WO2009157478A1 - 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池 - Google Patents

非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池 Download PDF

Info

Publication number
WO2009157478A1
WO2009157478A1 PCT/JP2009/061486 JP2009061486W WO2009157478A1 WO 2009157478 A1 WO2009157478 A1 WO 2009157478A1 JP 2009061486 W JP2009061486 W JP 2009061486W WO 2009157478 A1 WO2009157478 A1 WO 2009157478A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
graphite particles
negative electrode
secondary battery
composite graphite
Prior art date
Application number
PCT/JP2009/061486
Other languages
English (en)
French (fr)
Inventor
岡西 健悟
慶太 山口
徳一 山本
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to US13/001,150 priority Critical patent/US8974968B2/en
Priority to EP09770188.2A priority patent/EP2306559A4/en
Priority to CN2009801236663A priority patent/CN102067363B/zh
Publication of WO2009157478A1 publication Critical patent/WO2009157478A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to composite graphite particles used in a non-aqueous secondary battery, a negative electrode material containing the composite graphite particles, a negative electrode formed using the negative electrode material, and a non-aqueous secondary battery having the negative electrode.
  • non-aqueous secondary batteries having higher energy density and excellent large current charge / discharge characteristics have attracted attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
  • graphite is often used in terms of cost, durability, and capacity.
  • the active material layer containing the negative electrode material on the electrode plate is densified to increase the capacity, the charge / discharge irreversible capacity at the initial cycle increases, sufficient charge acceptance is not obtained, and cycle deterioration is significant. There was a problem that happened.
  • Patent Document 1 natural graphite and a binder are combined to obtain a composite, and the binder is carbonized by primary heating at 700 to 1500 ° C., and then secondary heating at 2400 to 3000 ° C. A method for producing a carbon composite material in which purification and graphitization of a carbonized binder are performed simultaneously is described.
  • Patent Document 1 scaly or scaly natural graphite is assumed as a starting material, and the density of the active material layer, reduction of charge / discharge irreversible capacity, charge acceptance, and cycle characteristics are insufficient. there were.
  • the present invention has been made in view of the background art, and the problem is that even when the density of the active material layer having the negative electrode material on the current collector is increased in order to increase the capacity, the charging at the initial cycle is performed.
  • the inventors have used a composite graphite particle having a specific structure and physical properties, in which spherical graphite particles and binder graphitized material are combined, as a negative electrode active material.
  • the present inventors have found that a non-aqueous secondary battery that solves the above problems can be obtained, and has reached the present invention. That is, the gist of the present invention is as follows.
  • Composite graphite particles (B) in which spherical graphite particles (A) and graphitized binders that can be graphitized are combined, and the spherical graphite particles (A) are a plurality of curved or bent scaly shapes.
  • composite graphite particles for non-aqueous secondary batteries which are made of scaly graphite and have a cumulative 50% diameter (d50 diameter) of 9 ⁇ m to 14 ⁇ m by laser light diffraction.
  • a negative electrode material for a nonaqueous secondary battery comprising the composite graphite particles (B) for a nonaqueous secondary battery according to any one of (1) to (4) above.
  • the negative electrode material for a non-aqueous secondary battery according to (5) further comprising carbonaceous particles having a shape or physical property different from that of the composite graphite particles (B).
  • Non-aqueous secondary battery characterized.
  • the composite graphite particles for a non-aqueous secondary battery of the present invention are used, even when the active material layer on the current collector of the negative electrode is densified, the charge / discharge irreversible capacity at the initial cycle is small, the capacity is high, It is possible to provide a non-aqueous secondary battery that exhibits excellent charge acceptability and has excellent cycle characteristics.
  • An active material layer is obtained by using at least a negative electrode material and a binder, and a material having at least an active material layer on a negative electrode current collector is defined as an electrode plate or a negative electrode, and at least a negative electrode, a positive electrode, and an electrolyte And a non-aqueous secondary battery is configured.
  • composition of non-aqueous secondary battery composite graphite particles (A) Composition of composite graphite particles
  • the negative electrode material of the present invention contains the composite graphite particles of the present invention as a main component.
  • the composite graphite particles of the present invention are composite graphite particles (B) in which spherical graphite particles (A) and graphitized materials of a graphitizable binder (hereinafter simply referred to as “binder”) are combined.
  • binder graphitizable binder
  • the composition of the formed composite graphite particles is such that at least a part (part or all) of the composite graphite particles obtained by firing the carbonaceous particles and the binder fired (this also It has a composite structure of graphite.
  • the composite graphite particle of the first aspect of the present invention is a composite graphite particle (B) in which spherical graphite particles (A) and graphitized material of a graphitizable binder are combined, and the composite graphite particles are as follows: Satisfy at least one of a) and (b).
  • the composite graphite particles of the second aspect of the present invention are composite graphite particles (B) in which spherical graphite particles (A) and graphitized binders that can be graphitized are combined, and the spherical graphite particles (A) Consists of a plurality of curved or bent scaly or scaly graphites, and has a cumulative 50% diameter (d50 diameter) of 9 ⁇ m or more and 14 ⁇ m or less by a laser light diffraction method.
  • the carbonaceous particles that are the raw material of the composite graphite particles of the present invention are not particularly limited as long as they are carbon particles that can be graphitized by firing, but natural graphite, artificial graphite, spheroidized graphite, coke powder, needle coke. Examples thereof include powder and resin carbide powder. Among these, it is preferable to use natural graphite because it is easy to increase the density of the active material layer when the active material layer is formed. Among them, spheroidized graphite obtained by spheroidizing graphite is particularly preferable.
  • the spherical graphite particles of the first aspect of the present invention are preferably composed of a plurality of curved or bent scaly or scaly graphites. Further, the graphitizable binder is as follows.
  • Graphitizable binder is not particularly limited as long as it is carbonaceous that can be graphitized by firing.
  • Petroleum and coal-based condensed polycyclic aromatics from soft pitch to hard pitch are preferably used.
  • petroleum such as impregnated pitch, binder pitch, coal tar pitch, coal heavy oil such as coal liquefied oil, straight heavy oil such as asphalten, cracked heavy oil such as ethylene heavy end tar, etc. Heavy oils and the like.
  • the quinoline-insoluble component contained in the binder is usually 0 to 10% by mass, but the smaller the amount, the better the hardness and the capacity of the battery. If the content of the quinoline-insoluble component in the binder is too high, the strength of the resulting composite graphite particles will increase, and even if the active material layer applied to the current collector is pressed, the particles will not be deformed and the density will be increased. Tends to be difficult, and the capacity may also decrease.
  • composite graphite particles according to the first aspect of the present invention satisfy at least one of the following requirements (a) and (b).
  • (a) Cumulative 50% diameter (d50 diameter), 90% diameter (d90 diameter), 10% diameter (d10 diameter) by laser diffraction method of (A) is D50 (A), D90 (A), D10 (A), and the cumulative 50% diameter (d50 diameter), 90% diameter (d90 diameter), and 10% diameter (d10 diameter) by the laser diffraction method of (B) are D50 (B) and D90 (B), respectively.
  • D10 (B), (Equation 1), (Equation 2) and (Equation 3) are satisfied.
  • the ratio of 110 (A) / 004 (A) which is the ratio between the 110 and 004 planes measured from the XRD of (A) , is x, and the 110 and 004 planes are measured from the XRD of (B).
  • the ratio 110 (B) / 004 (B) is y
  • the y / x value is 1.2 or more and 3.5 or less.
  • the composite graphite particles of the first aspect of the present invention preferably satisfy at least one of the following requirements (c) and (d).
  • BET specific surface area is 1.6 m 2 / g or more and 5.0 m 2 / g or less
  • cumulative 50% diameter (d50 diameter) by laser light diffraction method is 10.5-18.0 ⁇ m
  • tap density is 0.80 g / cm 3 or more and 1.40 g / cm 3 or less
  • the average circularity is 0.90 or more and 0.98 or less when the particle diameter is 1.5 ⁇ m to 10 ⁇ m
  • the average circularity when the particle diameter is 10 ⁇ m to 40 ⁇ m is 0.85 or more and 0.90 or less.
  • the 50% cumulative diameter (d50 diameter) of spherical graphite particles by laser light diffraction is preferably 9.0 ⁇ m or more, particularly preferably 9.5 ⁇ m or more. Further, it is preferably in the range of 14 ⁇ m or less, more preferably 13.5 ⁇ m or less, particularly preferably 13.0 ⁇ m or less.
  • the cumulative 10% diameter (d10 diameter) by the laser light diffraction method is preferably 4.0 ⁇ m or more, more preferably 4.5 ⁇ m or more, and particularly preferably 5.0 ⁇ m or more. Further, it is preferably 9.0 ⁇ m or less, more preferably 8.5 ⁇ m or less, and particularly preferably 8.0 ⁇ m or less.
  • the cumulative 90% diameter (d90 diameter) by the laser beam diffraction method is preferably 14.0 ⁇ m or more, more preferably 14.5 ⁇ m or more, and particularly preferably 15.0 ⁇ m or more. Further, it is preferably 21.0 ⁇ m or less, more preferably 20.5 ⁇ m or less, and particularly preferably 20.0 ⁇ m or less.
  • the definition and measurement method of the d50 diameter, d10 diameter, and d90 diameter are as described later.
  • composite graphite particles can be further optimized by using spherical graphite particles in the range described below.
  • the tap density is preferably in the range of 0.4 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, and particularly preferably 0.6 g / cm 3 or more. Further, preferably 1.0 g / cm 3 or less, more preferably 0.95 g / cm 3 or less, particularly preferably 0.91 g / cm 3 or less.
  • the BET-specific surface area is preferably in the range of 5.0 m 2 / g or more, more preferably 6.0 m 2 / g or more, particularly preferably 6.5 m 2 / g or more. Further, it is preferably in the range of 11.0 m 2 / g or less, more preferably 9.5 m 2 / g or less, particularly preferably 9.1 m 2 / g or less.
  • R value is the scattering intensity ratio of 1360 cm -1 relative scattering intensity 1580 cm -1 in the argon ion laser spectrum using argon ion laser beam having a wavelength 514.5nm spherical graphite particle (Raman R value) is preferably 0.1 As described above, the range of 0.15 or more is particularly preferable. The range is preferably 0.3 or less, particularly preferably 0.25 or less.
  • the Raman R value and, in the Raman spectrum obtained in the Raman measurement as described later, the intensity I A of the maximum peak around 1580 cm -1, the intensity of the maximum peak in the vicinity of 1360 cm -1 I the intensity ratio I B / I a and B is defined as the Raman R value.
  • Raman measurement uses a Raman spectrometer “Raman Spectrometer manufactured by JASCO Corporation”. Samples are filled by letting the particles to be measured fall naturally into the measurement cell, and the measurement cell is irradiated with an argon ion laser beam. Measurement is performed while rotating the cell in a plane perpendicular to the laser beam. The measurement conditions are as follows.
  • Argon ion laser light wavelength 514.5 nm
  • Laser power on the sample 15-25mW Resolution: 14cm -1
  • Measurement range 1100 cm ⁇ 1 to 1730 cm ⁇ 1
  • Peak intensity measurement, peak half-width measurement background processing, smoothing processing (simple average, convolution 5 points)
  • the spherical graphite particles as the raw material for the composite graphite particles of the present invention are particularly preferably those that have undergone spheroidization treatment.
  • an apparatus used for the spheroidization treatment for example, an apparatus that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including the interaction of particles mainly with impact force to the particles can be used. Specifically, it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, mechanical action such as impact compression, friction, shearing force, etc. is applied to the carbon material introduced inside.
  • An apparatus that provides a surface treatment is preferable.
  • Preferred devices include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a kryptron (manufactured by Earth Technica), a CF mill (manufactured by Ube Industries), a mechano-fusion system (manufactured by Hosokawa Micron), and a theta composer (Tokuju Kosakusho). Etc.).
  • a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
  • the peripheral speed of the rotating rotor is preferably 30 to 100 m / sec, more preferably 40 to 100 m / sec, and further preferably 50 to 100 m / sec. preferable.
  • the treatment can be performed by simply passing a carbonaceous material, but it is preferable to circulate or stay in the apparatus for 30 seconds or longer, and it is preferable to circulate or stay in the apparatus for 1 minute or longer. More preferred.
  • the average circularity of the spherical graphite particles is usually 0.85 or more, preferably 0.9 or more, and usually 1.0 or less, preferably 0.96 or less. If the average circularity of the carbonaceous particles is below this lower limit, the degree of orientation tends to decrease, and if it exceeds the upper limit, the cost tends to increase.
  • the average circularity of the spherical graphite particles is the same as the average circularity of the negative electrode material described above.
  • the cumulative 50% diameter ratio D50 (B) / D50 (A) is preferably 1.1 or more, more preferably 1.2 or more. Moreover, 2.0 or less is preferable and 1.7 or less is more preferable.
  • the cumulative 90% diameter ratio D90 (B) / D90 (A) is preferably 1.1 or more, more preferably 1.2 or more. Moreover, 2.4 or less is preferable and 2.0 or less is more preferable.
  • the cumulative 10% diameter ratio D10 (B) / D10 (A) is preferably 1.0 or more, more preferably 1.2 or more. Moreover, 1.8 or less is preferable and 1.6 or less is more preferable.
  • the cumulative 50% diameter ratio, the cumulative 90% diameter ratio, or the cumulative 10% diameter ratio is small, the granulation effect cannot be obtained and the expected sufficient charge acceptability may not be obtained. Conversely, if the cumulative 50% diameter ratio, cumulative 90% diameter ratio, or cumulative 10% diameter ratio is too large, the press load will increase and springback will occur more easily when the density is increased, and the electrode will maintain a high density state. There are cases where it is not possible.
  • the ratio of 110 (A) / 004 (A) which is the ratio of 110 to 004, measured from XRD of spherical graphite particles (A) is x, and 110 is measured from XRD of composite graphite particles (B)
  • the ratio z is defined by the following formula, and z is 1.2 or more and 3.5 or less.
  • (I) Measuring method of graphite crystal orientation ratio Measure the charts of (110) and (004) planes of graphite by powder X-ray diffraction, and fit the measured charts using asymmetric Pearson VII as the profile function. To separate the peaks, and calculate the integrated intensity of the peaks on the (110) plane and the (004) plane. From the obtained integrated intensity, the ratio represented by “I 110 / I 004 ” is calculated and defined as the graphite crystal orientation ratio.
  • the powder X-ray diffraction measurement conditions here are as follows. “2 ⁇ ” indicates a diffraction angle.
  • the value of graphite crystal orientation ratio of spherical graphite particles value of 110 (A) / 004 (A)
  • x y
  • the value of the graphite crystal orientation ratio of composite graphite particles value of
  • the ratio z between the graphite crystal orientation ratio of the spherical graphite particles and the graphite crystal orientation ratio of the composite graphite particles is preferably 1.2 or more, and more preferably 1.5 or more. Moreover, 3.5 or less is preferable, and also 3.2 or less is more preferable.
  • the ratio between the crystal orientation ratio of the spherical graphite particles and the crystal orientation ratio of the composite graphite particles is too low, the cycle deterioration caused by repeated charge and discharge may become severe. Conversely, if the ratio between the crystal orientation ratio of the spherical graphite particles and the crystal orientation ratio of the composite graphite particles is too high, the press load at the time of densification becomes high and the electrode tends to spring back, so the electrode is in a high density state. May not be maintained.
  • BET specific surface area is 1.6 m 2 / g or more and 5.0 m 2 / g or less
  • tap density is 0.80 g / cm 3 or more and 1.40 g / cm 3 or less
  • particle size measured by flow type particle image analyzer is 1.5 ⁇ m to 10 ⁇ m
  • the average circularity at 0.90 to 0.98 and the average circularity at a particle size of 10 ⁇ m to 40 ⁇ m is 0.85 to 0.90.
  • the average circularity, tap density, and BET specific surface area of the composite graphite particles for non-aqueous secondary batteries of the present invention are important parameters indicating the shape.
  • those with a small average circularity also have a low tap density, and those with a low tap density tend to have a large specific surface area.
  • the average circularity is small and the tap density is low, the void size secured in the electrode plate is reduced, and at the same time, the solid content concentration of the negative electrode material slurry applied on the copper foil is reduced during the production of the negative electrode. As a result, the negative electrode performance is deteriorated and the battery performance is likely to be deteriorated.
  • the average circularity and the tap density are too high, there is a high possibility that the coating properties of the slurry will be deteriorated. Therefore, it is important to have an average circularity and tap density in an appropriate range.
  • Average circularity (I) Definition of average circularity The average circularity is 0.2% by volume of polyoxyethylene (20) sorbitan monolaurate as a surfactant for measuring 0.2 g of composite graphite particles.
  • the detection range is designated as 0.6 ⁇ m to 400 ⁇ m, It is defined as the average value of circularity values given by the following formula measured for particles having a particle diameter in the range of 1.5 ⁇ m to 10 ⁇ m and particles having a particle diameter in the range of 10 ⁇ m to 40 ⁇ m.
  • the average circularity at a particle diameter of 1.5 ⁇ m to 10 ⁇ m is preferably 0.90 or more.
  • the upper limit is preferably 0.98 or less, and more preferably 0.95 or less.
  • the average circularity at a particle size of 10 ⁇ m to 40 ⁇ m is preferably 0.85 or more, more preferably 0.90 or more, and the upper limit is preferably 0.98 or less, more preferably 0.95 or less.
  • the density obtained from the volume at that time and the mass of the sample is defined as the tap density.
  • the tap density of the composite graphite particle (II) the scope the present invention is preferably 0.80 g / cm 3 or more, more preferably 0.90 g / cm 3 or more, 0.95 g / cm 3 or more is particularly preferable. And is preferably 1.40 g / cm 3 or less, 1.25 g / cm 3 or less is more preferable.
  • BET specific surface area (I) Definition of BET specific surface area
  • the BET specific surface area is measured and defined by the following method.
  • the BET 6-point method is measured by the nitrogen gas adsorption flow method. Specifically, 1.01 g of a sample (composite graphite particles) is filled in a cell, preheated to 350 ° C., precooled, cooled to liquid nitrogen temperature, and 30% nitrogen and 70% helium gas. The amount of gas desorbed by saturation adsorption and then heated to room temperature is measured, and the specific surface area is calculated from the obtained results by the usual BET method.
  • the specific surface area of the composite graphite particles of the present invention is preferably 1.6 m 2 / g or more, more preferably 2.3 m 2 / g or more. Moreover, 5.0 m ⁇ 2 > / g or less is preferable and 4.7 m ⁇ 2 > / g or less is more preferable.
  • pore volume of composite graphite particles in the present invention is measured using a pore volume measuring device “Autopore IV9520 manufactured by Micromeritics” The sample was enclosed in an attached cell and pretreated for 10 minutes at room temperature under reduced pressure (50 ⁇ mHg), and then mercury was increased in multiple steps from 4.0 psia (pound square inch absolute pressure) to 40000 psia, and then 3.0 psia. It is defined by the amount of mercury intrusion measured by reducing the pressure in multiple stages.
  • the ratio r of the total pore volume value of the spherical graphite particles and the total pore volume value of the composite graphite particles by the measurement method is preferably 0.5 or more, more preferably 0.6 or more, Particularly preferred is 0.65 or more. Moreover, 1.0 or less is preferable, 0.9 or less is more preferable, and 0.8 or less is particularly preferable.
  • Requirement (2) In the present invention, a binder is added to the composite graphite particles, applied to a metal current collector, dried and pressed to obtain an electrode density of 1.63 g / cm 3 or more.
  • a value p ′ / q ′ obtained by dividing the value p ′ by the value q ′ of the BET-specific surface area of the electrode plate before pressing is preferably 1.5 or more and 2.5 or less, and is a composite graphite particle for a non-aqueous secondary battery. It is mentioned as one of the aspects.
  • the ratio of the BET-specific surface area of the active material on the electrode plate before and after is preferably 1.5 or more, more preferably 1.6 or more, and particularly preferably 1.7 or more. Further, it is preferably 2.5 or less, more preferably 2.4 or less, and particularly preferably 2.3 or less.
  • the BET-specific surface area ratio of the electrode plate before and after pressing is lower than the lower limit, the diffusibility of the electrolyte solution is deteriorated, which may lead to cycle deterioration and lithium deposition.
  • the upper limit is exceeded, the initial charge / discharge irreversible capacity may increase.
  • Electrode plate preparation method A 2 parts by weight of an aqueous dispersion of styrene butadiene rubber as a solid content and 1 part by weight of an aqueous solution of carboxymethylcellulose (weight average molecular weight 250,000 to 300,000) as a solid content are added to 100 parts by weight of composite graphite particles to form a slurry.
  • the BET 6-point method is measured by a nitrogen gas adsorption flow method.
  • the electrode plate before or after pressing is cut so that the composite weight of composite graphite particles, styrene butadiene rubber and carboxymethyl cellulose on the electrode plate is 1.01 g, filled in a cell, and heated to 110 ° C.
  • the specific surface area is calculated by the usual BET method.
  • composite graphite particle (B) alone is a non-aqueous secondary battery.
  • composite graphite particle (B) is selected from the group consisting of natural graphite, artificial graphite, vapor-grown carbon fiber, conductive carbon black, amorphous-coated graphite, resin-coated graphite, and amorphous carbon.
  • carbonaceous particles (C) One or more kinds of carbonaceous particles having different shapes or physical properties from the composite graphite particles (hereinafter abbreviated as “carbonaceous particles (C)”) may be further included to form a negative electrode material for a non-aqueous secondary battery. preferable.
  • the lower limit of the amount when mixing the carbonaceous particles (C) is 0.1% by mass or more, preferably 0.5% by mass or more when blending carbonaceous particles of 5 ⁇ m or less with respect to the whole negative electrode material. More preferably, it is 0.6% by weight or more, and when blending carbonaceous particles of 5 ⁇ m or more, it is 5% by weight or more, preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably 40% by weight. % Or more.
  • the upper limit is usually 95% by mass or less, preferably 80% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less. Below this range, the effect of improving conductivity may be difficult to obtain. If it exceeds the upper limit, it may be difficult to obtain the characteristics of the composite graphite particles (B), and the initial irreversible capacity may be increased.
  • the carbonaceous particles (C) as natural graphite, for example, highly purified scaly graphite or spheroidized graphite can be used.
  • the volume-based average particle diameter of natural graphite is usually 8 ⁇ m or more, preferably 10 ⁇ m or more, and usually 60 ⁇ m or less, preferably 40 ⁇ m or less.
  • the BET specific surface area of natural graphite is usually in the range of 4 m 2 / g or more, preferably 4.5 m 2 / g or more, usually 9 m 2 / g or less, preferably 5.5 m 2 / g or less.
  • artificial graphite for example, particles obtained by combining coke powder or natural graphite with a binder, particles obtained by firing and graphitizing single graphite precursor particles while powdered, and the like can be used.
  • amorphous-coated graphite for example, natural graphite or artificial graphite coated with an amorphous precursor and fired, or natural graphite or artificial graphite coated with an amorphous surface can be used.
  • resin-coated graphite for example, particles obtained by coating and drying a polymer material on natural graphite or artificial graphite can be used, and as amorphous carbon, for example, particles or carbon obtained by firing bulk mesophase Particles obtained by infusibilizing the precursor and calcining it can be used.
  • the composite graphite particles of the present invention are produced by mixing raw material carbonaceous particles, a binder and the like, and performing molding, devolatilizing component firing, graphitization, pulverization, and classification as necessary. In order to produce the composite graphite particles of the present invention that satisfy the above-mentioned physical properties, it is important to combine the following ideas.
  • spherical graphite particles it is preferable to select spherical graphite particles as a raw material. Further, when the spherical graphite particles and the binder are combined, it is possible to optimize the contrivance and the strength at the time of pulverization, such as optimizing the type and amount of the pitch as the binder.
  • a suitable method for producing the composite graphite particles of the present invention will be described in detail.
  • the spherical graphite particles and the binder are combined while heating.
  • a graphitization catalyst may be added if desired.
  • Suitable spherical graphite particles (carbonaceous particles) and binders are as described above, and graphitization catalysts are as follows.
  • the ratio of the binder-derived binder in the composite graphite particles obtained by carbonization / graphitization obtained by carbonization / graphitization is usually 1% by weight or more, preferably usually 5% by weight or more, more preferably 10% by weight or more. Use as follows.
  • the upper limit is an amount such that this ratio is usually 65% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less. If the amount of the binder is too large, the amorphous part derived from the binder increases in the final product, so that the battery capacity may be reduced when the battery is formed.
  • the obtained composite graphite particles are hardened, when the active material layer applied to the current collector is pressed, not the binder-derived portion but the carbonaceous particle-derived graphite particles themselves tend to break. On the other hand, if the amount of the binder is too small, it becomes too soft and good charge / discharge high load characteristics cannot be obtained.
  • the amount of the binder in the composite graphite particles is controlled by the amount of the binder added at the stage before combining. For example, when the residual carbon ratio of the binder obtained by the method described in JIS K2270 is p%, a desired amount of 100 / p times the binder is added.
  • a device for adding a binder such as pitch and tar it is preferable to uniformly disperse as much as possible at a low temperature and in a short time in order to reduce the initial irreversible capacity and the press load. In order to perform dispersion at a low temperature and in a short time, stirring should be strengthened to such an extent that the carbonaceous particles are not broken.
  • Graphitization catalyst In order to increase the charge / discharge capacity and improve the pressability, a graphitization catalyst may be added when mixing the carbonaceous particles and the binder.
  • the graphitization catalyst include metals such as iron, nickel, titanium, silicon, and boron, and compounds such as carbides, oxides, and nitrides thereof.
  • metals such as iron, nickel, titanium, silicon, and boron
  • compounds such as carbides, oxides, and nitrides thereof.
  • silicon, silicon compounds, iron, and iron compounds are preferable, and silicon carbide is particularly preferable among silicon compounds, and iron oxide is particularly preferable among iron compounds.
  • silicon or a silicon compound When silicon or a silicon compound is used as the graphitization catalyst, all of the silicon carbide produced by heating is pyrolyzed at a temperature of 2800 ° C. or higher to grow graphite with extremely good crystallinity, and when silicon is volatilized, graphite crystals Since pores are formed between them, the charge transfer reaction and diffusion of lithium ions inside the particles can be promoted, and the battery performance can be improved. Further, when iron or a compound thereof is used as the graphitization catalyst, graphite having good crystallinity can be grown by the mechanism of dissolution and precipitation of carbon in the catalyst, and the same effect as silicon can be exhibited.
  • the addition amount of these graphitization catalysts is usually 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less with respect to the carbonaceous primary particles as a raw material. .
  • graphitization catalysts When there are too many graphitization catalysts, graphitization will advance too much and the characteristic at the time of lithium ion secondary battery manufacture, especially the problem that immersion property may not be enough may arise.
  • the strength of the particles may decrease because of the formation of pores in the composite graphite particles, and as a result, the surface may be smoothed in the pressing step during electrode plate preparation, and ion migration may be inhibited.
  • the liquid binder is attached to the carbonaceous particles and the raw material that does not melt at the compounding temperature.
  • all the raw materials may be charged into the compounding machine and the mixing and heating may be performed at the same time.
  • components other than the binder may be charged into the compounding machine and heated in a stirred state. A sulfur melted binder may be charged.
  • the heating temperature is equal to or higher than the softening point of the binder. If the heating temperature is too low, the viscosity of the binder becomes high and mixing becomes difficult. Therefore, the temperature is usually 10 ° C or higher than the softening point, preferably 20 ° C higher than the softening point. It is performed at a higher temperature. If the heating temperature is too high, the viscosity of the mixed system becomes too high due to the volatilization and polycondensation of the binder, and is usually 300 ° C. or lower, preferably 250 ° C. or lower.
  • the combination machine is preferably a model having a stirring blade, and the stirring blade may be a general-purpose one such as a Z type or a gusset type.
  • the amount of raw material charged into the compounding machine is usually 10% by volume or more, preferably 15% by volume or more, and 50% by volume or less, preferably 30% by volume or less of the mixer volume.
  • the mixing time is 5 minutes or more, and it takes up to a maximum viscosity change due to the volatilization of the volatile matter, usually 30 to 120 minutes.
  • the compounding machine is preferably preheated to the compounding temperature prior to compounding.
  • V Molding
  • the obtained compound may be subjected to a de-VM firing step for the purpose of removing volatile components (hereinafter abbreviated as “VM”) and carbonizing as it is, but for easy handling, It is preferable to use for a VM removal baking process after shaping
  • VM volatile components
  • the molding method is not particularly limited as long as the shape can be maintained, and extrusion molding, mold molding, isostatic pressing, and the like can be employed.
  • extrusion is easy to orient the particles in the molded body, and operation is relatively easy compared to isostatic pressing that maintains the random orientation of the particles but has a problem with productivity.
  • Mold molding that can obtain a molded body without destroying the oriented structure is preferred.
  • the molding temperature may be either room temperature (cold) or under heating (hot, temperature above the softening point of the binder).
  • cold forming it is desirable to preliminarily crush the mixture cooled to a maximum size of 1 mm or less in advance in order to improve the moldability and obtain the uniformity of the formed body.
  • the shape and size of the molded body are not particularly limited, but in hot forming, if the molded body is too large, there is a problem that it takes time to perform uniform preheating prior to molding. It is preferable to set it as the magnitude
  • the upper limit of the molding pressure is usually 3 tf / cm 2 (294 MPa) or less, preferably 500 kgf / cm 2 (49 MPa) or less, more preferably 10 kgf / cm 2 (0.98 MPa) or less.
  • the lower limit pressure is not particularly limited, but is preferably set to such an extent that the shape of the molded body can be maintained in the VM removal step.
  • De-VM firing In order to remove the carbonaceous particles and the volatile component (VM) of the binder, the obtained molded body prevents contamination of the filler during graphitization and fixing of the filler to the molded body.
  • De-VM firing is performed. De-VM firing is usually performed at a temperature of 600 ° C. or higher, preferably 650 ° C. or higher, usually 1300 ° C. or lower, preferably 1100 ° C. or lower, usually for 0.1 to 10 hours. In order to prevent oxidation, heating is usually performed in a non-oxidizing atmosphere in which an inert gas such as nitrogen or argon is circulated or a granular carbon material such as breeze or packing coke is filled in the gap.
  • an inert gas such as nitrogen or argon
  • the equipment used for the de-VM firing is not particularly limited as long as it can be fired in a non-oxidizing atmosphere, such as an electric furnace, a gas furnace, and a lead hammer furnace for electrode materials.
  • the heating rate during heating is desirably a low speed for removing volatile components. Normally, from about 200 ° C. where volatilization of low-boiling components starts to around 700 ° C. where only hydrogen is generated, 3 to 100 ° C. The temperature is raised at / hr. (Vii) Graphitization
  • the carbide molded body obtained by de-VM firing is then graphitized by heating at a high temperature.
  • the heating temperature during graphitization is usually 2600 ° C. or higher, preferably 2800 ° C. or higher. Moreover, since the sublimation of graphite will become remarkable when heating temperature is too high, 3300 degrees C or less is preferable.
  • the heating time may be performed until the binder and the carbonaceous particles become graphite, and is usually
  • the atmosphere during graphitization is performed under a non-oxidizing atmosphere in which an inert gas such as nitrogen or argon is circulated or a granular carbon material such as breeze or packing coke is filled in the gap.
  • the equipment used for graphitization is not particularly limited as long as it meets the above purpose, such as an electric furnace, a gas furnace, an electrode material Atchison furnace, etc.
  • the heating rate, cooling rate, heat treatment time, etc. are acceptable for the equipment used. It can be set arbitrarily within the range.
  • (Viii) Grinding Usually, the graphitized product thus obtained does not satisfy the requirements of the present invention as it is, and is thus ground or ground. The process is roughly divided into three steps: coarse pulverization, medium pulverization, and fine pulverization.
  • the method for pulverizing and grinding the graphitized product is not particularly limited, but as a means for pulverizing and grinding, for example, a mechanical grinding means such as a ball mill, a hammer mill, a CF mill, an atomizer mill, a pulverizer, Examples thereof include a pulverizing means using wind power, such as a jet mill.
  • a pulverization method using impact force such as a jaw crusher, a hammer mill, or a roller mill may be used.
  • the timing of pulverization may be before graphitization or after graphitization. The latter is more preferable because an operation such as crucible filling is unnecessary and can be manufactured at low cost.
  • (Viii) -1 Coarse pulverization, medium pulverization In order to satisfy the requirements described in the present invention, in the coarse pulverization / medium pulverization of the graphitized material, for example, “VM-32 type pulverizer manufactured by Orient Kogyo Co., Ltd.” is used. When used, the graphitized product is carried into a pulverizer by a belt-conveying feeder, and pulverized at a pulverization blade rotational speed of 1000 rotations / minute or more. In addition, if excessive pulverization / grinding is performed in this pulverization stage, a lot of fine powder is generated on the surface of the graphitized particles. An increase in irreversible capacity during discharge is expected.
  • the rotation speed of the pulverization blades during fine pulverization is preferably 2000 rotations / minute or more, and further 2500 rotations / minute In particular, 3000 rpm / min or more is preferable. Further, it is preferably 7800 revolutions / minute or less, more preferably 6500 revolutions / minute or less, and particularly preferably 4500 revolutions / minute or less.
  • the volume-based particle size distribution by laser diffraction / scattering particle size measurement has a particle size of 100 ⁇ m or more of 3% or less and a particle size of 1 ⁇ m or less. It is desirable to adjust the particle size so that it becomes 1% or less of the total.
  • sieving or classification has the advantage that the particle size distribution and average particle size of the composite graphite particles can be readjusted as needed by changing the graphitization and removal of the particulates.
  • sieving or classification has several types of sieving to remove large-diameter granular materials, such as fixed screen, in-plane motion, and rotary sieve. From the viewpoint of processing capacity, the blow-through type screen in the fixed screen is used. Particularly preferred. As an example, those having a size of 30 ⁇ m or more and 80 ⁇ m or less are used. It is appropriately selected and used in accordance with the production status (particularly the amount and particle size) of the granular material to be removed and the requirements for adjusting the particle size distribution and average particle size of the composite graphite particles.
  • Classification can be performed by methods such as wind classification, wet classification, and specific gravity classification, and is not particularly limited for removing particulates of 100 ⁇ m or more.
  • the influence on the properties of the composite graphite particles and the particle size distribution of the composite graphite particles are not limited.
  • an air classifier such as a swirling flow classifier.
  • by controlling the air volume and the wind speed it is possible to adjust the removal of the particulate matter and the particle size distribution and average particle size of the composite graphite particles, as well as adjusting the size of the mesh openings. .
  • Negative electrode for non-aqueous secondary battery The composite graphite particles of the present invention can be suitably used as a negative electrode material for non-aqueous secondary batteries, particularly lithium ion secondary batteries.
  • a mixture of the composite graphite particles (B) and the carbonaceous particles (C) of the present invention can be suitably used as the negative electrode material.
  • an apparatus used for mixing a composite graphite particle (B) and a carbonaceous particle (C) For example, as a rotary mixer, a cylindrical mixer, a twin cylinder mixer, a double cone Type mixers, regular cubic mixers, vertical mixers, etc.
  • the fixed mixers are helical mixers, ribbon mixers, Muller mixers, Helical Flyt mixers, Pugmill mixers Machine, fluidized mixer and the like.
  • the negative electrode constituting the non-aqueous secondary battery is formed by forming an active material layer containing a negative electrode material, an electrode plate-forming binder, a thickener, and a conductive material on a current collector.
  • the active material layer is usually obtained by preparing a slurry containing a negative electrode material, an electrode plate-forming binder, a thickener, a conductive material and a solvent, and applying, drying and pressing the slurry on a current collector.
  • the electrode plate-forming binder any material can be used as long as it is a material that is stable with respect to the solvent and the electrolyte used during electrode production.
  • the electrode plate-forming binder is usually 90/10 or more, preferably 95/5 or more, and usually 99.9 / 0.1 or less, preferably 99, in a weight ratio of negative electrode material / electrode plate-forming binder. It is used in the range of 0.5 / 0.5 or less.
  • Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.
  • Examples of the material of the current collector include copper, nickel, and stainless steel. Among these, a copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
  • Density of the active material layer varies depending on the application, the application that emphasizes capacity, but is usually 1.55 g / cm 3 or more, 1.60 g / cm 3 or more, further 1.65 g / cm 3 or more, In particular, 1.70 g / cm 3 or more is preferable. If the density is too low, the battery capacity per unit volume may not always be sufficient. Moreover, since a charge / discharge high load characteristic will fall when a density is too high, 1.90 g / cm ⁇ 3 > or less is preferable.
  • the active material layer means a mixture layer made of an active material on a current collector, an electrode plate forming binder, a thickener, a conductive material, etc., and its density means the active material at the time of assembling the battery. It refers to the bulk density of the layer.
  • the negative electrode for a nonaqueous secondary battery of the present invention produced using the composite graphite particles of the present invention and the negative electrode material of the present invention is a nonaqueous secondary battery such as a lithium ion secondary battery. It is extremely useful as a negative electrode for a battery.
  • the nonaqueous secondary battery of the present invention usually has at least the above-described negative electrode, positive electrode and electrolyte of the present invention.
  • the positive electrode is formed by forming an active material layer containing a positive electrode active material, a conductive agent, and an electrode plate forming binder on a positive electrode current collector.
  • the active material layer is usually obtained by preparing a slurry containing a positive electrode active material, a conductive agent and an electrode plate forming binder, and applying and drying the slurry on a current collector.
  • the positive electrode active material include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide; transition metal oxide materials such as manganese dioxide; carbonaceous materials such as graphite fluoride A material capable of inserting and extracting lithium, such as lithium, can be used.
  • LiFePO 4 , LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and non-stoichiometric compounds thereof, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 can be used CoS 2, V 2 O 5, P 2 O 5, CrO 3, V 3 O 3, TeO 2, GeO 2 or the like.
  • the positive electrode current collector it is preferable to use a metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution, and a metal belonging to group IIIa, IVa, or Va (group 3B, 4B, or 5B). And alloys thereof. Specifically, for example, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals are preferably used. Can do. In particular, Al and its alloys are desirable because of their light weight and high energy density.
  • the electrolyte examples include an electrolytic solution, a solid electrolyte, a gel electrolyte, and the like, and among them, an electrolytic solution, particularly a nonaqueous electrolytic solution is preferable.
  • an electrolytic solution particularly a nonaqueous electrolytic solution is preferable.
  • a non-aqueous electrolyte solution a solution obtained by dissolving a solute in a non-aqueous solvent can be used.
  • the solute an alkali metal salt, a quaternary ammonium salt, or the like can be used.
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate and butylene carbonate, cyclic ester compounds such as ⁇ -butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ether, 2-methyltetrahydrofuran, 1,2 -Cyclic ethers such as dimethyltetrahydrofuran, 1,3-dioxolane and tetrahydrofuran; chain carbonates such as diethyl carbonate, ethylmethyl carbonate and dimethyl carbonate can be used.
  • cyclic carbonates such as ethylene carbonate and butylene carbonate
  • cyclic ester compounds such as ⁇ -butyrolactone
  • chain ethers such as 1,2-dimethoxyethane
  • crown ether 2-methyltetrahydrofuran
  • 1,2 -Cyclic ethers such as dimethyltetrahydrofuran, 1,3-dioxolane and tetrahydrofur
  • the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.
  • compounds such as vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, and diethyl sulfone may be added.
  • the content of these solutes in the electrolytic solution is preferably 0.2 mol / L or more, particularly 0.5 mol / L or more, and 2 mol / L or less, particularly 1.5 mol / L or less.
  • the non-aqueous secondary battery prepared by combining the negative electrode of the present invention, the metal chalcogenide-based positive electrode, and the organic electrolyte mainly composed of a carbonate-based solvent has a large capacity and an irreversible capacity that is recognized in the initial cycle. , High rapid charge / discharge capacity (good rate characteristics), excellent cycle characteristics, high battery storage and reliability when left at high temperature, extremely high efficiency discharge characteristics and low temperature discharge characteristics It is a thing.
  • a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact.
  • the separator preferably has high ion permeability and low electrical resistance.
  • the material and shape of the separator are not particularly limited, but those that are stable with respect to the electrolyte and excellent in liquid retention are preferable. Specifically, a porous sheet or a non-woven fabric made of a polyolefin such as polyethylene or polypropylene is used.
  • the shape of the non-aqueous secondary battery of the present invention is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin in which a pellet electrode and a separator are stacked Type.
  • Example 1 Graphite particles with an average particle size of 100 ⁇ m were spheroidized for 4 minutes at a rotor peripheral speed of 60 m / sec using a hybrid system NHS-3 manufactured by Nara Machinery Co., Ltd., cumulative 50% diameter 10.6 ⁇ m, cumulative 10% diameter Spherical graphite particles having a diameter of 6.7 ⁇ m, a cumulative 90% diameter of 16.0 ⁇ m, and a tap density of 0.77 g / cm 3 were obtained.
  • the shape of the spherical graphite particles was observed with an electron microscope, it was a plurality of curved or bent scaly or scaly shapes.
  • the spherical graphite particles and a binder pitch having a softening point of 88 ° C. as a graphitizable binder are mixed at a weight ratio of 100: 40, and charged into a kneader having a gussetar type stirring blade preheated to 128 ° C. Combined for 20 minutes.
  • the fully mixed mixture is filled into a mold of a mold press machine preheated to 108 ° C. and left for 5 minutes.
  • the plunger is pushed and 2 kgf / cm 3 (0.20 MPa).
  • the obtained molded body was housed in a metal sagar as a heat-resistant container, and the gap was filled with graphite breeze.
  • the temperature was raised from room temperature to 1000 ° C. in an electric furnace over 48 hours, held at 1000 ° C. for 3 hours, and de-VM firing was performed.
  • the compact was stored in a graphite crucible and filled with graphite breeze in the gap.
  • Graphitization was performed by heating to 3000 ° C. for 4 hours in an Atchison furnace.
  • the obtained graphite compact was roughly crushed with a jaw crusher, and then finely pulverized with a mill whose pulverization blade rotation speed was set to 6500 rpm, and coarse particles were removed with a 45 ⁇ m sieve to obtain composite graphite particles. .
  • Electrode Plate (Negative Electrode Sheet) Using this composite graphite particle as a negative electrode material, an electrode plate having an active material layer having an active material layer density of 1.70 g / cm 3 was produced by the method described above. Specifically, the negative electrode material 20.00 ⁇ 0.02 g, 1 mass% carboxymethylcellulose (CMC) aqueous solution 20.00 ⁇ 0.02 g, and styrene butadiene rubber (SBR) aqueous disperser having a weight average molecular weight of 270,000. John 0.25 ⁇ 0.02 g was stirred with a KEYENCE hybrid mixer for 5 minutes to obtain a slurry.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • the slurry was applied to a width of 5 cm by a doctor blade method so that the negative electrode material was 11.0 ⁇ 0.1 mg / cm 2 on a 18 ⁇ m thick copper foil as a current collector, and air-dried at room temperature. went. Further, after drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm to adjust the density of the active material layer to 1.70 g / cm 3 to obtain a negative electrode sheet.
  • an electrode plate was prepared by the following electrode preparation method, a non-aqueous secondary battery was prepared, and “cycle characteristics” were measured. Table 2 shows the measurement results of the cycle characteristics.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • Example 2 A composite graphite particle was obtained in the same manner as in Example 1 except that a binder pitch having a softening point of 88 ° C. was used as the graphitizable binder in Example 1 and the binder pitch amount was set to 30 parts by weight. Then, in the same manner as in Example 1, an electrode plate (negative electrode sheet) and a non-aqueous secondary battery were produced, and “charge / discharge irreversible capacity at the initial cycle” and “charge acceptance” were measured. Similarly, the cycle characteristics were measured. Table 1 shows the physical properties of the composite graphite particles, and Table 2 shows the measurement results of charge / discharge irreversible capacity, charge acceptance, and cycle characteristics during the initial cycle.
  • Example 3 As in Example 1, a binder pitch having a softening point of 88 ° C. was used as the graphitizable binder, the binder pitch amount was set to 50 parts by weight, and the pulverization blade rotation number was set to 3000 rotations / minute. Composite graphite particles were obtained, and the above physical properties were measured. The results are shown in Table 1.
  • Example 4 As in Example 1, a binder pitch having a softening point of 88 ° C. was used as a graphitizable binder, the binder pitch amount was set to 50 parts by weight, and the pulverization blade rotation speed was set to 4500 revolutions / minute. Composite graphite particles were obtained, and the above physical properties were measured. The results are shown in Table 1.
  • Example 5 As in Example 1, a binder pitch having a softening point of 88 ° C. was used as the graphitizable binder, the binder pitch amount was set to 50 parts by weight, and the grinding blade rotation speed was set to 6500 revolutions / minute. Composite graphite particles were obtained, and the above physical properties were measured. The results are shown in Table 1.
  • Comparative Example 1 Graphite particles with an average particle size of 100 ⁇ m were spheroidized for 8 minutes at a rotor peripheral speed of 60 m / sec using a hybrid system NHS-3 manufactured by Nara Machinery Co., Ltd., with a cumulative 50% diameter of 17.4 ⁇ m and a cumulative 10% diameter. Spherical graphite particles having a diameter of 11.9 ⁇ m, a cumulative 90% diameter of 26.4 ⁇ m, and a tap density of 1.04 g / cm 3 were obtained. Using this spherical graphite particle, a binder pitch having a softening point of 88 ° C.
  • Example 1 shows the physical properties of the composite graphite particles
  • Table 2 shows the measurement results of charge / discharge irreversible capacity, charge acceptance, and cycle characteristics during the initial cycle.
  • Comparative Example 2 Graphite particles with an average particle size of 100 ⁇ m were spheroidized for 15 minutes at a rotor peripheral speed of 65 m / sec using a hybrid system NHS-3 manufactured by Nara Machinery Co., Ltd., with a cumulative 50% diameter 22.2 ⁇ m and a cumulative 10% diameter Spherical graphite particles having 14.9 ⁇ m, a cumulative 90% diameter of 35.4 ⁇ m, and a tap density of 1.02 g / cm 3 were obtained. Using this spherical graphite particle, a composite graphite particle was obtained in the same manner as in Example 1 except that a binder pitch having a softening point of 88 ° C.
  • Example 1 shows the physical properties of the composite graphite particles
  • Table 2 shows the measurement results of the charge / discharge irreversible capacity during the initial cycle.
  • Comparative Example 3 Graphite particles with an average particle size of 100 ⁇ m were spheroidized for 15 minutes at a rotor peripheral speed of 65 m / sec using a hybrid system NHS-3 manufactured by Nara Machinery Co., Ltd., with a cumulative 50% diameter 22.2 ⁇ m and a cumulative 10% diameter Spherical graphite particles having 14.9 ⁇ m, a cumulative 90% diameter of 35.4 ⁇ m, and a tap density of 1.02 g / cm 3 were obtained. Using this spherical graphite particle, a binder pitch having a softening point of 88 ° C.
  • Example 1 shows the physical properties of the composite graphite particles
  • Table 2 shows the measurement results of the charge / discharge irreversible capacity during the initial cycle.
  • the non-aqueous secondary battery has a low irreversible charge / discharge capacity in the initial cycle, excellent charge acceptance, and excellent cycle characteristics.
  • the present invention is very useful industrially in the field of various non-aqueous secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高容量化のために集電体上の負極材料を有する活物質層を高密度化しても、初期サイクル時の充放電不可逆容量の十分小さく、充電受入性に優れ、サイクル特性に優れた非水系二次電池を提供すること。球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該球状黒鉛粒子(A)を特定のものを用いるか、該複合黒鉛粒子が (a)及び/または(b) を満たすことを特徴とする非水系二次電池用複合黒鉛粒子:  (a) (A)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(A)、D90(A)、D10(A)とし、(B)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(B)、D90(B), D10(B)としたとき、(式1)、(式2)及び(式3)の全てを満たす; 1.1≦D50(B)/D50(A)≦2.0 (式1)   1.1≦D90(B)/D90(A)≦2.4 (式2)  1.0≦D10(B)/D10(A)≦1.8 (式3)  (b) (A)のXRDから測定される110面と004面の比である110(A)/004( A)の値をx、(B)のXRDから測定される110面と004面の比である110(B)/004( B)の値をyとしたとき、その比zは下記式で定義され、zは1.2以上3.5以下である: z=y/x

Description

非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
 本発明は、非水系二次電池に用いる複合黒鉛粒子と、その複合黒鉛粒子を含有する負極材料と、その負極材料を用いて形成された負極と、その負極を有する非水系二次電池に関する。
 近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度の高く、大電流充放電特性に優れた非水系二次電池が注目されてきている。
 非水系二次電池の負極材料としては、コスト、耐久性、容量の点で、黒鉛が使用されることが多い。しかしながら、高容量化のために極板上の負極材料を含む活物質層を高密度化すると、初期サイクル時の充放電不可逆容量が増える、十分な充電受入性が得られない、サイクル劣化が顕著に起こるといった問題点があった。
 特許文献1においては天然黒鉛及びバインダーを捏合して捏合物を得、700~1500℃で一次加熱して該バインダーを炭素化し、次いで、2400~3000℃で二次加熱することにより、天然黒鉛の純化及び炭素化されたバインダーの黒鉛化を同時に行う炭素複合材料の製造方法が記載されている。しかしながら、特許文献1においては、出発原料として鱗状又は鱗片状天然黒鉛を想定しているものであり、活物質層の高密度化、充放電不可逆容量低減、充電受入性、サイクル特性は不十分であった。
日本国特開2000-086343号公報
 本発明は、かかる背景技術に鑑みてなされたものであり、その課題は、高容量化のために集電体上の負極材料を有する活物質層を高密度化しても、初期サイクル時の充放電不可逆容量が十分小さく、且つ、充電受入性が良く、サイクル特性に優れる電池を提供する。
 発明者らは、前記課題を解決すべく鋭意検討を行った結果、特定の構造と物性を有する、球状黒鉛粒子とバインダー黒鉛化物とが複合化した複合黒鉛粒子を負極活物質として用いることによって、上記課題を解決した非水系二次電池が得られることを見出し、本発明に到達した。
 即ち、本発明の要旨は以下のとおりである。
(1) 球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該複合黒鉛粒子(B)が (a)及び(b)のうち少なくとも1つを満たすことを特徴とする非水系二次電池用複合黒鉛粒子:
 (a) (A)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(A)、D90(A)、D10(A)とし、(B)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(B)、D90(B), D10(B)としたとき、(式1)、(式2)及び(式3)の全てを満たす;
          1.1≦D50(B)/D50(A)≦2.0 (式1)
          1.1≦D90(B)/D90(A)≦2.4 (式2)
          1.0≦D10(B)/D10(A)≦1.8 (式3)、
 (b) (A)のXRDから測定される110面と004面の比である110(A)/004( A)の値をx、(B)のXRDから測定される110面と004面の比である110(B)/004( B)の値をyとしたとき、その比zは下記式で定義され、zは1.2以上3.5以下である:
                  z=y/x
(2)該複合黒鉛粒子(B)が、さらに(c)及び(d)のうち少なくとも1つを満たすことを特徴とする上記(1)記載の非水系二次電池用複合黒鉛粒子:
 (c) BET比表面積が1.6m2/g以上5.0m2/g以下、タップ密度が0.80g/cm3以上1.40 g/cm3以下、フロー式粒子像分析装置により測定した粒子径が1.5μmから10μmにおける平均円形度が0.90以上0.98以下、かつ、粒子径が10μmから40μmにおける平均円形度が0.85以上0.90以下である;
 (d) (A)のHgポロシメトリー測定から得られる全細孔容積の値をpとし、(B)のHgポロシメトリー測定から得られる全細孔容積の値をqとしたとき、その比rは下記式で定義され、0.5以上1.0以下である:
                r=p/q
(3)該複合黒鉛粒子(B)にバインダーを加えて金属製集電体上に塗布、乾燥、プレスして電極密度を1.63g/cm3以上としたとき、プレス後の金属集電体上に形成されたバインダーを含む活物質層のBET-比表面積の値p’をプレス前の金属集電体上に形成されたバインダーを含む活物質層のBET-比表面積の値q’で割った値p’/q’が、1.5以上2.5以下であることを特徴とする上記(1)または(2)に記載の非水系二次電池用複合黒鉛粒子。
(4)球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該球状黒鉛粒子(A)が、湾曲又は屈曲した複数の鱗片状又は鱗状黒鉛からなり、レーザー光回折法による累積50%径(d50径)が9μm 以上14μm以下であることを特徴とする非水系二次電池用複合黒鉛粒子。
(5)上記(1)から(4)のいずれかに記載の非水系二次電池用複合黒鉛粒子(B)を含有することを特徴とする非水系二次電池用負極材料。
(6)更に、該複合黒鉛粒子(B)とは形状又は物性の異なる炭素質粒子を含有してなる上記(5)記載の非水系二次電池用負極材料。
(7)集電体及びその上に形成された活物質層を有する負極であって、該活物質層が上記(5)または(6)に記載の非水系二次電池用負極材料を用いて形成されていることを特徴とする非水系二次電池用負極。
(8)リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を有する非水系二次電池であって、該負極が、上記(7)記載の非水系二次電池用負極であることを特徴とする非水系二次電池。
 本発明の非水系二次電池用複合黒鉛粒子を用いると、負極の集電体上の活物質層を高密度化した場合においても、初期サイクル時の充放電不可逆容量が小さく、高容量で、優れた充電受入性を示し、且つ、優れたサイクル特性を有する非水系二次電池を提供する事ができる。
 以下に本発明を実施するための最良の形態を詳細に説明するが、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの形態に特定されるものではない。
 本発明では、用語は以下のように定義、使用する。すなわち、本発明の複合黒鉛粒子において、炭素質粒子が黒鉛化可能な温度で焼成された部分を黒鉛質粒子ということがある。本発明の複合黒鉛粒子、それに要すれば炭素質粒子が混合されてなるものをも含めて負極材料と定義する。少なくとも負極材料と結着剤を用いて活物質層を得、負極用の集電体上に少なくとも活物質層を有しているものを極板又は負極と定義し、少なくとも負極と正極と電解質を有して非水系二次電池が構成される。
[1]非水系二次電池用複合黒鉛粒子
(A)複合黒鉛粒子の構成
 本発明の負極材料は、本発明の複合黒鉛粒子を主な成分とする。そして本発明の複合黒鉛粒子は、球状黒鉛粒子(A)と黒鉛化可能なバインダー(以下単に、「バインダー」ということがある)の黒鉛化物とが複合化した複合黒鉛粒子(B)であって、例えば、球状黒鉛粒子と黒鉛化可能なバインダーとを捏合し、捏合物の成形体を、粉砕後に黒鉛化又は黒鉛化後に粉砕又は磨砕することにより得られる。すなわち、この場合、形成された複合黒鉛粒子の構成は、炭素質粒子が焼成された黒鉛質粒子の少なくとも一部(一部又は全て)の複合黒鉛粒子と、バインダーが焼成されたもの(これも黒鉛質である)が複合化した構造を有するものである。
 本発明の第一の態様の複合黒鉛粒子は、球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該複合黒鉛粒子が以下 (a)及び (b) のうち少なくとも1つを満たす。
 本発明の第二の態様の複合黒鉛粒子は、球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該球状黒鉛粒子(A)が湾曲又は屈曲した複数の鱗片状又は鱗状黒鉛からなり、レーザー光回折法による累積50%径(d50径)が9μm 以上14μm以下である。
 本発明の複合黒鉛粒子の原料である炭素質粒子としては、焼成によって黒鉛化が可能な炭素の粒子であれば特に限定はないが、天然黒鉛、人造黒鉛、球形化黒鉛、コークス粉、ニードルコークス粉、樹脂の炭化物粉等が挙げられる。これらのうち、活物質層作成時に活物質層の密度を上げ易いという点から、天然黒鉛を用いることが好ましい。中でも黒鉛を球形化処理した球形化黒鉛が特に好ましい。
 本発明の第一の態様の球状黒鉛粒子は、湾曲又は屈曲した複数の鱗片状又は鱗状黒鉛からなるものであることが好ましい。また、黒鉛化可能なバインダーは以下の通りである。
1)黒鉛化可能なバインダー
 「黒鉛化可能なバインダー」(以下単に「バインダー」と記載することがある。)としては、焼成によって黒鉛化が可能な炭素質であれば特に限定はなく、タール、軟ピッチから硬ピッチまでの石油系及び石炭系の縮合多環芳香族類が好ましく用いられる。具体的には、含浸ピッチ、バインダーピッチ、コールタールピッチ、石炭液化油等の石炭系重質油、アスファルテン等の直留系重質油、エチレンヘビーエンドタール等の分解系重質油等の石油系重質油等が挙げられる。
 バインダー中に含まれるキノリン不溶成分は通常0~10質量%であるが、少なければ少ないほど固さや電池にした時の容量の点で好ましい。バインダーのキノリン不溶成分の含有量が多すぎると、得られる複合黒鉛粒子の強度が高くなり、集電体に塗布された活物質層をプレスしても粒子が変形せず、高密度化するのが困難となる傾向があり、また、容量も低下する場合がある。
複合黒鉛粒子の物性
 本発明の第一の態様の複合黒鉛粒子は、少なくとも、以下の要件(a)及び要件(b)のうち少なくとも1つを満たすものである。
 (a) (A)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(A)、D90(A)、D10(A)とし、(B)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(B)、D90(B), D10(B)としたとき、(式1)、(式2)及び(式3)を満たす。
          1.1≦D50(B)/D50(A)≦2.0 (式1)
          1.1≦D90(B)/D90(A)≦2.4 (式2)
          1.0≦D10(B)/D10(A)≦1.8 (式3)
 (b) (A)のXRDから測定される110面と004面の比である110(A)/004( A)の値をx、(B)のXRDから測定される110面と004面の比である110(B)/004( B)の値をyとしたとき、y/xの値が1.2以上3.5以下である。
 また、本発明の第一の態様の複合黒鉛粒子は、上記要件に加え、以下の要件(c)及び要件(d)のうち少なくとも1つを満たすことが好ましい。
 (c) BET比表面積が1.6m2/g以上5.0m2/g以下、レーザー光回折法による累積50%径(d50径)が10.5-18.0μm、タップ密度が0.80g/cm3以上1.40 g/cm3以下、フロー式粒子像分析装置により測定した粒子径が1.5μmから10μmにおける平均円形度が0.90以上0.98以下、かつ、粒子径が10μmから40μmにおける平均円形度が0.85以上0.90以下である、
 (d) (A)のHgポロシメトリー測定から得られる全細孔容積の値をpとし、(B)のHgポロシメトリー測定から得られる全細孔容積の値をqとしたとき、その比rは下記式で定義され、0.5以上1.0以下である、
                r=p/q
 本発明の第二の態様の複合黒鉛粒子においても、上記の要件(a)及び要件(b)のうち少なくとも1つを満たすことが好ましく、更に上記の要件(c)及び要件(d)のうち少なくとも1つを満たすことが好ましい。また、本発明の第二の様態に用いる球状黒鉛粒子は、以下の物性を有することが好ましい。
(i)球状黒鉛粒子
 球状黒鉛粒子のレーザー光回折法による累積50%径(d50径)は、好ましくは9.0μm以上、特に好ましくは9.5μm以上の範囲である。また、好ましくは14μm以下、更に好ましくは13.5μm以下、特に好ましくは13.0μm以下の範囲である。
 レーザー光回折法による累積10%径(d10径)は、好ましくは4.0μm以上、更に好ましくは4.5μm以上、特に好ましくは5.0μm以上の範囲である。また、好ましくは9.0μm以下、更に好ましくは、8.5μm以下、特に好ましくは8.0μm以下である。レーザー光回折法による累積90%径(d90径)は、好ましくは14.0μm以上、更に好ましくは14.5μm以上、特に好ましくは15.0μm以上の範囲である。また、好ましくは21.0μm以下、更に好ましくは、20.5μm以下、特に好ましくは20.0μm以下である。なお、d50径、d10径及びd90径の定義及び測定法は後述のとおりである。
 また、以下に記載する範囲の球状黒鉛粒子を使用することで、より複合黒鉛粒子を最適化することができる。タップ密度は、好ましくは0.4g/cm3以上、更に好ましくは0.5g/cm3以上、特に好ましくは0.6g/cm3以上の範囲である。また、好ましくは1.0g/cm3以下、更に好ましくは0.95g/cm3以下、特に好ましくは0.91g/cm3以下の範囲である。BET-比表面積は、好ましくは5.0m2/g以上、更に好ましくは6.0m2/g以上、特に好ましくは6.5m2/g以上の範囲である。また、好ましくは11.0m2/g以下、更に好ましくは9.5m2/g以下、特に好ましくは9.1m2/g以下の範囲である。なお、これらの定義及び測定法は後述するとおりである。
 また、球状黒鉛粒子の波長514.5nmのアルゴンイオンレーザー光を用いたアルゴンイオンレーザースペクトルにおける1580cm-1の散乱強度に対する1360cm-1の散乱強度比であるR値(ラマンR値)は、好ましくは0.1以上、特に好ましくは0.15以上の範囲である。また、好ましくは、0.3以下、特に好ましくは0.25以下の範囲である。
 なお、本発明においては、ラマンR値とは、後述するようなラマン測定において得られたラマンスペクトルにおいて、1580cm-1付近の最大ピークの強度Iと、1360cm-1付近の最大ピークの強度Iの強度比I/IをラマンR値と定義する。
 1580cm-1付近の最大ピークは、黒鉛結晶質構造に由来するピークであり、1360cm-1付近の最大ピークは、構造欠陥により対称性の低下した炭素原子に由来するピークである。
 ラマン測定は、ラマン分光器「日本分光社製ラマン分光器」を用い、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。測定条件は以下の通りである。
アルゴンイオンレーザー光の波長 :514.5nm
試料上のレーザーパワー     :15~25mW
分解能             :14cm-1
測定範囲            :1100cm-1~1730cm-1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均、コンボリューション5ポイント)
 本発明の複合黒鉛粒子の原料としての球状黒鉛粒子は、球形化処理を経たものが特に好ましい。球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。好ましい装置として、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。この装置を用いて処理する場合は、回転するローターの周速度を30~100m/秒にするのが好ましく、40~100m/秒にするのがより好ましく、50~100m/秒にするのが更に好ましい。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
 球状黒鉛粒子の平均円形度は、通常0.85以上、好ましくは0.9以上、また、通常1.0以下、好ましくは0.96以下の範囲である。炭素質粒子の平均円形度がこの下限を下回ると、配向度が下がりやすく、上限を上回るとコストアップとなりやすい。球状黒鉛粒子の平均円形度は、前述の負極材料の平均円形度と同様にして測定したものを用いる。
 以下これらの要件について更に詳細に説明する。
要件(1-a)
「球状黒鉛粒子(A)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(A)、D90(A)、D10(A)とし、複合黒鉛粒子(B)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(B)、D90(B), D10(B)としたとき、(式1)、(式2)及び(式3)を満たす。
          1.1≦D50(B)/D50(A)≦2.0 (式1)
          1.1≦D90(B)/D90(A)≦2.4 (式2)
          1.0≦D10(B)/D10(A)≦1.8 (式3)」
(I)「累積50%径、累積90%径、累積10%径」の定義
「累積50%径、累積90%径、累積10%径」は、レーザー散乱式粒度分布測定により求めた体積基準の直径であり、その測定方法は以下の通りである。
 界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2質量%水溶液10mLに、黒鉛質複合粒子0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置(例えば、「HORIBA製LA-920」)に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準累積50%径、累積90%径、累積10%径として測定したものを、本発明における体積基準累積50%径、累積90%径、累積10%径と定義する。
(II)球状黒鉛粒子と複合核黒鉛粒子の累積50%径比、累積90%径比、累積10%径比の定義
 本発明において、球状黒鉛粒子(A)の累積50%径、累積90%径および累積10%径をそれぞれD50(A)、D90(A)、D10(A)、複合黒鉛粒子(B)の累積50%径、累積90%径および累積10%径をそれぞれD50(B)、D90(B)、D10(B)とした時にその比は、下記式のようにそれぞれ定義される。
         累積50%径比 1.1≦D50(B)/D50(A)≦2.0
         累積90%径比 1.1≦D90(B)/D90(A)≦2.4
         累積10%径比 1.0≦D10(B)/D10(A)≦1.8
(III)範囲
 本発明において、上記累積50%径比D50(B)/D50(A)は、好ましくは1.1以上、更には1.2以上がより好ましい。また、2.0以下が好ましく、1.7以下がより好ましい。累計90%径比D90(B)/D90(A)は、好ましくは1.1以上、更には1.2以上がより好ましい。また、2.4以下が好ましく、2.0以下がより好ましい。累計10%径比D10(B)/D10(A)は、好ましくは1.0以上、更に好ましくは1.2以上がより好ましい。また、1.8以下が好ましく、1.6以下がより好ましい。
 累積50 %径比、累積90%径比、累積10%径比が小さいと、造粒効果が得られず期待される十分な充電受入性が得られない場合がある。逆に、累積50 %径比、累積90%径比、累積10%径比が大きすぎると高密度化する際に、プレス荷重が高くなりスプリングバックが起こりやすくなり、電極の高密度状態を維持できない場合がある。
要件(1-b)
「球状黒鉛粒子(A)のXRDから測定される110面と004面の比である110(A)/004( A)の値をx、複合黒鉛粒子(B)のXRDから測定される110面と004面の比である110(B)/004( B)の値をyとしたとき、その比zは下記式で定義され、zは1.2以上3.5以下である。
                  z=y/x  」
 (I)黒鉛結晶配向比の測定法
 粉末X線回折により黒鉛の(110)面と(004)面のチャートを測定し、測定したチャートについて、プロファイル関数として非対称ピアソンVIIを用いて、フィッティングすることによりピーク分離を行ない、(110)面と(004)面のピークの積分強度を算出する。得られた積分強度から、「I110/I004」で表わされる比率を算出し、黒鉛結晶配向比と定義する。
 ここでの粉末X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
 ターゲット:Cu(Kα線)グラファイトモノクロメーター
 スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
 測定範囲及びステップ角度/計測時間:
   (110)面:76.5度≦2θ≦78.5度  0.01度/3秒
   (004)面:53.5度≦2θ≦56.0度  0.01度/3秒
 (II)球状黒鉛粒子の黒鉛結晶配向比と複合黒鉛粒子の黒鉛結晶配向比との比の定義
 本発明においては、球状黒鉛粒子の黒鉛結晶配向比の値(110(A)/004( A)の値)をx、複合黒鉛粒子の黒鉛結晶配向比の値(110(B)/004( B)の値)をyとした時に、その比zは、下記式にて定義される。
               z=y/x
 (III)範囲
 本発明において、球状黒鉛粒子の黒鉛結晶配向比と複合黒鉛粒子の黒鉛結晶配向比との比zは、1.2以上が好ましく、更には1.5以上がより好ましい。また、3.5以下が好ましく、更には3.2以下がより好ましい。
 球状黒鉛粒子の結晶配向比と複合黒鉛粒子の結晶配向比との比が低すぎると、充放電を繰返すことで起こるサイクル劣化が激しくなる場合がある。逆に、球状黒鉛粒子の結晶配向比と複合黒鉛粒子の結晶配向比との比が高すぎると、高密度化する際のプレス荷重が高くなり電極がスプリングバックしやすくなるため電極の高密度状態を維持できない場合がある。
 要件(1-c)
 「BET比表面積が1.6m2/g以上5.0m2/g以下、タップ密度が0.80g/cm3以上1.40 g/cm3以下、フロー式粒子像分析装置により測定した粒子径が1.5μmから10μmにおける平均円形度が0.90以上0.98以下、かつ、粒子径が10μmから40μmにおける平均円形度が0.85以上0.90以下である。」
 本発明の非水系二次電池用複合黒鉛粒子の平均円形度、タップ密度、BET比表面積は形状を示す重要なパラメーターである。一般的には、平均円形度が小さいものはタップ密度も低く、また、タップ密度が低いものは比表面積が大きい傾向がある。平均円形度が小さくタップ密度が低くなると、極板内で確保される空隙サイズが小さくなると同時に、負極の製造に際し銅箔上に塗布する負極材スラリーの固形分濃度の低下を招く。この事により負極性能が悪化し、電池性能の悪化を招く可能性が高い。但し、平均円形度ならびにタップ密度が高すぎてもスラリーの塗工性の悪化を招く可能性が高いため、適度な範囲の平均円形度、タップ密度を有する事が重要である。また、比表面積が大きくなると充放電時における初期不可逆容量の増加を招くため、低い方が好ましい。
 i)平均円形度
 (I)平均円形度の定義
 平均円形度は、測定対象(複合黒鉛粒子)0.2gを界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2体積%水溶液50mLに混合し、フロー式粒子像分析装置「シスメックスインダストリアル社製FPIA-2000」を用い、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6μm~400μmに指定し、粒子径が1.5μmから10μmの範囲の粒子及び粒子径10μm~40μmの範囲の粒子について測定した下記式で与えられる円形度の値の平均値として定義される。
   円形度=粒子投影面積と同じ面積の円の周長/粒子投影像の周長
 (II)範囲
 本発明の要件(c)において、粒子径が1.5μmから10μmにおける平均円形度が0.90以上が好ましく、より好ましくは0.95以上であり、上限は、0.98以下が好ましく、より好ましくは0.95以下である。また、粒子径が10μmから40μmにおける平均円形度が0.85以上が好ましく、より好ましくは0.90以上であり、上限は、好ましくは0.98以下、より好ましくは0.95以下である。平均円形度がこの範囲を下回ると、粒子間の空隙が小さくなり、負荷特性が低下する場合がある。一方、平均円形度がこの範囲を上回る値とするためには、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、剪断力等の機械的作用を繰り返し粒子に与える球形化処理を強く又は長時間行なう必要性があり、球形化時に副生する微粉を多く取り除かなければならず、製造コストが高くなる場合もある。
ii)タップ密度
 (I)タップ密度の定義
 本発明において、タップ密度は、例えば粉体密度測定器であるホソカワミクロン株式会社製「パウダテスタPT-N型」を用いストローク長18mmのタップを500回行って、その時の体積と試料の質量から求めた密度をタップ密度として定義する。
 (II)範囲
 本発明の複合黒鉛粒子のタップ密度は、0.80g/cm以上が好ましく、0.90g/cm以上がより好ましく、0.95g/cm以上が特に好ましい。また、1.40g/cm以下が好ましく、1.25g/cm以下がより好ましい。
 タップ密度が低すぎると、負極の製造に際して集電体に塗布する負極材スラリーの固形分濃度を低下させる必要があり、塗膜の密度が小さくなり、プレスした時、複合黒鉛粒子が破壊されやすく、電池性能が低下する場合がある。逆に、タップ密度が高すぎると、塗工性が悪化するため複合黒鉛粒子の形状と粒径分布の調整に更なる工程が必要で、収率が低下し、かつコストが上昇する場合がある。
iii)BET比表面積
 (I)BET比表面積の定義
 本発明において、BET比表面積は次の方法で測定され定義される。島津製作所製比表面積測定装置「ジェミニ2360」を用いて、窒素ガス吸着流通法によりBET6点法にて測定する。具体的には、試料(複合黒鉛粒子)1.01gをセルに充填し、350℃に過熱して前処理を行った後、液体窒素温度まで冷却して、窒素30 %、ヘリウム70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出する。
 (II)範囲
 本発明の複合黒鉛粒子の比表面積は、1.6 m2/g以上が好ましく、2.3m2/g以上がより好ましい。また、5.0 m2/g以下が好ましく、4.7 m2/g以下がより好ましい。
 比表面積が高すぎると、充放電時における初期不可逆容量の増加を招く場合がある。逆に比表面積が低すぎると十分に高い充電負荷特性を得ることが出来ない場合がある。
 要件(1-d)
 「球状黒鉛粒子(A)のHgポロシメトリー測定から得られる全細孔容積の値をpとし、複合黒鉛粒子(B)のHgポロシメトリー測定から得られる全細孔容積の値をqとしたとき、その比rは下記式で定義され、0.5以上1.0以下である、
               r=p/q   」
 (I)水銀ポロシメーターによる複合黒鉛粒子の細孔容積の測定方法と定義
 本発明における複合黒鉛粒子の水銀による細孔容積は、細孔容積測定装置「マイクロメリティックス社製オートポアIV9520」を用い、付属のセルに試料を封入し減圧下(50μmHg)室温にて10分間の前処理を行なった後、水銀を4.0psia(ポンド平方インチ絶対圧力)~40000psiaまで多段階に昇圧後、3.0psiaまで多段階に降圧させて測定される水銀圧入量より定義される。さらに詳しくはこの時水銀に加えた圧力PからWashburn式(D=-(1/P)4γcosψ)を用いて細孔直径Dを計算して得られた水銀圧入退出曲線より定義される。この時、γは水銀の表面張力、ψは接触角を示す。
 (II)範囲
 上記測定方法による、球状黒鉛粒子の全細孔容積値と複合黒鉛粒子の全細孔容積値の比rは、0.5以上であることが好ましく、0.6以上であることがより好ましく、0.65以上であることが特に好ましい。また、1.0以下が好ましく、0.9以下であることがより好ましく、0.8以下であることが特に好ましい。
 全細孔容積比が低すぎると、粒子間空隙が狭くなり電解液の拡散性が悪くなり、サイクル劣化やリチウム析出に繋がる場合がある。一方、全細孔容積比が高すぎると充電時には微細孔にLiイオンが入るが、放電時には微細孔からLiイオンが出てこず、不可逆容量の増大が起こる場合がある。
要件(2)
 本発明においては、複合黒鉛粒子にバインダーを加えて金属製集電体に塗布、乾燥、プレスして電極密度を1.63g/cm3以上としたとき、プレス後の極板のBET-比表面積の値p’をプレス前の極板のBET-比表面積の値q’で割った値p’/q’が、1.5以上2.5以下である非水系二次電池用複合黒鉛粒子であることが、好ましい態様のひとつとして挙げられる。
(i)プレス前後での極板のBET-比表面積比
 本発明における複合黒鉛粒子を用いて、下記の極板作成法Aにより作成された所定限定極板について、下記の測定法で測定したプレス前後での極板上活物質のBET-比表面積の比は、1.5以上が好ましく、1.6以上がより好ましく、1.7以上が特に好ましい。また、2.5以下であることが好ましく、2.4以下であることがより好ましく、2.3以下であることが特に好ましい。プレス前後での極板のBET-比表面積比が下限を下回ると、電解液の拡散性が悪くなり、サイクル劣化やリチウム析出に繋がる場合がある。また、上限を上回ると初期充放電不可逆容量の増大を招く場合がある。
I)極板作製方法A
 複合黒鉛粒子100重量部に、スチレンブタジエンゴムの水性ディスパージョンを固形分として2重量部、カルボキシメチルセルロース(重量平均分子量25万~30万)水溶液を固形分として1重量部加えてスラリーとし、このスラリーを厚さ18μmの銅箔よりなる集電体上に乾燥後重量として10±0.1mg/cm付着するようにドクターブレードを用いて塗布して乾燥させた後に、ロールプレス(カレンダー)を用いて、活物質層が1.63±0.03g/cmになるようにプレス荷重を調整し、1回のプレスで圧密する。
II)極板上活物質のBET-比表面積測定法
 島津製作所製比表面積測定装置「ジェミニ2360」を用いて、窒素ガス吸着流通法によりBET6点法にて測定する。具体的には、プレス前もしくはプレス後の極板を、極板上の複合黒鉛粒子、スチレンブタジエンゴム、カルボキシメチルセルロースの合材重量で1.01gとなるように切り取り、セルに充填し、110℃に過熱して前処理を行った後、液体窒素温度まで冷却して、窒素30 %、ヘリウム70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出する。
[2]非水系二次電池用負極材料
 本発明の非水系二次電池用複合黒鉛粒子(以下、「複合黒鉛粒子(B))」と略記する場合がある)は、単独で非水系二次電池用負極材料とすることもできるが、天然黒鉛、人造黒鉛、気相成長性炭素繊維、導電性カーボンブラック、非晶質被覆黒鉛、樹脂被覆黒鉛及び非晶質炭素よりなる群から選ばれる1種以上の、上記複合黒鉛粒子とは形状又は物性の異なる炭素質粒子(以下、「炭素質粒子(C)」と略記する)を更に含有させて非水系二次電池用負極材料とすることも好ましい。
 炭素質粒子(C)を適宜選択して混合することによって、導電性の向上によるサイクル特性の向上や充電受入性の向上、不可逆容量の低減、また、プレス性の向上が可能となる。炭素質粒子(C)を混合する場合の量の下限は、負極材料全体に対して、5μm以下の炭素質粒子をブレンドする場合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、5μm以上の炭素質粒子をブレンドする場合は、5重量%以上、好ましくは10質量%以上、より好ましくは20重量%以上、更に好ましくは40重量%以上である。いずれの粒子の場合も、上限は、通常95量%以下、好ましくは80質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下の範囲である。この範囲を下回ると、導電性向上の効果が得にくい場合がある。また上回ると、複合黒鉛粒子(B)の特性が得られ難い場合があり、初期不可逆容量の増大を招く場合がある。
 炭素質粒子(C)のうちで、天然黒鉛としては、例えば、高純度化した鱗状黒鉛や球形化した黒鉛を用いることができる。天然黒鉛の体積基準平均粒径は、通常8μm以上、好ましくは10μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。天然黒鉛のBET比表面積は、通常4m/g以上、好ましくは4.5m/g以上、通常9m/g以下、好ましくは5.5m/g以下の範囲である。
 人造黒鉛としては、例えば、コークス粉や天然黒鉛をバインダーで複合化した粒子、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛化した粒子等を用いることができる。
 非晶質被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に非晶質前駆体を被覆、焼成した粒子や、天然黒鉛や人造黒鉛に非晶質を表面に被覆した粒子を用いることができる。
 樹脂被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に高分子材料を被覆、乾燥して得た粒子等を用いることができ、非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や炭素前駆体を不融化処理し焼成した粒子を用いることができる。
 このうち、本発明の複合黒鉛粒子に、炭素質粒子(C)として配合して用いる場合、特に天然黒鉛が、高容量が維持されるので好ましい。
 以下に製造方法について説明する。本発明の複合黒鉛粒子は、原料である炭素質粒子、バインダー等を混合し、必要に応じて成形、脱揮発成分焼成、黒鉛化、粉砕、分級を行うことにより製造される。前述の物性を満足する本発明の複合黒鉛粒子を製造するためには、以下の工夫点を組み合わせることが重要である。
 本発明においては、好ましくは原料として球状黒鉛粒子を選択することが挙げられる。
 また、球状黒鉛粒子とバインダーを捏合するに際し、バインダーであるピッチ等の種類や量を最適化するといった工夫や粉砕時の強度を最適化することが出来る。
 以下、本発明の複合黒鉛粒子等の好適な製造方法について詳細に説明する。
 まず、球状黒鉛粒子及びバインダーを加熱しながら捏合する。この際、所望により黒鉛化触媒を加えてもよい。好適な球状黒鉛粒子(炭素質粒子)、バインダーは前述のとおりで、黒鉛化触媒は次の通りである。
 バインダーは、炭化・黒鉛化により得られる黒鉛化処理を経た複合黒鉛粒子に占めているバインダー由来のものの比率が通常1重量%以上、好ましくは通常5質量%以上、更に好ましくは10質量%以上となるように用いる。その上限としては、この比率が通常65質量%以下、好ましくは60質量%以下、更に好ましくは50質量%以下となる量である。バインダー量が多すぎると、バインダー由来の非晶質部分が最終生成物中で多くなるため、電池にしたときの電池容量が低下する場合がある。また、得られる複合黒鉛粒子が堅くなるため、集電体に塗布された活物質層をプレスした際、バインダー由来部分ではなく、炭素質粒子由来の黒鉛質粒子そのものの破壊が起きやすくなる。一方、バインダー量は少なすぎると柔らかくなり過ぎ、良好な充放電高負荷特性が得られない。
 複合黒鉛粒子中のバインダー量は、捏合以前の段階で添加するバインダーの量によってコントロールする。例えばJIS K2270記載の方法で求めたバインダーの残炭率がp%である場合には所望の量の100/p倍のバインダーを添加することとなる。
 なお、ピッチ、タール等のバインダー添加の際の工夫としては、極力、低温、短時間で均一に分散させることが初期不可逆容量低減、プレス荷重低減のために好ましい。分散を低温、短時間で行うためには炭素質粒子が壊れない程度に攪拌を強めればよい。
(iii)黒鉛化触媒
 充放電容量の増加とプレス性の改良のために、炭素質粒子とバインダーの混合に際し、黒鉛化触媒を添加しても良い。黒鉛化触媒としては、鉄、ニッケル、チタン、ケイ素、ホウ素等の金属及びこれらの炭化物、酸化物、窒化物等の化合物が挙げられる。なかでも、ケイ素、ケイ素化合物、鉄、鉄化合物が好ましく、ケイ素化合物のなかでは炭化珪素、鉄化合物のなかでは酸化鉄が特に好ましい。
 黒鉛化触媒としてケイ素やケイ素化合物を用いた場合、加熱により生成する炭化ケイ素が2800℃以上の温度ですべて熱分解して結晶性の極めて良好な黒鉛を成長させ、かつケイ素が揮散する時に黒鉛結晶間に細孔が形成されるので、粒子内部のリチウムイオンの電荷移動反応と拡散とを助長し電池性能を向上させることができる。また、黒鉛化触媒として鉄又はその化合物を用いた場合、炭素の触媒への溶解、析出の機構により結晶性の良好な黒鉛を成長させ、ケイ素と同様な効果を発現することができる。
 これらの黒鉛化触媒の添加量は、原料としての炭素質一次粒子に対して通常30質量%以下、好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下である。黒鉛化触媒が多すぎると、黒鉛化が進みすぎ、リチウムイオン二次電池製造時の特性、特に浸液性が充分でないといった問題が生じる場合がある。同時に、複合黒鉛粒子内に細孔を生成させるためか、粒子の強度が低下し、その結果極板作製時のプレス工程において表面が平滑化し、イオンの移動を阻害する場合もある。
 一方、黒鉛化触媒が少なすぎると、黒鉛化が不十分で非水系二次電池にした時の充放電容量の低下の問題があり、また、極板作製時のプレス工程において高圧力を必要とし高密度化するのが困難となる場合もある。更に、複合黒鉛粒子内に適量の細孔が存在しないためか、粒子の強度が高くなりすぎ、集電体に塗布された活物質層を所定の嵩密度にプレス成形するときに高圧力を必要とし、負極活物質層を高密度化するのが困難となる場合がある。
(iv)捏合(混合)
 炭素質粒子、バインダー及び所望により添加された黒鉛化触媒等の原料は、まず、加熱下で捏合される。これにより、炭素質粒子及び捏合温度では溶融しない原料に液状のバインダーが添着された状態となる。この場合、捏合機に全原料を仕込んで捏合と昇温を同時に行っても良いし、捏合機にバインダー以外の成分を仕込んで攪拌状態で加熱し、捏合温度まで温度が上がった後に常温又は加硫溶融状態のバインダーを仕込んでも良い。
 加熱温度は、バインダーの軟化点以上であり、加熱温度が低すぎると、バインダーの粘度が高くなり、混合が困難となるので、通常軟化点より10℃以上高い温度、好ましくは軟化点より20℃以上高い温度で行われる。加熱温度が高すぎるとバインダーの揮発と重縮合によって混合系の粘度が高くなりすぎるので、通常300℃以下、好ましくは250℃以下である。
 捏合機は撹拌翼をもつ機種が好ましく、撹拌翼はZ型、マチスケータ型といった汎用的なものを用いることができる。捏合機に投入する原料の量は、通常混合機容積の10体積%以上、好ましくは15体積%以上で、50体積%以下、好ましくは30体積%以下である。捏合時間は5分以上必要であり、最長でも揮発分の揮散による大きな粘性の変化を来たす時間までで、通常は30~120分である。捏合機は捏合に先立ち捏合温度まで予熱しておくことが好ましい。
(v)成形
 得られた捏合物は、そのまま、揮発成分(以下、「VM」と略記する)の除去と炭化を目的とする脱VM焼成工程に供してもよいが、ハンドリングしやすいように、成形してから脱VM焼成工程に供することが好ましい。
 成形方法は形状を保持することが可能であれば特に制限はなく、押し出し成形、金型成形、静水圧成形等を採用することができる。このうち、成形体内で粒子が配向し易い押し出し成形や、粒子の配向はランダムに保たれるが生産性に問題がある静水圧成形より、比較的操作が容易であり、また、捏合でランダムな配向となった構造を破壊せずに成形体を得ることができる金型成形が好ましい。
 成形温度は、室温(冷間)、加熱下(熱間、バインダーの軟化点以上の温度)のどちらでもよい。冷間で成形する場合は、成形性の向上と成形体の均一性を得るために、捏合後冷却された混合物を予め最大寸法が1mm以下に粗砕することが望ましい。成形体の形状、大きさは特に制限は無いが、熱間成形では、成形体が大きすぎると成形に先立つ均一な予熱を行うのに時間がかかる問題があるので、通常最大寸法で150cm程度以下の大きさとすることが好ましい。
 成形圧力は、圧力が高すぎると成形体の細孔を通しての脱揮発成分除去(脱VM)が困難となり、かつ真円ではない炭素質粒子が配向し、後工程における粉砕が難しくなる場合があるので、成形圧力の上限は、通常3tf/cm(294MPa)以下、好ましくは500kgf/cm(49MPa)以下、更に好ましくは10kgf/cm(0.98MPa)以下である。下限の圧力は特に制限はないが、脱VMの工程で成形体の形状を保持できる程度に設定することが好ましい。
(vi)脱VM焼成
 得られた成形体は、炭素質粒子及びバインダーの揮発成分(VM)を除去して、黒鉛化時の充填物の汚染、充填物の成形体への固着を防ぐために、脱VM焼成を行う。脱VM焼成は、通常600℃以上、好ましくは650℃以上で、通常1300℃以下、好ましくは1100℃以下の温度で、通常0.1時間~10時間行う。加熱は、酸化を防止するために、通常、窒素、アルゴン等不活性ガスの流通下又はブリーズ、パッキングコークス等の粒状炭素材料を間隙に充填した非酸化性雰囲気で行う。
 脱VM焼成に用いる設備は、電気炉やガス炉、電極材用リードハンマー炉等、非酸化性雰囲気で焼成可能であれば特に限定されない。加熱時の昇温速度は揮発分の除去のために低速であることが望ましく、通常、低沸分の揮発が始まる200℃付近から水素の発生のみとなる700℃近傍までを、3~100℃/hrで昇温する。
(vii)黒鉛化
 脱VM焼成により得られた炭化物成形体は、次いで、高温で加熱して黒鉛化する。黒鉛化時の加熱温度は、通常2600℃以上、好ましくは2800℃以上で加熱する。また、加熱温度が高過ぎると、黒鉛の昇華が顕著となるので、3300℃以下が好ましい。加熱時間は、バインダー及び炭素質粒子が黒鉛となるまで行えばよく、通常1~24時間である。
 黒鉛化時の雰囲気は、酸化を防止するため、窒素、アルゴン等の不活性ガスの流通下又はブリーズ、パッキングコークス等の粒状炭素材料を間隙に充填した非酸化性雰囲気下で行う。黒鉛化に用いる設備は、電気炉やガス炉、電極材用アチソン炉等、上記の目的に添うものであれば特に限定されず、昇温速度、冷却速度、熱処理時間等は使用する設備の許容範囲で任意に設定することができる。
(viii)粉砕
 このようにして得られた黒鉛化処理物は、通常はこのままでは本発明の要件を満たさないので、粉砕もしくは磨砕を行う。その工程は粗粉砕、中粉砕、微粉砕の3工程に大別される。
 黒鉛化処理物の粉砕・磨砕方法は特に制限はないが、粉砕・磨砕の手段としては、機械的に摩砕する手段、例えば、ボールミル、ハンマーミル、CFミル、アトマイザーミル、パルペライザー等、風力を利用した粉砕手段、例えば、ジェットミル等が例示される。粗粉砕、中粉砕については、ジョークラッシャ、ハンマーミル、ローラミル等の衝撃力による粉砕方式を用いてもよい。ここで、粉砕のタイミングは、黒鉛化前であっても黒鉛化後であってもよい。後者の方がルツボ詰め等の作業が不要で安価に製造できるので、より好ましい。
(viii)-1粗粉砕、中粉砕
 本発明に記載の要件を満たすためには、該黒鉛化処理物の粗粉砕・中粉砕においては、例えば「オリエント工業社製VM-32型粉砕機」を用いる場合は、黒鉛化処理物をベルト搬送式のフィーダーにて粉砕機に搬入し、粉砕羽根回転数を1000回転/分以上で粉砕する。また本粉砕段階で過度な粉砕・磨砕を行なうと、黒鉛化処理物の粒子表面に多くの微粉が発生し、この微粉により粉砕処理品を塗布した電極にて電池を作製した場合に初回充放電時の不可逆容量の増加が予想される。
(viii)-2微粉砕
 また、該黒鉛化粒子の微粉砕においては、例えば「ターボ工業社製TB-250型粉砕機」を用いる場合は、黒鉛化処理物を定量式のスパイラルフィーダーにて50kg/分、55kg/分、60kg/分で搬入し粉砕する。粉砕機への黒鉛化処理物の搬入速度を低めると、粉砕羽根回転数を一定にした場合、過粉砕となり黒鉛化処理物のXRD測定から算出される請求項(1-c)記載の配向比の比が低下する場合がある。
 本発明記載の要件を満たすために、例えば「ターボ工業社製TB-250型粉砕機」を用いる場合は微粉砕時の粉砕羽根回転数は、2000回転/分以上が好ましく、更に2500回転/分以上、特に3000回転/分以上が好ましい。また、7800回転/分以下が好ましく、更に6500回転/分以下、特に4500回転/分以下が好ましい。粉砕羽根回転数が低すぎると、造粒が進みすぎてしまい高密度化する際のプレス荷重が高くなり電極がスプリングバックしやすくなるため電極の高密度状態を維持できない場合がある。また、粉砕羽根回転数が高すぎると黒鉛化処理物のXRD測定から算出される請求項(1-c)記載の配向比の比が低下し、充放電を繰返すことで起こるサイクル劣化が激しくなる場合がある。
(ix)分級
 得られた粉砕又は磨砕物から必要に応じ大径粒状物・小径粒状物(微紛)除去を行っても良い。
 大径粒状物を除去することにより短絡の発生や、塗布時のむらが減少することがある。また小径粒状物(微紛)を除去することにより、初期不可逆容量が減少することがある。また、大径粒状物や微紛の除去により、レーザー回折/散乱式粒径測定による体積基準粒径分布において、粒径100μm以上のものが全体の3%以下、かつ、粒径1μm以下のものが全体の1%以下となるように整粒することが望ましい。
 大径粒状物・小径粒状物を除去する方法としては、種々あるが、篩分けおよび分級により除去することが、機器の簡易性、操作性及びコスト面で好ましい。更に、篩分け又は分級は、複合黒鉛粒子の粒度分布及び平均粒径が、黒鉛化及び該粒状物の除去により変化するのを必要に応じ再調整できるという利点がある。
 大径粒状物除去のための篩分けには、網面固定式、面内運動式、回転ふるい式等があるが、処理能力の点から、網面固定式の中のブロースルー型の篩が特に好ましい。例として30μm以上、80μm以下のものが使用される。除去する粒状物の生成状況(特に量及び粒径)と、複合黒鉛粒子の粒度分布及び平均粒径の調整要求に合わせ適宜選択し使用する。
 分級は、風力分級、湿式分級、比重分級等の方法で行うことができ、100μm以上の粒状物を除去するには特に限定されないが、複合黒鉛粒子の性状への影響及び複合黒鉛粒子の粒度分布及び平均粒径も調整することを考慮すると、旋回流分級機等の風力分級機の使用が好ましい。この場合、風量と風速を制御することで、上記篩い目の目開きのサイズを調整するのと同様に、該粒状物の除去と複合黒鉛粒子の粒度分布及び平均粒径を調整することができる。
[4]非水系二次電池用負極
 本発明の複合黒鉛粒子は、非水系二次電池、特にリチウムイオン二次電池の負極材料として好適に用いることができる。また前記したように、本発明の複合黒鉛粒子(B)と炭素質粒子(C)とを配合したものも、負極材料として好適に用いることができる。
 複合黒鉛粒子(B)と炭素質粒子(C)との混合に用いる装置としては特に制限はないが、例えば、回転型混合機としては、円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬型混合機等が挙げられ、固定型混合機としては、らせん型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等が挙げられる。
 非水系二次電池を構成する負極は、負極材料、極板成形用結着剤、増粘剤、導電材を含有する活物質層を集電体上に形成してなる。活物質層は通常、負極材料、極板成形用結着剤、増粘剤、導電材及び溶媒を含有するスラリーを調製し、これを集電体上に塗布、乾燥、プレスすることにより得られる。
 極板成形用結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体及びエチレン-メタクリル酸共重合体等が挙げられる。極板成形用結着剤は、負極材料/極板成形用結着剤の重量比で、通常90/10以上、好ましくは95/5以上、通常99.9/0.1以下、好ましくは99.5/0.5以下の範囲で用いられる。
 増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ及びガゼイン等が挙げられる。
 導電材としては、銅又はニッケル等の金属材料、グラファイト又はカーボンブラック等の炭素材料等が挙げられる。
 集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これらのうち、薄膜に加工しやすいという点及びコストの点から銅箔が好ましい。
 活物質層の密度は、用途により異なるが、容量を重視する用途では、通常1.55g/cm以上であるが、1.60g/cm以上が好ましく、更に1.65g/cm以上、特に1.70g/cm以上が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必ずしも充分ではない場合がある。また、密度が高すぎると充放電高負荷特性が低下するので、1.90g/cm以下が好ましい。なお、ここで活物質層とは集電体上の活物質、極板成形用バインダー、増粘剤、導電材等よりなる合剤層をいい、その密度とは電池に組立てる時点での活物質層の嵩密度をいう。
[5]非水系二次電池
 本発明の複合黒鉛粒子、本発明の負極材料を用いて製造された本発明の非水系二次電池用負極は、特にリチウムイオン二次電池等の非水系二次電池の負極として極めて有用である。
 このような非水系二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。以下において、非水系二次電池を構成する部材の材料等を例示するが、使用し得る材料はこれらの具体例に限定されるものではない。
 本発明の非水系二次電池は、通常少なくとも、上記の本発明の負極、正極及び電解質を有する。
 正極は、正極集電体上に正極活物質、導電剤及び極板成形用バインダーを含有する活物質層を形成してなる。活物質層は通常正極活物質、導電剤及び極板成形用バインダーを含有するスラリーを調製し、これを集電体上に塗布、乾燥することにより得られる。
 正極活物質としては、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料等のリチウムを吸蔵・放出可能な材料を使用することができる。具体的には、例えば、LiFePO、LiFeO、LiCoO、LiNiO、LiMn及びこれらの非定比化合物、MnO、TiS、FeS、Nb、Mo、CoS、V、P、CrO、V、TeO、GeO等を用いることができる。
 正極集電体としては、電解液中での陽極酸化によって表面に不動態皮膜を形成する金属又はその合金を用いるのが好ましく、IIIa、IVa、Va族(3B、4B、5B族)に属する金属及びこれらの合金を例示することができる。具体的には、例えば、Al、Ti、Zr、Hf、Nb、Ta及びこれらの金属を含む合金等を例示することができ、Al、Ti、Ta及びこれらの金属を含む合金を好ましく使用することができる。特にAl及びその合金は軽量であるためエネルギー密度が高くて望ましい。
 電解質としては、電解液、固体電解質、ゲル状電解質等が挙げられるが、なかでも電解液、特に非水系電解液が好ましい。非水系電解液は、非水系溶媒に溶質を溶解したものを用いることができる。
 溶質としては、アルカリ金属塩や4級アンモニウム塩等を用いることができる。具体的には、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSOからなる群から選択される1以上の化合物を用いるのが好ましい。
 非水系溶媒としては、例えば、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、γ-ブチロラクトン等の環状エステル化合物;1,2-ジメトキシエタン等の鎖状エーテル;クラウンエーテル、2-メチルテトラヒドロフラン、1,2-ジメチルテトラヒドロフラン、1,3-ジオキソラン、テトラヒドロフラン等の環状エーテル;ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネート等を用いることができる。溶質及び溶媒はそれぞれ1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。これらの中でも非水系溶媒が、環状カーボネートと鎖状カーボネートを含有するものが好ましい。またビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の化合物が添加されていても良い。
 電解液中のこれらの溶質の含有量は、0.2mol/L以上、特に0.5mol/L以上で、2mol/L以下、特に1.5mol/L以下であることが好ましい。
 これらのなかでも本発明の負極と、金属カルコゲナイド系正極と、カーボネート系溶媒を主体とする有機電解液とを組み合わせて作成した非水系二次電池は、容量が大きく、初期サイクルに認められる不可逆容量が小さく、急速充放電容量が高く(レート特性が良好)、またサイクル特性が優れ、高温下での放置における電池の保存性及び信頼性も高く、高効率放電特性及び低温における放電特性に極めて優れたものである。
 正極と負極の間には、通常正極と負極が物理的に接触しないようにするためにセパレータが設けられる。セパレータはイオン透過性が高く、電気抵抗が低いものであるのが好ましい。セパレータの材質及び形状は、特に限定されないが、電解液に対して安定で、保液性が優れたものが好ましい。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布が挙げられる。
 本発明の非水系二次電池の形状は特に制限されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。
 次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
実施例1
 平均粒径100μmの黒鉛粒子を奈良機械製作所製ハイブリダイゼーションシステムNHS-3型にて、ローター周速度60 m/秒で4分間の球形化処理を行い、累積50%径10.6μm、累積10%径6.7μm、累積90%径16.0μm、Tap密度0.77g/cmの球状黒鉛粒子を得た。当該球状黒鉛粒子の形状は、電子顕微鏡で観察したところ、湾曲又は屈曲した複数の鱗片状又は鱗状であった。
 この球状黒鉛粒子と、黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチとを、100:40の重量比で混合し、予め128℃に加熱されたマチスケータ型撹拌翼を持つニーダーに投入して20分間捏合した。
 十分に捏合された混合物を、予め108℃に予熱されたモールドプレス機の金型に充填し、5分間放置し混合物の温度が安定したところでプランジャーを押し、2kgf/cm(0.20MPa)の圧力を加えて成形した。1分間この圧力を保持した後、駆動を止め、圧力低下が収まった後、成形体を取り出した。
 得られた成形体を耐熱容器である金属製サガーに収納し、間隙に黒鉛質ブリーズを充填した。電気炉で室温から1000℃まで48時間かけて昇温し、1000℃で3時間保持し、脱VM焼成を行った。次に、成形体を黒鉛ルツボに収納し、間隙に黒鉛質ブリーズを充填した。アチソン炉で3000℃に4時間加熱して黒鉛化を行った。
 得られた黒鉛質の成形体をジョークラッシャで粗砕した後、粉砕羽根回転数を6500回転/分に設定したミルにて微粉砕し、45μm篩いで粗粒子を除き、複合黒鉛粒子を得た。これらについて、「BET比表面積」、「タップ密度」、「平均円形度」、「累積50%径比」、「累積90%径比」、「累積10%径比」、粉末XRD測定による「複合黒鉛粒子の配向比/球状黒鉛粒子の配向比」、Hgポロシメトリー測定による「複合黒鉛粒子の全細孔容積/球状黒鉛粒子の全細孔容積」、プレス前後での極板のBET-比表面積比「プレス後の極板のBET-比表面積/プレス前の極板のBET-比表面積」を表1に示す。
(i)極板(負極シート)の作製方法
 この複合黒鉛粒子を負極材料として用い、前述の方法により、活物質層密度1.70g/cmの活物質層を有する極板を作製した。すなわち具体的には、上記負極材料20.00±0.02g、1質量%カルボキシメチルセルロース(CMC)水溶液を20.00±0.02g、及び重量平均分子量27万のスチレンブタジエンゴム(SBR)水性ディスパージョン0.25±0.02gをキーエンス製ハイブリッドミキサーで5分間撹拌してスラリーを得た。このスラリーを集電体である厚さ18μmの銅箔上に、負極材料が11.0±0.1mg/cm付着するように、ドクターブレード法で、幅5cmに塗布し、室温で風乾を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度を1.70g/cmになるよう調整し負極シートを得た。
(ii)非水系二次電池の作製方法
 上記方法で作製した負極シートを4cmx3cmの板状に打ち抜き負極とし、LiCoOからなる正極を同面積で打ち抜き組み合わせた。負極と正極の間には、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合溶媒(容量比=25:37.5:37.5)に、LiPFを1mol/Lになるように溶解させ、更に添加剤としてビニレンカーボネートを2容積%添加した電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、ラミネート型電池を作製した。
 上記非水系二次電池を用いて、下記の測定方法で、初期充放電不可逆容量および、充電受入性の測定を行った。結果を表2に示す。
(iii)初期サイクル時の充放電不可逆容量、充電受入性の測定
 実施例1で作製した負極シートを、12.5φに打ち抜き負極とし、厚さ0.5mmの金属Li箔を同サイズで打ち抜きステンレス板に圧着したものを正極とし、2極式セルを作製した。セルの作製は水分値20ppm以下に調整したドライボックス内で行い、負極と正極との間には、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合溶媒(容量比=25:30:30)に、LiPFを1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置いた。これを用いて、充放電試験は放電電流0.05C(0.2mA/cm)、0.2C(0.8mA/cm)の条件で行なった。
この方法にて行なった充放電試験の結果を表2に示す。
 次に、以下に示す電極作成方法にて極板の作成、非水系二次電池を作製し、「サイクル特性」を測定した。サイクル特性の測定結果を表2に示す。
(i)サイクル特性評価用極板(負極シート)の作製方法
 この複合黒鉛粒子を負極材料として用い、前述の方法により、活物質層密度1.80g/cmの活物質層を有する極板を作製した。すなわち具体的には、上記負極材料20.00±0.02g、1質量%カルボキシメチルセルロース(CMC)水溶液を20.00±0.02g、及び重量平均分子量27万のスチレンブタジエンゴム(SBR)水性ディスパージョン0.25±0.02gをキーエンス製ハイブリッドミキサーで5分間撹拌してスラリーを得た。このスラリーを集電体である厚さ18μmの銅箔上に、負極材料が11.0±0.1mg/cm付着するように、ドクターブレード法で、幅5cmに塗布し、室温で風乾を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度を1.80g/cmになるよう調整し負極シートを得た。
(ii)非水系二次電池の作製方法
 非水系二次電池の作製方法は、前記と同様に行った。
実施例2
 実施例1で黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を30重量部に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定し、次いで実施例1と同様にして、極板(負極シート)、非水系二次電池を作製し、「初期サイクル時の充放電不可逆容量」、「充電受入性」を測定し、実施例1と同様にサイクル特性を測定した。複合黒鉛粒子の物性を表1に、初期サイクル時の充放電不可逆容量、充電受入性、サイクル特性の測定結果を表2に示す。
実施例3
 実施例1で黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を50重量部に、粉砕羽根回転数を3000回転/分に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定した。その結果を表1に示す。
実施例4
 実施例1で黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を50重量部に、粉砕羽根回転数を4500回転/分に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定した。その結果を表1に示す。
実施例5
 実施例1で黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を50重量部に、粉砕羽根回転数を6500回転/分に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定した。その結果を表1に示す。
比較例1
 平均粒径100μmの黒鉛粒子を奈良機械製作所製ハイブリダイゼーションシステムNHS-3型にて、ローター周速度60 m/秒で8分間の球形化処理を行い、累積50%径17.4μm、累積10%径11.9μm、累積90%径26.4μm、Tap密度1.04g/cmの球状黒鉛粒子を得た。この球状黒鉛粒子を使用して、黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を30重量部に、粉砕羽根回転数を7800回転/分に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定し、次いで実施例1と同様にして、極板(負極シート)、非水系二次電池を作製し、「初期サイクル時の充放電不可逆容量」、「充電受入性」を測定し、実施例1と同様にサイクル特性を測定した。複合黒鉛粒子の物性を表1に、初期サイクル時の充放電不可逆容量、充電受入性、サイクル特性の測定結果を表2に示す。
比較例2
 平均粒径100μmの黒鉛粒子を奈良機械製作所製ハイブリダイゼーションシステムNHS-3型にて、ローター周速度65 m/秒で15分間の球形化処理を行い、累積50%径22.2μm、累積10%径14.9μm、累積90%径35.4μm、Tap密度1.02g/cmの球状黒鉛粒子を得た。この球状黒鉛粒子を使用して、黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を30重量部に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定し、次いで実施例1と同様にして、極板(負極シート)、非水系二次電池を作製し、「初期サイクル時の充放電不可逆容量」、「充電受入性」を測定した。複合黒鉛粒子の物性を表1に、初期サイクル時の充放電不可逆容量の測定結果を表2に示す。
比較例3
 平均粒径100μmの黒鉛粒子を奈良機械製作所製ハイブリダイゼーションシステムNHS-3型にて、ローター周速度65 m/秒で15分間の球形化処理を行い、累積50%径22.2μm、累積10%径14.9μm、累積90%径35.4μm、Tap密度1.02g/cmの球状黒鉛粒子を得た。この球状黒鉛粒子を使用して、黒鉛化可能なバインダーとして軟化点88℃のバインダーピッチを用い、バインダーピッチ量を30重量部に、粉砕羽根回転数を7800回転/分に設定した以外は実施例1と同様にして複合黒鉛粒子を得、上記物性を測定し、次いで実施例1と同様にして、極板(負極シート)、非水系二次電池を作製し、「初期サイクル時の充放電不可逆容量」、「充電受入性」を測定した。複合黒鉛粒子の物性を表1に、初期サイクル時の充放電不可逆容量の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年6月25日出願の日本特許出願(特願2008-166526号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の複合黒鉛粒子をもちいることで、非水系二次電池にしたときの初期サイクルにおける不可逆充放電容量が少なく、充電受入性に優れ、サイクル特性がよい優れた非水系二次電池用負極及び非水系二次電池を安定的に効率よく製造することができるため、本発明は各種非水系二次電池の分野において、工業上非常に有用である。

Claims (8)

  1.  球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該複合黒鉛粒子(B)が (a)及び(b)のうち少なくとも1つを満たすことを特徴とする非水系二次電池用複合黒鉛粒子:
     (a) (A)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(A)、D90(A)、D10(A)とし、(B)のレーザー光回折法による累積50%径(d50径)、90%径(d90径)、10%径(d10径)をそれぞれ、D50(B)、D90(B), D10(B)としたとき、(式1)、(式2)及び(式3)の全てを満たす;
              1.1≦D50(B)/D50(A)≦2.0 (式1)
              1.1≦D90(B)/D90(A)≦2.4 (式2)
              1.0≦D10(B)/D10(A)≦1.8 (式3)、
     (b) (A)のXRDから測定される110面と004面の比である110(A)/004( A)の値をx、(B)のXRDから測定される110面と004面の比である110(B)/004( B)の値をyとしたとき、その比zは下記式で定義され、zは1.2以上3.5以下である:
                      z=y/x
  2.  該複合黒鉛粒子(B)が、さらに(c)及び(d)のうち少なくとも1つを満たすことを特徴とする請求項1記載の非水系二次電池用複合黒鉛粒子:
     (c) BET比表面積が1.6m2/g以上5.0m2/g以下、タップ密度が0.80g/cm3以上1.40 g/cm3以下、フロー式粒子像分析装置により測定した粒子径が1.5μmから10μmにおける平均円形度が0.90以上0.98以下、かつ、粒子径が10μmから40μmにおける平均円形度が0.85以上0.90以下である;
     (d) (A)のHgポロシメトリー測定から得られる全細孔容積の値をpとし、(B)のHgポロシメトリー測定から得られる全細孔容積の値をqとしたとき、その比rは下記式で定義され、0.5以上1.0以下である:
                    r=p/q
  3.  該複合黒鉛粒子(B)にバインダーを加えて金属製集電体上に塗布、乾燥、プレスして電極密度を1.63g/cm3以上としたとき、プレス後の金属集電体上に形成されたバインダーを含む活物質層のBET-比表面積の値p’をプレス前の金属集電体上に形成されたバインダーを含む活物質層のBET-比表面積の値q’で割った値p’/q’が、1.5以上2.5以下であることを特徴とする請求項1または2に記載の非水系二次電池用複合黒鉛粒子。
  4.  球状黒鉛粒子(A)と黒鉛化可能なバインダーの黒鉛化物とが複合化した複合黒鉛粒子(B)であって、該球状黒鉛粒子(A)が、湾曲又は屈曲した複数の鱗片状又は鱗状黒鉛からなり、レーザー光回折法による累積50%径(d50径)が9μm 以上14μm以下であることを特徴とする非水系二次電池用複合黒鉛粒子。
  5.  請求項1から4のいずれかに記載の非水系二次電池用複合黒鉛粒子(B)を含有することを特徴とする非水系二次電池用負極材料。
  6.  更に、該複合黒鉛粒子(B)とは形状又は物性の異なる炭素質粒子を含有してなる請求項5記載の非水系二次電池用負極材料。
  7.  集電体及びその上に形成された活物質層を有する負極であって、該活物質層が請求項5または6に記載の非水系二次電池用負極材料を用いて形成されていることを特徴とする非水系二次電池用負極。
  8.  リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を有する非水系二次電池であって、該負極が、請求項7記載の非水系二次電池用負極であることを特徴とする非水系二次電池。
PCT/JP2009/061486 2008-06-25 2009-06-24 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池 WO2009157478A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/001,150 US8974968B2 (en) 2008-06-25 2009-06-24 Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
EP09770188.2A EP2306559A4 (en) 2008-06-25 2009-06-24 COMPOSITE GRAPHIC PARTICLES FOR A WATER-FREE SECONDARY BATTERY, NEGATIVE ELECTRODE MATERIAL, NEGATIVE ELECTRODE AND WATER-FREE SECONDARY BATTERY THEREWITH
CN2009801236663A CN102067363B (zh) 2008-06-25 2009-06-24 非水系二次电池用复合石墨粒子、含有其的负极材料、负极及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008166526 2008-06-25
JP2008-166526 2008-06-25

Publications (1)

Publication Number Publication Date
WO2009157478A1 true WO2009157478A1 (ja) 2009-12-30

Family

ID=41444542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061486 WO2009157478A1 (ja) 2008-06-25 2009-06-24 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池

Country Status (6)

Country Link
US (1) US8974968B2 (ja)
EP (1) EP2306559A4 (ja)
JP (1) JP5458689B2 (ja)
KR (1) KR101618386B1 (ja)
CN (1) CN102067363B (ja)
WO (1) WO2009157478A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701816A (zh) * 2016-09-29 2018-10-23 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
WO2021053956A1 (ja) * 2019-09-17 2021-03-25 Jfeケミカル株式会社 黒鉛材料の製造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101361567B1 (ko) * 2011-12-09 2014-02-12 쇼와 덴코 가부시키가이샤 복합 흑연 입자 및 그 용도
JP5919908B2 (ja) * 2012-03-13 2016-05-18 日産自動車株式会社 平板積層型電池
JP5900113B2 (ja) * 2012-03-30 2016-04-06 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電子機器、電動車両、蓄電装置および電力システム
US9580322B2 (en) 2012-08-28 2017-02-28 Knu-Industry Cooperation Foundation Method of preparing negative active material for rechargeable lithium battery, and negative active material and rechargeable lithium battery prepared from the same
US9368792B2 (en) * 2012-08-28 2016-06-14 Kangwon National University University-Industry Cooperation Foundation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6291414B2 (ja) * 2012-09-27 2018-03-14 昭和電工株式会社 リチウムイオン二次電池負極用炭素材およびその製造方法並びに用途
CN103219520B (zh) * 2012-10-25 2014-04-16 郴州杉杉新材料有限公司 一种锂离子电池石墨负极材料及其制备方法
CN103855395B (zh) * 2012-12-05 2017-07-21 上海杉杉科技有限公司 一种锂离子电池天然石墨负极材料及其制备方法
EP3131143B1 (en) 2014-03-25 2019-03-20 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN110137442B (zh) * 2014-03-31 2022-08-09 远景Aesc日本有限公司 基于石墨的负电极活性材料、负电极和锂离子二次电池
KR20230134615A (ko) * 2014-07-07 2023-09-21 미쯔비시 케미컬 주식회사 탄소재, 탄소재의 제조 방법 및 탄소재를 사용한 비수계 2 차 전지
CN104393298B (zh) * 2014-10-20 2016-11-09 洛阳月星新能源科技有限公司 一种锂离子电池用块状石墨负极材料、制备方法及锂离子电池
US10177375B2 (en) 2016-08-10 2019-01-08 Energizer Brands, Llc Alkaline battery cathode structures incorporating multiple carbon materials and orientations
CN107758653A (zh) * 2016-08-17 2018-03-06 宁波杉杉新材料科技有限公司 一种锂离子电池复合颗粒石墨负极材料的制备方法
US11362324B2 (en) 2016-09-12 2022-06-14 Imerys Graphite & Carbon Switzerland Ltd. Compositions and their uses
KR102053843B1 (ko) * 2016-11-08 2019-12-09 주식회사 엘지화학 음극 및 상기 음극의 제조방법
CN115483391A (zh) 2016-11-22 2022-12-16 三菱化学株式会社 非水二次电池用负极材料、非水二次电池用负极及非水二次电池
JP6947814B2 (ja) * 2017-02-21 2021-10-13 日本碍子株式会社 リチウム複合酸化物焼結体板
CN107046125B (zh) * 2017-02-22 2020-08-04 深圳市金润能源材料有限公司 复合负极及其制备方法和锂离子电池
WO2018207333A1 (ja) 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019044222A (ja) * 2017-08-31 2019-03-22 三菱マテリアル株式会社 In−Cu合金粉末、In−Cu合金粉末の製造方法、In−Cu合金スパッタリングターゲット及びIn−Cu合金スパッタリングターゲットの製造方法
CN110679014B (zh) * 2017-09-28 2023-04-04 株式会社Lg新能源 预测电极浆料的工艺性和选择电极粘合剂的方法
CN108807849B (zh) * 2018-05-16 2019-11-15 宁德时代新能源科技股份有限公司 负极极片及含有它的二次电池
CN109286020B (zh) * 2018-08-21 2021-03-30 宁德时代新能源科技股份有限公司 负极极片及二次电池
CN109244450B (zh) * 2018-10-24 2021-09-03 湖南海利锂电科技股份有限公司 一种用于混掺三元材料的高压实高容量型锰酸锂复合正极材料的制备方法
WO2020106106A1 (ko) * 2018-11-22 2020-05-28 에스케이이노베이션 주식회사 음극의 제조방법 및 이에 따른 음극을 포함하는 급속충전 성능이 개선된 이차전지
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
US20210273223A1 (en) * 2019-02-01 2021-09-02 Lg Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
JP7107888B2 (ja) * 2019-05-10 2022-07-27 本田技研工業株式会社 固体電池用負極活物質、当該活物質を用いた負極および固体電池
CN112420979B (zh) * 2019-08-23 2022-02-11 宁德时代新能源科技股份有限公司 用于确定负极极片快充性能的方法和负极极片设计方法
JPWO2021059705A1 (ja) * 2019-09-27 2021-04-01
EP4024512A4 (en) * 2019-10-04 2022-11-02 Lg Energy Solution, Ltd. GLOBULAR CARBON ANODE ACTIVE MATERIAL, METHOD FOR MAKING THEREOF, AND ANODE LITHIUM SECONDARY BATTERY COMPRISING THE SAME
WO2023275810A2 (en) * 2021-06-30 2023-01-05 Talga Technologies Limited Cathode composition
WO2024029213A1 (ja) * 2022-08-03 2024-02-08 三菱ケミカル株式会社 炭素材、炭素材の製造方法、負極及び二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111918A (ja) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd 黒鉛粒子の製造法、該製造法で得られた黒鉛粒子、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びリチウム二次電池
JP2000086343A (ja) 1998-09-09 2000-03-28 Sec Corp 炭素複合材料及びその製造方法
JP2005019397A (ja) * 2003-06-05 2005-01-20 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
JP2005149792A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp リチウム二次電池用の炭素質負極材料
WO2008084675A1 (ja) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2008166526A (ja) 2006-12-28 2008-07-17 Spansion Llc 半導体装置の製造方法
JP2008305661A (ja) * 2007-06-07 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2009158356A (ja) * 2007-12-27 2009-07-16 Tokai Carbon Co Ltd リチウム二次電池の負極材用複合炭素材料及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP4252846B2 (ja) * 2002-07-31 2009-04-08 パナソニック株式会社 リチウム二次電池
EP1629554A2 (en) * 2003-06-05 2006-03-01 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
CN100468834C (zh) * 2004-02-12 2009-03-11 三菱化学株式会社 锂二次电池用负极材料及其制备方法和使用该负极材料的锂二次电池用负极和锂二次电池
CN101208819B (zh) * 2005-06-27 2010-11-24 三菱化学株式会社 非水性二次电池用石墨质复合颗粒、含有该石墨质复合颗粒的负极活性物质材料、负极和非水性二次电池
JP4802595B2 (ja) 2005-08-04 2011-10-26 中央電気工業株式会社 非水系二次電池用負極材料に適した炭素粉末
KR20130090913A (ko) * 2005-10-20 2013-08-14 미쓰비시 가가꾸 가부시키가이샤 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
CN101341091B (zh) * 2005-12-21 2012-02-01 昭和电工株式会社 复合石墨粒子以及使用该复合石墨粒子的锂二次电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111918A (ja) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd 黒鉛粒子の製造法、該製造法で得られた黒鉛粒子、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びリチウム二次電池
JP2000086343A (ja) 1998-09-09 2000-03-28 Sec Corp 炭素複合材料及びその製造方法
JP2005019397A (ja) * 2003-06-05 2005-01-20 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
JP2005149792A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp リチウム二次電池用の炭素質負極材料
WO2008084675A1 (ja) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2008166526A (ja) 2006-12-28 2008-07-17 Spansion Llc 半導体装置の製造方法
JP2008305661A (ja) * 2007-06-07 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2009158356A (ja) * 2007-12-27 2009-07-16 Tokai Carbon Co Ltd リチウム二次電池の負極材用複合炭素材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2306559A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701816A (zh) * 2016-09-29 2018-10-23 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
CN108701816B (zh) * 2016-09-29 2021-11-12 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
WO2021053956A1 (ja) * 2019-09-17 2021-03-25 Jfeケミカル株式会社 黒鉛材料の製造方法
JP6905159B1 (ja) * 2019-09-17 2021-07-21 Jfeケミカル株式会社 黒鉛材料の製造方法

Also Published As

Publication number Publication date
CN102067363B (zh) 2013-12-04
US8974968B2 (en) 2015-03-10
KR20110033134A (ko) 2011-03-30
CN102067363A (zh) 2011-05-18
EP2306559A1 (en) 2011-04-06
US20110171532A1 (en) 2011-07-14
JP2010034036A (ja) 2010-02-12
KR101618386B1 (ko) 2016-05-18
EP2306559A4 (en) 2014-09-24
JP5458689B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5458689B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5268018B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5476411B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5407196B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5064728B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP4992426B2 (ja) 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
KR101970023B1 (ko) 비수계 이차 전지용 탄소재, 그 탄소재를 사용한 부극 및 비수계 이차 전지
JP2012033375A (ja) 非水系二次電池用炭素材料
JP5678414B2 (ja) 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
CN106133962B (zh) 非水系二次电池负极用复合石墨粒子、非水系二次电池负极用活性物质及非水系二次电池
JP2012216545A (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP7127275B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2014060124A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2012216520A (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池
JP2012033376A (ja) 非水系二次電池用負極活物質材料
JP2013229343A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2013179101A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP6922927B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7009049B2 (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池
WO2024048051A1 (ja) 負極活物質および二次電池
JP2010010082A (ja) 非水系二次電池用負極、非水系二次電池用負極材料及び非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123666.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107028428

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009770188

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13001150

Country of ref document: US