KR20120127322A - 신규한 화합물 반도체 및 그 활용 - Google Patents
신규한 화합물 반도체 및 그 활용 Download PDFInfo
- Publication number
- KR20120127322A KR20120127322A KR1020120050460A KR20120050460A KR20120127322A KR 20120127322 A KR20120127322 A KR 20120127322A KR 1020120050460 A KR1020120050460 A KR 1020120050460A KR 20120050460 A KR20120050460 A KR 20120050460A KR 20120127322 A KR20120127322 A KR 20120127322A
- Authority
- KR
- South Korea
- Prior art keywords
- compound semiconductor
- hours
- mixture
- sintered
- present
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 82
- 239000004065 semiconductor Substances 0.000 title claims abstract description 82
- 239000000126 substance Substances 0.000 claims abstract description 11
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 11
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 9
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 7
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 7
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 7
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 7
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 7
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 7
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 7
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 7
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 7
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 7
- 229910052788 barium Inorganic materials 0.000 claims abstract description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 7
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 7
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 7
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 7
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 7
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 7
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 45
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 229910052738 indium Inorganic materials 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 82
- 239000000463 material Substances 0.000 description 33
- 239000000377 silicon dioxide Substances 0.000 description 31
- 239000004570 mortar (masonry) Substances 0.000 description 30
- 239000003153 chemical reaction reagent Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 22
- 239000000843 powder Substances 0.000 description 21
- 239000010453 quartz Substances 0.000 description 20
- 230000000630 rising effect Effects 0.000 description 16
- 238000002156 mixing Methods 0.000 description 13
- 229910052787 antimony Inorganic materials 0.000 description 11
- 239000008188 pellet Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
- C01G15/006—Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/002—Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/006—Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
본 발명은 태양 전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 및 그 활용을 개시한다. 본 발명에 따른 화합물 반도체는, 다음의 화학식 1과 같이 표시될 수 있다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n-z- bXnQz
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, Q는 O, S, Se 및 Te로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, 0<x<1, 0≤y<1, 0≤m≤1, 0≤a≤1, 0≤n<9, 0≤z≤4, 0≤b≤3 및 0<n+z+b이다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n-z- bXnQz
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, Q는 O, S, Se 및 Te로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, 0<x<1, 0≤y<1, 0≤m≤1, 0≤a≤1, 0≤n<9, 0≤z≤4, 0≤b≤3 및 0<n+z+b이다.
Description
본 발명은 태양 전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 물질 및 그 제조방법과, 이를 이용한 용도에 관한 것이다.
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대표적으로, 펠티어 효과(Peltier Effect)를 이용한 열전 변환 소자, 광전 변환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지 등에 화합물 반도체가 이용될 수 있다.
이 중 열전 변환 소자는 열전 변환 발전이나 열전 변환 냉각 등에 적용될 수 있는데, 이 중 열전 변환 발전은 열전 변환 소자에 온도차를 둠으로써 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키는 발전 형태이다.
이러한 열전 변환 소자의 에너지 변환 효율은 열전 변환 재료의 성능 지수 값인 ZT에 의존한다. 여기서, ZT는 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정되는데, 보다 구체적으로는 제벡 계수의 제곱 및 전기 전도도에 비례하며, 열 전도도에 반비례한다. 따라서, 열전 변환 소자의 에너지 변환 효율을 높이기 위하여, 제백 계수 또는 전기 전도도가 높거나 열 전도도가 낮은 열전 변환 재료의 개발이 필요하다.
한편, 태양 전지는 자연에 존재하는 태양광 이외에 별도의 에너지원을 필요로 하지 않는다는 점에서 친환경적이므로, 미래의 대체 에너지원으로 활발히 연구되고 있다. 태양 전지는, 주로 실리콘의 단일 원소를 이용하는 실리콘 태양 전지와, 화합물 반도체를 이용하는 화합물 반도체 태양 전지, 그리고 서로 다른 밴드갭 에너지(bandgap energy)를 갖는 태양 전지를 둘 이상 적층한 적층형(tandem) 태양 전지 등으로 구별될 수 있다.
이 중 화합물 반도체 태양 전지는, 태양광을 흡수하여 전자-정공 쌍을 생성하는 광흡수층에 화합물 반도체를 사용하는데, 특히 GaAs, InP, GaAlAs, GaInAs 등의 Ⅲ-Ⅴ족 화합물 반도체, CdS, CdTe, ZnS 등의 Ⅱ-Ⅵ족 화합물 반도체, CuInSe2로 대표되는 Ⅰ-Ⅲ-Ⅵ족 화합물 반도체 등을 사용할 수 있다.
태양 전지의 광흡수층은, 장기적인 전기, 광학적 안정성이 우수하고, 광전 변환 효율이 높으며, 조성의 변화나 도핑에 의해 밴드갭 에너지나 도전형을 조절하기가 용이할 것 등이 요구된다. 또한, 실용화를 위해서는 제조 비용이나 수율 등의 요건도 만족해야 한다. 그러나, 종래의 여러 화합물 반도체들은 이러한 요건들을 모두 함께 만족시키지는 못하고 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열전 변환 소자의 열전 변환 재료, 태양 전지 등과 같이 다양한 용도로 활용될 수 있는 신규한 화합물 반도체 물질과 그 제조 방법, 및 이를 이용한 열전 변환 소자나 태양 전지 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명자는 화합물 반도체에 관한 거듭된 연구 끝에 하기 화학식 1로 표시되는 화합물 반도체를 합성하는데 성공하고, 이 화합물이 열전 변환 소자의 열전 변환 재료나 태양 전지의 광 흡수층 등에 사용될 수 있음을 확인하여 본 발명을 완성하였다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n-z- bXnQz
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, Q는 O, S, Se 및 Te로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, 0<x<1, 0≤y<1, 0≤m≤1, 0≤a≤1, 0≤n<9, 0≤z≤4, 0≤b≤3 및 0<n+z+b이다.
바람직하게는, 상기 화학식 1에서 x 및 y는, 0<x+y≤1이다.
또한 바람직하게는, 상기 화학식 1에서 n, z 및 b는, 0<n+z+b≤9이다.
또한 바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.5이다.
또한 바람직하게는, 상기 화학식 1에서 z는, 0<z≤2이다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 화합물 반도체 제조 방법은, In 및 Co를 혼합하는 단계; 및 상기 혼합 단계에서 형성된 혼합물을 열처리하는 단계를 포함하는 상기 화학식 1로 표시되는 화합물 반도체를 제조하는 방법이다.
바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, O, S, Se 및 Te로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
또한 바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
또한 바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
또한 바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Sb를 더 포함한다.
또한 바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
바람직하게는, 상기 화합물 반도체 제조 방법에서, 열처리 온도는 400℃ 내지 800℃이다.
또한 바람직하게는, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함한다.
본 발명에 의하면, 신규한 화합물 반도체 물질이 제공된다.
본 발명의 일 측면에 의하면, 이러한 신규한 화합물 반도체는 종래의 화합물 반도체를 대체하거나 종래의 화합물 반도체에 더하여 또 다른 하나의 소재로서 사용될 수 있다.
더욱이, 본 발명의 일 측면에 의하면, 화합물 반도체의 열전 변환 성능이 양호하여 열전 변환 소자에 유용하게 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열 전도도가 낮고, 전기 전도도가 높다. 따라서, 본 발명에 따른 화합물 반도체는 열전 성능 지수인 ZT값이 향상될 수 있다. 따라서, 본 발명에 따른 화합물 반도체의 경우, 열전 변환 소자의 열전 변환 재료로 적합하게 이용될 수 있다.
또한, 본 발명의 다른 측면에 의하면, 화합물 반도체가 태양 전지에 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 태양 전지의 광흡수층으로 이용될 수 있다.
뿐만 아니라, 본 발명의 또 다른 측면에 의하면, 화합물 반도체가 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서, 마그네틱 소자, 메모리 등에도 이용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명에 따라 제조한 실시예 1 내지 4 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 2는, 본 발명에 따라 제조한 실시예 1 내지 4 및 비교예의 화합물 반도체의 온도 변화에 따른 ZT 값을 도시한 그래프이다.
도 3은, 본 발명에 따라 제조한 실시예 5 내지 7 및 비교예의 화합물 반도체의 온도 변화에 따른 전기 전도도 값을 도시한 그래프이다.
도 4는, 본 발명에 따라 제조한 실시예 5 내지 7 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 5는, 본 발명에 따라 제조한 실시예 5 내지 7 및 비교예의 화합물 반도체의 온도 변화에 따른 ZT 값을 도시한 그래프이다.
도 6은, 본 발명에 따라 제조한 실시예 8 및 비교예의 화합물 반도체의 온도 변화에 따른 전기 전도도 값을 도시한 그래프이다.
도 7은, 본 발명에 따라 제조한 실시예 8 및 비교예의 화합물 반도체의 온도 변화에 따른 파워 팩터 값을 도시한 그래프이다.
도 8은, 본 발명에 따라 제조한 실시예 9와 10 및 비교예의 화합물 반도체의 온도 변화에 따른 열 확산도 값을 도시한 그래프이다.
도 9 내지 17은, 본 발명에 따라 제조한 실시예 11 내지 19 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 1은, 본 발명에 따라 제조한 실시예 1 내지 4 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 2는, 본 발명에 따라 제조한 실시예 1 내지 4 및 비교예의 화합물 반도체의 온도 변화에 따른 ZT 값을 도시한 그래프이다.
도 3은, 본 발명에 따라 제조한 실시예 5 내지 7 및 비교예의 화합물 반도체의 온도 변화에 따른 전기 전도도 값을 도시한 그래프이다.
도 4는, 본 발명에 따라 제조한 실시예 5 내지 7 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 5는, 본 발명에 따라 제조한 실시예 5 내지 7 및 비교예의 화합물 반도체의 온도 변화에 따른 ZT 값을 도시한 그래프이다.
도 6은, 본 발명에 따라 제조한 실시예 8 및 비교예의 화합물 반도체의 온도 변화에 따른 전기 전도도 값을 도시한 그래프이다.
도 7은, 본 발명에 따라 제조한 실시예 8 및 비교예의 화합물 반도체의 온도 변화에 따른 파워 팩터 값을 도시한 그래프이다.
도 8은, 본 발명에 따라 제조한 실시예 9와 10 및 비교예의 화합물 반도체의 온도 변화에 따른 열 확산도 값을 도시한 그래프이다.
도 9 내지 17은, 본 발명에 따라 제조한 실시예 11 내지 19 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 다음과 같은 화학식 1로 표시되는 신규한 화합물 반도체를 제공한다.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n-z- bXnQz
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, Q는 O, S, Se 및 Te로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, 0<x<1, 0≤y<1, 0≤m≤1, 0≤a≤1, 0≤n<9, 0≤z≤4, 0≤b≤3 및 0<n+z+b이다.
바람직하게는, 상기 화학식 1에서 m은, 0≤m≤0.5이다.
또한 바람직하게는, 상기 화학식 1에서 a는, 0≤a≤0.5이다.
또한 바람직하게는, 상기 화학식 1에서 b는, 0≤b≤0.5이다.
또한 바람직하게는, 상기 화학식 1에서 x 및 y는, 0<x+y≤1이다.
또한 바람직하게는, 상기 화학식 1에서 n, z 및 b는, 0<n+z+b≤9이다.
더욱 바람직하게는, 상기 화학식 1에서 n, z 및 b는, 0<n+z+b≤5이다.
가장 바람직하게는, 상기 화학식 1에서 n, z 및 b는, 0<n+z+b≤3이다.
또한 바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.5이다.
더욱 바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.25이다.
또한 바람직하게는, 상기 화학식 1에서 z는, 0<z≤2이다.
한편, 상기 화학식 1로 표시되는 화합물 반도체에는, 2차상이 일부 포함될 수 있으며, 그 양은 열처리 조건에 따라 달라질 수 있다.
상술한 화합물 반도체는, In 및 Co를 포함하는 혼합물을 형성하는 단계; 및 상기 혼합물을 열처리하는 단계를 포함하여 제조될 수 있다.
바람직하게는, 상기 혼합물 형성 단계에서 혼합물은, O, S, Se 및 Te로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
또한 바람직하게는, 상기 혼합물은, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
또한 바람직하게는, 상기 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
또한 바람직하게는, 상기 혼합물은, Sb를 더 포함할 수 있다.
또한 바람직하게는, 상기 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
한편, 상기 혼합물 형성 단계에서 혼합되는 각 원료는 분말 형태일 수 있으나, 본 발명이 반드시 이러한 혼합 원료의 특정 형태에 의해 제한되는 것은 아니다.
또한 바람직하게는, 상기 열처리 단계는, 진공 중 또는 수소를 일부 포함하고 있거나 수소를 포함하지 않는 Ar, He, N2 등의 기체를 흘리면서 수행될 수 있다.
이때, 열처리 온도는 400℃ 내지 800℃일 수 있다. 바람직하게는, 상기 열처리 온도는 450℃ 내지 700℃일 수 있다. 더욱 바람직하게는, 상기 열처리 온도는 500℃ 내지 650℃일 수 있다.
한편, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다. 예를 들어, 상기 혼합물을 형성하는 단계, 즉 원료를 혼합하는 단계에서 형성된 혼합물에 대하여, 제1 온도에서 1차 열처리를 수행한 후, 제2 온도에서 2차 열처리를 수행할 수도 있다.
이 경우, 상기 복수의 열처리 단계 중 일부 열처리 단계는, 원료를 혼합하는 상기 혼합물 형성 단계에서 수행될 수 있다.
예를 들어, 상기 열처리 단계는, 1차 열처리 단계, 2차 열처리 단계 및 3차 열처리(소결) 단계의 3개의 열처리 단계를 포함할 수 있다. 그리고, 1차 열처리 단계는 400℃ 내지 600℃의 온도 범위에서 수행될 수 있고, 2차 열처리 단계 및 3차 열처리 단계는 600℃ 내지 800℃의 온도 범위에서 수행될 수 있다. 이때, 1차 열처리 단계는 원료가 혼합되는 혼합물 형성 단계 중에 수행되고, 2차 열처리 단계 및 3차 열처리 단계는 그 이후에 순차적으로 수행될 수 있다.
본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 열전 변환 소자의 열전 변환 재료로 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열전 변환 재료의 성능 지수값인 ZT가 크다. 또한, 제백 계수 및 전기 전도도가 크고, 열 전도도가 낮아 열전 변환 성능이 우수하다. 따라서, 본 발명에 따른 화합물 반도체는, 종래의 열전 변환 재료를 대체하거나 종래의 화합물 반도체에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
또한, 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 태양 전지, 특히 태양 전지의 광 흡수층으로 이용될 수 있다.
태양 전지는, 태양광이 입사되는 쪽에서부터 순차적으로, 전면 투명 전극, 버퍼층, 광 흡수층, 배면 전극 및 기판 등이 적층된 구조로 제조할 수 있다. 가장 아래에 위치하는 기판은 유리로 이루어질 수 있으며, 그 위에 전면적으로 형성되는 배면 전극은 Mo 등의 금속을 증착함으로써 형성될 수 있다.
이어서, 배면 전극 상부에 본 발명에 따른 화합물 반도체를 전자빔 증착법, 졸-겔(sol-gel)법, PLD(Pulsed Laser Deposition) 등의 방법으로 적층함으로써 상기 광 흡수층을 형성할 수 있다. 이러한 광 흡수층의 상부에는, 전면 투명 전극으로 사용되는 ZnO층과 광 흡수층 간의 격자 상수 차이 및 밴드갭 차이를 완충하는 버퍼층이 존재할 수 있는데, 이러한 버퍼층은 CdS 등의 재료를 CBD(Chemical Bath Deposition) 등의 방법으로 증착함으로써 형성될 수 있다. 다음으로, 버퍼층 위에 ZnO나 ZnO 및 ITO의 적층막으로 전면 투명 전극이 스퍼터링 등의 방법으로 형성될 수 있다.
본 발명에 따른 태양 전지는 다양한 변형이 가능할 수 있다. 예를 들어, 본 발명에 따른 화합물 반도체를 광 흡수층으로 사용한 태양 전지를 적층한 적층형 태양 전지를 제조할 수 있다. 그리고, 이와 같이 적층된 다른 태양 전지는 실리콘이나 다른 알려진 화합물 반도체를 이용한 태양 전지를 사용할 수 있다.
또한, 본 발명의 화합물 반도체의 밴드 갭을 변화시킴으로써 서로 다른 밴드갭을 가지는 화합물 반도체를 광 흡수층으로 사용하는 복수의 태양 전지를 적층할 수도 있다. 본 발명에 따른 화합물 반도체의 밴드 갭은 이 화합물을 이루는 구성 원소, 특히 Te의 조성비를 변화시킴으로써 조절이 가능할 수 있다.
또한, 본 발명에 따른 화합물 반도체는 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서 등에도 적용될 수 있다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예
1
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb11 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
다음으로, In0 .25Co4Sb11에 시약으로 Te를 추가하여 In0 .25Co4Sb11Te1 혼합물을 제작하였다. 이때, 시료 준비는 Ar이 채워진 비닐팩 안에서 진행하였다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb11Te1 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도(κ)를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 1로서 도 1에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 1로서 도 2에 도시하였다.
실시예
2
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb10 및 In0 .25Co4Sb11 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
다음으로, In0 .25Co4Sb10에 시약으로 Te를 추가하여 In0 .25Co4Sb10Te2 혼합물을 제작하였다. 그리고, 이를 In0 .25Co4Sb11 시료와 적절히 혼합하여, In0 .25Co4Sb10 .75Te1 .25 혼합물을 제작하였다. 이때, 시료 준비는 Ar이 채워진 비닐팩 안에서 진행하였다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb10 .75Te1 .25 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도를 측정하였고, 그 결과를 실시예 2로서 도 1에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 2로서 도 2에 도시하였다.
실시예
3
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb10 및 In0 .25Co4Sb11 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
다음으로, In0 .25Co4Sb10에 시약으로 Te를 추가하여 In0 .25Co4Sb10Te2 혼합물을 제작하였다. 그리고, 이를 In0 .25Co4Sb11 시료와 적절히 혼합하여, In0 .25Co4Sb10 .5Te1 .5 혼합물을 제작하였다. 이때, 시료 준비는 Ar이 채워진 비닐팩 안에서 진행하였다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb10 .5Te1 .5 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도를 측정하였고, 그 결과를 실시예 3으로서 도 1에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 3으로서 도 2에 도시하였다.
실시예
4
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb10 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
다음으로, In0 .25Co4Sb10에 시약으로 Te를 추가하여 In0 .25Co4Sb10Te2 혼합물을 제작하였다. 이때, 시료 준비는 Ar이 채워진 비닐팩 안에서 진행하였다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb10Te2 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도를 측정하였고, 그 결과를 실시예 4로서 도 1에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 4로서 도 2에 도시하였다.
실시예
5
시약으로 In, Co, Zn, Sb 및 Te를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Zn0 .1Co4Sb11Te 조성의 혼합물을 펠렛 형태로 제작하였다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Zn0 .1Co4Sb11Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도(κ)를 측정하였고, 그 결과를 실시예 5로서 도 4에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 이때, 전기 전도도(σ)의 측정 결과는 실시예 5로서 도 3에 도시하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 5로서 도 5에 도시하였다.
실시예
6
시약으로 In, Co, Zn, Cd, Sb 및 Te를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Zn0 .1Cd0 .1Co4Sb11Te 조성의 혼합물을 펠렛 형태로 제작하였다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Cd0.1Co4Sb11Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도를 측정하였고, 그 결과를 실시예 6으로서 도 4에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 이때, 전기 전도도의 측정 결과는 실시예 6으로서 도 3에 도시하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 6으로서 도 5에 도시하였다.
실시예
7
시약으로 In, Co, Zn, Cd, Sb, Ni 및 Te를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Zn0 .1Cd0 .1Co3 .98Ni0 .02Sb11Te 조성의 혼합물을 펠렛 형태로 제작하였다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Cd0.1Co3.98Ni0.02Sb11Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 TC-7000(Ulvac-Rico, Inc)을 사용하여 시료의 열 전도도를 측정하였고, 그 결과를 실시예 7로서 도 4에 도시하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 이때, 전기 전도도의 측정 결과는 실시예 7로서 도 3에 도시하였다. 그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 실시예 7로서 도 5에 도시하였다.
실시예
8
시약으로 In, Co, Sb 및 Te를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co3 .88Sb11Te 조성의 혼합물을 펠렛 형태로 제작하였다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co3 .88Sb11Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원기둥에 대해서는 ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도(σ)를 측정하였고, 그 결과를 실시예 8로서 도 6에 도시하였다. 또한, ZEM-3(Ulvac-Rico, Inc)를 사용하여 제백 계수(S)를 측정한 후, 이상 측정된 각각의 값들을 이용하여 power factor 값(PF)을 계산하고, 그 결과를 실시예 8로서 도 7에 도시하였다. 여기서, PF는 S2σ로 표현될 수 있다.
실시예
9
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb12, In0 .25Co4Sb10 .5 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
다음으로, In0 .25Co4Sb10 .5에 시약으로 Se를 추가하여 In0 .25Co4Sb10 .5Se1 .5 혼합물을 제작하고 앞 과정의 In0 .25Co4Sb12와 서로 혼합하여 In0 .25Co4Sb11 .75Se0 .25 조성으로 혼합한다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb11 .75Se0 .25 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 시료의 열 확산도(thermal diffusivity, T.D.)를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 9로서 도 8에 도시하였다.
실시예
10
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb12, In0 .25Co4Sb10 .5 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다.
다음으로, In0 .25Co4Sb10 .5에 시약으로 Se를 추가하여 In0 .25Co4Sb10 .5Se1 .5 혼합물을 제작하고 앞 과정의 In0 .25Co4Sb12와 서로 혼합하여 In0 .25Co4Sb11 .5Se0 .5 조성으로 혼합한다.
이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb11 .5Se0 .5 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 시료의 열 확산도(thermal diffusivity, T.D.)를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 10으로서 도 8에 도시하였다.
실시예
11
시약으로 In 0.0510g, Co 0.3873g, Sb 2.2923g, Co3O4 0.0428g, Te 127.6g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb10 .6O0 .4Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 11로서 도 9에 도시하였다.
실시예
12
시약으로 In 0.1727g, Co 1.3121g, Sb 8.1329g, Se 0.2375g, Co3O4 0.1449g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co4Sb11O0 .5Se0 .5 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도(κ)를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 12로서 도 10에 도시하였다.
실시예
13
시약으로 In 0.0681g, Co 0.5452g, Sb 3.2353g, Te 0.1514g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0 .25Co3 .9Sb11 .2Te0 .5 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 13으로서 도 11에 도시하였다.
실시예
14
시약으로 In 0.0494g, Zn 0.0112g, Co 0.3648g, Rh 0.0531g, Sb 2.2612g, Sn 0.0408g, Te 0.2194g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.3Sb10.8Sn0.2Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도(κ)를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 14로서 도 12에 도시하였다.
실시예
15
시약으로 In 0.0504g, Zn 0.0115g, Co 0.3728g, Rh 0.0543g, Sb 2.1825g, Sn 0.1043g, Te 0.2242g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.3Sb10.2Sn0.5Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 15로서 도 13에 도시하였다.
실시예
16
시약으로 In 0.0497g, Zn 0.0113g, Co 0.3522g, Rh 0.0713g, Sb 2.2149g, Sn 0.1028g, Te 0.1768g, Co3O4 0.0209g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.4Sb10.5Sn0.5O0.2Te0.8 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 16으로서 도 14에 도시하였다.
실시예
17
시약으로 In 0.0502g, Zn 0.0114g, Co 0.3708g, Rh 0.0540g, Sb 2.3409g, Sn 0.1037g, Se 0.0690g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.3Sb11Sn0.5Se0.5 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 17로서 도 15에 도시하였다.
실시예
18
시약으로 In 0.0520g, Zn 0.0119g, Co 0.3844g, Rh 0.0559g, Sb 2.3167g, Sn 0.1076g, Se 0.0715g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.3Sb10.5Sn0.5Se0.5 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 18로서 도 16에 도시하였다.
실시예
19
시약으로 In 0.0498g, Zn 0.0113g, Co 0.4037g, Ni 0.0020g, Sb 2.3078g, Sn 0.0041g, Te 0.2213g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.95Ni0.02Sb10.93Sn0.02Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예 19로서 도 17에 도시하였다.
비교예
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0 .25Co4Sb12 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이 때 승온 시간은 1시간 30분으로 하였다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Co4Sb12 분말을 얻었다.
이와 같이 합성된 비교예 시료 중 일부를 직경 4 mm, 길이 15 mm의 원기둥으로 성형하고, 다른 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다.
소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열 전도도를 소정 온도 간격으로 측정하였고, 그 결과를 비교예로서 도 1, 도 4, 도 9 내지 도 17에 도시하였다. 또한, 열 확산도의 비교를 위해, LFA457(Netzsch, Inc)로 열 확산도(thermal diffusivity, T.D.)를 소정 온도 간격으로 측정하였고, 그 결과를 비교예로서 도 8에 도시하였다.
소결한 원기둥에 대해서는, ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였다. 이때, 전기 전도도의 측정 결과는 비교예로서 도 3 및 도 6에 도시하였다.
그리고, 이상 측정된 각각의 값들을 이용하여 ZT 값을 계산함으로써, 그 결과를 비교예로서 도 2 및 도 5에 도시하였다. 또한, 이상 측정된 각각의 값들을 이용하여 power factor 값(PF)을 계산하고, 그 결과를 비교예로서 도 7에 도시하였다.
우선, 도 1, 도 4, 도 9 내지 도 17의 결과를 참조하면, 본 발명에 따른 여러 실시예의 화합물 반도체는, 비교예의 화합물 반도체에 비해, 전체 온도 측정 구간에 걸쳐서 열 전도도(κ)가 현저하게 낮다는 것을 알 수 있다.
특히, 도 8의 결과를 참조하면, 본 발명에 따른 실시예의 화합물 반도체는, 비교예의 화합물 반도체에 비해, 열 확산도(T.D.)가 크게 낮다는 것을 확인할 수 있다.
또한, 도 3 및 도 6의 결과를 참조하면, 본 발명에 따른 여러 실시예의 화합물 반도체는, 비교예의 화합물 반도체에 비해, 전체 온도 측정 구간에 걸쳐 전기 전도도(σ)가 현저하게 높다는 것을 알 수 있다.
이와 같이, 본 발명에 따른 여러 실시예의 화합물 반도체는, 비교예의 화합물 반도체에 비해, 열 전도도가 낮고, 전기 전도도가 높기 때문에, 열전 성능 지수를 나타내는 ZT값이 향상된 특성을 갖는다. 그리고, 이와 같은 결과는 도 2, 도 5의 결과를 보더라도 알 수 있다.
뿐만 아니라, 도 7의 결과를 참조하면, 본 발명에 따른 일부 실시예의 파워 팩터값이, 비교예의 화합물 반도체에 비해 높은 온도 범위에서 좋은 특성을 나타낸다는 것을 알 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
Claims (15)
- 하기 화학식 1로 표시되는 화합물 반도체.
<화학식 1>
InxMyCo4 -m- aAmSb12 -n-z- bXnQz
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, Q는 O, S, Se 및 Te로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, 0<x<1, 0≤y<1, 0≤m≤1, 0≤a≤1, 0≤n<9, 0≤z≤4, 0≤b≤3 및 0<n+z+b이다. - 제1항에 있어서,
상기 화학식 1의 x 및 y는, 0<x+y≤1인 것을 특징으로 하는 화합물 반도체. - 제1항에 있어서,
상기 화학식 1의 n, z 및 b는, 0<n+z+b≤9인 것을 특징으로 하는 화합물 반도체. - 제1항에 있어서,
상기 화학식 1의 x는, 0<x≤0.5인 것을 특징으로 하는 화합물 반도체. - 제1항에 있어서,
상기 화학식 1의 z는, 0<z≤2인 것을 특징으로 하는 화합물 반도체. - In 및 Co를 포함하는 혼합물을 형성하는 단계; 및
상기 혼합물을 열처리하는 단계
를 포함하는 제1항의 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 혼합물은, O, S, Se 및 Te로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 혼합물은, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 혼합물은, Sb를 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 열처리 단계는, 400℃ 내지 800℃에서 수행되는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제6항에 있어서,
상기 열처리 단계는, 둘 이상의 열처리 단계를 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법. - 제1항 내지 제5항 중 어느 한 항에 따른 화합물 반도체를 포함하는 열전 변환 소자.
- 제1항 내지 제5항 중 어느 한 항에 따른 화합물 반도체를 포함하는 태양 전지.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2012/003739 WO2012157916A1 (ko) | 2011-05-13 | 2012-05-11 | 신규한 화합물 반도체 및 그 활용 |
EP12786765.3A EP2708505B1 (en) | 2011-05-13 | 2012-05-11 | Novel compound semiconductor and usage for same |
KR1020120050460A KR20120127322A (ko) | 2011-05-13 | 2012-05-11 | 신규한 화합물 반도체 및 그 활용 |
JP2014508303A JP5852228B2 (ja) | 2011-05-13 | 2012-05-11 | 新規な化合物半導体及びその活用 |
CN201280023369.3A CN103562127B (zh) | 2011-05-13 | 2012-05-11 | 新的化合物半导体及其用途 |
TW101117059A TWI469933B (zh) | 2011-05-13 | 2012-05-14 | 新穎化合物半導體及其應用 |
US13/617,434 US8679374B2 (en) | 2011-05-13 | 2012-09-14 | Compound semiconductors and their application |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110045348 | 2011-05-13 | ||
KR1020110045349 | 2011-05-13 | ||
KR1020110049609 | 2011-05-25 | ||
KR1020120050460A KR20120127322A (ko) | 2011-05-13 | 2012-05-11 | 신규한 화합물 반도체 및 그 활용 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120127322A true KR20120127322A (ko) | 2012-11-21 |
Family
ID=47512528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120050460A KR20120127322A (ko) | 2011-05-13 | 2012-05-11 | 신규한 화합물 반도체 및 그 활용 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20120127322A (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11162159B2 (en) | 2017-03-15 | 2021-11-02 | Lg Chem, Ltd. | Compound semiconductor and use thereof |
-
2012
- 2012-05-11 KR KR1020120050460A patent/KR20120127322A/ko not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11162159B2 (en) | 2017-03-15 | 2021-11-02 | Lg Chem, Ltd. | Compound semiconductor and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5852228B2 (ja) | 新規な化合物半導体及びその活用 | |
KR101366711B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101431771B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101463195B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101366710B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
JP5767398B2 (ja) | 新規な化合物半導体及びその活用 | |
KR101366712B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101380944B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101366709B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101380945B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101453036B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101357159B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR101372523B1 (ko) | 신규한 화합물 반도체 및 그 활용 | |
KR20120127322A (ko) | 신규한 화합물 반도체 및 그 활용 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
WITB | Written withdrawal of application |