WO2009120026A2 - 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법 - Google Patents

메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법 Download PDF

Info

Publication number
WO2009120026A2
WO2009120026A2 PCT/KR2009/001546 KR2009001546W WO2009120026A2 WO 2009120026 A2 WO2009120026 A2 WO 2009120026A2 KR 2009001546 W KR2009001546 W KR 2009001546W WO 2009120026 A2 WO2009120026 A2 WO 2009120026A2
Authority
WO
WIPO (PCT)
Prior art keywords
butyl
methylimidazorium
supported catalyst
metallocene
catalyst composition
Prior art date
Application number
PCT/KR2009/001546
Other languages
English (en)
French (fr)
Other versions
WO2009120026A3 (ko
Inventor
한승렬
옥명안
고영수
이창일
Original Assignee
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이에너지 주식회사 filed Critical 에스케이에너지 주식회사
Priority to EP09724840A priority Critical patent/EP2258731A4/en
Priority to US12/933,796 priority patent/US8399375B2/en
Priority to JP2011501719A priority patent/JP5668253B2/ja
Priority to CN200980110950.7A priority patent/CN101981064B/zh
Publication of WO2009120026A2 publication Critical patent/WO2009120026A2/ko
Publication of WO2009120026A3 publication Critical patent/WO2009120026A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Definitions

  • the present invention relates to a metallocene supported catalyst composition, a method for preparing an olefin polymer using the same, and an olefin polymer prepared.
  • the olefin polymerization catalyst can be classified into a Ziegler-Natta heterogeneous catalyst and a single active point metallocene catalyst.
  • the metallocene catalyst described in the present invention was introduced by Kaminsky in 1980 to produce various polyolefin products. It has been developed.
  • the metallocene catalyst consists of a combination of a main catalyst mainly composed of a transition metal compound and an organometallic compound promoter mainly composed of aluminum or boron.
  • Metallocene catalysts are very narrow and uniform in molecular weight distribution and chemical compositional distribution of polyolefins produced as homogeneous single site catalysts, and are stereoregular and comonomers depending on the ligand structure of the metallocene catalyst. Responsiveness and hydrogen responsiveness can be freely controlled, and the physical properties of the polyolefins associated therewith can be greatly improved compared to the Ziegler-Natta catalyst.
  • metallocene supported catalysts are supported by supporting metallocene alone or metallocene and cocatalyst on various porous inorganic or organic materials such as silica, alumina and magnesium dichloride.
  • Processes for preparing and applying polyolefins to slurry or gas phase polymerization processes have been developed.
  • an aluminum compound i.e., trimethylaluminum, triethylaluminum, etc. is added to uncalcined silica, and then metallocene is supported (US Pat. No. 4,937,217, 4912075). , No. 4935397), Method of preparing a metallocene supported catalyst by surface treatment of calcined silica with methylaluminoxane or surface treatment of silica containing water with alkylaluminum and then injection of metallocene (US Pat. No. 4808561) No. 4912075, 4904631) and the like are known.
  • the metallocene supported catalyst is prepared by the above methods, the catalyst component is not uniformly supported in the pores, the catalyst preparation time is long, and the activity of the catalyst is low.
  • the aluminoxane is not uniformly present in the pores, it may cause problems such as deactivation and hot spots in the reactor.
  • the catalyst component in the metallocene supported catalyst is dissolved, and the polymerized polymer particles may cause fouling or clogging.
  • the preparation of the metallocene supported catalyst through the previously developed compound bond has a disadvantage of high catalyst manufacturing cost and low activity of the prepared catalyst due to the multi-step preparation method.
  • an object of the present invention is to provide a metallocene supported catalyst for olefin polymerization by surface-treating inorganic and organic carrier surfaces using an ionic compound and supporting a metallocene compound and necessary cocatalyst on the surface of the ionic compound.
  • the present invention provides a method for producing various polyolefin products with high activity and process stability in a slurry or gas phase olefin polymerization process having a single reactor or a multi-reactor and a low metallocene metal content in the carrier.
  • the surface of the inorganic or organic porous carrier and the surface of the pores are treated with an ionic compound in which cations and anions are paired, and in the aliphatic hydrocarbon, a metallocene catalyst and an alkylaluminoxane or
  • the metallocene supported catalyst composition is provided by contacting a boron compound-based promoter, and the olefin polymer is polymerized by polymerizing an olefin monomer or an olefin-based and its olefin comonomers using the metallocene supported catalyst composition. It is characterized by providing a method for producing.
  • the metallocene supported catalyst composition for olefin polymerization according to the present invention is prepared by supporting a Group 4 transition metal compound represented by Formula 1 on an inorganic or organic porous carrier treated with an ionic compound.
  • M is a Group 4 transition metal on the periodic table
  • Cp ' is a fused ring containing a cyclopentadiene or cyclopentadienyl ring capable of bonding ⁇ 5 -with a central metal
  • L 1 is a fused ring containing a cyclopentadiene, cyclopentadienyl ring, or an anionic ligand comprising a (C1-C20) hydrocarbon substituent and an O, N or P atom
  • L 2 is a halogen atom, (C 1 -C 20) alkyl group, (C 6 -C 30) aryl (C 1 -C 20) alkyl group, (C 3 -C 20) cycloalkyl group, (C 1 -C 20) alkoxy group, (C 6 -C 30) aryloxy group , (C6-C30) aryl group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted silyl, (C1-C
  • the carrier on which the metallocene catalyst represented by Chemical Formula 1 is supported employs a porous inorganic or organic material carrier having a hydroxyl group on the surface of the carrier pore.
  • the carrier having a hydroxyl group on the surface is treated with an ionic compound in an inorganic or organic porous carrier at room temperature in a liquid or solid phase and sufficiently wetted with an ionic compound in which a cation and an anion are paired to physicochemically It can be obtained by surface treatment with.
  • Ionic compounds that can be used in the present invention can be any ionic compound currently commercialized, and can also utilize new ionic compounds through synthesis depending on the structure and carrier type of the metallocene catalyst and the promoter.
  • the commercially available or synthesizable ionic compound is characterized in that the ionic compound has a vapor pressure close to zero and is polar in liquid or solid phase even in the temperature range of -100 to 300 ° C., and the polarity depends on the type of anionic material.
  • Various types of ionic materials can be employed, ranging from very weak polarity to very strong polarity, and also if the molecular structure of the metallocene catalyst is not changed to inert as an ionic compound having no impurities, Can be used.
  • the metallocene supported catalyst composition according to the present invention may be exemplified as specifically forming an ionic compound by pairing a cation (X + ) and an anion (Y ⁇ ), such as a compound represented by Formula 2 below.
  • ionic compounds are not limited thereto.
  • R, R 1 to R 3 are selected from alkyl groups to which functional groups such as -OH, -SO 3 H, -COOH, amine, silane and alkoxy are attached.
  • anion (Y ⁇ ) types are exemplified in the following Table 2.
  • examples of the ionic compound which can be used in the present invention include 1-butyl-3-methylimidazorium chloride, 1-butyl-3-methylimidazorium dibutyl phosphate, and 1-butyl-3-methyl.
  • the inorganic or organic porous carrier treated with the ionic compound is present in the range of 0.001 to 100 mmol per 1 g of the carrier before surface treatment -OH groups.
  • the carrier treated with the ionic compound may be an inorganic or organic substance having pores, and they should have pores and surface areas capable of supporting ionic compounds, metallocenes, and promoters.
  • the surface of these carriers may have a hydrophobic functional group, or may be used by surface treatment with various silane compounds, aluminum compounds, and halogen compounds.
  • inorganic carriers that can be used include silica, alumina, magnesium chloride, magnesium oxide and other carriers that have been used to carry a metallocene catalyst, in addition to mesoporous material, MCM-41, MCM-48, SBA Substances such as -15 are possible, these have a surface area of 100 m 2 / g or more and pore volume of 0.1 cc / g or more.
  • Clay compounds such as mineral clay, kaolin, talc, mica and montmolillonite may also be used as carriers.
  • a material such as a polysiloxane-based high molecular compound, polystyrene gel or beads may be employed. These carrier compounds may be used in their original state or may be heat-treated at a temperature of 100 to 1000 ° C. to adjust the amount of hydrophobic functional groups in the carrier pore surface.
  • the composition of the ionic compound supported on the surface of the carrier is related to the physical and chemical properties of the surface of the carrier such as the pore surface area of the carrier and the amount of hydroxy groups (OH groups) on the surface of the carrier. From 0.001 to 50% by weight, suitable from 0.1 to 40% by weight, in particular, is preferred. In addition, as the amount of hydroxy groups remaining on the surface of the carrier increases, the amount of the ionic compound must be increased. If the ionic compound is less than 0.001% by weight, the treatment effect is insignificant, and if the ionic compound exceeds 50% by weight, there is no synergistic effect by the excess amount, resulting in waste of the ionic compound.
  • examples of the metallocene or non-metallocene catalyst that can be used in the present invention are as follows, but are not necessarily limited thereto.
  • transition represented by the formula (1) is supported on the inorganic or organic porous carrier treated with the above ionic compound metal Cp 'is 5 the central metal and ⁇ - including the cyclopentadiene or cyclopentadienyl ring which can be combined a fused ring cyclopentadienyl, methyl cyclopentadienyl, dimethyl cyclopentadienyl, tetramethyl-cyclopentadienyl, pentamethylcyclopentadienyl, butylcyclopentadienyl, sec - butylcyclopentadienyl, tert - Butylmethylcyclopentadienyl, trimethylsilylcyclopentadienyl, indenyl, methylindenyl, ethylindenyl, isopropylinyl, florenyl, methylflorenyl, dimethylflorenyl, and ethylflorenyl,
  • the supported metallocene or nonmetallocene organometallic catalyst is a metallocene supported catalyst supported on a surface treated with an ionic compound.
  • a standard based on the final supported catalyst including carriers, ionic liquids, organometallic catalysts, and cocatalysts
  • 0.01 to 10% by weight is appropriate for metallocene or nonmetallocene organometallic catalysts, and 0.1 to 5 Weight percent is preferred.
  • the metallocene supported catalyst composition according to the present invention may further include an alkylaluminoxane promoter, an organoaluminum promoter or a boron compound promoter, or a mixture thereof.
  • the aluminoxane compound used in the present invention as is generally known, the aluminoxane represented by the following general formula (3) is mainly used.
  • R 4 is a (C 1 -C 20 ) alkyl group, preferably a methyl group or an isobutyl group, and m is an integer of 5 or more.
  • aluminoxane compound examples include methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane, butyl aluminoxane, isobutyl aluminoxane, and the like.
  • alkyl compound promoter used in the present invention includes an organoalkyl compound represented by the formula (4).
  • R 5 is a (C 1 -C 8 ) alkyl group
  • E is a hydrogen atom or a halogen atom
  • r is an integer of 1 to 3.
  • alkylaluminum compound examples include trialkylaluminum, dimethylaluminum chloride, including trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, tributylaluminum, triisobutylaluminum, triisorenylaluminum, and the like.
  • Alkyl aluminum dichloride, and the like, and trialkyl aluminum chloride and triisobutyl aluminum chloride are preferable.
  • boron compound that can be used as a promoter in the present invention may be selected from compounds represented by the following Chemical Formulas 5 to 7.
  • B is a boron atom
  • R 6 is a phenyl group or a phenyl group having 3 to 5 substituents selected from a (C 1 -C 4 ) alkyl group or a (C 1 -C 4 ) alkoxy group which is unsubstituted or substituted by a fluorine atom or a fluorine atom
  • R 7 is a cyclic (C 5 -C 7 ) aromatic cation or an alkyl substituted cation such as triphenylmethyl cation, Z is nitrogen or a person
  • R 8 is (C 1 -C 4 ) alkylradical or an annilium radical substituted with two (C 1 -C 4 ) alkyl groups together with a nitrogen atom
  • q is an integer of 2 or 3.
  • Preferred examples of the boron compound promoters include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluoro Phenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (Pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4 , 5-tetrafluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (p
  • an aluminum-based promoter such as methylaluminoxane or an alkylaluminum compound and a boron-based promoter
  • 0.01 to 0.01 based on the metallocene supported catalyst (final supported catalyst) supported in the carrier surface-treated with the ionic compound 50% by weight is suitable, with 0.1 to 30% by weight being preferred.
  • the transition metal compound of Formula 1 When the transition metal compound of Formula 1 is dissolved in an organic solvent such as methylaluminoxane and supported on a surface treated with an ionic compound, the molar ratio of metallocene and cocatalyst in the final supported catalyst is a transition metal: aluminum 1: 0.01 to 1: 1000 are suitable on a molar ratio basis, and 1: 1 to 1: 500 is particularly preferable.
  • the molar ratio of the transition metal compound of Formula 1 to the boron compound promoter is suitably 1: 0.01 to 1: 100 based on the molar ratio of transition metal to aluminum, particularly 1: 0.1 to 1:20. This is preferable.
  • the molar ratio of the boron compound promoter and the aluminum compound is preferably 1: 0.1 to 1: 100, preferably 1: 1 to 1:20, based on boron: aluminum.
  • the present invention is characterized by a method for producing an olefin polymer using the metallocene supported catalyst composition for olefin polymerization, wherein the olefin polymer includes a homopolymer or copolymer of alpha olefins.
  • olefin monomers examples include ethylene, alpha olefins, cyclo olefins, and the like, and diene monomers, triene, styrene and cyclic olefins are also possible.
  • Examples of such monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1 Eicosene, 4-methyl-1-pentene, 3-methyl-1-pentene and 3-methyl-1-butene, styrene, pa-methylstyrene, allylbenzene, divinylbenzene, vinylcyclohexane, vinylcycloheptane, Cyclopentene, cycloheptene, norbornene, tetracyclododecene, isoprene, 1,3-butadiene, 1,4-pentadiene, 1,4-hexadiene, cyclopentadiene; these monomers alone or in combination It can mix and superpose
  • the inorganic or organic porous support treated with the ionic compound on which the transition metal compound is supported can be prepared from the following method.
  • the ionic compound is mixed with the support alone without contact with the ionic compound without the solvent, or
  • the amount of hydroxy groups on the surface corresponding to the purpose of supporting inorganic carriers, such as silica, used for supporting the treatment by mixing the carrier and the ionic compound in an aliphatic or aromatic hydrocarbon solvent to obtain a slurry.
  • inert gas such as nitrogen and argon
  • the amount of hydroxyl groups on the remaining surface is preferably from 0.001 to 100 mmol-OH / g-silica, and preferably from 0.1 to 5 mmol-OH / g-silica.
  • the above condition is a carrier condition before the ionic compound treatment, and the required amount of the ionic compound is added to the flask containing silica prepared in the carrier, and may be added together with an organic solvent.
  • the amount of the ionic compound to be added is preferably equal to or higher than the amount of OH groups on the silica surface.
  • the silica and the ionic compound are sufficiently mixed in a nitrogen atmosphere at a temperature above the melting point of the ionic compound for at least 1 hour so that the ionic compound is in sufficient contact with the surface of the silica and the hydroxyl group on the surface. If an organic solvent is used, the organic solvent is removed after the surface treatment and proceeds to the next step.
  • the metallocene compound and the promoter methylaluminoxane (MAO) are dissolved in an organic solvent such as toluene, where the molar ratio of metallocene and promoter to aluminum is 1: 0.1 to 1: based on the transition metal: aluminum. 3000 is suitable, with 1: 1 to 1: 500 being preferred.
  • the metallocene solution is added to silica surface-treated with an ionic compound and stirred for a suitable time at a suitable temperature in a nitrogen atmosphere to support the metallocene and a promoter. Thereafter, to remove unsupported metallocene and cocatalyst, the organic solvent, such as toluene, is washed three times or more, dried with vacuum or nitrogen gas, and finally supported on a surface treated with an ionic compound. Obtained metallocene catalyst.
  • the heat treated silica was surface treated using an ionic compound as described above, and then the metallocene compound was dissolved in an organic solvent such as toluene alone, added to the surface treated silica, and stirred under a nitrogen atmosphere for a suitable temperature and time. Support the Rosene compound. Thereafter, to remove unsupported metallocene, the organic solvent such as toluene is washed three times or more, dried with vacuum or nitrogen gas, and finally with a metal supported on a surface treated with an ionic compound. Get a strong catalyst.
  • the catalyst supported on the metallocene alone in the carrier surface-treated with the supported ionic compound thus obtained can be used by adding a cocatalyst necessary for polymerizing a polymer such as polyolefin to a polymerization solvent or the like.
  • the heat treated silica was surface treated using an ionic compound as described above, and then a MAO or borate-based promoter was dissolved in an organic solvent such as toluene, and then injected into silica coated with an ionic compound. Mix and support for an appropriate time.
  • the organic solvent such as toluene is washed three times or more, dried with vacuum or nitrogen gas, and finally, a carrier surface-treated with an ionic compound or a promoter is obtained.
  • the metallocene compound is dissolved in an organic solvent such as toluene in silica having a promoter supported on the ionic compound, and then injected into a surface-treated silica to stir the metallocene by stirring at a suitable temperature and a suitable time under a nitrogen atmosphere. . Thereafter, to remove the unsupported metallocene compound, the organic solvent such as toluene is washed three times or more, dried with vacuum or nitrogen gas, and finally with the metal supported on the surface of the ionic compound surface-treated carrier. Get a strong catalyst.
  • silica was surface-treated using an ionic compound as described above, another flask was dissolved in an organic solvent such as toluene, a promoter of a metallocene compound, a promoter boron compound, and an aluminum alkyl promoter.
  • an organic solvent such as toluene, a promoter of a metallocene compound, a promoter boron compound, and an aluminum alkyl promoter.
  • the molar ratio of metallocene and promoter to boron is from 1: 0.1 to 1: 100, and from 1: 0.5 to 1:30.
  • the molar ratio of the metallocene and the aluminum alkyl compound is 1: 0.1 to 1: 100.
  • the metallocene compound and the borate-based cocatalyst solution are added to the silica treated with the ionic compound, and stirred and mixed at a suitable temperature under a nitrogen atmosphere for a suitable time to support the metallocene compound and the promoter. Thereafter, to remove the unsupported metallocene compound and the cocatalyst, the organic solvent such as toluene was washed three times or more, and dried with vacuum or nitrogen gas, and finally, the surface of the ionic compound surface-treated carrier. A supported metallocene catalyst is obtained.
  • the transition metal content in the supported catalyst produced by the above method was analyzed to be 0.05 ⁇ 1.5% by weight.
  • the metallocene supported catalyst supported on the ionic compound thus obtained may be subjected to multiple polymerization using one kind of olefin monomers or two or more kinds of these monomers, and the polymerization reaction of the olefin monomers in a slurry phase of an organic solvent such as hexane or a gas phase do.
  • the catalyst according to the present invention is used after being dispersed in a reaction solvent in the absence of moisture.
  • a polymerization reaction solvent an aliphatic hydrocarbon or a mixture thereof is generally used. Examples thereof include propane, isobutane, isopentane, hexane, heptane, and octane. .
  • the metallocene supported catalyst of the present invention can be applied not only to gas phase, slurry and liquid phase polymerization processes but also to batch and continuous polymerization processes, but is most suitable for slurry and gas phase reactions.
  • the batch slurry polymerization process will be described as an example of the polyolefin polymerization method using the supported catalyst according to the present invention.
  • the high pressure reactor is removed at high temperature in a vacuum to remove water and air, and then the solvent is introduced into the reactor, the temperature is raised to the polymerization temperature, and then alkyl aluminum or MAO is added as a scavenger and the supported metallocene catalyst according to the present invention.
  • Input Thereafter, olefins such as ethylene are added, and if necessary, hydrogen is injected together with the addition of olefins.
  • olefins are stopped, unreacted olefins and solvents are removed, and the reactor is opened to obtain a solid polymer.
  • the polymerization solvent used is passed through a tube filled with molecular sieve 5A and activated alumina and bubbled with high purity nitrogen to remove moisture, oxygen and other catalyst poisons sufficiently.
  • the polymerization temperature is -50 to 200 o. Available in the range of C, 50 to 100 o C is suitable.
  • the polymerization pressure can be from 1 to 50 atm, preferably from 5 to 30 atm.
  • the metallocene supported catalyst supported on the surface-treated carrier of the ionic compound according to the present invention exhibited excellent catalytic activity in the olefin polymerization reaction compared to the conventional supporting method, and the bulk density of the prepared polymer was also good. . Therefore, it is very economical and useful for producing metallocene polyolefin in commercial slurry or vapor phase process.
  • the metal content was measured by an ICP (Inductively Coupled Plasma Spectroscopy) method, and measured by the following method using an IPC analyzer (Perkin Elmer, Optima 200DV).
  • ICP Inductively Coupled Plasma Spectroscopy
  • the supported catalyst is placed in a vial containing a magnetic bar.
  • the nitric acid mixture solution is filtered through filter paper and 1 ml is placed in a new vial.
  • Dupont DSC2910 was used at 2 nd heating conditions at 20 o C / min.
  • silica XPO-2412 (Grace, USA, surface area 460 m 2 / g, average pore diameter of 12.8 nm) was added to a round bottom flask equipped with a stopcock, and 1-butyl-3-methylimidazolium tetrachloro aluminate 308 as an ionic compound. After adding mg (1.0 mmol), the mixture was sufficiently stirred at 70 ° C. for 3 hours using a magnetic bar to surface the silica surface with an ionic compound, and 30 ml of toluene was added thereto.
  • the silica surface was treated with 150 mg of 1-butyl-3-methylimidazolium tetrachloroaluminate as an ionic compound compared to the preparation process of the metallocene supported catalyst of Example 1-1, and the metallocene compound [(n-BuCp) 2 ZrCl 2 ] was prepared in the same manner except that the supported catalyst was 1.42 g.
  • the polymerization reaction was carried out in the same manner as in the polymerization method of ethylene slurry in 2 of [Example 1], to obtain about 43 g of a polymer.
  • the silica surface was treated with 150 mg of the ionic compound, 1-butyl-3-methypyridinium hexafluorophosphate, compared to the preparation process of the metallocene supported catalyst of Example 1-1, and the metallocene compound [(n-BuCp) 2 ZrCl 2 ] was carried out in the same manner, except that the supported catalyst was 1.44 g.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] using the supported catalyst prepared in the above step, to obtain about 42 g of a polymer.
  • the silica surface was treated with 240 mg of 1-butyl-3-methypyridinium tetrafluoroborate as an ionic compound compared to the preparation process of the metallocene supported catalyst of Example 1-1, and the metallocene compound [(n-BuCp) 2 ZrCl 2 ] was carried out in the same manner, except that the supported catalyst was 1.50 g.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] using the supported catalyst prepared in the above step, thereby obtaining about 40 g of a polymer.
  • silica XPO-2412 (Grace, USA) was added 95 mg of 1-butyl-3-methypyridinium chloride as an ionic compound to a round bottom flask equipped with a stopcock, and the magnetic bar was used at 170 o C for 3 hours. After sufficiently stirring, the silica surface was treated with an ionic compound, and the temperature was lowered to 70 ° C., and 30 mL of toluene was added thereto.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] to obtain about 106 g of a polymer.
  • Example 5-1 The procedure was the same as in Example 5-1 except that 290 mg of 1-butyl-3-methylpyridinium chloride was used as the ionic compound, and 1.25 g of the supported catalyst was obtained.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] to obtain about 75 g of a polymer.
  • silica XPO-2412 (Grace, USA) was added 290 mg of 1-butyl-3-methypyridinium chloride as an ionic compound to a round-bottomed flask equipped with a stopcock, followed by using a magnetic bar at 170 o C for 3 hours. After stirring sufficiently, the silica surface was surface treated with an ionic compound, and the temperature was lowered to 70 ° C., and 15 ml of toluene was mixed.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] using the supported catalyst prepared in the above step, to obtain about 30 g of a polymer.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] to obtain about 41 g of a polymer.
  • the polymerization reaction was carried out according to the polymerization method of ethylene slurry in 2 of [Example 1] using the supported catalyst prepared in the above step, to obtain about 11 g of a polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 메탈로센 담지촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법에 관한 것으로서, 본 발명에 따른 메탈로센 담지촉매 조성물은 4족 전이금속 화합물을 이온성 화합물로 처리한 무기 또는 유기 다공성 담체에 접촉시켜 제조된 것을 특징으로 하며, 본 발명에 따른 메탈로센 담지촉매 조성물은 담체 내 낮은 메탈로센 금속성분 함량에서도 슬러리 및 기상 올레핀 화합물의 중합반응 시 촉매활성이 증가되며 파울링(fouling), 시팅(sheeting), 관막힘(plugging) 등의 공정상 문제점도 개선되는 장점이 있다.

Description

메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
본 발명은 본 발명은 메탈로센 담지촉매 조성물, 이를 이용한 올레핀 중합체의 제조방법 및 제조된 올레핀 중합체에 관한 것이다.
올레핀 중합 촉매는 지글러-나타의 불균일계 촉매와 단일활성점의 메탈로센 촉매로 구분할 수 있으며, 본 발명에서 다루는 메탈로센 촉매는 1980년 카민스키에 의해 발표되어 현재까지 다양한 폴리올레핀 제품을 생산하기 위하여 개발되어져 왔다. 메탈로센 촉매는 전이 금속 화합물이 주성분인 주촉매와 알루미늄 또는 보론이 주성분인 유기금속화합물 조촉매의 조합으로 이루어진다. 메탈로센 촉매는 균일계 단일활성점 촉매로서 생성되는 폴리올레핀의 분자량 분포도와 화학조성분포(chemical compositional distribution)가 매우 좁고 균일하며 메탈로센 촉매의 리간드 구조에 따라 입체규칙성, 공단량체(comonomer) 응답성, 수소응답성을 자유로이 조절할 수 있고, 이와 연관된 폴리올레핀의 물성을 지글러-나타 촉매와 비교하여 대폭 향상시킬 수 있다.
이러한 메탈로센 촉매를 슬러리 또는 기상 올레핀 중합공정에 사용하기 위해서는 담지화(immobilization)가 반드시 필요하다. 이는 균일계 메탈로센 촉매를 슬러리, 기상 중합 공정에 투입하는 경우 생성 고분자의 엉김현상(agglomerate), 파울링(fouling), 시팅(sheeting), 관막힘(plugging) 현상 등의 공정상 치명적인 문제가 발생하고, 생성되는 폴리올레핀 고분자 입자 형상이 매우 불규칙하며, 겉보기 밀도가 낮아 제품 생산이 불가능하기 때문이다.
이러한 여러 가지 문제점을 해결하기 위하여 담지에 관한 연구가 진행되어졌고 실리카, 알루미나, 마그네슘 디클로라이드 등의 여러 다공성 무기물 또는 유기물에 메탈로센 단독 또는 메탈로센과 조촉매를 담지하여 메탈로센 담지촉매를 제조하고 이를 이용하여 슬러리 또는 기상 중합공정에 적용, 폴리올레핀을 중합하는 방법이 개발되어졌다.
종래의 메탈로센 촉매 담지방법으로 첫째는 소성하지 않은 실리카에 알루미늄 화합물, 즉 트리메틸알루미늄, 트리에틸알루미늄 등을 첨가하여 처리한 후 메탈로센을 담지하는 방법(미국 특허 제 4937217호, 제 4912075호, 제 4935397호), 소성된 실리카에 메틸알루미녹산으로 표면처리하거나 물이 포함된 실리카를 알킬알루미늄으로 표면처리한 후 메탈로센을 투입하여 메탈로센 담지촉매를 제조하는 방법(미국 특허 제 4808561호, 제 4912075호, 제 4904631호) 등이 공지되었다. 또한 알루미늄 유기금속화합물 대신 붕소 계열의 유기금속물질을 이용하여 실리카를 표면처리하고 메탈로센을 투입하여 메탈로센 담지촉매를 합성하는 방법(미국 특허 6087293호), 알루미늄이나 붕소계 유기금속화합물 대신 유기화합물을 이용하여 실리카의 표면을 처리하고 메탈로센을 접촉시켜 메탈로센 담지촉매를 제조하는 방법(미국 특허 제 5643847호, 제 5972823호)이 공지된 바 있으며, 그 외 메탈로센 촉매를 실리카 표면에 화학반응을 통해 공유결합을 형성시켜 부착시키는 방법(한국특허 출원 10-1999-0023575호, 한국특허 제 10-0536181호)이 공지되었다.
그러나 상기한 방법들에 의하여 메탈로센 담지촉매를 제조하는 경우, 촉매 성분이 기공 내에 균일하게 담지되지 못하고 촉매제조 시간이 길며 촉매의 활성이 낮은 단점이 있다. 또한 알루미녹산이 기공 내에 균일하게 존재하지 않으므로 활성저하와 반응기내 열점(hot spot) 등의 문제를 야기할 수 있다. 슬러리 중합공정에서는 메탈로센 담지촉매 내 촉매성분이 용해되어져 나와 중합된 고분자입자가 파울링이나 관막힘 현상을 야기 시킬 수 있다. 이러한 촉매 용출 문제를 해결하기 위하여 기 개발된 화합결합을 통한 메탈로센 담지촉매의 제조는 여러 단계를 걸치는 제조방법으로 인해 촉매제조비용이 높고 제조된 촉매의 활성이 낮은 단점이 있다.
이에 본 발명의 목적은 무기, 유기물의 담체 표면을 이온성 화합물을 이용하여 표면 처리하고 메탈로센 화합물과 필요한 조촉매 등을 이온성 화합물 표면 위에 담지시켜 올레핀 중합에 필요한 메탈로센 담지촉매를 제공하는 것에 있으며, 또한 단일반응기 또는 다중반응기를 갖는 슬러리 또는 기상 올레핀 중합공정에 고활성과 공정운전 안정성을 보이며 다양한 폴리올레핀 제품을 생산을 할 수 있는 방법을 제공하는 것과 담체 내 낮은 메탈로센 금속성분 함량에서도 슬러리 및 기상 올레핀 화합물의 중합반응 시 촉매활성이 증가되며 파울링(fouling), 시팅(sheeting), 관막힘(plugging) 등의 공정상 문제점을 극복할 수 있는 메탈로센 담지촉매를 제공하는 것을 발명의 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명에서는 양이온과 음이온이 쌍을 이루는 이온성 화합물로 무기 또는 유기 다공성 담체의 표면 및 기공 내 표면을 처리하고, 여기에 지방족 탄화수소 중에서 메탈로센 촉매와 알킬알루미녹산 또는 붕소화합물계 조촉매를 접촉시킴으로써 메탈로센 담지촉매 조성물을 제공하는 것을 특징으로 하며, 또한 상기의 메탈로센 담지촉매 조성물을 이용하여 올레핀 단량체 또는 올레핀계 및 이의 올레핀 공단량체를 중합함으로써 올레핀 중합체를 제조하는 방법을 제공하는 것을 특징으로 한다.
이하 본 발명의 특징을 상세히 설명한다.
본 발명에 따른 올레핀 중합용 메탈로센 담지촉매 조성물은 하기 화학식 1로 표시되는 4족 전이금속 화합물을 이온성 화합물로 처리한 무기 또는 유기 다공성 담체에 담지시켜 제조된 것을 특징으로 한다.
[화학식 1]
Cp'L1ML2 n
상기화학식 1에서
M은 주기율표 상의 4족 전이금속이고;
Cp'는 중심금속과 η5-결합 할 수 있는 시클로펜타디엔 또는 시클로펜타디에닐 고리를 포함하는 융합고리이며; L1은 시클로펜타디엔, 시클로펜타디에닐 고리를 포함하는 융합고리 또는 (C1-C20)탄화수소 치환기와 O, N 또는 P 원자를 포함한 음이온성 리간드이고; ; L2는 할로겐 원자, (C1-C20)알킬기, (C6-C30)아릴(C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알콕시기, (C6-C30)아릴옥시기, (C6-C30)아릴기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 아미노기, (C1-C20)알킬 치환 또는 (C6-C20)아릴 치환 실록시기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 포스핀기이고; n은 1 또는 2의 정수이며; 상기 Cp' 및 L1은 서로 연결되어 있지 않거나, 또는 규소 또는 (C1-C4)알케닐렌 결합으로 연결될 수 있으며, 상기 Cp' 및 L1의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 융합고리는 (C1-C20)알킬기, (C6-C30)아릴기, (C2-C20)알케닐기 또는 (C6-C30)아릴(C1-C20)알킬기로 더 치환될 수 있다.
즉, 본 발명에 따른 메탈로센 담제촉매 조성물에서 상기 화학식 1로 표시되는 메탈로센 촉매가 담지되는 담체는 담체 기공 표면에 하이드록시기를 갖는 다공성 무기 또는 유기물질 담체를 채용한 것이며, 상기 담체 기공 표면에 하이드록시기를 갖는 담체는 이온성 화합물를 무기 또는 유기 다공성 담체에 상온에서 액체 또는 고체상을 가지고, 양이온과 음이온이 쌍을 이루는 이온성 화합물로 충분히 적시도록 처리하여, 상기 담체 기공 내외 표면을 물리화학적으로 표면처리함으로서 수득될 수 있다.
본 발명에서 사용할 수 있는 이온성 화합물은 현재 상업화되어 있는 모든 이온성 화합물리 가능하며 또한 메탈로센 촉매, 조촉매의 구조와 담체 종류에 따라 합성을 통해 새로운 이온성 화합물 이용할 수도 있다. 상업화되어 있거나 합성 가능한 이온성 화합물의 특징은 상기 이온성 화합물은 -100 내지 300 oC의 온도범위에서도 증기압이 0에 가깝고 액체 또는 고체상으로 극성인 것을 특징으로 하며, 극성은 음이온 물질의 종류에 따라 바뀔 수 있으며 매우 약한 극성에서 매우 강한 극성에 이르기까지 다양한 종류의 이온성 물질이 채용가능하며, 또한 불순물이 존재하지 않는 이온성 화합물로서 메탈로센 촉매의 분자구조를 비활성으로 바꾸지 않는 것이라면 본 발명에서 사용할 수 있다. 본 발명에 따른 메탈로센 담지촉매 조성물은 구체적으로는 하기 화학식 2로 표시되는 화합물과 같이 양이온(X+)과 음이온(Y-)이 쌍을 이루어 이온성 화합물을 형성한 것으로 예시될 수 있으나, 이러한 이온성 화합물은 이에 한정되지는 않는다.
[화학식 2]
X+Y-
X+은 이미다조리움이온, 피리디움이온, 암모늄이온, 포스포늄이온, 설퍼늄이온, 피라졸륨이온 또는 피롤리듐이온이고; Y-은 BF4 -, PF6 -, AlCl4 -, halogen-, CH3CO2 -, CF3CO2 -, CH3SO4 -, CF3SO3 -, (CF3SO2)N-, NO3 -, SbF6 -, Sb2F11-, MePhSO3 -, (CF3SO2)2N-, (CF3SO2)3C- 또는 (OR)2PO2 -이다.
상기 화학식 2에서 양이온(X+)은 다음의 표 1로 예시된다.
[표 1]
Figure PCTKR2009001546-appb-I000001
상기 표에서 R, R1 내지 R3는 알킬기 또는 -OH, -SO3H, -COOH, 아민, 실란(silane), 알콕시 등 기능기가 부착되어있는 알킬기로부터 선택된다.
상기 화학식에서 음이온(Y-) 종류는 다음의 표 2로 예시된다.
[표 2]
Figure PCTKR2009001546-appb-I000002
또한 본 발명에서 사용할 수 있는 이온성 화합물의 예로는, 1-부틸-3-메틸이미다조리움클로라이드, 1-부틸-3-메틸이미다조리움 디부틸포스페이트, 1-부틸-3-메틸이미다조리움 디시안아미드, 1-부틸-3-메틸이미다조리움 헥사프루오로안티모네이트, 1-부틸-3-메틸이미다조리움 헥사프루오로포스페이트, 1-부틸-3-메틸이미다조리움 하이드로겐카보네이트, 1-부틸-3-메틸이미다조리움 하이드로겐설페이트, 1-부틸-3-메틸이미다조리움 메틸설페이트, 1-부틸-3-메틸이미다조리움 테트라클로로알루미네이트, 1-부틸-3-메틸이미다조리움 테트라클로로보레이트, 1-부틸-3-메틸이미다조리움 티오시아네이트, 1-도데실-3-메틸이미다조리움 아이오다이드, 1-에틸-2,3-디메틸이미다조리움 클로라이드, 1-에틸-3-메틸이미다조리움 브로마이드, 1-에틸-3-메틸이미다조리움 클로라이드, 1-에틸-3-메틸이미다조리움 헥사플루오로포스페이트, 1-에틸-3-메틸이미다조리움 테트라플루오로보레이트, 1-헥실-3-메틸이미다조리움 테트라플루오로보레이트, 1-부틸-4-메틸피리디움 클로라이드, 1-부틸-4-메틸피리디움 테트라플루오로보레이트, 1-부틸-4-메틸피리디움 헥사프루오로포스페이트, 벤질디메틸테트라데실암모니움 클로라이드, 테트라헵틸암모니움 클로라이드, 테트라키스(데실)암모니움 브로마이드, 트리부틸메틸암모니움 클로라이드, 테트라헥실암모니움 아이오다이드, 테트라부틸포스포니움 클로라이드, 테트라부틸포스포니움 테트라프루오로보레이트, 트리이소부틸메틸포스포니움 토실레이트 1-부틸-1-메틸피롤리디니움, 1-부틸-1-메틸피롤리디움 브로마이드,1-부틸-1-메틸피롤리디움 테트라플루오로보레이트, 1-아릴-3-메틸이미다조리움 브로마이드, 1-아릴-3-메틸이미다조리움 클로라이드 , 1-벤질-3-메틸이미다조리움 헥사플루오로포스페이트, 1-벤질-3-메틸이미다조리움 비스(트리플루오로메틸설포닐)이미드, 1-부틸-3-메틸이미다조리움 디부틸 포스페이트, 1-(3-시아노프로필)-3-메틸이미다조리움 비스(트리풀루오로메틸설포닐)아마이드, 1,3-디메틸이미다조리움 디메틸 포스페이트, 1-에틸-2,3-디메틸이미다조리움 에틸 설페이트 등이 있으며, 바람직하게는 1-에틸-3-메틸이미다조리움 알루미늄 클로라이드, 1-부틸-4-메틸피리디움 헥사플루오로포스페이트, 벤질디메틸테트라데실알루미늄 클로라이드, 트리부틸메틸알루미늄 클로라이드, 테트라부틸포스피늄 테트라플루오로보레이트, 1-부틸-1-메틸피롤리디움 클로라이드, 1-부틸-3-메틸이미다조리움 테트라클로로알루미네이트, 1-부틸-4-메틸피리디움 클로라이드, 1-부틸-4-메틸피리디움 테트라플루오로보레이트 등이 포함된다.
상기 이온성 화합물로 처리한 무기 또는 유기 다공성 담지체는 표면 잔존 -OH기가 처리 전의 담체 1g 당 0.001 내지 100 mmol의 범위로 존재한다.
상기의 이온성 화합물로 처리되는 담체로는 기공을 가지고 있는 무기물이나 유기물이 가능하며 이들은 이온성 화합물, 메탈로센, 조촉매를 담지할 수 있는 기공과 표면적을 가지고 있어야 한다. 이들 담체의 표면은 소수성을 가지는 기능기를 갖고 있거나, 이들을 여러 가지의 실란계 화합물, 알루미늄계 화합물, 할로겐계 화합물로 표면처리하여 사용할 수 도 있다. 일반적으로 사용할 수 있는 무기물 담체는 실리카, 알루미나, 마그네슘 클로라이드, 산화마그네슘 등 기존에 메탈로센 촉매를 담지하는 데 사용되어진 담체들이 포함되며, 이 외에도 메조포로스 물질, MCM-41, MCM-48, SBA-15 등의 물질이 가능하며, 이들은 표면적이 100 m2/g 이상이고 기공부피는 0.1 cc/g이상이다. 미네랄클레이, 카오린, 활석, 미카, 몬트몰릴로나이트 등의 클레이 화합물 등도 담체로 사용되어질 수 있다. 유기물 담체로는 폴리실록산 계열의 고분자 화합물, 폴리스틸렌 겔 또는 비드 등의 물질이 채용가능하다. 이러한 담체화합물 들은 원래 상태로 사용되어 질 수도 있고 100에서 1000 oC 내의 온도에서 열처리되어 담체 기공 표면 내에 소수성 기능기 등의 양을 조절하여 사용할 수 있다.
상기한 담체 표면에 담지되는 이온성 화합물의 조성은 담체의 기공 표면적 및 담체 표면의 히드록시기(OH기)의 양 등 담체 표면의 물리, 화학적 성질에 관련되지만, 혼합, 접촉되는 상기 이온성 화합물은 처리된 담지체를 기준으로 0.001에서 50 중량%가 적당하며, 특히 0.1에서 40 중량%가 바람직하다. 또한, 담체의 표면에 잔존하는 히드록시기의 양이 많을수록 이온성 화합물의 양을 증가시켜야 한다. 상기 이온성 화합물이 0.001 중량%미만인 경우, 처리 효과가 미미하며, 50 중량%를 초과하면, 초과된 양만큼의 상승효과가 없어 이온성 화합물의 낭비가 초래된다.
또한 본 발명에서 사용할 수 있는 메탈로센 또는 비메탈로센촉매의 예는 아래와 같으며 반드시 이에 국한되는 것은 아니다.
상기한 이온성 화합물로 처리한 무기 또는 유기 다공성 담체에 담지되는 상기 화학식 1로 표시되는 전이금속 중 Cp'는 중심금속과 η5-결합 할 수 있는 시클로펜타디엔 또는 시클로펜타디에닐 고리를 포함하는 융합고리로서 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 펜타메틸시클로펜타디에닐, 부틸시클로펜타디에닐, sec-부틸시클로펜타디에닐, tert-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인데닐, 메틸인데닐, 에틸인데닐, 이소프로필인데닐, 플로레닐, 메틸플로레닐, 디메틸플로레닐, 및 에틸플로레닐, 이소프로필플로레닐로 이루어진 군으로부터 선택되며, 구체적인 화학식 1의 화합물로는 비스(시클로펜타디에닐)지르코늄 디클로라이드, 비스(메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(노말부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로펜틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(시클로헥실시클로펜타디에닐)지르코늄 디클로라이드, 비스(1,3-디메틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(이소부틸시클로펜타디에닐)지르코늄 디클로라이드, 비스(인데닐)지르코늄 디클로라이드, 비스(플로레닐)지르코늄 디클로라이드, 비스(4,5,6,7-테트라하이드로-1-인데닐)지르코늄 디클로라이드, 에틸렌-비스(인데닐)지르코늄 디클로라이드, 에틸렌-[비스(4,5,6,7-테트라하이드로-1-인데닐)]지르코늄 디클로라이드, 디메틸실릴-비스(인데닐)지르코늄 디클로라이드, 디페닐실릴-비스(인데닐)지르코늄 디클로라이드, 이소프로필(시클로펜타디에닐)(플로레닐)지르코늄 디클로라이드, 디메틸실릴(시클로펜타디에닐)(플로레닐)지르코늄 디클로라이드, 디페닐실릴(시클로펜타디에닐)(플로레닐)지르코늄 디클로라이드, (시클로펜틸시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (1-메텔-3-시클로펜틸시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (1-에텔-3-시클로펜틸시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (1-부틸-3-시클로펜틸시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (시클로펜틸시클로펜타디에닐)(시클로메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-메틸-3-시클로펜틸시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-에틸-3-시클로펜틸시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-부틸-3-시클로펜틸시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (시클로헥실시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (1-메틸-3-시클로헥실시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-에틸-3-시클로헥실시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-부틸-3-시클로헥실시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (시클로헥실메틸레닐시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (시클로헵틸시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드, (1-메틸-3-시클로헵틸시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-에틸-3-시클로헵틸시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (1-부틸-3-시클로헵틸시클로펜타디에닐)(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, (시클로헥실에틸레닐시클로펜타디에닐)(시클로펜타디에닐)지르코늄 디클로라이드 등이 예시되며, 또한 중심금속이 티타늄과 하프늄 전이금속을 포함하는 메탈로센 화합물 및 비메탈로센 화합물도 사용이 가능하다.
본 발명에 따른 메탈로센 담지촉매 조성물의 경우 담지되는 메탈로센 또는 비메탈로센 유기금속촉매(화학식 1의 전이금속 화합물)는 이온성 화합물로 표면 처리된 담체 내에 담지된 메탈로센 담지촉매 기준(담체, 이온성액체, 유기금속촉매, 조촉매 등을 모두 포함한 최종 담지촉매를 기준)으로 메탈로센 또는 비메탈로센 유기금속촉매의 경우 0.01에서 10 중량%가 적당하며, 0.1에서 5 중량%가 바람직하다.
본 발명에 따른 메탈로센 담지촉매 조성물은 알킬알루미녹산 조촉매, 유기알루미늄 조촉매 또는 붕소화합물 조촉매, 또는 이들의 혼합물을 더 포함할 수 있다.
본 발명에서 사용되는 알루미녹산 화합물로는 일반적으로 잘 알려져 있는 바와 같이 하기 화학식 3으로 표시되는 알루미녹산이 주로 사용된다.
[화학식 3]
(-Al(R4)-O-)m
상기 식에서, R4는 (C1-C20)알킬기로서, 바람직하게는 메틸기 또는 이소부틸기이고, m은 5 이상의 정수이다.
상기 알루미녹산 화합물로 사용될 수 있는 구체적인 예로는 메틸알루미녹산, 에틸알루미녹산, 프로필알루미녹산, 부틸 알루미녹산, 이소부틸 알루미녹산 등이 있다.
또한 본 발명에서 사용되는 또 다른 알킬화합물 조촉매로는 화학식 4로 표시되는 유기알킬 화합물이 포함된다.
[화학식 4]
(R5)rAl(E)3-r
상기 식에서 , R5는 (C1-C8)알킬기이고, E는 수소원자 또는 할로겐원자이며, r은 1 내지 3의 정수이다.
상기 알킬알루미늄 화합물로 사용될 수 있는 예로는 트리메틸알루미늄, 트리에틸 알루미늄, 트리프로필알루미늄, 트리이소프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄, 트리이소레닐알루미늄등을 포함하는 트리알킬알루미늄, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄클로라이드, 디이소부틸알루미늄클로라이드, 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄클로라이드, 이소부틸알루미늄클로라이드 등을 포함하는 알킬알루미늄디클로라이드 등이 있으며, 바람직하게는 트리알킬알루미늄클로라이드, 트리이소부틸알루미늄클로라이드이다.
또한 본 발명에서 조촉매로 사용할 수 있는 붕소화합물은 하기 화학식 5 내지 화학식 7로 표시되는 화합물로부터에서 선택될 수 있다.
[화학식 5]
B(R6)3
[화학식 6]
[R7]+[B(R6)4]-
[화학식 7]
[(R8)qZH]+[B(R6)4]-
상기 화학식 5 내지 화학식 7에서, B는 붕소원자이며; R6은 페닐기 또는 불소원자 또는 불소원자에 의해 치환되거나 치환되지 않은 (C1-C4)알킬기 또는 (C1-C4)알콕시기 중에서 선택된 3 내지 5 치환기를 가진 페닐기이고; R7은 고리형 (C5-C7)방향족 양이온 또는 알킬 치환 양이온, 예를 들면 트리페닐메틸 양이온, Z는 질소 또는 인원자이며; R8은 (C1-C4)알킬라디칼 또는 질소원자와 함께 2개의 (C1-C4)알킬기로 치환된 아닐리니움 라디칼이고; q는 2 또는 3의 정수이다.
상기 붕소화합물 조촉매의 바람직한 예로는 트리스(펜타플루오로페닐) 보레인, 트리스(2,3,5,6-테트라플루오로페닐) 보레인, 트리스(2,3,4,5-테트라플루오로페닐) 보레인, 트리스(3,4,5-트리플루오로페닐) 보레인, 트리스(2,3,4-트리플루오로페닐) 보레인, 페닐비스(펜타플루오로페닐) 보레인, 테트라키스(펜타플루오로페닐) 보레이트, 테트라키스(2,3,5,6-테트라플루오로페닐) 보레이트, 테트라키스(2,3,4,5-테트라플루오로페닐) 보레이트, 테트라키스(3,4,5-테트라플루오로페닐) 보레이트, 테트라키스(2,2,4-트리플루오로페닐) 보레이트, 페닐비스(펜타플루오로페닐) 보레이트 또는 테트라키스(3,5-비스트리플루오로메틸페닐) 보레이트이다.
또한 가해지는 메틸알루미녹산 또는 알킬알루미늄 화합물과 같은 알루미늄계 조촉매와 보론계열의 조촉매의 경우 이온성 화합물로 표면 처리된 담체 내에 담지된 메탈로센 담지촉매(최종 담지촉매)를 기준으로 0.01에서 50 중량%가 적당하며, 0.1에서 30 중량%가 바람직하다.
화학식 1의 전이금속 화합물을 메틸알루미녹산과 같이 유기용매에 용해하여 이온성 화합물로 표면 처리된 담체에 담지하는 경우, 최종 담지 촉매 내에 메탈로센, 조촉매 두 성분의 몰비는 전이금속 : 알루미늄의 몰비 기준으로 1:0.01 내지 1:1000이 적당하며, 특히 1:1 내지 1:500이 바람직하다.
붕소 화합물을 조촉매로 사용하는 경우 화학식 1의 전이금속 화합물 대 붕소 화합물 조촉매의 몰비는 전이금속 : 알루미늄의 몰비 기준으로 1: 0.01 내지 1:100이 적당하며, 특히 1:0.1 내지 1:20이 바람직하다. 또한 붕소화합물 조촉매와 알루미늄 화합물의 몰비는 붕소:알루미늄 기준으로 1:0.1 내지 1:100이 적당하며 1:1 내지 1:20이 바람직하다.
본 발명은 상기한 올레핀 중합용 메탈로센 담지촉매 조성물을 이용한 올레핀 중합체의 제조방법을 특징으로 하며, 상기의 올레핀 중합체는 알파올레핀의 단독중합체 또는 공중합체를 포함한다.
본 발명에 따른 제조방법에서 채용가능한 가능한 올레핀계 단량체의 예로는 에틸렌, 알파올레핀, 사이클로 올레핀 등이 있으며, 디엔계 단량체, 트리엔계, 스티렌계 및 고리형 올레핀도 가능하다.
상기 단량체의 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 1-에이코센, 4-메틸-1-펜텐, 3-메틸-1-펜텐 및 3-메틸-1-부텐, 스티렌, 파-메틸스티렌, 알릴벤젠, 디비닐벤젠, 비닐시클로헥산, 비닐시클로헵탄, 시클로펜텐, 시클로헵텐, 노르보르넨, 테트라시클로도데센, 이소프렌, 1,3-부타디엔, 1,4-펜타디엔, 1,4-헥사디엔, 사이클로펜타디엔를 들수 있으며, 이들 단량체를 단독 또는 2종 이상 혼합하여 중합할 수 있다.
이하 본 발명에 따른 메탈로센 담지촉매 조성물의 제조방법을 설명한다.
본 발명에서 전이금속 화합물이 담지되는 이온성 화합물로 처리된 무기 또는 유기 다공성 담지체는 하기의 방법으로부터 제조될 수 있다.
a) 상기 담지체에 이온성 화합물을 용매 없이 이온성 화합물을 담지체에 단독 혼합, 접촉하거나,
b) 지방족 또는 방향족 탄화수소 용매 중에서 상기 담지체와 상기 이온성 화합물을 혼합하여 슬러리를 얻고, 상기 슬러리를 분리, 건조하여 처리담지에 사용되는 실리카 등과 같은 무기물 담체를 담지 목적과 부합하는 표면의 히드록시기 양을 조절하기 위하여 100에서 900oC 사이에서 질소, 아르곤과 같은 불활성가스를 흘리거나 진공을 통해 처리한다. 이 때 잔존하는 표면의 히드록시기 양은 0.001에서 100 mmol-OH/g-silica가 적당하며, 0.1에서 5 mmol-OH/g-silica가 바람직하다. 상기 조건은 이온성 화합물 처리전의 담지체 조건으로, 상기 담지체에 준비된 실리카가 담겨있는 플라스크에 이온성 화합물을 필요량 투입하며, 투입 시 유기 용매와 같이 투입하여도 무방하다. 투입하는 이온성 화합물의 양은 실리카 표면 위의 OH기 양과 유사하거나 그 이상인 것이 바람직하다.
실리카, 이온성 화합물을 이온성 화합물의 녹는점 이상의 온도에서 질소분위기에서 1시간 이상 충분히 혼합하여 이온성 화합물이 실리카 표면 및 표면의 히드록시기와 충분히 접촉하도록 한다. 유기용매를 사용한 경우 표면 처리 후 유기용매를 제거하고 다음 단계로 진행한다. 또 다른 플라스크에 메탈로센 화합물과 조촉매 메틸알루미녹산(MAO)을 톨루엔과 같은 유기용매에 녹이며, 이 때 메탈로센과 조촉매의 알루미늄의 몰비는 전이금속:알루미늄 기준으로 1:0.1에서 1:3000이 적당하며, 1:1에서 1:500이 바람직하다. 메탈로센 용액을 이온성 화합물로 표면 처리된 실리카에 투입하여 질소 분위기하에서 적당한 온도에서 적당 시간 동안 교반하여 메탈로센과 조촉매를 담지시킨다. 이 후 담지되지 않은 메탈로센과 조촉매의 제거를 위하여 톨루엔 등의 유기용매를 이용, 3회 이상 세척하고 진공 또는 질소 가스 등으로 건조과정을 거친 후 최종적으로 이온성 화합물로 표면 처리된 담체에 담지된 메탈로센 촉매를 얻는다.
본 발명의 메탈로센 담지 촉매의 또 다른 제조방법을 설명하면 다음과 같다. 열처리된 실리카를 이온성 화합물을 이용하여 위에서와 같이 표면처리한 후 메탈로센 화합물을 톨루엔과 같은 유기용매에 단독으로 용해하여 표면 처리된 실리카에 투입하고 질소 분위기 하에서 적당한 온도와 시간 동안 교반하여 메탈로센 화합물을 담지시킨다. 이후 담지되지 않은 메탈로센을 제거를 위하여 톨루엔 등의 유기용매를 이용, 3회 이상 세척하고 진공 또는 질소 가스 등으로 건조과정을 거친 후 최종적으로 이온성 화합물로 표면처리된 담체에 담지된 메탈로센 촉매를 얻는다. 이렇게 얻어진 담지된 이온성 화합물로 표면처리된 담체 내에 메탈로센 단독으로 담지된 촉매는 폴리올레핀 등의 고분자를 중합할 때 필요한 조촉매를 중합 용매 등에 투입하여 사용할 수 있다.
본 발명의 메탈로센 담지 촉매의 또 다른 제조방법을 설명하면 다음과 같다.
열처리된 실리카를 이온성 화합물을 이용하여 위에서와 같이 표면처리한 후 MAO 또는 보레이트 계열의 조촉매를 톨루엔과 같은 유기용매에 녹이고 이를 이온성 화합물로 표면 처리된 실리카에 투입하여 질소 분위기 하에서 적당한 온도와 적당한 시간 동안 혼합하여 담지시킨다. 담지되지 않은 MAO 제거를 위하여 톨루엔 등의 유기용매를 이용, 3회 이상 세척하고 진공 또는 질소 가스 등으로 건조과정을 거친 후 최종적으로 이온성 화합물, 조촉매로 표면 처리된 담체를 얻는다. 이렇게 이온성 화합물위에 조촉매를 담지시킨 실리카에 메탈로센 화합물을 톨루엔과 같은 유기용매에 녹이고, 이를 표면 처리된 실리카에 투입하여 질소 분위기 하에서 적당한 온도와 적당한 시간 동안 교반하여 메탈로센을 담지시키다. 이 후 담지되지 않은 메탈로센 화합물 제거를 위하여 톨루엔 등의 유기용매를 이용, 3회 이상 세척하고 진공 또는 질소 가스 등으로 건조과정을 거친 후 최종적으로 이온성 화합물 표면 처리된 담체에 담지된 메탈로센 촉매를 얻는다.
본 발명의 메탈로센 담지 촉매의 또 다른 제조방법을 설명하면 다음과 같다.
열처리된 실리카를 이온성 화합물을 이용하여 위에서와 같이 표면처리한 후 또 다른 플라스크에 메탈로센 화합물과 조촉매 붕소화합물의 조촉매, 알루미늄 알킬계의 조촉매를 톨루엔과 같은 유기용매에 녹이며, 이 때 메탈로센과 조촉매의 보론의 몰비는 1:0.1에서 1:100이 적당하며 1:0.5에서 1:30이 바람직하다. 또한 메탈로센과 알루미늄 알킬 화합물의 몰비는 1:0.1에서 1:100이 적당하다.
메탈로센화합물, 보레이트계 조촉매 용액을 이온성 화합물로 표면 처리된 실리카에 투입하여 질소 분위기하에서 적당한 온도에서 적당한 시간 동안 교반하여 혼합하여 메탈로센화합물과 조촉매를 담지시킨다. 이 후 담지되지 않은 메탈로센화합물과 조촉매의 제거를 위하여 톨루엔 등의 유기용매를 이용, 3회 이상 세척하고 진공 또는 질소 가스 등으로 건조과정을 거친 후 최종적으로 이온성 화합물 표면처리된 담체에 담지된 메탈로센 촉매를 얻는다.
상기의 방법에 의해서 만들어진 담지촉매 내 전이금속 함량은 0.05~1.5중량 %로 분석되었다.
이렇게 얻어진 이온성 화합물에 담지된 메탈로센 담지촉매는 올레핀 단량체 1종 또는 이들 단량체들을 2종 이상 이용하여 다중 중합도 가능하며, 올레핀 단량체를 헥산 등의 유기용매의 슬러리상 또는 기상에서 중합반응을 실시한다. 본 발명따른 촉매는 수분이 없는 조건에서 반응 용매에 분산시켜 사용하며 중합 반응 용매로는 일반적으로 지방족 탄화수소 또는 그 혼합물이 사용되며 그 예로는 프로판, 이소부탄, 이소펜탄, 헥산, 헵탄, 옥탄 등이다.
본 발명의 메탈로센 담지촉매는 기상, 슬러리, 액상중합공정 뿐만 아니라 회분식, 연속식 중합공정 모두에도 적용 가능하지만 슬러리, 기상 반응에 가장 적합하다.
본 발명의 본 발명에 따른 담지촉매를 이용한 폴리올레핀 중합방법의 일례로서 회분식슬러리 중합 공정을 설명하면 다음과 같다.
먼저 고온에서 고압반응기를 진공으로 수분 및 공기를 제거한 후 용매를 반응기에 투입하고 중합온도까지 온도를 올린 후 스케빈저(scavenger)로서 알킬알루미늄이나 MAO을 투입하고 본 발명에 따른 메탈로센 담지촉매를 투입한다. 그 후 에틸렌 등의 올레핀을 투입하고 필요 시 수소를 올레핀 투입과 같이 주입한다. 필요한 중합시간에 도달하면 올레핀 투입을 중단하고 미반응 올레핀과 용매를 제거하고 반응기를 열어 고체상태의 고분자를 얻는다.
사용된 중합용매는 분자체 5A와 활성알루미나가 충진된 관을 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독을 물질을 충분히 제거시킨 후 사용하며, 중합온도는 -50에서 200oC의 범위에서 가능하며 50에서 100 oC이 적당하다. 중합압력은 1에서 50기압이 가능하며 5에서 30기압이 바람직하다.
본 발명에 따른 이온성 화합물 표면 처리된 담체에 담지된 메탈로센 담지촉매는 올레핀 중합반응에 있어서, 기존의 일반적인 담지방법에 비하여 촉매활성이 매우 우수하였으며 제조된 중합체의 벌크밀도 역시 양호한 결과를 얻었다. 따라서 상업의 슬러리나 기상공정에서 메탈로센 폴리올레핀을 생산하는데 매우 경제적이고 유용한 장점이 있다.
이하 본 발명을 비교 예와 실시 예를 통해서 설명하며, 하기의 실시예에 의하여 본 발명이 한정되는 것은 아니다.
본 발명에 따른 메탈로센 담지촉매 및 고분자 중합체 분석은 아래와 같은 방법으로 수행하였다.
1) 담지촉매중의 금속 함량
ICP(Inductively Coupled Plasma Spectroscopy)분석법에 의하여 금속 함량을 측정하였으며, IPC 분석기기(Perkin Elmer, Optima 200DV)를 사용하여 하기와 같은 분석법으로 측정하였다.
-분석법
글러브박스 안에서 담지촉매 60mg을 마그네틱바가 담긴 바이알에 담아 나온다.
담지촉매가 들어있는 바이알에 질산 12ml를 넣고 1시간 동안 충분히 교반 시킨다.
1시간 후 질산 혼합 용액을 거름종이에 걸러 1ml를 새로운 바이알에 담는다.
새로운 바이알에 증류수를 9ml 넣어 10배 희석된 용액을 만든 후 희석된 용액으로 ICP를 분석한다.
2) 용융지수
ASTM D 2839에 의거하여 측정하였다.
3) 용융점 분석
Dupont DSC2910을 이용하여 질수분위기 하에서 20oC/min.속도로 2nd 가열조건에서 측정하였다.
4) 분자량 및 분자량분포
TOHO사 Column TSK Guard Column HHR(S)+TSK-Gel GMHHR H(S)가 장착된 PL GPC210(Polymer Laboratories社 제품)을 이용하여 160oC에서 1ml/min.의 속도로 측정하였다. 용매는 1,2,3-트리클로로벤젠을 사용하였으며, 분자량은 표준시료 PS1_A,B(Mw=580~7,500,000)으로 보정하였다.
[실시예 1]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실리카 XPO-2412 (미국, 그레이스사, 표면적 460 m2/g, 평균기공직경 12.8 nm) 1g을 스톱콕이 달려있는 둥근바닥 플라스크에 투입하고 이온성 화합물로서 1-butyl-3-methylimidazolium tetrachloro aluminate 308 mg (1.0 mmol) 투입하여, 70 oC에서 3시간 동안 마그네틱바를 이용하여 충분히 교반하여 실리카 표면을 이온성 화합물로 표면 처리하고, 톨루엔 30 ml을 투입하였다. 또 다른 스톱콕이 달려있는 둥근바닥 플라스크에 (n-BuCp)2ZrCl2 0.35 mmol과 톨루엔에 희석된 MAO(알루미늄 함량 4.6 중량%, Albermale사)용액 8 mmol-Al 을 투입하고 상온에서 30 분 동안 교반하였다. 메탈로센, 조촉매 용액을 위의 이온성 용액 표면 처리된 실리카로 옮기어 70 oC에서 3시간 동안 교반하여 메탈로센과 MAO을 담지하였다. 교반을 멈추고 실리카를 가라앉힌 후 상층 용액을 빼내고 톨루엔 50 ml을 투입, 10분 동안 교반하였다. 동일한 과정을 3회 반복하며 세척하였다. 그 후 진공으로 1시간 동안 플라스크 내 잔존하는 톨루엔을 제거하고 최종 메탈로센이 담지된 촉매 1.58g을 얻었다.
2. 에틸렌 슬러리 중합
고온 진공에서 세척한 2 liter 고압반응기에 헥산 1.5 liter를 투입한 후 온도를 70 oC로 상승시킨 다음에 scavenger 및 조촉매 역할을 위하여 MAO을 2 mmol-Al 투입하고 상기 단계에서 제조된 메탈로센 담지촉매 8 mg을 헥산 슬러리로 반응기에 투입하였다. 반응기내 총 압력이 7기압이 되도록 에틸렌 압력을 조절하여 에틸렌 가스를 투입하여 포화시킨 후 교반기를 회전시켜 에틸렌 중합 반응을 시작하였다. 총 중합반응 시간은 60 분이고 온도는 약 70 oC를 유지하였다. 반응 종료 후 제조된 고분자를 에탄올로 세척하고 진공에서 건조시켜 약 25 g의 고분자 중합체를 얻었다.
[실시예 2]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실시예 1-1의 메탈로센 담지촉매 제조 과정과 비교하여 이온성 화합물로서 1-butyl-3-methylimidazolium tetrachloroaluminate을 150 mg사용하여 실리카 표면을 처리하고 메탈로센화합물[(n-BuCp)2ZrCl2]을 담지한 것 이외에는 동일하게 제조하였으며, 수득된 담지촉매는 1.42g이었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법과 동일하게 중합반응을 실시하여, 약 43 g의 고분자 중합체를 얻었다.
[실시예 3]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실시예 1-1의 메탈로센 담지촉매 제조 과정과 비교하여 이온성 화합물, 1-butyl-3-methypyridinium hexafluorophosphate로서 150 mg을 사용하여 실리카 표면을 처리하고 메탈로센화합물[(n-BuCp)2ZrCl2]을 담지한 것 이외에는 동일하게 진행하였으며, 수득된 담지촉매는 1.44g이었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 42 g의 고분자 중합체를 얻었다.
[실시예 4]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실시예 1-1의 메탈로센 담지촉매 제조 과정과 비교하여 이온성 화합물로 1-butyl-3-methypyridinium tetrafluoroborate을 240 mg을 이용하여 실리카 표면을 처리하고 메탈로센화합물[(n-BuCp)2ZrCl2]을 담지한 것 이외에는 동일하게 진행하였으며, 수득된 담지촉매는 1.50g이었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 40 g의 고분자 중합체를 얻었다.
[실시예 5]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실리카 XPO-2412 (미국, 그레이스사) 1g을 스톱콕이 달려있는 둥근바닥 플라스크에 이온성 화합물로 1-butyl-3-methypyridinium chloride를 95 mg을 투입하고, 170 oC에서 3시간 동안 마그네틱바를 이용하여 충분히 교반하여 실리카 표면을 이온성 화합물로 표면 처리하고 온도를 70 oC로 낮추어 톨루엔 30 mL을 투입하였다. 또 다른 스톱콕이 달려있는 둥근바닥 플라스크에 (n-BuCp)2ZrCl2 0.35 mmol과 톨루엔에 희석된 MAO(알루미늄 함량 4.6 중량%, Albermale사)용액 8 mmol-Al 을 투입하고 상온에서 30 분 동안 교반하였다. 준비된 메탈로센, 조촉매 용액을 이온성 용액 표면 처리된 실리카로 옮기어 70 oC에서 3시간 동안 교반하여 메탈로센과 MAO을 담지하였다. 교반을 멈추고 실리카를 가라앉힌 후 상층 용액을 빼내고 톨루엔 50 mL을 투입, 10분 동안 교반하였다. 동일한 과정을 3회 반복하며 세척하였다. 그 후 진공으로 1시간 동안 플라스크 내 잔존하는 톨루엔을 제거하고 최종 메탈로센이 담지된 촉매 1.28g을 얻었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 106 g의 고분자 중합체를 얻었다.
[실시예 6]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실시예 5-1의 메탈로센 담지촉매 제조 과정과 비교하여 이온성 화합물로 1-butyl -3-methylpyridinium chloride을 290 mg 이용한 것 이외에는 동일하게 진행하였고, 수득된 담지촉매는 1.25g 얻었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 75 g 의 고분자 중합체를 얻었다.
[실시예 7]
1. 이온성 화합물로 표면처리된 실리카에 메탈로센을 담지한 촉매 제조
실리카 XPO-2412 (미국, 그레이스사) 1g을 스톱콕이 달려있는 둥근바닥 플라스크에 이온성 화합물로 1-butyl-3-methypyridinium chloride 290 mg을 투입한후, 170 oC에서 3시간 동안 마그네틱바를 이용하여 충분히 교반하며 실리카 표면을 이온성 화합물을 이용하여 표면 처리하고 온도를 70 oC로 낮추어 톨루엔 15 ml을 혼합하였다. 또 다른 스톱콕이 달려있는 둥근바닥 플라스크에 (n-BuCp)2ZrCl2 0.35 mmol, tri phenylcarboniumpentafluorophenylborate 0.42 mmol, triethylaluminium 0.7 mmol, 톨루엔 20 ml을 투입하고 상온에서 30 분 동안 교반하였다. 이렇게 준비된 메탈로센화합물, 조촉매 용액을 위의 이온성 용액 표면 처리된 실리카로 옮기어 70 oC에서 2시간 동안 교반하여 메탈로센화합물과 보레이트 화합물을 담지하였다. 교반을 멈추고 실리카를 가라앉힌 후 상층 용액을 빼내고 톨루엔 50 ml을 투입, 10분 동안 교반하였다. 동일한 과정을 3회 반복하며 세척하였다. 그 후 진공으로 1시간 동안 플라스크 내 잔존하는 톨루엔을 제거하고 최종 메탈로센화합물이 담지된 촉매 1.54g을 얻었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 30g의 고분자 중합체를 얻었다.
[비교예 1]
1. 메탈로센이 담지된 촉매 제조
실리카 XPO-2412 1g을 스톱콕이 달려있는 둥근바닥 플라스크에 투입하고 톨루엔을 30 mL 혼합하였다. 또 다른 스톱콕이 달려있는 둥근바닥 플라스크에 톨루엔용액 내 MAO 8 mmol-Al와 (n-BuCp)2ZrCl2 0.35mmol을 투입하여 다시 30분 동안 교반하였다. 위에서 혼합된 용액을 준비된 실리카가 담겨져 있는 플라스크로 옮겨 50 oC에서 1시간 동안 교반하였다. 교반을 멈춘 후 실리카가 가라 앉은 후 위의 용액을 빼내고 톨루엔 50 mL을 투입, 10분 동안 교반하였다. 동일한 과정을 3회 반복하였다. 그 후 진공으로 1시간 동안 플라스크 내 존재하는 톨루엔을 제거하여 최종 메탈로센화합물이 담지된 촉매 1.10g을 얻었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 41 g의 고분자 중합체를 얻었다.
[비교예 2]
1. 메탈로센이 담지된 촉매 제조
실리카 XPO-2412 1g을 스톱콕이 달려있는 둥근바닥 플라스크에 투입하였다. 또 다른 스톱콕이 달려있는 둥근바닥 플라스크에 톨루엔용액 내 MAO 3 mmol-Al와 (n-BuCp)2ZrCl2 0.35 mmol을 투입하여 다시 30분 동안 교반하였다. 위에서 혼합된 용액을 준비된 실리카가 담겨져 있는 플라스크로 옮겨 50 oC에서 1시간 동안 교반하였다. 교반을 멈춘 후 진공으로 1시간 동안 플라스크 내 존재하는 톨루엔을 제거하여 최종 메탈로센화합물이 담지된 촉매 0.98g을 얻었다.
2. 에틸렌 슬러리 중합
상기 단계에서 제조된 담지촉매를 이용하여 [실시예 1]의 2에서의 에틸렌 슬러리 중합방법에 따라 중합반응을 실시하여, 약 11 g의 고분자를 얻었다.
[표 3] 촉매 합성 표
Figure PCTKR2009001546-appb-I000003
[표 4] 중합 조건 및 결과
Figure PCTKR2009001546-appb-I000004

Claims (16)

  1. 하기 화학식 1로 표시되는 4족 전이금속 화합물을 이온성 화합물로 처리한 무기 또는 유기 다공성 담체에 담지시켜 제조된 올레핀 중합용 메탈로센 담지촉매 조성물.
    [화학식 1]
    Cp'L1ML2 n
    상기화학식 1에서
    M은 주기율표 상의 4족 전이금속이고;
    Cp'는 중심금속과 η5-결합 할 수 있는 시클로펜타디엔 또는 시클로펜타디에닐 고리를 포함하는 융합고리이며;
    L1은 시클로펜타디엔, 시클로펜타디에닐 고리를 포함하는 융합고리 또는 (C1-C20)탄화수소 치환기와 O, N 또는 P 원자를 포함한 음이온성 리간드이고;
    L2는 할로겐 원자, (C1-C20)알킬기, (C6-C30)아릴(C1-C20)알킬기, (C3-C20)시클로알킬기, (C1-C20)알콕시기, (C6-C30)아릴옥시기, (C6-C30)아릴기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 아미노기, (C1-C20)알킬 치환 또는 (C6-C20)아릴 치환 실록시기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 포스핀기이고;
    n은 1 또는 2의 정수이며;
    상기 Cp' 및 L1은 서로 연결되어 있지 않거나, 또는 규소 또는 (C1-C4)알케닐렌 결합으로 연결될 수 있으며, 상기 Cp' 및 L1의 시클로펜타디에닐 고리 또는 시클로펜타디에닐 융합고리는 (C1-C20)알킬기, (C6-C30)아릴기, (C2-C20)알케닐기 또는 (C6-C30)아릴(C1-C20)알킬기로 더 치환될 수 있다.
  2. 제 1 항에 있어서,
    상기 이온성 화합물은 -100 내지 300 oC의 온도범위에서 액체 또는 고체상으로 극성인 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  3. 제 1 항에 있어서,
    상기 이온성 화합물은 하기 화학식 2의 화합물 및 이들의 혼합물로부터 선택되는 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
    [화학식 2]
    X+Y-
    상기화학식 2에서 X+은 이미다조리움이온, 피리디움이온, 암모늄이온, 포스포늄이온, 설퍼늄이온, 피라졸륨이온 또는 피롤리듐이온이고; Y-은 BF4 -, PF6 -, AlCl4 -, halogen-, CH3CO2 -, CF3CO2 -, CH3SO4 -, CF3SO3 -, (CF3SO2)N-, NO3 -, SbF6 -, Sb2F11-, MePhSO3 -, (CF3SO2)2N-, (CF3SO2)3C- 또는 (OR)2PO2 -이다.
  4. 제 3 항에 있어서,
    상기 화학식 2의 이온성 화합물은 1-부틸-3-메틸이미다조리움클로라이드, 1-부틸-3-메틸이미다조리움 디부틸포스페이트, 1-부틸-3-메틸이미다조리움 디시안아미드, 1-부틸-3-메틸이미다조리움 헥사프루오로안티모네이트, 1-부틸-3-메틸이미다조리움 헥사프루오로포스페이트, 1-부틸-3-메틸이미다조리움 하이드로겐카보네이트, 1-부틸-3-메틸이미다조리움 하이드로겐설페이트, 1-부틸-3-메틸이미다조리움 메틸설페이트, 1-부틸-3-메틸이미다조리움 테트라클로로알루미네이트, 1-부틸-3-메틸이미다조리움 테트라클로로보레이트, 1-부틸-3-메틸이미다조리움 티오시아네이트, 1-도데실-3-메틸이미다조리움 아이오다이드, 1-에틸-2,3-디메틸이미다조리움 클로라이드, 1-에틸-3-메틸이미다조리움 브로마이드, 1-에틸-3-메틸이미다조리움 클로라이드, 1-에틸-3-메틸이미다조리움 헥사플루오로포스페이트, 1-에틸-3-메틸이미다조리움 테트라플루오로보레이트, 1-헥실-3-메틸이미다조리움 테트라플루오로보레이트, 1-부틸-4-메틸피리디움 클로라이드, 1-부틸-4-메틸피리디움 테트라플루오로보레이트, 1-부틸-4-메틸피리디움 헥사프루오로포스페이트, 벤질디메틸테트라데실암모니움 클로라이드, 테트라헵틸암모니움 클로라이드, 테트라키스(데실)암모니움 브로마이드, 트리부틸메틸암모니움 클로라이드, 테트라헥실암모니움 아이오다이드, 테트라부틸포스포니움 클로라이드, 테트라부틸포스포니움 테트라프루오로보레이트, 트리이소부틸메틸포스포니움 토실레이트 1-부틸-1-메틸피롤리디니움, 1-부틸-1-메틸피롤리디움 브로마이드,1-부틸-1-메틸피롤리디움 테트라플루오로보레이트, 1-아릴-3-메틸이미다조리움 브로마이드, 1-아릴-3-메틸이미다조리움 클로라이드 , 1-벤질-3-메틸이미다조리움 헥사플루오로포스페이트, 1-벤질-3-메틸이미다조리움 비스(트리플루오로메틸설포닐)이미드, 1-부틸-3-메틸이미다조리움 디부틸 포스페이트, 1-(3-시아노프로필)-3-메틸이미다조리움 비스(트리풀루오로메틸설포닐)아마이드, 1,3-디메틸이미다조리움 디메틸 포스페이트 및 1-에틸-2,3-디메틸이미다조리움 에틸 설페이트, 또는 이들의 혼합물로부터 선택되는 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  5. 제 1 항 내지 제 3항의 어느 한 항에 있어서,
    상기 담지촉매 조성물은 알킬알루미녹산 조촉매, 유기알루미늄 조촉매 또는 붕소화합물 조촉매, 또는 이들의 혼합물을 더 포함하는 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  6. 제 5 항에 있어서,
    상기 알킬 알루미녹산 조촉매는 메틸알루미녹산, 에틸알루미녹산, 프로필알루미녹산, 부틸 알루미녹산 및 이소부틸 알루미녹산 화합물로부터 선택되며;
    상기 유기알킬 알루미늄 조촉매는 트리메틸알루미늄, 트리에틸 알루미늄 및 디이소부틸알루미늄클로라이드 화합물로부터 선택되고;
    상기 붕소화합물 조촉매는 트리스(펜타플루오로페닐)보레인, N,N-디메틸아닐리움테트라키스펜타플루오로페닐보레이트, 및 트리페닐메틸리니움테트라펜타키스플루오로보레이트 군으로부터 선택되는 것을 특징으로하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  7. 제 1 항 내지 제 3항의 어느 한 항에 있어서,
    상기 Cp'는 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 펜타메틸시클로펜타디에닐, 부틸시클로펜타디에닐, sec-부틸시클로펜타디에닐, tert-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인데닐, 메틸인데닐, 에틸인데닐, 이소프로필인데닐, 플로레닐, 메틸플로레닐, 디메틸플로레닐, 및 에틸플로레닐, 이소프로필플로레닐로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  8. 제 1 항 내지 제 3 항의 어느 한 항에 있어서,
    상기 이온성 화합물으로 처리된 무기 또는 유기 다공성 담지체는
    a) 상기 담지체에 이온성 화합물을 용매 없이 이온성 화합물을 담지체에 단독 접촉하거나,
    b) 지방족 또는 방향족 탄화수소 용매 중에서 상기 담지체와 상기 이온성 화합물을 혼합하여 슬러리를 얻고, 상기 슬러리를 분리, 건조하여 처리된 것을 특징을 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  9. 제 1 항, 제 2 항 또는 제 4 항의 어느 한 항에 있어서,
    상기 이온성 화합물은 처리된 담지체를 기준으로 0.001 내지 50중량%인 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  10. 제 5 항에 있어서,
    상기 담지되는 화학식 1의 전이금속 화합물 대 알루미녹산 조촉매의 비율이 전이금속 : 알루미늄의 몰비 기준으로 1:0.01 내지 1:1000인 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  11. 제 5 항에 있어서,
    상기 담지되는 화학식 1의 전이금속 화합물 대 붕소 화합물 조촉매의 비율이 전이금속 : 붕소의 몰비 기준으로 1:0.01 내지 1:100인 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  12. 제 1 항 내지 제 3항의 어느 한 항에 있어서,
    상기 담지체는 실리카, 알루미나, 마그네슘 클로라이드, 산화마그네슘, 미네랄클레이, 카오린, 활석, 미카, 몬트릴로나이트, 폴리실록산계 고분자 화합물 및 폴리스티렌, 또는 이들의 혼합물로부터 선택되는 것을 특징으로 하는 올레핀 중합용 메탈로센 담지촉매 조성물.
  13. 제 1 항 내지 제 3 항의 어느 한 항에 따른 올레핀 중합용 메탈로센 담지촉매 조성물을 이용한 올레핀 중합체의 제조방법.
  14. 제 13 항에 있어서,
    상기 올레핀 중합체는 알파올레핀의 단독중합체 또는 공중합체인 것을 특징으로 하는 올레핀 중합체의 제조방법.
  15. 제 14 항에 있어서,
    상기 알파올레핀은 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 4-메틸-1-펜텐, 3-메틸-1-펜텐 및 3-메틸-1-부텐, 또는 이들의 혼합물로부터 선택되는 것을 특징으로 하는 올레핀 중합체의 제조방법.
  16. 제 1 항 내지 제 3 항의 어느 한 항에 따른 올레핀 중합용 메탈로센 담지촉매 조성물을 이용하여 제조된 올레핀 중합체.
PCT/KR2009/001546 2008-03-28 2009-03-26 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법 WO2009120026A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09724840A EP2258731A4 (en) 2008-03-28 2009-03-26 SUPPORTED METALLOCENE CATALYST COMPOSITION AND PROCESS FOR PREPARING POLYOLEFIN USING THE SAME
US12/933,796 US8399375B2 (en) 2008-03-28 2009-03-26 Supported metallocene catalyst composition and a process for the preparation of polyolefin using the same
JP2011501719A JP5668253B2 (ja) 2008-03-28 2009-03-26 メタロセン担持触媒組成物及びこれを利用したポリオレフィンの製造方法
CN200980110950.7A CN101981064B (zh) 2008-03-28 2009-03-26 茂金属负载催化剂组合物以及使用其制备聚烯烃的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0028740 2008-03-28
KR1020080028740A KR101271055B1 (ko) 2008-03-28 2008-03-28 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의제조방법

Publications (2)

Publication Number Publication Date
WO2009120026A2 true WO2009120026A2 (ko) 2009-10-01
WO2009120026A3 WO2009120026A3 (ko) 2009-12-23

Family

ID=41114462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001546 WO2009120026A2 (ko) 2008-03-28 2009-03-26 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법

Country Status (6)

Country Link
US (1) US8399375B2 (ko)
EP (1) EP2258731A4 (ko)
JP (1) JP5668253B2 (ko)
KR (1) KR101271055B1 (ko)
CN (1) CN101981064B (ko)
WO (1) WO2009120026A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453120A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
CN102453136A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 一种烯烃聚合方法
CN117229434A (zh) * 2023-11-14 2023-12-15 传化智联股份有限公司 一种阳离子型稀土催化剂及其制备方法和应用

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885100B2 (ja) * 2011-10-12 2016-03-15 ナガセケムテックス株式会社 開環重合触媒
KR101366630B1 (ko) * 2012-02-22 2014-03-17 (주)디엔에프 산화아연계 박막 증착용 전구체, 그 제조방법 및 이를 이용한 산화아연계 박막 증착방법
KR101827523B1 (ko) * 2012-03-06 2018-03-22 에스케이이노베이션 주식회사 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
WO2014168373A1 (en) * 2013-04-08 2014-10-16 Hanwha Chemical Corporation Metallocene catalyst system comprising antistatic agent and method for preparing polyolefin using the same
US9073029B2 (en) * 2013-09-25 2015-07-07 Chevron Phillips Chemical Company Lp System and method for deterring fouling in a polymerization reactor
KR101721194B1 (ko) * 2013-11-28 2017-03-29 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법
WO2015080523A1 (ko) * 2013-11-28 2015-06-04 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법
EP2937380B1 (de) * 2014-04-25 2019-07-10 ContiTech AG Polymermischung
CN105330766B (zh) * 2014-06-09 2018-04-13 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
CN105524193B (zh) * 2014-09-29 2017-12-19 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
KR101761394B1 (ko) 2014-09-30 2017-07-25 주식회사 엘지화학 섬유 제조용 폴리올레핀 중합체의 제조방법
US9738779B2 (en) 2015-06-05 2017-08-22 Exxonmobil Chemical Patents Inc. Heterophasic copolymers and sequential polymerization
US10329360B2 (en) 2015-06-05 2019-06-25 Exxonmobil Chemical Patents Inc. Catalyst system comprising supported alumoxane and unsupported alumoxane particles
US10280235B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst system containing high surface area supports and sequential polymerization to produce heterophasic polymers
US9809664B2 (en) 2015-06-05 2017-11-07 Exxonmobil Chemical Patents Inc. Bimodal propylene polymers and sequential polymerization
US9920176B2 (en) 2015-06-05 2018-03-20 Exxonmobil Chemical Patents Inc. Single site catalyst supportation
US9725537B2 (en) 2015-06-05 2017-08-08 Exxonmobil Chemical Patents Inc. High activity catalyst supportation
US10294316B2 (en) 2015-06-05 2019-05-21 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
US10280233B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst systems and methods of making and using the same
US10077325B2 (en) 2015-06-05 2018-09-18 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
WO2016196331A1 (en) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Supported metallocene catalyst systems for polymerization
WO2016197014A1 (en) * 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Catalyst system containing high surface area supports and sequential polymerization to produce heterophasic polymers
CN107922537B (zh) 2015-06-05 2021-07-27 埃克森美孚化学专利公司 气相或淤浆相中多相聚合物的制备
US9725569B2 (en) 2015-06-05 2017-08-08 Exxonmobil Chemical Patents Inc. Porous propylene polymers
US10759886B2 (en) 2015-06-05 2020-09-01 Exxonmobil Chemical Patents Inc. Single reactor production of polymers in gas or slurry phase
US11059918B2 (en) 2016-05-27 2021-07-13 Exxonmobil Chemical Patents Inc. Metallocene catalyst compositions and polymerization process therewith
KR102204961B1 (ko) * 2016-09-13 2021-01-18 주식회사 엘지화학 폴리프로필렌의 제조 방법
KR102442033B1 (ko) * 2017-12-26 2022-09-07 주식회사 엘지화학 폴리프로필렌 수지의 제조 방법 및 부직포
WO2019156482A1 (ko) * 2018-02-08 2019-08-15 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR102342780B1 (ko) * 2018-02-08 2021-12-23 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
CN109160966A (zh) * 2018-07-06 2019-01-08 杭州师范大学 一种硅藻土负载茂金属催化剂及其制备方法与应用
JP7205983B2 (ja) 2019-05-17 2023-01-17 エルジー・ケム・リミテッド 無水炭化水素溶媒を用いた助触媒化合物の製造方法
CN112552429B (zh) * 2019-09-25 2022-08-05 中国石油天然气股份有限公司 一种负载型茂金属催化剂及其制备方法与应用
CN115073629B (zh) * 2021-03-15 2023-09-26 中国石油天然气股份有限公司 负载型茂金属催化剂体系及其制备方法与应用
CN113173999B (zh) * 2021-04-23 2023-03-31 安徽工业大学 一种提高茂金属催化烯烃聚合活性的方法
CN113292663A (zh) * 2021-06-03 2021-08-24 杭州培生医疗科技有限公司 一种负载型茂金属催化剂以及耐磨损聚乙烯的制备方法
CN113278098B (zh) * 2021-06-08 2023-03-14 钦州东辰材料科技有限公司 一种复合载体负载的聚烯烃催化剂及其制备方法和应用
CN117050218B (zh) * 2023-10-11 2024-02-13 传化智联股份有限公司 含有Nd-MIL-103的稀土催化剂以及基于该催化剂的制备顺式聚丁二烯的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808561A (en) 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4904631A (en) 1988-11-08 1990-02-27 Exxon Chemical Patents, Inc. Supported vanadium catalyst for polymerization of olefins and a process of preparing and using the same
US4912075A (en) 1987-12-17 1990-03-27 Exxon Chemical Patents Inc. Method for preparing a supported metallocene-alumoxane catalyst for gas phase polymerization
US4935397A (en) 1988-09-28 1990-06-19 Exxon Chemical Patents Inc. Supported metallocene-alumoxane catalyst for high pressure polymerization of olefins and a method of preparing and using the same
US4937217A (en) 1987-12-17 1990-06-26 Exxon Chemical Patents Inc. Method for utilizing triethylaluminum to prepare an alumoxane support for an active metallocene catalyst
US5643847A (en) 1994-08-03 1997-07-01 Exxon Chemical Patents Inc. Supported ionic catalyst composition
US5972823A (en) 1994-08-03 1999-10-26 Exxon Chemical Patents Inc Supported ionic catalyst composition
US6087293A (en) 1995-11-27 2000-07-11 The Dow Chemical Company Supported catalyst containing tethered cation forming activator

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681838B2 (ja) * 1996-10-23 2005-08-10 日本ポリオレフィン株式会社 ポリオレフィン製造用触媒成分およびその成分を用いたポリオレフィン製造用触媒
GB9722447D0 (en) * 1997-10-23 1997-12-24 Borealis As Process
RU2251453C2 (ru) * 1998-05-18 2005-05-10 Филлипс Петролеум Компани Каталитическая композиция для полимеризации мономеров
BR9913221B1 (pt) * 1998-08-26 2008-11-18 composiÇço catalisadora suportada de metaloceno.
KR100354290B1 (ko) 1999-06-22 2002-09-28 주식회사 엘지화학 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합
GB9918668D0 (en) * 1999-08-06 1999-10-13 Bp Chem Int Ltd Polymerisation catalysts
KR100645631B1 (ko) * 2000-02-10 2006-11-13 에스케이 주식회사 폴리에틸렌 제조용 메탈로센 촉매, 이의 제조방법 및 이를이용한 중합방법
WO2001081436A1 (en) 2000-04-25 2001-11-01 Equistar Chemicals, L.P. Olefin polymerizations using ionic liquids as solvents
EP1311558A1 (en) * 2000-08-02 2003-05-21 Univation Technologies LLC Method for producing highly productive supported ionic catalyst for gas phase polymerization
JP2007186718A (ja) * 2000-12-19 2007-07-26 Sunallomer Ltd オレフィン重合用触媒、オレフィン重合用触媒成分およびその保存方法ならびにオレフィン重合体の製造方法
CA2338094C (en) * 2001-02-23 2009-09-15 Nova Chemicals Corporation Catalyst for olefin polymerization
KR100536181B1 (ko) 2001-05-25 2005-12-14 주식회사 엘지화학 표면 개질 담체와 작용기를 가진 촉매 전구체를 사용한중합 담지 촉매 및 이를 이용한 올레핀 중합
US6673737B2 (en) * 2001-05-30 2004-01-06 Exxonmobil Research And Engineering Company Ionic liquid compositions
GB0319773D0 (en) * 2003-08-22 2003-09-24 Bp Chem Int Ltd Supported polymerisation catalysts
US7501372B2 (en) * 2003-11-21 2009-03-10 Chevron Phillips Chemical Company Lp Catalyst compositions for producing polyolefins in the absence of cocatalysts
EP1571163A1 (en) * 2004-03-02 2005-09-07 Total Petrochemicals Research Feluy Ionic liquids as solvents in metallocene catalysis
EP1611951A1 (en) * 2004-06-17 2006-01-04 Total Petrochemicals Research Feluy Use of ionic liquids for simultaneous deposition of several single site catalyst components on a support to generate hybrid polymers
US7169864B2 (en) * 2004-12-01 2007-01-30 Novolen Technology Holdings, C.V. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
US20070254800A1 (en) * 2006-04-28 2007-11-01 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
US8110518B2 (en) * 2006-04-28 2012-02-07 Fina Technology, Inc. Fluorinated transition metal catalysts and formation thereof
WO2011003047A1 (en) * 2009-07-01 2011-01-06 Conocophillips Company - Ip Services Group Heterogeneous dimerization of alpha-olefins with activated metallocene complexes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808561A (en) 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4912075A (en) 1987-12-17 1990-03-27 Exxon Chemical Patents Inc. Method for preparing a supported metallocene-alumoxane catalyst for gas phase polymerization
US4937217A (en) 1987-12-17 1990-06-26 Exxon Chemical Patents Inc. Method for utilizing triethylaluminum to prepare an alumoxane support for an active metallocene catalyst
US4935397A (en) 1988-09-28 1990-06-19 Exxon Chemical Patents Inc. Supported metallocene-alumoxane catalyst for high pressure polymerization of olefins and a method of preparing and using the same
US4904631A (en) 1988-11-08 1990-02-27 Exxon Chemical Patents, Inc. Supported vanadium catalyst for polymerization of olefins and a process of preparing and using the same
US5643847A (en) 1994-08-03 1997-07-01 Exxon Chemical Patents Inc. Supported ionic catalyst composition
US5972823A (en) 1994-08-03 1999-10-26 Exxon Chemical Patents Inc Supported ionic catalyst composition
US6087293A (en) 1995-11-27 2000-07-11 The Dow Chemical Company Supported catalyst containing tethered cation forming activator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258731A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453120A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 一种负载型茂金属催化剂及其制备方法
CN102453136A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 一种烯烃聚合方法
CN102453136B (zh) * 2010-10-19 2014-01-08 中国石油化工股份有限公司 一种烯烃聚合方法
CN117229434A (zh) * 2023-11-14 2023-12-15 传化智联股份有限公司 一种阳离子型稀土催化剂及其制备方法和应用
CN117229434B (zh) * 2023-11-14 2024-02-13 传化智联股份有限公司 一种阳离子型稀土催化剂及其制备方法和应用

Also Published As

Publication number Publication date
EP2258731A2 (en) 2010-12-08
CN101981064B (zh) 2014-05-28
KR20090103251A (ko) 2009-10-01
EP2258731A4 (en) 2012-05-23
US20110105705A1 (en) 2011-05-05
KR101271055B1 (ko) 2013-06-04
US8399375B2 (en) 2013-03-19
JP5668253B2 (ja) 2015-02-12
JP2011515555A (ja) 2011-05-19
WO2009120026A3 (ko) 2009-12-23
CN101981064A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2009120026A2 (ko) 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
EP2010577B1 (en) Polymerization catalysts for producing polymers with low levels of long chain branching
US6559252B1 (en) Catalysts and processes for the polymerization of olefins
JP7212445B2 (ja) ポリオレフィン生成物の生成
RU2479593C2 (ru) Способ регулирования активности бимодального катализатора в процессе полимеризации
EP1773899B1 (en) Polymerization catalysts for producing polymers with low levels of long chain branching
RU2232766C2 (ru) Связанные мостиками металлоцены, способ полимеризации
EP3239190A2 (en) Polymerization catalysts for producing polymers with low levels of long chain branching
EP3031832B1 (en) Method for preparing polyolefin
KR101827523B1 (ko) 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
CZ93896A3 (en) Catalytic system for preparing polyolefins, catalytic precursor, process for preparing polyolefins and polyolefin composition
EP3606967B1 (en) Dimethyl-silyl-bridged-1-substituted-2-indenyl metallocene complexes for olefin polymerization
WO2017026605A1 (ko) 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
KR101624164B1 (ko) 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
US6831187B2 (en) Multimetallic catalyst compositions for the polymerization of olefins
US6303718B1 (en) Composition based on fluorine-containing metal complexes
KR20200058047A (ko) 올레핀 중합용 촉매의 제조방법
WO2012176946A1 (ko) 공중합성이 우수한 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101889980B1 (ko) 퀴놀린-1(2H)-일기를 갖는 새로운 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2020116842A1 (ko) 올레핀 중합용 촉매의 제조방법
WO2020122500A1 (ko) 올레핀 중합용 촉매의 제조방법
RU2250237C2 (ru) Гомогенная каталитическая система для синтеза сополимеров этилена с пропиленом и высшими альфа-олефинами, а также пропилена с высшими альфа-олефинами, способ получения сополимеров этилена с пропиленом и высшими альфа-олефинами, а также сополимеров пропилена с высшими альфа-олефинами
WO2021112489A1 (ko) 올레핀계 중합체의 제조방법
KR101715259B1 (ko) 신규한 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
WO2019074302A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110950.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724840

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1947/MUMNP/2010

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009724840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009724840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011501719

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12933796

Country of ref document: US