CN101977846A - 新型半导体化合物及其制备方法以及使用该半导体化合物的热电元件 - Google Patents

新型半导体化合物及其制备方法以及使用该半导体化合物的热电元件 Download PDF

Info

Publication number
CN101977846A
CN101977846A CN2009801103604A CN200980110360A CN101977846A CN 101977846 A CN101977846 A CN 101977846A CN 2009801103604 A CN2009801103604 A CN 2009801103604A CN 200980110360 A CN200980110360 A CN 200980110360A CN 101977846 A CN101977846 A CN 101977846A
Authority
CN
China
Prior art keywords
compound semiconductor
chemical formula
present
compound
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801103604A
Other languages
English (en)
Other versions
CN101977846B (zh
Inventor
朴哲凞
孙世姬
权元锺
金兑训
洪承泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Corp
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN101977846A publication Critical patent/CN101977846A/zh
Application granted granted Critical
Publication of CN101977846B publication Critical patent/CN101977846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/885Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明公开了一种由下面化学式表示的新型化合物半导体:Bi1-x-yLnxMyCuOTe,其中,Ln属于镧系元素,并且为选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素,M为选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的任意一种或多种元素,以及0<x<1,05y<1且0<x+y<1。所述化合物半导体可以代替常规的化合物半导体或者可与常规的化合物半导体一起用作热电转换器件。

Description

新型半导体化合物及其制备方法以及使用该半导体化合物的热电元件
技术领域
本发明涉及一种化合物半导体及其制备方法,以及使用该化合物半导体的热电转换器件。
背景技术
化合物半导体是由两种以上的不同元素、而非单一的元素(例如硅、锗等)组成的、并担当半导体的化合物。目前,已经开发了多种化合物半导体,并已经用于多个工业领域。例如,所述化合物半导体典型地用于使用光电转换效应的太阳能电池或包括发光二极管或激光二极管的发光器件、以及使用帕耳帖效应(Feltier effect)的热电转换器件等。
其中,所述热电转换器件应用于热电发电、热电致冷等。例如,热电发电是一种使用由热电转换器件中的温差产生的热电动势将热能转换为电能的发电方式。
所述热电转换器件的能量转换效率取决于热电转换材料的塞贝克系数、电导率和热导率。更具体而言,所述热电转换材料的能量转换效率与塞贝克系数的平方和电导率成正比,而与热导率成反比。因此,需要开发出具有高塞贝克系数或高电导率或低热导率的热电转换材料从而提高热电转换器件的能量转换效率。
发明内容
本发明的一个目的是提供一种可用作热电转换器件的热电转换材料的新型化合物半导体。
以及,本发明的一个目的是提供一种制备所述新型化合物半导体的方法。
此外,本发明的一个目的是提供一种使用所述新型化合物半导体的热电转换器件。
在经过反复研究之后,本发明人成功地合成了如下面化学式1表示的化合物半导体。并且,本发明人发现这种新型化合物可以用作热电转换器件的热电转换材料,从而完成了本发明。
<化学式1>
Bi1-x-yLnxMyCuOTe
其中,Ln属于镧系元素,且为选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素,M为选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的任意一种或多种元素,以及,0<x<1,0≤y<1且0<x+y<1。
在根据本发明的化合物半导体中,在上述化学式1中,Ln可以为La、Gd或Tm,以及M可以为Pb。
在所述化学式1中,x和y优选分别为0<x≤0.5和0≤y≤0.5,更优选地,分别为0<x<0.2和0≤y<0.1。
本发明也提供了制备所述由上述化学式1表示的化合物半导体的方法:使Bi2O3、Bi、Cu和Te各自的粉末与选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素或其氧化物的粉末混合,非必需地使该混合的材料与选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的任意一种或多种元素或其氧化物的粉末混合,并烧结所得的材料。
在本发明的制备方法中,所述烧结温度优选为400~570℃。
有益效果
根据本发明的新型化合物半导体可以代替常规的化合物半导体,或者可以用作与常规的化合物半导体一起使用的另一种材料。具体而言,根据本发明的化合物半导体具有良好的热电转换性能,而因此其可以有效地应用于热电转换器件。此外,根据本发明的化合物半导体可以应用于太阳能电池的吸光层、允许红外线选择性透过的IR窗或者红外线传感器。
附图说明
附图图示了本发明优选的实施方式,包含的附图与本发明的详细说明一起提供对本发明的实质的进一步理解,因此,本发明不能解释成局限于附图中显示的内容。
图1为图示通过比较X射线衍射图与结构模型的理论图得到的BiCuOTe的Rietveld精修谱图的图。
图2为图示BiCuOTe的晶体结构的视图。
图3为图示根据本发明的实施例1至3和6的化合物的X射线衍射图的图。
图4为图示根据本发明的实施例1至3的化合物和根据参考实施例的化合物的功率因数的图。
图5为图示根据本发明的实施例1和4至6的化合物和根据参考实施例1~3的化合物的功率因数的图。
具体实施方式
根据本发明的化合物半导体由下面的化学式1表示。
<化学式1>
Bi1-x-yLnxMyCuOTe
其中,Ln属于镧系元素,且为选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素,M为选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的任意一种或多种元素,以及,0<x<1,0≤y<1且0<x+y<1。也就是说,在根据本发明的化合物半导体中,BiCuOTe中的Bi部分地被镧系元素取代,并且可以进一步被具有比Bi更低的氧化值的元素(例如Cd、Pb等)取代。
如上所述,塞贝克系数和电导率越高而热导率越低,则热电转换性能就越好。尽管下面将进行详细描述,但是BiCuOTe具有超晶格结构,其中Cu2Te2层和Bi2O2层沿着c-晶轴重复排列,因此,其具有比Bi2Te3(典型的商业化热电转换材料)显著更低的热导率,并具有类似于或高于Bi2Te3的塞贝克系数。因此,BiCuOTe作为热转换材料是非常有用的。
同时,塞贝克系数与由载流子在材料中的迁移引起的熵增加直接相关。当材料中载流子可以占据的能级数或者材料中载流子可以存在的状态数变大时,熵增加并且塞贝克系数可以相应增加。在原子轨道中,由于f亚壳层具有7个轨道,所以f亚壳层的状态数多于具有一个轨道的s亚壳层、具有3个轨道的p亚壳层和具有5个轨道的d亚壳层。因此,如果根据本发明用具有带有空轨道的f亚壳层的镧系元素部分地取代BiCuOTe中的Bi,则熵增加,且由此塞贝克系数也增加,可能导致热电转换性能的提高。
另外,当与Bi2Te3比较时,BiCuOTe具有显著更低的热导率和类似的或更高的塞贝克系数,但是具有相对更低的电导率。为了提高电导率,需要增加载流子浓度。载流子浓度的增加可以通过如下方式实现:用具有相对较小氧化值的pb2+或Cd2+部分地取代BiCuOTe中的Bi。然而,随着载流子浓度的增加,电导率也增加,但是塞贝克系数可能会减小,以及在一些情况下,热电转换性能可能会降低。如上所述,在通过用具有相对较小氧化值的元素部分地取代Bi来提高热电转换性能方面存在限制。此外,当电导率和塞贝克系数中的至少一项增大时,需要防止另一项降低。在本发明中,这可以通过用上述的镧系元素部分地取代Bi实现。也就是说,由用具有比Bi更低的氧化值的元素取代引起的塞贝克系数的降低被由用具有与Bi相同的氧化值的镧系元素取代引起的熵增加抵消。
因此,根据本发明的化合物半导体具有优异的热电转换性能,而因此其可以代替常规的热电转换材料或者与常规的化合物半导体一起有效地应用于热电转换器件中。此外,根据本发明的化合物半导体可以应用于太阳能电池的吸光层、允许选择性透过红外线的IR窗或者红外线传感器。
同时,在上述化学式1中,x和y分别优选为0<x≤0.5和0≤y≤0.5,更优选,分别为0<x<0.2和0≤y<0.1。以及,在上述化学式1中的y可以为0。也就是说,Bi可以仅被镧系元素部分地取代。
上述化学式1的化合物半导体可以通过如下方式制备:使Bi2O3、Bi、Cu和Te的各自的粉末与选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素或其氧化物的粉末混合,选择性地使该混合材料与选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的一种或多种元素或其氧化物的粉末混合,并烧结所得的材料,然而,本发明并不限于此方面。
根据本发明的化合物半导体可以通过在真空中烧结或者在使部分包含氢或不包含氢的气体(例如Ar、He、N2等)流动的同时烧结。优选地,烧结温度为大约400至750℃,更优选400至570℃。
同时,尽管上面的描述是在如下的基础上进行的:根据本发明的化合物半导体中的Te是以化学计量上的固定量使用的,但是Te可以被另一种元素(例如S、Se、As、Sb等)部分地取代。这种情况遵循本发明的理念:Bi被镧系元素部分地取代而使得塞贝克系数增加。因此,应该理解到本发明的范围覆盖了除Bi外的元素被另一种元素部分地取代的情形。
在下文中,将参考下面的实施例详细描述本发明。然而,可以对本发明的实施例作出各种修饰和变化,而不能解释成本发明的范围仅限于如下的实施例。提供的本发明的实施例是为了使本领域的技术人员更全面地理解本发明。
<参考实施例1>
BiCuOTe的合成
首先,为了合成BiCuOTe,使用玛瑙研钵将1.1198g的Bi2O3(Aldrich,99.9%,100目)、0.5022g的Bi(Aldrich,99.99%,<10m)、0.4581g的Cu(Aldrich,99.7%,3m)和0.9199g的Te(Aldrich,99.99%,~100目)充分混合。将该混合的材料置入二氧化硅管中,真空密封并在510℃下加热15小时,从而得到BiCuOTe粉末。
为了进行X射线衍射分析,将测试部分充分研磨,并放在X射线衍射分析仪(Bruker D8-Advance XRD)的试样架上,并通过扫描测量,其中,扫描间隔为0.02度,使用Cu Kα1(λ=1.5405
Figure BPA00001229911300051
)X射线辐射,施加的电压为50KV,以及施加的电流为40mA。
使用TOPAS程序(R.W.Cheary,A.Coelho,J.Appl.Crystallogr.25(1992)109-121;Bruker AXS,TOPAS 3,Karlsruhe,Germany(2000))分析所得材料的晶体结构,以及分析结果示于下表1和图2中。
表1<经Rietveld精修得到的BiCuOTe晶体学数据>
[空间群I4/nmm(No.129),a=4.04138(6)
Figure BPA00001229911300052
,c=9.5257(2)]
Figure BPA00001229911300054
图1为图示通过比较X射线衍射图与结构模型的理论图得到的BiCuOTe的Rietveld精修谱图的图。参考图1,发现测量的图形与根据表1结果计算的图形相一致。因此,根据参考实施例1得到的材料被确认为BiCuOTe。
如图2所示,这种BiCuOTe化合物半导体显示出Cu2Te2层和Bi2O2层沿着c-晶轴重复排列的天然超晶格结构。
<实施例1至3>
Bi 0.9 Ln 0.1 CuOTe的合成
除了使用镧系元素的氧化物(Ln2O3)粉末来部分地取代Bi之外,以与参考实施例1相同的方式合成Bi0.9Ln0.1CuOTe。在实施例1至3中使用的镧系元素分别为La、Gd和Tm,以及用于合成的各种原料粉末的混合量如下(单位:g)。
表2
  分类   Bi2O3   Bi   Cu   Te   Ln2O3
  实施例1(Ln=La)   0.9681   0.5108   0.4660   0.9357   0.1195
  实施例2(Ln=Gd)   0.9638   0.5085   0.4639   0.9315   0.1323
  实施例3(Ln=Tm)   0.9610   0.5071   0.4626   0.9289   0.1404
以与参考实施例1相同的方式制备根据实施例1至3的化合物的测试部分,并进行X射线衍射分析,分析结果示于图3中。从图3中可以看出,实施例1至3中得到的各种材料被确认为Bi0.9Ln0.1CuOTe。
<实施例4至6与参考实施例2和3>
Bi 0.9-x La 0.1 Pb x CuOTe的合成
除了使用Pb(作为具有相对较小氧化值的元素(M))的氧化物(PbO)粉末来部分地取代Bi之外,以与实施例1相同的方式合成Bi0.9-xLa0.1PbxCuOTe。然而,在参考实施例2和3中,Bi没有被镧系元素部分地取代。也就是说,仅用Pb部分地取代Bi合成Bi0.995Pb0.005CuOTe,以及在参考实施例3中,也仅用Pb部分地取代Bi合成Bi0.98Pb0.02CuOTe。此时,在参考实施例2和3中,以不同的量使用Pb。用于合成的各种原料粉末的混合的量如下(单位:g)。
表3
 分类   Bi2O3   Bi   Cu   Te   La2O3   PbO
 实施例4(x=0.005)   1.4395   0.7663   0.6990   1.4037   0.1792   0.0123
 实施例5(x=0.01)   1.4269   0.7664   0.6991   1.4038   0.1792   0.0246
 实施例6(x=0.02)   1.4016   0.7666   0.6993   1.4042   0.1793   0.0491
 参考实施例2   1.6672   0.7534   0.6873   1.3800   0   0.0121
 参考实施例3   2.5356   1.1724   1.0695   2.1475   0   0.0751
以与参考实施例1相同的方式制备根据实施例6的化合物的测试部分,并进行X射线衍射分析,分析结果示于图3中。如图3所示,实施例6所得的材料被确认为Bi0.88La0.1Pb0.02CuOTe。
<热电转换性能的评估>
将根据上述参考实施例和实施例得到的各个测试部分模压成直径为4mm以及长度为15mm的圆柱。使用CIP(冷等静压机(Cold Isostatic Press))向所述圆柱施加200MPa的压力。接着,将所得的产物置入石英管中并在510℃下真空烧结10小时。
使用ZEM-2(Ulvac-Rico,Inc)在预定温度间隔下测量各个烧结的测试部分的电导率和塞贝克系数。计算功率因数,其为热电转换性能的指标,将其定义为塞贝克系数的平方乘以电导率。计算的功率因数示于图4和5中。如上所述,Bi被另一元素部分地取代导致电功率的增加和塞贝克系数的降低。因此,同时反映电导率和塞贝克系数的变化的功率因数在该实施方式中被用作性能指标。
参照图4,发现与参考实施例1的BiCuOTe相比,根据实施例1至3的Bi0.9Ln0.1CuOTe具有显著增大的功率因数。
参照图5,发现与没有被取代的参考实施例1和仅被Pb部分地取代的参考实施例2和3相比,同时被La和Pb部分地取代的实施例4至6显示出显著增大的功率因数。如图5所示,仅被Pb取代的参考实施例2和3的功率因数随着温度的升高而急剧变小。特别是,在450K以上的温度时,与没有被取代的BiCuOTe相比,参考实施例2的功率因数变小。因此,根据本发明,Bi同时被La和Pb部分地取代确实增大了功率因数,并减小了功率因数随着温度升高的降低率。

Claims (9)

1.一种由下面化学式1表示的化合物半导体:
<化学式1>
Bi1-x-yLnxMyCuOTe
其中,Ln为选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素,
M为选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的任意一种或多种元素,以及
0<x<1,0≤y<1且0<x+y<1。
2.根据权利要求1所述的化合物半导体,
其中,在化学式1中,Ln为选自La、Gd和Tm中的任意一种。
3.根据权利要求2所述的化合物半导体,
其中,在化学式1中,M为Pb。
4.根据权利要求3所述的化合物半导体,
其中,在化学式1中,x和y分别为0<x≤0.5和0≤y≤0.5。
5.根据权利要求4所述的化合物半导体,
其中,在化学式1中,x和y分别为0<x<0.2和0≤y<0.1。
6.根据权利要求1所述的化合物半导体,
其中,在化学式1中,y为0。
7.一种制备由权利要求1中的化学式1表示的化合物半导体的方法,该方法包括如下步骤:
使Bi2O3、Bi、Cu和Te各自的粉末与选自La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的任意一种或多种元素或其氧化物的粉末混合,
非必需地使该混合的材料与选自Ba、Sr、Ca、Mg、Cd、Hg、Sn、Pb、Mn、Ga、In、Tl、As和Sb中的任意一种或多种元素或其氧化物的粉末混合,和
烧结所得的材料以制备所述化合物半导体。
8.根据权利要求7所述的制备化合物半导体的方法,
其中,所述烧结温度为400至570℃。
9.一种热电转换器件,其包括权利要求1至6中任意一项所限定的化合物半导体作为热电转换材料。
CN2009801103604A 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件 Active CN101977846B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20080085240 2008-08-29
KR10-2008-0085240 2008-08-29
KR10-2008-0097779 2008-10-06
KR20080097779 2008-10-06
KR20080111557 2008-11-11
KR10-2008-0111557 2008-11-11
PCT/KR2009/004872 WO2010024637A2 (ko) 2008-08-29 2009-08-31 신규한 화합물 반도체 및 그 제조 방법과, 이를 이용한 열전 변환 소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310021769.7A Division CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件

Publications (2)

Publication Number Publication Date
CN101977846A true CN101977846A (zh) 2011-02-16
CN101977846B CN101977846B (zh) 2013-03-13

Family

ID=41721647

Family Applications (6)

Application Number Title Priority Date Filing Date
CN201310309148.9A Active CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN2008801266927A Active CN101946323B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN201310021769.7A Active CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
CN2009801080161A Active CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN201310054899.0A Active CN103178202B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN2009801103604A Active CN101977846B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CN201310309148.9A Active CN103400932B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN2008801266927A Active CN101946323B (zh) 2008-08-29 2008-11-28 新型热电转换材料及其制备方法,以及使用该新型热电转换材料的热电转换元件
CN201310021769.7A Active CN103130199B (zh) 2008-08-29 2009-08-31 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
CN2009801080161A Active CN101960627B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件
CN201310054899.0A Active CN103178202B (zh) 2008-08-29 2009-08-31 新型热电转换材料及其制备方法,以及使用该热电转换材料的热电转换器件

Country Status (7)

Country Link
US (7) US8173097B2 (zh)
EP (3) EP2319082B1 (zh)
JP (4) JP5414700B2 (zh)
KR (3) KR101128304B1 (zh)
CN (6) CN103400932B (zh)
TW (1) TWI472487B (zh)
WO (3) WO2010024500A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236493A (zh) * 2013-05-13 2013-08-07 中国科学院福建物质结构研究所 TmCuTe2化合物及其制备和用途
CN105552202A (zh) * 2015-12-08 2016-05-04 中国科学院福建物质结构研究所 晶体材料、制备方法以及含有该晶体材料的热电材料、其制备方法及热电转换器和应用
CN113226981A (zh) * 2018-12-04 2021-08-06 住友化学株式会社 化合物和热电转换材料

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024500A1 (en) 2008-08-29 2010-03-04 Lg Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
KR101114252B1 (ko) * 2010-05-21 2012-02-20 부경대학교 산학협력단 열전재료의 제조방법
CN102339946B (zh) * 2010-07-20 2014-06-18 中国科学院上海硅酸盐研究所 一种高性能热电复合材料及其制备方法
EP2703345B1 (en) * 2011-04-28 2018-07-25 LG Chem, Ltd. Novel semiconductor compound and usage thereof
EP2703344B1 (en) * 2011-04-28 2016-08-31 LG Chem, Ltd. Novel compound semiconductor and use thereof
EP2708498B1 (en) * 2011-05-13 2017-08-16 LG Chem, Ltd. Novel compound semiconductor and usage for same
KR101446165B1 (ko) * 2011-05-13 2014-10-01 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
EP2708502B1 (en) * 2011-05-13 2017-07-26 LG Chem, Ltd. Novel compound semiconductor and usage for same
JP5774201B2 (ja) * 2011-05-13 2015-09-09 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
CN103517871B (zh) * 2011-05-13 2015-08-19 Lg化学株式会社 化合物半导体及其用途
CN103050618B (zh) * 2011-10-17 2015-08-12 中国科学院福建物质结构研究所 一种热电材料及其制备方法
KR102001062B1 (ko) 2012-01-16 2019-10-01 삼성전자주식회사 나노복합체형 열전재료, 이를 포함하는 열전모듈과 열전장치
KR101323321B1 (ko) * 2012-02-10 2013-10-29 한국전기연구원 Sb가 도핑된 MnTe계 열전재료 및 그 제조방법
KR20130126035A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 왜곡된 전자 상태 밀도를 갖는 열전소재, 이를 포함하는 열전모듈과 열전 장치
KR101995917B1 (ko) 2012-05-14 2019-07-03 삼성전자주식회사 파워팩터 증대된 열전소재 및 그 제조 방법
FR2996355B1 (fr) * 2012-09-28 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
KR101446424B1 (ko) * 2013-04-15 2014-10-30 서강대학교산학협력단 열전 변환 물질
KR101612494B1 (ko) * 2013-09-09 2016-04-14 주식회사 엘지화학 열전 재료
US9705060B2 (en) 2013-09-09 2017-07-11 Lg Chem, Ltd. Thermoelectric materials
KR101612489B1 (ko) * 2013-09-27 2016-04-14 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR101614062B1 (ko) * 2013-10-04 2016-04-20 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR101629509B1 (ko) * 2013-10-17 2016-06-10 주식회사 엘지화학 열전 재료 및 그 제조 방법
KR101626933B1 (ko) * 2013-11-29 2016-06-02 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR102138527B1 (ko) 2014-01-20 2020-07-28 엘지전자 주식회사 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
FR3019539B1 (fr) * 2014-04-04 2016-04-29 Rhodia Operations Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaique
FR3019540A1 (fr) * 2014-04-04 2015-10-09 Rhodia Operations Oxydes et sulfures mixtes de bismuth et argent pour application photovoltaique
CN104674046B (zh) * 2015-02-03 2017-11-03 河南理工大学 一种BiCuζO热电材料的制备方法
JP6704577B2 (ja) * 2015-02-23 2020-06-03 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体
CN104831344A (zh) * 2015-04-29 2015-08-12 河南鸿昌电子有限公司 一种半导体晶棒的拉晶方法
KR101917914B1 (ko) 2015-08-26 2018-11-12 주식회사 엘지화학 화합물 반도체 및 그 제조방법
CN107146676B (zh) * 2016-03-01 2019-03-08 中国科学院物理研究所 镉基铁磁半导体材料及其制备方法
CN106601837B (zh) * 2016-11-23 2018-06-22 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN106784038B (zh) * 2017-01-05 2018-03-13 上海应用技术大学 一种组分可调光电薄膜的制备方法
KR102381761B1 (ko) * 2017-12-15 2022-03-31 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전 소자
CN109776093B (zh) * 2018-04-04 2021-07-27 苏州普轮电子科技有限公司 纳米复合热电材料的制备方法
CN109273584B (zh) * 2018-07-16 2022-06-28 永康市天峰工具有限公司 一种汽车尾气温差发电装置用热电材料及发电装置
CN110627502B (zh) * 2019-10-22 2020-12-22 中南大学 一种低温p型复合热电材料及制备方法
CN112397634B (zh) * 2020-11-16 2023-02-28 昆明理工大学 一种提升Bi-Sb-Te基热电材料性能的方法
CN114133245B (zh) * 2021-11-15 2022-12-20 清华大学 热电陶瓷材料及其制备方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366336A (en) * 1980-10-16 1982-12-28 Chevron Research Company Age and heat stabilized photovoltaic cells
US4661071A (en) * 1984-04-03 1987-04-28 Denpac Corp. Vacuum sintered powder alloy dental prosthetic device and oven to form same
US5336558A (en) * 1991-06-24 1994-08-09 Minnesota Mining And Manufacturing Company Composite article comprising oriented microstructures
WO1994012833A1 (en) * 1992-11-27 1994-06-09 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
KR960006241B1 (ko) * 1993-11-20 1996-05-11 국방과학연구소 p-n 전이방지 특성을 갖는 Bi₂Te₃계 열전재료 조성물
JP3092463B2 (ja) * 1994-10-11 2000-09-25 ヤマハ株式会社 熱電材料及び熱電変換素子
US6458319B1 (en) * 1997-03-18 2002-10-01 California Institute Of Technology High performance P-type thermoelectric materials and methods of preparation
JP3572939B2 (ja) * 1997-05-15 2004-10-06 ヤマハ株式会社 熱電材料及びその製造方法
WO1999022410A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Thermoelectric transducing material and method of producing the same
JP3484960B2 (ja) * 1997-12-22 2004-01-06 松下電工株式会社 熱電変換素子及び熱電変換素子の製造方法
AU4806499A (en) * 1998-06-18 2000-01-05 Industrial Research Limited Critical doping in high-tc superconductors for maximal flux pinning and critical currents
JP2000261043A (ja) * 1999-03-10 2000-09-22 Sumitomo Special Metals Co Ltd 熱電変換材料とその製造方法
US6091014A (en) * 1999-03-16 2000-07-18 University Of Kentucky Research Foundation Thermoelectric materials based on intercalated layered metallic systems
DE19955788A1 (de) 1999-11-19 2001-05-23 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
US6251701B1 (en) * 2000-03-01 2001-06-26 The United States Of America As Represented By The United States Department Of Energy All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof
JP3594008B2 (ja) 2000-11-30 2004-11-24 ヤマハ株式会社 熱電材料、その製造方法及びペルチェモジュール
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US7091136B2 (en) * 2001-04-16 2006-08-15 Basol Bulent M Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US6660925B1 (en) * 2001-06-01 2003-12-09 Marlow Industries, Inc. Thermoelectric device having co-extruded P-type and N-type materials
US7166796B2 (en) * 2001-09-06 2007-01-23 Nicolaou Michael C Method for producing a device for direct thermoelectric energy conversion
WO2003105244A1 (ja) * 2002-01-01 2003-12-18 古河電気工業株式会社 熱電素子モジュール及びその作製方法
JP2004288841A (ja) * 2003-03-20 2004-10-14 Rikogaku Shinkokai オキシカルコゲナイドおよび熱電材料
JP4670017B2 (ja) 2004-03-25 2011-04-13 独立行政法人産業技術総合研究所 熱電変換素子及び熱電変換モジュール
CN1278941C (zh) * 2004-12-08 2006-10-11 浙江大学 一种Bi2Te3纳米囊及其制备方法
JP2007158191A (ja) * 2005-12-07 2007-06-21 Toshiba Corp 熱電材料およびこの材料を用いた熱電変換素子
JP2007258200A (ja) * 2006-03-20 2007-10-04 Univ Nagoya 熱電変換材料及びそれを用いた熱電変換膜
JP4967772B2 (ja) * 2006-08-24 2012-07-04 住友化学株式会社 熱電変換材料およびその製造方法
JP2008085309A (ja) * 2006-08-29 2008-04-10 Okano Electric Wire Co Ltd 熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料
WO2008028852A2 (de) * 2006-09-05 2008-03-13 Basf Se Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
KR101008035B1 (ko) * 2007-06-14 2011-01-13 주식회사 엘지화학 신규한 화합물 반도체 물질 및 그 제조 방법과, 이를이용한 태양 전지
WO2010024500A1 (en) * 2008-08-29 2010-03-04 Lg Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236493A (zh) * 2013-05-13 2013-08-07 中国科学院福建物质结构研究所 TmCuTe2化合物及其制备和用途
CN103236493B (zh) * 2013-05-13 2017-10-24 中国科学院福建物质结构研究所 TmCuTe2化合物及其制备和用途
CN105552202A (zh) * 2015-12-08 2016-05-04 中国科学院福建物质结构研究所 晶体材料、制备方法以及含有该晶体材料的热电材料、其制备方法及热电转换器和应用
CN105552202B (zh) * 2015-12-08 2018-04-10 中国科学院福建物质结构研究所 晶体材料、制备方法以及含有该晶体材料的热电材料、其制备方法及热电转换器和应用
CN113226981A (zh) * 2018-12-04 2021-08-06 住友化学株式会社 化合物和热电转换材料
CN113226981B (zh) * 2018-12-04 2024-03-05 住友化学株式会社 化合物和热电转换材料

Also Published As

Publication number Publication date
US20140190544A1 (en) 2014-07-10
KR101128304B1 (ko) 2012-03-23
US20140000671A1 (en) 2014-01-02
CN101960627A (zh) 2011-01-26
JP2011523394A (ja) 2011-08-11
CN103178202B (zh) 2016-06-01
CN101946323B (zh) 2013-08-21
WO2010024641A2 (ko) 2010-03-04
US20120211045A1 (en) 2012-08-23
TW201008877A (en) 2010-03-01
EP2319082A4 (en) 2013-12-04
EP2316793A2 (en) 2011-05-04
EP2320485A4 (en) 2013-10-30
WO2010024641A3 (ko) 2010-07-01
KR20100027079A (ko) 2010-03-10
CN103400932A (zh) 2013-11-20
TWI472487B (zh) 2015-02-11
WO2010024637A2 (ko) 2010-03-04
US8226843B2 (en) 2012-07-24
US8715538B2 (en) 2014-05-06
US20110079750A1 (en) 2011-04-07
JP2011516370A (ja) 2011-05-26
US20120326100A1 (en) 2012-12-27
EP2316793B1 (en) 2014-11-05
US20110079751A1 (en) 2011-04-07
US20110017935A1 (en) 2011-01-27
US8029703B2 (en) 2011-10-04
KR20100027080A (ko) 2010-03-10
EP2319082B1 (en) 2017-11-15
JP2011513986A (ja) 2011-04-28
KR101117847B1 (ko) 2012-03-16
WO2010024500A1 (en) 2010-03-04
JP5462858B2 (ja) 2014-04-02
CN103400932B (zh) 2016-08-10
US8173097B2 (en) 2012-05-08
EP2316793A4 (en) 2013-11-20
CN101977846B (zh) 2013-03-13
US9620696B2 (en) 2017-04-11
EP2320485B1 (en) 2014-11-19
JP5283713B2 (ja) 2013-09-04
JP2013145895A (ja) 2013-07-25
WO2010024637A3 (ko) 2010-07-01
KR101117845B1 (ko) 2012-03-16
JP5414700B2 (ja) 2014-02-12
CN103178202A (zh) 2013-06-26
CN103130199A (zh) 2013-06-05
CN101946323A (zh) 2011-01-12
KR20100027081A (ko) 2010-03-10
US8535637B2 (en) 2013-09-17
EP2320485A2 (en) 2011-05-11
CN101960627B (zh) 2013-03-27
JP5537688B2 (ja) 2014-07-02
CN103130199B (zh) 2015-03-18
EP2319082A1 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN101977846B (zh) 化合物半导体及其制备方法以及使用该化合物半导体的热电转换器件
KR101614062B1 (ko) 신규한 화합물 반도체 및 그 활용
US8679374B2 (en) Compound semiconductors and their application
KR101366711B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101463195B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366710B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366712B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101366709B1 (ko) 신규한 화합물 반도체 및 그 활용
KR101380944B1 (ko) 신규한 화합물 반도체 및 그 활용
EP3447812A1 (en) Novel compound semiconductor and use thereof
KR101614063B1 (ko) 신규한 화합물 반도체 및 그 활용

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant