WO2021172818A1 - 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법 - Google Patents

혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법 Download PDF

Info

Publication number
WO2021172818A1
WO2021172818A1 PCT/KR2021/002144 KR2021002144W WO2021172818A1 WO 2021172818 A1 WO2021172818 A1 WO 2021172818A1 KR 2021002144 W KR2021002144 W KR 2021002144W WO 2021172818 A1 WO2021172818 A1 WO 2021172818A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
substituted
boron
unsubstituted
Prior art date
Application number
PCT/KR2021/002144
Other languages
English (en)
French (fr)
Inventor
박란화
박성연
이원종
정욱
정태호
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to JP2022551288A priority Critical patent/JP7466675B2/ja
Priority to US17/904,961 priority patent/US20230139681A1/en
Priority to EP21760305.9A priority patent/EP4112650A4/en
Publication of WO2021172818A1 publication Critical patent/WO2021172818A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to a hybrid catalyst composition comprising a heterogeneous transition metal compound, a catalyst for olefin polymerization comprising the same, and a method for preparing the same.
  • the present invention relates to a hybrid catalyst composition comprising two or more transition metal compounds capable of producing various polyolefins having excellent processability and mechanical properties, a catalyst for olefin polymerization comprising the same, and the hybrid catalyst composition and catalyst for preparing the catalyst it's about how
  • Polyolefin-based polymers are widely used in real life as materials for shopping bags, plastic houses, fishing nets, cigarette wrappers, ramen bags, yogurt bottles, battery cases, automobile bumpers, interior materials, shoe soles, washing machines, and the like.
  • polyolefin-based polymers such as polyethylene, polypropylene, and ethylene-alpha olefin copolymers and copolymers thereof have been prepared using a heterogeneous catalyst such as a Ziegler-Natta catalyst composed of a titanium compound and an alkyl aluminum compound.
  • a heterogeneous catalyst such as a Ziegler-Natta catalyst composed of a titanium compound and an alkyl aluminum compound.
  • the metallocene catalyst is a compound in which ligands such as cyclopentadienyl, indenyl, and cycloheptadienyl are coordinated to a transition metal or transition metal halide compound, and has a sandwich structure in a basic form. . In this case, it has various molecular structures according to the type of ligand and the type of the central metal.
  • the metal component as the active site is dispersed on an inactive solid surface and the properties of the active site are not uniform, whereas the metallocene catalyst is a compound having a certain structure. Therefore, it is known as a single-site catalyst with all active sites having the same polymerization properties.
  • a metallocene catalyst since a metallocene catalyst has no activity as a polymerization catalyst by itself, it is used together with a cocatalyst such as methyl aluminoxane.
  • the metallocene catalyst is activated as a cation by the action of the co-catalyst, and at the same time, the co-catalyst is an anion that is not coordinated with the metallocene catalyst and stabilizes the unsaturated cationic active species to form a catalyst system having activity in various olefin polymerizations.
  • Such a metallocene catalyst is easy to copolymerize and can control the three-dimensional structure of the polymer according to the symmetry of the catalyst, and the polymer prepared therefrom has a narrow molecular weight distribution and uniform distribution of comonomers.
  • the polymer prepared by the metallocene catalyst has a problem in that the mechanical strength is excellent but the processability is low due to a narrow molecular weight distribution.
  • various methods such as changing the molecular structure of the polymer or widening the molecular weight distribution have been proposed.
  • a catalyst for introducing a long chain branch (LCB) as a side branch to the main chain of the polymer is used to improve the processability of the polymer, but in the case of a supported catalyst, there is a problem of low activity. do.
  • LCB long chain branch
  • Polyolefins having a bimodal molecular weight distribution prepared in this way have improved processability, but have lower homogeneity due to different molecular weight distributions. Therefore, there is a problem in that it is difficult to obtain a product having uniform physical properties after processing, and mechanical strength is lowered.
  • Korean Patent No. 1797890 a heterogeneous mixture of a first transition metal compound including a cyclopentadienyl group not connected by a bridge and an indenyl group and a second transition metal compound including a substituted bisindenyl group connected by a silyl bridge Metallocene catalysts are disclosed.
  • Korean Patent Application Laid-Open No. 2004-0076965 discloses a method for controlling molecular weight distribution and molecular weight by using a double-nuclear metallocene catalyst as a carrier, but there is a problem with low activity.
  • It is an object of the present invention to provide a hybrid catalyst composition comprising a heterogeneous transition metal compound capable of producing various polyolefins having excellent processability and mechanical properties, and a catalyst for olefin polymerization comprising the same.
  • Another object of the present invention is to provide a method for preparing a hybrid catalyst composition and a catalyst for olefin polymerization comprising the same by controlling the ratio of the transition metal compound.
  • a hybrid catalyst composition comprising at least two kinds of different transition metal compounds represented by Chemical Formulas 1 to 3 below.
  • M is each titanium (Ti), zirconium (Zr) or hafnium (Hf),
  • each X is independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, or C 6-20 arylamido;
  • R 1 to R 5 and R 6 to R 10 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 6-20 aryl, substituted or unsubstituted C 1 -20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 alkyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 3-20 heteroaryl, substituted or unsubstituted C 1-20 alkylamido, substituted or unsubstituted C 6-20 arylamido, or substituted or unsubstituted C 1-20 silyl;
  • R 1 to R 5 and R 6 to R 10 may be each independently connected to adjacent groups to form a substituted or unsubstituted saturated or unsaturated C 4-20 ring.
  • M is zirconium or hafnium
  • X is halogen or substituted or unsubstituted C 1-20 alkyl
  • R 1 to R 5 and R 6 to R 10 may each be hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl, or substituted or unsubstituted C 6-20 aryl.
  • the transition metal compound represented by Formula 1 above is at least one of the transition metal compounds represented by Formulas 1-1 to 1-12 below, and the transition metal compound represented by Formula 2 is selected from Formulas 2-1 to 1-12 below. It is at least one of the transition metal compounds represented by 2-12, and the transition metal compound represented by Formula 3 above is at least one of the transition metal compounds represented by Formulas 3-1 to 3-12 below.
  • (1) dissolving a compound represented by the following formula (4) and a compound represented by the following formula (5) in a solvent; (2) After adding the compound represented by the following formula (6) to the solution obtained in step (1), reacting with stirring to obtain a hybrid catalyst composition comprising at least two of the transition metal compounds represented by the above formulas (1) to (3)
  • a method for preparing a hybrid catalyst composition including the step, wherein the molar ratio of the compound represented by Formula 4 to the compound represented by Formula 5 is in the range of 10:1 to 1:10.
  • M, X, R 1 to R 5 and R 6 to R 10 are the same as described in the section on the composition of the hybrid transition metal compound above.
  • the compound represented by Formula 4 is at least one of the compounds represented by Formulas 4-1 to 4-12, and the compound represented by Formula 5 is represented by Formulas 5-1 to 5-6 below. at least one of the compounds.
  • the compound represented by Formula 6 above is ZrCl 4 or HfCl 4 .
  • the solvent may include at least one selected from the group consisting of hexane, pentane, toluene, benzene, dichloromethane, diethyl ether, tetrahydrofuran, acetone, and ethyl acetate.
  • the reaction temperature in step (2) is -30°C to 120°C.
  • the method for preparing a hybrid catalyst composition according to an embodiment of the present invention may further include (2') drying the hybrid catalyst composition in step (2).
  • the method for preparing a hybrid catalyst composition according to an embodiment of the present invention dissolves the dry hybrid catalyst composition obtained in step (2') in a solvent and then removes unreacted substances and/or impurities with a filter. Additional steps may be included.
  • a hybrid catalyst composition comprising at least two of the transition metal compounds represented by Formulas 1 to 3 above; and a catalyst for olefin polymerization comprising a cocatalyst compound.
  • the promoter compound may be at least one selected from the group consisting of a compound represented by the following Chemical Formula 7, a compound represented by Chemical Formula 8, and a compound represented by Chemical Formula 9.
  • n is an integer of 2 or more
  • R a is a halogen atom, a C 1-20 hydrocarbon group, or a halogen-substituted C 1-20 hydrocarbon group
  • D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, or a halogen-substituted C 1-20 hydrocarbon group. Or a C 1-20 alkoxy group,
  • L is a neutral or cationic Lewis base
  • [LH] + and [L] + are a Bronsted acid
  • Z is a group 13 element
  • A is each independently substituted or unsubstituted C 6 It is a -20 aryl group or a substituted or unsubstituted C 1-20 alkyl group.
  • the compound represented by Chemical Formula 7 is at least one selected from the group consisting of methylaluminoxane, ethylaluminoxane, isobutylaluminoxane and butylaluminoxane.
  • the compound represented by Formula 8 is trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri- s -butylaluminum, tricyclopentylaluminum, Tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri- p -tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron , at least one selected from the group consisting of triethyl boron, triisobutyl boron, tripropyl boron and tributyl boron.
  • the compound represented by the above formula (9) is triethylammonium tetraphenyl boron, tributyl ammonium tetraphenyl boron, trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra ( p -tolyl) Boron, trimethylammonium tetra( o , p -dimethylphenyl)boron, tributylammonium tetra( p -trifluoromethylphenyl)boron, trimethylammonium tetra( p -trifluoromethylphenyl)boron, tributylammonium tetra Pentafluorophenyl boron, N,N-diethylanilinium tetraphenylboron, N,N-diethylaniliniumtetrapentafluorophen
  • the catalyst for olefin polymerization further includes a carrier supporting the hybrid catalyst composition.
  • the carrier may support both the hybrid catalyst composition and the cocatalyst compound.
  • the carrier may include at least one selected from the group consisting of silica, alumina and magnesia.
  • the total amount of the hybrid transition metal compound supported on the carrier is 0.001 to 1 mmole based on 1 g of the carrier, and the amount of the cocatalyst compound supported on the carrier is 2 to 15 mmole based on 1 g of the carrier.
  • the hybrid catalyst composition comprising a heterogeneous transition metal compound and the catalyst for olefin polymerization comprising the same according to an embodiment of the present invention can prepare polyolefins having excellent processability and mechanical properties according to the content of the transition metal compound.
  • a hybrid catalyst composition comprising a heterogeneous transition metal compound and a method for preparing a catalyst for olefin polymerization comprising the same include a catalyst for polyolefin polymerization having excellent processability and mechanical properties by precisely controlling the ratio of the mixed transition metal compound. can be provided easily.
  • Hybrid catalyst composition comprising heterogeneous transition metal compounds
  • a hybrid catalyst composition comprising at least two kinds of different transition metal compounds represented by Formulas 1 to 3 below.
  • M is titanium (Ti), zirconium (Zr), or hafnium (Hf). Specifically, M may be zirconium or hafnium.
  • each X is independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, or C 6-20 arylamido.
  • each X may be halogen or substituted or unsubstituted C 1-20 alkyl. More specifically, each X may be chlorine.
  • R 1 to R 5 and R 6 to R 10 are each independently hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 6-20 aryl, substituted or unsubstituted C 1 -20 alkyl C 6-20 aryl, substituted or unsubstituted C 6-20 aryl C 1-20 alkyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 3-20 heteroaryl, substituted or unsubstituted C 1-20 alkylamido, substituted or unsubstituted C 6-20 arylamido, or substituted or unsubstituted C 1-20 silyl.
  • R 1 to R 5 and R 6 to R 10 may be each independently connected to adjacent groups to form a substituted or unsubstituted saturated or unsaturated C 4-20 ring.
  • R 1 to R 5 and R 6 to R 10 may each be hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl, or substituted or unsubstituted C 6-20 aryl.
  • M is zirconium or hafnium
  • X is halogen or substituted or unsubstituted C 1-20 alkyl
  • R 1 to R 5 and R 6 to R 10 may each be hydrogen, substituted or unsubstituted C 1-20 alkyl, substituted or unsubstituted C 1-20 alkenyl, or substituted or unsubstituted C 6-20 aryl.
  • the transition metal compound represented by Formula 1 above is at least one of the transition metal compounds represented by Formulas 1-1 to 1-12 below
  • the transition metal compound represented by Formula 2 above is At least one of the transition metal compounds represented by Formulas 2-1 to 2-12 below
  • the transition metal compound represented by Formula 3 may be at least one of the transition metal compounds represented by Formulas 3-1 to 3-12 below.
  • a hybrid catalyst composition comprising at least two of the transition metal compounds represented by Formulas 1 to 3 below is obtained
  • a method for preparing a hybrid catalyst composition including the step, wherein the molar ratio of the compound represented by Formula 4 to the compound represented by Formula 5 is in the range of 10:1 to 1:10.
  • the compound represented by the above formula 4 and the compound represented by the above formula 5 are dissolved in a solvent.
  • the compound represented by Formula 4 is at least one of the compounds represented by Formulas 4-1 to 4-12, and the compound represented by Formula 5 is represented by Formulas 5-1 to 5-6 below. at least one of the compounds.
  • the solvent includes an aliphatic hydrocarbon solvent such as hexane and pentane, an aromatic hydrocarbon solvent such as toluene and benzene, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, an etheric solvent such as diethyl ether and tetrahydrofuran, acetone and ethyl It may include at least one selected from the group consisting of acetate.
  • the above solvent may be toluene, but is not particularly limited thereto.
  • the order in which each compound is added is not particularly limited. That is, the compound represented by the formula (4) may be dissolved by first adding it to the solvent, and then the compound represented by the formula (5) may be added to the solvent to be dissolved, or may be dissolved in the reverse order. Alternatively, these two compounds may be simultaneously added to a solvent and dissolved.
  • the temperature and dissolution time are not particularly limited. For example, at a temperature of -78 ° C to 30 ° C, preferably at a temperature of -40 ° C to 10 ° C, more preferably at a temperature of about -30 ° C.
  • the compounds may be added to the solvent individually or simultaneously and stirred to dissolve them for 1 to 24 hours, preferably 5 to 20 hours, more preferably about 15 hours.
  • the molar ratio of the compound represented by Formula 4 to the compound represented by Formula 5 dissolved in the solvent is in the range of 10:1 to 1:10.
  • the molar ratio of these two compounds is 5:1 to 1:5. More preferably, the molar ratio of these two compounds is 3:1 to 1:3.
  • step (2) the compound represented by the above formula (6) is added to the solution obtained in step (1) and reacted under stirring, a hybrid comprising at least two of the transition metal compounds represented by the above formulas 1 to 3 A catalyst composition is obtained.
  • the compound represented by Formula 6 above is ZrCl 4 or HfCl 4 .
  • the temperature at the time of adding the compound represented by the formula (6) is preferably in the range of -78°C to 30°C. More preferably, the temperature at which the compound represented by Formula 6 is added may be -40°C to 30°C. Most preferably, the temperature at which the compound represented by Formula 6 is added may be room temperature.
  • the temperature is gradually increased to -30°C to 120°C, more preferably 0°C to 100°C, and most preferably room temperature to 100°C for 1 to 24 hours,
  • the reaction is preferably carried out under stirring for 5 to 20 hours, more preferably about 17 hours.
  • the method for preparing a hybrid catalyst composition according to another embodiment of the present invention may further include (2') drying the hybrid catalyst composition obtained in step (2).
  • the drying conditions of the composition are not particularly limited, but may be carried out in a temperature range of 25°C to 80°C, more preferably in a temperature range of 25°C to 50°C, and most preferably at a temperature of about 25°C.
  • the method for preparing a hybrid catalyst composition according to another embodiment of the present invention (2" is to dissolve the dry hybrid catalyst composition obtained in step (2') in a solvent and then remove unreacted substances and / or impurities with a filter. It may further comprise a step, wherein the solvent may be substantially the same as the solvent used in the above step (1).
  • the solvent may be substantially the same as the solvent used in the above step (1).
  • dichloromethane may be used, but is not limited thereto.
  • a filter for removing impurities is not particularly limited, but it is preferable to use a Celite filter.
  • a hybrid catalyst composition comprising at least two kinds of different transition metal compounds represented by Formulas 1 to 3 below; and a catalyst for olefin polymerization comprising a cocatalyst compound.
  • M, X, R 1 to R 5 and R 6 to R 10 are the same as described in the hybrid catalyst composition section above.
  • the transition metal compound represented by Formula 1 above is at least one of the transition metal compounds represented by Formulas 1-1 to 1-12 below
  • the transition metal compound represented by Formula 2 above is At least one of the transition metal compounds represented by Formulas 2-1 to 2-12
  • the transition metal compound represented by Formula 3 above may be at least one of the transition metal compounds represented by Formulas 3-1 to 3-12 below.
  • the cocatalyst compound may include at least one of a compound represented by the following Chemical Formula 7, a compound represented by Chemical Formula 8, and a compound represented by Chemical Formula 9.
  • n is an integer of 2 or more
  • R a may be a halogen atom, a C 1-20 hydrocarbon, or a halogen-substituted C 1-20 hydrocarbon.
  • R a may be methyl, ethyl, n -butyl or isobutyl.
  • D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, or a halogen-substituted C 1-20 hydrocarbon group. or a C 1-20 alkoxy group.
  • R b , R c and R d may each independently be methyl or isobutyl
  • D is boron (B)
  • R b , R c and R d are each may be pentafluorophenyl.
  • L is a neutral or cationic Lewis base
  • [LH] + and [L] + are a Bronsted acid
  • Z is a group 13 element
  • A is each independently substituted or unsubstituted C 6 It is a -20 aryl group or a substituted or unsubstituted C 1-20 alkyl group.
  • [LH] + may be a dimethylanilinium cation
  • [Z(A) 4 ] - may be [B(C 6 F 5 ) 4 ] -
  • [L] + may be [(C 6 H) 5 ) 3 C] + .
  • examples of the compound represented by Chemical Formula 7 include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, and the like, and methylaluminoxane is preferred, but is not limited thereto.
  • Examples of the compound represented by the above formula (8) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri- s -butylaluminum, and tricyclopentylaluminum.
  • tripentyl aluminum triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri- p -tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethylboron, triisobutylboron, tripropylboron, tributylboron, and the like, and trimethylaluminum, triethylaluminum and triisobutylaluminum are preferred, but are not limited thereto.
  • Examples of the compound represented by the above formula (9) include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra( p -tolyl) Boron, trimethylammonium tetra( o , p -dimethylphenyl)boron, tributylammonium tetra( p -trifluoromethylphenyl)boron, trimethylammonium tetra( p -trifluoromethylphenyl)boron, tributylammonium tetra Pentafluorophenyl boron, N,N-diethylanilinium tetraphenylboron, N,N-diethylaniliniumtetrapentafluorophenylboron
  • the catalyst for olefin polymerization may further include a carrier supporting the hybrid catalyst composition.
  • the carrier may support both the hybrid catalyst composition and the cocatalyst compound.
  • the carrier may include a material containing a hydroxyl group on the surface, and preferably a material having a high reactivity hydroxyl group and a siloxane group, which is dried to remove moisture from the surface, may be used.
  • the carrier may include at least one selected from the group consisting of silica, alumina and magnesia. Specifically, silica dried at high temperature, silica-alumina, silica-magnesia, and the like may be used as the carrier, and these are typically oxides such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 . , carbonate, sulfate, and nitrate components. They may also contain carbon, zeolites, magnesium chloride, and the like.
  • the carrier is not limited thereto, and is not particularly limited as long as it can support the transition metal compound and the promoter compound.
  • the carrier may have an average particle size of 10 to 250 ⁇ m, preferably an average particle size of 10 to 150 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the micropore volume of the carrier may be 0.1-10 cc/g, preferably 0.5-5 cc/g, and more preferably 1.0-3.0 cc/g.
  • the specific surface area of the carrier may be 1 to 1,000 m2/g, preferably 100 to 800 m2/g, and more preferably 200 to 600 m2/g.
  • the silica drying temperature may be room temperature ⁇ 900 °C.
  • the drying temperature may be preferably from room temperature to 800°C, more preferably from room temperature to 700°C.
  • the drying temperature is lower than room temperature, there is too much moisture, so that the surface moisture and the cocatalyst react, and when it exceeds 900° C., the structure of the carrier may collapse.
  • the concentration of hydroxyl groups in the dried silica may be 0.1-5 mmole/g, preferably 0.7-4 mmole/g, and more preferably 1.0-2 mmole/g.
  • concentration of the hydroxyl group is less than 0.1 mmole/g, the supported amount of the cocatalyst is lowered, and when it exceeds 5 mmole/g, a problem in that the catalyst component is deactivated may occur.
  • the total amount of the hybrid transition metal compound supported on the carrier may be 0.001 to 1 mmole based on 1 g of the carrier.
  • the amount of the promoter compound supported on the carrier may be 2 to 15 mmole based on 1 g of the carrier.
  • One type or two or more types of carriers may be used.
  • both the hybrid catalyst composition and the promoter compound may be supported on one type of support, or the hybrid catalyst composition and the promoter compound may be supported on two or more types of support, respectively.
  • only one of the hybrid catalyst composition and the cocatalyst compound may be supported on the carrier.
  • (1) dissolving the compound represented by the following formula (4) and the compound represented by the following formula (5) in a solvent; (2) After adding the compound represented by Formula 6 to the solution obtained in step (1) and reacting under stirring, a hybrid catalyst composition comprising at least two of the transition metal compounds represented by Formulas 1 to 3 below is obtained step; (3) comprising the step of supporting the hybrid catalyst composition, the cocatalyst compound, or both obtained in step (2) on a carrier, wherein the molar ratio of the compound represented by Formula 4 to the compound represented by Formula 5 is 10:1 to 1: A method for preparing a catalyst for olefin polymerization, which is in the range of 10, is provided.
  • the method for preparing a catalyst for olefin polymerization according to another embodiment of the present invention may further include (2') drying the composition obtained in step (2).
  • the specific details of the step (2') are substantially the same as the step (2') of the method for preparing the hybrid catalyst composition.
  • the hybrid catalyst composition, the cocatalyst compound, or both are supported on a carrier.
  • a physical adsorption method or a chemical adsorption method may be used as a method for supporting the hybrid catalyst composition and/or the cocatalyst compound.
  • the physical adsorption method is a method of drying a solution in which the hybrid catalyst composition is dissolved in contact with a carrier, a method in which a solution in which the hybrid catalyst composition and a cocatalyst compound are dissolved, is contacted with a carrier and then drying, or a hybrid catalyst composition
  • the dissolved solution is brought into contact with the carrier and dried to prepare a carrier on which the hybrid catalyst composition is supported.
  • a solution in which the cocatalyst compound is dissolved is contacted with the carrier and dried to prepare a carrier on which the cocatalyst compound is supported. After that, it may be a method of mixing them.
  • the chemical adsorption method is a method in which a promoter compound is first supported on the surface of a carrier, and then a hybrid catalyst composition is supported on the promoter compound, or a functional group on the surface of the support (for example, in the case of silica, a hydroxyl group on the silica surface (-OH) )) and a method of covalently bonding a hybrid transition metal compound and the like.
  • the solvent used for supporting the hybrid catalyst composition and/or the cocatalyst compound is not particularly limited.
  • the solvent may be an aliphatic hydrocarbon solvent such as hexane or pentane, an aromatic hydrocarbon solvent such as toluene or benzene, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, an etheric solvent such as diethyl ether or tetrahydrofuran, acetone And it may include at least one selected from the group consisting of ethyl acetate.
  • the process of supporting the hybrid catalyst composition and/or the cocatalyst compound on the carrier in step (3) is a mixture of the hybrid catalyst composition and/or the cocatalyst compound and the carrier for 1 minute to 24 hours, preferably 5 minutes to 15 minutes. It can be carried out by sufficiently stirring for a period of time.
  • the olefin-based polymer may be a homopolymer of an olefin-based monomer or a copolymer of an olefin-based monomer and a comonomer.
  • the olefinic monomer is composed of C 2-20 alpha-olefin, C 1-20 diolefin, C 3-20 cycloolefin and C 3-20 cyclodiolefin. at least one selected from the group.
  • the olefin-based polymer may be a copolymer of ethylene and C 3-20 alpha-olefin, preferably a copolymer of ethylene and 1-hexene, but is not limited thereto.
  • the content of ethylene is 55 to 99.9 weight%, and it is more preferable that it is 90 to 99.9 weight%.
  • the content of the alpha-olefin-based comonomer is preferably 0.1 to 45% by weight, more preferably 0.1 to 10% by weight.
  • the olefin-based polymer according to an embodiment of the present invention may be polymerized by, for example, a polymerization reaction such as free radical, cationic, coordination, condensation, and addition. However, it is not limited thereto.
  • the olefin-based polymer may be prepared by a gas phase polymerization method, a solution polymerization method, or a slurry polymerization method.
  • the solvent that can be used include C 5-12 aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane and isomers thereof; aromatic hydrocarbon solvents such as toluene and benzene; hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; and mixtures thereof, but is not limited thereto.
  • n - propyl-cyclopenta Deanna Id lithium n -propylcyclopentadienide 24 mg ( . 0.10 mmole, 2 eq) and the above lithium pentamethyl cyclopenta Deanna Id (lithium pentamethylcyclopentadienide) 15 mg of formula 5-1 (0.21 mmole, 1 eq.) was dissolved in 10 ml of toluene at -30°C.
  • 50 mg (0.16 mmole, 1.5 eq.) of hafnium chloride (HfCl 4 ) was added, followed by stirring at 60° C. for 17 hours.
  • the reaction product was dried and dissolved in dichloromethane solvent, and then lithium chloride (LiCl) was removed through a Celite filter to obtain 36 mg (yield: 47%) of a hybrid transition metal compound composition.
  • composition ratios of the reactants and products of the above examples are shown in Table 1 below.
  • Example reactant eq.
  • reaction temperature °C
  • product molar ratio
  • transference number %
  • Formula 4-1 Formula 5-1
  • Formula 1-1 Formula 2-1
  • Formula 3-1 One 2 One 60 3 2 - 47 2 One One 60 2 3 - 62 3 One 2 60 2 3 - 63 4 One One room temperature 2 One - 54 5 One One 100 6 3 One 59
  • the hybrid catalyst composition comprising a heterogeneous transition metal compound and the catalyst for olefin polymerization comprising the same according to an embodiment of the present invention can prepare various polyolefins having excellent processability and mechanical properties depending on the content of the corresponding transition metal compound.
  • the hybrid catalyst composition and the method for preparing a catalyst for olefin polymerization including the same can easily provide a catalyst for polyolefin polymerization having excellent processability and mechanical properties by precisely controlling the ratio of the hybrid transition metal compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물, 이를 포함하는 올레핀 중합용 촉매 및 이들을 제조하는 방법에 관한 것이다. 구체적으로, 본 발명은 우수한 가공성 및 기계적 물성을 갖는 다양한 폴리올레핀을 제조할 수 있는 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물, 이를 포함하는 올레핀 중합용 촉매 및 혼성 전이금속 화합물의 비율을 조절하여 혼성 촉매 조성물 및 이를 포함하는 촉매를 제조하는 방법에 관한 것이다.

Description

혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
본 발명은 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물, 이를 포함하는 올레핀 중합용 촉매 및 이들을 제조하는 방법에 관한 것이다. 구체적으로, 본 발명은 우수한 가공성 및 기계적 물성을 갖는 다양한 폴리올레핀을 제조할 수 있는 2종 이상의 전이금속 화합물을 포함하는 혼성 촉매 조성물, 이를 포함하는 올레핀 중합용 촉매 및 해당 혼성 촉매 조성물 및 촉매를 제조하는 방법에 관한 것이다.
폴리올레핀계 중합체는 실생활에서 쇼핑백, 비닐하우스, 어망, 담배 포장지, 라면 봉지, 요구르트 병, 배터리 케이스, 자동차 범퍼, 내장재, 신발 밑창, 세탁기 등의 소재로 다양하게 사용된다.
종래 폴리에틸렌, 폴리프로필렌 및 에틸렌-알파올레핀 공중합체와 같은 폴리올레핀계 중합체와 이들의 공중합체는 티타늄 화합물과 알킬 알루미늄 화합물로 이루어진 지글러-나타(Ziegler-Natta) 촉매와 같은 불균일계 촉매에 의하여 제조되었다.
최근에는 촉매 활성이 매우 높은 균일계 촉매인 메탈로센 촉매를 이용한 폴리올레핀의 제조방법이 연구되고 있다. 메탈로센 촉매는 전이금속 또는 전이금속 할로겐 화합물에 사이클로펜타디에닐(cyclopentadienyl), 인데닐(indenyl), 사이클로헵타디에닐(cycloheptadienyl) 등의 리간드가 배위 결합된 화합물로서 샌드위치 구조를 기본적인 형태로 갖는다. 이때, 리간드의 형태와 중심 금속의 종류에 따라 다양한 분자 구조를 갖는다.
불균일계 촉매인 지글러-나타(Ziegler-Natta) 촉매가 활성점인 금속 성분이 불활성인 고체 표면에 분산되어 활성점의 성질이 균일하지 않은데 반해, 메탈로센 촉매는 일정한 구조를 갖는 하나의 화합물이기 때문에 모든 활성점이 동일한 중합 특성을 갖는 단일 활성점 촉매(single-site catalyst)로 알려져 있다.
일반적으로, 메탈로센 촉매는 그 자체만으로는 중합 촉매로서의 활성이 없기 때문에, 메틸 알루미녹산 등의 조촉매와 함께 사용된다. 조촉매의 작용에 의하여 메탈로센 촉매가 양이온으로 활성화되고, 동시에 조촉매는 메탈로센 촉매에 배위하지 않은 음이온으로서 불포화된 양이온 활성종을 안정화시켜 각종 올레핀 중합에 활성을 갖는 촉매계를 형성한다.
이러한 메탈로센 촉매는 공중합이 용이하고 촉매의 대칭성에 따라 중합체의 입체 구조를 조절할 수 있으며, 이로부터 제조된 고분자는 분자량 분포가 좁고 공단량체의 분포가 균일하다는 장점을 갖는다.
반면, 메탈로센 촉매에 의해 제조된 중합체는 좁은 분자량 분포로 인해 기계적 강도는 우수하나 가공성이 낮다는 문제점을 갖는다. 이러한 문제점을 해결하기 위해, 중합체의 분자 구조를 변경하거나 분자량 분포를 넓게 하는 등의 다양한 방법이 제시되었다. 예를 들어, 미국 특허 제5,272,236호에서는 중합체의 주사슬에 곁가지로 장쇄분지(long chain branch; LCB)를 도입시키는 촉매를 이용하여 중합체의 가공성을 개선시켰으나, 담지 촉매의 경우 활성이 낮은 문제점이 존재한다.
이러한 단일 메탈로센 촉매의 문제점을 해결하고, 보다 간편하게 활성이 우수하면서 가공성이 개선되는 촉매를 개발하기 위해, 서로 다른 특성을 가지는 메탈로센 촉매(이종 메탈로센 촉매)를 혼성 담지하는 방법이 제시되었다. 예를 들어, 미국 특허 제4,935,474호, 미국 특허 제6,828,394호, 미국 특허 제6,894,128호, 대한민국 특허 제1437509호, 미국 특허 제6,841,631호에는 공단량체에 대한 반응성이 서로 다른 촉매를 이용하여 이정(bimodal) 분자량 분포를 갖는 폴리올레핀을 제조하는 방법이 개시되어 있다. 이와 같은 방식으로 제조된 이정 분자량 분포를 갖는 폴리올레핀은 가공성은 향상되나 서로 다른 분자량 분포를 가짐으로 인해 동질성이 낮아진다. 따라서, 가공 후 균일한 물성을 갖는 제품을 얻기 어렵고 기계적 강도가 저하되는 문제점이 존재한다.
한편, 대한민국 특허 제1797890호에서는 브릿지로 연결되지 않은 씨클로펜타디에닐기와 인데닐기를 포함하는 제1 전이금속 화합물과 실릴 브릿지로 연결된 치환된 비스인데닐기를 포함하는 제2 전이금속 화합물을 혼합한 이종 메탈로센 촉매가 개시되어 있다.
또한, 이종 메탈로센 혼성 담지 촉매의 문제점을 해결하기 위해 활성점이 두 개인 이핵 메탈로센 촉매를 이용한 방법들이 제시되었다. 예를 들어, 대한민국 특허출원공개 제2004-0076965호에는 담체에 이중 핵 메탈로센 촉매 이용하여 분자량 분포 및 분자량을 제어하는 방법이 제시되어 있으나, 활성이 낮은 문제점이 존재한다.
본 발명의 목적은 우수한 가공성 및 기계적 물성을 갖는 다양한 폴리올레핀을 제조할 수 있는 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매를 제공하는 것이다.
본 발명의 다른 목적은 전이금속 화합물의 비율을 조절함으로써 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매를 제조하는 방법을 제공하는 것이다.
본 발명의 목적을 달성하기 위한 일 구체예에 따라서, 아래 화학식 1 내지 3으로 표시되는 서로 다른 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물이 제공된다.
[화학식 1]
Figure PCTKR2021002144-appb-img-000001
[화학식 2]
Figure PCTKR2021002144-appb-img-000002
[화학식 3]
Figure PCTKR2021002144-appb-img-000003
위 화학식 1 내지 3에서, M은 각각 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고,
X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, 또는 C 6-20 아릴아미도이며,
R 1 내지 R 5와 R 6 내지 R 10은 각각 독립적으로 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 2-20 알케닐, 치환 또는 비치환된 C 6-20 아릴, 치환 또는 비치환된 C 1-20 알킬 C 6-20 아릴, 치환 또는 비치환된 C 6-20 아릴 C 1-20 알킬, 치환 또는 비치환된 C 1-20 헤테로알킬, 치환 또는 비치환된 C 3-20 헤테로아릴, 치환 또는 비치환된 C 1-20 알킬아미도, 치환 또는 비치환된 C 6-20 아릴아미도, 또는 치환 또는 비치환된 C 1-20 실릴이고,
R 1 내지 R 5와 R 6 내지 R 10은 각각 독립적으로 인접한 기가 연결되어 치환 또는 비치환된 포화 또는 불포화 C 4-20 고리를 형성할 수 있다.
구체적으로, 위 화학식 1 내지 3에서, M은 지르코늄 또는 하프늄이고, X는 각각 할로겐 또는 치환 또는 비치환된 C 1-20 알킬이며, R 1 내지 R 5와 R 6 내지 R 10은 각각 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 1-20 알케닐, 또는 치환 또는 비치환된 C 6-20 아릴일 수 있다.
바람직하게는, 위 화학식 1로 표시되는 전이금속 화합물이 아래 화학식 1-1 내지 1-12로 표시되는 전이금속 화합물 중 적어도 하나이고, 위 화학식 2로 표시되는 전이금속 화합물이 아래 화학식 2-1 내지 2-12로 표시되는 전이금속 화합물 중 적어도 하나이며, 위 화학식 3으로 표시되는 전이금속 화합물이 아래 화학식 3-1 내지 3-12로 표시되는 전이금속 화합물 중 적어도 하나이다.
[화학식 1-1] [화학식 1-2] [화학식 1-3]
Figure PCTKR2021002144-appb-img-000004
Figure PCTKR2021002144-appb-img-000005
Figure PCTKR2021002144-appb-img-000006
[화학식 1-4] [화학식 1-5] [화학식 1-6]
Figure PCTKR2021002144-appb-img-000007
Figure PCTKR2021002144-appb-img-000008
Figure PCTKR2021002144-appb-img-000009
[화학식 1-7] [화학식 1-8] [화학식 1-9]
Figure PCTKR2021002144-appb-img-000010
Figure PCTKR2021002144-appb-img-000011
Figure PCTKR2021002144-appb-img-000012
[화학식 1-10] [화학식 1-11] [화학식 1-12]
Figure PCTKR2021002144-appb-img-000013
Figure PCTKR2021002144-appb-img-000014
Figure PCTKR2021002144-appb-img-000015
[화학식 2-1] [화학식 2-2] [화학식 2-3]
Figure PCTKR2021002144-appb-img-000016
Figure PCTKR2021002144-appb-img-000017
Figure PCTKR2021002144-appb-img-000018
[화학식 2-4] [화학식 2-5] [화학식 2-6]
Figure PCTKR2021002144-appb-img-000019
Figure PCTKR2021002144-appb-img-000020
Figure PCTKR2021002144-appb-img-000021
[화학식 2-7] [화학식 2-8] [화학식 2-9]
Figure PCTKR2021002144-appb-img-000022
Figure PCTKR2021002144-appb-img-000023
Figure PCTKR2021002144-appb-img-000024
[화학식 2-10] [화학식 2-11] [화학식 2-12]
Figure PCTKR2021002144-appb-img-000025
[화학식 3-1] [화학식 3-2] [화학식 3-3]
Figure PCTKR2021002144-appb-img-000026
Figure PCTKR2021002144-appb-img-000027
Figure PCTKR2021002144-appb-img-000028
[화학식 3-4] [화학식 3-5] [화학식 3-6]
Figure PCTKR2021002144-appb-img-000029
Figure PCTKR2021002144-appb-img-000030
Figure PCTKR2021002144-appb-img-000031
[화학식 3-7] [화학식 3-8] [화학식 3-9]
Figure PCTKR2021002144-appb-img-000032
Figure PCTKR2021002144-appb-img-000033
Figure PCTKR2021002144-appb-img-000034
[화학식 3-10] [화학식 3-11] [화학식 3-12]
Figure PCTKR2021002144-appb-img-000035
Figure PCTKR2021002144-appb-img-000036
Figure PCTKR2021002144-appb-img-000037
본 발명의 일 구체예에 따라서, (1) 아래 화학식 4로 표시되는 화합물과 아래 화학식 5로 표시되는 화합물을 용매에 용해시키는 단계; (2) 단계 (1)에서 얻어진 용액에 아래 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 위 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는 단계를 포함하되, 화학식 4로 표시되는 화합물과 화학식 5로 표시되는 화합물의 몰 비가 10:1~1:10의 범위인, 혼성 촉매 조성물의 제조방법이 제공된다.
[화학식 4]
Figure PCTKR2021002144-appb-img-000038
[화학식 5]
Figure PCTKR2021002144-appb-img-000039
[화학식 6]
MX 4
위 화학식 4 내지 6에서, M, X, R 1 내지 R 5와 R 6 내지 R 10은 위 혼성 전이금속 화합물의 조성물 항목에서 설명한 바와 같다.
바람직하게는, 위 화학식 4로 표시되는 화합물이 아래 화학식 4-1 내지 4-12로 표시되는 화합물 중 적어도 하나이고, 위 화학식 5로 표시되는 화합물이 아래 화학식 5-1 내지 5-6으로 표시되는 화합물 중 적어도 하나이다.
[화학식 4-1] [화학식 4-2] [화학식 4-3]
Figure PCTKR2021002144-appb-img-000040
Figure PCTKR2021002144-appb-img-000041
Figure PCTKR2021002144-appb-img-000042
[화학식 4-4] [화학식 4-5] [화학식 4-6]
Figure PCTKR2021002144-appb-img-000043
Figure PCTKR2021002144-appb-img-000044
Figure PCTKR2021002144-appb-img-000045
[화학식 4-7] [화학식 4-8] [화학식 4-9]
Figure PCTKR2021002144-appb-img-000046
Figure PCTKR2021002144-appb-img-000047
Figure PCTKR2021002144-appb-img-000048
[화학식 4-10] [화학식 4-11] [화학식 4-12]
Figure PCTKR2021002144-appb-img-000049
Figure PCTKR2021002144-appb-img-000050
Figure PCTKR2021002144-appb-img-000051
[화학식 5-1] [화학식 5-2] [화학식 5-3]
Figure PCTKR2021002144-appb-img-000052
Figure PCTKR2021002144-appb-img-000053
Figure PCTKR2021002144-appb-img-000054
[화학식 5-4] [화학식 5-5] [화학식 5-6]
Figure PCTKR2021002144-appb-img-000055
Figure PCTKR2021002144-appb-img-000056
Figure PCTKR2021002144-appb-img-000057
바람직하게는, 위 화학식 6으로 표시되는 화합물이 ZrCl 4 또는 HfCl 4이다.
여기서, 용매는 헥산, 펜탄, 톨루엔, 벤젠, 디클로로메탄, 디에틸에테르, 테트라히드로퓨란, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 1종을 포함할 수 있다.
바람직하게는, 위 단계 (2)에서 반응 온도는 -30℃ 내지 120℃이다.
본 발명의 일 구체예에 따른 혼성 촉매 조성물의 제조방법은 (2') 위 단계 (2)에서 혼성 촉매 조성물을 건조시키는 단계를 추가로 포함할 수 있다.
또한, 본 발명의 일 구체예에 따른 혼성 촉매 조성물의 제조방법은 (2") 위 단계 (2')에서 얻어진 건조 혼성 촉매 조성물을 용매에 용해시킨 후 필터로 미반응물 및/또는 불순물을 제거하는 단계를 추가로 포함할 수 있다.
본 발명의 다른 목적을 달성하기 위한 일 구체예에 따라서, 위 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물; 및 조촉매 화합물을 포함하는 올레핀 중합용 촉매가 제공된다.
여기서, 조촉매 화합물은 아래 화학식 7로 표현되는 화합물, 화학식 8로 표현되는 화합물 및 화학식 9로 표현되는 화합물로 구성되는 군으로부터 선택되는 하나 이상일 수 있다.
[화학식 7]
Figure PCTKR2021002144-appb-img-000058
[화학식 8]
Figure PCTKR2021002144-appb-img-000059
[화학식 9]
[L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] -
위 화학식 7에서, n은 2 이상의 정수이고, R a는 할로겐 원자, C 1-20 탄화수소기 또는 할로겐으로 치환된 C 1-20 탄화수소기이고,
위 화학식 8에서, D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기이며,
위 화학식 9에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기이다.
구체적으로, 위 화학식 7로 표시되는 화합물은 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 구성되는 군으로부터 선택되는 적어도 하나이다.
또한, 화학식 8로 표시되는 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 및 트리부틸보론으로 구성되는 군으로부터 선택되는 적어도 하나이다.
또한, 위 화학식 9로 표시되는 화합물은 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( p-톨릴)보론, 트리메틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라( p-톨릴)알루미늄, 트리프로필암모니움테트라( p-톨릴)알루미늄, 트리에틸암모니움테트라( o, p-디메틸페닐)알루미늄, 트리부틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라( p-톨릴)보론, 트리에틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라( p-트리플로로메틸페닐)보론 및 트리페닐카보니움테트라펜타플로로페닐보론으로 구성되는 군으로부터 선택되는 적어도 하나이다.
바람직하게는, 올레핀 중합용 촉매가 혼성 촉매 조성물을 담지하는 담체를 더 포함한다. 구체적으로, 담체가 혼성 촉매 조성물과 조촉매 화합물을 모두 담지할 수 있다.
구체적으로, 위 담체는 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
여기서, 담체에 담지되는 혼성 전이금속 화합물의 총량이 담체 1 g을 기준으로 0.001~1 mmole이며, 담체에 담지되는 조촉매 화합물의 양이 담체 1 g을 기준으로 2~15 mmole이다.
본 발명의 다른 구체예에 따라서, (1) 위 화학식 4로 표시되는 화합물과 위 화학식 5로 표시되는 화합물을 용매에 용해시키는 단계; (2) 단계 (1)에서 얻어진 용액에 위 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 위 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는 단계; (3) 단계 (2)에서 얻어진 혼성 촉매 조성물, 조촉매 화합물 또는 둘 다를 담체에 담지시키는 단계를 포함하되, 위 화학식 4로 표시되는 화합물과 위 화학식 5로 표시되는 화합물의 몰 비가 10:1~1:10의 범위인, 올레핀 중합용 촉매의 제조방법이 제공된다.
본 발명의 구체예에 따른 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매는 해당 전이금속 화합물의 함량에 따라서 우수한 가공성 및 기계적 물성을 갖는 폴리올레핀을 제조할 수 있다.
또한, 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매를 제조하는 방법은 혼성 전이금속 화합물의 비율을 정밀하게 조절함으로써, 우수한 가공성 및 기계적 물성을 갖는 폴리올레핀 중합용 촉매를 용이하게 제공할 수 있다.
이하, 본 발명에 관하여 보다 상세하게 설명한다.
이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물
본 발명의 일 구체예에 따라서, 아래 화학식 1 내지 3으로 표시되는 서로 다른 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물이 제공된다.
[화학식 1]
Figure PCTKR2021002144-appb-img-000060
[화학식 2]
Figure PCTKR2021002144-appb-img-000061
[화학식 3]
Figure PCTKR2021002144-appb-img-000062
위 화학식 1 내지 3에서, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이다. 구체적으로, M은 지르코늄 또는 하프늄일 수 있다.
X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, 또는 C 6-20 아릴아미도이다. 구체적으로, X는 각각 할로겐 또는 치환 또는 비치환된 C 1-20 알킬일 수 있다. 더 구체적으로, X는 각각 염소일 수 있다.
R 1 내지 R 5와 R 6 내지 R 10은 각각 독립적으로 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 2-20 알케닐, 치환 또는 비치환된 C 6-20 아릴, 치환 또는 비치환된 C 1-20 알킬 C 6-20 아릴, 치환 또는 비치환된 C 6-20 아릴 C 1-20 알킬, 치환 또는 비치환된 C 1-20 헤테로알킬, 치환 또는 비치환된 C 3-20 헤테로아릴, 치환 또는 비치환된 C 1-20 알킬아미도, 치환 또는 비치환된 C 6-20 아릴아미도, 또는 치환 또는 비치환된 C 1-20 실릴이다. 여기서, R 1 내지 R 5와 R 6 내지 R 10은 각각 독립적으로 인접한 기가 연결되어 치환 또는 비치환된 포화 또는 불포화 C 4-20 고리를 형성할 수 있다. 구체적으로, R 1 내지 R 5와 R 6 내지 R 10은 각각 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 1-20 알케닐, 또는 치환 또는 비치환된 C 6-20 아릴일 수 있다.
본 발명의 바람직한 구체예에 있어서, 위 화학식 1 내지 3에서, M은 지르코늄 또는 하프늄이고, X는 각각 할로겐 또는 치환 또는 비치환된 C 1-20 알킬이며, R 1 내지 R 5와 R 6 내지 R 10은 각각 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 1-20 알케닐, 또는 치환 또는 비치환된 C 6-20 아릴일 수 있다.
본 발명의 더욱 바람직한 구체예에 있어서, 위 화학식 1로 표시되는 전이금속 화합물이 아래 화학식 1-1 내지 1-12로 표시되는 전이금속 화합물 중 적어도 하나이고, 위 화학식 2로 표시되는 전이금속 화합물이 아래 화학식 2-1 내지 2-12로 표시되는 전이금속 화합물 중 적어도 하나이며, 위 화학식 3으로 표시되는 전이금속 화합물이 아래 화학식 3-1 내지 3-12로 표시되는 전이금속 화합물 중 적어도 하나일 수 있다.
[화학식 1-1] [화학식 1-2] [화학식 1-3]
Figure PCTKR2021002144-appb-img-000063
Figure PCTKR2021002144-appb-img-000064
Figure PCTKR2021002144-appb-img-000065
[화학식 1-4] [화학식 1-5] [화학식 1-6]
Figure PCTKR2021002144-appb-img-000066
Figure PCTKR2021002144-appb-img-000067
Figure PCTKR2021002144-appb-img-000068
[화학식 1-7] [화학식 1-8] [화학식 1-9]
Figure PCTKR2021002144-appb-img-000069
Figure PCTKR2021002144-appb-img-000070
Figure PCTKR2021002144-appb-img-000071
[화학식 1-10] [화학식 1-11] [화학식 1-12]
Figure PCTKR2021002144-appb-img-000072
Figure PCTKR2021002144-appb-img-000073
Figure PCTKR2021002144-appb-img-000074
[화학식 2-1] [화학식 2-2] [화학식 2-3]
Figure PCTKR2021002144-appb-img-000075
Figure PCTKR2021002144-appb-img-000076
Figure PCTKR2021002144-appb-img-000077
[화학식 2-4] [화학식 2-5] [화학식 2-6]
Figure PCTKR2021002144-appb-img-000078
Figure PCTKR2021002144-appb-img-000079
Figure PCTKR2021002144-appb-img-000080
[화학식 2-7] [화학식 2-8] [화학식 2-9]
Figure PCTKR2021002144-appb-img-000081
Figure PCTKR2021002144-appb-img-000082
Figure PCTKR2021002144-appb-img-000083
[화학식 2-10] [화학식 2-11] [화학식 2-12]
Figure PCTKR2021002144-appb-img-000084
Figure PCTKR2021002144-appb-img-000085
Figure PCTKR2021002144-appb-img-000086
[화학식 3-1] [화학식 3-2] [화학식 3-3]
Figure PCTKR2021002144-appb-img-000087
Figure PCTKR2021002144-appb-img-000088
Figure PCTKR2021002144-appb-img-000089
[화학식 3-4] [화학식 3-5] [화학식 3-6]
Figure PCTKR2021002144-appb-img-000090
[화학식 3-7] [화학식 3-8] [화학식 3-9]
Figure PCTKR2021002144-appb-img-000091
Figure PCTKR2021002144-appb-img-000092
Figure PCTKR2021002144-appb-img-000093
[화학식 3-10] [화학식 3-11] [화학식 3-12]
Figure PCTKR2021002144-appb-img-000094
Figure PCTKR2021002144-appb-img-000095
Figure PCTKR2021002144-appb-img-000096
혼성 촉매 조성물의 제조방법
본 발명의 일 구체예에 따라서, (1) 아래 화학식 4로 표시되는 화합물과 아래 화학식 5로 표시되는 화합물을 용매에 용해시키는 단계; (2) 단계 (1)에서 얻어진 용액에 아래 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 아래 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는 단계를 포함하되, 화학식 4로 표시되는 화합물과 화학식 5로 표시되는 화합물의 몰 비가 10:1~1:10의 범위인, 혼성 촉매 조성물의 제조방법이 제공된다.
[화학식 4]
Figure PCTKR2021002144-appb-img-000097
[화학식 5]
Figure PCTKR2021002144-appb-img-000098
[화학식 6]
MX 4
위 화학식 4 내지 6에서, M, X, R 1 내지 R 5와 R 6 내지 R 10은 위 혼성 촉매 조성물 항목에서 설명한 바와 같다.
구체적으로, 위 단계 (1)에서, 위 화학식 4로 표시되는 화합물과 위 화학식 5로 표시되는 화합물을 용매에 용해시킨다.
바람직하게는, 위 화학식 4로 표시되는 화합물이 아래 화학식 4-1 내지 4-12로 표시되는 화합물 중 적어도 하나이고, 위 화학식 5로 표시되는 화합물이 아래 화학식 5-1 내지 5-6으로 표시되는 화합물 중 적어도 하나이다.
[화학식 4-1] [화학식 4-2] [화학식 4-3]
Figure PCTKR2021002144-appb-img-000099
Figure PCTKR2021002144-appb-img-000100
Figure PCTKR2021002144-appb-img-000101
[화학식 4-4] [화학식 4-5] [화학식 4-6]
Figure PCTKR2021002144-appb-img-000102
Figure PCTKR2021002144-appb-img-000103
Figure PCTKR2021002144-appb-img-000104
[화학식 4-7] [화학식 4-8] [화학식 4-9]
Figure PCTKR2021002144-appb-img-000105
Figure PCTKR2021002144-appb-img-000106
Figure PCTKR2021002144-appb-img-000107
[화학식 4-10] [화학식 4-11] [화학식 4-12]
Figure PCTKR2021002144-appb-img-000108
Figure PCTKR2021002144-appb-img-000109
Figure PCTKR2021002144-appb-img-000110
[화학식 5-1] [화학식 5-2] [화학식 5-3]
Figure PCTKR2021002144-appb-img-000111
Figure PCTKR2021002144-appb-img-000112
Figure PCTKR2021002144-appb-img-000113
[화학식 5-4] [화학식 5-5] [화학식 5-6]
Figure PCTKR2021002144-appb-img-000114
Figure PCTKR2021002144-appb-img-000115
Figure PCTKR2021002144-appb-img-000116
또한, 용매는 헥산, 펜탄과 같은 지방족 탄화수소 용매, 톨루엔, 벤젠과 같은 방향족 탄화 수소 용매, 디클로로메탄과 같은 염소 원자로 치환된 탄화수소 용매, 디에틸에테르, 테트라히드로퓨란과 같은 에테르계 용매, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 1종을 포함할 수 있다. 바람직하게는, 위 용매가 톨루엔일 수 있으나, 이것으로 특별히 제한되지는 않는다.
위 화학식 4로 표시되는 화합물과 위 화학식 5로 표시되는 화합물을 용매에 용해시킬 때, 각 화합물의 투입 순서는 특별히 제한되지 않는다. 즉, 화학식 4로 표시되는 화합물을 먼저 용매에 첨가하여 용해시킨 후 화학식 5로 표시되는 화합물을 용매에 첨가하여 용해시켜도 좋고, 그 반대의 순서로 용해시켜도 좋다. 또한, 이 두 화합물을 동시에 용매에 첨가하여 용해시켜도 좋다.
위 화학식 4로 표시되는 화합물과 위 화학식 5로 표시되는 화합물을 용매에 용해시킬 때, 온도와 용해 시간은 특별히 제한되지 않는다. 예를 들어, -78℃ 내지 30℃의 온도, 바람직하게는 -40℃ 내지 10℃의 온도, 더 바람직하게는 약 -30℃의 온도에서 위 화학식 4로 표시되는 화합물과 위 화학식 5로 표시되는 화합물을 각각 또는 동시에 용매에 첨가하고, 1 내지 24시간, 바람직하게는 5 내지 20시간, 더 바람직하게는 약 15시간 동안 이를 교반하여 용해시킬 수 있다.
위 단계 (1)에서, 용매에 용해되는 화학식 4로 표시되는 화합물과 화학식 5로 표시되는 화합물의 몰 비는 10:1~1:10의 범위이다. 바람직하게는, 이 두 화합물의 몰 비가 5:1~1:5이다. 더 바람직하게는, 이 두 화합물의 몰 비가 3:1~1:3이다.
위 단계 (2)에서, 단계 (1)에서 얻어진 용액에 위 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 위 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는다. 바람직하게는, 위 화학식 6으로 표시되는 화합물이 ZrCl 4 또는 HfCl 4이다.
화학식 6으로 표시되는 화합물을 첨가할 때의 온도는 -78℃ 내지 30℃의 범위인 것이 바람직하다. 더 바람직하게는, 화학식 6으로 표시되는 화합물을 첨가할 때의 온도는 -40℃ 내지 30℃일 수 있다. 가장 바람직하게는, 화학식 6으로 표시되는 화합물을 첨가할 때의 온도는 상온일 수 있다.
화학식 6으로 표시되는 화합물을 첨가한 후, 온도를 -30℃ 내지 120℃의 범위, 더 바람직하게는 0℃ 내지 100℃의 범위, 가장 바람직하게는 상온 내지 100℃로 서서히 올려 1 내지 24시간, 바람직하게는 5 내지 20시간, 더 바람직하게는 약 17시간 동안 교반하에 반응시킨다.
본 발명의 다른 구체예에 따른 혼성 촉매 조성물의 제조방법은 (2') 위 단계 (2)에서 얻어진 혼성 촉매 조성물을 건조시키는 단계를 추가로 포함할 수 있다. 여기서 조성물의 건조 조건은 특별히 제한되지는 않으나, 25℃ 내지 80℃의 온도 범위, 더 바람직하게는 25℃ 내지 50℃의 온도 범위, 가장 바람직하게는 약 25℃의 온도에서 수행할 수 있다.
또한, 본 발명의 다른 구체예에 따른 혼성 촉매 조성물의 제조방법은 (2") 위 단계 (2')에서 얻어진 건조 혼성 촉매 조성물을 용매에 용해시킨 후 필터로 미반응물 및/또는 불순물을 제거하는 단계를 추가로 포함할 수 있다. 여기서 용매는 위 단계 (1)에서 사용된 용매와 실질적으로 동일할 수 있다. 바람직하게는, 디클로로메탄이 사용될 수 있으나, 이것으로 제한되는 것은 아니다. 미반응물 및/또는 불순물을 제거하는 필터는 특별히 제한되지는 않으나, 셀라이트 필터를 사용하는 것이 바람직하다.
올레핀 중합용 촉매
본 발명의 다른 구체예에 따라서, 아래 화학식 1 내지 3으로 표시되는 서로 다른 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물; 및 조촉매 화합물을 포함하는 올레핀 중합용 촉매가 제공된다.
[화학식 1]
Figure PCTKR2021002144-appb-img-000117
[화학식 2]
Figure PCTKR2021002144-appb-img-000118
[화학식 3]
Figure PCTKR2021002144-appb-img-000119
위 화학식 1 내지 3에서, M, X, R 1 내지 R 5와 R 6 내지 R 10은 위 혼성 촉매 조성물 항목에서 설명한 바와 같다.
본 발명의 바람직한 구체예에 있어서, 위 화학식 1로 표시되는 전이금속 화합물이 아래 화학식 1-1 내지 1-12로 표시되는 전이금속 화합물 중 적어도 하나이고, 위 화학식 2로 표시되는 전이금속 화합물이 아래 화학식 2-1 내지 2-12로 표시되는 전이금속 화합물 중 적어도 하나이며, 위 화학식 3으로 표시되는 전이금속 화합물이 아래 화학식 3-1 내지 3-12로 표시되는 전이금속 화합물 중 적어도 하나일 수 있다.
[화학식 1-1] [화학식 1-2] [화학식 1-3]
Figure PCTKR2021002144-appb-img-000120
Figure PCTKR2021002144-appb-img-000121
Figure PCTKR2021002144-appb-img-000122
[화학식 1-4] [화학식 1-5] [화학식 1-6]
Figure PCTKR2021002144-appb-img-000123
Figure PCTKR2021002144-appb-img-000124
Figure PCTKR2021002144-appb-img-000125
[화학식 1-7] [화학식 1-8] [화학식 1-9]
Figure PCTKR2021002144-appb-img-000126
Figure PCTKR2021002144-appb-img-000127
Figure PCTKR2021002144-appb-img-000128
[화학식 1-10] [화학식 1-11] [화학식 1-12]
Figure PCTKR2021002144-appb-img-000129
Figure PCTKR2021002144-appb-img-000130
Figure PCTKR2021002144-appb-img-000131
[화학식 2-1] [화학식 2-2] [화학식 2-3]
Figure PCTKR2021002144-appb-img-000132
Figure PCTKR2021002144-appb-img-000133
Figure PCTKR2021002144-appb-img-000134
[화학식 2-4] [화학식 2-5] [화학식 2-6]
Figure PCTKR2021002144-appb-img-000135
Figure PCTKR2021002144-appb-img-000136
Figure PCTKR2021002144-appb-img-000137
[화학식 2-7] [화학식 2-8] [화학식 2-9]
Figure PCTKR2021002144-appb-img-000138
Figure PCTKR2021002144-appb-img-000139
Figure PCTKR2021002144-appb-img-000140
[화학식 2-10] [화학식 2-11] [화학식 2-12]
Figure PCTKR2021002144-appb-img-000141
Figure PCTKR2021002144-appb-img-000142
Figure PCTKR2021002144-appb-img-000143
[화학식 3-1] [화학식 3-2] [화학식 3-3]
Figure PCTKR2021002144-appb-img-000144
Figure PCTKR2021002144-appb-img-000145
Figure PCTKR2021002144-appb-img-000146
[화학식 3-4] [화학식 3-5] [화학식 3-6]
Figure PCTKR2021002144-appb-img-000147
Figure PCTKR2021002144-appb-img-000148
Figure PCTKR2021002144-appb-img-000149
[화학식 3-7] [화학식 3-8] [화학식 3-9]
Figure PCTKR2021002144-appb-img-000150
Figure PCTKR2021002144-appb-img-000151
Figure PCTKR2021002144-appb-img-000152
[화학식 3-10] [화학식 3-11] [화학식 3-12]
Figure PCTKR2021002144-appb-img-000153
Figure PCTKR2021002144-appb-img-000154
Figure PCTKR2021002144-appb-img-000155
한편, 조촉매 화합물은 아래 화학식 7로 표현되는 화합물, 화학식 8로 표현되는 화합물 및 화학식 9로 표현되는 화합물 중 하나 이상을 포함할 수 있다.
[화학식 7]
Figure PCTKR2021002144-appb-img-000156
위 화학식 7에서, n은 2 이상의 정수이고, R a는 할로겐 원자, C 1-20 탄화수소 또는 할로겐으로 치환된 C 1-20 탄화수소일 수 있다. 구체적으로, R a는 메틸, 에틸, n-부틸 또는 이소부틸일 수 있다.
[화학식 8]
Figure PCTKR2021002144-appb-img-000157
위 화학식 8에서, D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기이다. 구체적으로, D가 알루미늄(Al)일 때, R b, R c 및 R d는 각각 독립적으로 메틸 또는 이소부틸일 수 있고, D가 보론(B)일 때, R b, R c 및 R d는 각각 펜타플루오로페닐일 수 있다.
[화학식 9]
[L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] -
위 화학식 9에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기이다. 구체적으로, [L-H] +는 디메틸아닐리늄 양이온일 수 있고, [Z(A) 4] -는 [B(C 6F 5) 4] -일 수 있으며, [L] +는 [(C 6H 5) 3C] +일 수 있다.
구체적으로, 위 화학식 7로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등을 들 수 있으며, 메틸알루미녹산이 바람직하나, 이들로 제한되는 것은 아니다.
위 화학식 8로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등을 들 수 있으며, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄이 바람직하나, 이들로 제한되는 것은 아니다.
위 화학식 9로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( p-톨릴)보론, 트리메틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라( p-톨릴)알루미늄, 트리프로필암모니움테트라( p-톨릴)알루미늄, 트리에틸암모니움테트라( o, p-디메틸페닐)알루미늄, 트리부틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라( p-톨릴)보론, 트리에틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있다.
본 발명의 바람직한 구체예에 있어서, 올레핀 중합용 촉매가 혼성 촉매 조성물을 담지하는 담체를 더 포함할 수 있다. 구체적으로, 담체가 혼성 촉매 조성물과 조촉매 화합물을 모두 담지할 수 있다.
이때, 담체는 표면에 히드록시기를 함유하는 물질을 포함할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 히드록시기와 실록산기를 갖는 물질이 사용될 수 있다. 예컨대, 담체는 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 구체적으로, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 담체로서 사용될 수 있고, 이들은 통상적으로 Na 2O, K 2CO 3, BaSO 4, 및 Mg(NO 3) 2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 또한, 이들은 탄소, 제올라이트, 염화 마그네슘 등을 포함할 수도 있다. 다만, 담체가 이들로 제한되는 것은 아니며, 전이금속 화합물과 조촉매 화합물을 담지할 수 있는 것이면 특별히 제한되지 않는다.
담체는 평균 입도가 10~250 ㎛일 수 있으며, 바람직하게는 평균 입도가 10~150 ㎛일 수 있고, 보다 바람직하게는 20~100 ㎛일 수 있다.
담체의 미세기공 부피는 0.1~10 cc/g일 수 있으며, 바람직하게는 0.5~5 cc/g일 수 있고, 보다 바람직하게는 1.0~3.0 cc/g일 수 있다.
담체의 비표면적은 1~1,000 ㎡/g일 수 있으며, 바람직하게는 100~800 ㎡/g일 수 있고, 보다 바람직하게는 200~600 ㎡/g일 수 있다.
바람직한 일 실시예에서, 담체가 실리카일 경우, 실리카는 건조 온도는 상온~900℃일 수 있다. 건조 온도는 바람직하게는 상온~800℃, 보다 바람직하게는 상온~700℃일 수 있다. 건조 온도가 상온보다 낮을 경우에는 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 900℃를 초과하게 되면 담체의 구조가 붕괴될 수 있다.
건조된 실리카 내의 히드록시기의 농도는 0.1~5 mmole/g일 수 있으며, 바람직하게는 0.7~4 mmole/g일 수 있고, 보다 바람직하게는 1.0~2 mmole/g일 수 있다. 히드록시기의 농도가 0.1 mmole/g 미만이면 조촉매의 담지량이 낮아지며, 5 mmole/g을 초과하면 촉매 성분이 불활성화되는 문제점이 발생할 수 있다.
담체에 담지되는 혼성 전이금속 화합물의 총량은 담체 1 g을 기준으로 0.001~1 mmole일 수 있다. 혼성 전이금속 화합물과 담체의 비가 위 범위를 만족하면, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리하다.
담체에 담지되는 조촉매 화합물의 양은 담체 1 g을 기준으로 2~15 mmole일 수 있다. 조촉매 화합물과 담체의 비가 위 범위를 만족하면, 촉매의 활성 유지 및 경제성 측면에서 유리하다.
담체는 1종 또는 2종 이상이 사용될 수 있다. 예를 들어, 1종의 담체에 혼성 촉매 조성물과 조촉매 화합물이 모두 담지될 수도 있고, 2종 이상의 담체에 혼성 촉매 조성물과 조촉매 화합물이 각각 담지될 수도 있다. 또한, 혼성 촉매 조성물과 조촉매 화합물 중 하나만이 담체에 담지될 수도 있다.
올레핀 중합용 촉매의 제조방법
본 발명의 다른 구체예에 따라서, (1) 아래 화학식 4로 표시되는 화합물과 아래 화학식 5로 표시되는 화합물을 용매에 용해시키는 단계; (2) 단계 (1)에서 얻어진 용액에 아래 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 아래 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는 단계; (3) 단계 (2)에서 얻어진 혼성 촉매 조성물, 조촉매 화합물 또는 둘 다를 담체에 담지시키는 단계를 포함하되, 화학식 4로 표시되는 화합물과 화학식 5로 표시되는 화합물의 몰 비가 10:1~1:10의 범위인, 올레핀 중합용 촉매의 제조방법이 제공된다.
[화학식 1]
Figure PCTKR2021002144-appb-img-000158
[화학식 2]
Figure PCTKR2021002144-appb-img-000159
[화학식 3]
Figure PCTKR2021002144-appb-img-000160
[화학식 4]
Figure PCTKR2021002144-appb-img-000161
[화학식 5]
Figure PCTKR2021002144-appb-img-000162
[화학식 6]
MX 4
위 화학식 1 내지 6에서, M, X, R 1 내지 R 5와 R 6 내지 R 10은 위 혼성 촉매 조성물 항목에서 설명한 바와 같다.
위 단계 (1) 및 단계 (2)의 구체적인 내용은 위 혼성 촉매 조성물의 제조방법의 단계 (1) 및 단계 (2)와 실질적으로 동일하다.
본 발명의 다른 구체예에 따른 올레핀 중합용 촉매의 제조방법은 (2') 위 단계 (2)에서 얻어진 조성물을 건조시키는 단계를 추가로 포함할 수 있다. 이때, 위 단계 (2')의 구체적인 내용은 위 혼성 촉매 조성물의 제조방법의 단계 (2')와 실질적으로 동일하다.
또한, 본 발명의 다른 구체예에 따른 올레핀 중합용 촉매의 제조방법은 (2")위 단계 (2')에서 얻어진 건조 조성물을 용매에 용해시킨 후 필터로 미반응물 및/또는 불순물을 제거하는 단계를 추가로 포함할 수 있다. 이때, 위 단계 (2")의 구체적인 내용은 위 혼성 촉매 조성물의 제조방법의 단계 (2")와 실질적으로 동일하다.
위 단계 (3)에서, 혼성 촉매 조성물, 조촉매 화합물 또는 둘 다를 담체에 담지시킨다.
혼성 촉매 조성물 및/또는 조촉매 화합물을 담지하는 방법으로서, 물리적 흡착 방법 또는 화학적 흡착 방법이 사용될 수 있다.
예를 들어, 물리적 흡착 방법은 혼성 촉매 조성물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법, 혼성 촉매 조성물과 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법, 또는 혼성 촉매 조성물이 용해된 용액을 담체에 접촉시킨 후 건조하여 혼성 촉매 조성물이 담지된 담체를 제조하고, 이와 별개로 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하여 조촉매 화합물이 담지된 담체를 제조한 후, 이들을 혼합하는 방법 등일 수 있다.
화학적 흡착 방법은 담체의 표면에 조촉매 화합물을 먼저 담지시킨 후, 조촉매 화합물에 혼성 촉매 조성물을 담지시키는 방법, 또는 담체의 표면의 작용기(예를 들어, 실리카의 경우 실리카 표면의 히드록시기(-OH))와 혼성 전이금속 화합물을 공유결합시키는 방법 등일 수 있다.
여기서, 혼성 촉매 조성물 및/또는 조촉매 화합물을 담지시킬 때 사용되는 용매는 특별히 제한되지 않는다. 예를 들어, 용매는 헥산, 펜탄과 같은 지방족 탄화수소 용매, 톨루엔, 벤젠과 같은 방향족 탄화 수소 용매, 디클로로메탄과 같은 염소 원자로 치환된 탄화수소 용매, 디에틸에테르, 테트라히드로퓨란과 같은 에테르계 용매, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 1종을 포함할 수 있다.
바람직한 일 실시예에서, 위 단계 (3)에서 담체에 혼성 촉매 조성물 및/또는 조촉매 화합물을 담지시키는 과정은 0~100℃의 온도, 바람직하게는 실온~90℃의 온도에서 수행될 수 있다.
또한, 단계 (3)에서 담체에 혼성 촉매 조성물 및/또는 조촉매 화합물을 담지시키는 과정은 혼성 촉매 조성물 및/또는 조촉매 화합물과 담체의 혼합물을 1분~24시간, 바람직하게는 5분~15시간 동안 충분히 교반함으로써 수행될 수 있다.
올레핀의 중합
본 발명의 구체예에 따른 올레핀 중합용 촉매의 존재 하에 올레핀계 단량체를 중합하여 올레핀계 중합체를 제조할 수 있다.
여기서, 올레핀계 중합체는 올레핀계 단량체의 단독 중합체(homopolymer) 또는 올레핀계 단량체와 공단량체의 공중합체(copolymer)일 수 있다.
올레핀계 단량체는 C 2-20 알파-올레핀(α-olefin), C 1-20 디올레핀(diolefin), C 3-20 사이클로올레핀(cycloolefin) 및 C 3-20 사이클로디올레핀(cyclodiolefin)으로 구성되는 군으로부터 선택되는 적어도 하나이다.
예를 들어, 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 또는 1-헥사데센 등일 수 있고, 올레핀계 중합체는 위에서 예시된 올레핀계 단량체를 1종만 포함하는 단독 중합체이거나 2종 이상 포함하는 공중합체일 수 있다.
예시적인 실시예에서, 올레핀계 중합체는 에틸렌과 C 3-20 알파-올레핀이 공중합된 공중합체일 수 있으며, 에틸렌과 1-헥센이 공중합된 공중합체가 바람직하나, 이들로 제한되는 것은 아니다.
이 경우, 에틸렌의 함량은 55~99.9 중량%인 것이 바람직하고, 90~99.9 중량%인 것이 더욱 바람직하다. 알파-올레핀계 공단량체의 함량은 0.1~45 중량%가 바람 직하고, 0.1~10 중량%인 것이 더욱 바람직하다.
본 발명의 구체예에 따른 올레핀계 중합체는, 예를 들어 자유 라디칼(free radical), 양이온(cationic), 배위(coordination), 축합(condensation), 첨가(addition) 등의 중합반응에 의해 중합될 수 있으나, 이들로 제한되는 것은 아니다.
바람직한 실시예로서, 올레핀계 중합체는 기상 중합법, 용액 중합법 또는 슬러리 중합법 등으로 제조될 수 있다. 올레핀계 중합체가 용액 중합법 또는 슬러리 중합법으로 제조되는 경우, 사용될 수 있는 용매의 예로서, 펜탄, 헥산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 C 5-12 지방족 탄화수소 용매; 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 및 이들의 혼합물 등을 들 수 있으나, 이들로 제한되는 것은 아니다.
실시예
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 단, 아래의 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1
위 화학식 4-1의 리튬 n-프로필사이클로펜타디에나이드(lithium n-propylcyclopentadienide) 24 ㎎(0.10 mmole, 2 eq.)과 위 화학식 5-1의 리튬 펜타메틸사이클로펜타디에나이드(lithium pentamethylcyclopentadienide) 15 ㎎(0.21 mmole, 1 eq.)을 -30℃에서 톨루엔 10 ㎖에 녹였다. 상온에서 이 용액에 하프늄 클로라이드(HfCl 4) 50 ㎎(0.16 mmole, 1.5 eq.)를 첨가한 후 60℃에서 17시간 동안 교반하였다. 반응 생성물을 건조시키고, 디클로로메탄 용매에 첨가하여 용해시킨 후, 셀라이트 필터로 리튬 클로라이드(LiCl)를 제거하고, 혼성 전이금속 화합물의 조성물 36 ㎎(수율: 47%)을 얻었다.
1H NMR로 위 화학식 1-1의 화합물(bis( n-propylcyclopentadienyl) hafnium dichloride)과 위 화학식 2-1의 화합물((pentamethylcyclopentadienyl)( n-propylcyclopentadienyl) hafnium dichloride)의 혼성(3:2) 전이금속 화합물의 구조를 확인하였다. 위 화학식 3-1의 화합물(bis(pentamethylcyclopentadienyl)hafnium dichloride)은 미량(trace) 존재하였다.
1H-NMR (CDCl 3, 300 MHz) 6.20-6.14 (m, 6H), 6.12-6.07 (m, 6H), 5.94-5.92 (m, 2H), 5.89-5.87 (m, 2H), 2.65-2.58 (m, 4H), 2.07 (s, 15H), 1.60-1.52 (m, 4H), 0.95-0.89 (m, 6H).
실시예 2
위 화학식 4-1의 리튬 n-프로필사이클로펜타디에나이드, 위 화학식 5-1의 리튬 펜타메틸사이클로펜타디에나이드 및 하프늄 클로라이드를 각각 18 ㎎(0.16 mmole, 1 eq.), 22 ㎎(0.16 mmole, 1 eq.) 및 50 ㎎(0.16 mmole, 1 eq.)의 양으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 혼성 전이금속 화합물의 조성물 48 ㎎(수율: 62%)을 얻었다.
1H NMR로 위 화학식 1-1의 화합물과 위 화학식 2-1의 화합물의 혼성(2:3) 전이금속 화합물의 구조를 확인하였다. 위 화학식 3-1의 화합물은 미량(trace) 존재하였다.
1H-NMR (CDCl 3, 300 MHz) 6.20-6.14 (m, 4H), 6.12-6.07 (m, 4H), 5.94-5.92 (m, 3H), 5.89-5.87 (m, 3H), 2.65-2.58 (m, 7H), 2.07 (s, 22.5H), 1.60-1.52 (m, 7H), 0.95-0.89 (m, 10.5H).
실시예 3
위 화학식 4-1의 리튬 n-프로필사이클로펜타디에나이드, 위 화학식 5-1의 리튬 펜타메틸사이클로펜타디에나이드 및 하프늄 클로라이드를 각각 12 ㎎(0.10 mmole, 1 eq.), 30 ㎎(0.21 mmole, 2 eq.) 및 50 ㎎(0.16 mmole, 1.5 eq.)의 양으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 혼성 전이금속 화합물의 조성물 48 ㎎(수율: 63%)을 얻었다.
1H NMR로 위 화학식 1-1의 화합물과 위 화학식 2-1의 화합물의 혼성(2:3) 전이금속 화합물의 구조를 확인하였다. 위 화학식 3-1의 화합물은 미량(trace) 존재하였다.
1H-NMR (CDCl 3, 300 MHz) 6.20-6.14 (m, 4H), 6.12-6.07 (m, 4H), 5.94-5.92 (m, 3H), 5.89-5.87 (m, 3H), 2.65-2.58 (m, 7H), 2.07 (s, 22.5H), 1.60-1.52 (m, 7H), 0.95-0.89 (m, 10.5H).
실시예 4
위 화학식 4-1의 리튬 n-프로필사이클로펜타디에나이드, 위 화학식 5-1의 리튬 펜타메틸사이클로펜타디에나이드 및 하프늄 클로라이드를 각각 48 ㎎(0.42 mmole, 1 eq.), 60 ㎎(0.42 mmole, 1 eq.) 및 135 ㎎(0.42 mmole, 1 eq.)의 양으로 사용하고 반응 온도를 상온으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 혼성 전이금속 화합물의 조성물 107 ㎎(수율: 54%)을 얻었다.
1H NMR로 위 화학식 1-1의 화합물과 위 화학식 2-1의 화합물의 혼성(2:1) 전이금속 화합물의 구조를 확인하였다. 위 화학식 3-1의 화합물은 미량(trace) 존재하였다.
1H-NMR (CDCl 3, 300 MHz) 6.20-6.14 (m, 8H), 6.12-6.07 (m, 8H), 5.94-5.92 (m, 2H), 5.89-5.87 (m, 2H), 2.65-2.58 (m, 10H), 2.07 (s, 15H), 1.60-1.52 (m, 10H), 0.95-0.89 (m, 15H).
실시예 5
반응 온도를 100℃로 한 것을 제외하고는 실시예 2와 동일한 방법으로 혼성 전이금속 화합물의 조성물 45 ㎎(수율: 59%)을 얻었다.
1H NMR로 위 화학식 1-1의 화합물, 위 화학식 2-1의 화합물 및 위 화학식 3-1의 화합물의 혼성(6:3:1) 전이금속 화합물의 구조를 확인하였다.
1H-NMR (CDCl 3, 300 MHz) 6.20-6.14 (m, 8H), 6.12-6.07 (m, 8H), 5.94-5.92 (m, 2H), 5.89-5.87 (m, 2H), 2.65-2.58 (m, 10H), 2.07 (s, 15H), 2.03 (s, 10H), 1.60-1.52 (m, 10H), 0.95-0.89 (m, 15H).
위 실시예의 반응물과 생성물의 조성비를 아래 표 1에 나타내었다.
실시예 반응물(eq.) 반응온도
(℃)
생성물(몰 비) 수율(%)
화학식 4-1 화학식 5-1 화학식 1-1 화학식 2-1 화학식 3-1
1 2 1 60 3 2 - 47
2 1 1 60 2 3 - 62
3 1 2 60 2 3 - 63
4 1 1 상온 2 1 - 54
5 1 1 100 6 3 1 59
본 발명의 구체예에 따른 이종의 전이금속 화합물을 포함하는 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매는 해당 전이금속 화합물의 함량에 따라서 우수한 가공성 및 기계적 물성을 갖는 다양한 폴리올레핀을 제조할 수 있다.
또한, 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매를 제조하는 방법은 혼성 전이금속 화합물의 비율을 정밀하게 조절함으로써, 우수한 가공성 및 기계적 물성을 갖는 폴리올레핀 중합용 촉매를 용이하게 제공할 수 있다.

Claims (20)

  1. 아래 화학식 1 내지 3으로 표시되는 서로 다른 전이금속 화합물 중 적어도 2종을 포함하는, 혼성 촉매 조성물:
    [화학식 1]
    Figure PCTKR2021002144-appb-img-000163
    [화학식 2]
    Figure PCTKR2021002144-appb-img-000164
    [화학식 3]
    Figure PCTKR2021002144-appb-img-000165
    위 화학식 1 내지 3에서, M은 각각 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고,
    X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, 또는 C 6-20 아릴아미도이며,
    R 1 내지 R 5와 R 6 내지 R 10은 각각 독립적으로 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 2-20 알케닐, 치환 또는 비치환된 C 6-20 아릴, 치환 또는 비치환된 C 1-20 알킬 C 6-20 아릴, 치환 또는 비치환된 C 6-20 아릴 C 1-20 알킬, 치환 또는 비치환된 C 1-20 헤테로알킬, 치환 또는 비치환된 C 3-20 헤테로아릴, 치환 또는 비치환된 C 1-20 알킬아미도, 치환 또는 비치환된 C 6-20 아릴아미도, 또는 치환 또는 비치환된 C 1-20 실릴이고,
    R 1 내지 R 5와 R 6 내지 R 10은 각각 독립적으로 인접한 기가 연결되어 치환 또는 비치환된 포화 또는 불포화 C 4-20 고리를 형성할 수 있다.
  2. 제1항에 있어서, M이 각각 지르코늄 또는 하프늄이고, X가 각각 할로겐 또는 치환 또는 비치환된 C 1-20 알킬이며, R 1 내지 R 5와 R 6 내지 R 10이 각각 수소, 치환 또는 비치환된 C 1-20 알킬, 치환 또는 비치환된 C 1-20 알케닐, 또는 치환 또는 비치환된 C 6-20 아릴인, 혼성 촉매 조성물.
  3. 제1항에 있어서, 위 화학식 1로 표시되는 전이금속 화합물이 아래 화학식 1-1 내지 1-12로 표시되는 전이금속 화합물 중 적어도 하나이고, 위 화학식 2로 표시되는 전이금속 화합물이 아래 화학식 2-1 내지 2-12로 표시되는 전이금속 화합물 중 적어도 하나이며, 위 화학식 3으로 표시되는 전이금속 화합물이 아래 화학식 3-1 내지 3-12로 표시되는 전이금속 화합물 중 적어도 하나인, 혼성 촉매 조성물:
    [화학식 1-1] [화학식 1-2] [화학식 1-3]
    Figure PCTKR2021002144-appb-img-000166
    Figure PCTKR2021002144-appb-img-000167
    Figure PCTKR2021002144-appb-img-000168
    [화학식 1-4] [화학식 1-5] [화학식 1-6]
    Figure PCTKR2021002144-appb-img-000169
    Figure PCTKR2021002144-appb-img-000170
    Figure PCTKR2021002144-appb-img-000171
    [화학식 1-7] [화학식 1-8] [화학식 1-9]
    Figure PCTKR2021002144-appb-img-000172
    Figure PCTKR2021002144-appb-img-000173
    Figure PCTKR2021002144-appb-img-000174
    [화학식 1-10] [화학식 1-11] [화학식 1-12]
    Figure PCTKR2021002144-appb-img-000175
    Figure PCTKR2021002144-appb-img-000176
    Figure PCTKR2021002144-appb-img-000177
    [화학식 2-1] [화학식 2-2] [화학식 2-3]
    Figure PCTKR2021002144-appb-img-000178
    Figure PCTKR2021002144-appb-img-000179
    Figure PCTKR2021002144-appb-img-000180
    [화학식 2-4] [화학식 2-5] [화학식 2-6]
    Figure PCTKR2021002144-appb-img-000181
    Figure PCTKR2021002144-appb-img-000182
    Figure PCTKR2021002144-appb-img-000183
    [화학식 2-7] [화학식 2-8] [화학식 2-9]
    Figure PCTKR2021002144-appb-img-000184
    Figure PCTKR2021002144-appb-img-000185
    Figure PCTKR2021002144-appb-img-000186
    [화학식 2-10] [화학식 2-11] [화학식 2-12]
    Figure PCTKR2021002144-appb-img-000187
    Figure PCTKR2021002144-appb-img-000188
    Figure PCTKR2021002144-appb-img-000189
    [화학식 3-1] [화학식 3-2] [화학식 3-3]
    Figure PCTKR2021002144-appb-img-000190
    Figure PCTKR2021002144-appb-img-000191
    Figure PCTKR2021002144-appb-img-000192
    [화학식 3-4] [화학식 3-5] [화학식 3-6]
    Figure PCTKR2021002144-appb-img-000193
    Figure PCTKR2021002144-appb-img-000194
    Figure PCTKR2021002144-appb-img-000195
    [화학식 3-7] [화학식 3-8] [화학식 3-9]
    Figure PCTKR2021002144-appb-img-000196
    Figure PCTKR2021002144-appb-img-000197
    Figure PCTKR2021002144-appb-img-000198
    [화학식 3-10] [화학식 3-11] [화학식 3-12]
    Figure PCTKR2021002144-appb-img-000199
    Figure PCTKR2021002144-appb-img-000200
    Figure PCTKR2021002144-appb-img-000201
    .
  4. (1) 아래 화학식 4로 표시되는 화합물과 아래 화학식 5로 표시되는 화합물을 용매에 용해시키는 단계; (2) 단계 (1)에서 얻어진 용액에 아래 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 아래 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는 단계를 포함하되, 화학식 4로 표시되는 화합물과 화학식 5로 표시되는 화합물의 몰 비가 10:1~1:10의 범위인, 혼성 촉매 조성물의 제조방법:
    [화학식 1]
    Figure PCTKR2021002144-appb-img-000202
    [화학식 2]
    Figure PCTKR2021002144-appb-img-000203
    [화학식 3]
    Figure PCTKR2021002144-appb-img-000204
    [화학식 4]
    Figure PCTKR2021002144-appb-img-000205
    [화학식 5]
    Figure PCTKR2021002144-appb-img-000206
    [화학식 6]
    MX 4
    위 화학식 1 내지 6에서, M, X, R 1 내지 R 5와 R 6 내지 R 10은 제1항에서 정의된 바와 같다.
  5. 제4항에 있어서, 위 화학식 4로 표시되는 화합물이 아래 화학식 4-1 내지 4-12로 표시되는 화합물 중 적어도 하나이고, 위 화학식 5로 표시되는 화합물이 아래 화학식 5-1 내지 5-6으로 표시되는 화합물 중 적어도 하나인, 혼성 촉매 조성물의 제조방법:
    [화학식 4-1] [화학식 4-2] [화학식 4-3]
    Figure PCTKR2021002144-appb-img-000207
    Figure PCTKR2021002144-appb-img-000208
    Figure PCTKR2021002144-appb-img-000209
    [화학식 4-4] [화학식 4-5] [화학식 4-6]
    Figure PCTKR2021002144-appb-img-000210
    Figure PCTKR2021002144-appb-img-000211
    Figure PCTKR2021002144-appb-img-000212
    [화학식 4-7] [화학식 4-8] [화학식 4-9]
    Figure PCTKR2021002144-appb-img-000213
    Figure PCTKR2021002144-appb-img-000214
    Figure PCTKR2021002144-appb-img-000215
    [화학식 4-10] [화학식 4-11] [화학식 4-12]
    Figure PCTKR2021002144-appb-img-000216
    Figure PCTKR2021002144-appb-img-000217
    Figure PCTKR2021002144-appb-img-000218
    [화학식 5-1] [화학식 5-2] [화학식 5-3]
    Figure PCTKR2021002144-appb-img-000219
    Figure PCTKR2021002144-appb-img-000220
    Figure PCTKR2021002144-appb-img-000221
    [화학식 5-4] [화학식 5-5] [화학식 5-6]
    Figure PCTKR2021002144-appb-img-000222
    Figure PCTKR2021002144-appb-img-000223
    Figure PCTKR2021002144-appb-img-000224
    .
  6. 제4항에 있어서, 위 화학식 6으로 표시되는 화합물이 ZrCl 4 또는 HfCl 4인, 혼성 촉매 조성물의 제조방법.
  7. 제4항에 있어서, 용매가 헥산, 펜탄, 톨루엔, 벤젠, 디클로로메탄, 디에틸에테르, 테트라히드로퓨란, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 1종을 포함하는, 혼성 촉매 조성물의 제조방법.
  8. 제4항에 있어서, 위 단계 (2)에서 반응 온도가 -30℃ 내지 120℃인, 혼성 촉매 조성물의 제조방법.
  9. 제4항에 있어서, (2') 위 단계 (2)에서 얻어진 혼성 촉매 조성물을 건조시키는 단계를 추가로 포함하는, 혼성 촉매 조성물의 제조방법.
  10. 제9항에 있어서, (2") 위 단계 (2')에서 얻어진 건조 혼성 촉매 조성물을 용매에 용해시킨 후 필터로 미반응물 및/또는 불순물을 제거하는 단계를 추가로 포함하는, 혼성 촉매 조성물의 제조방법.
  11. 제10항에 있어서, 용매가 헥산, 펜탄, 톨루엔, 벤젠, 디클로로메탄, 디에틸에테르, 테트라히드로퓨란, 아세톤 및 에틸아세테이트로 구성되는 군으로부터 선택되는 적어도 1종을 포함하는, 혼성 촉매 조성물의 제조방법.
  12. 제1항 내지 제3항 중 어느 한 항의 혼성 촉매 조성물; 및 조촉매 화합물을 포함하는 올레핀 중합용 촉매.
  13. 제12항에 있어서, 조촉매 화합물이 아래 화학식 7로 표현되는 화합물, 화학식 8로 표현되는 화합물 및 화학식 9로 표현되는 화합물로 구성되는 군으로부터 선택되는 하나 이상인 올레핀 중합용 촉매:
    [화학식 7]
    Figure PCTKR2021002144-appb-img-000225
    [화학식 8]
    Figure PCTKR2021002144-appb-img-000226
    [화학식 9]
    [L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] -
    위 화학식 7에서, n은 2 이상의 정수이고, R a는 할로겐 원자, C 1-20 탄화수소기 또는 할로겐으로 치환된 C 1-20 탄화수소기이고,
    위 화학식 8에서, D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기이며,
    위 화학식 9에서, L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기이다.
  14. 제13항에 있어서, 화학식 7로 표시되는 화합물이 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 구성되는 군으로부터 선택되는 적어도 하나인 올레핀 중합용 촉매.
  15. 제13항에 있어서, 화학식 8로 표시되는 화합물이 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 및 트리부틸보론으로 구성되는 군으로부터 선택되는 적어도 하나인 올레핀 중합용 촉매.
  16. 제13항에 있어서, 화학식 9로 표시되는 화합물이 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( p-톨릴)보론, 트리메틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라( p-톨릴)알루미늄, 트리프로필암모니움테트라( p-톨릴)알루미늄, 트리에틸암모니움테트라( o, p-디메틸페닐)알루미늄, 트리부틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라( p-톨릴)보론, 트리에틸암모니움테트라( o, p-디메틸페닐)보론, 트리부틸암모니움테트라( p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라( p-트리플로로메틸페닐)보론 및 트리페닐카보니움테트라펜타플로로페닐보론으로 구성되는 군으로부터 선택되는 적어도 하나인 올레핀 중합용 촉매.
  17. 제12항에 있어서, 혼성 촉매 조성물, 조촉매 화합물 또는 이 둘 모두를 담지하는 담체를 더 포함하는 올레핀 중합용 촉매.
  18. 제17항에 있어서, 담체가 실리카, 알루미나 및 마그네시아로 구성되는 군으로부터 선택되는 적어도 하나를 포함하는 올레핀 중합용 촉매.
  19. 제17항에 있어서, 담체에 담지되는 혼성 전이금속 화합물의 총량이 담체 1 g을 기준으로 0.001~1 mmole이며, 담체에 담지되는 조촉매 화합물의 양이 담체 1 g을 기준으로 2~15 mmole인 올레핀 중합용 촉매.
  20. (1) 아래 화학식 4로 표시되는 화합물과 아래 화학식 5로 표시되는 화합물을 용매에 용해시키는 단계; (2) 단계 (1)에서 얻어진 용액에 아래 화학식 6으로 표시되는 화합물을 첨가한 후 교반하에 반응시켜, 아래 화학식 1 내지 3으로 표시되는 전이금속 화합물 중 적어도 2종을 포함하는 혼성 촉매 조성물을 얻는 단계; (3) 단계 (2)에서 얻어진 혼성 촉매 조성물, 조촉매 화합물 또는 둘 다를 담체에 담지시키는 단계를 포함하되, 화학식 4로 표시되는 화합물과 화학식 5로 표시되는 화합물의 몰 비가 10:1~1:10의 범위인, 올레핀 중합용 촉매의 제조방법:
    [화학식 1]
    Figure PCTKR2021002144-appb-img-000227
    [화학식 2]
    Figure PCTKR2021002144-appb-img-000228
    [화학식 3]
    Figure PCTKR2021002144-appb-img-000229
    [화학식 4]
    Figure PCTKR2021002144-appb-img-000230
    [화학식 5]
    Figure PCTKR2021002144-appb-img-000231
    [화학식 6]
    MX 4
    위 화학식 1 내지 6에서, M, X, R 1 내지 R 5와 R 6 내지 R 10은 제1항에서 정의된 바와 같다.
PCT/KR2021/002144 2020-02-26 2021-02-19 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법 WO2021172818A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022551288A JP7466675B2 (ja) 2020-02-26 2021-02-19 混成触媒組成物、これを含む触媒およびこれらの調製方法
US17/904,961 US20230139681A1 (en) 2020-02-26 2021-02-19 Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same
EP21760305.9A EP4112650A4 (en) 2020-02-26 2021-02-19 MIXED CATALYTIC COMPOSITION, CATALYST COMPRISING THE SAME, AND METHODS OF PREPARING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0023520 2020-02-26
KR1020200023520A KR102547238B1 (ko) 2020-02-26 2020-02-26 혼성 촉매 조성물 및 이를 포함하는 올레핀 중합용 촉매의 제조방법

Publications (1)

Publication Number Publication Date
WO2021172818A1 true WO2021172818A1 (ko) 2021-09-02

Family

ID=77491773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002144 WO2021172818A1 (ko) 2020-02-26 2021-02-19 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법

Country Status (5)

Country Link
US (1) US20230139681A1 (ko)
EP (1) EP4112650A4 (ko)
JP (1) JP7466675B2 (ko)
KR (1) KR102547238B1 (ko)
WO (1) WO2021172818A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030619A1 (en) * 2022-08-05 2024-02-08 Dow Global Technologies Llc Symmetrical hafnium metallocene for making polymers with broad-orthogonal composition distributions

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US20070043248A1 (en) * 2005-07-19 2007-02-22 Wu Margaret M Process to produce low viscosity poly-alpha-olefins
KR101437509B1 (ko) 2012-12-03 2014-09-03 대림산업 주식회사 성형성 및 기계적 물성이 우수한 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 중합 방법
JP2015113282A (ja) * 2013-12-09 2015-06-22 広栄化学工業株式会社 ハフニウム化合物とジルコニウム化合物の混合組成物およびその製造方法
KR101797890B1 (ko) 2017-01-20 2017-11-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
KR20190110961A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 혼성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914894B1 (ko) * 1969-08-25 1974-04-11
US6242545B1 (en) 1997-12-08 2001-06-05 Univation Technologies Polymerization catalyst systems comprising substituted hafinocenes
JP5414971B2 (ja) * 2005-12-28 2014-02-12 日本ポリエチレン株式会社 エチレン系樹脂組成物によるフィルム
CN101501083B (zh) 2006-07-19 2012-12-05 埃克森美孚化学专利公司 制备高粘度流体的方法
KR101692346B1 (ko) * 2016-04-27 2017-01-03 한화케미칼 주식회사 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
WO2018067289A1 (en) 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
KR102372974B1 (ko) * 2019-04-05 2022-03-10 한화솔루션 주식회사 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6894128B2 (en) 1999-10-22 2005-05-17 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
US20070043248A1 (en) * 2005-07-19 2007-02-22 Wu Margaret M Process to produce low viscosity poly-alpha-olefins
KR101437509B1 (ko) 2012-12-03 2014-09-03 대림산업 주식회사 성형성 및 기계적 물성이 우수한 멀티모달 폴리올레핀 수지 제조를 위한 촉매 조성물 및 이를 이용한 중합 방법
JP2015113282A (ja) * 2013-12-09 2015-06-22 広栄化学工業株式会社 ハフニウム化合物とジルコニウム化合物の混合組成物およびその製造方法
KR101797890B1 (ko) 2017-01-20 2017-11-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
KR20190110961A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 혼성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JANIAK C, ET AL.: "ANALYSES OF PROPENE AND 1-HEXENE OLIGOMERS FROM ZIRCONOCENE/MAO CATALYSTS - MECHANISTIC IMPLICATIONS BY NMR, SEC, AND MALDI-TOF MS", MACROMOLECULAR CHEMISTRY AND PHYSICS, WILEY-VCH VERLAG, WEINHEIM., DE, vol. 203, no. 01, 9 January 2002 (2002-01-09), DE, pages 129 - 138, XP001125330, ISSN: 1022-1352, DOI: 10.1002/1521-3935(20020101)203:1<129::AID-MACP129>3.0.CO;2-C *
See also references of EP4112650A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030619A1 (en) * 2022-08-05 2024-02-08 Dow Global Technologies Llc Symmetrical hafnium metallocene for making polymers with broad-orthogonal composition distributions

Also Published As

Publication number Publication date
EP4112650A1 (en) 2023-01-04
JP2023515574A (ja) 2023-04-13
US20230139681A1 (en) 2023-05-04
KR102547238B1 (ko) 2023-06-26
JP7466675B2 (ja) 2024-04-12
KR20210108665A (ko) 2021-09-03
EP4112650A4 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2020204480A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
EP2718303A2 (en) New cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and -olefin using the same
WO2020105922A1 (ko) 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
WO2017010648A1 (ko) 메탈로센 화합물 및 이의 제조방법
WO2015046930A1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
WO2022039418A1 (ko) 혼성 전이금속 화합물을 포함하는 촉매, 이를 이용하여 제조된 올레핀계 중합체 및 이들의 제조방법
WO2020130452A1 (ko) 올레핀 중합용 촉매 및 이를 이용하여 제조된 올레핀계 중합체
WO2020101373A1 (ko) 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
WO2015057001A1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2019038605A1 (en) NEW TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND PROCESS FOR PREPARING HOMOPOLYMER OR ETHYLENE COPOLYMER AND ALPHA-OLEFIN USING THE SAME
WO2021241927A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2021172818A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2021020778A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022124695A1 (ko) 올레핀계 중합체 및 그 제조방법
WO2022108233A1 (ko) 올레핀계 중합체, 그로부터 제조된 필름 및 그 제조방법
WO2021210835A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2022103045A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2021075801A1 (ko) 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법
WO2018106029A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2018122693A1 (ko) 신규한 시클로펜타[B]티오펜일 전이금속 화합물, 이를 포함하는 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551288

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760305

Country of ref document: EP

Effective date: 20220926