WO2010013549A1 - 板状ワークの移送設備および移送方法 - Google Patents

板状ワークの移送設備および移送方法 Download PDF

Info

Publication number
WO2010013549A1
WO2010013549A1 PCT/JP2009/060791 JP2009060791W WO2010013549A1 WO 2010013549 A1 WO2010013549 A1 WO 2010013549A1 JP 2009060791 W JP2009060791 W JP 2009060791W WO 2010013549 A1 WO2010013549 A1 WO 2010013549A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
workpiece
transfer
glass substrate
series
Prior art date
Application number
PCT/JP2009/060791
Other languages
English (en)
French (fr)
Inventor
弘和 奥村
安宏 澤村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN200980129617.0A priority Critical patent/CN102105375B/zh
Publication of WO2010013549A1 publication Critical patent/WO2010013549A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/067Sheet handling, means, e.g. manipulators, devices for turning or tilting sheet glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/068Stacking or destacking devices; Means for preventing damage to stacked sheets, e.g. spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups

Definitions

  • the present invention relates to a plate-like workpiece transfer facility and transfer method, for example, a facility and a transfer for transferring a glass substrate for a liquid crystal display, a plasma display, or a flat panel display (FPD) such as an organic EL, FED, and SED. Regarding the method.
  • a plate-like workpiece transfer facility and transfer method for example, a facility and a transfer for transferring a glass substrate for a liquid crystal display, a plasma display, or a flat panel display (FPD) such as an organic EL, FED, and SED.
  • the glass plate (glass substrate) according to the above application has a surface on which various display elements can be attached. Therefore, one surface of the glass substrate that is the attachment surface needs to be handled more carefully than the other surfaces. Become. That is, regarding the transfer of the glass substrate, it is preferable to perform the transfer without touching the mounting surface as much as possible.
  • Patent Document 1 as a transfer machine constituting a substrate transfer device in which a thin film is formed on one surface, a receiving recess opened to at least one of a transfer terminal or a side surface of a substrate transfer means; and A swivel base that can be rotated about a vertical axis is mounted on a fixed base, and an arm base is mounted on the swivel base so that the arm base can be raised and lowered.
  • An articulated robot having a suction head for sucking (lower surface) is disclosed. And the board
  • the head base of the suction head is connected to the tip of the articulated arm so as to be rotatable about a horizontal axis, and the suction head in the horizontal posture is reversed and held by 180 ° so that it is sucked and held by the suction head.
  • the substrate is turned upside down.
  • Patent Document 2 as an inter-press transfer robot for loading and unloading a workpiece into and from a press machine, a linear motion base arranged in parallel to the workpiece conveyance direction, and a swing base linearly moving on the linear motion base, A first arm which is attached to a swing base and swings around a swing axis perpendicular to the conveying direction in a vertical plane, and is attached to the tip of the first arm so as to be movable forward and backward with respect to the first arm; An inter-press transfer robot configured by a second arm and a wrist attached to the tip of the second arm is disclosed.
  • two inter-press transfer robots are placed facing each other across the workpiece transfer path, and the workpiece gripping hands that hold the workpiece by suction are supported by the two inter-press transfer robots. It is disclosed that workpieces are conveyed between presses by cooperatively operating a press conveying robot.
  • the installation area of the safety fence or the like must be increased, and an increase in the footprint (area occupied by the device) is inevitable. In this case, improvement in work efficiency cannot be expected, and on the contrary, work efficiency and productivity may be reduced.
  • the equipment since the equipment is often installed in a clean environment, it also hinders reduction in management costs necessary for maintaining the clean environment. Therefore, the footprint of the transfer facility is also required to save more space than ever.
  • the articulated arm holding the substrate is swung around the vertical axis to move the substrate from the receiving position to the delivery position. Becomes longer. Also, considering the stopping operation at the delivery position, it is difficult to move the robot arm at high speed. Therefore, as long as such a transfer route is taken, it must be said that shortening the transfer time is difficult. Moreover, since it is necessary to take a large operation space for the transfer machine (robot arm), it is disadvantageous in terms of footprint. Furthermore, since the substrate reversing operation is performed around an axis different from the above-described swivel transfer, a dedicated drive mechanism is required for each. Therefore, it is difficult to reduce the weight of the entire arm.
  • this transfer equipment is a facility for acquiring a plate-like workpiece at the acquisition position of the plate-like workpiece, and transferring the acquired plate-like workpiece to its placement position, and a series of movable arms having multiple joints.
  • a multi-joint robot provided with a holding unit for holding and acquiring one surface of the plate-like workpiece at the tip of a series of movable arms, on the supply side of the plate-like workpiece supplied to the acquisition position by the multi-joint robot.
  • a plate-shaped workpiece transfer facility that holds the lower surface and places the upper surface opposite to the lower surface on the mounting surface of the mounting position, the acquisition position and the mounting position are opposed to each other, and the opposite space side
  • An articulated robot is arranged on the side, and the articulated robot moves the plate-shaped workpiece from the acquisition position to the placement position through the opposing space by turning and bending movement of a series of movable arms.
  • a plate-like word It characterized with that it is configured to serve as the inversion operation for placing the top surface on the mounting surface.
  • the articulated robot is disposed at a position that is laterally distant from the facing space between the plate-like workpiece acquisition position and the mounting position, and the plate-like workpiece is transferred through the facing space. It is not necessary to turn the work around the robot body or to shift the position of the robot body when the work is transferred. Therefore, it is possible to reduce the transfer time and to reduce the area of the peripheral region to be secured when transferring the plate-like workpiece as compared with the conventional case. As a result, the occupation area (footprint) of the transfer facility can be reduced to improve the work efficiency, and also contribute to the reduction of the management cost necessary for maintaining a clean environment.
  • a mechanism for performing only the reversal operation independently of the transfer operation is not required.
  • a driving source such as a motor
  • a driving motor used only for the reversing operation is not necessary, and only a driving motor for the transfer operation is sufficient.
  • the series of movable arms can be reduced in weight and the arm rigidity can be increased to improve the moving speed of the arms.
  • the plate-like workpiece transfer operation may be configured to be performed by turning / bending / extending movement of the series of movable arms around the horizontal axis. This is because, from the point that the acquisition position and the mounting position are arranged to face each other and the above transfer form, the plate-like workpiece is transferred and the posture is changed (reversed) only by the rotational movement around the horizontal axis. By comprising in this way, working efficiency can be improved further, minimizing the substantial equipment occupation area (footprint) required for a transfer equipment.
  • a general-purpose 6-axis type multi-degree-of-freedom robot arm For example, an articulated robot having joints of 5 axes or less which are horizontal and parallel to each other is used. It may be provided. Preferably, all of them may include a multi-joint robot having three axes that are horizontal and parallel to each other. Further, if the number of links and joints (axes) can be reduced, the operation speed of the entire series of movable arms is not limited by the restriction of one joint having a low operation speed. Further, since the arm rigidity is improved as compared with the conventional art by reducing the number of joints, the plate-like workpiece can be transferred at a high speed while ensuring high positional accuracy.
  • the transfer operation includes, for example, an operation of holding the lower surface of the plate-shaped workpiece by inserting the holding portion below the plate-shaped workpiece supplied to the acquisition position, and then pushing the plate-shaped workpiece upward. It may be a thing.
  • By moving the series of movable arms in this way it is possible to start the transfer of the plate-like workpiece by pushing the plate-like workpiece from the lower surface side on the transport side. Therefore, even if the transfer speed is increased immediately after the start of transfer, there is no possibility that the plate-like workpiece is detached (detached) from the holding portion.
  • the transfer operation includes, for example, an operation of moving the plate-like work to a position facing the placement surface, and then moving the plate-like work toward the placement surface while maintaining the facing posture. There may be.
  • This is a placement operation effective when a plate-shaped workpiece is loaded. According to this operation, even when the plate-shaped workpiece is loaded on the mounting surface and the actual position of the mounting surface is slightly shifted in the stacking thickness direction, the plate-shaped workpiece is already loaded. Can be placed with high accuracy.
  • Both the placement operation and the acquisition operation described above can be performed with a series of movable arms (articulated robots) having at least three axes.
  • the plate-like workpiece transfer operation by the articulated robot may be set so that the sum of the outputs of the drive motors provided at the joints of the articulated robot is minimized. This is because the plate-like workpiece cannot simply be linearly transferred from the acquisition position to the mounting position because of the form of transferring with reversal.
  • the trajectory that minimizes the transfer path depends on what is taken as the reference. Even if the trajectory that minimizes the path length is found, the path setting that takes into account the air resistance that actually acts on the plate workpiece This is because it may be considered that the transfer speed as set can not be obtained in consideration of the load capacity of the motor.
  • the plate-like workpiece can be transferred efficiently and in a short time.
  • the transfer operation (path) is set based on the motor output, it is not necessary to use a motor with a large output. Therefore, a motor with a relatively small capacity can be used, and the high-speed transfer operation as set can be realized by reducing the weight of the entire arm.
  • the transfer operation include, for example, an operation of turning a series of movable arms in a direction to push up the lower surface of the plate-like workpiece to reversely move the plate-like workpiece to a position where the upper surface faces the placement surface,
  • position with a mounting surface can be mentioned.
  • the plate-like workpiece transfer operation by the articulated robot may be set so that the total kinetic energy lost by the plate-like workpiece receiving air resistance during the transfer operation is minimized. .
  • This is especially true from the viewpoint that minimizing the air resistance received by the plate-like workpiece contributes most to the improvement of the transfer speed, taking into account the relationship between the air resistance received by the plate-like workpiece during transfer and the path length.
  • a transfer route is set. Therefore, by setting the transfer operation (transfer path) as described above, it is possible to maximize the transfer speed of the plate workpiece and shorten the transfer time.
  • the plate-like workpiece is lifted from the base end side, and the tip of the plate-like workpiece is erected downward, and a series of movable arms are bent from the upright state.
  • the plate-like workpiece is lowered and rotated around its base end side, whereby a transfer operation having an operation of sliding the plate-like workpiece toward the placement surface while being reversed can be exemplified.
  • the “base end” means the end of the plate-like workpiece on the side close to the main body of the movable arm
  • the “tip” means the side of the plate-like workpiece far from the series of movable arm main bodies.
  • the articulated robot having the above-described configuration may be arranged on a base and configured to be able to horizontally move the articulated robot with respect to the base in a direction orthogonal to the transfer direction of the plate-like workpiece. .
  • the plate-shaped workpiece transferred to the mounting position is configured to be mounted in a state where it is accurately positioned with respect to the loading surface.
  • the above configuration is preferable. Even if there is a slight variation in the stop position of the plate-like workpiece, the articulated robot body can be moved in the horizontal direction to correct the variation and place it at an accurate position.
  • the plate-shaped workpiece transfer equipment can be provided, for example, in the form shown below. That is, the transfer equipment, a transport means for transporting the plate-like work to the acquisition position, and a mounting position, and one or a plurality of packing pallets for packing the plate-like work in a stacked state,
  • the transport means is provided with the same number of acquisition positions as the packing pallet, and an articulated robot is arranged on the side of the facing space between each acquisition position and the packing pallet and is transported to the acquisition position by the transport means.
  • the plate-like workpiece can be provided as a plate-like workpiece packing facility that is configured to selectively load the plate-like workpiece on each packing pallet by the transfer operation of the articulated robot.
  • the use of a plurality of transfer facilities can improve the transfer efficiency (packing efficiency). Further, when different types of plate-like workpieces are conveyed by the same conveying means, it is possible to load each workpiece accurately and efficiently.
  • the solution to the above problem is a method of acquiring a plate-like workpiece at the plate-like workpiece acquisition position and transferring the acquired plate-like workpiece to its placement position, which has a series of movable arms having multiple joints.
  • a multi-joint robot provided with a holding unit for holding and acquiring one surface of the plate-like workpiece at the tip of a series of movable arms, the lower surface on the supply side of the plate-like workpiece supplied to the acquisition position is held.
  • the acquisition position and the placement position are arranged to face each other, and the articulated robot is placed laterally in the facing space.
  • a plate-like workpiece is transferred from the acquisition position to the mounting position through the opposing space by turning and bending / extending movement of a series of movable arms of the multi-joint robot, and the plate-like work is part of the transfer operation.
  • Reaction to place the upper surface of the workpiece on the mounting surface That double as the operation can also be achieved by transferring method of the plate-shaped workpiece, characterized in.
  • the plate-like workpiece transfer time and the space required for transfer can be reduced.
  • FIG. 1 is a plan view of a glass substrate packaging facility 1 according to an embodiment of the present invention.
  • the packaging facility 1 acquires the glass substrate 3 for liquid crystal display, which is transported to the acquisition position 4 by the transport means 2, using the transfer facility 10, and acquires the acquired glass substrate 3 on the transport means 2 side.
  • a pallet 5 5.
  • the transport means 2 has a transport path 6 that can transport the glass substrate 3 in a horizontal posture.
  • This conveyance path 6 is comprised by suitable drive means, such as a roller conveyor, for example.
  • suitable drive means such as a roller conveyor, for example.
  • One or a plurality of acquisition positions 4 of the glass substrate 3 by the transfer facility 10 exist on the transport path 6.
  • a concave portion 7 having a shape that allows a work holding portion 23 of the multi-joint robot 11 to be described later to pass in the vertical direction is formed open to the side of the conveying means 2.
  • the glass substrate 3 stopped in the state can be held and acquired by the work holding unit 23 from below.
  • An alignment unit 8 is disposed on the transport path 6 at the acquisition position 4 so that the glass substrate 3 stopped at the acquisition position 4 is aligned in the transport orthogonal direction.
  • the packing pallet 5 for the glass substrate 3 is arranged at a position facing the acquisition position 4 in the transport means 2. Precisely, the left and right end surfaces of the glass substrate 3 at the acquisition position 4 and the left and right end surfaces of the glass substrate 3 placed on the placement surface 26 of the packing pallet 5 (at the placement position) are parallel to each other.
  • An arrangement position (opposite interval and direction) of the packing pallet 5 with respect to the conveying means 2 (acquisition position 4) is determined.
  • An articulated robot 11 of the transfer equipment 10 is disposed on the side of the facing space 9 formed between the acquisition position 4 and the placement position (packing pallet 5).
  • the recessed part 7 (acquisition position 4) is provided for every predetermined interval of the conveyance path 6, and the packing pallet 5 and the articulated robot 11 of the same number as this recessed part 7 are each arrange
  • FIG. 2 shows a side view of the transfer facility 10.
  • the transfer facility 10 includes an articulated robot 11 and is disposed on a grounded base 12.
  • the articulated robot 11 includes a series of movable arms 13 and a control panel 14 (see FIG. 1) that controls the operations of the series of movable arms 13.
  • the series of movable arms 13 has a so-called articulated robot arm structure, and each joint axis is arranged in parallel with each other and in the direction along the transport direction of the glass substrate 3 by the transport means 2.
  • the structure of the series of movable arms 13 and the acquisition positions so that the normal line of the glass substrate 3 held by the work holding unit 23 is always kept orthogonal to any joint axis (joint axis). 4 and the installation posture of the articulated robot 11 with respect to the mounting position (packing pallet 5) are set.
  • the series of movable arms 13 has a three-axis joint structure, and the first link 15 located closest to the base 12 is erected with respect to the base 12. At the same time, one end of the second link 17 is connected to the other end of the first link 15 via the first joint 16. One end of the third link 19 is connected to the other end of the second link 17 via the second joint 18, and the other end of the third link 19 is connected to the work holding portion 23 via the third joint 20.
  • the wrist 21 is connected.
  • Corresponding drive motors (only the drive motor 22 for the first joint 16 is shown) are integrally disposed in the vicinity of the joints 16, 18, and 20.
  • a series of movable arms 13 are configured together with 17 and 19.
  • a reduction gear may be incorporated in each joint 16, 18, 20 or a motor with a reduction gear may be used as the drive motor.
  • the reduction gear used at this time is a reduction gear that suppresses the occurrence of backlash in order to further improve the rigidity of the arm (for example, a roller drive that is a zero backlash precision reduction gear manufactured by Sankyo Corporation) Trademark)).
  • each link 15, 17, 19 can be rotated forward and backward independently around each joint 16, 18, 20 so that there is no interference between the links or surrounding objects depending on the rotation angle. Has been.
  • the work holding part 23 has a shape capable of passing through the concave part 7 provided on the conveying path 6 in the vertical direction.
  • a plurality of protrusions are arranged in parallel like a so-called fork.
  • a decompression means 25 such as a vacuum pump connected to a series of movable arms 13. It is like that.
  • the packing pallet 5 has a mounting surface 26 inclined at a predetermined angle (for example, 72 °), and is configured such that a plurality of glass substrates 3 can be stacked on the mounting surface 26.
  • a predetermined angle for example, 72 °
  • an interleaf supply means for supplying the interleaf 27 to the placement surface 26 is disposed above the packing pallet 5.
  • the slip sheet 27 is placed on the placement surface 26 (one or more glass substrates 3 are already placed). If it is, the plurality of glass substrates 3 can be stacked on the mounting surface 26 via the interleaving paper 27 by being supplied onto the lower surface 3 a of the uppermost glass substrate 3.
  • a suitable position sensor detects that the glass substrate 3 transported on the transport path 6 by the transport means 2 has arrived at the acquisition position 4 shown in FIG. To stop. Thereby, the glass substrate 3 stops and is set on the acquisition position 4. At this time, for example, the position of the glass substrate 3 in the left-right direction (the position on the virtual axis orthogonal to the transport direction) is adjusted by an appropriate alignment means 8 installed on the acquisition position 4. At this stage, the work holding portions 23 of the series of movable arms 13 are arranged directly below the glass substrate 3 set on the acquisition position 4 as shown in FIG. The second joint 18 is located below the first joint 16 and the third joint 20.
  • the lower surface 3a of the glass substrate 3 is sucked and held by a plurality of suction pads 24 provided on the work holding portion 23 at the position shown in FIG. 3, and the third link 19 is centered on the second joint 18 from this state in FIG.
  • the glass substrate 3 is pushed up from the conveyance path 6 and the transfer of the glass substrate 3 is started.
  • the wrist 21 remains fixed to the third link 19, and the second link 17 gradually rotates clockwise with respect to the first link 15 in accordance with the turning operation of the third link 19. Do.
  • the glass substrate 3 is sucked and held and lifted slightly upward, and the above-mentioned swiveling operation is performed from a state in which a series of movable arms 13 are bent and translated in front (close to the packing pallet 5). Like to start. This is to avoid interference with other objects on the acquisition position 4. Further, as described above, by rotating the third link 19 around the second joint 18 positioned below the articulated robot 11, the rotational movement distance of the glass substrate 3 can be reduced, and the loading described later. It is made possible to reach a position suitable for (a position facing the placement surface 26).
  • the glass substrate 3 held at the tip is rotated and transferred around the horizontal axis, and the position shown in FIG.
  • the transfer operation of the glass substrate 3 is changed as follows. That is, a series of movable arms 13 are extended while maintaining the facing posture between the upper surface 3b of the glass substrate 3 and the mounting surface 26, and the glass substrate 3 is slid toward the mounting surface 26 (moves linearly). Let Thereby, the glass substrate 3 is mounted on the mounting surface 26 of the packing pallet 5 in a state where the glass substrate 3 is accurately positioned.
  • the position of the glass substrate 3 may be finely adjusted by slightly moving the series of movable arms 13 in the direction perpendicular to the transfer direction by the slide mechanism 28 shown in FIG.
  • the slip sheet 27 is supplied on the lower surface 3 a of the glass substrate 3 loaded first.
  • the supply timing is arbitrary.
  • the work holding unit 23 is moved below the acquisition position 4 to perform the transfer and stacking operation of the glass substrate 3 again.
  • the wrist 21 is first rotated clockwise around the third joint 20 to bring the work holding portion 23 closer to the horizontal, and the third link 19 is centered on the second joint 18.
  • the workpiece holder 23 is moved closer to the acquisition position 4 by rotating clockwise.
  • the work holding unit 23 is inserted below the glass substrate 3 set at the acquisition position 4, and directly below the glass substrate 3, that is, FIG. 3. Place it at the position shown in.
  • the third link 19 is rotated clockwise around the second joint 18, and the wrist 21 is rotated counterclockwise around the third joint 20, From the state where the tip of the work holding part 23 is lowered and tilted, the above-described rolling operation is performed by extending the series of movable arms 13.
  • the series of operations shown in FIGS. 3 to 7 By repeating the series of operations shown in FIGS. 3 to 7 in this way, a plurality of glass substrates 3 are stacked on the mounting surface 26 of the packing pallet 5.
  • a plurality of acquisition positions 4 are provided on the conveyance path 6, and the same number of packing pallets 5 and articulated robots 11 as the acquisition positions 4 are arranged in the same positional relationship. Therefore, while the glass substrate 3 set at one acquisition position 4 is transferred and loaded by one articulated robot 11, the other articulated robot 11 is transported and set to the corresponding other acquisition position 4.
  • the glass substrate 3 can be transferred and loaded, and the transfer and loading efficiency of the glass substrate 3 can be greatly increased.
  • this type of packaging equipment 1 even if different types of glass substrates 3 are transported on the same transport path 6, the transport equipment 10 corresponding to each of the various glass substrates 3 is configured. Thus, transfer and loading operations for each glass substrate 3 are possible.
  • first operation example of the glass substrate 3 using the transfer facility 10 according to the present invention
  • second operation example of the transfer operation using the transfer facility 10
  • a case where the glass substrate 3 conveyed in a horizontal state on the acquisition position 4 is transferred toward a mounting table 29 having the same mounting surface 26 in the horizontal state is taken as an example. I will explain to you.
  • the transfer equipment 10 to be used is the same as that in the first operation example.
  • the transfer operation here is an operation when the transfer operation of the glass substrate 3 by a series of movable arms 13 is set so that the sum of the kinetic energy lost by the glass substrate 3 receiving air resistance during the transfer operation is minimized.
  • An example is shown. From the viewpoint that minimizing the air resistance received by the glass substrate 3 is most effective for improving the transfer speed, based on the relationship between the air resistance received by the glass substrate 3 during transfer and the path length, An optimal transfer route is set.
  • the work holding unit 23 is disposed immediately below the glass substrate 3 set on the acquisition position 4.
  • the second joint 18 is located above the first joint 16 and the third joint 20.
  • the lower surface 3a of the glass substrate 3 is sucked and held by a plurality of suction pads 24 provided on the work holding portion 23, and the glass substrate 3 is lifted slightly upward as shown in FIG.
  • Substantially transfer operation is started from the state of being translated. That is, as shown in FIG. 10, the second link 17 is turned counterclockwise around the first joint 16 (and in this illustrated example, the third link 19 is also moved in response to the turning operation of the second link 17. Further, as shown in FIG. 11, the wrist 21 is rotated around the third joint 20 in the clockwise direction, and the glass substrate 3 is lifted while being tilted with its mounting position side facing up. To go.
  • the glass substrate 3 is moved toward the mounting table 29 while being tilted.
  • the second link 17 and the third link 19 are arranged in a straight line and are moved in series.
  • the glass substrate 3 is moved to a position where the arm 13 extends vertically upward.
  • the wrist 21 is rotated so that the tip side end portion of the glass substrate 3 is erected downward. .
  • the wrist 21 is continuously rotated in the clockwise direction, and the second link 17 is rotated in the clockwise direction and the third link 19 is rotated in the counterclockwise direction (see FIG. 12 respectively).
  • the series of movable arms 13 By moving the series of movable arms 13 in such a manner as to bend, the glass substrate 3 is moved down and the glass substrate 3 is lowered while the glass substrate 3 is gradually laid down.
  • the glass substrate 3 is rotated by rotating the second link 17 that has been swiveled in the clockwise direction and swiveling in the counterclockwise direction. It moves so that it may slide on the mounting surface 26.
  • FIG. That is, the glass substrate 3 is moved from the acquisition position 4 to the mounting position through the opposing space 9 with the operation of lowering the wrist 21 side end portion while bringing the glass substrate 3 close to the horizontal posture. And transport. Thereby, as shown in FIG. 14, the glass substrate 3 is transferred to a position facing the mounting surface 26 in a reversed state.
  • the work holding unit 23 is moved below the acquisition position 4 to perform the transfer / placement operation of the glass substrate 3 again.
  • the second link 17 and the third link 19 are both rotated clockwise to stand substantially vertically upward, and the wrist 21 is rotated counterclockwise so that the work holding portion 23 is rotated. Move from a horizontal position to an upright position.
  • the third link 19 is further rotated clockwise while maintaining the upright posture of the work holding portion 23, and the wrist 21 is centered on the third joint 20 from the time when the third joint 20 is positioned below the second joint 18.
  • the work holding unit 23 is inserted under the glass substrate 3 set at the acquisition position 4 from the position shown in FIG.
  • the transfer and placement operation of the glass substrate 3 from the acquisition position 4 to the placement table 29 is repeatedly executed.
  • the glass substrate 3 is not necessarily stacked on the mounting surface 26.
  • the mounting table 29 constitutes a part of appropriate transport means, the glass substrate 3 is transported one by one toward the next work process. It may be.
  • the transfer operation example of the glass substrate 3 by the transfer equipment 10 was demonstrated, of course, this invention is not limited to the said operation example.
  • the acquisition position 4 and the placement position are arranged opposite to each other, and a transfer articulated robot 11 is arranged on the side of the facing space 9 between the acquisition position 4 and the articulated robot 11.
  • the glass substrate 3 is transferred from the acquisition position 4 to the mounting position through the opposing space 9 by the swiveling / bending / extending movement of the glass substrate 3, and the upper surface 3b of the glass substrate 3 is mounted on the mounting surface 26 as part of this transfer operation.
  • the configuration that the transfer facility 10 can take is arbitrary.
  • the process of mainly loading the glass substrate 3 on the packing pallet 5 has been described as an example.
  • the present invention can be applied to an arbitrary process from the production of the glass substrate 3 to the shipment or the unloading process after the shipment, for example, when transferring 3.
  • the glass substrate 3 for a liquid crystal display is exemplified as a work to be transferred.
  • the present invention is not limited to the liquid crystal display, but various flats such as a plasma display, an organic EL display, an FED, and an SED.
  • Transferable glass plates for panel displays for example, those having a thickness of 0.4 mm or more and 1.2 mm or less
  • glass plates generally used as substrates for forming various electronic display functional elements and thin films Can do.
  • workpiece work which comprises plate shape, it cannot be overemphasized that this invention can also make transfer object other than what uses glass as a raw material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 板状ワークの移送設備(10)は、多関節を有する一連の可動アーム(13)を有し、一連の可動アーム(13)の先端に板状ワーク(3)の一面を保持取得するための保持部(23)を設けた多関節ロボット(11)を備え、この多関節ロボット(11)により、取得位置(4)に供給された板状ワーク(3)の供給側の下面(3a)を保持して、下面(3a)とは反対側の上面(3b)を載置位置の載置面(26)に載置するように構成される。取得位置(4)と載置位置とは対向配置されると共に、対向空間の側方に多関節ロボット(11)が配置される。多関節ロボット(11)は、一連の可動アーム(13)の旋回・屈伸運動により板状ワーク(3)を取得位置(4)から対向空間上を通って載置位置まで移送する動作を行い、かつ、この移送動作の一部で板状ワーク(3)の上面(3b)を載置面(26)に載置するための反転動作を兼ねるよう に構成されている。

Description

板状ワークの移送設備および移送方法
 本発明は、板状ワークの移送設備および移送方法に関し、例えば、液晶ディスプレイやプラズマディスプレイ、あるいは有機EL、FED、SEDなどのフラットパネルディスプレイ(FPD)用のガラス基板を移送するための設備および移送方法に関する。
 この種の移送設備には、従来、多軸垂直多関節ロボットや多軸水平多関節ロボット等の汎用の多自由度ロボットアームが適用されている。ガラス板は割れ易いため手作業では取扱いが困難であり、また、1000mm×1000mm以上の大型のガラス板を作業者が持ち運ぶことは極めて困難である。さらに、上記用途に係るガラス板には高いクリーン度(清浄度)が要求されるため、有機物等を発塵する作業者の取扱いは避ける傾向にある。この点、上記多自由度ロボットアームであれば、ワークの移送姿勢に対する自由度が高く、使用者(作業者)が好みの動作軌跡を設定できる。また、作業者に比べて有機物等の発塵の可能性も低いことから、上記多自由度ロボットアームがガラス板の移送に好適に使用されている。
 特に、上記用途に係るガラス板(ガラス基板)には、各種表示素子が取り付けられる面が存在するため、当該取付け面となるガラス基板の一面については、他の面以上に丁寧な取扱いが必要となる。すなわち、ガラス基板の移送に関していえば、極力取付け面に触れることなく当該移送を行うことが好ましい。
 ここで、例えば下記特許文献1には、一面に薄膜が形成された基板の受渡し装置を構成する受渡し機として、基板の搬送手段の搬送終端又は側面のうちの少なくとも一方に開放する受取り凹部と、固定台上に垂直軸回りに回動可能な旋回台を取付け、この旋回台上にアームベースを昇降可能に取付け、このアームベースに多関節アームを介して基板の薄膜形成側とは反対の面(下面)を吸着するための吸着ヘッドを取付けてなる多関節ロボットが開示されている。そして、受渡し機の旋回台を例えば垂直軸回りに90°旋回させることにより、受取り凹部で吸着した基板を受渡し位置に移送するようになっている。また、多関節アームの先端部には、吸着ヘッドのヘッドベースが水平軸回りに回動可能に連結されており、水平な姿勢の吸着ヘッドを180°反転させることで、吸着ヘッドに吸着保持された基板を上下反転するようになっている。
 また、下記特許文献2には、プレス機にワークを搬出入するプレス間搬送ロボットとして、ワークの搬送方向に平行に配置された直動ベースと、直動ベース上を直動する揺動ベースと、揺動ベースに取り付けられて、垂直平面内において搬送方向に直角な揺動軸まわりに揺動する第1アームと、第1アームの先端に、第1アームに対して進退自在に取り付けられた第2アームと、第2アームの先端に取り付けられた手首部とによって構成されるプレス間搬送ロボットが開示されている。また、ワークの搬送経路を挟んで、プレス間搬送ロボットを2台向い合せに配置して、ワークを吸着保持するワーク把持用ハンドを2台のプレス間搬送ロボットで両持ち支持し、2台のプレス搬送用ロボットを協調動作させることでワークのプレス間搬送を行う旨が開示されている。
特開2001-180822号公報 特開2004-337918号公報
 ところで、最近では、液晶ディスプレイに代表されるFPD製品のより一層の普及を図るために量産化による更なるコストダウンの要求が強く、このため本分野においてもガラス基板の移送時間の更なる短縮化が要求されている。
 また、ロボットアームの動作領域が大きくなると安全フェンス等の設置面積も広く取らざるを得ず、フットプリント(装置占有面積)の増大化は免れ得ない。これでは作業効率の改善は望めず、却って作業効率や生産性の低下を招きかねない。また、当該設備はクリーン環境に設置されることが多いため、クリーン環境の維持に必要な管理コストの削減の妨げともなる。そのため、移送設備のフットプリントに関しても、これまで以上の省スペース化が要求されている。
 この点、上記特許文献1に係る受渡し装置では、基板を吸着保持した多関節アームをその鉛直軸まわりに旋回移動させることで、基板をその受取り位置から受渡し位置まで移送しているので、移送経路が長くなる。また、受渡し位置での停止動作を考慮すると、ロボットアームの高速移動も難しい。よって、このような移送経路を採る限り、移送時間の短縮化は困難と言わざるを得ない。また、受渡し機(ロボットアーム)の動作スペースを広く取る必要があることから、フットプリントの面でも不利である。さらに、基板の反転動作は上記旋回移送とは別個の軸まわりに行われるため、それぞれに専用の駆動機構が必要となる。そのため、アーム全体としての軽量化は難しい。
 また、上記特許文献2に係る搬送装置では、2本のアームをワークの左右側方に配置し、この2本のアームでワークを吸着保持するワーク把持用ハンドを両持ち支持してワークを搬送するように構成されている。そのため、双方のアームを同期して動かす必要が生じ、搬送動作の高速化の妨げとなるおそれがある。また、上記搬送装置には、そもそもワークの表裏面を考慮した反転動作を行うための機構が組み込まれていないため、これをそのままガラス板の移送設備に適用することは難しい。
 もちろん、以上に述べた課題は何もガラス板に限るものではなく、他の板状をなすワーク、特に大型の平面を有する板状ワークに対しても当てはまる。
 以上の事情に鑑み、本明細書では、板状ワークの移送時間および移送に要するスペースの低減化を図ることを本発明により解決すべき技術的課題とする。
 前記課題の解決は、本発明に係るガラス板の移送設備により達成される。すなわち、この移送設備は、板状ワークの取得位置で板状ワークを取得し、取得した板状ワークをその載置位置まで移送するための設備であって、多関節を有する一連の可動アームを有し、一連の可動アームの先端に板状ワークの一面を保持取得するための保持部を設けた多関節ロボットを備え、多関節ロボットにより、取得位置に供給された板状ワークの供給側の下面を保持して下面とは反対側の上面を載置位置の載置面に載置する板状ワークの移送設備において、取得位置と載置位置とが対向配置されると共に、対向空間の側方に多関節ロボットが配置され、多関節ロボットは、一連の可動アームの旋回・屈伸運動により板状ワークを取得位置から対向空間上を通って載置位置まで移送する動作を行い、かつ、移送動作の一部で板状ワークの上面を載置面に載置するための反転動作を兼ねるように構成されている点をもって特徴づけられる。
 このように、多関節ロボットを板状ワークの取得位置と載置位置との対向空間から側方に外れた位置に配置し、かつ、この対向空間上を通って板状ワークを移送することで、ワークをロボット本体まわりに旋回移動させたり、あるいは、ロボット本体の位置をワークの移送時にずらしたりせずに済む。そのため、移送時間の低減を図ると共に、板状ワークの移送に際して確保すべき周辺領域の面積を従来に比べて小さくすることができる。これにより、移送設備の占有面積(フットプリント)を低減して、作業効率の改善を図ることができると共に、クリーン環境の維持に必要な管理コストの削減にも寄与する。また、上記移送動作の一部が板状ワークを載置するための反転動作を兼ねるようにしたので、移送動作とは独立して反転動作のみを行うための機構が不要となる。また、反転動作だけに使用する駆動源(モータなど)も不要であり、移送動作のための駆動モータのみで足りる。以上より、一連の可動アームを軽量化して、かつ、アーム剛性を高めて当該アームの移動速度を向上させることができる。
 ここで、板状ワークの移送動作が、一連の可動アームの水平軸まわりの旋回・屈伸運動により行われるように構成してもよい。取得位置と載置位置とが対向配置している点、および、上記移送形態から、板状ワークの移送および姿勢変換(反転)は、水平軸まわりの回転運動のみで足りるためである。このように構成することで、移送設備に要する実質的な設備占有面積(フットプリント)を最小限に抑えて作業効率をさらに高めることができる。
 また、上記構成をとるのであれば、何も汎用の6軸型などの多自由度ロボットアームを使用する必要はなく、例えば何れも水平かつ互いに平行な5軸以下のジョイントを有する多関節ロボットを備えたものであってもよい。好ましくは、何れも水平かつ互いに平行な3軸を有する多関節ロボットを備えたものであってもよい。また、リンクや関節(軸)の数を減らせるのであれば、動作速度の遅い一の関節に制約を受けて一連の可動アーム全体の動作速度が制限されることもない。また、関節数が減ることで従来に比べアーム剛性も向上するので、高い位置精度を確保しつつも板状ワークを高速で移送することが可能となる。
 一方、移送動作は、例えば取得位置に供給された板状ワークの下方に保持部をもぐり込ませて板状ワークの下面を保持し、然る後、板状ワークを上方に押上げる動作を含むものであってもよい。このように一連の可動アームを動かすようにすれば、搬送側の下面側から板状ワークを押すようにして板状ワークの移送を開始することができる。そのため、移送開始直後から移送速度を高めても、保持部から板状ワークが外れる(離脱する)おそれがない。
 また、移送動作は、例えば載置面と正対する位置まで板状ワークを移動させ、然る後、正対姿勢を維持して板状ワークを載置面に向けて移動させる動作を含むものであってもよい。これは、板状ワークを積載する場合に有効な載置動作である。この動作によれば、載置面上に板状ワークが積載されていき、実際の載置面の位置がその積載厚み方向に若干ずれる場合であっても、既に積載されている板状ワーク上に精度よく載置することができる。この載置動作や既述の取得動作は共に少なくとも3軸を有する一連の可動アーム(多関節ロボット)であれば実施可能である。
 また、ワークの移送経路に関し、多関節ロボットの各関節に設けられた駆動モータの出力の総和が最小となるように、多関節ロボットによる板状ワークの移送動作が設定されていてもよい。これは、反転を伴って移送する形態を採る関係上、単に板状ワークを取得位置から載置位置まで直線的に移送することができないためである。また、移送経路が最小となる軌跡は何を基準にとるかによって異なり、仮に経路長が最小となる軌跡が判明したとしても、実際に板状ワークに作用する空気抵抗を考慮に入れた経路設定を行わないと、モータの負荷容量との兼ね合いで設定通りの移送速度が得られない場合も考えられるためである。以上の理由から、本発明では、各関節の駆動モータの出力に着目し、当該出力の総和が最小となる動きを実現した。これにより、板状ワークを効率的かつ短時間で移送することが可能となる。また、モータ出力を基準に移送動作(経路)を設定すれば、それほど出力の大きいモータを使用せずに済む。そのため、比較的小容量のモータを使用でき、アーム全体の軽量化を図ることで、設定通りの高速移送動作を実現することができる。
 上記移送動作の具体例としては、例えば、板状ワークの下面を押上げる向きに一連の可動アームを旋回させて上面が載置面と正対する位置まで板状ワークを反転移動させる動作と、載置面との正対姿勢を維持して板状ワークを載置面に向け直線的に移動させる動作とを有する移送動作を挙げることができる。
 あるいは、他の移送経路として、移送動作時に板状ワークが空気抵抗を受けることで失う運動エネルギーの総和が最小となるように、多関節ロボットによる板状ワークの移送動作が設定されていてもよい。これは、特に板状ワークの受ける空気抵抗を最小にすることが移送速度の向上に最も寄与するとの観点から、移送時に板状ワークが受ける空気抵抗と経路長との関係を踏まえて、最適な移送経路を設定したものである。よって、上記のように移送動作(移送経路)を設定することで、板状ワークの移送速度を最大限に高めて移送に要する時間を短縮することができる。
 また、上記移送動作の具体例として、例えば、板状ワークをその基端側から持上げていき、板状ワークの先端を下方に向けて直立させる動作と、直立した状態から一連の可動アームの屈曲により板状ワークを下降させると共にその基端側を中心に回転させることで、板状ワークを反転させつつ載置面に向けて滑り込ませる動作とを有する移送動作を挙げることができる。ここで、「基端」とは、板状ワークのうち一連の可動アームの本体に近い側の端部を意味し、「先端」とは、板状ワークのうち一連の可動アーム本体から遠い側の端部を意味する。
 上記構成の多関節ロボットは基台上に配置され、基台に対して、板状ワークの移送方向に直交する向きに多関節ロボットを水平移動できるように構成されているものであってもよい。載置位置まで移送された板状ワークは、積載面に対して正確に位置決めされた状態で載置されるように構成されているが、特に、移送速度を重視した移送動作とした場合には、上記構成とするのが好ましい。板状ワークの停止位置に若干のばらつきが生じた場合であっても、多関節ロボット本体を水平方向に移動させることによって上記ばらつきを補正して正確な位置に載置することが可能となる。
 以上の説明に係る板状ワークの移送設備は、例えば以下に示す形態で提供可能である。すなわち、上記移送設備と、取得位置に板状ワークを搬送する搬送手段と、載置位置を有し、板状ワークを積層した状態で梱包するための1又は複数の梱包用パレットとを備え、搬送手段に梱包用パレットと同数の取得位置が設けられ、各々の取得位置と梱包用パレットとの間の対向空間の側方に多関節ロボットが配置されると共に、搬送手段により取得位置に搬送される板状ワークを多関節ロボットの移送動作で各梱包用パレットに選択的に積載するように構成されている板状ワークの梱包設備として提供することができる。このように複数の移送設備を使用することにより移送効率(梱包効率)の向上を図ることができる。また、異種の板状ワークを同一の搬送手段で搬送する場合には各々のワークを正確かつ効率的に積載することが可能となる。
 一方、前記課題の解決は、板状ワークの取得位置で板状ワークを取得し、取得した板状ワークをその載置位置まで移送する方法であって、多関節を有する一連の可動アームを有し、一連の可動アームの先端に板状ワークの一面を保持取得するための保持部を設けた多関節ロボットを用いて、取得位置に供給された板状ワークの供給側の下面を保持して下面とは反対側の上面を載置位置の載置面に載置する板状ワークの移送方法において、取得位置と載置位置とが対向配置されると共に、対向空間の側方に多関節ロボットが配置され、かつ、多関節ロボットの一連の可動アームの旋回・屈伸運動により板状ワークを取得位置から対向空間上を通って載置位置まで移送し、かつ、移送動作の一部で板状ワークの上面を載置面に載置するための反転動作を兼ねるようにしたことを特徴とする板状ワークの移送方法によっても達成することができる。
 以上のように、本発明に係る板状ワークの移送設備および移送方法によれば、板状ワークの移送時間および移送に要するスペースの低減化を図ることができる。
本発明の一実施形態に係るガラス基板の梱包設備の平面図である。 本発明に係る移送設備の側面図である。 ガラス基板の第1動作例に係る移送動作を説明するための図であって、移送開始直前の移送設備の側面図である。 ガラス基板の第1動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第1動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第1動作例に係る移送動作を説明するための図であって、次の移送動作に移る前の移送設備の側面図である。 ガラス基板の第1動作例に係る移送動作を説明するための図であって、次の移送動作に移る前の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送開始直前の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送開始直後の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、移送動作中の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、次の移送動作に移る前の移送設備の側面図である。 ガラス基板の第2動作例に係る移送動作を説明するための図であって、次の移送動作に移る前の移送設備の側面図である。
 以下、本発明の実施形態を添付図面を参照して説明する。
 図1は本発明の一実施形態に係るガラス基板の梱包設備1の平面図を示す。この図に係る梱包設備1は、搬送手段2により取得位置4に搬送されてくる液晶ディスプレイ用のガラス基板3を、移送設備10を用いて取得し、取得したガラス基板3を搬送手段2の側方に設置した梱包用パレット5に積載していくための設備であって、複数の移送設備10と、搬送手段2と、ガラス基板3を積層した状態で梱包するための1又は複数の梱包用パレット5とを備える。
 詳細には、搬送手段2は、ガラス基板3を水平姿勢で搬送可能な搬送路6を有する。この搬送路6は、例えばローラコンベヤなど適当な駆動手段により構成される。搬送路6上には、移送設備10によるガラス基板3の取得位置4が1又は複数存在する。取得位置4においては、後述する多関節ロボット11のワーク保持部23を上下方向に通過させることのできる形状の凹部7が搬送手段2の側方に開放した状態で形成されており、取得位置4にて停止した状態のガラス基板3をその下方からワーク保持部23によって保持取得できるようになっている。また、取得位置4における搬送路6上にはアライメント手段8が配設されており、取得位置4で停止させたガラス基板3の搬送直交方向に整列させるようになっている。
 ガラス基板3の梱包用パレット5は、搬送手段2中の取得位置4と対向する位置に配置されている。正確には、取得位置4におけるガラス基板3の左右端面と、梱包用パレット5の載置面26に載置された(載置位置における)ガラス基板3の左右端面とが平行となるように、梱包用パレット5の搬送手段2(取得位置4)に対する配置位置(対向間隔やその向き)が定められている。これら取得位置4と載置位置(梱包用パレット5)との間に形成される対向空間9の側方には、移送設備10の多関節ロボット11が配設される。この実施形態では、搬送路6の所定間隔ごとに凹部7(取得位置4)が設けられており、この凹部7と同数の梱包用パレット5および多関節ロボット11がそれぞれ配置されている。
 図2は、移送設備10の側面図を示している。この図に示すように、移送設備10は、多関節ロボット11を備え、接地された基台12上に配設されている。ここで、多関節ロボット11は、一連の可動アーム13と、一連の可動アーム13の動作を制御する制御盤14(図1を参照)とを有する。一連の可動アーム13はいわゆる多関節ロボットアーム構造を有し、各関節軸が何れも互い平行かつ搬送手段2によるガラス基板3の搬送方向に沿った向きに配置されている。言い換えると、ワーク保持部23に保持されたガラス基板3の法線が何れのジョイント軸(関節軸)に対しても常に直交する姿勢を保つように、一連の可動アーム13の構造や、取得位置4や載置位置(梱包用パレット5)に対する多関節ロボット11の設置姿勢が設定されている。
 ここで、一連の可動アーム13について詳述すると、この一連の可動アーム13は3軸関節構造をなし、最も基台12側に位置する第1リンク15が基台12に対して立設されると共に、第1ジョイント16を介して第2リンク17の一端が第1リンク15の他端に連結されている。第2リンク17の他端には第2ジョイント18を介して第3リンク19の一端が連結されると共に、第3リンク19の他端には、第3ジョイント20を介してワーク保持部23の手首21が連結されている。各ジョイント16,18,20の近傍にはそれぞれ対応する駆動モータ(第1ジョイント16用の駆動モータ22のみ図示している)が一体的に配設されており、これら駆動モータも各リンク15,17,19と共に一連の可動アーム13を構成する。なお、各ジョイント16,18,20に減速機を組み込んでもよく、あるいは減速機付きのモータを上記駆動モータとして使用してもよい。また、この際使用される減速機としてはアーム剛性の一層の向上を図るためバックラッシュの発生を抑えた減速機(例えば、株式会社三共製作所製の零バックラッシュ精密減速機であるローラドライブ(登録商標)など)が好ましい。また、各リンク15,17,19は何れも各ジョイント16,18,20まわりに各々独立して正逆回転でき、回転角度によりリンク同士あるいは周辺の物体との干渉が生じることがないように構成されている。
 ワーク保持部23は、搬送路6上に設けられた凹部7を上下方向に通過し得る形状を有しており、この図示例では、いわゆるフォーク状の如く複数の突起部を並列に配置した形態を有する。ワーク保持部23の一面側には複数の吸着パッド24が配設されており、一連の可動アーム13に接続された真空ポンプなどの減圧手段25により、吸着パッド24に付着した物体を吸着保持できるようになっている。
 梱包用パレット5は、この図示例では所定角(例えば72°)傾斜した載置面26を有し、この載置面26上に複数のガラス基板3を積載可能なように構成されている。ここで、梱包用パレット5の上方には、図示は省略するが、積載時に合紙27を載置面26に供給する合紙供給手段が配設されている。そして、多関節ロボット11によりガラス基板3が梱包用パレット5の載置面26に載置される度に合紙27を載置面26上(既に1枚以上のガラス基板3が載置されている場合には最上位のガラス基板3の下面3a上)に供給することで、合紙27を介して複数枚のガラス基板3を載置面26上に積載できるようになっている。なお、ガラス基板3の載置位置精度を確保するため、例えば図2に示すように、基台12と一連の可動アーム13本体との間に、各ジョイント16,18,20の軸方向に沿ってスライド可能なスライド機構28を設けておいても構わない。
 以下、上記構成に係る移送設備10を用いたガラス基板3の移送作業の一例を主に図3~図7に基づき説明する。なお、以下の移送動作は、一連の可動アーム13の各ジョイント16,18,20に設けられた駆動モータの出力の総和が最小となるように、言い換えると、各モータに対する負荷の時間積の総和が最小となるように、一連の可動アーム13によるガラス基板3の移送動作を設定した場合の動作例を示す。
 まず、搬送手段2により搬送路6上を搬送されるガラス基板3が、図1に示す取得位置4に到着したことを適当な位置センサ(図示は省略)により検知し、ローラコンベヤ等の駆動手段を停止する。これにより、ガラス基板3が停止し取得位置4上にセットされる。なお、この際、取得位置4上に設置した適当なアライメント手段8により、例えばガラス基板3の左右方向位置(搬送方向と直交する仮想軸上の位置)が調整される。この段階において、一連の可動アーム13のワーク保持部23は、図3に示すように、取得位置4上にセットされたガラス基板3の直下に配置されている。また、第2ジョイント18は第1ジョイント16や第3ジョイント20よりも下方に位置している。
 そして、図3に示す位置においてワーク保持部23に設けた複数の吸着パッド24でガラス基板3の下面3aを吸着保持し、この状態から第2ジョイント18を中心として第3リンク19を図3中反時計回りに旋回させることで、図4に示すように、搬送路6上からガラス基板3を押上げてガラス基板3の移送を開始する。この際、手首21は第3リンク19に固定された状態を保ち、第2リンク17は、第3リンク19の旋回動作に合わせて、少しずつ第1リンク15に対して時計回りに回転運動を行う。なお、この図示例では、ガラス基板3を吸着保持して少し上方に持上げて、一連の可動アーム13を折り曲げることで手前(梱包用パレット5寄り)に平行移動させた状態から、上述の旋回動作を開始するようにしている。取得位置4上の他物体との干渉を回避するためである。また、上述のように、多関節ロボット11の下方に位置させた状態の第2ジョイント18まわりに第3リンク19を旋回させることで、ガラス基板3の回転移動距離を小さくして、後述する積載に適した位置(載置面26と正対する位置)に到達できるようにしている。
 上述のようにして一連の可動アーム13を旋回させることでその先端(ワーク保持部23)に保持したガラス基板3を水平軸まわりに回転移送し、図5に示す位置、すなわち、ガラス基板3の載置側の上面3bと梱包用パレット5の載置面26とが正対する位置に至ると、ガラス基板3の移送動作を以下のように変更する。すなわち、ガラス基板3の上面3bと載置面26との正対姿勢を維持しつつ一連の可動アーム13を伸ばしていき、ガラス基板3を載置面26に向けてスライド(直線的に移動)させる。これにより、ガラス基板3が正確に位置決めされた状態で梱包用パレット5の載置面26に載置される。また、この際、図2に示すスライド機構28により一連の可動アーム13を移送方向と直交する向きに僅かに移動させて、ガラス基板3の載置位置を微調整するようにしてもよい。なお、図5に示す状態では、合紙27が先に積載されているガラス基板3の下面3a上に供給されているが、積載するガラス基板3,3間に合紙27を供給できる限りにおいてその供給タイミングは任意である。
 このようにしてガラス基板3の移送動作および積載動作が完了すると、再びガラス基板3の移送・積載動作を行うべく、ワーク保持部23を取得位置4の下方に移動させる。ここでは、図6に示すように、まず第3ジョイント20まわりに手首21を時計方向に回転させてワーク保持部23を水平に近づけていくと共に、第3リンク19を第2ジョイント18を中心に時計方向に回転させてワーク保持部23を取得位置4に近づけていく。そして、取得位置4の近傍に到達すると、図7に示すように、ワーク保持部23を取得位置4にセットされるガラス基板3の下方にもぐり込ませて、ガラス基板3の直下、すなわち図3に示す位置に配置させる。具体的には、一連の可動アーム13を屈曲させた状態で第2ジョイント18を中心に第3リンク19を時計方向に回転させると共に手首21を第3ジョイント20まわりに反時計方向に回転させ、ワーク保持部23の先端を下ろして傾けた状態から、一連の可動アーム13を伸ばしていくことで、上記もぐり込み動作が実施される。このようにして図3~図7に係る一連の動作を繰り返すことで、梱包用パレット5の載置面26に複数のガラス基板3が積載される。
 また、この実施形態では、複数の取得位置4が搬送路6上に設けられると共に、これら取得位置4と同数の梱包用パレット5および多関節ロボット11が同一の位置関係で配置されている。そのため、一の多関節ロボット11で一の取得位置4にセットされたガラス基板3の移送・積載動作を行う間、他の多関節ロボット11で対応する他の取得位置4まで搬送されセットされたガラス基板3を移送・積載することができ、ガラス基板3の移送・積載効率を大幅に高めることができる。もちろん、この種の梱包設備1であれば、同一の搬送路6上に異種のガラス基板3が搬送される場合であっても、各種のガラス基板3ごとに対応する移送設備10を構成することで、ガラス基板3ごとの移送・積載作業が可能となる。
 以上、本発明に係る移送設備10を用いたガラス基板3の移送動作の一例(第1動作例)を説明したが、もちろん、これ以外の移送動作を採用することも可能である。以下、移送設備10を用いた移送動作の他の例(第2動作例)を説明する。なお、以下の動作例においては、取得位置4上に水平な状態で搬送されてきたガラス基板3を、同じく水平な状態の載置面26を備えた載置台29に向けて移送する場合を例にとり説明する。使用する移送設備10は第1動作例の場合と同じである。
 ここでの移送動作は、移送動作時にガラス基板3が空気抵抗を受けることで失う運動エネルギーの総和が最小となるように、一連の可動アーム13によるガラス基板3の移送動作を設定した場合の動作例を示す。これは、ガラス基板3の受ける空気抵抗を最小にすることが移送速度の向上に最も効果的であるとの観点から、移送時にガラス基板3が受ける空気抵抗と経路長との関係を踏まえて、最適な移送経路を設定したものである。
 まず、第1動作例と同じく、図8に示すように、ワーク保持部23を、取得位置4上にセットされたガラス基板3の直下に配置する。この際、第2ジョイント18は第1ジョイント16および第3ジョイント20よりも上方に位置している。そして、この位置においてワーク保持部23に設けた複数の吸着パッド24でガラス基板3の下面3aを吸着保持し、図9に示すように、ガラス基板3を少し上方に持上げて、載置台29側に平行移動させた状態から、実質的な移送動作を開始する。すなわち、図10に示すように、第1ジョイント16まわりに第2リンク17を反時計方向に旋回させると共に(かつ、この図示例では第2リンク17の旋回動作に合わせて第3リンク19も反時計方向に旋回させ)、さらに、図11に示すように、手首21を第3ジョイント20まわりに時計方向に回転させて、ガラス基板3をその載置位置側を上にして傾けていきながら持上げていく。
 上述のようにしてガラス基板3を傾けていきながら載置台29に向けて移動させていき、図12に示すように、第2リンク17と第3リンク19とが一直線上に並んで一連の可動アーム13が鉛直上方に伸びきる位置までガラス基板3を移動させる。同時に、ガラス基板3を立てていき、一連の可動アーム13が鉛直上方に伸びきった状態では、ガラス基板3の先端側端部を下方に向けて直立させた位置にあるよう手首21を回転させる。
 そして、この状態から、引き続き手首21を時計方向に回転させると共に、第2リンク17は時計方向に、第3リンク19は反時計方向にそれぞれ旋回させる(それぞれ図12を参照)。このように一連の可動アーム13を屈曲させる形に動かすことで、ガラス基板3を徐々に寝かせつつ、第3ジョイント20を下方に移動させてガラス基板3を下降させていく。
 さらにこの実施形態では、上記ガラス基板3の下降動作中、図13に示すように、時計方向に旋回していた第2リンク17を逆転させて反時計方向に旋回させることで、ガラス基板3を載置面26上に滑り込ませるように移送していく。すなわち、ガラス基板3を水平姿勢に近づけていきながら、その手首21側端部を下降させる動作を伴って、当該ガラス基板3を取得位置4から対向空間9上を通過して載置位置に向けて移送していく。これにより、図14に示すように、ガラス基板3が反転した状態で載置面26と正対する位置まで移送される。
 そして、図14に示す位置、すなわち、ガラス基板3が略水平な姿勢をとり載置面26と正対する位置から、ガラス基板3の載置側の上面3b(図14では下向き)と載置面26との正対姿勢を維持しつつ、ガラス基板3を載置面26に向けてスライド(直線的に移動)させる。これにより、ガラス基板3が正確に位置決めされた状態で載置台29の載置面26に載置される。なお、図14に示す状態では、既に合紙27が適当な合紙供給手段により(ここでは共に図示は省略)載置面26上に供給されている。
 このようにしてガラス基板3の移送動作および載置動作が完了すると、再びガラス基板3の移送・載置動作を行うべく、ワーク保持部23を取得位置4の下方に移動させる。ここでは、図15に示すように、まず第2リンク17および第3リンク19を共に時計方向に回転させて略鉛直上向きに立たせると共に、手首21を反時計方向に回転させてワーク保持部23を水平姿勢から直立姿勢に近づけていく。そして、ワーク保持部23の直立姿勢を維持して第3リンク19をさらに時計方向に回転させ、第3ジョイント20が第2ジョイント18より下方に位置した時点から手首21を第3ジョイント20を中心として反時計方向に回転させる。これにより、第1動作例と同様、図16に示す位置から、ワーク保持部23を取得位置4にセットされるガラス基板3の下方にもぐり込ませて、ガラス基板3の直下に配置させる。このようにして図8~図16に係る一連の動作を繰り返すことで、取得位置4から載置台29(載置面26)へのガラス基板3の移送・載置動作が繰り返し実行される。なお、必ずしもガラス基板3は載置面26上に積載されず、例えば載置台29が適当な搬送手段の一部を構成している場合、1枚ずつ次の作業工程へ向けて搬送されるものであってもよい。
 以上、移送設備10によるガラス基板3の移送動作例につき説明したが、本発明は上記動作例に限定されないことはもちろんである。取得位置4と載置位置とが対向配置されると共に、両者間の対向空間9の側方に移送用の多関節ロボット11が配置されており、この多関節ロボット11が、一連の可動アーム13の旋回・屈伸運動によりガラス基板3を取得位置4から対向空間9上を通って載置位置まで移送し、かつ、この移送動作の一部でガラス基板3の上面3bを載置面26に載置するための反転動作を兼ねるように構成される限りにおいて、移送設備10の採り得る構成は任意である。
 また、以上の説明では、主にガラス基板3を梱包用パレット5に積載する工程を例にとって説明したが、作業工程間の移送作業や、一の搬送工程から他の搬送工程へワークたるガラス基板3を移載する場合など、ガラス基板3の製造から出荷に至る間の任意の工程において、あるいは出荷後の荷降ろし工程等においても本発明を適用可能である。
 また、以上の説明では、移送対象となるワークとして液晶ディスプレイ用のガラス基板3を例示したが、本発明は、液晶ディスプレイ用に限らず、プラズマディスプレイ、有機ELディスプレイ、FED、SED等の各種フラットパネルディスプレイ用のガラス板(たとえば板厚が0.4mm以上1.2mm以下のもの)や、各種電子表示機能素子や薄膜を形成するための基材として用いられるガラス板一般を移送対象とすることができる。なお、本発明は、板状を成すワークである限り、ガラスを素材とするもの以外を移送対象とすることもできることはもちろんである。
1  ガラス基板の梱包設備
2  搬送手段
3  ガラス基板
3a (搬送側の)下面
3b (載置側の)上面
4  取得位置
5  梱包用パレット
6  搬送路
7  凹部
8  アライメント手段
9  対向空間
10 ガラス基板の移送設備
11 多関節ロボット
12 基台
13 一連の可動アーム
14 制御盤
15 第1リンク
16 第1ジョイント
17 第2リンク
18 第2ジョイント
19 第3リンク
20 第3ジョイント
21 手首
22 駆動モータ
23 ワーク保持部
24 吸着パッド
25 減圧手段
26 載置面
27 合紙
28 スライド機構
29 載置台

Claims (12)

  1.  板状ワークの取得位置で板状ワークを取得し、該取得した板状ワークをその載置位置まで移送するための設備であって、多関節を有する一連の可動アームを有し、該一連の可動アームの先端に前記板状ワークの一面を保持取得するための保持部を設けた多関節ロボットを備え、該多関節ロボットにより、前記取得位置に供給された前記板状ワークの供給側の下面を保持して該下面とは反対側の上面を前記載置位置の載置面に載置する板状ワークの移送設備において、
     前記取得位置と前記載置位置とが対向配置されると共に、該対向空間の側方に前記多関節ロボットが配置され、
     前記多関節ロボットは、前記一連の可動アームの旋回・屈伸運動により前記板状ワークを前記取得位置から前記対向空間上を通って前記載置位置まで移送する動作を行い、かつ、該移送動作の一部で前記板状ワークの前記上面を前記載置面に載置するための反転動作を兼ねるように構成されていることを特徴とする板状ワークの移送設備。
  2.  前記移送動作が、前記一連の可動アームの水平軸まわりの旋回・屈伸運動により行われる請求項1に記載の板状ワークの移送設備。
  3.  前記多関節ロボットは、何れも水平かつ互いに平行な3軸を有する請求項1に記載の板状ワークの移送設備。
  4.  前記移送動作は、前記取得位置に供給された前記板状ワークの下方に前記保持部をもぐり込ませて前記板状ワークの前記下面を保持し、然る後、前記板状ワークを上方に押上げる動作を含む請求項1に記載の板状ワークの移送設備。
  5.  前記移送動作は、前記載置面と正対する位置まで前記板状ワークを移動させ、然る後、前記正対姿勢を維持して前記板状ワークを前記載置面に向けて移動させる動作を含む請求項1に記載の板状ワークの移送設備。
  6.  前記多関節ロボットの各関節に設けられた駆動モータの出力の総和が最小となるように、前記多関節ロボットによる前記板状ワークの前記移送動作が設定されている請求項1に記載の板状ワークの移送設備。
  7.  前記移送動作は、前記板状ワークの前記下面を押上げる向きに前記一連の可動アームを旋回させて前記上面が前記載置面と正対する位置まで前記板状ワークを反転移動させる動作と、前記載置面との正対姿勢を維持して前記板状ワークを前記載置面に向け直線的に移動させる動作とを有する請求項6に記載の板状ワークの移送設備。
  8.  前記移送動作時に前記板状ワークが空気抵抗を受けることで失う運動エネルギーの総和が最小となるように、前記多関節ロボットによる前記板状ワークの前記移送動作が設定されている請求項1に記載の板状ワークの移送設備。
  9.  前記移送動作は、前記板状ワークをその基端側から持上げていき、前記板状ワークの先端を下方に向けて直立させる動作と、該直立した状態から前記一連の可動アームの屈曲により前記板状ワークを下降させると共にその基端側を中心に回転させることで、前記板状ワークを反転させつつ前記載置面に向けて滑り込ませる動作とを有する請求項8に記載の板状ワークの移送設備。
  10.  前記多関節ロボットは基台上に配置され、該基台に対して、前記板状ワークの移送方向に直交する向きに前記多関節ロボットを水平移動できるように構成されている請求項1に
    記載の板状ワークの移送設備。
  11.  請求項1~10の何れかに記載の移送設備と、前記取得位置に前記板状ワークを搬送する搬送手段と、前記載置位置を有し、前記板状ワークを積層した状態で梱包するための1又は複数の梱包用パレットとを備え、
     前記搬送手段に前記梱包用パレットと同数の前記取得位置が設けられ、各々の前記取得位置と前記梱包用パレットとの間の対向空間の側方に前記多関節ロボットが配置されると共に、前記搬送手段により前記取得位置に搬送される前記板状ワークを前記多関節ロボットの前記移送動作で各梱包用パレットに選択的に積載するように構成されている板状ワークの梱包設備。
  12.  板状ワークの取得位置で板状ワークを取得し、該取得した板状ワークをその載置位置まで移送する方法であって、多関節を有する一連の可動アームを有し、該一連の可動アームの先端に前記板状ワークの一面を保持取得するための保持部を設けた多関節ロボットを用いて、前記取得位置に供給された前記板状ワークの供給側の下面を保持して該下面とは反対側の上面を前記載置位置の載置面に載置する板状ワークの移送方法において、
     前記取得位置と前記載置位置とが対向配置されると共に、該対向空間の側方に前記多関節ロボットが配置され、かつ、
     前記多関節ロボットの前記一連の可動アームの旋回・屈伸運動により前記板状ワークを前記取得位置から前記対向空間上を通って前記載置位置まで移送し、かつ、該移送動作の一部で前記板状ワークの前記上面を前記載置面に載置するための反転動作を兼ねるようにしたことを特徴とする板状ワークの移送方法。
PCT/JP2009/060791 2008-07-29 2009-06-12 板状ワークの移送設備および移送方法 WO2010013549A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980129617.0A CN102105375B (zh) 2008-07-29 2009-06-12 板状工件的移送设备及移送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-195217 2008-07-29
JP2008195217A JP5311277B2 (ja) 2008-07-29 2008-07-29 板状ワークの移送設備および移送方法

Publications (1)

Publication Number Publication Date
WO2010013549A1 true WO2010013549A1 (ja) 2010-02-04

Family

ID=41610255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060791 WO2010013549A1 (ja) 2008-07-29 2009-06-12 板状ワークの移送設備および移送方法

Country Status (5)

Country Link
JP (1) JP5311277B2 (ja)
KR (1) KR101609205B1 (ja)
CN (1) CN102105375B (ja)
TW (1) TWI487607B (ja)
WO (1) WO2010013549A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050330A (zh) * 2010-11-05 2011-05-11 深圳市华星光电技术有限公司 机械手臂及具有该机械手臂的搬运装置
AT14702U1 (de) * 2014-10-20 2016-04-15 Lisec Austria Gmbh Verfahren und Vorrichtung zum Handhaben plattenförmiger Gegenstände
ITUB20152339A1 (it) * 2015-07-21 2017-01-21 Giuseppe Gallucci Apparecchiatura per il ribaltamento di fogli e/o pannelli
KR20190122802A (ko) 2017-04-26 2019-10-30 니혼 덴산 가부시키가이샤 다관절 로봇 및 다관절 로봇 시스템

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723044B1 (ja) 2010-09-17 2011-07-13 日東電工株式会社 液晶表示素子の製造システム及び製造方法
JP4676026B1 (ja) 2010-09-17 2011-04-27 日東電工株式会社 液晶表示素子の製造システム及び製造方法
JP4689763B1 (ja) 2010-09-29 2011-05-25 日東電工株式会社 液晶表示素子の連続製造システムおよび液晶表示素子の連続製造方法
JP4733227B1 (ja) 2010-09-30 2011-07-27 日東電工株式会社 液晶表示素子の製造システム及び製造方法
JP4750227B1 (ja) 2011-01-14 2011-08-17 日東電工株式会社 液晶表示素子の連続製造システムおよび液晶表示素子の連続製造方法
JP5861495B2 (ja) * 2011-04-18 2016-02-16 株式会社デンソー 車両用温度調整装置、および車載用熱システム
JP5808577B2 (ja) * 2011-05-27 2015-11-10 日東電工株式会社 液晶パネルの反転装置
JP6101431B2 (ja) 2012-04-16 2017-03-22 日東電工株式会社 光学表示パネルの連続製造方法および光学表示パネルの連続製造システム
CN103372618B (zh) * 2012-04-18 2015-08-12 珠海格力电器股份有限公司 钣金件自动堆码系统
DE102012019841B4 (de) 2012-10-09 2022-01-05 Grenzebach Maschinenbau Gmbh Verfahren und Vorrichtung für das Umsetzen großflächiger Platten in extremer Übergröße
CN102923508B (zh) * 2012-11-07 2015-08-05 天津南玻节能玻璃有限公司 一种自动输送翻转式玻璃下片台
JP6488553B2 (ja) * 2014-03-31 2019-03-27 日本電気株式会社 部品搬送装置、部品搬送方法、及びプログラム
CN106185280B (zh) * 2016-08-30 2018-07-17 朱洋 隔磁杆托盘上料机构
JP6948125B2 (ja) * 2016-12-22 2021-10-13 川崎重工業株式会社 搬送システム及びその運転方法
CN107611072A (zh) * 2017-07-27 2018-01-19 彩虹(合肥)液晶玻璃有限公司 一种用于翻转tft-lcd玻璃基板的装置及其翻转方法
JP2019064764A (ja) * 2017-09-29 2019-04-25 日本電産サンキョー株式会社 搬送システム
CN110202611B (zh) * 2018-02-28 2023-07-11 精工爱普生株式会社 机器人
CN109625969A (zh) * 2019-01-07 2019-04-16 彩虹(合肥)液晶玻璃有限公司 液晶玻璃基板放板装置及放板方法
CN110482220A (zh) * 2019-07-26 2019-11-22 蚌埠凯盛工程技术有限公司 一种玻璃基板存储工艺、装置及应用
JP7366344B2 (ja) 2019-10-09 2023-10-23 日本電気硝子株式会社 ガラス板の製造方法及びその製造装置
KR20220079812A (ko) * 2019-10-11 2022-06-14 니폰 덴키 가라스 가부시키가이샤 유리판 곤포체의 제조 방법 및 제조 장치
WO2021117555A1 (ja) 2019-12-10 2021-06-17 日本電気硝子株式会社 ガラス板の製造方法
JP7463891B2 (ja) 2020-07-13 2024-04-09 日本電気硝子株式会社 ワークの姿勢変更具、ワークの姿勢変更装置、及び梱包体の製造方法
KR102578346B1 (ko) * 2021-09-07 2023-09-14 아주엠씨엠(주) 방화문 문짝 보양재 자동 부착방법
CN116354124B (zh) * 2023-04-26 2023-10-20 东莞市坤鹏伯爵机械设备有限公司 放板机及板件的转运方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342665U (ja) * 1986-09-08 1988-03-22
JPH08132368A (ja) * 1994-11-07 1996-05-28 Toyo Kohan Co Ltd 板材加工機−ロボットシステムにおける位置決め方法および装置
JP2001180822A (ja) * 1999-12-24 2001-07-03 Kanegafuchi Chem Ind Co Ltd 基板の受渡し方法及び装置
JP2001225286A (ja) * 2000-02-14 2001-08-21 Nachi Fujikoshi Corp 搬送装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243300B2 (ja) * 1974-02-01 1977-10-29
JPH02225225A (ja) * 1989-02-27 1990-09-07 Nippon Sheet Glass Co Ltd 板ガラスの入込み装置
JPH03256393A (ja) * 1990-03-06 1991-11-15 Matsushita Electric Ind Co Ltd プリント配線板の製造方法
JPH11881A (ja) * 1997-06-11 1999-01-06 Shin Meiwa Ind Co Ltd クリーンロボット
JP3443398B2 (ja) 2000-11-08 2003-09-02 川崎重工業株式会社 反転積み重ね装置
JP4032778B2 (ja) * 2002-03-07 2008-01-16 セイコーエプソン株式会社 板状部材の搬送装置
TWI287528B (en) * 2002-11-19 2007-10-01 Murata Machinery Ltd Carrier system
JP4378603B2 (ja) * 2003-07-24 2009-12-09 株式会社ダイフク 板状体取出装置
JP2005272113A (ja) * 2004-03-25 2005-10-06 Sharp Corp 基板搬送装置および基板搬送方法
JP4388493B2 (ja) * 2005-03-16 2009-12-24 東レエンジニアリング株式会社 ガラス基板用フイルムの貼付方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342665U (ja) * 1986-09-08 1988-03-22
JPH08132368A (ja) * 1994-11-07 1996-05-28 Toyo Kohan Co Ltd 板材加工機−ロボットシステムにおける位置決め方法および装置
JP2001180822A (ja) * 1999-12-24 2001-07-03 Kanegafuchi Chem Ind Co Ltd 基板の受渡し方法及び装置
JP2001225286A (ja) * 2000-02-14 2001-08-21 Nachi Fujikoshi Corp 搬送装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050330A (zh) * 2010-11-05 2011-05-11 深圳市华星光电技术有限公司 机械手臂及具有该机械手臂的搬运装置
CN102050330B (zh) * 2010-11-05 2013-02-06 深圳市华星光电技术有限公司 机械手臂及具有该机械手臂的搬运装置
AT14702U1 (de) * 2014-10-20 2016-04-15 Lisec Austria Gmbh Verfahren und Vorrichtung zum Handhaben plattenförmiger Gegenstände
ITUB20152339A1 (it) * 2015-07-21 2017-01-21 Giuseppe Gallucci Apparecchiatura per il ribaltamento di fogli e/o pannelli
WO2017013583A1 (en) * 2015-07-21 2017-01-26 Giuseppe Gallucci Apparatus to overturn sheets and/or panels
US10392214B2 (en) 2015-07-21 2019-08-27 Elitron Ipm S.R.L. Apparatus to overturn sheets and/or panels
KR20190122802A (ko) 2017-04-26 2019-10-30 니혼 덴산 가부시키가이샤 다관절 로봇 및 다관절 로봇 시스템
US11213952B2 (en) 2017-04-26 2022-01-04 Nidec Corporation Articulated robot and articulated robot system
JP7144754B2 (ja) 2017-04-26 2022-09-30 日本電産株式会社 多関節ロボットおよび多関節ロボットシステム

Also Published As

Publication number Publication date
TW201008726A (en) 2010-03-01
JP5311277B2 (ja) 2013-10-09
KR101609205B1 (ko) 2016-04-05
TWI487607B (zh) 2015-06-11
JP2010030744A (ja) 2010-02-12
KR20110039455A (ko) 2011-04-18
CN102105375A (zh) 2011-06-22
CN102105375B (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5311277B2 (ja) 板状ワークの移送設備および移送方法
JP5196158B2 (ja) ガラス基板梱包装置およびその梱包方法
TW200930524A (en) Multijoint robot
KR20110093096A (ko) 디스플레이 패널 박스 운반용 로봇 핸드
JP2001253536A (ja) 基板移載ロボット装置
WO2016166952A1 (ja) 基板搬送ロボット及びそのエンドエフェクタ
CN108349088B (zh) 示教用夹具及机器人的示教方法
JPH08216073A (ja) ワーク搬入・搬出作業用ロボット
JP2006327819A (ja) ガラス板の移載装置および移載方法
JPH07276174A (ja) ワーク加工方法および装置
JP5212899B2 (ja) ワーク搬送装置及びワーク搬送方法
JP5978937B2 (ja) 基板搬送用ハンド及び基板搬送方法
JP2007260862A (ja) ロボット
KR20150104440A (ko) 기판 이송 로봇
CN108352350B (zh) 搬运系统
JP2008254138A (ja) 多関節ロボット
JP3124886U (ja) ハンドリング装置
JP2007204181A (ja) 板材の搬送装置
JP7495729B2 (ja) コンテナ移載システム
JPH0826419A (ja) ワーク搬送用ロボットおよびワーク保管庫
JPH07196165A (ja) パレタイジング装置
JP2003168719A (ja) アライメント処理方法およびアライメント処理装置
CN113184505A (zh) 基板翻转装置及分割系统
JP2009208174A (ja) 産業用ロボット
TWM351219U (en) Movable loading apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129617.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117002856

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09802794

Country of ref document: EP

Kind code of ref document: A1