JP2013203893A - リチウムケイ素窒化物蛍光体およびその製造方法 - Google Patents

リチウムケイ素窒化物蛍光体およびその製造方法 Download PDF

Info

Publication number
JP2013203893A
JP2013203893A JP2012074860A JP2012074860A JP2013203893A JP 2013203893 A JP2013203893 A JP 2013203893A JP 2012074860 A JP2012074860 A JP 2012074860A JP 2012074860 A JP2012074860 A JP 2012074860A JP 2013203893 A JP2013203893 A JP 2013203893A
Authority
JP
Japan
Prior art keywords
silicon nitride
lithium
lithium silicon
nitrogen
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074860A
Other languages
English (en)
Inventor
Hiroshi Oda
浩 小田
Shinichi Sakata
信一 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2012074860A priority Critical patent/JP2013203893A/ja
Publication of JP2013203893A publication Critical patent/JP2013203893A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

【課題】 温白色LEDの蛍光層を形成しても色むらを生じにくく、粒径が小さく、かつ凝集性が低い橙色蛍光体の提供を目的とする。
【解決手段】 一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、セリウム(Ce)を発光中心として含有するリチウムケイ素窒化物蛍光体を提供する。前記リチウムケイ素窒化物蛍光体は、含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素からなる窒化ケイ素源と、リチウム(Li)源となる物質と、セリウム(Ce)源となる物質とを混合し、窒素含有不活性ガス雰囲気中、1200〜1400℃で焼成することで得られる。
【選択図】 図4

Description

本発明は、紫外から紫色の光源に好適な、セリウム(以下Ceと記す)を発光中心として含有するリチウムケイ素窒化物蛍光体とその製造方法に関するものである。
近年、紫外〜紫〜青色のLEDの実用化が進んだことにより、このLEDを使用した白色LEDの開発が精力的に行われている。白色LEDは、既存の白色光源に比べ消費電力が低く長寿命であるため、液晶パネル用バックライト、室内外の照明機器等への用途展開が進行している。
現在、開発されている白色LEDは、青色LEDの表面にCeを賦活したYAG(イットリウム・アルミニウム・ガーネット)を塗布したものである。しかし、CeをドープしたYAGの蛍光波長は530nm付近にあり、この蛍光の色と青色LEDの光を混合して白色光にすると、やや青みの強い光となり、演色性が良好な白色を得ることができない。
これに対し、希土類元素を賦活させたα−サイアロン蛍光体は、Ceを賦活したYAGの蛍光波長よりもさらに長い波長の(赤色側にシフトした)橙色蛍光を発生することが知られている(特許文献1参照)。このような橙色蛍光体であるサイアロン系の蛍光体と青色LEDの光を混合することで、演色性が良好な白色光を得ることができるようになる。
特開2002−363554号公報
しかしながら、サイアロン系の蛍光体は、一般的に、その合成に高温と原料粉末どうしの十分な接触が必要で、原料を成形した上で、高温で焼成して製造されることが多い。例えば、上記特許文献1に開示されているα−サイアロン蛍光体は、ホットプレス法を用いて粉体を圧縮しながらサイアロンへの反応を進めている。このため、焼成後の蛍光体は、一次粒子が強く凝集、または融着していることが多い。この結果、α−サイアロン蛍光体の粒径は不均一になりやすく、このような粒径が不均一な粉末を樹脂等と混合してLED等照明用の蛍光体の薄膜を形成した場合、LED等照明の発光の色むらの原因になりやすく、製品品質の安定性に影響を与えることがある。
本発明は、温白色LEDの蛍光層を形成しても色むらを生じにくく、粒径が小さく、かつ凝集性が低い橙色蛍光体の提供を目的とする。
本発明者らは、特定の窒化ケイ素源を原料に用いて特定の温度で焼成することにより、Ceを発光中心として含有する、粒径が小さくかつ凝集性が低い、新規なリチウムケイ素窒化物蛍光体が得られることを見いだし、本発明に至った。
本発明は、一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、Ceを発光中心として含有するリチウムケイ素窒化物蛍光体に関する。
また本発明は、含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素からなる窒化ケイ素源と、リチウム(以下Liと記す)源となる物質と、Ce源となる物質とを混合し、窒素含有不活性ガス雰囲気中、1200〜1400℃で焼成することで得られるリチウムケイ素窒化物蛍光体の製造方法に関する。
特に、前記窒化ケイ素源は、含窒素シラン化合物であることが好ましい。
本発明は、含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素を窒化ケイ素源に用いて、低温で焼成することにより、従来得られなかった、一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、Ceを発光中心として含有するリチウムケイ素窒化物からなる実用的で新規な橙色蛍光体を提供する。
本発明のリチウムケイ素窒化物蛍光体は、低温で焼成可能なことにより、粒径が小さく、かつ凝集性が低く、溶融した樹脂等への分散性が良好で、樹脂等と混合して均質性の高い薄膜を形成するのに適した、温白色LED等の蛍光層を形成しても色むらを生じにくい橙色蛍光体を提供する。
実施例1および比較例1で得られたリチウムケイ素窒化物のX線回折チャートを示す図である。 実施例1および比較例1で得られたリチウムケイ素窒化物の(A)蛍光スペクトル及び(B)励起スペクトルを示す図である。 (A)実施例1で得られたリチウムケイ素窒化物蛍光体のSEM写真および(B)比較例1で得られたリチウムケイ素窒化物のSEM写真である。 実施例1〜4で得られたリチウムケイ素窒化物蛍光体の蛍光スペクトルを示す図である。 実施例1で得られたリチウムケイ素窒化物蛍光体および比較例2、3で得られたリチウムケイ素窒化物のX線回折チャートを示す図である。 実施例1で得られたリチウムケイ素窒化物蛍光体および比較例2で得られたリチウムケイ素窒化物の蛍光スペクトルを示す図である。 実施例1、6、および7で得られたリチウムケイ素窒化物蛍光体の蛍光スペクトルを示す図である。 実施例1で得られたリチウムケイ素窒化物蛍光体および比較例4で得られたリチウムケイ素窒化物の蛍光スペクトルを示す図である。
以下、本発明について詳細に説明する。
本発明は、紫外から紫色の光源に好適な、Ceを発光中心として含有するリチウムケイ素窒化物蛍光体とその製造方法に関する。
はじめに、本発明のリチウムケイ素窒化物蛍光体について説明する。
本発明のリチウムケイ素窒化物蛍光体は、一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、Ceを発光中心として含有することを特徴とする、蛍光体として実用的な蛍光特性を有する新規な蛍光体である。
Li、Si、Nからなるリチウムケイ素窒化物には、Li:Si:N比が異なる数種の化合物があり、そのうち一般式:LiSiで表されるリチウムケイ素窒化物はウルツ鉱型の結晶構造を有する大気中で安定な化合物である。従来、一般式:LiSiで表されるリチウムケイ素窒化物が、蛍光体の母体になって発光中心を含有することは報告されておらず、前記リチウムケイ素窒化物が実用的な蛍光体の母体になり得ることは知られていない。
本発明のリチウムケイ素窒化物蛍光体は、以下に説明するように、特定の窒化ケイ素源とCe源とを用いて低温で焼成することによって初めて得られた、実用的な蛍光特性を有する蛍光体である。
次に、本発明のリチウムケイ素窒化物蛍光体の製造方法について説明する。
本発明の一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、Ceを発光中心として含有するリチウムケイ素窒化物蛍光体は、含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素からなる窒化ケイ素源と、リチウム源となる物質と、セリウム(Ce)源となる物質とを混合し、窒素含有不活性ガス雰囲気中、1200〜1400℃で焼成することによって得られる。
本発明に原料として用いる窒化ケイ素源は、含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素である。本発明において、結晶質窒化ケイ素を窒化ケイ素源として用いた場合は、反応性が低く、未反応の窒化ケイ素が残存するため、単相のLiSiを得ることができない。
含窒素シラン化合物としては、シリコンジイミド(Si(NH))、シリコンテトラアミド、シリコンニトロゲンイミド、シリコンクロルイミド等が挙げられる。これらは、公知の方法、例えば、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを気相で反応させる方法、液状の前記ハロゲン化ケイ素と液体アンモニアとを反応させる方法などによって製造される。
また、アモルファス窒化ケイ素は、公知の方法、例えば、前記含窒素シラン化合物を窒素又はアンモニアガス雰囲気下に1200℃〜1460℃の範囲の温度で加熱分解する方法、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを高温で反応させる方法などによって製造されたものが用いられる。
また、窒化ケイ素源として、含窒素シラン化合物とアモルファス窒化ケイ素とが共存した組成物を使用することが可能である。前記組成物を使用する場合の含窒素シラン化合物とアモルファス窒化ケイ素の割合は、含窒素シラン化合物を加熱してアモルファス窒化ケイ素を作製する際の熱分解温度によって自由に変えることができる。アモルファス窒化ケイ素は、通常のX線回折法では、明確な回折ピークを示さず、いわゆるアモルファス状態にある。加熱処理条件によっては、微弱なX線回折ピークを示す粉末も得られるが、このような粉末も本発明で言うアモルファス窒化ケイ素に包含される。
窒化ケイ素源として特に好ましいのは、含窒素シラン化合物である。含窒素シラン化合物は、特に微粒で表面積が大きいため、反応性が高く、凝集性が低いリチウムケイ素窒化物蛍光体を得ることができる。
Li源となる物質としては、Liの窒化物および金属Liを使用することができる。Liの窒化物および金属Liは、高純度であること、例えば3N以上であることが好ましく、市販の窒化リチウム(LiN)粉末、金属Li粉末などを使用することができる。
Ce源となる物質としては、金属Ce、Ceの窒化物、およびCeの酸化物などが使用でき、好ましいのは金属Ceである。これらの物質は粉末の状態で用いるのが好ましい。Ce源としてCeOを用いた場合、本発明のリチウムケイ素窒化物蛍光体の酸素含有量が増える場合があるが、微量であるため、特性に影響はない。
Ceの混合割合は、1モルのLiSiに対して0.01〜0.2モルであることが好ましく、0.01〜0.05モルであることが更に好ましい。
また、Ce源をCe以外のランタノイド源に替えること以外は本発明のリチウムケイ素窒化物蛍光体の製造方法と同じ方法によって、一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、例えば、テルビウム(以下Tbと記す)、ディスプロシウム(以下Dyと記す)、イッテルビウム(以下Ybと記す)などを発光中心として含有するリチウムケイ素窒化物蛍光体を製造し得るが、これらからは蛍光体として実用的な蛍光強度は得られない。
出発原料である含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素からなる窒化ケイ素源と、Li源となる物質と、Ce源となる物質とを混合する方法については、特に制約は無く、それ自体公知の方法、例えば、乾式混合する方法、原料各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法などを採用することができる。混合装置としては、乳鉢や、V型混合機、ロッキングミキサー、ボールミル、振動ミル、媒体攪拌ミルなどが好適に使用される。但し、含窒素シラン化合物、前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素は、水分、湿気に対して極めて敏感であるので、前記出発原料の混合は、制御された不活性ガス雰囲気下で行うことが必要である。
前記出発原料の混合物を、窒素含有不活性ガス雰囲気中、1200〜1400℃、好ましくは1250〜1350℃で焼成することで、本発明の一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、Ceを発光中心として含有するリチウムケイ素窒化物蛍光体が得られる。前記焼成時の温度が1200℃よりも低いと、実用的な蛍光強度を有するリチウムケイ素窒化物蛍光体を得ることが困難になり、また、実用的な蛍光強度を有するリチウムケイ素窒化物蛍光体を得ることができても、その製造に長時間の焼成を要するので工業的ではない。焼成温度が1400℃を超えると、リチウムケイ素窒化物が昇華分解し、リチウムケイ素窒化物蛍光体を得ることができなくなる場合がある。
前記焼成時の雰囲気は、窒素含有不活性ガス雰囲気であれば良く、窒素と、ヘリウム、アルゴン、ネオン、クリプトンなどとの混合ガス雰囲気であっても良い。
前記焼成に使用される加熱炉については、特に制約は無く、例えば、高周波誘導加熱方式または抵抗加熱方式によるバッチ式電気炉、ロータリーキルン、流動化焼成炉、プッシャ−式電気炉などを使用することができる。
本発明によって、Ceを発光中心として含有するリチウムケイ素窒化物からなる新規な橙色蛍光体である、リチウムケイ素窒化物蛍光体が提供される。
本発明のリチウムケイ素窒化物蛍光体は、蛍光体として実用的な蛍光強度を有しながら、粒径が小さく、それにも関わらず凝集が少ないという特徴を有する。粒径が小さく凝集が少ないことで、照明器具等に蛍光体の薄膜を形成する際に、樹脂への分散性が良く、照明器具の発光の色むらを抑制することができる。
以下では、具体例を挙げ、本発明を更に詳しく説明する。
(実施例1)
四塩化珪素とアンモニアを反応させることにより得られたシリコンジイミド(Si(NH))粉末と、窒化リチウム粉末(株式会社高純度化学研究所・LII01PB、2Nup)、及び金属Ce粉末(株式会社高純度化学研究所・CEE01GB、3N)とを、表1の組成で秤量し、混合した。混合は、窒化リチウムが大気と反応しないよう、高純度の窒素雰囲気のグローブボックス中で行った。この混合は乳鉢と乳棒を用いて乾式で行った。得られた混合粉末を、窒化ホウ素製の坩堝に充填し、抵抗加熱炉にセットして、常圧の窒素ガス流通雰囲気下で、焼成した。室温から1300℃までを、200℃/hの昇温速度で加熱し、1300℃で3時間の保持を行い、本発明のリチウムケイ素窒化物蛍光体を得た。得られたリチウムケイ素窒化物蛍光体を、窒化ケイ素乳鉢を用いて解砕した。
得られたリチウムケイ素窒化物蛍光体のX線回折パターンを測定し、結晶相の同定を行った。結果を図1に示す。実施例1により得られたリチウムケイ素窒化物蛍光体の主要な結晶相はLiSi相(ICSDNo01−076−0517)であることを確認した。
Figure 2013203893
得られたリチウムケイ素窒化物蛍光体の蛍光特性を、日本分光社製分光蛍光強度計FP−6500(積分球ユニット付)を用いて測定した。蛍光スペクトルの励起波長は400nmとし、励起スペクトルの蛍光波長は、蛍光スペクトルのピーク波長とした。相対蛍光強度は実施例1の蛍光強度を100とした場合の相対強度で示した。実施例1の蛍光スペクトルを図2の(A)に示す。587nm付近に蛍光による発光ピークが観測された。また、蛍光波長を587nmとした時の励起スペクトルを図2の(B)に示す。Ce3+による発光と考えられるピークパターンが観察された。このように顕著な蛍光が観察されるのは、CeがLiSi結晶中に発光中心として含有されているからである。
(比較例1)
シリコンジイミドに代えて、比表面積が約10m/gの結晶質窒化ケイ素を用いた以外は実施例1と同じ方法によってリチウムケイ素窒化物を作製した。得られたリチウムケイ素窒化物の結晶構造を実施例1と同様にX線回折装置によって調べた。その結果を図1に示す。主要な結晶相はLiSi相(ICSDNo01−076−0517)であることが確認されたが、この他にSi相(ICSDNo01−071−6479)、Ce相(ICSDNo01−076−7414)を僅かに含んでいることが確認された。これは、窒化ケイ素源に結晶質窒化ケイ素を用いると、合成反応が十分に進まず、窒化ケイ素源が未反応の状態で残留してしまう為である。
次に、実施例1と同様の方法で蛍光スペクトルを測定した。その結果を図2の(A)に示す。図2の(A)における相対蛍光強度は、実施例1の強度を100とする相対値である。わずかに590nm付近にピークが見られるが、実施例1の相対蛍光強度と比べれば非常に低く、結晶質の窒化ケイ素を用いた場合には実用的な蛍光体にはならない。また、図2の(B)に示すように、比較例1に係るリチウムケイ素窒化物の、蛍光波長を592nmとしたときの励起スペクトルは、実施例1のピーク形状とは異なり、Ce3+の発光と見なすことはできなかった。
次に、実施例1で得られたリチウムケイ素窒化物蛍光体と、比較例1で得られたリチウムケイ素窒化物の粒子形態を、走査型電子顕微鏡(SEM)観察により比較した。粒子形態の観察には、日立ハイテクノロジーズ社製S4800、及び日本電子社製JSM−7000Fを用いた。その結果を図3に示す。図3の(A)に示す実施例1の本発明のリチウムケイ素窒化物蛍光体は、粒径が1μm以下の二次粒子が分散した粉末であり、その粒子形態も均一であった。一方、図3の(B)に示す比較例1のリチウムケイ素窒化物は、粒径が5μm程度の二次粒子が凝集した粉末であり、その粒子形態は不均一であった。
(実施例2〜4)
Ceの混合割合を表1に示すように変更したこと以外は実施例1と同じ方法でリチウムケイ素窒化物蛍光体を作製し、励起波長400nmにおける蛍光スペクトルを測定した。その結果を実施例1の結果と併せて図4に示す。
Ceの混合割合が0.01モルの時に最大の蛍光強度を示した。
(実施例5)
実施例1のシリコンジイミドの代わりにアモルファス窒化ケイ素を用いて、表1の組成になるように秤量し、実施例1と同じ方法によって、粉末を作製し、X線による結晶相の確認を行った。その結果、ほとんどの相がLiSi相であった。この粉末の励起波長を400nmとしたときの蛍光スペクトルを測定したところ、約593nmにピークを持つ明確な蛍光が観察された。
(実施例6)
焼成温度を表1に示すように1250℃に変更したこと以外は実施例1と同じ方法でリチウムケイ素窒化物蛍光体を作製し、励起波長400nmにおける蛍光スペクトルを測定した。その結果を、実施例1および7の結果と併せて図7に示す。測定の結果、約590nmにピークを持つ明確な蛍光が観察された。
(実施例7)
焼成温度を表1に示すように1350℃に変更したこと以外は実施例1と同じ方法でリチウムケイ素窒化物蛍光体を作製し、励起波長400nmにおける蛍光スペクトルを測定した。その結果を、実施例1および6の結果と併せて図7に示す。測定の結果、約588nmにピークを持つ明確な蛍光が観察された。
(比較例2)
焼成温度を1100℃にしたこと以外は、実施例1と同じ方法でリチウムケイ素窒化物を作製した。得られたリチウムケイ素窒化物の結晶構造を実施例1と同様にX線回折装置によって調べた。その結果を実施例1の結果と併せて図5に示す。比較例3においても、LiSi相の生成は確認できるが、実施例1のリチウムケイ素窒化物蛍光体に比べてピーク強度が低く、LiSiの結晶性が低いことが分かった。このリチウムケイ素窒化物の励起波長を400nmとした場合の蛍光スペクトルを図6に示すが、蛍光はほとんど観察されなかった。
(比較例3)
実施例1の焼成温度を1500℃にしたこと以外は、実施例1と同じ方法でリチウムケイ素窒化物を作製した。得られたリチウムケイ素窒化物の結晶構造を実施例1と同様にX線回折装置によって調べた。その結果を実施例1の結果と併せて図5に示す。実施例1に比べてLiSi相のピーク強度は減少し、更に、Si相の生成が確認された。これは、高温焼成によりLi蒸発し、LiSiが分解してSiが生成したためであり、蛍光はほとんど観察されなかった。
(比較例4〜6)
実施例1の金属Ce粉末を、Tb粉末(株式会社高純度化学研究所・TBE01PB、3N)、Dy粉末(株式会社高純度化学研究所・DYE02PB、3N)、およびYb粉末(株式会社高純度化学研究所・YBE01PB、3N)にそれぞれ替えて、表1に示すような組成割合で原料を調製したこと以外は、実施例1と同じ方法でリチウムケイ素窒化物を作製した。比較例4により得られたリチウムケイ素窒化物の蛍光スペクトルを、実施例1のリチウムケイ素窒化物蛍光体の蛍光スペクトルと併せて図8に示すが、比較例4のリチウムケイ素窒化物からは蛍光はほとんど観察されなかった。同様に、比較例5、6により得られたリチウムケイ素窒化物からも、蛍光はほとんど観察されなかった。
本発明により、一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、Ceを発光中心として含有するリチウムケイ素窒化物蛍光体を得ることができる。本発明のリチウムケイ素窒化物蛍光体は、焼成後に容易に解砕でき、凝集性が低いので、樹脂と混合して均一性の高い薄膜を形成するのに適している。本発明のリチウムケイ素窒化物蛍光体からなる薄膜で白色LED等照明用の蛍光体層を形成することにより、色むらが少なく、高効率な照明が得られる。
また本発明は新規なリチウムケイ素窒化物蛍光体を提供するものであるので、様々な分野で広く利用されているリチウムケイ素窒化物への蛍光機能の付与によってさらに多くの用途展開が期待できる。

Claims (3)

  1. 一般式:LiSiで表されるリチウムケイ素窒化物からなる母体に、セリウム(Ce)を発光中心として含有するリチウムケイ素窒化物蛍光体。
  2. 含窒素シラン化合物、および/または前記含窒素シラン化合物を熱分解することにより得られるアモルファス窒化ケイ素からなる窒化ケイ素源と、リチウム(Li)源となる物質と、セリウム(Ce)源となる物質とを混合し、窒素含有不活性ガス雰囲気中、1200〜1400℃で焼成することを特徴とする請求項1記載のリチウムケイ素窒化物蛍光体の製造方法。
  3. 前記窒化ケイ素源が、含窒素シラン化合物であることを特徴とする請求項2記載のリチウムケイ素窒化物蛍光体の製造方法。
JP2012074860A 2012-03-28 2012-03-28 リチウムケイ素窒化物蛍光体およびその製造方法 Pending JP2013203893A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074860A JP2013203893A (ja) 2012-03-28 2012-03-28 リチウムケイ素窒化物蛍光体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074860A JP2013203893A (ja) 2012-03-28 2012-03-28 リチウムケイ素窒化物蛍光体およびその製造方法

Publications (1)

Publication Number Publication Date
JP2013203893A true JP2013203893A (ja) 2013-10-07

Family

ID=49523356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074860A Pending JP2013203893A (ja) 2012-03-28 2012-03-28 リチウムケイ素窒化物蛍光体およびその製造方法

Country Status (1)

Country Link
JP (1) JP2013203893A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018873A1 (ja) * 2008-08-13 2010-02-18 宇部興産株式会社 Li含有α-サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018873A1 (ja) * 2008-08-13 2010-02-18 宇部興産株式会社 Li含有α-サイアロン系蛍光体とその製造方法、照明器具ならびに画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Crystal, electronic structures and photoluminescence properties of rare-earth doped LiSi2N3", J. SOLID STATE CHEM., vol. Vol. 182, Issue 2, P301-311, JPN6015047249, 7 November 2008 (2008-11-07), ISSN: 0003201429 *

Similar Documents

Publication Publication Date Title
JP5910498B2 (ja) 珪窒化物蛍光体用窒化珪素粉末並びにそれを用いたCaAlSiN3系蛍光体、Sr2Si5N8系蛍光体、(Sr,Ca)AlSiN3系蛍光体及びLa3Si6N11系蛍光体、及びその製造方法
EP2314659B1 (en) Li-containing -sialon fluorescent substance and method for manufacturing same, illumination device, and image display device
TWI428429B (zh) SIALON is an oxynitride phosphor and a method for producing the same
JP4565141B2 (ja) 蛍光体と発光器具
Sun et al. Enhanced luminescence of novel Ca3B2O6: Dy3+ phosphors by Li+-codoping for LED applications
TWI510599B (zh) 以碳氮化物為主之磷光體及利用其之發光裝置
JP4277666B2 (ja) サイアロン系蛍光体の製造方法およびサイアロン系蛍光体
TW200536927A (en) Phosphor, process for producing the same, lighting fixture and image display unit
JP4494306B2 (ja) α型サイアロン粉末の製造方法
JP5854051B2 (ja) 酸窒化物蛍光体粉末及びその製造方法
JP2005336253A (ja) 蛍光体の製造方法
Weng et al. Yellowish green-emitting KSrPO4: Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering
Du et al. Synthesis, structure and luminescent properties of yellow phosphor La3Si6N11: Ce3+ for high power white-LEDs
JPWO2012023414A1 (ja) 珪窒化物蛍光体用窒化珪素粉末並びにそれを用いたSr3Al3Si13O2N21系蛍光体、β−サイアロン蛍光体及びそれらの製造方法
Xu et al. Synthesis and luminescent properties of CaTiO3: Eu3+, Al3+ phosphors
JP2004189996A (ja) オキシ窒化物蛍光体及びその製造方法
JP6036987B2 (ja) 酸窒化物蛍光体粉末およびその製造方法
JP2007113019A (ja) 蛍光体の製造方法
JP2011213839A (ja) Li含有α−サイアロン系蛍光体の製造方法
JP2014503605A (ja) 窒素化合物発光材料及びその調製方法並びにそれによって製造された照明光源
Ding et al. Gd3Al3Ga2O12: Ce, Mg2+ transparent ceramic phosphors for high-power white LEDs/LDs
Yang et al. The optimum sintering condition for KSrPO4: Eu3+ phosphors applied in WLEDs
Liu et al. Synthesis of Ag+/CaTiO3: Pr3+ with luminescence and antibacterial properties
Zhang et al. Improving the luminescence properties and powder morphologies of red-emitting Sr0. 8Ca0. 19AlSiN3: 0.01 Eu2+ phosphors for high CRIs white LEDs by adding fluxes
JP2008045080A (ja) 無機化合物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419