WO2010018873A1 - Li含有α-サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置 - Google Patents
Li含有α-サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置 Download PDFInfo
- Publication number
- WO2010018873A1 WO2010018873A1 PCT/JP2009/064373 JP2009064373W WO2010018873A1 WO 2010018873 A1 WO2010018873 A1 WO 2010018873A1 JP 2009064373 W JP2009064373 W JP 2009064373W WO 2010018873 A1 WO2010018873 A1 WO 2010018873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sialon
- phosphor
- oxide
- powder
- silicon nitride
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 26
- 239000000126 substance Substances 0.000 title abstract description 24
- 238000005286 illumination Methods 0.000 title description 4
- 239000002245 particle Substances 0.000 claims abstract description 118
- 239000011164 primary particle Substances 0.000 claims abstract description 55
- 238000010191 image analysis Methods 0.000 claims abstract description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 230
- 239000000843 powder Substances 0.000 claims description 160
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 96
- 239000000203 mixture Substances 0.000 claims description 71
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 48
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 40
- -1 nitrogen-containing silane compound Chemical class 0.000 claims description 39
- 229910000077 silane Inorganic materials 0.000 claims description 34
- 239000002243 precursor Substances 0.000 claims description 33
- 238000009826 distribution Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 31
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 31
- 239000012298 atmosphere Substances 0.000 claims description 26
- 229910052744 lithium Inorganic materials 0.000 claims description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- 239000011261 inert gas Substances 0.000 claims description 20
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 150000004767 nitrides Chemical class 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 238000001878 scanning electron micrograph Methods 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 58
- 239000012071 phase Substances 0.000 description 47
- 229910021419 crystalline silicon Inorganic materials 0.000 description 30
- 239000011521 glass Substances 0.000 description 28
- 239000013078 crystal Substances 0.000 description 26
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 25
- 229910001947 lithium oxide Inorganic materials 0.000 description 25
- 238000010304 firing Methods 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000011163 secondary particle Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 239000002253 acid Substances 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 230000004907 flux Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 229910052693 Europium Inorganic materials 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 10
- 230000002776 aggregation Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 4
- 229910000071 diazene Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910006360 Si—O—N Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910001940 europium oxide Inorganic materials 0.000 description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- JHGCXUUFRJCMON-UHFFFAOYSA-J silicon(4+);tetraiodide Chemical compound [Si+4].[I-].[I-].[I-].[I-] JHGCXUUFRJCMON-UHFFFAOYSA-J 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the present invention relates to an optical functional material having a function of converting a part of irradiated light into light having a different wavelength, and a method for manufacturing the same.
- the present invention relates to a sialon-based phosphor activated with a rare earth metal element suitable for an ultraviolet to blue light source.
- the present invention also relates to a method for producing the sialon phosphor, a light emitting device and an image display device using the same.
- LEDs blue light emitting diodes
- white LEDs using these blue LEDs have been vigorously developed.
- White LEDs have lower power consumption and longer life than existing white light sources, and are therefore being used for backlights for liquid crystal panels, indoor and outdoor lighting devices, and the like.
- the white LED that has been developed is one in which YAG (yttrium, aluminum, garnet) doped with Ce is applied to the surface of a blue LED.
- YAG yttrium, aluminum, garnet
- the fluorescence wavelength of YAG doped with Ce is in the vicinity of 530 nm. If this fluorescent color and the light of a blue LED are mixed to form white light, white light with strong bluish light is obtained, and good white color cannot be obtained.
- the peak wavelength of is around 595 nm.
- This fluorescent wavelength is suitable for a white LED having a low color temperature such as a light bulb color.
- white LEDs having higher color temperatures such as daylight white and daylight with higher color temperatures cannot be produced.
- ⁇ Daylight white and daylight colors are widely used not only for lighting, but also for backlights of liquid crystal display devices, and societal needs are greater than light bulb colors. Therefore, it is desired to shorten the wavelength of the fluorescence of the sialon phosphor.
- the fluorescence intensity decreases when the fluorescence wavelength is shorter than 595 nm. Therefore, it has been difficult to produce a sialon-based phosphor that emits short-wavelength fluorescence suitable for producing a high-brightness daylight white or daylight color LED in combination with a blue LED.
- Patent Document 2 discloses a Li (lithium) -containing ⁇ -sialon-based phosphor.
- This sialon can emit fluorescence having a shorter wavelength than the Ca-containing ⁇ -sialon phosphor.
- the Li-containing ⁇ -sialon-based phosphor is obtained in a pressurized atmosphere of 1 MPa of nitrogen, and the cost is low in that the manufacturing process is complicated and a manufacturing apparatus that can withstand high-temperature and high-pressure nitrogen gas is used. It is produced by such a method.
- x1 representing the Li content is an abnormally large value of 1.2 ⁇ x1 ⁇ 2.4, and a Li-containing ⁇ -sialon phosphor having a desired composition is reproducible. Difficult to make well.
- Patent Document 3 As a report of Li-containing ⁇ -sialon-based phosphor, there is Patent Document 3 in addition to Patent Document 2, but the emission wavelength of the disclosed Li-containing ⁇ -sialon-based phosphor is 585 nm, and The composition of the Li-containing ⁇ -sialon phosphor is different. With such an emission wavelength, a daylight white or daylight color LED cannot be obtained even when combined with a blue light emitting diode.
- a Li-containing ⁇ -sialon-based phosphor is produced using crystalline silicon nitride.
- crystalline silicon nitride when crystalline silicon nitride is used, secondary particles in which small primary particles are strongly aggregated (fused) are formed.
- FIGS. The same can be said for the Li-containing ⁇ -sialon phosphor.
- the particle form and aggregation state of the phosphor powder affect the light scattering and absorption, and therefore the fluorescence intensity. Furthermore, it affects the physical properties of the slurry when the phosphor is applied. The physical properties of the slurry are important factors in the product manufacturing process.
- a phosphor is not suitable for strong pulverization because its characteristics are greatly deteriorated when a small amount of a light absorbing component is added.
- the particle size is several tens of microns or more, when producing a product such as a white LED, it may cause color unevenness and the like, making it impossible to produce a product with stable quality.
- a high-quality phosphor that is, a phosphor having high fluorescence intensity
- highly crystalline particles are required. From these points, it is preferable that the primary particles are large crystals. The reason is that when the crystal size is reduced, the fluorescence intensity is lowered due to the influence of surface defects.
- a phosphor having good characteristics is preferably a powder in which primary particles having no aggregation are distributed in a range of 1 ⁇ m to 20 ⁇ m and particles having a larger size in this particle size range.
- Patent Documents 5 and 6 the size of primary particles of Ca-containing ⁇ -sialon phosphors is already known. However, in Patent Documents 5 and 6, the primary particles of Li-containing ⁇ -sialon phosphors are still sufficiently examined. Has not been made. Despite the disclosure of Patent Documents 5 and 6, with regard to the growth of primary particles of Li-containing ⁇ -sialon, Li is an element that easily evaporates, and a substance related to Li is a compound having a relatively low melting point. Because it is easy to make, it cannot be considered the same as Ca-containing ⁇ -sialon.
- a technique using a flux is widely used as a technique for adjusting the form of primary particles. Even in Li-containing ⁇ -sialon, it is conceivable to use a flux in order to enlarge the primary particles.
- a flux Li, Na, K, Mg, Ca, Sr, Ba, Al, Eu fluorides, chlorides, iodides, bromides, phosphates, particularly lithium fluoride, fluoride
- calcium and aluminum fluoride are pointed out, the effect is not specifically shown, but only a general technique is shown.
- JP 2002-363554 A WO2007 / 004493 A1 JP 2004-67837 A JP 2006-152069 A JP 2006-52337 A JP 2006-321921 A
- the present invention has been made to solve the above-described problems of sialon-based phosphors.
- a white light emitting diode of daylight or daylight color is produced in combination with a blue LED with high fluorescence intensity.
- An object of the present invention is to provide a phosphor that emits a fluorescent color that can be used.
- the present invention also provides a Li-containing ⁇ -sialon phosphor powder having high fluorescence intensity and excellent properties as a phosphor powder by controlling the primary particles of Li-containing ⁇ -sialon.
- a Li-containing ⁇ -sialon phosphor powder having high fluorescence intensity and excellent properties as a phosphor powder by controlling the primary particles of Li-containing ⁇ -sialon.
- Such Li-containing ⁇ -sialon can be combined with an ultraviolet to blue LED to produce a highly efficient daylight white or daylight white light emitting diode.
- the present invention also provides an illumination device such as a white LED that emits a daylight white or daylight color using an ultraviolet or blue LED as a light source by providing a Li-containing ⁇ -sialon-based phosphor with high fluorescence intensity. Objective.
- an object of the present invention is to provide a novel method for producing a sialon-based phosphor capable of emitting the fluorescent color as described above with high intensity and with high yield.
- the present inventors have conducted detailed research on an ⁇ -sialon-based phosphor containing Li and Eu (europium), and can be produced in an atmosphere of atmospheric nitrogen gas and have a specific composition and Li-containing ⁇ -sialon.
- the present inventors have found that it is possible to shorten the wavelength of the fluorescent light and the excellent fluorescent intensity in the phosphors.
- the present inventors use a nitrogen-containing silane compound and / or amorphous silicon nitride powder as a starting material, the primary particle size is large, the primary particles are less aggregated, and the cohesive force is weak. It has been found that a Li-containing ⁇ -sialon phosphor can be obtained. Moreover, it has higher fluorescence intensity than that produced using crystalline silicon nitride.
- the present inventors further found out that it is possible to obtain Li-containing ⁇ -sialon having a large primary particle size in an ⁇ -sialon-based phosphor containing Li and Eu. Furthermore, with this method, it was found that a Li-containing ⁇ -sialon-based phosphor powder that emits fluorescence of a shorter wavelength can be obtained, and that the fluorescence intensity is higher than that produced by a normal method. .
- the present invention provides the following.
- the present invention relates to a Li-containing ⁇ -sialon-based phosphor.
- the Li is characterized in that the ⁇ is 0.05 to 1.2, and the ratio x / m of the x and m is in the range of 0.4 to 0.9.
- the present invention relates to a contained ⁇ -sialon phosphor.
- a preferred embodiment of the present invention is the Li-containing, wherein the x is 0.82 ⁇ x ⁇ 1.2, and the x / m is in the range of 0.5 to 0.9. It is an ⁇ -sialon phosphor.
- the x is 0.91 ⁇ x ⁇ 1.2, and the x / m is in the range of 0.6 to 0.9. preferable.
- the present invention relates to the Li-containing ⁇ -sialon-based phosphor, which emits fluorescence having a peak wavelength of 560 nm to 580 nm when incident excitation light is incident.
- the present invention also relates to a luminaire comprising a light emitting source and a phosphor containing the Li-containing ⁇ -sialon phosphor.
- the light emitting source is preferably an LED that emits light having a wavelength of 330 to 500 nm.
- one embodiment of the lighting fixture of the present invention is characterized in that the phosphor further contains a phosphor emitting a red color of 600 nm to 650 nm.
- the present invention also relates to an image display device comprising an excitation source and a phosphor containing the Li-containing ⁇ -sialon phosphor.
- the excitation source is an electron beam, an electric field, vacuum ultraviolet, or ultraviolet.
- the present invention provides a silicon nitride powder and / or a nitrogen-containing silane compound, an aluminum source-containing material, a nitride of Li, an oxynitride, an oxide, or a precursor that becomes an oxide by thermal decomposition.
- the Li-containing ⁇ -sialon-based phosphor is characterized by being weighed and mixed so as to have an excessive lithium composition, and fired at 1400 to 1800 ° C. in an inert gas atmosphere containing nitrogen.
- It relates to a manufacturing method.
- the method for producing a Li-containing ⁇ -sialon-based phosphor of the present invention it is preferable that the Li-containing ⁇ -sialon-based phosphor after firing is subjected to acid cleaning.
- the present invention also relates to a method for producing the Li-containing ⁇ -sialon-based phosphor, wherein amorphous silicon nitride powder is used as the silicon nitride powder.
- the present invention is an Li-containing ⁇ -sialon-based phosphor represented by the general formula (1), which is an average primary particle diameter measured by image analysis of a scanning electron micrograph.
- the present invention relates to a Li-containing ⁇ -sialon-based phosphor powder having an aspect ratio of 2 or less and an average particle diameter D particle of 1 ⁇ m or more and 3.0 ⁇ m or less.
- the present invention in this aspect, in the particles measured by image analysis of a scanning electron micrograph, primary particles of 0.8 ⁇ m or more are present in an area ratio of 70% or more.
- the present invention relates to a contained ⁇ -sialon phosphor powder.
- the frequency distribution curve in the particle size distribution curve measured with a laser diffraction / scattering particle size distribution measuring device is a single peak, and the median diameter is 4 to 15 ⁇ m.
- the present invention relates to ⁇ -sialon phosphor powder.
- the present invention relates to the Li-containing ⁇ -sialon-based phosphor powder, wherein the 10% diameter in the particle size distribution curve is 1.5 ⁇ m or more and the 90% diameter is 15 ⁇ m or less.
- the present invention relates to the Li-containing ⁇ -sialon-based phosphor powder, wherein excitation light is incident to emit fluorescence having a peak wavelength of 560 nm to 580 nm.
- this invention relates to the lighting fixture comprised in this aspect from the light emission source and the fluorescent substance containing the said Li containing alpha-sialon type fluorescent substance powder.
- the light emitting source is preferably an LED that emits light having a wavelength of 330 to 500 nm.
- a phosphor emitting red light of 600 nm to 650 nm may be contained.
- the present invention relates to a method for producing an ⁇ -sialon phosphor powder.
- the present invention is an Li-containing ⁇ -sialon-based phosphor represented by the general formula (1), which is an aspect of primary particles measured by image analysis of a scanning electron micrograph.
- a Li-containing ⁇ -sialon-based phosphor particle having a ratio of 3 or less and a minor axis length of greater than 3 ⁇ m.
- this aspect of the present invention includes a theoretical amount of amorphous silicon nitride powder and / or a nitrogen-containing silane compound and an aluminum source material containing AlN, and a nitride of Li having the composition of the general formula (1).
- Oxynitride, oxide, or precursor material that becomes oxide by thermal decomposition Eu nitride, oxynitride, oxide, or precursor material that becomes oxide by thermal decomposition
- Excess Li oxide not included in the amount, or a precursor material that becomes oxide by thermal decomposition is mixed and fired at 1500 to 1800 ° C. in an inert gas atmosphere containing atmospheric nitrogen. And a method for producing the above Li-containing ⁇ -sialon-based phosphor powder.
- the amount of excess Li oxide not included in the theoretical amount, or the precursor metal lithium that becomes an oxide by thermal decomposition, is the theoretical amount of product Li.
- the amount is 0.1 to 1.25 mol with respect to 1 mol of the contained ⁇ -sialon phosphor.
- This aspect of the present invention relates to a luminaire comprising a light emitting source and a phosphor containing the Li-containing ⁇ -sialon phosphor represented by the general formula (1).
- the light emitting source is an LED that emits light having a wavelength of 330 to 500 nm.
- the Li-containing ⁇ -sialon-based phosphor of the present invention shows high fluorescence intensity that has not been obtained conventionally by adjusting the Li content of the product and having a specific composition, and using an ultraviolet or blue LED as a light source,
- An illumination device such as a white LED that emits a daylight white color or a daylight color can be provided.
- Li-containing ⁇ -sialon-based phosphor particles having a specific particle form are obtained by using amorphous silicon nitride and / or a nitrogen-containing silane compound as a raw material, and the product contains Li.
- the amount to obtain Li-containing ⁇ -sialon-based phosphor particles having a specific composition it is possible to obtain a phosphor exhibiting high fluorescence intensity that has not been obtained conventionally.
- an unconventional Li-containing ⁇ -sialon phosphor having a large primary particle size can be obtained.
- the Li-containing ⁇ -sialon phosphor of the present invention has high fluorescence intensity and excellent characteristics as a phosphor powder.
- a high-luminance illumination device such as a white LED that emits a daylight white color or a daylight color using an ultraviolet or blue LED as a light source.
- FIG. 1A and 1B are SEM photographs showing the state of an embodiment of the powder after acid treatment of Example 2 and Example 6.
- FIG. 1A is a SEM of Li-containing ⁇ -sialon phosphor powder prepared using amorphous silicon nitride as a raw material
- FIG. 1B is an SEM of Li-containing ⁇ -sialon phosphor powder prepared using crystalline silicon nitride as a raw material. It is a photograph.
- 2A and 2B are SEM photographs showing one embodiment of the phosphor powder after pulverization of Example 2 and Example 6.
- FIG. 2A is an SEM photograph of Li-containing ⁇ -sialon phosphor powder produced using amorphous silicon nitride as a raw material
- FIG. 2B is a Li-containing ⁇ -sialon phosphor produced using crystalline silicon nitride as a raw material. It is a SEM photograph of powder.
- 3A and 3B are enlarged photographs of FIGS. 2A and 2B.
- 4A is a particle size distribution (frequency distribution curve) of the Li- ⁇ -sialon phosphor powder of the present invention obtained in Example 2
- FIG. 4B is Example 6 using crystalline silicon nitride as a raw material. It is a particle size distribution figure of the obtained fluorescent substance powder.
- 5 is an SEM photograph of the powder obtained in Example 11.
- FIG. 11 is an SEM photograph of the powder obtained in Example 11.
- the Li-containing ⁇ -sialon phosphor of the present invention is characterized by the Li content. That is, the present inventors found that the Li-containing ⁇ -sialon-based phosphor fired in a normal pressure inert gas atmosphere containing nitrogen has a large Li content in the charged composition and the composition of the obtained composite. I found out that there was a difference. Li is an element that easily evaporates, and evaporation occurs during firing. As a result, the Li content of the Li-containing ⁇ -sialon-based phosphor obtained after the acid cleaning decreases.
- the evaporation of Li is particularly noticeable in firing under normal pressure or reduced pressure, and by examining in detail the correlation between the charged composition and the composition of the resulting composite, in the composition formula of the Li-containing ⁇ -sialon,
- ⁇ is 0.05 to 1.2 and the ratio x / m between x and m is in the range of 0.4 to 0.9
- the X-ray diffraction pattern shows almost single-phase Li It has been found that a phosphor identified as the containing ⁇ -sialon phosphor can be obtained. This is the first time that the present invention has shown that excellent fluorescence intensity and shorter fluorescence wavelength can be achieved in the Li composition region of the Li-containing ⁇ -sialon phosphor of the present invention.
- a Li-containing ⁇ -sialon-based phosphor is synthesized by baking at 1400 to 2000 ° C. in an inert gas atmosphere at a pressure of 0.08 to 0.9 MPa and then washing with an acid.
- a firing atmosphere it is preferable to carry out at normal pressure under nitrogen atmosphere.
- the production cost of the Li-containing ⁇ -sialon phosphor can be reduced by performing synthesis in an inert gas atmosphere containing nitrogen at normal pressure.
- the present inventors synthesized Li-containing ⁇ -sialon-based phosphors having various compositions in a nitrogen atmosphere at normal pressure, and have compositional characteristics on the fluorescence characteristics of the Li-containing ⁇ -sialon-based phosphors obtained after acid cleaning. I found. As a result, it became possible for the first time to synthesize a Li-containing ⁇ -sialon-based phosphor capable of achieving both excellent fluorescence intensity and shorter fluorescence wavelength by firing in a nitrogen atmosphere at normal pressure.
- a is the average valence of Eu, but the valence of Eu varies depending on the temperature and the oxygen partial pressure in the atmosphere. Since trivalent is stable at room temperature, only Eu 2 O 3 is known as an Eu oxide. However, since the divalent becomes more stable when the temperature is higher, Eu is higher at higher temperatures in a nitrogen atmosphere. It is believed that it is reduced to a divalent form and is dissolved as Eu 2+ in the crystal lattice of ⁇ -sialon.
- the content of Al is higher than that of the conventional composition, and the chemical composition is characterized by being represented by the general formula (1).
- the Li-containing ⁇ -sialon-based phosphor obtained by the method of the present invention is obtained from the finding that x + ya and m do not coincide with each other to become a stable sialon. Focusing on matching x + ya and m is not preferable because it leads to cost increase such as synthesis in high-pressure nitrogen gas and the reproducibility is poor.
- x is smaller than 0.45, the fluorescence intensity is lowered, and when 1.2 or more, a heterogeneous phase is generated, and a single-phase ⁇ -sialon phosphor cannot be obtained.
- the composition range that can achieve both shorter wavelength and fluorescence intensity is 0.82 ⁇ x ⁇ 1.2.
- the fluorescence wavelength shifts to a shorter wavelength as the Li content increases, and can be changed in the range of 560 nm to 580 nm at the peak wavelength.
- the Li-containing ⁇ -sialon-based phosphor of the present invention is characterized by ⁇ > 0, and in particular, ⁇ is 0.05 to 1.2, and the ratio of x to m is x / m.
- a fluorescence intensity of 0.5 to 0.9 is more preferable because of high fluorescence intensity. More preferably, ⁇ is 0.05 to 1.0 and the x / m ratio is 0.6 to 0.9.
- Eu is an element that becomes a light-emitting source by dissolving in a Li-containing ⁇ -sialon-based phosphor.
- y is preferably 0.001 ⁇ y ⁇ 0.2.
- a bright phosphor cannot be obtained because the number of light emitting sources with y less than 0.001 is reduced, and a sialon that emits short-wavelength fluorescence cannot be obtained when y is greater than 0.2.
- a more preferable range is 0.01 ⁇ y ⁇ 0.15, and a further preferable range is 0.01 ⁇ y ⁇ 0.1.
- M and n are 0.9 ⁇ m ⁇ 2.5 and 0.5 ⁇ n ⁇ 2.4.
- a is the average valence of Eu.
- the number of Al atoms substituted by Si atoms in excess of the number of substituted Al atoms at the cation site corresponding to the number of metal elements (Li and Eu) is expressed as ⁇ (in the present invention, ⁇ > 0). ). If m is smaller than 0.9, the solid solution amount of the metal elements (Li and Eu) is so small that it is difficult to stabilize the sialon crystal, so that the fluorescence intensity of the phosphor may be lowered. When the m value is larger than 2.5, a crystal phase other than sialon is easily generated. 0.9 ⁇ m ⁇ 2.5 is preferable. n is a value related to the substitutional solid solution amount of oxygen in the Li-containing ⁇ -sialon phosphor.
- n value is smaller than 0.5 or (n + ⁇ ) is smaller than 0.55, the solid solution amount of the metal elements (Li and Eu) is small, and the sialon crystal is difficult to stabilize, so that the fluorescence intensity may decrease. is there.
- n value is larger than 2.4 or (n + ⁇ ) is larger than 3.2, a crystal phase other than sialon is easily generated.
- More preferable ranges are 1.0 ⁇ m ⁇ 2.1, 1.4 ⁇ n ⁇ 2.4, 1.8 ⁇ n + ⁇ ⁇ 3.1, and still more preferable ranges are 1.1 ⁇ m ⁇ 2. 0, 1.55 ⁇ n ⁇ 2.3, 1.9 ⁇ n + ⁇ ⁇ 3.0.
- heterogeneous phase here is a heterogeneous phase identified by a diffraction pattern of X-ray diffraction, and does not include components that do not appear in X-ray diffraction, such as glass.
- the Li-containing ⁇ -sialon-based phosphor powder of the present invention includes a silicon nitride powder, a substance serving as an aluminum source containing AlN, a Li nitride, an oxynitride, an oxide, or a precursor that becomes an oxide by thermal decomposition. And a precursor material that becomes an oxide of Eu nitride, oxynitride, oxide, or thermal decomposition into a composition containing more lithium than the desired Li-containing ⁇ -sialon-based phosphor composition. It can be obtained by weighing and mixing so that the mixture is fired at 1400 to 2000 ° C. in an inert gas atmosphere containing nitrogen at normal pressure. The obtained powder is washed with an acid solution to remove the glass component adhering to the surface, and finally, a phosphor powder substantially composed of a single phase of a Li-containing ⁇ -sialon phosphor is obtained. Obtainable.
- the reason for increasing the amount of the raw material Li compound is to prevent Li from evaporating easily and to prevent the Li in the resulting Li-containing ⁇ -sialon phosphor from becoming too small.
- silicon nitride powder crystalline silicon nitride, nitrogen-containing silane compound and / or amorphous silicon nitride powder may be used.
- nitrogen-containing silane compound silicon diimide (Si (NH) 2 ), silicon nitrogen imide (Si 2 N 2 NH), or the like can be used. Further, these compounds may be used by mixing with silicon nitride powder.
- the nitrogen-containing silane compound and / or amorphous silicon nitride powder as the main raw material may be obtained by a known method, for example, by vaporizing silicon halide such as silicon tetrachloride, silicon tetrabromide, silicon tetraiodide and ammonia in the gas phase.
- a Si—N—H system precursor compound such as silicon diimide produced by reacting in a liquid phase can be obtained by thermal decomposition at 600 to 1200 ° C. in a nitrogen or ammonia gas atmosphere.
- the crystalline silicon nitride powder is obtained by firing the obtained nitrogen-containing silane compound and / or amorphous silicon nitride powder at 1300 ° C. to 1550 ° C.
- Crystalline silicon nitride can also be obtained by nitriding metal silicon directly in a nitrogen atmosphere, but this method requires a pulverization step to obtain a fine powder, so impurities can easily enter. It is preferable to employ a method of decomposing a precursor that easily obtains a pure powder.
- the nitrogen-containing silane compound and / or the amorphous silicon nitride powder and the crystalline silicon nitride powder are those having an oxygen content of 1 to 5% by mass. Those having an oxygen content of 1 to 3% by mass are more preferred.
- the oxygen content is less than 1% by mass, the formation of an ⁇ -sialon phase due to the reaction in the firing process becomes extremely difficult, and the remaining crystal phase of the starting material and the generation of AlN porotype such as 21R are not preferable.
- the oxygen content is 5% by mass or more, the ⁇ -sialon production reaction is promoted, but the production rate of ⁇ -sialon and oxynitride glass increases.
- the nitrogen-containing silane compound and / or the amorphous silicon nitride powder preferably has a specific surface area of 80 to 600 m 2 / g. More preferably, 340 to 500 m 2 / g. In the case of crystalline silicon nitride, it is preferable to use a raw material having a specific surface area of 1 m 2 / g to 15 m 2 / g.
- Examples of the aluminum source include aluminum oxide, metal aluminum, and aluminum nitride. Each of these powders may be used alone or in combination.
- As the aluminum nitride powder a general powder having an oxygen content of 0.1 to 8% by mass and a specific surface area of 1 to 100 m 2 / g can be used.
- precursor substances that become oxides by thermal decomposition of Li and Eu include metal salts such as carbonates, oxalates, citrates, basic carbonates, and hydroxides.
- the amount of metal impurities other than the constituent components of the Li-containing ⁇ -sialon phosphor is 0.01% by mass or less.
- the content of metal impurities is preferably 0.01% by mass or less, preferably Is 0.005% by mass or less, more preferably 0.001% by mass.
- the metal impurity content in the case of the oxide of the metal Li oxide or the precursor material that becomes an oxide by thermal decomposition and the metal Eu oxide or the precursor material that becomes an oxide by thermal decomposition is 0. It is preferable to use one having a mass of 0.01% by mass or less.
- the method for mixing each of the starting materials is not particularly limited.
- a method known per se for example, a dry mixing method, a wet mixing in an inert solvent that does not substantially react with each component of the starting material, and then the solvent is added.
- a removal method or the like can be employed.
- a V-type mixer, a rocking mixer, a ball mill, a vibration mill, a medium stirring mill, or the like is preferably used.
- the nitrogen-containing silane compound and / or amorphous silicon nitride powder is extremely sensitive to moisture and moisture, it is necessary to mix the starting materials in a controlled inert gas atmosphere. .
- the mixture of starting materials is baked at 1400 to 1800 ° C., preferably 1500 to 1700 ° C. in a nitrogen-containing inert gas atmosphere at normal pressure, and the target Li-containing ⁇ -sialon phosphor powder is obtained.
- the inert gas include helium, argon, neon, and krypton. In the present invention, these gases and a small amount of hydrogen gas can be mixed and used.
- the firing temperature is lower than 1400 ° C., it takes a long time to produce the desired Li-containing ⁇ -sialon phosphor powder, which is not practical.
- generation powder also falls.
- the firing temperature exceeds 1800 ° C. an undesirable situation occurs in which silicon nitride and sialon undergo sublimation decomposition and free silicon is generated.
- the heating furnace used for firing the powder mixture there are no particular restrictions on the heating furnace used for firing the powder mixture.
- a batch-type electric furnace, rotary kiln, fluidized firing furnace, pusher-type electric furnace, or the like using a high-frequency induction heating system or a resistance heating system is used. be able to.
- a BN crucible, a silicon nitride crucible, a graphite crucible, or a silicon carbide crucible can be used.
- the inner wall is preferably covered with silicon nitride, boron nitride or the like.
- the Li-containing ⁇ -sialon-based phosphor thus obtained has a glass layer attached to the surface, and in order to obtain a phosphor with higher fluorescence intensity, it is preferable to remove the glass layer.
- cleaning with an acid is easiest.
- the sialon particles are placed in an acid solution selected from sulfuric acid, hydrochloric acid or nitric acid to remove the glass layer on the surface.
- the concentration of the acid solution is 0.1 N to 7 N, preferably 1 N to 3 N. If the concentration is excessively high, the oxidation proceeds remarkably and good fluorescence characteristics cannot be obtained.
- sialon phosphor powder 5 wt% of sialon phosphor powder is added to the acid solution of which the concentration is adjusted, and the solution is kept for a desired time while stirring. After washing, the solution containing the sialon phosphor powder is filtered, washed with water, washed away with acid, and dried.
- the Li-containing ⁇ -sialon phosphor of the present invention is characterized by the size and crystal form of the particles constituting the phosphor, in addition to the compositional features described above.
- the Li-containing ⁇ -sialon-based phosphor powder of this aspect of the present invention is manufactured using the compositional characteristics having the above Li content, and using amorphous silicon nitride powder and / or nitrogen-containing silane compound as raw materials.
- the Li-containing ⁇ -sialon-based phosphor powder of this aspect of the present invention has the following characteristics of particle morphology and aggregation state.
- Have. 1A and 1B are scanning electron microscope (SEM) photographs showing the state of powder after acid treatment of Li-containing ⁇ -sialon-based phosphor particles obtained in Examples 2 and 6 of this aspect of the present invention. is there. A part of the secondary particles in which the primary particles are fused and aggregated are observed.
- FIG. 1A is an SEM photograph of Li-containing ⁇ -sialon phosphor particles using amorphous silicon nitride as a raw material
- FIG. 1B is an SEM photograph of Li-containing ⁇ -sialon phosphor particles using crystalline silicon nitride as a raw material. is there.
- FIG. 1A it can be seen that it consists of particles of 1 to 2 ⁇ m. These are self-shaped primary particles of Li-containing ⁇ -sialon phosphor particles.
- FIG. 1B shows that the particles are 0.5 to 1.3 ⁇ m. As will be described later, these particles are secondary particles in which crystals of several Li-containing ⁇ -sialon-based phosphor particles are aggregated, and crystals exhibiting a self-form are hardly seen.
- FIGS. 2A, 2B, 3A, and 3B SEM photographs of representative examples of the particles that have been pulverized and made available as phosphor powder are shown in FIGS. 2A, 2B, 3A, and 3B.
- FIG. 2B is an SEM photograph of Li-containing ⁇ -sialon-based phosphor powder prepared using amorphous silicon nitride of FIG. 2A as a raw material
- FIG. 2B is a Li-containing ⁇ -sialon-based fluorescence using crystalline silicon nitride as a raw material.
- It is a SEM photograph of body particles.
- 3A and 3B are enlarged photographs of FIGS. 2A and 2B.
- the average particle diameter D particle was 1.0 to 3.0 ⁇ m from the results of image analysis of SEM photographs. In order to produce a material having an average particle size larger than this, a remarkably long firing process is required, which is not practical. In addition, when the average particle size is 0.5 ⁇ m or less, there is no difference from that produced from a crystalline material.
- FIG. 2B is an SEM photograph of Li-containing ⁇ -sialon phosphor particles using crystalline silicon nitride as a raw material.
- the Li-containing ⁇ -sialon-based phosphor powder of this aspect of the present invention is characterized by large primary particles, and there is little fusion / aggregation between the primary particles. However, not all particles do so, and the generation of small particles also occurs.
- the existing area of particles of 0.8 ⁇ m or more was 70% or more with respect to the total area of all particles in the measurement range. It is considered that the larger the area, the better the phosphor, and the smaller the area, the lower the fluorescence intensity.
- FIG. 4A shows the particle size distribution (frequency distribution curve) of the Li-containing ⁇ -sialon phosphor powder of this embodiment of the present invention measured by a laser diffraction / scattering particle size distribution measuring apparatus
- FIG. 4B shows crystalline silicon nitride.
- This frequency distribution curve is obtained by dividing the section of sufficiently large particles (approximately 1000 ⁇ m) and sufficiently small particles (approximately 0.02 ⁇ m) into 80 equal sections on a log scale, and calculating the frequency based on the volume of the particles. is there.
- FIG. 4A shows the particle size distribution (frequency distribution curve) of the Li-containing ⁇ -sialon phosphor powder of this embodiment of the present invention measured by a laser diffraction / scattering particle size distribution measuring apparatus
- FIG. 4B shows crystalline silicon nitride.
- This frequency distribution curve is obtained by dividing the section of sufficiently large particles (approximately 1000 ⁇ m) and sufficiently small particles (approximately 0.
- FIG. 4A shows the particle size distribution of a single peak (hitoyama) having a peak in the vicinity of 5 ⁇ m.
- a particle size distribution is very preferable as a phosphor. Since the Li-containing ⁇ -sialon-based phosphor powder of this aspect of the present invention is weakly fused and aggregated, a powder showing a single peak with a median diameter of 4 to 15 ⁇ m can be obtained by weak grinding.
- the shape of a human mountain peak is important. This is because the median diameter can be changed depending on the degree of pulverization, but the peak shape depends on the size of the primary particles in the secondary particles.
- the particle size distribution becomes a particle size distribution curve showing a peak of 1.5 ⁇ m and two peaks (Futama) of 15 ⁇ m, and amorphous silicon nitride is used as a raw material.
- amorphous silicon nitride is used as a raw material.
- Nucleation and growth of Li-containing ⁇ -sialon phosphor particles are considered to occur in a Li—Al—Si—O—N glass phase generated in the raw material in the process of increasing the temperature.
- Amorphous silicon nitride or nitrogen-containing silane compound is an ultrafine powder having a particle size of about several nm to 10 nm and is extremely bulky. Since this is the main component, the other components can be uniformly dispersed therein, and a fine glass phase is considered to be uniformly formed at a low temperature. It is considered that the component of the Li-containing ⁇ -sialon-based phosphor dissolves in this glass phase, and nucleation and growth proceed in stages.
- Li-containing ⁇ -sialon-based phosphor particles having a large particle diameter and exhibiting a self-shape grow. Coupled with the bulkiness, each particle grows independently, so that fusion and aggregation hardly occur.
- the particle size of crystalline silicon nitride is about 0.2 ⁇ m even if it is fine, and the particle size is very large compared to the above-mentioned amorphous silicon nitride or nitrogen-containing silane compound. For this reason, uniform contact with Li, Al, O, and N forming the glass phase cannot be ensured. For this reason, it is thought that a glass phase produces
- the Li-containing ⁇ -sialon-based phosphor powder of this aspect of the present invention includes an amorphous silicon nitride powder and / or a nitrogen-containing silane compound, a substance serving as an aluminum source containing AlN, a nitride of Li, and an oxynitride , Oxide or precursor material that becomes oxide by thermal decomposition and Eu nitride, oxynitride, oxide, or precursor material that becomes oxide by thermal decomposition, a desired Li-containing ⁇ -sialon It can be obtained by weighing and mixing so that lithium is in an excess composition than the phosphor composition, and firing the mixture at 1400 to 2000 ° C.
- a phosphor powder substantially composed of a Li-containing ⁇ -sialon phosphor can be obtained. it can.
- the method for producing the Li-containing ⁇ -sialon-based phosphor powder of this embodiment uses amorphous silicon nitride powder and / or nitrogen-containing silane compound as the silicon nitride powder, not the crystalline silicon nitride powder, among the raw materials. Except for the above, it may be the same as the method for producing the Li-containing ⁇ -sialon phosphor powder of the present invention described above.
- a raw material nitrogen-containing silane compound silicon diimide (Si (NH) 2 ), silicon nitrogen imide (Si 2 N 2 NH), or the like can be used. Further, a mixture of a nitrogen-containing silane compound and amorphous silicon nitride powder may be used.
- the particles of the Li-containing ⁇ -sialon-based phosphor according to another preferred embodiment of the present invention are Li-containing ⁇ -sialon-based phosphors having a composition represented by the general formula (1).
- the aspect ratio of primary particles measured by image analysis is 3 or less, and the length of the minor axis is larger than 3 ⁇ m.
- a preferable upper limit of the length of the short axis is 5 ⁇ m.
- Such Li-containing ⁇ -sialon phosphor particles have high fluorescence intensity.
- the Li-containing ⁇ -sialon-based phosphor powder of this aspect of the present invention includes the above-described Li-content ⁇ -sialon composition, an amorphous silicon nitride powder and / or a nitrogen-containing silane compound as raw materials, and oxidation. It is characterized by being manufactured by adding excessively a raw material that forms lithium oxide and / or lithium oxide at a high temperature, amorphous silicon nitride powder and / or nitrogen-containing silane compound, Al source, Li source, , Eu source, a desired Li-containing ⁇ -sialon-based phosphor composition of the above general formula (1) is weighed, and further, a Li oxide or a precursor material that is converted into an oxide by thermal decomposition. Is added and mixed, and is fired in an inert gas atmosphere containing nitrogen.
- FIG. 5 is a scanning electron microscope (SEM) photograph showing the state of the powder after acid treatment of Li-containing ⁇ -sialon-based phosphor particles obtained in the example of this aspect of the present invention. A part of the secondary particles in which the primary particles are weakly fused are observed.
- FIG. 5 shows Li-containing ⁇ -sialon-based phosphor particles produced using a raw material obtained by adding excessively an oxide of Li or a precursor substance that becomes an oxide by thermal decomposition to amorphous silicon nitride.
- the morphology (self-shaped) of the primary particles of the Li-containing ⁇ -sialon phosphor can be clearly confirmed.
- the short axis of the primary particles contains particles larger than 3 ⁇ m.
- the cause of the difference in primary particle size will be described.
- the size of the primary particles is small.
- excess lithium oxide the size of the primary particles increases. This is due to the difference in the amount of glass phase. That is, when excess lithium oxide is used, the glass phase to be generated increases. As the glass phase increases, the degree of supersaturation of sialon in the glass decreases and the amount of nuclei produced decreases. For this reason, the amount of the raw material supplied to one nucleus increases, and the size of the crystal increases.
- Amorphous silicon nitride and / or nitrogen-containing silane compound is an ultrafine powder having a particle size of several nanometers to about 10 nm, and this is the main raw material of sialon. Therefore, the raw material of sialon using amorphous silicon nitride is Very bulky. In this, other raw materials are uniformly dispersed and come into contact with the ultrafine silicon nitride raw material.
- the particle diameter is very large compared with amorphous silicon nitride and / or nitrogen-containing silane compound, and is about 0.2 ⁇ m. Since silicon nitride is large, it is considered that the reaction to sialon proceeds in such a manner that the glass covers the surface of the silicon nitride particles rather than the raw material being dissolved in the glass phase. In addition, the sialon raw material using crystalline silicon nitride is small in volume and cannot sufficiently separate the glass phase spatially as in the case of using amorphous silicon nitride and / or a nitrogen-containing silane compound. When the reaction to sialon proceeds in such a state, the primary particles become secondary particles that are strongly fused and aggregated with each other.
- the lithium oxide added in excess and the raw material that produces lithium oxide at high temperatures serve as a kind of flux, but are generally added for the purpose of aligning crystals. It is very different from conventional flux. The reason is the following two points. (1) In the synthesis of Li-containing ⁇ -sialon at normal pressure shown in this aspect of the present invention, the evaporation of Li increases. When sialon is produced without supplementing Li, Li-containing ⁇ -sialon which is largely lacking in lithium is obtained. Such sialon has many defects and is not preferable as a phosphor. In order to solve this, the lack of Li can be compensated by adding lithium oxide or a raw material that forms lithium oxide at a high temperature.
- Li-containing ⁇ -sialon-based phosphor emits fluorescence having a shorter wavelength than that of the Ca-containing ⁇ -sialon-based phosphor.
- lithium oxide or a raw material that forms lithium oxide at a high temperature is effective for shortening the fluorescence wavelength. This seems to be due to oxygen being supplied from the added reagent.
- the lithium oxide in this aspect of the present invention and the raw material that generates lithium oxide at high temperature are different from ordinary fluxes that simply control the morphology of the primary particles of crystals, unlike Li-containing ⁇ -sialon. There is an effect of essentially improving the fluorescence characteristics.
- lithium oxide or a raw material that forms lithium oxide at a high temperature it is not preferable to use lithium oxide or a raw material that forms lithium oxide at a high temperature as a flux. Since the flux becomes an unnecessary component after obtaining the phosphor, it is preferably removed after synthesis. For this reason, it is common to select substances that can be easily removed by water or acid. Considering this point, a halogen compound such as barium fluoride is selected. Lithium oxide is a component that is less soluble than halogen compounds, and is difficult to remove after synthesis. For this reason, it is a raw material that is difficult to employ as a flux. Therefore, the inventors examined using fluoride as a flux, but with fluoride, it was not possible to obtain a Li-containing ⁇ -sialon-based phosphor composed of primary particles of good shape.
- the method of adding the lithium oxide of this aspect of the present invention or the raw material that forms lithium oxide at high temperature is considered to be effective for Li-containing ⁇ -sialon of all compositions of the present invention, and Li-containing ⁇ -sialon.
- the composition of the system phosphor can be the composition described above.
- Lithium oxide added excessively relative to Li-containing ⁇ -sialon-based phosphor powder raw material that is, a theoretical amount of lithium oxide to be Li-containing ⁇ -sialon to be generated), or a raw material that forms lithium oxide at a high temperature
- Is an amount of metal Li and is preferably 0.1 mol or more and 1.25 mol or less with respect to 1 mol of Li-containing ⁇ -sialon to be produced.
- the amount is less than 0.1 mol, the effect of enlarging the crystal cannot be obtained sufficiently.
- the amount exceeds 1.25 mol the amount of heterogeneous production increases and the fluorescence intensity decreases.
- a more preferable range is 0.15 mol or more and 0.8 mol or less.
- the Li-containing ⁇ -sialon-based phosphor powder of the present invention includes an amorphous silicon nitride powder and / or a nitrogen-containing silane compound, a substance serving as an aluminum source containing AlN, a Li nitride, an oxynitride, and an oxide. Measure the desired Li-containing ⁇ -sialon with a precursor material that becomes oxide by thermal decomposition and a precursor material that becomes Eu nitride, oxynitride, oxide, or oxide by thermal decomposition.
- an excessive amount of Li oxide or / and a precursor substance that becomes an oxide by thermal decomposition is added to and mixed with this powder, and the mixture is heated at 1500 to 1800 ° C. in an inert gas atmosphere of 0.08 to 0.1 MPa. It can be obtained by firing. As the firing atmosphere, it is more preferable to carry out at normal pressure in a nitrogen atmosphere. In particular, the production cost of the Li-containing ⁇ -sialon phosphor can be reduced by performing synthesis in an inert gas atmosphere containing nitrogen at normal pressure.
- the method for producing the Li-containing ⁇ -sialon-based phosphor powder of this aspect uses an amorphous silicon nitride powder and / or a nitrogen-containing silane compound, and the amount of Li-containing ⁇ -sialon represented by the general formula (1)
- it can be basically the same as described above, except that an oxide of Li or a precursor substance that becomes an oxide by thermal decomposition is excessively added.
- Li oxide or a precursor substance that becomes Li oxide by thermal decomposition is added, and precursor substances that become Li oxide by thermal decomposition include each of carbonate, oxalate, and citric acid. Mention may be made of metal salts such as salts, basic carbonates and hydroxides.
- the mixture of starting materials is fired at 1500 to 1800 ° C., preferably 1550 to 1700 ° C. in a nitrogen-containing inert gas atmosphere at normal pressure or reduced pressure to obtain the target Li-containing ⁇ -sialon phosphor powder.
- the inert gas include helium, argon, neon, and krypton. In the present invention, these gases and a small amount of hydrogen gas can be mixed and used.
- the firing temperature is lower than 1500 ° C., it takes a long time to produce the desired Li-containing ⁇ -sialon phosphor powder, which is not practical.
- generation powder also falls.
- the firing time is preferably 1 to 48 hours.
- a calcination time of 1 to 24 hours at a calcination temperature of 1600 to 1700 ° C. is most preferable because phosphor particles excellent in particle shape and composition can be obtained.
- the Li-containing ⁇ -sialon-based phosphor powder activated by rare earth elements of the present invention emits fluorescence having a peak wavelength of 560 nm to 580 nm by entering excitation light.
- the Li-containing ⁇ -sialon-based phosphor powder activated with a rare earth element emits fluorescence having a dominant wavelength of 570 nm to 574 nm when incident upon excitation light.
- the Li-containing ⁇ -sialon phosphors activated with rare earth elements of the present invention are all kneaded with a transparent resin such as an epoxy resin or an acrylic resin by a known method to produce a coating agent.
- a light emitting diode whose surface is coated with an agent can be used as a light emitting element in various lighting fixtures.
- a light emission source having a peak wavelength of excitation light in the range of 330 to 500 nm is suitable for a Li-containing ⁇ -sialon phosphor.
- the luminous efficiency of the Li-containing ⁇ -sialon-based phosphor is high, and a light-emitting element with good performance can be configured.
- the luminous efficiency is high, and a combination of the yellow fluorescence of the Li-containing ⁇ -sialon phosphor and the blue excitation light can constitute a good daylight to daylight light emitting element.
- a red phosphor having a wavelength of 600 nm to 650 nm for adjusting the color tone it is possible to control the daylight white color or the daylight color emission color to a warm light bulb color region.
- a light-emitting element having a light bulb color can be widely used for general household lighting.
- any of the Li-containing ⁇ -sialon phosphors activated by rare earth elements of the present invention can be used to make an image display element using a Li-containing ⁇ -sialon phosphor.
- the light-emitting element described above can be used, but it is also possible to directly emit light by exciting the Li-containing ⁇ -sialon-based phosphor using an excitation source such as an electron beam, an electric field, or ultraviolet light.
- an excitation source such as an electron beam, an electric field, or ultraviolet light.
- it can be used on the principle of a fluorescent lamp.
- Such a light emitting element can also constitute an image display device.
- Example 1 Lithium carbonate powder, lithium nitride powder, europium oxide powder, aluminum nitride powder, and amorphous silicon nitride powder obtained by reacting silicon tetrachloride with ammonia, or having a specific surface area of about 9.2 m 2 / g Crystalline silicon nitride was weighed to have the composition shown in Table 1.
- Table 1 shows the raw material composition in mol%
- Table 2 shows the raw material composition in weight%.
- a nylon ball for stirring and a weighed powder were placed in a container and mixed by a vibration mill for 1 hour in a nitrogen atmosphere.
- the powder was taken out and filled into a boron nitride crucible.
- the packing density at this time was about 0.5 g / cm 3 when crystalline silicon nitride was used, and about 0.18 g / cm 3 when amorphous silicon nitride was used.
- This was set in a resistance heating furnace, and under a normal pressure nitrogen gas flow atmosphere, from room temperature to 1000 ° C. for 1 hour, from 1000 ° C. to 1250 ° C. for 2 hours, from 1250 ° C. to the target temperature shown in Table 3 Was heated at a temperature increase schedule of 200 ° C./h to obtain phosphor powder.
- the obtained powder was weakly sintered lump, this was lightly crushed using an agate mortar until it became a powder without large lump, immersed in 2N-nitric acid solution for 5 hours, stirred and acidified. Treatment was performed, and the obtained powder was dried at a temperature of 110 ° C. for 5 hours to obtain a powder.
- the X-ray diffraction pattern of this powder was measured and the crystal phase was identified. As a result, in all Examples, it was confirmed that the Li-containing ⁇ -sialon-based phosphor was almost obtained.
- composition analysis of the obtained powder was performed. Oxygen and nitrogen contained in the Li-containing ⁇ -sialon-based phosphor were measured with a simultaneous oxygen / nitrogen analyzer manufactured by LECO, and for Li, the sample was subjected to pressurized acid decomposition with nitric acid and hydrofluoric acid. Then, sulfuric acid was added and concentrated by heating until white smoke was generated, and hydrochloric acid was added and dissolved by heating.
- Example 2 using amorphous silicon nitride as a raw material and Example 6 using crystalline silicon nitride
- the particle morphology was observed by (SEM).
- the observation was performed on the particle form after acid treatment (FIG. 1A, FIG. 1B), and then the classified product obtained by removing extremely large particles and small particles from the powder so that it could be used as a phosphor (FIG. 2A, 2B, 3A and 3B).
- fine particles were removed by passing the powder through a 20 ⁇ m sieve and the water ratio.
- the area of each particle was determined using image analysis software ImageJ, the particle diameter corresponding to a circle was determined from the area, and the average particle diameter was determined.
- the results are shown in Table 4.
- about 20 average primary particles were extracted by visual observation, and the average particle size was also obtained. The result was almost the same as the average value of the equivalent circle diameter described above.
- the average particle size of Li-containing ⁇ -sialon using amorphous silicon nitride was 1 to 3 ⁇ m.
- the aspect ratio was 2 or less in all examples.
- the existence ratio of particles of 0.8 ⁇ m or more was determined for the particles in the analysis region.
- the area of all the particles in the measurement region and the area of particles of 0.8 ⁇ m or more were obtained, and the ratio was calculated.
- the results are shown in Table 4.
- the area ratio was 70% or more for all samples.
- the particle size distribution was measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-910 manufactured by Horiba.
- the measurement method is as follows. A blank medium was measured by placing a dispersion medium containing 0.03 wt% of SN Dispersant manufactured by San Nopco into a flow cell. Next, a sample was added to a dispersion medium having the same composition, and ultrasonic dispersion was performed for 60 minutes. Measurement was performed by adjusting the amount of the sample so that the transmittance of the solution was 95% to 70%. The measurement result was corrected with the blank measurement result measured in advance, and the particle size distribution was obtained. SEM photographs of this powder are shown in FIGS. 2A and 3A.
- the result of the particle size distribution measurement is shown in FIG. 4A.
- the frequency distribution curve showed a good curve for a person.
- Table 10 shows D10, D50, and D90. It was 1.52 m ⁇ 2 > / g when the specific surface area of this powder was measured by Shimadzu Corporation flowsorb 2300 type. Furthermore, the classified products of Example 4 were also measured for D10, D50, and D90. The frequency distribution curve showed a good curve for a person.
- Example 6 was measured. SEM photographs of this powder are shown in FIGS. 2B and 3B. The measurement result of the particle size distribution is shown in FIG. 4B.
- the frequency distribution curve is a Futyama curve. Table 10 shows D10, D50, and D90. It was 2.50 m ⁇ 2 > / g when the specific surface area of this powder was measured by Shimadzu Corporation flowsorb 2300 type. Further, D10, D50, and D90 were measured for the classified product of Example 7. The frequency distribution curve is a Futyama curve. D90 of Example 7 exceeded 20 ⁇ m, which is considered to be because fine particles and large particles aggregated during the measurement.
- Example 2 With the composition shown in Table 1, phosphor powders were produced in the same manner as in Example 1. Furthermore, identification of the crystal phase and composition analysis were performed in the same manner as in Example 1. As a result of analysis of the crystal phase, it was a powder composed of a Li-containing ⁇ -sialon phosphor and a slight heterogeneous phase. The analyzed composition is shown in Table 3. In addition, since there were few heterogeneous phases and most were Li containing alpha-sialon fluorescent substance, the heterogeneous phase was disregarded and it calculated. It was a Li-containing ⁇ -sialon phosphor having an x value of 0.9 and ⁇ of ⁇ 0.2. The fluorescence intensity of this Li-containing ⁇ -sialon phosphor powder was low. From this, it is clear that good fluorescence intensity cannot be obtained when ⁇ is smaller than 0.
- Example 3 A phosphor powder was prepared in the same manner as in Example 1 except that crystalline silicon nitride having a specific surface area of about 9.2 m 2 / g was used as the silicon nitride raw material with the composition shown in Table 1, and the acid cleaning was similarly performed. Went. Furthermore, identification of the crystal phase and composition analysis were performed in the same manner as in Example 1. As a result of analysis of the crystal phase, it was a powder composed of a Li-containing ⁇ -sialon phosphor and a slight heterogeneous phase. The analyzed composition is shown in Table 3. In addition, since there were few heterogeneous phases and most were Li containing alpha-sialon fluorescent substance, the heterogeneous phase was disregarded and it calculated. The Li-containing ⁇ -sialon phosphor having an x value of 0.82 and ⁇ of 0.0. The fluorescence intensity ratio was as small as 68.
- Example 9 The phosphor of Example 2 and the epoxy resin were mixed at a weight ratio of 20: 100 to prepare a phosphor paste. This was applied to a blue light emitting diode (wavelength 470 nm) attached to the electrode, heated at 120 ° C. for 1 hour, and further heated at 150 ° C. for 12 hours to cure the epoxy resin. The obtained light emitting diode was turned on, and it was confirmed that it was white of daylight color.
- a blue light emitting diode wavelength 470 nm
- Example 10 The phosphor of Example 2 and a separately prepared red phosphor CaAlSiN 3 were mixed to adjust the color tone of the phosphor. The results are shown in Table 5. According to the change of the color tone shown in Table 5, it was possible to produce a white LED in the range of daylight color to light bulb color in combination with a blue LED.
- the packing density at this time was about 0.18 g / cm 3 .
- the holding time was 3 hours to obtain a phosphor powder. Since the obtained powder was a weakly sintered lump, it was lightly crushed using an agate mortar until it became a powder without a large lump. Subsequently, it was immersed in a 2N-nitric acid solution for 5 hours and stirred for acid treatment. The obtained powder was dried at a temperature of 110 ° C. for 5 hours.
- the fluorescence characteristics were measured using an FP-6500 with an integrating sphere manufactured by JASCO Corporation. It was 270% on the same scale as Table 4.
- Example 12 As the raw material, the amorphous silicon nitride powder was replaced with silicon diimide, and the raw material was weighed and mixed with the same composition as in Example 2. The mixed powder was filled in a silicon nitride crucible. The packing density at this time was 0.09 g / cm 3 . This was set in a resistance heating furnace, and under normal pressure nitrogen gas flow atmosphere, from room temperature to 800 ° C for 1 hour, from 800 ° C to 1000 ° C for 2 hours, from 1000 ° C to 1250 ° C for 2 hours, 1250 ° C To 1650 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
一般式(1)
LixEuySi12−(m+n)Al(m+n)On+δN16−n‐δ (1)
(式中、Euの平均価数をaとすると、x+ya+δ=m;0.45≦x<1.2、0.001≦y≦0.2、0.9≦m≦2.5、0.5≦n≦2.4、δ>0である。)で表されることを特徴とするLi含有α−サイアロン系蛍光体に関する。
本発明のこの態様は、発光源と、上記一般式(1)で表されるLi含有α−サイアロン系蛍光体を含有する蛍光体とから構成される照明器具に関する。前記発光源が330~500nmの波長の光を発光するLEDであることを特徴とする。
図2A及び2Bは、実施例2および実施例6の粉砕後の蛍光体粉末の一実施形態を示したSEM写真である。図2Aの非晶質窒化ケイ素を原料に用いて作製したLi含有α−サイアロン系蛍光体粉末のSEM写真、図2Bは結晶質窒化ケイ素を原料に用いて作製したLi含有α−サイアロン系蛍光体粉末のSEM写真である。
図3A及び3Bは図2A及び2Bの拡大写真である。
図4Aは、実施例2で得られた本発明のLi−α−サイアロン蛍光体粉末の粒度分布(頻度分布曲線)図であり、図4Bは結晶質窒化ケイ素を原料に用いた実施例6で得られた蛍光体粉末の粒度分布図である。
図5、実施例11で得られた粉末のSEM写真である。
本発明において、Li含有α−サイアロン系蛍光体は、一般式(1)
LixEuySi12−(m+n)Al(m+n)On+δN16−n‐δ (1)
で示される。ここで、Euの平均価数をaとすると、x+ya+δ=mである(但し、δ>0である)。
LixEuySi12−(m+n)Al(m+n)On+εN16−n−φ (2)
ここで、Euの平均価数をaとすると、x+ya+δ=mであり、かつδ=3φ−2εである。ここで、(n+ε)は陰イオンサイトを占有する酸素原子の数を表し、(16−n−φ)は陰イオンサイトを占有する窒素原子の数を表す。但し、δ>0であり、−δ/2≦ε≦δ/2であり、−δ/3≦φ≦δ/3である。
含窒素シラン化合物としては、シリコンジイミド(Si(NH)2)、シリコンニトロゲンイミド(Si2N2NH)などを用いることができる。またこれらの化合物を窒化ケイ素粉末と混合して用いてもよい。
原料の含窒素シラン化合物としては、シリコンジイミド(Si(NH)2)、シリコンニトロゲンイミド(Si2N2NH)などを用いることができる。また、含窒素シラン化合物と非晶質窒化ケイ素粉末との混合物を用いてもよい。
非晶質窒化ケイ素及び/又は含窒素シラン化合物は、その粒子径が数nmから10nm程度の超微粉であり、これがサイアロンの主原料になるため、非晶質窒化ケイ素を用いたサイアロンの原料はきわめて嵩高い。この中では、他の原料は均一に分散し、超微粉の窒化ケイ素原料と接触することになる。このため微細なガラス相が低温で均一に形成されると考えられる。しかも、原料が嵩高いため、空間的に離れた状態となる。このようなガラス相の中で核形成、成長が起こると、結果として、凝集の少ない粉体になる。
(1)本発明のこの態様で示される常圧におけるLi含有α−サイアロンの合成では、Liの蒸発が多くなる。Liを補うことなくサイアロンを作製すると、リチウムの大きく不足したLi含有α−サイアロンになる。このようなサイアロンは欠陥が多くなり、蛍光体として好ましくない。これを解決するために、酸化リチウム、または、高温で酸化リチウムを形成する原料を添加することで、不足するLiを補うことができる。
(2)Li含有α−サイアロン系蛍光体の重要な特徴は、Ca含有α−サイアロン系蛍光体に比べ、短波長の蛍光を発することである。この蛍光波長の短波長化に、酸化リチウム、または、高温で酸化リチウムを形成する原料が有効であることも今回の検討において明らかになった。これは、添加した試薬から酸素が供給されることによると思われる。
以上のように、本発明のこの態様における酸化リチウム、及び、高温で酸化リチウムを生成する原料は、単に、結晶の一次粒子の形態を制御する通常のフラックスとは異なり、Li含有α−サイアロンの蛍光特性を本質的に向上させる効果がある。
また、本発明の、希土類元素で賦活させたLi含有α−サイアロン系蛍光体は、いずれも、公知の方法でエポキシ樹脂やアクリル樹脂等の透明樹脂と混練されてコーティング剤が製造され、該コーティング剤で表面をコーティングされた発光ダイオードは、発光素子として各種照明器具に用いることができる。
(実施例1~8)
炭酸リチウム粉末、窒化リチウム粉末、酸化ユーロピウム粉末、窒化アルミニウム粉末、及び、四塩化珪素とアンモニアを反応させることにより得られた非晶質窒化珪素粉末、または、比表面積約9.2m2/gの結晶質窒化ケイ素を表1の組成になるように秤量した。表1は、原料組成をモル%で表示したものであり、表2は原料組成を重量%で表示したものである。攪拌用のナイロンボールと秤量した粉末を容器に入れ窒素雰囲下において、1時間振動ミルによって混合した。混合後、粉末を取り出し、窒化ホウ素製の坩堝に充填した。この時の充填密度は、結晶質窒化ケイ素を用いた場合約0.5g/cm3で、非結晶質窒化ケイ素を用いた場合約0.18g/cm3であった。これを抵抗加熱炉にセットし、常圧の窒素ガス流通雰囲気下で、室温から1000℃までを1時間、1000℃から1250℃までを2時間、1250℃から表3に示した目的の温度までを、200℃/hの昇温スケジュールで加熱し、蛍光体粉末を得た。得られた粉末は弱く焼結した塊になっていたのでこれを大きな塊のない粉末になるまで、めのう乳鉢を用いて軽く解砕し、2規定−硝酸溶液中に5時間浸漬、攪拌し酸処理を行い、得られた粉末を110℃の温度で5時間乾燥して粉末を得た。
表1に示す組成で、実施例1と同様な方法で蛍光体粉末を作製した。さらに、実施例1と同じ方法で、結晶相の同定、組成分析を行った。結晶相の解析の結果、Li含有α−サイアロン系蛍光体単相で構成された粉末であった。分析した組成を表3に示す。x値が0.39のLi含有α−サイアロン系蛍光体であった。このLi含有α−サイアロン系蛍光体粉末の蛍光強度は低かった。このことから、x値が0.45より小さくなると良好な蛍光強度が得られないことが明らかになった。
表1に示す組成で、実施例1と同様な方法で蛍光体粉末を作製した。さらに、実施例1と同じ方法で、結晶相の同定、組成分析を行った。結晶相の解析の結果、Li含有α−サイアロン系蛍光体とわずかな異相で構成された粉末であった。分析した組成を表3に示す。なお、異相はわずかでほとんどがLi含有α−サイアロン蛍光体であるので、異相を無視して計算を行った。x値が0.9、δが−0.2のLi含有α−サイアロン系蛍光体であった。このLi含有α−サイアロン系蛍光体粉末の蛍光強度は低かった。このことから、δが0より小さくなると良好な蛍光強度が得られないことが明らかである。
表1に示す組成で、窒化ケイ素原料として比表面積約9.2m2/gの結晶質窒化ケイ素を用いた以外は、実施例1と同様な方法で蛍光体粉末を作製し、同様に酸洗浄を行った。さらに、実施例1と同じ方法で、結晶相の同定、組成分析を行った。結晶相の解析の結果、Li含有α−サイアロン系蛍光体とわずかな異相で構成された粉末であった。分析した組成を表3に示す。なお、異相はわずかでほとんどがLi含有α−サイアロン蛍光体であるので、異相を無視して計算を行った。x値が0.82、δが0.0のLi含有α−サイアロン系蛍光体であった。蛍光強度比は68と小さい値を示した。
実施例2の蛍光体とエポキシ樹脂を20:100の重量比で混合し、蛍光体ペーストを作製した。これを電極に取り付けられた青色発光ダイオード(波長470nm)に塗布し、120℃1時間加熱し、さらに150℃12時間加熱しエポキシ樹脂を硬化させた。得られた発光ダイオードを点灯し、昼光色の白色であることを確認した。
実施例2の蛍光体と、別途作製した赤色蛍光体CaAlSiN3を混合し、蛍光体の色調の調整を行った。その結果を表5に示す。表5に示す色調の変化に応じ、青色LEDとの組み合わせで、昼光色から電球色の範囲の白色LEDを作製することができた。
炭酸リチウム粉末、酸化ユーロピウム粉末、窒化アルミニウム粉末、酸化アルミニウム粉末及び、四塩化珪素とアンモニアを反応させることにより得られた非晶質窒化珪素粉末をx=0.85、y=0.2、m=1.25、n=1.0になるように秤量し、さらに過剰の添加物として、炭酸リチウムをLi含有α−サイアロン1モルに対し、金属Li換算で0.63モルを添加した。攪拌用のナイロンボールと秤量した粉末を容器に入れ窒素雰囲下において、1時間振動ミルによって混合した。混合後、粉末を取り出し、窒化ホウ素製の坩堝に充填した。この時の充填密度は、約0.18g/cm3あった。これを抵抗加熱炉にセットし、常圧の窒素ガス流通雰囲気下、室温から1000℃までを1時間、1000℃から1250℃までを2時間、1250℃から200℃/hで、1600℃まで加熱した。保持時間は3時間とし蛍光体粉末を得た。得られた粉末は弱く焼結した塊になっていたので、これを大きな塊のない粉末になるまで、めのう乳鉢を用いて軽く解砕した。次いで、2規定−硝酸溶液中に5時間浸漬、攪拌し酸処理を行った。得られた粉末を110℃の温度で5時間乾燥した。
さらに、得られた粉末を、日本電子社製 JSM−7000Fの走査型電子顕微鏡(SEM)を用いて粒子形態を観察した。結果を図5に示す。図5に示すように、3μm以上の粒子の平均アスペクト比1.3で、短軸の長さが3.3μmであり、短軸の長さが3μmよりも大きい一次粒子のLi含有α−サイアロン蛍光体粒子含むLi含有α−サイアロン系蛍光体粉末を得ることができた。
(実施例12)
原料として、非晶質窒化ケイ素粉末をシリコンジイミドに代え、実施例2と同様の組成で原料を秤量、混合した。混合粉末を窒化ケイ素の坩堝に充填した。この時の充填密度は0.09g/cm3であった。これを抵抗加熱炉にセットし、常圧の窒素ガス流通雰囲気下で、室温から800℃までを1時間、800℃から1000℃までを2時間、1000℃から1250℃までを2時間、1250℃から1650℃までを200℃/hの昇温スケジュールで加熱し蛍光体粉末を得た。得た粉末は実施例2と同様の方法で処理し、組成の分析を行った。その結果、x=0.90、y=0.03、m=1.13、n=2.23、x/m=0.80、δ=0.17であった。蛍光ピーク波長は572nm、蛍光強度は表4の強度比で表した場合、293%であった。
Claims (18)
- 一般式(1)
LixEuySi12−(m+n)Al(m+n)On+δN16−n‐δ (1)
(式中、Euの平均価数をaとすると、x+ya+δ=m;0.45≦x<1.2、0.001≦y≦0.2、0.9≦m≦2.5、0.5≦n≦2.4、δ>0である。)で表されることを特徴とするLi含有α−サイアロン系蛍光体。 - 前記δが0.05~1.2であり、前記xとmとの比x/mが、0.4~0.9の範囲であることを特徴とする請求項1記載のLi含有α−サイアロン系蛍光体。
- 前記xが、0.82≦x<1.2であり、前記x/mが、0.5~0.9の範囲であることを特徴とする請求項2記載のLi含有α−サイアロン系蛍光体。
- 励起光を入射することにより、波長560nmから580nmのピーク波長の蛍光を放出することを特徴とする請求項1記載のLi含有α−サイアロン系蛍光体。
- 走査型電子顕微鏡写真を画像解析することにより計測される一次粒子の平均アスペクト比が2以下であり、平均粒子径Dparticleが1μm以上3.0μm以下である粉末であることを特徴とする請求項1記載のLi含有α−サイアロン系蛍光体。
- 走査型電子顕微鏡写真を画像解析することにより計測される粒子において、0.8μm以上の一次粒子が面積比で70%以上存在することを特徴とする請求項5記載のLi含有α−サイアロン系蛍光体。
- レーザ回折/散乱式粒度分布測定装置で測定した粒度分布曲線における頻度分布曲線が、単一のピークであり、メジアン径が4~15μmであることを特徴とする請求項5記載のLi含有α−サイアロン系蛍光体。
- 粒度分布曲線における10%径が1.5μm以上で、90%径が15μm以下であることを特徴とする請求項5記載のLi含有α−サイアロン系蛍光体。
- 走査型電子顕微鏡写真を画像解析することにより計測される一次粒子のアスペクト比が3以下であり、短軸の長さが3μmより大きい粉末であることを特徴とする請求項1記載のLi含有α−サイアロン系蛍光体。
- 窒化ケイ素粉末及び/又は含窒素シラン化合物と、AlNを含むアルミニウム源となる物質と、Liの窒化物、酸窒化物、酸化物、または熱分解により酸化物となる前駆体物質と、Euの窒化物、酸窒化物、酸化物、または熱分解により酸化物となる前駆体物質とを、前記一般式(1)で表されるLi含有α−サイアロン系蛍光体の組成よりも、リチウムが過剰な組成になるように秤量、混合し、窒素を含有する常圧の不活性ガス雰囲気中、1400~1800℃で焼成することを特徴とする請求項1記載のLi含有α−サイアロン系蛍光体の製造方法。
- 焼成後のLi含有α−サイアロン系蛍光体を、酸洗浄することを特徴とする請求項10に記載のLi含有α−サイアロン系蛍光体の製造方法。
- 非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物と、AlNを含むアルミニウム源となる物質と、Liの窒化物、酸窒化物、酸化物、または熱分解により酸化物となる前駆体物質と、Euの窒化物、酸窒化物、酸化物、または熱分解により酸化物となる前駆体物質とを、前記一般式(1)で表されるLi含有α−サイアロン系蛍光体の組成よりも、リチウムが過剰な組成になるように秤量、混合し、窒素を含有する常圧の不活性ガス雰囲気中、1400~1800℃で焼成することを特徴とする請求項5記載のLi含有α−サイアロン系蛍光体の製造方法。
- 前記一般式(1)の組成になる理論量の、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物とAlNを含むアルミニウム源となる物質と、Liの窒化物、酸窒化物、酸化物、または熱分解により酸化物となる前駆体物質と、Euの窒化物、酸窒化物、酸化物、または熱分解により酸化物となる前駆体物質と、さらに、前記理論量に含まれない過剰の、Liの酸化物、または熱分解により酸化物となる前駆体物質とを混合し、常圧の窒素を含有する不活性ガス雰囲気中、1500~1800℃で焼成することを特徴とする請求項9に記載のLi含有α−サイアロン系蛍光体の製造方法。
- 前記理論量に含まれない過剰の、Liの酸化物、または熱分解により酸化物となる前駆体物質の金属リチウムの量が、理論量の生成物のLi含有α−サイアロン系蛍光体1モルに対して、0.1~1.25モルであることを特徴とする請求項13記載のLi含有α−サイアロン系蛍光体の製造方法。
- 発光源と、請求項1、5又は9に記載のLi含有α−サイアロン系蛍光体を含有する蛍光体とから構成される照明器具。
- 前記発光源が330~500nmの波長の光を発光するLEDであることを特徴とする請求項15に記載の照明器具。
- 前記蛍光体は、さらに、600nm~650nmの赤色を発する蛍光体を含有していることを特徴とする請求項16記載の照明器具。
- 励起源と請求項1、5又は9に記載のLi含有α−サイアロン系蛍光体を含有する蛍光体とから構成される画像表示装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117000484A KR101265030B1 (ko) | 2008-08-13 | 2009-08-11 | Li 함유 α-사이알론계 형광체와 그 제조방법, 조명 기구 및 화상 표시 장치 |
EP09806762.2A EP2314659B1 (en) | 2008-08-13 | 2009-08-11 | Li-containing -sialon fluorescent substance and method for manufacturing same, illumination device, and image display device |
JP2010524760A JP5170247B2 (ja) | 2008-08-13 | 2009-08-11 | Li含有α−サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置 |
CN2009801282638A CN102099436B (zh) | 2008-08-13 | 2009-08-11 | 含Li的α-赛隆系荧光体及其制造方法、照明器具以及图像显示装置 |
US13/058,027 US20110133629A1 (en) | 2008-08-13 | 2009-08-11 | Li-containing alpha-sialon-based phosphor, production process thereof, lighting device and image display device |
US14/217,816 US9464226B2 (en) | 2008-08-13 | 2014-03-18 | Li-containing α-sialon-based phosphor, production process thereof, lighting device and image display device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-208569 | 2008-08-13 | ||
JP2008-208570 | 2008-08-13 | ||
JP2008208569 | 2008-08-13 | ||
JP2008208570 | 2008-08-13 | ||
JP2009-048453 | 2009-03-02 | ||
JP2009048453A JP5470911B2 (ja) | 2009-03-02 | 2009-03-02 | Li含有α−サイアロン系酸窒化物蛍光体粉末およびその製造方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/058,027 A-371-Of-International US20110133629A1 (en) | 2008-08-13 | 2009-08-11 | Li-containing alpha-sialon-based phosphor, production process thereof, lighting device and image display device |
US14/217,816 Continuation US9464226B2 (en) | 2008-08-13 | 2014-03-18 | Li-containing α-sialon-based phosphor, production process thereof, lighting device and image display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018873A1 true WO2010018873A1 (ja) | 2010-02-18 |
Family
ID=41669010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064373 WO2010018873A1 (ja) | 2008-08-13 | 2009-08-11 | Li含有α-サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20110133629A1 (ja) |
EP (1) | EP2314659B1 (ja) |
KR (1) | KR101265030B1 (ja) |
CN (1) | CN102099436B (ja) |
MY (1) | MY158794A (ja) |
TW (1) | TWI460251B (ja) |
WO (1) | WO2010018873A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108740A1 (ja) * | 2010-03-01 | 2011-09-09 | 宇部興産株式会社 | Li含有α-サイアロン系蛍光体粒子とその製造方法、照明器具ならびに画像表示装置 |
WO2011126035A1 (ja) * | 2010-03-31 | 2011-10-13 | 宇部興産株式会社 | サイアロン系酸窒化物蛍光体の製造方法及びサイアロン系酸窒化物蛍光体 |
JP2013203893A (ja) * | 2012-03-28 | 2013-10-07 | Ube Industries Ltd | リチウムケイ素窒化物蛍光体およびその製造方法 |
WO2014077132A1 (ja) | 2012-11-13 | 2014-05-22 | 電気化学工業株式会社 | 蛍光体、発光素子及び照明装置 |
WO2014077240A1 (ja) | 2012-11-13 | 2014-05-22 | 電気化学工業株式会社 | 蛍光体、発光素子及び照明装置 |
WO2015115640A1 (ja) * | 2014-02-03 | 2015-08-06 | 宇部興産株式会社 | 酸窒化物蛍光体粉末およびその製造方法 |
EP2949727A1 (en) | 2014-05-28 | 2015-12-02 | LG Electronics Inc. | Yellow light emitting phosphor and light emitting device package using the same |
JP2016020486A (ja) * | 2014-07-14 | 2016-02-04 | エルジー エレクトロニクス インコーポレイティド | 黄色発光蛍光体及びそれを用いた発光素子パッケージ |
WO2018003848A1 (ja) * | 2016-06-30 | 2018-01-04 | デンカ株式会社 | 蛍光体及び発光装置 |
JP2020164796A (ja) * | 2020-02-21 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
WO2020203487A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164751A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
JP2020164798A (ja) * | 2020-02-21 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164750A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
JP2020164754A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164788A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164797A (ja) * | 2020-02-21 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
WO2020203486A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2021011586A (ja) * | 2020-10-26 | 2021-02-04 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP7497206B2 (ja) | 2020-05-18 | 2024-06-10 | デンカ株式会社 | リチウム含有α-サイアロン蛍光体の製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006070899A1 (ja) * | 2004-12-27 | 2006-07-06 | Ube Industries, Ltd. | サイアロン蛍光体粒子およびその製造方法 |
JP5778699B2 (ja) * | 2011-01-26 | 2015-09-16 | 電気化学工業株式会社 | α型サイアロン、発光装置及びその用途 |
KR101772656B1 (ko) * | 2011-05-19 | 2017-08-29 | 삼성전자주식회사 | 형광체 및 발광장치 |
KR101952436B1 (ko) * | 2012-05-11 | 2019-02-26 | 엘지이노텍 주식회사 | 산화질화물계 형광체 조성물 및 그 제조방법 |
DE102013100429B4 (de) | 2013-01-16 | 2023-12-07 | Osram Gmbh | Verfahren zur Herstellung eines pulverförmigen Precursormaterials und Verwendung eines mit dem Verfahren hergestellten pulverförmigen Precursormaterials |
CN103943759B (zh) | 2013-01-21 | 2018-04-27 | 圣戈本陶瓷及塑料股份有限公司 | 包括发光含钆材料的物件及其形成工艺 |
TWI464238B (zh) * | 2013-03-27 | 2014-12-11 | Chi Mei Corp | 螢光體與發光裝置 |
DE102013105304A1 (de) * | 2013-05-23 | 2014-11-27 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines pulverförmigen Precursormaterials, pulverförmiges Precursormaterial und seine Verwendung |
DE102013105307A1 (de) * | 2013-05-23 | 2014-11-27 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines pulverförmigen Precursormaterials, pulverförmiges Precursormaterial und seine Verwendung |
JP2015142046A (ja) * | 2014-01-29 | 2015-08-03 | シャープ株式会社 | 波長変換部材、発光装置、および波長変換部材の製造方法 |
KR102261952B1 (ko) | 2014-08-26 | 2021-06-08 | 엘지이노텍 주식회사 | 형광체 조성물 및 이를 포함하는 발광 소자 패키지 |
JP6697363B2 (ja) * | 2015-10-30 | 2020-05-20 | 日本碍子株式会社 | 半導体製造装置用部材、その製法及びシャフト付きヒータ |
CN110655920A (zh) * | 2019-09-20 | 2020-01-07 | 北京科技大学 | 一种二价铕掺杂的α-sialon基长余辉发光材料及制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002363554A (ja) | 2001-06-07 | 2002-12-18 | National Institute For Materials Science | 希土類元素を付活させた酸窒化物蛍光体 |
JP2004067837A (ja) | 2002-08-06 | 2004-03-04 | Toyota Central Res & Dev Lab Inc | α−サイアロン蛍光体 |
JP2006052337A (ja) | 2004-08-12 | 2006-02-23 | Fujikura Ltd | サイアロン蛍光体およびその製造方法 |
JP2006152069A (ja) | 2004-11-26 | 2006-06-15 | Fujikura Ltd | アルファサイアロン蛍光体とその製造方法、アルファサイアロン蛍光体中間生成物、アルファサイアロン蛍光体原料粉末及び発光ダイオードランプ |
JP2006321921A (ja) | 2005-05-19 | 2006-11-30 | Denki Kagaku Kogyo Kk | α型サイアロン蛍光体とそれを用いた照明器具 |
WO2007004493A1 (ja) | 2005-07-01 | 2007-01-11 | National Institute For Materials Science | 蛍光体とその製造方法および照明器具 |
WO2008004640A1 (fr) * | 2006-07-05 | 2008-01-10 | Ube Industries, Ltd. | Phosphores d'oxynitrure à base de sialon et procédé de production de ceux-ci |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4524368B2 (ja) * | 2004-04-22 | 2010-08-18 | 独立行政法人物質・材料研究機構 | サイアロン蛍光体とその製造方法 |
JP4762892B2 (ja) * | 2004-06-18 | 2011-08-31 | 独立行政法人物質・材料研究機構 | α型サイアロン及びその製造方法 |
WO2006070899A1 (ja) * | 2004-12-27 | 2006-07-06 | Ube Industries, Ltd. | サイアロン蛍光体粒子およびその製造方法 |
CN102585810A (zh) * | 2005-02-28 | 2012-07-18 | 电气化学工业株式会社 | 荧光体及其制造方法及使用了该荧光体的发光元件 |
JP4822203B2 (ja) * | 2005-04-28 | 2011-11-24 | 独立行政法人物質・材料研究機構 | リチウム含有サイアロン蛍光体およびその製造法 |
JP5188687B2 (ja) * | 2006-07-18 | 2013-04-24 | 昭和電工株式会社 | 蛍光体及びその製造法並びに発光装置 |
JP5240399B2 (ja) * | 2010-03-01 | 2013-07-17 | 宇部興産株式会社 | Li含有α−サイアロン系蛍光体粒子とその製造方法、照明器具ならびに画像表示装置 |
-
2009
- 2009-08-11 WO PCT/JP2009/064373 patent/WO2010018873A1/ja active Application Filing
- 2009-08-11 US US13/058,027 patent/US20110133629A1/en not_active Abandoned
- 2009-08-11 KR KR1020117000484A patent/KR101265030B1/ko active IP Right Grant
- 2009-08-11 MY MYPI2011000619A patent/MY158794A/en unknown
- 2009-08-11 CN CN2009801282638A patent/CN102099436B/zh not_active Expired - Fee Related
- 2009-08-11 EP EP09806762.2A patent/EP2314659B1/en not_active Not-in-force
- 2009-08-12 TW TW098127112A patent/TWI460251B/zh not_active IP Right Cessation
-
2014
- 2014-03-18 US US14/217,816 patent/US9464226B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002363554A (ja) | 2001-06-07 | 2002-12-18 | National Institute For Materials Science | 希土類元素を付活させた酸窒化物蛍光体 |
JP2004067837A (ja) | 2002-08-06 | 2004-03-04 | Toyota Central Res & Dev Lab Inc | α−サイアロン蛍光体 |
JP2006052337A (ja) | 2004-08-12 | 2006-02-23 | Fujikura Ltd | サイアロン蛍光体およびその製造方法 |
JP2006152069A (ja) | 2004-11-26 | 2006-06-15 | Fujikura Ltd | アルファサイアロン蛍光体とその製造方法、アルファサイアロン蛍光体中間生成物、アルファサイアロン蛍光体原料粉末及び発光ダイオードランプ |
JP2006321921A (ja) | 2005-05-19 | 2006-11-30 | Denki Kagaku Kogyo Kk | α型サイアロン蛍光体とそれを用いた照明器具 |
WO2007004493A1 (ja) | 2005-07-01 | 2007-01-11 | National Institute For Materials Science | 蛍光体とその製造方法および照明器具 |
WO2008004640A1 (fr) * | 2006-07-05 | 2008-01-10 | Ube Industries, Ltd. | Phosphores d'oxynitrure à base de sialon et procédé de production de ceux-ci |
Non-Patent Citations (2)
Title |
---|
J. PHYS. CHEM., vol. B2004, no. 108, pages 12027 - 12031 |
RONG-JUN XIE: "Wavelength-tunable and thermally stable Li-a-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes", APPLIED PHYSICS LETTERS, vol. 89, 2006, pages 241103-1 - 241103-3, XP002584653 * |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5240399B2 (ja) * | 2010-03-01 | 2013-07-17 | 宇部興産株式会社 | Li含有α−サイアロン系蛍光体粒子とその製造方法、照明器具ならびに画像表示装置 |
US8497624B2 (en) | 2010-03-01 | 2013-07-30 | Ube Industries, Ltd. | Li-containing α-sialon-based phosphor particle, production method thereof, lighting device, and image display device |
KR101366866B1 (ko) | 2010-03-01 | 2014-02-21 | 우베 고산 가부시키가이샤 | Li 함유 α-사이알론계 형광체 입자와 그의 제조 방법, 조명 기구 및 화상 표시 장치 |
TWI513798B (zh) * | 2010-03-01 | 2015-12-21 | Ube Industries | Lithium-α-sialon-based phosphor particles, a method for manufacturing the same, a lighting fixture, and an image display device |
WO2011108740A1 (ja) * | 2010-03-01 | 2011-09-09 | 宇部興産株式会社 | Li含有α-サイアロン系蛍光体粒子とその製造方法、照明器具ならびに画像表示装置 |
US8974698B2 (en) | 2010-03-31 | 2015-03-10 | Ube Industries, Ltd. | Production method of sialon-based oxynitride phosphor, and sialon-based oxynitride phosphor |
WO2011126035A1 (ja) * | 2010-03-31 | 2011-10-13 | 宇部興産株式会社 | サイアロン系酸窒化物蛍光体の製造方法及びサイアロン系酸窒化物蛍光体 |
CN102782085A (zh) * | 2010-03-31 | 2012-11-14 | 宇部兴产株式会社 | 赛隆系氧氮化物荧光体的制造方法以及赛隆系氧氮化物荧光体 |
JP5170344B2 (ja) * | 2010-03-31 | 2013-03-27 | 宇部興産株式会社 | サイアロン系酸窒化物蛍光体の製造方法及びサイアロン系酸窒化物蛍光体 |
KR101455486B1 (ko) | 2010-03-31 | 2014-10-27 | 우베 고산 가부시키가이샤 | 사이알론계 산질화물 형광체의 제조 방법 및 사이알론계 산질화물 형광체 |
JP2013203893A (ja) * | 2012-03-28 | 2013-10-07 | Ube Industries Ltd | リチウムケイ素窒化物蛍光体およびその製造方法 |
WO2014077132A1 (ja) | 2012-11-13 | 2014-05-22 | 電気化学工業株式会社 | 蛍光体、発光素子及び照明装置 |
KR20150084867A (ko) | 2012-11-13 | 2015-07-22 | 덴끼 가가꾸 고교 가부시키가이샤 | 형광체, 발광소자 및 조명장치 |
KR20150086274A (ko) | 2012-11-13 | 2015-07-27 | 덴끼 가가꾸 고교 가부시키가이샤 | 형광체, 발광소자 및 조명장치 |
WO2014077240A1 (ja) | 2012-11-13 | 2014-05-22 | 電気化学工業株式会社 | 蛍光体、発光素子及び照明装置 |
US10266766B2 (en) | 2012-11-13 | 2019-04-23 | Denka Company Limited | Phosphor, light-emitting element and lighting device |
US9663713B2 (en) | 2012-11-13 | 2017-05-30 | Denka Company Limited | Phosphor, light-emitting element and lighting device |
WO2015115640A1 (ja) * | 2014-02-03 | 2015-08-06 | 宇部興産株式会社 | 酸窒化物蛍光体粉末およびその製造方法 |
JPWO2015115640A1 (ja) * | 2014-02-03 | 2017-03-23 | 宇部興産株式会社 | 酸窒化物蛍光体粉末およびその製造方法 |
US10125313B2 (en) | 2014-02-03 | 2018-11-13 | Ube Industries, Ltd. | Oxynitride phosphor powder and method for producing same |
JP2018197355A (ja) * | 2014-02-03 | 2018-12-13 | 宇部興産株式会社 | 酸窒化物蛍光体粉末およびそれを用いた発光装置 |
US9475987B2 (en) | 2014-05-28 | 2016-10-25 | Lg Electronics Inc. | Yellow light emitting phosphor and light emitting device package using the same |
JP2015224344A (ja) * | 2014-05-28 | 2015-12-14 | エルジー エレクトロニクス インコーポレイティド | 黄色発光蛍光体及びそれを用いた発光素子パッケージ |
EP2949727A1 (en) | 2014-05-28 | 2015-12-02 | LG Electronics Inc. | Yellow light emitting phosphor and light emitting device package using the same |
JP2016020486A (ja) * | 2014-07-14 | 2016-02-04 | エルジー エレクトロニクス インコーポレイティド | 黄色発光蛍光体及びそれを用いた発光素子パッケージ |
US9321958B2 (en) | 2014-07-14 | 2016-04-26 | Lg Electronics Inc. | Yellow light emitting phosphor and light emitting device package using the same |
WO2018003848A1 (ja) * | 2016-06-30 | 2018-01-04 | デンカ株式会社 | 蛍光体及び発光装置 |
KR20190024903A (ko) * | 2016-06-30 | 2019-03-08 | 덴카 주식회사 | 형광체 및 발광 장치 |
JPWO2018003848A1 (ja) * | 2016-06-30 | 2019-04-18 | デンカ株式会社 | 蛍光体及び発光装置 |
KR102380907B1 (ko) | 2016-06-30 | 2022-03-31 | 덴카 주식회사 | 형광체 및 발광 장치 |
JP2020164750A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
CN113710771A (zh) * | 2019-03-29 | 2021-11-26 | 电化株式会社 | 荧光体粒子、复合体、发光装置和荧光体粒子的制造方法 |
TWI838499B (zh) * | 2019-03-29 | 2024-04-11 | 日商電化股份有限公司 | 螢光體粒子、複合體、發光裝置、及螢光體粒子之製造方法 |
WO2020203487A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164754A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164752A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2020164788A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP7436214B2 (ja) | 2019-03-29 | 2024-02-21 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
WO2020203488A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
WO2020203485A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
WO2020203483A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
WO2020203486A1 (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
US11898079B2 (en) | 2019-03-29 | 2024-02-13 | Denka Company Limited | Phosphor powder, composite, and light-emitting device |
KR20210128005A (ko) * | 2019-03-29 | 2021-10-25 | 덴카 주식회사 | 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법 |
KR20210128006A (ko) * | 2019-03-29 | 2021-10-25 | 덴카 주식회사 | 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법 |
KR20210128007A (ko) * | 2019-03-29 | 2021-10-25 | 덴카 주식회사 | 형광체 분말, 복합체 및 발광 장치 |
KR20210129211A (ko) * | 2019-03-29 | 2021-10-27 | 덴카 주식회사 | 형광체 분말, 복합체 및 발광 장치 |
JP2020164751A (ja) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
KR102336244B1 (ko) | 2019-03-29 | 2021-12-07 | 덴카 주식회사 | 형광체 분말, 복합체 및 발광 장치 |
KR102336243B1 (ko) | 2019-03-29 | 2021-12-07 | 덴카 주식회사 | 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법 |
KR102336242B1 (ko) | 2019-03-29 | 2021-12-07 | 덴카 주식회사 | 형광체 입자, 복합체, 발광 장치 및 형광체 입자의 제조 방법 |
US11485906B2 (en) | 2019-03-29 | 2022-11-01 | Denka Company Limited | Phosphor particle, composite, light-emitting device, and method for producing phosphor particle |
KR102398791B1 (ko) * | 2019-03-29 | 2022-05-17 | 덴카 주식회사 | 형광체 분말, 복합체 및 발광 장치 |
US11339325B2 (en) | 2019-03-29 | 2022-05-24 | Denka Company Limited | Phosphor particle, composite, light-emitting device, and method for producing phosphor particle |
US11359139B2 (en) | 2019-03-29 | 2022-06-14 | Denka Company Limited | Phosphor powder, composite, and light-emitting device |
CN113710771B (zh) * | 2019-03-29 | 2022-07-12 | 电化株式会社 | 荧光体粒子、复合体、发光装置和荧光体粒子的制造方法 |
US11434422B2 (en) | 2019-03-29 | 2022-09-06 | Denka Company Limited | Phosphor powder, composite, and light-emitting device |
JP2020164796A (ja) * | 2020-02-21 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
JP7249299B2 (ja) | 2020-02-21 | 2023-03-30 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
JP7249298B2 (ja) | 2020-02-21 | 2023-03-30 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
JP2020164797A (ja) * | 2020-02-21 | 2020-10-08 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および蛍光体粒子の製造方法 |
JP2020164798A (ja) * | 2020-02-21 | 2020-10-08 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP7497206B2 (ja) | 2020-05-18 | 2024-06-10 | デンカ株式会社 | リチウム含有α-サイアロン蛍光体の製造方法 |
JP7252186B2 (ja) | 2020-10-26 | 2023-04-04 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
JP2021011586A (ja) * | 2020-10-26 | 2021-02-04 | デンカ株式会社 | 蛍光体粉末、複合体および発光装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102099436A (zh) | 2011-06-15 |
US20140197362A1 (en) | 2014-07-17 |
MY158794A (en) | 2016-11-15 |
KR101265030B1 (ko) | 2013-05-24 |
EP2314659B1 (en) | 2014-07-23 |
TWI460251B (zh) | 2014-11-11 |
KR20110016493A (ko) | 2011-02-17 |
TW201016828A (en) | 2010-05-01 |
US9464226B2 (en) | 2016-10-11 |
US20110133629A1 (en) | 2011-06-09 |
EP2314659A1 (en) | 2011-04-27 |
CN102099436B (zh) | 2013-09-04 |
EP2314659A4 (en) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010018873A1 (ja) | Li含有α-サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置 | |
JP5835469B2 (ja) | 酸窒化物蛍光体粉末 | |
JP6610739B2 (ja) | 酸窒化物蛍光体粉末およびそれを用いた発光装置 | |
JP5854051B2 (ja) | 酸窒化物蛍光体粉末及びその製造方法 | |
TWI513798B (zh) | Lithium-α-sialon-based phosphor particles, a method for manufacturing the same, a lighting fixture, and an image display device | |
TWI601805B (zh) | Process for producing nitride phosphors, silicon nitride phosphors for nitride phosphors, and nitride phosphors | |
JP5741177B2 (ja) | Ca含有α型サイアロン蛍光体およびその製造方法 | |
JP5565046B2 (ja) | Li含有α−サイアロン系蛍光体の製造方法 | |
JP6015851B2 (ja) | 酸窒化物蛍光体粉末およびその製造方法 | |
JP6036987B2 (ja) | 酸窒化物蛍光体粉末およびその製造方法 | |
JP5470911B2 (ja) | Li含有α−サイアロン系酸窒化物蛍光体粉末およびその製造方法 | |
JP5170247B2 (ja) | Li含有α−サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置 | |
JP5782778B2 (ja) | 窒化物蛍光体粉末の製造方法および窒化物蛍光体粉末 | |
Lee et al. | Photoluminescence characteristics of Y3Al5O12: Ce3+ phosphors synthesized using the combustion method with various reagents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980128263.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09806762 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010524760 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117000484 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009806762 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13058027 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |