CN106784038B - 一种组分可调光电薄膜的制备方法 - Google Patents

一种组分可调光电薄膜的制备方法 Download PDF

Info

Publication number
CN106784038B
CN106784038B CN201710007098.7A CN201710007098A CN106784038B CN 106784038 B CN106784038 B CN 106784038B CN 201710007098 A CN201710007098 A CN 201710007098A CN 106784038 B CN106784038 B CN 106784038B
Authority
CN
China
Prior art keywords
copper
sulphur
bismuth
antimony
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710007098.7A
Other languages
English (en)
Other versions
CN106784038A (zh
Inventor
房永征
郑新峰
刘玉峰
李倩倩
潘彩霞
侯京山
张娜
赵国营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201710007098.7A priority Critical patent/CN106784038B/zh
Publication of CN106784038A publication Critical patent/CN106784038A/zh
Application granted granted Critical
Publication of CN106784038B publication Critical patent/CN106784038B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3464Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
    • C03C17/347Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a sulfide or oxysulfide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明一种组分可调的光电薄膜的制备方法,按照摩尔比称取Cu、Sb、Bi对应的化合物以及硫源,将上述的化合物溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末;将前驱体粉末溶解在二甲基甲酰胺、聚乙烯吡咯烷酮和聚乙二醇组成的混合溶液中制得前驱物溶液,在FTO衬底上旋涂;将获得的产品在200‑500℃退火,得到铜锑铋硫预制薄膜;将预制薄膜在300‑700℃硫化退火获得光电薄膜。

Description

一种组分可调光电薄膜的制备方法
技术领域:
本发明属于材料学领域,涉及一种光伏电池材料,具体来说是一种组分可调的铜锑铋硫光电薄膜的制备方法。
背景技术:
随着人类社会的发展,如何同时解决能源问题与可持续发展的问题逐渐成为困扰人类社会进步的一大难题。将太阳能转换为电能的光伏技术是创造社会发展与能源需求的最佳能源形式。降低光伏器件成本,提高器件的转换效率一直是太阳电池材料与器件行业关注的焦点和主要的目标。
近年来,出现了三种主要的薄膜太阳电池半导体材料:砷化镓(GaAs)材料、铜铟镓硒(CIGS)材料和碲化镉(CdTe)材料。砷化镓(GaAs)材料转化效率虽高,但价格不菲,因而在很大程度上限制了砷化镓(GaAs)电池的普及。铜铟镓硒(CIGS)材料中铟和硒的稀缺、昂贵限制了这类电池的发展。碲化镉(CdTe)带隙为1.5 eV,与太阳光谱非常匹配,最适合于光电能量转化,但镉(Cd)元素的毒性和有限的蕴藏量限制了其发展。因此,寻找性能更优的吸收层半导体材料成为一种更具潜力的选择。铜基硫族化合物中Cu3BiS3、Cu3SbS4带隙分别为1.4eV、1.5eV,接近太阳能电池的最优带隙,并且其光吸收系数很高(>105cm-1),且具有较高的光电转换效率。Cu3BiS3还可以用来做光伏器件,例如太阳能电池等。Cu3SbS3也是一种重要的半导体材料,广泛地应用于光电、热电设备和光记录媒介等。
铜基硫族化合物半导体如:Cu-Bi-S(Cu3BiS3、Cu9BiS6、CuBiS2、Cu4Bi4S9),Cu-Sb-S(Cu3SbS4、CuSbS2、Cu12Sb4S13)因其廉价、环保、自然储量丰富、良好的光电性能,越来越受到人们的关注。这些化合物广泛应用于太阳电池、晶体管、光探测器及热敏器件等领域。
发明内容:
针对现有技术中的上述技术问题,本发明提供了一种组分可调的铜锑铋硫光电薄膜的制备方法,所述的这种组分可调的铜锑铋硫光电薄膜的制备方法要解决现有技术中的薄膜太阳电池半导体材料成本高、工艺复杂的技术问题。
本发明提供了一种组分可调的光电薄膜的制备方法,包括如下步骤:
1)按照摩尔比称取Cu、Sb、Bi对应的化合物以及硫源;在各反应物前驱体中,Cu元素、Sb元素、Bi元素、S元素的摩尔比为3 : (1-x) : x : y,其中0≤ x ≤1 ; 6 ≤ y ≤ 18。
2)将上述的化合物溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末;
3)将铜锑铋硫前驱体粉末溶解在二甲基甲酰胺、聚乙烯吡咯烷酮和聚乙二醇组成的混合溶液中制得前驱物溶液,前驱体粉末和二甲基甲酰胺、聚乙烯吡咯烷酮和聚乙二醇之间的物料比为0.01-1 g:15-60 mL:0.30-1.30 g:5-20 mL,在FTO衬底上以转速1000-3000 r/min旋涂10-60 s;
4)将步骤3)获得的产品在200-500℃退火1-10 min,以上步骤重复2-10次,得到铜锑铋硫预制薄膜;
5)将预制薄膜在300-700 ℃硫化退火20-60 min获得铜锑铋硫光电薄膜,所述的铜锑铋硫光电薄膜的化学式为Cu3(Sb1-xBix)S3,其中0≤x≤1。
进一步的,所述铋对应的化合物为硝酸铋、三氯化铋、乙酰丙酮铋、氧化铋、氯化铋或碳酸铋中任意一种。
进一步的,所述铜对应的化合物为硝酸铜、醋酸铜、氯化铜、乙酰丙酮酸铜、或硫酸铜中任意一种。
进一步的,所述锑对应的化合物为氯化锑、醋酸锑、三甲基锑、或者三乙基锑中的任意一种。
进一步的,所述的硫源为二乙基二硫代氨基甲酸钠、硫代乙醇酸、或者硫脲。
本发明将Cu、Sb、Bi、S按照计量比共沉淀得到铜锑铋硫前驱体,然后将前驱体溶解在DMF中形成澄清的溶液,制成铜锑铋硫前驱物溶液。然后通过旋涂法,将铜锑铋硫前驱物溶液涂覆在FTO导电玻璃上,经过硫化退火处理,最终得到铜锑铋硫光电薄膜。本发明通过简单的旋涂法工艺制备铜基硫化物薄膜,有效减少太阳薄膜吸收层的制作成本和对真空等苛刻制备条件的依赖,提供了一种制造低价高效太阳电池器件的制备方法。
本发明和已有技术相比,其技术进步是显著的。本发明提供工艺简单,制备方便,成本低廉的一种铜锑铋硫光电薄膜的制备方法,制备的铜锑铋硫薄膜具有良好的光吸收及光热效果,在光伏领域具有潜在的应用价值。本发明的方法操作简单,反应温度低,元素化学计量比控制精确,所用前驱体材料成本低廉、无毒性,适合工业化生产与应用。
附图说明:
图1为实施例1制备的光电薄膜的扫描电镜图,从图中可以看出薄膜形貌致密、平整。
图2为实施例1合成的铜锑铋硫纳米晶的晶体结构图,可以看出其为正交晶系,晶胞中原子并没有占据在顶点上而是分布在晶胞内。
图3为实施例1合成的铜锑铋硫纳米晶的XRD衍射图谱,可以看出结晶性较好,且不含其它杂相。
具体实施方式
实施例1:
称取3 mmol CuCl2·2H2O、2 mmol Bi(NO3)3·5H2O、和9 mmol (C2H5)2NCSSNa·3H2O溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑硫前驱体粉末。将0.8 g的铜锑硫前驱体粉末溶解在60 mL DMF,0.30 g PVP和20 mL PEG中制得前驱物溶液,在FTO衬底上以转速1000 r/min旋涂10 s,然后在250℃退火20 min,以上步骤重复4次,得到铜锑硫预制薄膜,最后将预制薄膜在400℃硫化退火6 min获得铜锑硫光电薄膜。
实施例2:
称取5 mmol CuCl2·2H2O、0.8 mmol Sb(CH3COO)3、0.2 mmol Bi(NO3)3·5H2O和11mmol (C2H5)2NCSSNa·3H2O溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末。将0.1 g的铜锑铋硫前驱体粉末溶解在50 mL DMF,0.40 g PVP和17 mL PEG中制得前驱物溶液,在FTO衬底上以转速1500 r/min旋涂20 s,然后在260℃退火28 min,以上步骤重复2次,得到铜锑铋硫预制薄膜,最后将预制薄膜在450℃硫化退火20 min获得铜锑铋硫光电薄膜。
实施例3:
称取7 mmol CuCl2·2H2O、0.6 mmol Sb(CH3COO)3、0.4 mmol Bi(NO3)3·5H2O和18mmol (C2H5)2NCSSNa·3H2O溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末。将0.2 g的铜锑铋硫前驱体粉末溶解在40 mL DMF,0.70 g PVP和15 mL PEG中制得前驱物溶液,在FTO衬底上以转速2000 r/min旋涂30 s,然后在270℃退火5 min,以上步骤重复6次,得到铜锑铋硫预制薄膜,最后将预制薄膜在500℃硫化退火36 min获得铜锑铋硫光电薄膜。
实施例4:
称取9 mmol CuCl2·2H2O、0.4 mmol Sb(CH3COO)3、0.6 mmol Bi(NO3)3·5H2O和6mmol (C2H5)2NCSSNa·3H2O溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末。将0.4 g的铜锑铋硫前驱体粉末溶解在30 mL DMF,0.80 g PVP和12 mL PEG中制得前驱物溶液,在FTO衬底上以转速2500 r/min旋涂50 s,然后在280℃退火55 min,以上步骤重复8次,得到铜锑铋硫预制薄膜,最后将预制薄膜在550℃硫化退火40 min获得铜锑铋硫光电薄膜。
实施例5:
称取11 mmol CuCl2·2H2O、0.2 mmol Sb(CH3COO)3、0.8 mmol Bi(NO3)3·5H2O和16 mmol (C2H5)2NCSSNa·3H2O溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末。将0.01 g的铜锑铋硫前驱体粉末溶解在20 mL DMF,1.0 g PVP和7 mL PEG中制得前驱物溶液,在FTO衬底上以转速3000 r/min旋涂60 s,然后在290℃退火2 min,以上步骤重复10次,得到铜锑铋硫预制薄膜,最后将预制薄膜在600℃硫化退火60 min获得铜锑铋硫光电薄膜。
实施例6:
称取12 mmol CuCl2·2H2O、0.5 mmol Sb(CH3COO)3和12 mmol (C2H5)2NCSSNa·3H2O溶解在乙二醇中,经抽滤、洗涤、干燥制成铜铋硫前驱体粉末。将1 g的铜铋硫前驱体粉末溶解在15 mL DMF,1.3 g PVP和6 mL PEG中制得前驱物溶液,在FTO衬底上以转速2500r/min旋涂35 s,然后在300℃退火4 min,以上步骤重复15次,得到铜铋硫预制薄膜,最后将预制薄膜在500℃硫化退火30 min获得铜铋硫光电薄膜。

Claims (5)

1.一种组分可调的光电薄膜的制备方法,其特征在于包括如下步骤:
1)按照摩尔比称取Cu、Sb、Bi对应的化合物以及硫源;在各反应物前驱体中,Cu元素、Sb元素、Bi元素、S元素的摩尔比为3 : (1-x) : x : y,其中0≤ x ≤1 ; 6 ≤ y ≤ 18;
2)将上述的化合物以及硫源溶解在乙二醇中,经抽滤、洗涤、干燥制成铜锑铋硫前驱体粉末;
3)将铜锑铋硫前驱体粉末溶解在二甲基甲酰胺、聚乙烯吡咯烷酮和聚乙二醇组成的混合溶液中制得前驱物溶液,铜锑铋硫前驱体粉末和二甲基甲酰胺、聚乙烯吡咯烷酮和聚乙二醇之间的物料比为0.01-1 g:15-60 mL:0.30-1.30 g:5-20 mL;在FTO衬底上以转速1000-3000 r/min旋涂10-60 s;将获得的产品在200-500℃退火1-10 min;
4)将步骤3)重复2-10次,得到铜锑铋硫预制薄膜;
5)将铜锑铋硫预制薄膜在300-700 ℃硫化退火20-60 min获得铜锑铋硫光电薄膜,所述的铜锑铋硫光电薄膜的化学式为Cu3(Sb1-xBix)S3,其中0≤x≤1。
2.根据权利要求1所述的一种组分可调的光电薄膜的制备方法,其特征在于:所述铋对应的化合物为硝酸铋、三氯化铋、乙酰丙酮铋、氧化铋、氯化铋或碳酸铋中任意一种。
3.根据权利要求1所述的一种组分可调的光电薄膜的制备方法,其特征在于:所述铜对应的化合物为为硝酸铜、醋酸铜、氯化铜、乙酰丙酮酸铜、或硫酸铜中任意一种。
4.根据权利要求1所述的一种组分可调的光电薄膜的制备方法,其特征在于:所述锑对应的化合物为氯化锑、醋酸锑、三甲基锑、或者三乙基锑中的任意一种。
5.根据权利要求1所述的一种组分可调的光电薄膜的制备方法,其特征在于:所述的硫源为二乙基二硫代氨基甲酸钠、硫代乙醇酸、或者硫脲中的任意一种。
CN201710007098.7A 2017-01-05 2017-01-05 一种组分可调光电薄膜的制备方法 Expired - Fee Related CN106784038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710007098.7A CN106784038B (zh) 2017-01-05 2017-01-05 一种组分可调光电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710007098.7A CN106784038B (zh) 2017-01-05 2017-01-05 一种组分可调光电薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106784038A CN106784038A (zh) 2017-05-31
CN106784038B true CN106784038B (zh) 2018-03-13

Family

ID=58949669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710007098.7A Expired - Fee Related CN106784038B (zh) 2017-01-05 2017-01-05 一种组分可调光电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106784038B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888031B (zh) * 2019-03-04 2021-03-09 哈尔滨工业大学(深圳) 一种铋氧硫二维材料的制备方法及光电探测器
CN112993078B (zh) * 2019-12-02 2023-04-07 许昌学院 一种湿法单质粉末室温反应制备CuBiI4光电薄膜材料的化学方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946323A (zh) * 2008-08-29 2011-01-12 Lg化学株式会社 新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件
CN103094422A (zh) * 2013-01-29 2013-05-08 电子科技大学 铜锌锡硫硒薄膜制备中的掺杂工艺
CN106252433A (zh) * 2016-05-31 2016-12-21 电子科技大学 一种高传质性硒化铜微纳米粉体材料、其合成方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507040B2 (en) * 2008-05-08 2013-08-13 Air Products And Chemicals, Inc. Binary and ternary metal chalcogenide materials and method of making and using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946323A (zh) * 2008-08-29 2011-01-12 Lg化学株式会社 新型化合物半导体及其制备方法,以及使用该新型化合物半导体的太阳能电池和热电转换元件
CN103094422A (zh) * 2013-01-29 2013-05-08 电子科技大学 铜锌锡硫硒薄膜制备中的掺杂工艺
CN106252433A (zh) * 2016-05-31 2016-12-21 电子科技大学 一种高传质性硒化铜微纳米粉体材料、其合成方法及用途

Also Published As

Publication number Publication date
CN106784038A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Shah et al. Wide bandgap Sb2S3 solar cells
Gayen et al. Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration
US8071875B2 (en) Manufacture of thin solar cells based on ink printing technology
Wang et al. Sb 2 S 3 solar cells: functional layer preparation and device performance
EP2504276A1 (en) Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles
JP2008507835A (ja) 薄膜黄銅鉱化合物を生成するための方法
CN105514276B (zh) 一种介孔状钙钛矿光伏材料及其制备方法
Farhana et al. Recent advances and new research trends in Sb2S3 thin film based solar cells
US8815123B2 (en) Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells
CN105070664B (zh) 光电子器件ZnO/ZnS异质结纳米阵列膜制备方法
Tamilselvan et al. Planar heterojunction solar cell employing a single-source precursor solution-processed Sb2S3 thin film as the light absorber
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
CN106449979A (zh) 通过双氨基有机物制备热稳定钙钛矿CsPbI3的方法
Ma et al. Fabrication of Cu2ZnSn (S, Se) 4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes
Tang et al. In situ preparation of CuInS 2 films on a flexible copper foil and their application in thin film solar cells
Fu et al. Thin film solar cells based on Ag-substituted CuSbS2 absorber
Lin et al. Zn (O, S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
WO2012090938A1 (ja) 化合物半導体薄膜太陽電池及びその製造方法
CN106784038B (zh) 一种组分可调光电薄膜的制备方法
Park et al. Synthesis and characterization of polycrystalline CuInS2 thin films for solar cell devices at low temperature processing conditions
KR20160070821A (ko) 높은 무크랙 한계를 갖는 cigs 나노 입자 잉크 제제
Akshay et al. Solution-processed antimony chalcogenides based thin film solar cells: A brief overview of recent developments
US20170207362A1 (en) Method for forming thin film having sulfide single-crystal nanoparticles
US20110023750A1 (en) Ink composition for forming absorbers of thin film cells and producing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180313

Termination date: 20210105

CF01 Termination of patent right due to non-payment of annual fee