (en) * 2001-09-06 2007-01-23 Nicolaou Michael C Method for producing a device for direct thermoelectric energy conversion
JP3989486B2 (ja) * 2002-06-06 2007-10-10 古河電気工業株式会社 熱電素子モジュール及びその作製方法
JP2004288841A (ja) * 2003-03-20 2004-10-14 Rikogaku Shinkokai オキシカルコゲナイドおよび熱電材料
JP4670017B2 (ja) 2004-03-25 2011-04-13 独立行政法人産業技術総合研究所 熱電変換素子及び熱電変換モジュール
CN1278941C (zh) * 2004-12-08 2006-10-11 浙江大学 一种Bi2Te3纳米囊及其制备方法
JP2007158191A (ja) * 2005-12-07 2007-06-21 Toshiba Corp 熱電材料およびこの材料を用いた熱電変換素子
JP2007258200A (ja) * 2006-03-20 2007-10-04 Univ Nagoya 熱電変換材料及びそれを用いた熱電変換膜
JP4967772B2 (ja) * 2006-08-24 2012-07-04 住友化学株式会社 熱電変換材料およびその製造方法
JP2008085309A (ja) * 2006-08-29 2008-04-10 Okano Electric Wire Co Ltd 熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料
WO2008028852A2 (de) * 2006-09-05 2008-03-13 Basf Se Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
KR101008035B1 (ko) * 2007-06-14 2011-01-13 주식회사 엘지화학 신규한 화합물 반도체 물질 및 그 제조 방법과, 이를이용한 태양 전지
CN101946323B (zh) * 2008-08-29 2013-08-21 Lg化学株式会社 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459310A (zh) * 2011-05-13 2013-12-18 Lg化学株式会社 新型化合物半导体及其应用
CN103517872A (zh) * 2011-05-13 2014-01-15 Lg化学株式会社 新的化合物半导体及其用途
CN103517872B (zh) * 2011-05-13 2015-08-05 Lg化学株式会社 化合物半导体及其用途
CN103459310B (zh) * 2011-05-13 2016-01-20 Lg化学株式会社 化合物半导体及其应用
CN106488885A (zh) * 2014-04-04 2017-03-08 罗地亚经营管理公司 用于光电用途的混合的铋和银的氧化物和硫化物
CN106660821B (zh) * 2014-04-04 2018-09-18 罗地亚经营管理公司 用于光电用途的混合的铋和铜的氧化物和硫化物
CN106660821A (zh) * 2014-04-04 2017-05-10 罗地亚经营管理公司 用于光电用途的混合的铋和铜的氧化物和硫化物
CN107146676A (zh) * 2016-03-01 2017-09-08 中国科学院物理研究所 镉基铁磁半导体材料及其制备方法
CN107146676B (zh) * 2016-03-01 2019-03-08 中国科学院物理研究所 镉基铁磁半导体材料及其制备方法
CN106601837B (zh) * 2016-11-23 2018-06-22 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN106601837A (zh) * 2016-11-23 2017-04-26 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN106784038A (zh) * 2017-01-05 2017-05-31 上海应用技术大学 一种组分可调光电薄膜的制备方法
CN106784038B (zh) * 2017-01-05 2018-03-13 上海应用技术大学 一种组分可调光电薄膜的制备方法
CN109776093A (zh) * 2018-04-04 2019-05-21 史国民 纳米复合热电材料的制备方法
CN109776093B (zh) * 2018-04-04 2021-07-27 苏州普轮电子科技有限公司 纳米复合热电材料的制备方法
CN114133245A (zh) * 2021-11-15 2022-03-04 清华大学 热电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
EP2316793B1 (en) 2014-11-05
EP2316793A4 (en) 2013-11-20
CN101977846A (zh) 2011-02-16
US20110017935A1 (en) 2011-01-27
JP5537688B2 (ja) 2014-07-02
KR20100027079A (ko) 2010-03-10
KR20100027081A (ko) 2010-03-10
CN103178202A (zh) 2013-06-26
US20120326100A1 (en) 2012-12-27
WO2010024637A3 (ko) 2010-07-01
US8029703B2 (en) 2011-10-04
CN101977846B (zh) 2013-03-13
WO2010024641A3 (ko) 2010-07-01
US20120211045A1 (en) 2012-08-23
WO2010024641A2 (ko) 2010-03-04
CN101960627B (zh) 2013-03-27
CN103400932A (zh) 2013-11-20
CN101946323B (zh) 2013-08-21
WO2010024637A2 (ko) 2010-03-04
JP2011513986A (ja) 2011-04-28
EP2319082B1 (en) 2017-11-15
KR20100027080A (ko) 2010-03-10
CN103178202B (zh) 2016-06-01
EP2319082A1 (en) 2011-05-11
JP5283713B2 (ja) 2013-09-04
US8173097B2 (en) 2012-05-08
KR101117847B1 (ko) 2012-03-16
JP5462858B2 (ja) 2014-04-02
US20110079750A1 (en) 2011-04-07
EP2320485B1 (en) 2014-11-19
US20140190544A1 (en) 2014-07-10
US9620696B2 (en) 2017-04-11
KR101117845B1 (ko) 2012-03-16
KR101128304B1 (ko) 2012-03-23
EP2316793A2 (en) 2011-05-04
EP2320485A4 (en) 2013-10-30
JP5414700B2 (ja) 2014-02-12
US20110079751A1 (en) 2011-04-07
US8226843B2 (en) 2012-07-24
US8715538B2 (en) 2014-05-06
JP2011516370A (ja) 2011-05-26
EP2319082A4 (en) 2013-12-04
JP2011523394A (ja) 2011-08-11
CN103400932B (zh) 2016-08-10
CN101960627A (zh) 2011-01-26
EP2320485A2 (en) 2011-05-11
TWI472487B (zh) 2015-02-11
CN103130199A (zh) 2013-06-05
US20140000671A1 (en) 2014-01-02
WO2010024500A1 (en) 2010-03-04
TW201008877A (en) 2010-03-01
JP2013145895A (ja) 2013-07-25
CN103130199B (zh) 2015-03-18
US8535637B2 (en) 2013-09-17

Similar Documents

Publication Publication Date Title
CN101946323A (zh) 新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件
CN105308766A (zh) 新化合物半导体及其用途
KR101366711B1 (ko) 신규한 화합물 반도체 및 그 활용
JP5767399B2 (ja) 新規な化合物半導体及びその活用
KR20120127320A (ko) 신규한 화합물 반도체 및 그 활용
KR101463195B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366710B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366712B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101453036B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366709B1 (ko) 신규한 화합물 반도체 및 그 활용
JP5767395B2 (ja) 新規な化合物半導体及びその活用
KR101380944B1 (ko) 신규한 화합물 반도체 및 그 활용
EP2708504A1 (en) Novel compound semiconductor and usage for same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant