KR101380944B1 - 신규한 화합물 반도체 및 그 활용 - Google Patents

신규한 화합물 반도체 및 그 활용 Download PDF

Info

Publication number
KR101380944B1
KR101380944B1 KR1020120050257A KR20120050257A KR101380944B1 KR 101380944 B1 KR101380944 B1 KR 101380944B1 KR 1020120050257 A KR1020120050257 A KR 1020120050257A KR 20120050257 A KR20120050257 A KR 20120050257A KR 101380944 B1 KR101380944 B1 KR 101380944B1
Authority
KR
South Korea
Prior art keywords
compound semiconductor
present
formula
group
heat treatment
Prior art date
Application number
KR1020120050257A
Other languages
English (en)
Other versions
KR20120127300A (ko
Inventor
박철희
김태훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2012/003729 priority Critical patent/WO2012157907A1/ko
Priority to CN201280022498.0A priority patent/CN103517870B/zh
Priority to EP12786037.7A priority patent/EP2708501B1/en
Priority to JP2014506346A priority patent/JP5767397B2/ja
Priority to KR1020120050257A priority patent/KR101380944B1/ko
Priority to TW101117058A priority patent/TWI467788B/zh
Priority to US13/617,814 priority patent/US8658064B2/en
Publication of KR20120127300A publication Critical patent/KR20120127300A/ko
Application granted granted Critical
Publication of KR101380944B1 publication Critical patent/KR101380944B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Abstract

본 발명은 태양 전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 및 그 활용을 개시한다. 본 발명에 따른 화합물 반도체는, 다음의 화학식 1과 같이 표시될 수 있다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n- zXnTez
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2 및 0<a≤1이다.

Description

신규한 화합물 반도체 및 그 활용 {New compound semiconductors and their application}
본 발명은 태양 전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 물질 및 그 제조방법과, 이를 이용한 용도에 관한 것이다.
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대표적으로, 펠티어 효과(Peltier Effect)를 이용한 열전 변환 소자, 광전 변환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지 등에 화합물 반도체가 이용될 수 있다.
이 중 열전 변환 소자는 열전 변환 발전이나 열전 변환 냉각 등에 적용될 수 있는데, 이 중 열전 변환 발전은 열전 변환 소자에 온도차를 둠으로써 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키는 발전 형태이다.
이러한 열전 변환 소자의 에너지 변환 효율은 열전 변환 재료의 성능 지수 값인 ZT에 의존한다. 여기서, ZT는 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정되는데, 보다 구체적으로는 제벡 계수의 제곱 및 전기 전도도에 비례하며, 열 전도도에 반비례한다. 따라서, 열전 변환 소자의 에너지 변환 효율을 높이기 위하여, 제백 계수 또는 전기 전도도가 높거나 열 전도도가 낮은 열전 변환 재료의 개발이 필요하다.
한편, 태양 전지는 자연에 존재하는 태양광 이외에 별도의 에너지원을 필요로 하지 않는다는 점에서 친환경적이므로, 미래의 대체 에너지원으로 활발히 연구되고 있다. 태양 전지는, 주로 실리콘의 단일 원소를 이용하는 실리콘 태양 전지와, 화합물 반도체를 이용하는 화합물 반도체 태양 전지, 그리고 서로 다른 밴드갭 에너지(bandgap energy)를 갖는 태양 전지를 둘 이상 적층한 적층형(tandem) 태양 전지 등으로 구별될 수 있다.
이 중 화합물 반도체 태양 전지는, 태양광을 흡수하여 전자-정공 쌍을 생성하는 광흡수층에 화합물 반도체를 사용하는데, 특히 GaAs, InP, GaAlAs, GaInAs 등의 Ⅲ-Ⅴ족 화합물 반도체, CdS, CdTe, ZnS 등의 Ⅱ-Ⅵ족 화합물 반도체, CuInSe2로 대표되는 Ⅰ-Ⅲ-Ⅵ족 화합물 반도체 등을 사용할 수 있다.
태양 전지의 광흡수층은, 장기적인 전기, 광학적 안정성이 우수하고, 광전 변환 효율이 높으며, 조성의 변화나 도핑에 의해 밴드갭 에너지나 도전형을 조절하기가 용이할 것 등이 요구된다. 또한, 실용화를 위해서는 제조 비용이나 수율 등의 요건도 만족해야 한다. 그러나, 종래의 여러 화합물 반도체들은 이러한 요건들을 모두 함께 만족시키지는 못하고 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열전 변환 소자의 열전 변환 재료, 태양 전지 등과 같이 다양한 용도로 활용될 수 있는 신규한 화합물 반도체 물질과 그 제조 방법, 및 이를 이용한 열전 변환 소자나 태양 전지 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명자는 화합물 반도체에 관한 거듭된 연구 끝에 하기 화학식 1로 표시되는 화합물 반도체를 합성하는데 성공하고, 이 화합물이 열전 변환 소자의 열전 변환 재료나 태양 전지의 광 흡수층 등에 사용될 수 있음을 확인하여 본 발명을 완성하였다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n- zXnTez
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2 및 0<a≤1이다.
바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.25이다.
또한 바람직하게는, 상기 화학식 1에서 m은, 0≤m≤0.5이다.
또한 바람직하게는, 상기 화학식 1에서 a는, 0<a≤0.5이다.
또한 바람직하게는, 상기 화학식 1에서 x 및 y는, 0<x+y≤1이다.
또한 바람직하게는, 상기 화학식 1에서 n 및 z는, 0<n+z<9이다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 화합물 반도체 제조 방법은, In, Co, Sb 및 Te와, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 혼합하는 단계; 및 상기 혼합 단계에서 형성된 혼합물을 열처리하는 단계를 포함한다.
바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
또한 바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
또한 바람직하게는, 상기 열처리 단계는, 400℃ 내지 800℃에서 수행된다.
또한 바람직하게는, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함한다.
본 발명에 의하면, 신규한 화합물 반도체 물질이 제공된다.
본 발명의 일 측면에 의하면, 이러한 신규한 화합물 반도체는 종래의 화합물 반도체를 대체하거나 종래의 화합물 반도체에 더하여 또 다른 하나의 소재로서 사용될 수 있다.
더욱이, 본 발명의 일 측면에 의하면, 화합물 반도체의 열전 변환 성능이 양호하여 열전 변환 소자에 유용하게 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열 전도도 특성이 개선되어, 열전 성능 지수인 ZT값이 향상될 수 있다. 따라서, 본 발명에 따른 화합물 반도체의 경우, 열전 변환 소자의 열전 변환 재료로 적합하게 이용될 수 있다.
또한, 본 발명의 다른 측면에 의하면, 화합물 반도체가 태양 전지에 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 태양 전지의 광흡수층으로 이용될 수 있다.
뿐만 아니라, 본 발명의 또 다른 측면에 의하면, 화합물 반도체가 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서, 마그네틱 소자, 메모리 등에도 이용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명에 따라 제조한 실시예 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 다음과 같은 화학식 1로 표시되는 신규한 화합물 반도체를 제공한다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n- zXnTez
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이다.
또한, 상기 화학식 1에서 x, y, m, n, z 및 a는 각각, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2 및 0<a≤1의 범위를 만족한다.
바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.25의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 m은, 0≤m≤0.5의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 a는, 0<a≤0.5의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 x 및 y는, 0<x+y≤1의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 n 및 z는, 0<n+z<9의 범위를 만족하는 것이 좋다.
더욱 바람직하게는, 상기 화학식 1에서 n 및 z는, 0<n+z<5의 범위를 만족하는 것이 좋다.
가장 바람직하게는, 상기 화학식 1에서 n 및 z는, 0<n+z<3의 범위를 만족하는 것이 좋다.
한편, 상기 화학식 1로 표시되는 화합물 반도체에는, 2차상이 일부 포함될 수 있으며, 그 양은 열처리 조건에 따라 달라질 수 있다.
상술한 화합물 반도체는, In, Co, Sb 및 Te와, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 포함하는 혼합물을 형성하는 단계; 및 상기 혼합물을 열처리하는 단계를 포함하여 제조될 수 있다.
바람직하게는, 상기 혼합물 형성 단계에서 상기 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
또한 바람직하게는, 상기 혼합물 형성 단계에서 상기 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
한편, 상기 혼합물 형성 단계에서 혼합되는 각 원료는 분말 형태일 수 있으나, 본 발명이 반드시 이러한 혼합 원료의 특정 형태에 의해 제한되는 것은 아니다.
또한 바람직하게는, 상기 열처리 단계는, 진공 중 또는 수소를 일부 포함하고 있거나 수소를 포함하지 않는 Ar, He, N2 등의 기체를 흘리면서 수행될 수 있다.
이때, 열처리 온도는 400℃ 내지 800℃일 수 있다. 바람직하게는, 상기 열처리 온도는 450℃ 내지 700℃일 수 있다. 더욱 바람직하게는, 상기 열처리 온도는 500℃ 내지 650℃일 수 있다.
한편, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다. 예를 들어, 상기 혼합물을 형성하는 단계, 즉 원료를 혼합하는 단계에서 형성된 혼합물에 대하여, 제1 온도에서 1차 열처리를 수행한 후, 제2 온도에서 2차 열처리를 수행할 수도 있다.
이 경우, 상기 복수의 열처리 단계 중 일부 열처리 단계는, 원료를 혼합하는 상기 혼합물 형성 단계에서 수행될 수 있다.
예를 들어, 상기 열처리 단계는, 1차 열처리 단계, 2차 열처리 단계 및 3차 열처리(소결) 단계의 3개의 열처리 단계를 포함할 수 있다. 그리고, 1차 열처리 단계는 400℃ 내지 600℃의 온도 범위에서 수행될 수 있고, 2차 열처리 단계 및 3차 열처리 단계는 600℃ 내지 800℃의 온도 범위에서 수행될 수 있다. 이때, 1차 열처리 단계는 원료가 혼합되는 혼합물 형성 단계 중에 수행되고, 2차 열처리 단계 및 3차 열처리 단계는 그 이후에 순차적으로 수행될 수 있다.
본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 열전 변환 소자의 열전 변환 재료로 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열전 변환 재료의 성능 지수값인 ZT가 크다. 또한, 제백 계수 및 전기 전도도가 크고, 열 전도도가 낮아 열전 변환 성능이 우수하다. 따라서, 본 발명에 따른 화합물 반도체는, 종래의 열전 변환 재료를 대체하거나 종래의 화합물 반도체에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
또한, 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 태양 전지, 특히 태양 전지의 광 흡수층으로 이용될 수 있다.
태양 전지는, 태양광이 입사되는 쪽에서부터 순차적으로, 전면 투명 전극, 버퍼층, 광 흡수층, 배면 전극 및 기판 등이 적층된 구조로 제조할 수 있다. 가장 아래에 위치하는 기판은 유리로 이루어질 수 있으며, 그 위에 전면적으로 형성되는 배면 전극은 Mo 등의 금속을 증착함으로써 형성될 수 있다.
이어서, 배면 전극 상부에 본 발명에 따른 화합물 반도체를 전자빔 증착법, 졸-겔(sol-gel)법, PLD(Pulsed Laser Deposition) 등의 방법으로 적층함으로써 상기 광 흡수층을 형성할 수 있다. 이러한 광 흡수층의 상부에는, 전면 투명 전극으로 사용되는 ZnO층과 광 흡수층 간의 격자 상수 차이 및 밴드갭 차이를 완충하는 버퍼층이 존재할 수 있는데, 이러한 버퍼층은 CdS 등의 재료를 CBD(Chemical Bath Deposition) 등의 방법으로 증착함으로써 형성될 수 있다. 다음으로, 버퍼층 위에 ZnO나 ZnO 및 ITO의 적층막으로 전면 투명 전극이 스퍼터링 등의 방법으로 형성될 수 있다.
본 발명에 따른 태양 전지는 다양한 변형이 가능할 수 있다. 예를 들어, 본 발명에 따른 화합물 반도체를 광 흡수층으로 사용한 태양 전지를 적층한 적층형 태양 전지를 제조할 수 있다. 그리고, 이와 같이 적층된 다른 태양 전지는 실리콘이나 다른 알려진 화합물 반도체를 이용한 태양 전지를 사용할 수 있다.
또한, 본 발명의 화합물 반도체의 밴드 갭을 변화시킴으로써 서로 다른 밴드갭을 가지는 화합물 반도체를 광 흡수층으로 사용하는 복수의 태양 전지를 적층할 수도 있다. 본 발명에 따른 화합물 반도체의 밴드 갭은 이 화합물을 이루는 구성 원소, 특히 Te의 조성비를 변화시킴으로써 조절이 가능할 수 있다.
또한, 본 발명에 따른 화합물 반도체는 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서 등에도 적용될 수 있다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예
시약으로 In 0.0494g, Zn 0.0112g, Co 0.3648g, Rh 0.0531g, Sb 2.2612g, Sn 0.0408g, Te 0.2194g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.3Sb10.8Sn0.2Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도(κ)를 소정 온도 간격으로 측정하였고, 그 결과를 실시예로서 도 1에 도시하였다.
비교예
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb12 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb12 분말을 얻었다.
이와 같이 합성된 비교예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열전도도를 소정 온도 간격으로 측정하였고, 그 결과를 비교예로서 도 1에 도시하였다.
도 1의 결과를 참조하면, In0 .25Zn0 .1Co3 .6Rh0 .3Sb10 .8Sn0 .2Te로 표시되는 본 발명에 따른 실시예의 화합물 반도체는, In0 .25Co4Sb12로 표시되는 비교예의 화합물 반도체에 비해, 전체 온도 측정 구간에 걸쳐 열 전도도(κ)가 현저하게 낮다는 것을 알 수 있다.
그리고, 열전 성능지수인 ZT값은 다음과 같이 표시될 수 있다.
ZT = σS2T/κ
여기서, σ는 전기 전도도, S는 제벡 계수, T는 온도, κ는 열 전도도를 나타낸다.
본 발명에 따른 화합물 반도체는, 열 전도도가 낮으므로 ZT값이 향상될 수 있다. 그러므로, 본 발명에 따른 화합물 반도체는 열전 성능이 뛰어나다고 할 수 있으며, 열전 변환 재료로서 매우 유용하게 이용될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물 반도체.
    <화학식 1>
    InxMyCo4 -m- aAmSb12 -n- zXnTez
    상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2 및 0<a≤1이다.
  2. 제1항에 있어서,
    상기 화학식 1의 x는, 0<x≤0.25인 것을 특징으로 하는 화합물 반도체.
  3. 제1항에 있어서,
    상기 화학식 1의 m은, 0≤m≤0.5인 것을 특징으로 하는 화합물 반도체.
  4. 제1항에 있어서,
    상기 화학식 1의 a는, 0<a≤0.5인 것을 특징으로 하는 화합물 반도체.
  5. 제1항에 있어서,
    상기 화학식 1의 x 및 y는, 0<x+y≤1인 것을 특징으로 하는 화합물 반도체.
  6. 제1항에 있어서,
    상기 화학식 1의 n 및 z는, 0<n+z<9인 것을 특징으로 하는 화합물 반도체.
  7. In, Co, Sb 및 Te와, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 포함하는 혼합물을 형성하는 단계; 및
    상기 혼합물을 열처리하는 단계
    를 포함하는 제1항의 화합물 반도체의 제조 방법.
  8. 제7항에 있어서,
    상기 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  9. 제7항에 있어서,
    상기 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  10. 제7항에 있어서,
    상기 열처리 단계는, 400℃ 내지 800℃에서 수행되는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  11. 제7항에 있어서,
    상기 열처리 단계는, 둘 이상의 열처리 단계를 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  12. 제1항 내지 제6항 중 어느 한 항에 따른 화합물 반도체를 포함하는 열전 변환 소자.
  13. 제1항 내지 제6항 중 어느 한 항에 따른 화합물 반도체를 포함하는 태양 전지.
KR1020120050257A 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용 KR101380944B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/KR2012/003729 WO2012157907A1 (ko) 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용
CN201280022498.0A CN103517870B (zh) 2011-05-13 2012-05-11 新的化合物半导体及其用途
EP12786037.7A EP2708501B1 (en) 2011-05-13 2012-05-11 Novel compound semiconductor and usage for same
JP2014506346A JP5767397B2 (ja) 2011-05-13 2012-05-11 新規な化合物半導体及びその活用
KR1020120050257A KR101380944B1 (ko) 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용
TW101117058A TWI467788B (zh) 2011-05-13 2012-05-14 新穎化合物半導體及其應用
US13/617,814 US8658064B2 (en) 2011-05-13 2012-09-14 Compound semiconductors and their application

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20110045349 2011-05-13
KR20110045348 2011-05-13
KR1020110045348 2011-05-13
KR1020110045349 2011-05-13
KR20110049609 2011-05-25
KR1020110049609 2011-05-25
KR1020120050257A KR101380944B1 (ko) 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용

Publications (2)

Publication Number Publication Date
KR20120127300A KR20120127300A (ko) 2012-11-21
KR101380944B1 true KR101380944B1 (ko) 2014-04-01

Family

ID=47177145

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120050257A KR101380944B1 (ko) 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용

Country Status (7)

Country Link
US (1) US8658064B2 (ko)
EP (1) EP2708501B1 (ko)
JP (1) JP5767397B2 (ko)
KR (1) KR101380944B1 (ko)
CN (1) CN103517870B (ko)
TW (1) TWI467788B (ko)
WO (1) WO2012157907A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562127B (zh) * 2011-05-13 2016-07-13 Lg化学株式会社 新的化合物半导体及其用途
CN106601837B (zh) * 2016-11-23 2018-06-22 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
WO2020116388A1 (ja) * 2018-12-04 2020-06-11 住友化学株式会社 化合物及び熱電変換材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070015543A (ko) * 2004-04-14 2007-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 고성능 열전 물질 및 그의 제조 방법
KR20090026665A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 CoSb3 스커테루다이트계 열전재료 및 그 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199006A (ja) * 1989-01-30 1990-08-07 Agency Of Ind Science & Technol 1/2/5の組成を有する多元系金属カルコゲナイド
BRPI0414001A (pt) * 2003-09-12 2006-10-24 Univ Michigan State material semicondutor, material termoelétrico, processo de fabricar um material condutivo e método de sua formulação, e método para gerar energia elétrica a partir de energia térmica
US7462217B2 (en) * 2003-12-08 2008-12-09 E.I. Du Pont De Nemours And Company Method of preparation for the high performance thermoelectric material indium-cobalt-antimony
EP1938343A4 (en) * 2005-10-17 2010-07-28 Agency Science Tech & Res NEW PHASE CHANGE MATERIAL
EP2242121B1 (en) * 2008-01-23 2018-10-24 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
US8518287B2 (en) * 2008-04-04 2013-08-27 Samsung Electronics Co., Ltd. Dichalcogenide thermoelectric material
CN101397612B (zh) * 2008-10-21 2011-05-25 同济大学 一种方钴矿基热电块体材料的制备方法
KR101042575B1 (ko) * 2009-08-11 2011-06-20 충주대학교 산학협력단 In-Co-Fe-Sb 계 스커테루다이트 열전재료 및 그 제조방법
KR101042574B1 (ko) * 2009-08-11 2011-06-20 충주대학교 산학협력단 In-Co-Ni-Sb 계 스커테루다이트 열전재료 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070015543A (ko) * 2004-04-14 2007-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 고성능 열전 물질 및 그의 제조 방법
KR20090026665A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 CoSb3 스커테루다이트계 열전재료 및 그 제조방법

Also Published As

Publication number Publication date
TWI467788B (zh) 2015-01-01
WO2012157907A1 (ko) 2012-11-22
EP2708501A4 (en) 2015-03-25
US8658064B2 (en) 2014-02-25
EP2708501B1 (en) 2017-08-23
KR20120127300A (ko) 2012-11-21
US20130009114A1 (en) 2013-01-10
JP2014520202A (ja) 2014-08-21
JP5767397B2 (ja) 2015-08-19
TW201308646A (zh) 2013-02-16
EP2708501A1 (en) 2014-03-19
CN103517870B (zh) 2016-02-03
CN103517870A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5852228B2 (ja) 新規な化合物半導体及びその活用
KR101366711B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101431771B1 (ko) 신규한 화합물 반도체 및 그 활용
JP5767399B2 (ja) 新規な化合物半導体及びその活用
KR101463195B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366710B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366712B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366709B1 (ko) 신규한 화합물 반도체 및 그 활용
JP5767398B2 (ja) 新規な化合物半導体及びその活用
KR101380945B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101453036B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101380944B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101357159B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101372523B1 (ko) 신규한 화합물 반도체 및 그 활용
KR20120127322A (ko) 신규한 화합물 반도체 및 그 활용

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 6