CN108640683B - 一种纳米复合热电材料的制备方法 - Google Patents

一种纳米复合热电材料的制备方法 Download PDF

Info

Publication number
CN108640683B
CN108640683B CN201810299879.2A CN201810299879A CN108640683B CN 108640683 B CN108640683 B CN 108640683B CN 201810299879 A CN201810299879 A CN 201810299879A CN 108640683 B CN108640683 B CN 108640683B
Authority
CN
China
Prior art keywords
preparation
nano composite
thermoelectric materials
ball
composite thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810299879.2A
Other languages
English (en)
Other versions
CN108640683A (zh
Inventor
史国民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANGZHOU SPARKLE INDUSTRIAL Co.,Ltd.
Original Assignee
Yueqing Fengjie Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yueqing Fengjie Electronic Technology Co Ltd filed Critical Yueqing Fengjie Electronic Technology Co Ltd
Priority to CN201810299879.2A priority Critical patent/CN108640683B/zh
Priority to CN201910253459.5A priority patent/CN109776093B/zh
Publication of CN108640683A publication Critical patent/CN108640683A/zh
Application granted granted Critical
Publication of CN108640683B publication Critical patent/CN108640683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种纳米复合热电材料的制备方法,包含以下步骤:(1)采用感应熔炼设备将Cu、Se、La块体原料熔炼成铸锭,(2)然后按化学式配比称取的S粉末与破碎的铸锭一并装入球磨罐中,采用机械球磨设备在氮气气氛下进行一次球磨,(3)然后将装载一次球磨粉的石墨模具置于放电等离子烧结腔体中,在真空气氛下烧结成块体,(4)再将烧结成的块体破碎后,在氮气气氛下进行二次球磨,(5)然后在真空气氛下烧结。本发明制备的通过纳米复合非晶/晶态Mg2Si基热电材料,材料的热电性能,力学性能得到了大大提高。在本发明的配方下,各种组分相互配合,协同作用,从而大幅提高了本发明的产品的强度和热电性能。

Description

一种纳米复合热电材料的制备方法
技术领域
本发明涉及一种纳米复合热电材料的制备方法。
背景技术
热电材料能够实现热能与电能之间的相互转化,且转化过程无需机械运动部件、无噪音、无磨损,其机构简单,对环境无污染,被认为是解决能源危机的主要途径之一。热电材料按其工作的温度区间可分为低温区热电材料、中温区热电材料和高温区热电材料。由于材料在高温时容易发生氧化和熔化等问题,因此高温区热电材料相对紧缺。热电材料性能用“热电优值”ZT表示:ZT=(α2σ/κ)×T。这里α是材料的塞贝克系数,σ是电导率,κ是热导率。ZT越高,材料的热电转换效率越高。
化合物半导体为包含至少两种类型的元素而不是一种类型的元素(例如硅或锗)并且用作半导体的化合物。已经开发出了各种类型的化合物半导体并且这些化合物半导体目前正用于各种工业领域。通常,化合物半导体可以用于利用佩尔捷效应(PeltierEffect)的热电转换元件、利用光电转换效应的发光装置(例如发光二极管或激光二极管)和燃料电池等。特别地,热电转换元件用于热电转换发电或热电转换冷却应用,并且通常包括以串联的方式电连接并且以并联的方式热连接的N型热电半导体和P型热电半导体。热电转换发电是通过利用借助于在热电转换元件中产生温差而产生的热电动势使热能转换成电能而发电的方法。此外,热电转换冷却是通过利用当直流电流流过热电转换元件的两端时在热电转换元件两端之间产生温差的效应使电能转换成热能而产生冷却的方法。热电转换元件的能量转换效率一般取决于热电转换材料的性能指标值或ZT。在此,ZT可以根据塞贝克系数(Seebeckcoefficient)、电导率和热导率来确定,并且随着ZT值增大,热电转换材料的性能更好。
现在已经提出并开发了许多可用于热电转换元件的热电材料,并且其中,提出了将CuxSe(x≤2)作为Cu-Se基热电材料并且正在开发。这是因为CuxSe(x≤2)已为人所知。但是目前CuSe基的材料存在强度更低,低于或等于600℃的温度下ZT值非常低的问题。
发明内容
针对上述技术问题,本发明提供了一种复合热电材料的制备方法,制备得到的复合热电材料在较低温度下具有较高的ZT值并且强度得到了提高。
一种纳米复合热电材料的制备方法,所述复合材料中在组成方面满足下式Cu2-xSeSxLayNz,所述制备方法包含以下步骤:(1)采用感应熔炼设备将Cu、Se、La块体原料熔炼成铸锭,(2)然后按化学式配比称取的S粉末与破碎的铸锭一并装入球磨罐中,采用机械球磨设备在氮气气氛下进行一次球磨,(3)然后将装载一次球磨粉的石墨模具置于放电等离子烧结腔体中,在真空气氛下烧结成块体,(4)再将烧结成的块体破碎后,在氮气气氛下进行二次球磨,(5)然后在真空气氛下烧结,其中0.06≤x≤0.12,0.04≤y≤0.1,Z≤0.01。
进一步地,其中步骤2和4中的球磨过程的氮气气氛可以为纯氮气或氮气与氩气的混合气。
进一步地,其中,步骤1中的感应熔炼设备的熔炼炉功率在16-22kW,熔炼时间为100-120s。
进一步地,其中,步骤2和4中的球磨的条件为球料质量比为15:1,转速为800r/min,球磨时间为0.5-2h。
进一步地,其中,步骤3中放电等离子烧结的条件为在总气压低于5Pa的真空条件,升温速率为60-100℃/min,施加的轴向压力为30-100MPa,烧结温度为600-700℃,保温5-15min。
进一步地,其中,骤5中放电等离子烧结的条件为在总气压低于5Pa的真空条件,以10-30℃/min的升温速率升温至800-900℃,保温5-15min,随炉冷却至室温,得到固溶体。
进一步地,其中,步骤5中放电等离子烧结炉腔体的烧结条件为:施加30-2GPa的轴向压力,在总气压低于5Pa的真空条件下烧结,以100-150℃/min的升温速率升温至600-700℃,保温5-15min,随后以10-30℃/min的升温速率升温至800-900℃,保温5-15min,随炉冷却至室温,得到固溶体。
进一步地,其中,x为0.09。
进一步地,其中,y为0.06。
进一步地,其中,z≥0.001。
本发明制备纳米复合热电材料的方法,Cu和Se并且在预定温度下具有多种晶体结构的热电材料。Cu2Se基化合物存在α相和β相,其电子传输性能随着相变出现异常峰值。通常其中Cu原子数分为过量或缺失两种情况,以及通过S原子替换Se原子,来增强热点优值,但是其含量有严格限制。S元素含量越大,会进一步降低电导率,从而影响产品性能,因此通过在掺杂S原子的情况下,Cu原子数会过量,从而实现产品的性能最优化。
本发明中在Cu缺失、S掺杂的同时,掺入一定比例量的La原子,利用较大的La原子替换部分Cu原子,从而令人惊讶的实现了更好的热电性能。同时由于La元素的掺入,也一定程度的提高的产品的延展性和耐断裂性能。
本发明中还通过在氮气氛围下进行高能研磨,从而使微量N原子掺入到复合材料中,实现N原子微量掺杂,改善了合金粉末的表面能,从而使烧结得到的产品更加致密。
本发明主要采用二次机械球磨结合放电等离子烧结技术制备热电材料,通过二次机械球磨不仅实现了S粉末颗粒在基体中的均匀地弥散分布,而且能够进一步降低晶粒的尺寸,达到细化晶粒的效果。同时以缓慢速度升温,并且以高于一次烧结温度的温度进行二次烧结后,能够有效地抑制晶粒的长大,增强声子散射降低晶格热导率,从而有益于热电性能的提高,并且有效提高致密密度。
与现有技术相比较,本发明具有以下有益效果:
对比实施例1-3与对比例1,发现控制Cu、La、N、S元素在合适的含量范围内,有助于提高产品的各项性能,过量或不足都将导致产品的强度或Z值降低。综上,在本发明的配方下,各种组分相互配合,协同作用,从而大幅提高了本发明的产品的技术性能。
具体实施方式
实施例1
高强度高性能复合热电材料的制备方法,所述复合材料中在组成方面满足下式Cu1.91SeS0.09La0.06N0.05,所述制备方法包含以下步骤:(1)采用感应熔炼设备将Cu、Se、La块体原料熔炼成铸锭,熔炼炉功率在16-22kW,熔炼时间为120s,(2)然后按化学式配比称取的S粉末与破碎的铸锭一并装入球磨罐中,采用机械球磨设备在氮气与氩气1:2的气氛下进行一次球磨,球料质量比为15:1,转速为800r/min,球磨时间为1h(3)然后将装载一次球磨粉的石墨模具置于放电等离子烧结腔体中,在真空气氛下烧结成块体,在总气压低于5Pa的真空条件,升温速率为100℃/min,施加的轴向压力为30MPa,烧结温度为700℃,保温5min(4)再将烧结成的块体破碎后,在氮气与氩气1:2的气氛下进行二次球磨,球料质量比为15:1,转速为800r/min,球磨时间为2h(5)然后在真空气氛下烧结,施加30-2GPa的轴向压力,在总气压低于5Pa的真空条件下烧结,以100℃/min的升温速率升温至700℃,保温5min,随后以30℃/min的升温速率升温至900℃,保温15min,随炉冷却至室温,得到固溶体。
实施例2
高强度高性能复合热电材料的制备方法,所述复合材料中在组成方面满足下式Cu1.93SeS0.07La0.04N0.01,所述制备方法包含以下步骤:(1)采用感应熔炼设备将Cu、Se、La块体原料熔炼成铸锭,熔炼炉功率在16-22kW,熔炼时间为100s,(2)然后按化学式配比称取的S粉末与破碎的铸锭一并装入球磨罐中,采用机械球磨设备在氮气与氩气1:2的气氛下进行一次球磨,球料质量比为15:1,转速为800r/min,球磨时间为0.5h(3)然后将装载一次球磨粉的石墨模具置于放电等离子烧结腔体中,在真空气氛下烧结成块体,在总气压低于5Pa的真空条件,升温速率为60℃/min,施加的轴向压力为100MPa,烧结温度为600℃,保温15min(4)再将烧结成的块体破碎后,在氮气与氩气1:2的气氛下进行二次球磨,球料质量比为15:1,转速为800r/min,球磨时间为0.5h(5)然后在真空气氛下烧结,施加30-2GPa的轴向压力,在总气压低于5Pa的真空条件下烧结,以100-150℃/min的升温速率升温至600℃,保温5-15min,随后以10℃/min的升温速率升温至800-900℃,保温5min,随炉冷却至室温,得到固溶体。
实施例3
高强度高性能复合热电材料的制备方法,所述复合材料中在组成方面满足下式Cu1.88SeS0.12La0.1N0.001,所述制备方法包含以下步骤:(1)采用感应熔炼设备将Cu、Se、La块体原料熔炼成铸锭,熔炼炉功率在16-22kW,熔炼时间为120s,(2)然后按化学式配比称取的S粉末与破碎的铸锭一并装入球磨罐中,采用机械球磨设备在氮气气氛下进行一次球磨,球料质量比为15:1,转速为800r/min,球磨时间为0.5h(3)然后将装载一次球磨粉的石墨模具置于放电等离子烧结腔体中,在真空气氛下烧结成块体,在总气压低于5Pa的真空条件,升温速率为100℃/min,施加的轴向压力为30MPa,烧结温度为600℃,保温15min(4)再将烧结成的块体破碎后,在氮气气氛下进行二次球磨,球料质量比为15:1,转速为800r/min,球磨时间为0.5h(5)然后在真空气氛下烧结,施加30-2GPa的轴向压力,在总气压低于5Pa的真空条件下烧结,以30℃/min的升温速率升温至800℃,保温15min,随炉冷却至室温,得到固溶体。
对比例1
与实施例1的制备方法相同,除了x为0.2,y为0.02。
对比例2
与实施例1的制备方法相同,除了x为0.02,y为0.2。
对比例3
与实施例1的制备方法相同,除了y为0。
对比例4
与实施例1的制备方法相同,除了z为0(即研磨在氩气氛围下进行)。
对比例5
与实施例1的制备方法相同,除了步骤5中烧结条件与步骤3相同。
元素含量表征通过XPS进行测量。
性能检测:材料的热导率根据采用TC-1200RH型激光脉冲热分析仪测量的热扩散系数、比热及材料的密度计算得到。材料的塞贝克系数和电导率采用ZEM-2电性能测试仪2测得。材料的热电优值根据上述测量结果按公式Z=α2σ/κ得到。
使用实施例与对比例样品压制得到的0.1mm厚的板,切出3mm×4mm×40mm的试验片,通过四点弯曲试验按照JISR1601测定各10点的断裂强度。(试验方法按照JISR1601进行)。
对比实施例与对比例,发现控制Cu、La、N、S元素在合适的含量范围内,有助于提高产品的各项性能,过量或不足都将导致产品的强度或Z值降低。综上,在本发明的配方下,各种组分相互配合,协同作用,从而大幅提高了本发明的产品的技术性能。

Claims (10)

1.一种纳米复合热电材料的制备方法,其特征在于,包含以下步骤:(1)采用感应熔炼设备将Cu、Se、La块体原料熔炼成铸锭,(2)然后按化学式配比称取的S粉末与破碎的铸锭一并装入球磨罐中,采用机械球磨设备在氮气气氛下进行一次球磨,(3)然后将装载一次球磨粉的石墨模具置于放电等离子烧结腔体中,在真空气氛下烧结成块体,(4)再将烧结成的块体破碎后,在氮气气氛下进行二次球磨,(5)然后在真空气氛下烧结,所述复合材料中在组成方面满足下式Cu2-xSeSxLayNz,其中0.06≤x≤0.12,0.04≤y≤0.1,Z≤0.01。
2.根据权利要求1所述的纳米复合热电材料的制备方法,其中步骤2和4中的球磨过程的氮气气氛可以为纯氮气或氮气与氩气的混合气。
3.根据权利要求1所述的纳米复合热电材料的制备方法,其中,步骤1中的感应熔炼设备的熔炼炉功率在16-22kW,熔炼时间为100-120s。
4.根据权利要求1所述的纳米复合热电材料的制备方法,其中,步骤2和4中的球磨的条件为球料质量比为15:1,转速为800r/min,球磨时间为0.5-2h。
5.根据权利要求1所述的纳米复合热电材料的制备方法,其中,步骤3中放电等离子烧结的条件为在总气压低于5Pa的真空条件,升温速率为60-100℃/min,施加的轴向压力为30-100MPa,烧结温度为600-700℃,保温5-15min。
6.根据权利要求1所述的纳米复合热电材料的制备方法,其中,步骤5中在总气压低于5Pa的真空条件下烧结,以10-30℃/min的升温速率升温至800-900℃,保温5-15min,随炉冷却至室温,得到固溶体。
7.根据权利要求1所述的纳米复合热电材料的制备方法,其中,步骤5中放电等离子烧结炉腔体的烧结条件为:施加30-2GPa的轴向压力,在总气压低于5Pa的真空条件下烧结,以100-150℃/min的升温速率升温至600-700℃,保温5-15min,随后以10-30℃/min的升温速率升温至800-900℃,保温5-15min,随炉冷却至室温,得到固溶体。
8.根据权利要求1所述的纳米复合热电材料的制备方法,其中,x为0.09。
9.根据权利要求1所述的纳米复合热电材料的制备方法,其中,y为0.06。
10.根据权利要求1所述的纳米复合热电材料的制备方法,其中,z≥0.001。
CN201810299879.2A 2018-04-04 2018-04-04 一种纳米复合热电材料的制备方法 Active CN108640683B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810299879.2A CN108640683B (zh) 2018-04-04 2018-04-04 一种纳米复合热电材料的制备方法
CN201910253459.5A CN109776093B (zh) 2018-04-04 2018-04-04 纳米复合热电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810299879.2A CN108640683B (zh) 2018-04-04 2018-04-04 一种纳米复合热电材料的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910253459.5A Division CN109776093B (zh) 2018-04-04 2018-04-04 纳米复合热电材料的制备方法

Publications (2)

Publication Number Publication Date
CN108640683A CN108640683A (zh) 2018-10-12
CN108640683B true CN108640683B (zh) 2019-07-05

Family

ID=63745675

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810299879.2A Active CN108640683B (zh) 2018-04-04 2018-04-04 一种纳米复合热电材料的制备方法
CN201910253459.5A Active CN109776093B (zh) 2018-04-04 2018-04-04 纳米复合热电材料的制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910253459.5A Active CN109776093B (zh) 2018-04-04 2018-04-04 纳米复合热电材料的制备方法

Country Status (1)

Country Link
CN (2) CN108640683B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013315B (zh) * 2021-02-05 2023-04-18 西安交通大学 N型银硫属化合物热电材料的制备方法及其多孔块体
CN114345524A (zh) * 2022-01-06 2022-04-15 南昌工程学院 一种纳米复合热电材料的改进型制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092463B2 (ja) * 1994-10-11 2000-09-25 ヤマハ株式会社 熱電材料及び熱電変換素子
JP2006167857A (ja) * 2004-12-15 2006-06-29 Ishikawajima Harima Heavy Ind Co Ltd 微細ワイヤ及びその製造方法
JP2007081087A (ja) * 2005-09-14 2007-03-29 Ishikawajima Harima Heavy Ind Co Ltd 微細ワイヤの製造方法及び微細ワイヤ
EP2319082B1 (en) * 2008-08-29 2017-11-15 LG Chem, Ltd. New compound semiconductor and producing method thereof, and solar cell and thermoelectric conversion element using the same
KR101608887B1 (ko) * 2009-04-17 2016-04-05 삼성전자주식회사 인버터와 그 제조방법 및 인버터를 포함하는 논리회로
WO2012071287A1 (en) * 2010-11-22 2012-05-31 E. I. Du Pont De Nemours And Company Inks and processes to make a chalcogen-containing semiconductor
CN102674842A (zh) * 2012-05-14 2012-09-19 北京科技大学 一种Cu-S-Se三元热电材料及制备方法
CN103043629A (zh) * 2012-12-19 2013-04-17 中国科学院合肥物质科学研究院 一种CuGaX2(X=S, Se, Te)系列化合物的低温合成方法
CN103909264B (zh) * 2013-06-07 2016-05-11 武汉理工大学 一种具有纳米孔结构的高性能Cu2Se块体热电材料及其快速制备方法
CN105503187B (zh) * 2015-12-03 2018-02-27 清华大学深圳研究生院 LaCuSeO热电化合物的制备方法
CN106276818B (zh) * 2016-07-21 2019-01-29 苏州大学 双金属硫族三元半导体纳米颗粒及其制备方法

Also Published As

Publication number Publication date
CN108640683A (zh) 2018-10-12
CN109776093B (zh) 2021-07-27
CN109776093A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN101080506B (zh) 热电半导体合金的制造方法、热电转换模块以及热电发电设备
CN108238796B (zh) 铜硒基固溶体热电材料及其制备方法
CN103872237B (zh) 铜硫基高性能热电材料及其制备方法
CN106986315B (zh) 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN104263980A (zh) 一种快速制备高性能ZrNiSn块体热电材料的方法
CN1962416A (zh) 一种碲化铋基热电材料的制备工艺
CN104032194B (zh) 共掺杂Mg‑Si‑Sn 基热电材料及其制备方法
CN108640683B (zh) 一种纳米复合热电材料的制备方法
KR20100053359A (ko) p형 Bi-Sb-Te계 열전재료의 제조방법
CN103864026A (zh) Cu-In-Zn-Te四元p-型热电半导体及其制备工艺
CN108198934B (zh) 一种复合热电材料及其制备方法
CN101532097B (zh) 一种银锑碲和碲化银基原位复合热电材料的制备方法
CN109087987A (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
CN106191522B (zh) 一种激光高效制备方钴矿热电材料的方法
CN104843654A (zh) P-型Ga-Cd-S-Te四元化合物中温热电合金及其制备工艺
CN104627968A (zh) 一种p-型Mn-Zn-Te中高温热电化合物及其制备工艺
CN105990510A (zh) 一种铜硒基高性能热电材料及其制备方法
CN101307393B (zh) 液体急冷结合放电等离子烧结制备硅锗基热电材料的方法
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
EP2924747A1 (en) Thermoelectric material
TWI417248B (zh) 熱電材料與其製造方法、以及包含其熱電模組
KR101555687B1 (ko) 열전 재료 제조방법 및 그에 따라 제조된 열전 재료
Takagiwa et al. Improvement in Thermoelectric Performance of Cu-Doped β-Rhombohedral Boron
JP2003243733A (ja) p型熱電変換材料の製造方法
KR20110092762A (ko) 기계적 합금화에 의한 Mg2Si 열전재료 제조방법 및 이에 의해 제조된 Mg2Si 열전재료

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190419

Address after: 325600 No. 29 Daxing West Road, Liushi Town, Yueqing City, Zhejiang Province

Applicant after: YUEQING FENGJIE ELECTRONIC TECHNOLOGY CO., LTD.

Address before: 213000 Lanxiang Xincun, Xinbei District, Changzhou City, Jiangsu Province, 28-305

Applicant before: Shi Guomin

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220105

Address after: 225200 Zhanggang Industrial Park, Jiangdu Economic Development Zone, Yangzhou City, Jiangsu Province

Patentee after: YANGZHOU SPARKLE INDUSTRIAL Co.,Ltd.

Address before: 325600 No. 29 Daxing West Road, Liushi Town, Yueqing City, Zhejiang Province

Patentee before: YUEQING FENGJIE ELECTRONIC TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right