WO2020122500A1 - 올레핀 중합용 촉매의 제조방법 - Google Patents

올레핀 중합용 촉매의 제조방법 Download PDF

Info

Publication number
WO2020122500A1
WO2020122500A1 PCT/KR2019/017052 KR2019017052W WO2020122500A1 WO 2020122500 A1 WO2020122500 A1 WO 2020122500A1 KR 2019017052 W KR2019017052 W KR 2019017052W WO 2020122500 A1 WO2020122500 A1 WO 2020122500A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
aluminum
carbon atoms
group
supported catalyst
Prior art date
Application number
PCT/KR2019/017052
Other languages
English (en)
French (fr)
Inventor
임성재
박혜란
정의갑
정태욱
최승일
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to CN201980081086.6A priority Critical patent/CN113166293B/zh
Priority to EP19896841.4A priority patent/EP3878871B1/en
Priority to US17/312,447 priority patent/US20220049026A1/en
Priority to JP2021533294A priority patent/JP7222094B2/ja
Publication of WO2020122500A1 publication Critical patent/WO2020122500A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/02Anti-static agent incorporated into the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for preparing a catalyst for olefin polymerization. Specifically, the present invention relates to a method of manufacturing a metallocene-supported catalyst capable of improving operational stability during olefin polymerization by treating the metallocene-supported catalyst with an antistatic agent.
  • Metallocene catalysts which are one of the catalysts used to polymerize olefins, include ligands such as cyclopentadienyl, indenyl, and cycloheptadienyl in transition metals or transition metal halogen compounds. As a bound compound, it has a sandwich structure in its basic form.
  • the Ziegler-Natta catalyst another catalyst used to polymerize olefins, is dispersed on an inert solid surface with a metal component as an active point, the properties of the active point are not uniform, whereas the metallocene catalyst has a certain structure. It is known as a single-site catalyst because all active sites have the same polymerization properties because it is a single compound having. The polymer polymerized with the metallocene catalyst exhibits a narrow molecular weight distribution and a uniform comonomer distribution.
  • the reactor wall When polymerizing olefins in a fluidized bed reactor using a metallocene catalyst, the reactor wall exhibits a (+) charge through contact with the polyolefin, and a polyolefin exhibits a (-) charge.
  • the metallocene-supported catalyst has a negative charge when it is introduced into the reactor.
  • the metallocene catalyst having a negative charge moves to the reactor wall due to electrostatic force, and as a result, a hot spot or a polymer sheet is formed near the reactor wall, which severely adversely affects operation.
  • An object of the present invention is to provide a method for producing a metallocene supported catalyst capable of improving operational stability during olefin polymerization.
  • transition metal compound may be represented by Formula 1 below.
  • M is a transition metal of Group 4 of the Periodic Table of Elements
  • Q is any one of carbon, silicon, germanium and tin
  • X is each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms,
  • R 1 to R 12 may each independently be a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms, or two adjacent groups of R 1 to R 12
  • R n and R n +1 (n is 1 to 11) form a single or multi-cyclic compound having 1 to 15 carbon atoms with an alkyl group having 1 to 4 carbon atoms substituted or unsubstituted
  • the remaining Rs may be independently one of hydrogen, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 14 carbon atoms,
  • R 13 and R 14 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • M is zirconium
  • Q is silicon
  • X is chlorine
  • R 1 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms.
  • R n and R n + 1 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 carbon atoms. It may be one of ⁇ 14 aryl group, R 13 and R 14 are each independently a methyl group.
  • the transition metal compound of Formula 1 above is any one of the compounds represented by Formulas 1-1 to 1-16 below.
  • the transition metal compound of Chemical Formula 1 may be a compound represented by Chemical Formula 1-1.
  • the cocatalyst compound may include at least one selected from the group consisting of a compound represented by Chemical Formula 2, a compound represented by Chemical Formula 3, and a compound represented by Chemical Formula 4.
  • n is an integer of 2 or more
  • R a is a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms substituted with halogen
  • D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms substituted with halogen.
  • R b , R c and R d are each independently a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms substituted with halogen.
  • L is a neutral or cationic Lewis base
  • [LH] + and [L] + are Br ⁇ nsted acids
  • Z is a group 13 element
  • A is each independently substituted or unsubstituted carbon number 6 It is a ⁇ 20 aryl group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the compound represented by Formula 2 above is at least one selected from the group consisting of methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane and butyl aluminoxane.
  • the compound represented by Chemical Formula 3 is trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri- s -butyl aluminum, tricyclopentyl aluminum, Tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri- p -tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron , Triethyl boron, triisobutyl boron, tripropyl boron and tributyl boron.
  • the compound represented by Formula 4 above is triethylammonium tetraphenylboron, tributylammoniumtetraphenylboron, trimethylammoniumtetraphenylboron, tripropylammoniumtetraphenylboron, trimethylammoniumtetra( p -tolyl) Boron, trimethylammoniumtetra( o , p -dimethylphenyl)boron, tributylammoniumtetra( p -trifluoromethylphenyl)boron, trimethylammoniumtetra( p -trifluoromethylphenyl)boron, tributylammoniumtetra Pentafluorophenylboron, N,N-diethylanilinium tetraphenylboron, N,N-diethylanilinium tetrapentafluorophenylboron, diethylammonium tetra
  • the carrier may include at least one selected from the group consisting of silica, alumina and magnesia.
  • the transition metal compound and the cocatalyst compound can be supported on a single species of carrier.
  • the transition metal compound and the co-catalyst compound may be supported on silica.
  • the amount of the transition metal compound supported on the carrier may be 0.5 to 3.0% by weight based on the total weight of the supported catalyst, and the amount of the cocatalyst compound supported on the carrier may be 20 to 30% by weight based on the total weight of the supported catalyst. have.
  • the antistatic agent may include at least one selected from the group consisting of aluminum stearate, sodium stearate, calcium stearate, zinc stearate, aluminum tristearate, aluminum acetate and zinc acetate.
  • the amount of the antistatic agent used in the first treatment may be 0.01 to 5.0% by weight based on the total weight of the supported catalyst.
  • the amount of the antistatic agent used in the secondary treatment may be 0.1 to 5.0% by weight based on the total weight of the supported catalyst.
  • the antistatic agent is 0.01 to 5.0% by weight in at least one organic solvent selected from the group consisting of hexane, pentane, toluene, benzene, dichloromethane, diethyl ether, tertrahydrofuran, acetone and ethyl acetate.
  • organic solvent selected from the group consisting of hexane, pentane, toluene, benzene, dichloromethane, diethyl ether, tertrahydrofuran, acetone and ethyl acetate.
  • the method for manufacturing a metallocene-supported catalyst according to an embodiment of the present invention can improve operational stability during olefin polymerization by treating the metallocene-supported catalyst with an antistatic agent in an improved method.
  • a method for preparing a metallocene supported catalyst for olefin polymerization includes (1a) adding a cocatalyst compound to one or more transition metal compounds; Or (1b) adding a co-catalyst compound to the carrier; (2) supporting the transition metal compound on a carrier; (3) first treating the supported catalyst with an antistatic agent solution or suspension; And (4) secondaryly treating the supported catalyst with an antistatic dry powder.
  • step (1a) above a cocatalyst compound is added to one or more transition metal compounds.
  • transition metal compound may be represented by Formula 1 below.
  • M is a transition metal of Group 4 of the Periodic Table of the Elements. Specifically, M may be titanium (Ti), zirconium (Zr) or hafnium (Hf), and more specifically zirconium or hafnium.
  • Q is any one of carbon, silicon, germanium and tin. Specifically, Q may be silicon.
  • X is each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. Specifically, X may each independently be halogen, and more specifically chlorine.
  • R 1 to R 12 may each independently be a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms, or two adjacent groups of R 1 to R 12
  • R n and R n +1 (n is 1 to 11) form a single or multi-cyclic compound having 1 to 15 carbon atoms with an alkyl group having 1 to 4 carbon atoms substituted or unsubstituted
  • the remaining Rs may be independently one of hydrogen, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 14 carbon atoms.
  • the monocyclic compound may be a monocyclic compound of an aliphatic cyclic compound or a monocyclic compound of an aromatic cyclic compound
  • the polycyclic compound may be a polycyclic compound of an aliphatic cyclic compound, or a polycyclic compound of an aromatic cyclic compound Or it may include both an aliphatic cyclic compound and an aromatic cyclic compound.
  • R 13 and R 14 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms. Specifically, R 13 and R 14 may be each independently an alkyl group having 1 to 10 carbon atoms, and more specifically, a methyl group.
  • M is zirconium
  • Q is silicon
  • X is chlorine
  • R 1 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms.
  • R n and R n + 1 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 carbon atoms. It may be one of the aryl groups of ⁇ 14, R 13 and R 14 are each independently a methyl group.
  • the transition metal compound of Formula 1 above may be any one of the compounds represented by Formulas 1-1 to 1-16 below.
  • the transition metal compound of Chemical Formula 1 may be a compound represented by Chemical Formula 1-1.
  • the cocatalyst compound in step (1a) may include at least one of a compound represented by Chemical Formula 2, a compound represented by Chemical Formula 3, and a compound represented by Chemical Formula 4.
  • n is an integer of 2 or more
  • R a may be a halogen atom, a hydrocarbon having 1 to 20 carbons, or a hydrocarbon having 1 to 20 carbons substituted with halogen.
  • R a may be methyl, ethyl, n -butyl or isobutyl.
  • D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms substituted with halogen. It is a hydrocarbon group or a C1-C20 alkoxy group.
  • R b , R c and R d may each independently be methyl or isobutyl
  • D is boron (B)
  • R b , R c and R d are Each may be pentafluorophenyl.
  • L is a neutral or cationic Lewis base
  • [LH] + and [L] + are Br ⁇ nsted acids
  • Z is a group 13 element
  • A is each independently substituted or unsubstituted carbon number 6 It is a ⁇ 20 aryl group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • [LH] + may be a dimethylanilinium cation dimethyl
  • [L] + is [(C 6 H 5 ) 3 C] + .
  • Examples of the compound represented by Chemical Formula 2 include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and methyl aluminoxane, but are not limited thereto.
  • Examples of the compound represented by Chemical Formula 3 above include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri- s -butyl aluminum, and tricyclopentyl aluminum.
  • Trimethylaluminum, triethylaluminum and triisobutylaluminum are preferred, but are not limited thereto.
  • Examples of the compound represented by Formula 4 above are triethylammonium tetraphenylboron, tributylammoniumtetraphenylboron, trimethylammoniumtetraphenylboron, tripropylammoniumtetraphenylboron, trimethylammoniumtetra( p -tolyl) Boron, trimethylammoniumtetra( o , p -dimethylphenyl)boron, tributylammoniumtetra( p -trifluoromethylphenyl)boron, trimethylammoniumtetra( p -trifluoromethylphenyl)boron, tributylammoniumtetra Pentafluorophenylboron, N,N-diethylanilinium tetraphenylboron, N,N-diethylanilinium tetrapentafluorophenylboron, diethylammonium t
  • the process of adding a cocatalyst compound to one or more transition metal compounds in step (1a) can be performed in the presence of a solvent.
  • the solvent is an aliphatic hydrocarbon solvent such as hexane or pentane, an aromatic hydrocarbon solvent such as toluene or benzene, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, an ether-based solvent such as diethyl ether or tetrahydrofuran, acetone, ethyl It may be most organic solvents such as acetate, and preferably toluene or hexane, but is not particularly limited thereto.
  • the process of adding the cocatalyst compound to one or more transition metal compounds in step (1a) may be performed at a temperature of 0 to 100°C, preferably 10 to 30°C.
  • step (1a) it is preferable to sufficiently stir it for 5 minutes to 24 hours, preferably 30 minutes to 3 hours after adding the cocatalyst compound to one or more transition metal compounds in step (1a).
  • step (1b) above a cocatalyst compound is added to the carrier.
  • the carrier may include a substance containing a hydroxy group on the surface, and a material having a highly reactive hydroxy group and a siloxane group, preferably dried to remove moisture on the surface, may be used.
  • the carrier may include at least one selected from the group consisting of silica, alumina and magnesia.
  • silica, silica-alumina, and silica-magnesia dried at a high temperature may be used as a carrier, and these are usually oxides such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 , Carbonate, sulfate, and nitrate components.
  • they may include carbon, zeolite, magnesium chloride, and the like.
  • the carrier is not limited to these, and is not particularly limited as long as it can support at least one transition metal compound and a cocatalyst compound.
  • the carrier may have an average particle size of 10 to 250 ⁇ m, preferably an average particle size of 10 to 150 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the micropore volume of the carrier may be 0.1 to 10 cc/g, preferably 0.5 to 5 cc/g, and more preferably 1.0 to 3.0 cc/g.
  • the specific surface area of the carrier may be 1 to 1,000 m 2 /g, preferably 100 to 800 m 2 /g, and more preferably 200 to 600 m 2 /g.
  • the drying temperature of the silica may be 200 ⁇ 900 °C.
  • the drying temperature is preferably 300 to 800°C, more preferably 400 to 700°C.
  • the drying temperature is less than 200°C, there is too much moisture, and the surface water and the co-catalyst react, and when it exceeds 900°C, the structure of the carrier may collapse.
  • the concentration of the hydroxy group in the dried silica may be 0.1 to 5 mmole/g, preferably 0.7 to 4 mmole/g, and more preferably 1.0 to 2 mmole/g.
  • concentration of the hydroxy group is less than 0.1 mmole/g, the supported amount of the cocatalyst is lowered, and when it exceeds 5 mmole/g, a problem that the catalyst component is inactivated may occur.
  • the process of adding the cocatalyst compound to the carrier in step (1b) can be carried out in the presence of a solvent.
  • the solvent is substantially the same as described in step (1a) above.
  • the process of adding the co-catalyst compound to the carrier in step (1b) may be performed at a temperature of 0 to 100°C, preferably 10 to 50°C.
  • step (1b) it is preferable to sufficiently stir it for 5 minutes to 24 hours, preferably 30 minutes to 3 hours after adding the cocatalyst compound to the carrier in step (1b).
  • step (2) above the transition metal compound is supported on a carrier.
  • the transition metal compound is added to the transition metal compound in step (1a) and the activated transition metal compound is contacted with the carrier, or the transition metal compound is contacted to the carrier carrying the cocatalyst compound in step (1b).
  • the metal compound can be supported on a carrier.
  • the process of supporting the transition metal compound on the carrier in step (2) can be performed in the presence of a solvent.
  • the solvent is substantially the same as described in step (1a) above.
  • the process of supporting the transition metal compound on the carrier in step (2) may be performed at a temperature of 0 to 100°C, preferably at a temperature of room temperature to 90°C.
  • the process of supporting the transition metal compound on the carrier in (2) can be performed by sufficiently stirring the mixture of the transition metal compound and the carrier for 5 minutes to 24 hours, preferably 30 minutes to 3 hours.
  • the transition metal compound and the cocatalyst compound can be supported on a single species of carrier.
  • the transition metal compound and the co-catalyst compound may be supported on silica.
  • the amount of the transition metal compound supported on the carrier may be 0.5 to 3.0% by weight based on the total weight of the supported catalyst, and the amount of the cocatalyst compound supported on the carrier may be 20 to 30% by weight based on the total weight of the supported catalyst. have.
  • step (3) above the supported catalyst is first treated with an antistatic agent solution or suspension.
  • the antistatic agent may include at least one selected from the group consisting of aluminum stearate, sodium stearate, calcium stearate, zinc stearate, aluminum tristearate, aluminum acetate and zinc acetate. It is not particularly limited.
  • the antistatic agent may be aluminum stearate.
  • the amount of the antistatic agent used in the first treatment may be 0.01 to 5.0% by weight based on the total weight of the supported catalyst, preferably 0.5 to 5.0% by weight, 0.5 to 4.0% by weight, 1.0 to 5.0% by weight, or 1.0 to 4.0% by weight.
  • the antistatic agent is added to the supported catalyst in a uniformly dissolved or suspended state in a hydrocarbon solvent or the like.
  • the solvent may be substantially the same as that used in step (1a), but is not particularly limited to these.
  • the content of the antistatic agent dissolved or suspended in the above solvent is not particularly limited, but may be preferably 0.01 to 5.0% by weight, more preferably 0.1 to 4.0% by weight.
  • the antistatic agent in a preferred embodiment, after the antistatic agent is dissolved or suspended in an organic solvent in an amount of 0.01 to 5.0% by weight, it can be introduced into a reactor using a cannula and stirred at 60° C. for 1 hour under a nitrogen atmosphere.
  • the primary treatment method of the antistatic agent is not limited to these specific examples.
  • the method for preparing a metallocene-supported catalyst for olefin polymerization according to an embodiment of the present invention may further include washing and drying the supported catalyst first treated with an antistatic agent with a solvent.
  • the supported catalyst is precipitated by standing for 3 minutes to 3 hours. Subsequently, after removing the supernatant, the supported catalyst is separated, washed with a solvent, and dried at a temperature of room temperature to 80° C. for 6 to 48 hours to obtain a supported catalyst.
  • the solvent is substantially the same as described in step (1a) above.
  • the supported catalyst is secondary treated with an antistatic dry powder.
  • the antistatic agent is substantially the same as described in step (3) above.
  • the amount of the antistatic agent used in the second treatment may be 0.1 to 5.0% by weight based on the total weight of the supported catalyst, preferably 0.5 to 4.5% by weight, 1.0 to 4.0% by weight, or 1.0 to 3.5% by weight .
  • the antistatic agent in the dry powder state is evenly mixed with the dried supported catalyst.
  • dry mixing of the supported catalyst and the antistatic agent may deteriorate the catalyst flowability due to the sticky particle characteristics of the antistatic agent, and therefore it is preferable to uniformly mix it in a short time with a relatively low shear.
  • a dry support in a mixer such as a conical screw mixer under a nitrogen atmosphere, a helical ribbon blender, etc.
  • a catalyst and an antistatic agent having a content of 0.1 to 5.0% by weight are added, and dry mixing may be performed at room temperature for 5 minutes under conditions of a rotation speed of about 200 rpm.
  • the secondary treatment method of the antistatic agent is not limited to these specific examples.
  • the prepared catalyst may exhibit appropriate activity and flowability. If the content of the antistatic agent is too low, it is difficult to secure a stable operation because the effect of antistatic is insignificant, and if the content of the antistatic agent is too high, the activity and flowability of the catalyst are lowered to produce a polymer fine powder or secure a stable operation. It is difficult.
  • the metallocene catalyst system of the present invention treated twice with one or more antistatic agents may be produced by friction between polymer particles or friction between polymer particles and the inner wall of the reactor during the production of polyolefin through gas phase polymerization or slurry polymerization. While it is possible to minimize the static electricity generated, it is possible to stably maintain the inherent activity of the catalyst. This is presumed to be because the metallocene catalyst system forms the particle size and bulk density of the polymer present in the reactor in a range in which generation of static electricity by friction can be minimized.
  • an olefinic monomer can be polymerized to provide an olefinic polymer.
  • the olefin-based polymer may be a homopolymer of an olefin-based monomer or a copolymer of an olefin-based monomer and a comonomer.
  • the olefinic monomers include alpha-olefins having 2 to 20 carbons, diolefins having 1 to 20 carbons, cycloolefins having 3 to 20 carbons, and cyclodiolefins having 3 to 20 carbons. ) Is at least one selected from the group consisting of.
  • olefinic monomers are ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 -Dodecene, 1-tetradecene or 1-hexadecene, and the like
  • the olefin-based polymer may be a homopolymer containing only one olefin-based monomer exemplified above or a copolymer containing two or more kinds.
  • the olefin-based polymer may be a copolymer of ethylene and an alpha-olefin having 3 to 20 carbon atoms, and a copolymer of ethylene and 1-hexene is preferred, but is not limited thereto.
  • the olefin-based polymer according to an embodiment of the present invention can be polymerized by polymerization reaction such as free radical, cationic, coordination, condensation, and addition. However, it is not limited to these.
  • the olefin-based polymer may be prepared by gas phase polymerization, solution polymerization or slurry polymerization.
  • the solvent that can be used include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as pentane, hexane, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene and benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; And mixtures thereof, but are not limited thereto.
  • Al-St aluminum distearate
  • the dried supported catalyst and the antistatic agent were added in a content of 3.0% by weight to 100 ml of a helical ribbon blender under conditions of a rotation speed of 200 rpm at room temperature. Dry mix for 5 minutes.
  • the supported catalysts were obtained in the same manner as in Example 1, except that the amounts of aluminum distearate in the first and second treatments were 0.308 g and 0.231 g, respectively.
  • the catalyst was obtained in the same manner as in Example 2, except that the amount of aluminum distearate in the first treatment was 0.616 g.
  • a supported catalyst was obtained in the same manner as in Example 2, except that the aluminum distearate was not subjected to secondary treatment.
  • the catalyst was obtained in the same manner as in Example 1, except that the aluminum distearate was used in an amount of 0.539 g in the second treatment without primary treatment with aluminum distearate.
  • Example 2 The same method as in Example 1 except that the amount of aluminum distearate in the first treatment was 0.231 g, the treatment temperature was 30°C, and the amount of aluminum distearate in the second treatment was 0.616 g.
  • the catalyst was obtained.
  • the supported catalysts were obtained in the same manner as in Example 1, except that the amounts of aluminum distearate in the first and second treatments were 1.078 g and 0.231 g, respectively.
  • Polyolefins were polymerized in a fluidized bed gas phase reactor using the respective supported catalysts obtained in Examples 1 to 3 and Comparative Examples 1 to 4. Specifically, 50 mg of each hybrid supported catalyst obtained in Examples 1 to 3 and Comparative Examples 1 to 4 using a fluidized bed gas phase reactor and ethylene and 1 in the presence of 0.5 ml of 1M triisobutyl aluminum (TIBAL) as a scavenger. -Hexene was copolymerized for 1 hour. The temperature in the reactor was maintained at about 80°C, and the polymerization degree of the ethylene/1-hexene copolymer prepared by adding hydrogen in addition to ethylene and 1-hexene was adjusted. At this time, the pressure of ethylene was 14 kgf/cm 2 and the amount of 1-hexene was 15 cc. Table 1 shows the time during which continuous operation was possible.
  • TIBAL triisobutyl aluminum
  • Antistatic agent primary treatment Antistatic secondary treatment
  • Catalytic activity gPE/gCat-hr
  • Catalyst flow property Continuous operation time Content % by weight
  • Temperature (°C) Content % by weight
  • Example 1 4.0 60 3.0 8,400 usually Over 100
  • Example 2 2.0 60 1.5 8,952 good -
  • Example 3 4.0 60 1.5 7,300 usually -
  • Comparative Example 1 2.0 60 - 7,800 good 5
  • Comparative Example 3 1.5 30 4.0 9,100 good 56
  • Comparative Example 4 7.0 60 1.5 6,300 Bad -
  • Example 1 in contrast to Example 1 and Comparative Examples 1 to 3 according to an embodiment of the present invention, in the case of Example 1, stable continuous operation for 100 hours or more was possible. On the other hand, in the case of Comparative Example 1, the polymer sheet was formed while the surface temperature of the reactor decreased after 5 hours of operation. In the case of Comparative Example 2, a hot spot occurred at the initial stage of catalyst injection. In addition, in the case of Comparative Example 3, a large amount of polymer sheets was generated after 56 hours of operation. Meanwhile, in contrast to Examples 2 and 3 and Comparative Example 4 according to the specific example of the present invention, in the case of Examples 2 and 3, the catalyst Activity and catalytic flow were maintained properly.
  • Comparative Example 4 having a high content of the antistatic agent during the first treatment, the catalytic activity and flowability were poor. This is understood because a significant amount of the antistatic agent not adsorbed to the pores of the carrier is present outside the supported catalyst.
  • the supported catalyst prepared according to the manufacturing method of the embodiment of the present invention may improve operational stability during olefin polymerization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 올레핀 중합용 촉매의 제조방법에 관한 것이다. 구체적으로, 본 발명은 메탈로센 담지 촉매를 대전방지제로 처리함으로써 올레핀 중합 시 조업 안정성을 향상시킬 수 있는 메탈로센 담지 촉매의 제조방법에 관한 것이다. 본 발명의 구체예에 따른 메탈로센 담지 촉매의 제조방법은 개선된 방법으로 메탈로센 담지 촉매를 대전방지제로 처리함으로써, 올레핀 중합 시 조업 안정성을 향상시킬 수 있다.

Description

올레핀 중합용 촉매의 제조방법
본 발명은 올레핀 중합용 촉매의 제조방법에 관한 것이다. 구체적으로, 본 발명은 메탈로센 담지 촉매를 대전방지제로 처리함으로써 올레핀 중합 시 조업 안정성을 향상시킬 수 있는 메탈로센 담지 촉매의 제조방법에 관한 것이다.
올레핀을 중합하는 데 이용되는 촉매의 하나인 메탈로센 촉매는 전이금속 또는 전이금속 할로겐 화합물에 사이클로펜타디에닐(cycolpentadienyl), 인데닐(indenyl), 사이클로헵타디에닐(cycloheptadienyl) 등의 리간드가 배위 결합된 화합물로서 샌드위치 구조를 기본적인 형태로 갖는다.
올레핀을 중합하는 데 사용되는 다른 촉매인 지글러-나타(Ziegler-Natta) 촉매가 활성점인 금속 성분이 불활성인 고체 표면에 분산되어 활성점의 성질이 균일하지 않은데 반해, 메탈로센 촉매는 일정한 구조를 갖는 하나의 화합물이기 때문에 모든 활성점이 동일한 중합 특성을 갖는 단일 활성점 촉매(single-site catalyst)로 알려져 있다. 이러한 메탈로센 촉매로 중합된 고분자는 분자량 분포가 좁고 공단량체의 분포가 균일한 특징을 나타낸다.
메탈로센 촉매를 이용하여 유동층 반응기에서 올레핀을 중합할 경우, 반응기 벽은 폴리올레핀과의 접촉을 통해 (+) 전하를 띄고, 폴리올레핀은 (-) 전하를 띄게 된다. 한편, 메탈로센 담지 촉매는 반응기에 투입되면 (-)의 전하를 띈다. 그런데, (-) 전하를 띄는 메탈로센 촉매는 정전기력(electrostatic force) 때문에 반응기 벽으로 이동하고, 그 결과 반응기 벽 근처에서 핫 스팟(hot spot)이나 고분자 시트(sheet)를 형성하여 조업에 심각한 악영향을 줄 수 있다.
이러한 조업 불안정을 줄이기 위해 대전방지제를 담지 촉매와 혼합하거나 중합 시 촉매와 함께 반응기에 주입하는 시도가 이루어져 왔다. 그런데, 대전방지제를 담지 촉매와 혼합할 경우, 대전방지제가 촉매 독으로 작용하여 촉매의 활성이 저하되는 문제가 있어, 그 개선이 요구된다.
본 발명의 목적은 올레핀 중합 시 조업 안정성을 향상시킬 수 있는 메탈로센 담지 촉매의 제조방법을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명의 일 구체예에 따라서, (1a) 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가하는 단계; 또는 (1b) 담체에 조촉매 화합물을 첨가하는 단계; (2) 전이금속 화합물을 담체에 담지시키는 단계; (3) 담지 촉매를 대전방지제 용액 또는 현탁액으로 1차 처리하는 단계; 및 (4) 담지 촉매를 대전방지제 건조 분말로 2차 처리하는 단계를 포함하는 올레핀 중합용 메탈로센 담지 촉매의 제조방법이 제공된다.
여기서, 전이금속 화합물은 아래 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2019017052-appb-img-000001
위 화학식 1에서, M은 원소 주기율표의 4족 전이금속이고,
Q는 탄소, 실리콘, 게르마늄 및 주석 중 어느 하나이고,
X는 각각 독립적으로 할로겐 원자, 탄소수 1~10의 알킬기 또는 탄소수 2~10의 알케닐기이고,
R 1 내지 R 12는 각각 독립적으로 수소 원자, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있거나, 또는 R 1 내지 R 12 중 인접한 두 개의 R n과 R n +1(n은 1~11)이 탄소수 1~4의 알킬기가 치환 또는 비치환된 탄소수 1~15의 단일 또는 다중 고리 화합물을 형성한 때, R n과 R n + 1를 제외한 나머지 R들은 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있으며,
R 13과 R 14는 각각 독립적으로 탄소수 1~10의 알킬기 또는 탄소수 6~14의 아릴기이다.
바람직하게는, 위 화학식 1에서 M은 지르코늄이고, Q는 실리콘이며, X는 각각 염소이고, R 1 내지 R 12는 각각 독립적으로 수소 원자, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있거나, 또는 R 1 내지 R 12 중 인접한 두 개의 R n과 R n +1(n은 1~11)이 탄소수 1~4의 알킬기가 치환 또는 비치환된 탄소수 1~15의 단일 또는 다중 고리 화합물을 형성한 때, R n과 R n + 1를 제외한 나머지 R들은 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있으며, R 13과 R 14는 각각 독립적으로 메틸기이다.
더욱 바람직하게는, 위 화학식 1의 전이금속 화합물이 아래 화학식 1-1 내지 1-16으로 표시되는 화합물들 중 어느 하나이다.
[화학식 1-1] [화학식 1-2]
Figure PCTKR2019017052-appb-img-000002
Figure PCTKR2019017052-appb-img-000003
[화학식 1-3] [화학식 1-4]
Figure PCTKR2019017052-appb-img-000004
Figure PCTKR2019017052-appb-img-000005
[화학식 1-5] [화학식 1-6]
Figure PCTKR2019017052-appb-img-000006
Figure PCTKR2019017052-appb-img-000007
[화학식 1-7] [화학식 1-8]
Figure PCTKR2019017052-appb-img-000008
Figure PCTKR2019017052-appb-img-000009
[화학식 1-9] [화학식 1-10]
Figure PCTKR2019017052-appb-img-000010
Figure PCTKR2019017052-appb-img-000011
[화학식 1-11] [화학식 1-12]
Figure PCTKR2019017052-appb-img-000012
Figure PCTKR2019017052-appb-img-000013
[화학식 1-13] [화학식 1-14]
Figure PCTKR2019017052-appb-img-000014
Figure PCTKR2019017052-appb-img-000015
[화학식 1-15] [화학식 1-16]
Figure PCTKR2019017052-appb-img-000016
Figure PCTKR2019017052-appb-img-000017
가장 바람직하게는, 위 화학식 1의 전이금속 화합물이 위 화학식 1-1로 표시되는 화합물일 수 있다.
한편, 조촉매 화합물이 아래 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
[화학식 2]
Figure PCTKR2019017052-appb-img-000018
[화학식 3]
Figure PCTKR2019017052-appb-img-000019
[화학식 4]
[L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] -
위 화학식 2에서, n은 2 이상의 정수이고, R a는 할로겐 원자, 탄소수 1~20의 탄화수소기 또는 할로겐으로 치환된 탄소수 1~20의 탄화수소기이고,
위 화학식 3에서, D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, 탄소수 1~20의 탄화수소기, 할로겐으로 치환된 탄소수 1~20의 탄화수소기 또는 탄소수 1~20의 알콕시기이며,
위 화학식 4에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 탄소수 6~20의 아릴기이거나 치환 또는 비치환된 탄소수 1~20의 알킬기이다.
구체적으로, 위 화학식 2로 표시되는 화합물은 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 구성되는 군으로부터 선택되는 적어도 하나이다.
또한, 화학식 3으로 표시되는 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 및 트리부틸보론으로 구성되는 군으로부터 선택되는 적어도 하나이다.
또한, 위 화학식 4로 표시되는 화합물은 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( p-톨릴)보론, 트리메틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라( p-톨릴)알루미늄, 트리프로필암모니움테트라( p-톨릴)알루미늄, 트리에틸암모니움테트라( o, p-디메틸페닐)알루미늄, 트리부틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라( p-톨릴)보론, 트리에틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라( p-트리플로로메틸페닐)보론 및 리페닐카보니움테트라펜타플로로페닐보론으로 구성되는 군으로부터 선택되는 적어도 하나이다.
바람직하게는, 담체가 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
더욱 바람직하게는, 전이금속 화합물과 조촉매 화합물이 단일 종의 담체에 담지될 수 있다. 구체적으로, 전이금속 화합물과 조촉매 화합물이 실리카에 담지될 수 있다.
이때, 담체에 담지되는 전이금속 화합물의 양은 담지 촉매 총 중량을 기준으로 0.5~3.0 중량%일 수 있으며, 담체에 담지되는 조촉매 화합물의 양은 담지 촉매 총 중량을 기준으로 20~30 중량%일 수 있다.
바람직하게는, 대전방지제가 알루미늄 스테아레이트, 소듐 스테아레이트, 칼슘 스테아레이트, 아연 스테아레이트, 알루미늄 트리스테아레이트, 알루미늄 아세테이트 및 아연 아세테이트로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
1차 처리 시에 사용되는 대전방지제의 양은 담지 촉매 총 중량을 기준으로 0.01~5.0 중량%일 수 있다. 또한, 2차 처리 시에 사용되는 대전방지제의 양은 담지 촉매 총 중량을 기준으로 0.1~5.0 중량%일 수 있다.
바람직하게는, 대전방지제를 헥산, 펜탄, 톨루엔, 벤젠, 디클로로메탄, 디에틸에테르, 터트라히드로퓨란, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 하나의 유기 용매에 0.01~5.0 중량%의 함량으로 용해 또는 현탁시킨 후 담지 촉매를 1차 처리한다.
본 발명의 구체예에 따른 메탈로센 담지 촉매의 제조방법은 개선된 방법으로 메탈로센 담지 촉매를 대전방지제로 처리함으로써 올레핀 중합 시 조업 안정성을 향상시킬 수 있다.
이하, 본 발명에 관하여 보다 상세하게 설명한다.
본 발명의 일 구체예에 따른 올레핀 중합용 메탈로센 담지 촉매의 제조방법은 (1a) 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가하는 단계; 또는 (1b) 담체에 조촉매 화합물을 첨가하는 단계; (2) 전이금속 화합물을 담체에 담지시키는 단계; (3) 담지 촉매를 대전방지제 용액 또는 현탁액으로 1차 처리하는 단계; 및 (4) 담지 촉매를 대전방지제 건조 분말로 2차 처리하는 단계를 포함한다.
위 단계 (1a)에서, 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가한다.
여기서, 전이금속 화합물은 아래 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2019017052-appb-img-000020
위 화학식 1에서, M은 원소 주기율표의 4족 전이금속이다. 구체적으로, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있고, 더 구체적으로 지르코늄 또는 하프늄일 수 있다.
Q는 탄소, 실리콘, 게르마늄 및 주석 중 어느 하나이다. 구체적으로, Q는 실리콘일 수 있다.
X는 각각 독립적으로 할로겐 원자, 탄소수 1~10의 알킬기 또는 탄소수 2~10의 알케닐기이다. 구체적으로, X는 각각 독립적으로 할로겐일 수 있고, 더 구체적으로 염소일 수 있다.
R 1 내지 R 12는 각각 독립적으로 수소 원자, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있거나, 또는 R 1 내지 R 12 중 인접한 두 개의 R n과 R n +1(n은 1~11)이 탄소수 1~4의 알킬기가 치환 또는 비치환된 탄소수 1~15의 단일 또는 다중 고리 화합물을 형성한 때, R n과 R n + 1를 제외한 나머지 R들은 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있다.
구체적으로, 위 단일 고리 화합물은 지방족 고리 화합물의 단일 고리 화합물이거나 또는 방향족 고리 화합물의 단일 고리화합물일 수 있고, 위 다중 고리 화합물은 지방족 고리 화합물의 다중 고리 화합물이거나, 방향족 고리 화합물의 다중 고리 화합물이거나 또는 지방족 고리 화합물과 방향족 고리 화합물의 다중 고리 화합물을 모두 포함할 수 있다.
R 13과 R 14는 각각 독립적으로 탄소수 1~10의 알킬기 또는 탄소수 6~14의 아릴기이다. 구체적으로, R 13과 R 14는 각각 독립적으로 탄소수 1~10의 알킬기 일 수 있고, 더 구체적으로 메틸기일 수 있다.
바람직하게는, 위 화학식 1에서 M은 지르코늄이고, Q는 실리콘이며, X는 각각 염소이고, R 1 내지 R 12는 각각 독립적으로 수소 원자, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있거나, 또는 R 1 내지 R 12 중 인접한 두 개의 R n과 R n +1(n은 1~11)이 탄소수 1~4의 알킬기가 치환 또는 비치환된 탄소수 1~15의 단일 또는 다중 고리 화합물을 형성한 때, R n과 R n + 1를 제외한 나머지 R들은 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있으며, R 13과 R 14는 각각 독립적으로 메틸기이다.
더욱 바람직하게는, 위 화학식 1의 전이금속 화합물이 아래 화학식 1-1 내지 1-16으로 표시되는 화합물들 중 어느 하나일 수 있다.
[화학식 1-1] [화학식 1-2]
Figure PCTKR2019017052-appb-img-000021
Figure PCTKR2019017052-appb-img-000022
[화학식 1-3] [화학식 1-4]
Figure PCTKR2019017052-appb-img-000023
Figure PCTKR2019017052-appb-img-000024
[화학식 1-5] [화학식 1-6]
Figure PCTKR2019017052-appb-img-000025
Figure PCTKR2019017052-appb-img-000026
[화학식 1-7] [화학식 1-8]
Figure PCTKR2019017052-appb-img-000027
Figure PCTKR2019017052-appb-img-000028
[화학식 1-9] [화학식 1-10]
Figure PCTKR2019017052-appb-img-000029
Figure PCTKR2019017052-appb-img-000030
[화학식 1-11] [화학식 1-12]
Figure PCTKR2019017052-appb-img-000031
Figure PCTKR2019017052-appb-img-000032
[화학식 1-13] [화학식 1-14]
Figure PCTKR2019017052-appb-img-000033
Figure PCTKR2019017052-appb-img-000034
[화학식 1-15] [화학식 1-16]
Figure PCTKR2019017052-appb-img-000035
Figure PCTKR2019017052-appb-img-000036
가장 바람직하게는, 위 화학식 1의 전이금속 화합물이 위 화학식 1-1로 표시되는 화합물일 수 있다.
한편, 위 단계 (1a)의 조촉매 화합물은 아래 화학식 2로 표현되는 화합물, 화학식 3으로 표현되는 화합물 및 화학식 4로 표현되는 화합물 중 하나 이상을 포함할 수 있다.
[화학식 2]
Figure PCTKR2019017052-appb-img-000037
위 화학식 2에서, n은 2 이상의 정수이고, R a는 할로겐 원자, 탄소수 1~20의 탄화수소 또는 할로겐으로 치환된 탄소수 1~20의 탄화수소일 수 있다. 구체적으로, R a는 메틸, 에틸, n-부틸 또는 이소부틸일 수 있다.
[화학식 3]
Figure PCTKR2019017052-appb-img-000038
위 화학식 3에서, D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, 탄소수 1~20의 탄화수소기, 할로겐으로 치환된 탄소수 1~20의 탄화수소기 또는 탄소수 1~20의 알콕시기이다. 구체적으로, D가 알루미늄(Al)일 때, R b, R c 및 R d는 각각 독립적으로 메틸 또는 이소부틸일 수 있고, D가 보론(B)일 때, R b, R c 및 R d는 각각 펜타플루오로페닐일 수 있다.
[화학식 4]
[L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] -
위 화학식 4에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 탄소수 6~20의 아릴기이거나 치환 또는 비치환된 탄소수 1~20의 알킬기이다. 구체적으로, [L-H] +는 디메틸아닐리늄 양이온일 수 있고, [Z(A) 4] -는 [B(C 6F 5) 4] -일 수 있으며, [L] +는 [(C 6H 5) 3C] +일 수 있다.
위 화학식 2로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등을 들 수 있으며, 메틸알루미녹산이 바람직하나, 이들로 제한되는 것은 아니다.
위 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등을 들 수 있으며, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄이 바람직하나, 이들로 제한되는 것은 아니다.
위 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( p-톨릴)보론, 트리메틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라( p-톨릴)알루미늄, 트리프로필암모니움테트라( p-톨릴)알루미늄, 트리에틸암모니움테트라( o, p-디메틸페닐)알루미늄, 트리부틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라( p-톨릴)보론, 트리에틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라( p-트리플로로메틸페닐)보론, 리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있다.
단계 (1a)에서 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가하는 과정은 용매의 존재 하에서 수행될 수 있다. 이때, 용매는 헥산, 펜탄과 같은 지방족 탄화수소 용매, 톨루엔, 벤젠과 같은 방향족 탄화 수소 용매, 디클로로메탄과 같은 염소 원자로 치환된 탄화수소 용매, 디에틸에테르, 테트라히드로퓨란과 같은 에테르계 용매, 아세톤, 에틸아세테이트 등의 대부분의 유기 용매일 수 있으며, 바람직하게는 톨루엔 또는 헥산일 수 있으나, 이것으로 특별히 제한되지는 않는다.
단계 (1a)에서 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가하는 과정은 0~100℃의 온도, 바람직하게는 10~30℃의 온도에서 수행될 수 있다.
또한, 단계 (1a)에서 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가 후 5분~24시간, 바람직하게는 30분~3시간 동안 이를 충분히 교반하는 것이 바람직하다.
위 단계 (1b)에서, 담체에 조촉매 화합물을 첨가한다.
여기서, 담체는 표면에 히드록시기를 함유하는 물질을 포함할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 히드록시기와 실록산기를 갖는 물질이 사용될 수 있다. 예컨대, 담체는 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 구체적으로, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 담체로서 사용될 수 있고, 이들은 통상적으로 Na 2O, K 2CO 3, BaSO 4, 및 Mg(NO 3) 2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 또한, 이들은 탄소, 제올라이트, 염화 마그네슘 등을 포함할 수도 있다. 다만, 담체가 이들로 제한되는 것은 아니며, 하나 이상의 전이금속 화합물과 조촉매 화합물을 담지할 수 있는 것이면 특별히 제한되지 않는다.
담체는 평균 입도가 10~250 ㎛일 수 있으며, 바람직하게는 평균 입도가 10~150 ㎛일 수 있고, 보다 바람직하게는 20~100 ㎛일 수 있다.
담체의 미세기공 부피는 0.1~10 cc/g일 수 있으며, 바람직하게는 0.5~5 cc/g일 수 있고, 보다 바람직하게는 1.0~3.0 cc/g일 수 있다.
담체의 비표면적은 1~1,000 ㎡/g일 수 있으며, 바람직하게는 100~800 ㎡/g일 수 있고, 보다 바람직하게는 200~600 ㎡/g일 수 있다.
바람직한 일 실시예에서, 담체가 실리카일 경우, 실리카는 건조 온도는 200~900℃일 수 있다. 건조 온도는 바람직하게는 300~800℃, 보다 바람직하게는 400~700℃일 수 있다. 건조 온도가 200℃ 미만일 경우에는 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 900℃를 초과하게 되면 담체의 구조가 붕괴될 수 있다.
건조된 실리카 내의 히드록시기의 농도는 0.1~5 mmole/g일 수 있으며, 바람직하게는 0.7~4 mmole/g일 수 있고, 보다 바람직하게는 1.0~2 mmole/g일 수 있다. 히드록시기의 농도가 0.1 mmole/g 미만이면 조촉매의 담지량이 낮아지며, 5 mmole/g을 초과하면 촉매 성분이 불활성화되는 문제점이 발생할 수 있다.
단계 (1b)에서 담체에 조촉매 화합물을 첨가하는 과정은 용매의 존재 하에서 수행될 수 있다. 이때, 용매는 위 (1a) 단계에서 설명한 바와 실질적으로 동일하다.
단계 (1b)에서 담체에 조촉매 화합물을 첨가하는 과정은 0~100℃의 온도, 바람직하게는 10~50℃의 온도에서 수행될 수 있다.
또한, 단계 (1b)에서 담체에 조촉매 화합물을 첨가 후 5분~24시간, 바람직하게는 30분~3시간 동안 이를 충분히 교반하는 것이 바람직하다.
위 단계 (2)에서, 전이금속 화합물을 담체에 담지시킨다.
구체적으로, 단계 (1a)에서 전이금속 화합물에 조촉매 화합물이 첨가되어 활성화된 전이금속 화합물을 담체와 접촉시거나, 단계 (1b)에서 조촉매 화합물이 담지된 담체에 전이금속 화합물을 접촉시킴으로써, 전이금속 화합물을 담체에 담지시킬 수 있다.
단계 (2)에서 담체에 전이금속 화합물을 담지시키는 과정은 용매의 존재 하에서 수행될 수 있다. 이때, 용매는 위 (1a) 단계에서 설명한 바와 실질적으로 동일하다.
단계 (2)에서 담체에 전이금속 화합물을 담지시키는 과정은 0~100℃의 온도, 바람직하게는 실온~90℃의 온도에서 수행될 수 있다.
또한, (2)에서 담체에 전이금속 화합물을 담지시키는 과정은 전이금속 화합물과 담체의 혼합물을 5분~24시간, 바람직하게는 30분~3시간 동안 충분히 교반함으로써 수행될 수 있다.
바람직하게는, 전이금속 화합물과 조촉매 화합물이 단일 종의 담체에 담지될 수 있다. 구체적으로, 전이금속 화합물과 조촉매 화합물이 실리카에 담지될 수 있다.
이때, 담체에 담지되는 전이금속 화합물의 양은 담지 촉매 총 중량을 기준으로 0.5~3.0 중량%일 수 있으며, 담체에 담지되는 조촉매 화합물의 양은 담지 촉매 총 중량을 기준으로 20~30 중량%일 수 있다.
위 단계 (3)에서, 담지 촉매를 대전방지제 용액 또는 현탁액으로 1차 처리한다.
바람직하게는, 대전방지제가 알루미늄 스테아레이트, 소듐 스테아레이트, 칼슘 스테아레이트, 아연 스테아레이트, 알루미늄 트리스테아레이트, 알루미늄 아세테이트 및 아연 아세테이트로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있으나, 이들로 특별히 제한되는 것은 아니다. 바람직하게는, 대전방지제가 알루미늄 스테아레이트일 수 있다.
1차 처리 시에 사용되는 대전방지제의 양은 담지 촉매 총 중량을 기준으로 0.01~5.0 중량%일 수 있으며, 바람직하게는 0.5~5.0 중량%, 0.5~4.0 중량%, 1.0~5.0 중량% 또는 1.0~4.0 중량%일 수 있다.
1차 처리 시에 대전방지제는 탄화수소 용매 등에 균일하게 용해 또는 현탁된 상태로 담지 촉매에 첨가된다. 이때, 용매는 단계 (1a)에서 사용된 것과 실질적으로 동일할 수 있으나, 이들로 특별히 제한되지는 않는다.
위 용매에 용해 또는 현탁되는 대전방지제의 함량은 특별히 제한되지 않으나, 바람직하게는 0.01~5.0 중량%, 더 바람직하게는 0.1~4.0 중량%일 수 있다.
바람직한 일 실시예에 있어서, 대전방지제를 0.01~5.0 중량%의 함량으로 유기 용매에 용해 또는 현탁시킨 후, 캐뉼라를 이용하여 반응기로 투입하고 질소 분위기 하에서 60℃에서 1시간 교반할 수 있다. 다만, 대전방지제의 1차 처리 방법이 이러한 구체적인 실시예로 제한되는 것은 아니다.
본 발명의 구체예에 따른 올레핀 중합용 메탈로센 담지 촉매의 제조방법은 대전방지제로 1차 처리된 담지 촉매를 용매로 세척하고 건조시키는 단계를 더 포함할 수 있다.
구체적으로, 대전방지제로 1차 처리된 후 3분~3시간 동안 정치시켜 담지 촉매를 침전시킨다. 이어서, 상등액을 제거하여 담지 촉매를 분리한 후, 용매로 세척하고, 실온~80℃의 온도에서 6~48시간 동안 건조시켜 담지 촉매를 얻을 수 있다. 여기서, 용매는 위 (1a) 단계에서 설명한 바와 실질적으로 동일하다.
위 단계 (4)에서, 담지 촉매를 대전방지제 건조 분말로 2차 처리한다.
이때, 대전방지제는 위 단계 (3)에서 설명한 것과 실질적으로 동일하다.
2차 처리 시에 사용되는 대전방지제의 양은 담지 촉매 총 중량을 기준으로 0.1~5.0 중량%일 수 있으며, 바람직하게는 0.5~4.5 중량%, 1.0~4.0 중량% 또는 1.0~3.5 중량%일 수 있다.
2차 처리 시에 건조 분말 상태의 대전방지제를 건조된 담지 촉매와 고르게 혼합한다. 구체적으로, 담지 촉매와 대전방지제의 건식 혼합은 대전방지제의 끈적한 입자 특성으로 인해 촉매 흐름성을 열악하게 할 수 있으므로, 비교적 낮은 전단(shear)으로 단 시간 내에 균일하게 혼합하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, 대전방지제의 2차 처리를 위해, 예를 들어 질소 분위기 하의 코니칼 스크루 믹서(conical screw mixer), 헬리칼 리본 블렌더(helical ribbon blender) 등의 혼합기에 건조된 담지 촉매와 0.1~5.0 중량% 함량의 대전방지제를 투입하고, 상온의 온도에서 약 200 rpm의 회전 속도의 조건으로 5분간 건식 혼합할 수 있다. 다만, 대전방지제의 2차 처리 방법이 이러한 구체적인 실시예로 제한되는 것은 아니다.
1차 및 2차 처리 시의 대전방지제 각각의 양이 위 범위를 만족시킬 경우, 제조된 촉매가 적절한 활성과 흐름성을 나타낼 수 있다. 대전방지제의 함량이 너무 낮으면, 정전기 방지의 효과가 미미하여 안정된 조업을 확보하기 어렵고, 대전방지제의 함량이 너무 높으면, 촉매의 활성과 흐름성이 저하되어 고분자 미세 분말이 생성되거나 안정된 조업을 확보하기 어렵다.
위에서 설명한 바와 같이, 1종 이상의 대전방지제로 2회 처리된 본 발명의 메탈로센 촉매 시스템은 기상 중합 또는 슬러리 중합을 통한 폴리올레핀의 제조 시 폴리머 입자 사이의 마찰 또는 폴리머 입자와 반응기 내벽의 마찰에 의해 발생하는 정전기를 최소화할 수 있으면서도, 촉매의 고유 활성을 안정적으로 유지할 수 있다. 이는 메탈로센 촉매 시스템이 반응기 내에 존재하는 고분자의 입자 크기와 벌크 밀도를 마찰에 의한 정전기 발생이 최소화될 수 있는 범위로 형성하기 때문인 것으로 추정된다.
한편, 본 발명의 구체예의 올레핀 중합용 메탈로센 담지 촉매의 제조방법에 의해 제조된 촉매의 존재 하에 올레핀계 단량체를 중합하여 올레핀계 중합체를 제공할 수 있다.
여기서, 올레핀계 중합체는 올레핀계 단량체의 단독 중합체(homopolymer) 또는 올레핀계 단량체와 공단량체의 공중합체(copolymer)일 수 있다.
올레핀계 단량체는 탄소수 2~20의 알파-올레핀(α-olefin), 탄소수 1~20의 디올레핀(diolefin), 탄소수 3~20의 사이클로올레핀(cycloolefin) 및 탄소수 3~20의 사이클로디올레핀(cyclodiolefin)으로 구성되는 군으로부터 선택되는 적어도 하나이다.
예를 들어, 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 또는 1-헥사데센 등일 수 있고, 올레핀계 중합체는 위에서 예시된 올레핀계 단량체를 1종만 포함하는 단독 중합체이거나 2종 이상 포함하는 공중합체일 수 있다.
예시적인 실시예에서, 올레핀계 중합체는 에틸렌과 탄소수 3~20의 알파-올레핀이 공중합된 공중합체일 수 있으며, 에틸렌과 1-헥센이 공중합된 공중합체가 바람직하나, 이들로 제한되는 것은 아니다.
이 경우, 에틸렌의 함량은 55~99.9 중량%인 것이 바람직하고, 90~99.9 중량%인 것이 더욱 바람직하다. 알파-올레핀계 공단량체의 함량은 0.1~45 중량%가 바람직하고, 0.1~10 중량%인 것이 더욱 바람직하다.
본 발명의 구체예에 따른 올레핀계 중합체는, 예를 들어 자유 라디칼(free radical), 양이온(cationic), 배위(coordination), 축합(condensation), 첨가(addition) 등의 중합반응에 의해 중합될 수 있으나, 이들로 제한되는 것은 아니다.
바람직한 실시예로서, 올레핀계 중합체는 기상 중합법, 용액 중합법 또는 슬러리 중합법 등으로 제조될 수 있다. 올레핀계 중합체가 용액 중합법 또는 슬러리 중합법으로 제조되는 경우, 사용될 수 있는 용매의 예로서, 펜탄, 헥산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 탄소수 5~12의 지방족 탄화수소 용매; 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 및 이들의 혼합물 등을 들 수 있으나, 이들로 제한되는 것은 아니다.
실시예
이하, 실시예와 비교예를 통하여 본 발명을 보다 구체적으로 설명한다. 단, 아래의 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
제조예 1
글로브 박스 내에서 100 ㎖ 오토클레이브 안에 rac-디메틸실릴렌 비스(인데닐)지르코늄 디클로라이드(rac-dimethylsilylenebis(indenyl)zirconium dichloride) 502 mg(1 eq.)과 팔라듐/탄소(Pd/C) 용액을 넣었다. Pd/C 용액은 5 중량%의 Pd/C 59.5 mg(2.5 mol%)을 톨루엔 25 ㎖에 분산시켜 제조하였다. 오토클레이브 내에 수소 30 bar를 주입한 후, 70℃에서 5시간 동안 교반하였다. 반응 종결 후, 오토클레이브 내의 용액을 여과하였고, 톨루엔 25 ㎖를 사용하여 생성된 전이금속 화합물 결정을 녹인 후 여과하였다. 여과된 용액을 모아 진공 하에 용매를 제거한 후 옅은 초록색 고체 화합물 rac-디메틸실릴 비스(테트라하이드로인데닐)지르코늄 디클로라이드(rac-dimethylsilyl bis(tetrahydroindenyl)zirconium dichloride; 화학식 1-1) 0.91 g(90%)을 얻었다.
실시예 1
글로브 박스 내의 2 리터 둥근 유리 반응기에 43.2 g의 메틸알루미녹산(10 중량% 톨루엔 용액)을 첨가하고, 제조예 1에서 얻은 전이금속 화합물 0.2281 g을 130 ㎖의 톨루엔 용액에 용해시킨 후 캐뉼라를 이용하여 반응기에 투입하고, 25℃에서 1시간 동안 교반하였다. 한편, 실리카(XPO2402, Grace Davison) 10.87 g을 반응기에 투입하고, 질소 분위기 하에서 75℃에서 3시간 동안 교반하였다. 이어서, 알루미늄 디스테아레이트(Al-St) 0.616 g을 톨루엔 100 ㎖에 용해시킨 후, 캐뉼라를 이용하여 반응기에 투입하고, 질소 분위기 하에서 60℃에서 1시간 동안 교반하였다. Al-St의 1차 처리가 끝나고 고체/액체가 충분히 분리된 후에 상등액을 제거하였다. 담지 촉매를 톨루엔을 이용하여 3회 세척하였으며 60℃ 진공에서 30분 동안 건조시켜 자유흐름 파우더 형태의 담지 촉매를 얻었다. 이후, 건조 촉매에 Al-St 분말 0.462 g을 첨가하여 2차 처리하여, 최종 담지 촉매 15.4 g을 얻었다. 대전방지제의 2차 처리 시, 100 ㎖의 헬리칼 리본 블렌더(helical ribbon blender)에 건조된 담지 촉매와 대전방지제를 3.0 중량%의 함량으로 투입하고, 상온의 온도에서 200 rpm의 회전 속도의 조건으로 5분간 건식 혼합하였다.
실시예 2
1차와 2차 처리 시의 알루미늄 디스테아레이트의 양을 각각 0.308 g과 0.231 g으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 담지 촉매를 얻었다.
실시예 3
1차 처리 시의 알루미늄 디스테아레이트의 양을 0.616 g으로 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 촉매를 얻었다.
비교예 1
알루미늄 디스테아레이트로 2차 처리하지 않은 것을 제외하고는 실시예 2와 동일한 방법으로 담지 촉매를 얻었다.
비교예 2
알루미늄 디스테아레이트로 1차 처리하지 않고, 2차 처리 시 알루미늄 디스테아레이트의 양을 0.539 g으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 얻었다.
비교예 3
1차 처리 시의 알루미늄 디스테아레이트의 양을 0.231 g으로 사용하고 처리 온도를 30℃로 하였으며, 2차 처리 시 알루미늄 디스테아레이트의 양을 0.616 g으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 얻었다.
비교예 4
1차와 2차 처리 시의 알루미늄 디스테아레이트의 양을 각각 1.078 g과 0.231 g으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 담지 촉매를 얻었다.
위 실시예 1~3과 비교예 1~4의 촉매 제조 조건을 아래 표 1에 정리하였다.
실험예
실시예 1~3과 비교예 1~4에서 얻어진 각각의 담지 촉매를 이용하여 유동층 기상 반응기에서 폴리올레핀을 중합하였다. 구체적으로, 유동층 기상 반응기를 이용하여 실시예 1~3과 비교예 1~4에서 얻어진 각각의 혼성 담지 촉매 50 ㎎과 스캐빈저로서 1M 트리이소부틸 알루미늄(TIBAL) 0.5 ㎖의 존재 하에 에틸렌과 1-헥센을 1시간 동안 공중합하였다. 반응기 내의 온도는 약 80℃로 유지하였고, 에틸렌과 1-헥센 외에 수소를 첨가하여 제조되는 에틸렌/1-헥센 공중합체의 중합도를 조절하였다. 이때, 에틸렌의 압력은 14 kgf/㎠, 1-헥센의 양은 15 cc이었다. 연속 운전이 가능했던 시간을 아래 표 1에 나타내었다.
대전방지제 1차 처리 대전방지제2차 처리 촉매 활성(gPE/gCat-hr) 촉매흐름성 연속운전시간
함량(중량%) 온도(℃) 함량(중량%)
실시예 1 4.0 60 3.0 8,400 보통 100 이상
실시예 2 2.0 60 1.5 8,952 좋음 -
실시예 3 4.0 60 1.5 7,300 보통 -
비교예 1 2.0 60 - 7,800 좋음 5
비교예 2 - - 3.5 8,700 좋음 0.75
비교예 3 1.5 30 4.0 9,100 좋음 56
비교예 4 7.0 60 1.5 6,300 나쁨 -
본 발명의 구체예에 따른 실시예 1과 비교예 1 내지 3을 대비하면, 실시예 1의 경우, 100시간 이상 안정된 연속 조업이 가능하였다. 반면, 비교예 1의 경우, 5시간 운전 후 반응기 표면 온도가 하락하면서 고분자 시트가 형성되었다. 비교예 2의 경우, 촉매 주입 초기에 핫 스팟이 발생하였다. 또한, 비교예 3의 경우, 56시간 운전 후 고분자 시트가 다량 발생하였다.한편, 본 발명의 구체예에 따른 실시예 2와 3 및 비교예 4를 대비하면, 실시예 2와 3의 경우, 촉매 활성과 촉매 흐름성이 적절하게 유지되었다. 반면, 1차 처리 시의 대전방지제의 함량이 높은 비교예 4의 경우 촉매 활성과 흐름성이 좋지 않았다. 이는 담체의 기공에 흡착되지 않은 상당량의 대전방지제가 담지 촉매 외부에 존재하기 때문으로 이해된다.
본 발명의 구체예의 제조방법에 따라 제조된 담지 촉매는 올레핀 중합 시 조업 안정성을 향상시킬 수 있다.

Claims (16)

  1. (1a) 하나 이상의 전이금속 화합물에 조촉매 화합물을 첨가하는 단계; 또는 (1b) 담체에 조촉매 화합물을 첨가하는 단계; (2) 전이금속 화합물을 담체에 담지시키는 단계; (3) 담지 촉매를 대전방지제 용액 또는 현탁액으로 1차 처리하는 단계; 및 (4) 담지 촉매를 대전방지제 건조 분말로 2차 처리하는 단계를 포함하는 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  2. 제1항에 있어서, 전이금속 화합물이 아래 화학식 1로 표시되는 것인 올레핀 중합용 메탈로센 담지 촉매의 제조방법:
    [화학식 1]
    Figure PCTKR2019017052-appb-img-000039
    위 화학식 1에서, M은 원소 주기율표의 4족 전이금속이고,
    Q는 탄소, 실리콘, 게르마늄 및 주석 중 어느 하나이고,
    X는 각각 독립적으로 할로겐 원자, 탄소수 1~10의 알킬기 또는 탄소수 2~10의 알케닐기이고,
    R 1 내지 R 12는 각각 독립적으로 수소 원자, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있거나, 또는 R 1 내지 R 12 중 인접한 두 개의 R n과 R n +1(n은 1~11)이 탄소수 1~4의 알킬기가 치환 또는 비치환된 탄소수 1~15의 단일 또는 다중 고리 화합물을 형성한 때, R n과 R n + 1를 제외한 나머지 R들은 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있으며,
    R 13과 R 14는 각각 독립적으로 탄소수 1~10의 알킬기 또는 탄소수 6~14의 아릴기이다.
  3. 제2항에 있어서, 위 화학식 1에서 M이 지르코늄이고, Q가 실리콘이며, X각 각각 염소이고, R 1 내지 R 12가 각각 독립적으로 수소 원자, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있거나, 또는 R 1 내지 R 12 중 인접한 두 개의 R n과 R n +1(n은 1~11)이 탄소수 1~4의 알킬기가 치환 또는 비치환된 탄소수 1~15의 단일 또는 다중 고리 화합물을 형성한 때, R n과 R n + 1를 제외한 나머지 R들은 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 3~6의 사이클로알킬기 및 탄소수 6~14의 아릴기 중 하나일 수 있으며, R 13과 R 14가 각각 독립적으로 메틸기인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  4. 제2항에 있어서, 위 화학식 1의 전이금속 화합물이 아래 화학식 1-1 내지 1-16으로 표시되는 화합물들 중 어느 하나인 올레핀 중합용 메탈로센 담지 촉매의 제조방법:
    [화학식 1-1] [화학식 1-2]
    Figure PCTKR2019017052-appb-img-000040
    Figure PCTKR2019017052-appb-img-000041
    [화학식 1-3] [화학식 1-4]
    Figure PCTKR2019017052-appb-img-000042
    Figure PCTKR2019017052-appb-img-000043
    [화학식 1-5] [화학식 1-6]
    Figure PCTKR2019017052-appb-img-000044
    Figure PCTKR2019017052-appb-img-000045
    [화학식 1-7] [화학식 1-8]
    Figure PCTKR2019017052-appb-img-000046
    Figure PCTKR2019017052-appb-img-000047
    [화학식 1-9] [화학식 1-10]
    Figure PCTKR2019017052-appb-img-000048
    Figure PCTKR2019017052-appb-img-000049
    [화학식 1-11] [화학식 1-12]
    Figure PCTKR2019017052-appb-img-000050
    Figure PCTKR2019017052-appb-img-000051
    [화학식 1-13] [화학식 1-14]
    Figure PCTKR2019017052-appb-img-000052
    Figure PCTKR2019017052-appb-img-000053
    [화학식 1-15] [화학식 1-16]
    Figure PCTKR2019017052-appb-img-000054
    Figure PCTKR2019017052-appb-img-000055
    .
  5. 제4항에 있어서, 위 화학식 1의 전이금속 화합물이 위 화학식 1-1로 표시되는 화합물인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  6. 제1항에 있어서, 조촉매 화합물이 아래 화학식 2로 표현되는 화합물, 아래 화학식 3으로 표현되는 화합물 및 아래 화학식 4로 표현되는 화합물로 구성되는 군으로부터 선택되는 하나 이상인 올레핀 중합용 메탈로센 담지 촉매의 제조방법:
    [화학식 2]
    Figure PCTKR2019017052-appb-img-000056
    [화학식 3]
    Figure PCTKR2019017052-appb-img-000057
    [화학식 4]
    [L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] -
    위 화학식 2에서, n은 2 이상의 정수이고, R a는 할로겐 원자, C 1-20 탄화수소기 또는 할로겐으로 치환된 C 1-20 탄화수소기이고,
    위 화학식 3에서, D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기이며,
    위 화학식 4에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기이다.
  7. 제6항에 있어서, 화학식 2로 표시되는 화합물이 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 구성되는 군으로부터 선택되는 적어도 하나인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  8. 제6항에 있어서, 화학식 3으로 표시되는 화합물이 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 및 트리부틸보론으로 구성되는 군으로부터 선택되는 적어도 하나인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  9. 제6항에 있어서, 화학식 4로 표시되는 화합물이 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( p-톨릴)보론, 트리메틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라( p-톨릴)알루미늄, 트리프로필암모니움테트라( p-톨릴)알루미늄, 트리에틸암모니움테트라( o, p-디메틸페닐)알루미늄, 트리부틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라( p-톨릴)보론, 트리에틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라( p-트리플로로메틸페닐)보론 및 리페닐카보니움테트라펜타플로로페닐보론으로 구성되는 군으로부터 선택되는 적어도 하나인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  10. 제1항에 있어서, 담체가 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함하는 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  11. 제10항에 있어서, 전이금속 화합물과 조촉매 화합물이 단일 종의 담체에 담지되는 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  12. 제11항에 있어서, 전이금속 화합물과 조촉매 화합물이 실리카에 담지되는 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  13. 제11항에 있어서, 담체에 담지되는 전이금속 화합물의 양이 담지 촉매 총 중량을 기준으로 0.5~3.0 중량%이며, 담체에 담지되는 조촉매 화합물의 양이 담지 촉매 총 중량을 기준으로 20~30 중량%인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  14. 제1항에 있어서, 대전방지제가 알루미늄 스테아레이트, 소듐 스테아레이트, 칼슘 스테아레이트, 아연 스테아레이트, 알루미늄 트리스테아레이트, 알루미늄 아세테이트 및 아연 아세테이트로 구성되는 군으로부터 선택되는 적어도 하나를 포함하는 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  15. 제14항에 있어서, 단계 (3)에서 사용되는 대전방지제의 양이 담지 촉매 총 중량을 기준으로 0.01~5.0 중량%이고, 단계 (4)에서 사용되는 대전방지제의 양이 담지 촉매 총 중량을 기준으로 0.1~5.0 중량% 인 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
  16. 제15항에 있어서, 단계 (3)에서, 대전방지제를 헥산, 펜탄, 톨루엔, 벤젠, 디클로로메탄, 디에틸에테르, 터트라히드로퓨란, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 하나의 유기 용매에 0.01~5.0 중량%의 함량으로 용해 또는 현탁시킨 후 담지 촉매를 처리하는 올레핀 중합용 메탈로센 담지 촉매의 제조방법.
PCT/KR2019/017052 2018-12-11 2019-12-05 올레핀 중합용 촉매의 제조방법 WO2020122500A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980081086.6A CN113166293B (zh) 2018-12-11 2019-12-05 用于聚合烯烃的催化剂的制备方法
EP19896841.4A EP3878871B1 (en) 2018-12-11 2019-12-05 Method for preparing olefin polymerization catalyst
US17/312,447 US20220049026A1 (en) 2018-12-11 2019-12-05 Process for Preparing a Catalyst for Olefin Polymerization
JP2021533294A JP7222094B2 (ja) 2018-12-11 2019-12-05 オレフィン重合用触媒の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180159163A KR102287064B1 (ko) 2018-12-11 2018-12-11 올레핀 중합용 촉매의 제조방법
KR10-2018-0159163 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020122500A1 true WO2020122500A1 (ko) 2020-06-18

Family

ID=71075644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017052 WO2020122500A1 (ko) 2018-12-11 2019-12-05 올레핀 중합용 촉매의 제조방법

Country Status (6)

Country Link
US (1) US20220049026A1 (ko)
EP (1) EP3878871B1 (ko)
JP (1) JP7222094B2 (ko)
KR (1) KR102287064B1 (ko)
CN (1) CN113166293B (ko)
WO (1) WO2020122500A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115250620A (zh) * 2020-11-30 2022-10-28 株式会社Lg化学 茂金属负载型催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516357A (ja) * 1998-05-29 2002-06-04 ユニベーション・テクノロジーズ・エルエルシー 触媒供給方法及び触媒供給装置
US8735514B2 (en) * 2010-09-28 2014-05-27 Basell Polyolefine Gmbh Method for feeding an antistatic compound to a polymerization reactor
KR20140121771A (ko) * 2013-04-08 2014-10-16 한화케미칼 주식회사 대전 방지제를 포함하는 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조 방법
KR20160121705A (ko) * 2015-04-10 2016-10-20 대한유화 주식회사 메탈로센 촉매 제조방법 및 이를 이용한 초 고분자량 폴리에틸렌의 제조방법
US20180273655A1 (en) * 2017-03-23 2018-09-27 Exxonmobil Chemical Patents Inc. Catalyst Systems and Methods for Preparing and Using the Same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405100B1 (ko) * 1994-10-13 2004-02-05 엑손모빌 케미칼 패턴츠 인코포레이티드 중합촉매시스템,이의제조및용도
WO1999005190A1 (fr) * 1997-07-22 1999-02-04 Mitsui Chemicals, Inc. COPOLYMERES D'ETHYLENE/α-OLEFINE, COMPOSITIONS, ET PROCEDES DE PREPARATION DE CES COPOLYMERES ET COMPOSITIONS
KR20000068804A (ko) * 1997-08-21 2000-11-25 고오사이 아끼오 개질된 입자, 이로부터 제조된 담체, 이로부터 제조된 올레핀 중합용 촉매 성분, 이로부터 제조된 올레핀 중합용 촉매 및 올레핀중합체의 제조방법
US7354880B2 (en) * 1998-07-10 2008-04-08 Univation Technologies, Llc Catalyst composition and methods for its preparation and use in a polymerization process
JP2001048912A (ja) * 1999-08-16 2001-02-20 Mitsui Chemicals Inc オレフィン重合用予備重合触媒の製造方法
AU782695B2 (en) * 1999-12-15 2005-08-18 Univation Technologies Llc Polymerization process for improved reactor performance of metallocenes
KR101789989B1 (ko) * 2010-09-28 2017-10-25 바젤 폴리올레핀 게엠베하 중합 반응기에 정전기 방지 화합물을 공급하는 방법
KR101584350B1 (ko) * 2013-04-08 2016-01-13 한화케미칼 주식회사 대전 방지제를 포함하는 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조 방법
KR101711788B1 (ko) * 2016-03-09 2017-03-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516357A (ja) * 1998-05-29 2002-06-04 ユニベーション・テクノロジーズ・エルエルシー 触媒供給方法及び触媒供給装置
US8735514B2 (en) * 2010-09-28 2014-05-27 Basell Polyolefine Gmbh Method for feeding an antistatic compound to a polymerization reactor
KR20140121771A (ko) * 2013-04-08 2014-10-16 한화케미칼 주식회사 대전 방지제를 포함하는 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조 방법
KR20160121705A (ko) * 2015-04-10 2016-10-20 대한유화 주식회사 메탈로센 촉매 제조방법 및 이를 이용한 초 고분자량 폴리에틸렌의 제조방법
US20180273655A1 (en) * 2017-03-23 2018-09-27 Exxonmobil Chemical Patents Inc. Catalyst Systems and Methods for Preparing and Using the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3878871A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115250620A (zh) * 2020-11-30 2022-10-28 株式会社Lg化学 茂金属负载型催化剂的制备方法
CN115250620B (zh) * 2020-11-30 2024-08-06 株式会社Lg化学 茂金属负载型催化剂的制备方法

Also Published As

Publication number Publication date
KR102287064B1 (ko) 2021-08-05
EP3878871A4 (en) 2022-08-03
US20220049026A1 (en) 2022-02-17
JP7222094B2 (ja) 2023-02-14
EP3878871B1 (en) 2024-08-07
EP3878871A1 (en) 2021-09-15
CN113166293A (zh) 2021-07-23
KR20200071432A (ko) 2020-06-19
CN113166293B (zh) 2023-05-16
JP2022512219A (ja) 2022-02-02

Similar Documents

Publication Publication Date Title
EP0952994B1 (en) Catalyst composition for the production of olefin polymers
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2009120026A2 (ko) 메탈로센 담지촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
WO2014088287A1 (ko) 성형성 및 기계적 물성이 우수한 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 중합 방법
EP2545084A2 (en) Supported metallocene catalyst, method for preparing the same and method for preparing polyolefin using the same
WO2013133595A1 (en) Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same
WO2022131693A1 (ko) 올레핀계 중합체 및 그 제조방법
WO2013077518A1 (ko) 올레핀 중합 및 공중합용 촉매 및 이를 사용하는 올레핀 중합 또는 공중합 방법
WO2020130452A1 (ko) 올레핀 중합용 촉매 및 이를 이용하여 제조된 올레핀계 중합체
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
WO2022108233A1 (ko) 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2020122500A1 (ko) 올레핀 중합용 촉매의 제조방법
WO2020130517A1 (ko) 올레핀 중합용 촉매의 제조방법, 올레핀 중합용 촉매 및 올레핀계 중합체
WO2010011027A2 (ko) 올레핀 중합 촉매 및 이를 이용한 올레핀의 중합 방법
WO2022108254A1 (ko) 올레핀계 중합체 및 그 제조방법
WO2022108252A1 (ko) 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2018101794A9 (ko) 조업안정용 조성물을 포함하는 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀 제조방법
WO2022124692A1 (ko) 올레핀계 중합체 및 그 제조방법
WO2022124695A1 (ko) 올레핀계 중합체 및 그 제조방법
WO2020116842A1 (ko) 올레핀 중합용 촉매의 제조방법
WO2018106029A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2021112489A1 (ko) 올레핀계 중합체의 제조방법
WO2021172818A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2019182290A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019896841

Country of ref document: EP

Effective date: 20210610