WO2015057001A1 - 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법 - Google Patents

헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법 Download PDF

Info

Publication number
WO2015057001A1
WO2015057001A1 PCT/KR2014/009753 KR2014009753W WO2015057001A1 WO 2015057001 A1 WO2015057001 A1 WO 2015057001A1 KR 2014009753 W KR2014009753 W KR 2014009753W WO 2015057001 A1 WO2015057001 A1 WO 2015057001A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
alkyl
aryl
transition metal
Prior art date
Application number
PCT/KR2014/009753
Other languages
English (en)
French (fr)
Inventor
도영실
조윤희
이충훈
정승환
금돈호
박상은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14853389.6A priority Critical patent/EP2905285B1/en
Priority to CN201480003124.3A priority patent/CN104797586B/zh
Priority to US14/439,159 priority patent/US9359388B2/en
Publication of WO2015057001A1 publication Critical patent/WO2015057001A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/184Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine mixed aromatic/aliphatic ring systems, e.g. indoline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/30Non-coordinating groups comprising sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/60Groups characterized by their function
    • B01J2540/62Activating groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present specification relates to a transition metal compound having a novel structure, a catalyst composition comprising the same, and a method of preparing a polymer using the same. More specifically, the present disclosure relates to a transition metal compound having a novel structure in which a hetero atom is introduced, a catalyst composition comprising the same, and a method of preparing a polymer using the same.
  • CGC Constrained-Geometry Catalyst
  • US Pat. No. 5,064,802 The advantages of CGC in comparison to metallocene catalysts known to the prior art in the copolymerization of and alpha-olefins can be summarized into two main categories: (1) high molecular weight with high activity even at high polymerization temperature. It produces a polymer, and (2) also has excellent copolymerizability of alpha-olefins with high steric hindrances such as 1-hexene and 1-octene.
  • various characteristics of CGC are gradually known, and efforts to synthesize derivatives thereof and use them as polymerization catalysts have been actively conducted in academia and industry.
  • the present specification describes a transition metal compound having a novel structure having a hetero atom, a catalyst composition comprising the same, and a method of preparing a polymer using the same.
  • An exemplary embodiment of the present specification provides a transition metal compound of Formula 1 below.
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are the same as or different from each other, and each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 6 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkyl amido having 1 to 20 carbon atoms; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms,
  • R 1 to R 4 are the same as or different from each other, and each independently, hydrogen; Silyl; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or a metalloid radical of a Group 14 metal substituted with hydrocarbyl having 1 to 20 carbon atoms; R 1 and R 2 may be connected to each other or R 3 and R 4 may be connected to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms; The aliphatic ring or aromatic ring may be substituted with halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, or aryl having 6 to 20 carbon atoms,
  • R 5 to R 9 are the same as or different from each other, and each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms; At least two of R 5 to R 9 may be linked to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms; The aliphatic ring or aromatic ring may be substituted with halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, or aryl having 6 to 20 carbon atoms.
  • Another embodiment of the present specification provides a catalyst composition including the transition metal compound of Formula 1.
  • Another embodiment of the present specification provides a method of preparing a polymer using the catalyst composition.
  • the position of the hetero atom of the thiophene introduced into the pentagonal ring pi-ligand in which the amido ligand and the ortho-phenylene form a condensed ring and is bonded to the ortho-phenylene is controlled.
  • the present invention can be used as a catalyst having excellent copolymerizability, it can be used to prepare a polymer having a low density.
  • the transition metal compound of Formula 1 described above is provided.
  • the transition metal compound of Formula 1 described in the present specification has a narrow Cp-MN angle in terms of its structure in which the metal site is linked by a cyclopentadienyl ligand in which an amido group is linked to a phenylene bridge in a ring form.
  • the Q 1 -MQ 2 angle that is approached is characterized by keeping wide.
  • the cyclopentadiene, phenylene bridge, nitrogen and metal sites can be connected in order to form a more stable and rigid five-membered ring structure.
  • the transition metal compound of Formula 1 may serve as a catalyst capable of producing a low density polymer having excellent copolymerizability.
  • polystyrene resin when the compound is reacted with a methylaluminoxane or a cocatalyst such as B (C 6 F 5 ) 3 to be activated and then applied to an olefin polymerization, high activity, high molecular weight, high copolymerization, It is possible to produce polyolefins having the characteristics of.
  • low density polyolefin copolymers having a density of less than 0.91 g / cc can be prepared because a large amount of alpha-olefin can be introduced as well as linear low density polyethylene having a density of 0.91 to 0.93 g / cc.
  • MWD Molecular Weight Distribution
  • CGC Constrained-Geometry Catalyst, hereinafter abbreviated as CGC
  • MWD Molecular Weight Distribution
  • CGC Constrained-Geometry Catalyst
  • the compound of Formula 1 is preferably used to prepare a catalyst for the polymerization of olefin monomers, but is not limited thereto.
  • the compound of Formula 1 may be applied to all fields in which the transition metal compound may be used.
  • alkyl and alkenyl may be straight or branched chains, respectively.
  • silyl may be silyl substituted with alkyl having 1 to 20 carbon atoms, for example, trimethylsilyl or triethylsilyl.
  • aryl includes monocyclic or polycyclic aryl, and specifically phenyl, naphthyl, anthryl, phenanthryl, chrysenyl, pyrenyl and the like.
  • R 8 and R 9 in Formula 1 combine with each other to form a 5- or 6-membered aliphatic ring.
  • Formula 1 may be represented by the following formula (2).
  • Cy is a 5 or 6 membered aliphatic ring
  • Each R 10 is independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms;
  • n is an integer of 1 to 4 when Cy is a 5 membered aliphatic ring, an integer of 1 to 6 when Cy is a 6 membered aliphatic ring,
  • Chemical Formula 2 may be represented by the following Chemical Formula 3 or 4.
  • R 11 to R 16 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 17 to R 20 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • Chemical Formula 2 may be represented by the following Chemical Formula 5 or 6.
  • R and R 11 to R 16 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms, p is an integer of 1 to 4,
  • R and R 17 to R 20 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms, p is an integer of 1 to 4,
  • R One And R 2 Is hydrogen or alkyl having 1 to 20 carbon atoms.
  • R One And R 2 Is hydrogen or alkyl having 1 to 6 carbon atoms.
  • R 1 and R 2 is hydrogen or methyl.
  • At least one of R 1 and R 2 is alkyl having 1 to 20 carbon atoms.
  • R 1 is alkyl having 1 to 20 carbon atoms
  • R 2 is hydrogen
  • R 1 is alkyl having 1 to 6 carbon atoms
  • R 2 is hydrogen
  • R 1 is methyl
  • R 2 is hydrogen
  • R 1 and R 2 is alkyl having 1 to 20 carbon atoms.
  • R 1 and R 2 is alkyl having 1 to 6 carbon atoms.
  • R 1 and R 2 is methyl.
  • R 3 To R 7 are the same as or different from each other, and each independently, hydrogen; Alkyl having 1 to 20 carbon atoms; Or alkenyl having 2 to 20 carbon atoms.
  • R 3 To R 7 are the same as or different from each other, and each independently, hydrogen; Or alkyl having 1 to 20 carbon atoms.
  • R 3 to R 7 is hydrogen.
  • R 11 to R 16 in Chemical Formula 3 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Or alkenyl having 2 to 20 carbon atoms.
  • R 11 to R 16 in Chemical Formula 3 are each independently hydrogen; Or alkyl having 1 to 20 carbon atoms.
  • At least one of R 11 to R 16 of the general formula 3 is alkyl having 1 to 20 carbon atoms.
  • R 11 To R 15 Is hydrogen
  • R 16 Is alkyl having 1 to 20 carbon atoms.
  • R 11 To R 15 Is hydrogen
  • R 16 Is alkyl having 1 to 6 carbon atoms.
  • R 11 To R 16 In Formula 3 is hydrogen.
  • R 17 to R 20 in Chemical Formula 4 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Or alkenyl having 2 to 20 carbon atoms.
  • R 17 to R 20 in Chemical Formula 4 are each independently hydrogen; Or alkyl having 1 to 20 carbon atoms.
  • At least one of R 17 to R 20 of the general formula 4 is alkyl having 1 to 20 carbon atoms.
  • R 17 to R 19 in the general formula 4 is hydrogen
  • R 20 is alkyl having 1 to 20 carbon atoms.
  • R 17 to R 19 of the general formula 4 is hydrogen
  • R 20 is alkyl having 1 to 6 carbon atoms.
  • R 17 to R 19 of the formula 4 is hydrogen, R 20 is methyl.
  • R 17 to R 20 of the formula 4 is hydrogen.
  • M is Ti, Hf or Zr.
  • M is Ti
  • Q 1 and Q 2 are each independently halogen.
  • Q 1 and Q 2 is Cl.
  • R One , R 2 And R 11 To R 16 Is hydrogen or alkyl having 1 to 6 carbon atoms.
  • R One And R 2 Is alkyl having 1 to 6 carbon atoms
  • R 11 To R 16 Is hydrogen.
  • R One And R 16 Is alkyl having 1 to 6 carbon atoms
  • R 2 Is hydrogen or alkyl of 1 to 6 carbon atoms
  • R 11 To R 15 Is hydrogen.
  • R One , R 2 And R 17 To R 20 Is hydrogen or alkyl having 1 to 6 carbon atoms.
  • R One And R 2 Is alkyl having 1 to 6 carbon atoms
  • R 17 To R 20 Is hydrogen.
  • R One And R 20 It is alkyl having 1 to 6 carbon atoms
  • R 2 Is hydrogen or alkyl of 1 to 6 carbon atoms
  • R 17 To R 19 Is hydrogen.
  • the compound of Formula 1 is selected from compounds represented by the following formula.
  • the compound of Formula 1 may be prepared by the following reaction scheme.
  • the present disclosure also provides a catalyst composition comprising the compound of Formula 1.
  • the catalyst composition may further comprise a promoter.
  • a promoter those known in the art may be used.
  • the catalyst composition may further include at least one of the following Chemical Formulas 7 to 12 as a promoter.
  • each R 21 is independently a halogen radical; Hydrocarbyl radicals having 1 to 20 carbon atoms; Or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen; a is an integer of 2 or more;
  • D is aluminum or boron;
  • Each R 22 is independently each independently a halogen radical; Hydrocarbyl radicals having 1 to 20 carbon atoms; Or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen;
  • L is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • Each A is independently aryl having 6 to 20 carbon atoms or alkyl having 1 to 20 carbon atoms, in which at least one hydrogen atom may be substituted with a substituent;
  • the substituent is halogen, hydrocarbyl having 1 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, or aryloxy having 6 to 20 carbon atoms.
  • a method of preparing the catalyst composition comprising: first contacting a transition metal compound represented by Formula 1 with a compound represented by Formula 7 or Formula 8 to obtain a mixture; And adding the compound represented by Chemical Formula 9 to the mixture.
  • a method of preparing a catalyst composition is provided by contacting a transition metal compound represented by Chemical Formula 1 with a compound represented by Chemical Formula 9.
  • the molar ratio of the compound represented by Formula 7 or Formula 8 to the transition metal compound of Formula 1 is preferably 1: 2 to 1: 5,000, more preferably Is 1:10 to 1: 1,000, and most preferably 1:20 to 1: 500.
  • the molar ratio of the compound represented by Formula 9 to the transition metal compound of Formula 1 is preferably 1: 1 to 1:25, more preferably 1: 1 to 1:10, and most preferably 1: 1 to 1: 5.
  • the amount of the alkylating agent is very small so that alkylation of the metal compound does not proceed completely and is greater than 1: 5,000. In this case, the alkylation of the metal compound is performed, but there is a problem that the activation of the alkylated metal compound is not completely performed due to a side reaction between the remaining excess alkylating agent and the activator of Formula 9.
  • the ratio of the compound represented by the formula (9) to the transition metal compound of the formula (1) is less than 1: 1, the amount of the activator is relatively small, the activation of the metal compound is not fully achieved, the activity of the resulting catalyst composition is inferior If the problem is greater than 1:25, the metal compound is fully activated, but there is a problem in that the unit price of the catalyst composition is not economically economical due to the excess activator remaining or the purity of the produced polymer is inferior.
  • the molar ratio of the compound represented by Formula 9 to the transition metal compound of Formula 1 is preferably 1: 1 to 1: 500, and more preferably 1: 1 to 1: 500. 1:50, most preferably 1: 2 to 1:25.
  • the molar ratio is less than 1: 1, the amount of the activator is relatively small, so that the activation of the metal compound is not fully performed, and thus the activity of the catalyst composition generated is inferior.
  • the molar ratio is greater than 1: 500, the activation of the metal compound is Although completely made, there is a problem that the cost of the catalyst composition is not economically low or the purity of the resulting polymer is low due to the excess activator remaining.
  • Hydrocarbon solvents such as pentane, hexane, heptane and the like or aromatic solvents such as benzene and toluene may be used as the reaction solvent in the preparation of the composition, but the solvent is not necessarily limited thereto and any solvents available in the art may be used. Can be.
  • transition metal compound and the cocatalyst of the formula (1) may be used in a form supported on a carrier.
  • a carrier silica or alumina may be used.
  • the compound represented by the formula (7) is not particularly limited as long as it is an alkyl aluminoxane.
  • Preferred examples include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and the like, and particularly preferred compound is methyl aluminoxane.
  • the compound represented by Formula 8 is not particularly limited, but preferred examples thereof include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, and tri-s-butylaluminum , Tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum Ethoxide, trimethylboron, triethylboron, triisobutylboron, tripropylboron, tributylboron and the like, and particularly preferred compounds are selected from trimethylaluminum, triethylaluminum and triisobutylaluminum.
  • Examples of the compound represented by Formula 9 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra (p-tolyl) Boron, trimethylammonium tetra (o, p-dimethylphenyl) boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammonium tetra Pentafluorophenylboron, N, N-diethylanilidedium tetrapetylboron, N, N-diethylanilidediumtetraphenylboron, N, N-diethylanilinium te
  • a transition metal compound of Chemical Formula 1 And a catalyst composition comprising at least one compound selected from compounds represented by formulas (7) to (9) is contacted with at least one olefin monomer to produce a polyolefin homopolymer or copolymer.
  • the most preferable manufacturing process using the catalyst composition is a solution process, and when the composition is used together with an inorganic carrier such as silica, it is also applicable to a slurry or a gas phase process.
  • the activated catalyst composition is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for the olefin polymerization process, for example, pentane, hexane, heptane, nonane, decan, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloro It can be dissolved or diluted in hydrocarbon solvents substituted with chlorine atoms such as methane and chlorobenzene.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
  • olefin monomer examples include ethylene, alpha-olefin, cyclic olefin, and the like, and diene olefin monomers or triene olefin monomers having two or more double bonds. Polymerization is also possible.
  • the monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-hexadecene, 1-ikocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1, 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethyl styrene, etc., These monomers may be mixed and copolymerized.
  • the catalyst composition has a high molecular weight and has a high molecular weight of 0.91 g / cc or less in the copolymerization reaction of a monomer having high steric hindrance such as ethylene and 1-octene even at a high reaction temperature of 90 ° C. or higher. It is characterized by the possibility of manufacturing.
  • the polymer produced by the production method of the present invention has a density of less than 0.91 g / cc.
  • the polymer produced by the production method of the present invention has a density of less than 0.89 g / cc.
  • the polymer produced by the production method of the present invention has a density of 0.885 g / cc or less.
  • the polymer prepared by the production method of the present invention has a Tc of 75 ° C or less.
  • the polymer prepared by the production method of the present invention has a Tm of 95 ° C or less.
  • the polymer prepared by the production method of the present invention has a Tm of 91 ° C or less.
  • the polymer produced by the production method of the present invention has a Tm of less than 87 °C.
  • the polymer prepared by the production method of the present invention has a Mw of 100,000 or more.
  • the polymer prepared by the production method of the present invention has a Mw of 100,000 to 1,000,000.
  • the polymer produced by the production method of the present invention has an MWD of 3 or less.
  • the polymer produced by the production method of the present invention has an MWD of 1 to 3.
  • the polymer produced by the production method of the present invention has an MWD of 1.5 to 2.9 or less.
  • the polymer produced by the production method of the present invention has an MWD of 2 to 2.85 or less.
  • the polymer according to the invention has an MWD of 1 to 3, an Mw of 100,000 to 1 million and a density of less than 0.91 g / cc.
  • the ketone compound (540 mg, 3.57 mmol) was dissolved in diethyl ether solution and slowly After stirring for 12 hours at room temperature, 10mL of water was added, and hydrochloric acid (2N, 20mL) was added thereto, stirred for 2 minutes, organic solvent was extracted, neutralized with NaHCO 3 aqueous solution, water was extracted with MgSO 4, and the like. The yellow oil was obtained through a silica gel column (230 mg, 24% yield).
  • n -butyllithium (1.15 mmol, 2.1 eq) was slowly added dropwise at 20 ° C. The formation of a yellow slurry was observed, the temperature was slowly raised to room temperature, and then stirred at room temperature for 12 hours.
  • the precipitated polymer was washed 2 to 3 times with ethanol and acetone, and then dried in an 80 ° C. vacuum oven for at least 12 hours, and then measured for physical properties.
  • the melt index (Melt Index, MI) of the polymer was measured by ASTM D-1238 (Condition E, 190 ° C., 2.16 Kg load).
  • the density of the polymer was measured by using a sample treated with an antioxidant (1,000 ppm) in a 180 ° C. press mold to make a sheet having a thickness of 3 mm and a radius of 2 cm, and cooling it at 10 ° C./min to METTLER. (Mettler) was measured on a balance.
  • the transition metal compound according to an embodiment of the present invention is excellent in copolymerizability and can produce a low density polymer, it may be possible to prepare a copolymer for various uses.

Abstract

본 명세서에는 헤테로 원자가 도입된 신규한 구조의 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법이 기재된다. 본 발명의 일 실시예에 따른 상기 전이금속 화합물은 공중합성이 우수하고 저밀도 고분자를 제조할 수 있으므로 다양한 용도의 공중합체 제조가 가능할 수 있다.

Description

헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
본 명세서에는 신규한 구조의 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법에 관한 것이다. 더욱 구체적으로, 본 명세서에는 헤테로 원자가 도입된 신규한 구조의 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법에 관한 것이다.
다우(Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2 (Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데(미국 특허 등록 제5,064,802호), 에틸렌과 알파-올레핀의 공중합 반응에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며, (2) 1-헥센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다. 그 외에도 중합 반응 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 중합 촉매로 사용하고자 하는 노력이 학계 및 산업계에서 활발히 이루어졌다.
그 중 하나의 접근 방법으로 실리콘 브릿지 대신에 다른 다양한 브릿지 및 질소 치환체가 도입된 금속 화합물의 합성과 이의 중합이 시도되었다. 최근까지 알려진 대표적인 금속 화합물들을 열거하면 하기 화합물 (1) 내지 (4) 와 같다 (Chem. Rev. 2003, 103, 283).
Figure PCTKR2014009753-appb-I000001
(1)
Figure PCTKR2014009753-appb-I000002
(2)
Figure PCTKR2014009753-appb-I000003
(3)
Figure PCTKR2014009753-appb-I000004
(4)
상기 화합물 (1) 내지 (4)는 CGC 구조의 실리콘 브릿지 대신에 포스포러스(1), 에틸렌 또는 프로필렌(2), 메틸리덴(3), 및 메틸렌(4) 브릿지가 각각 도입되어 있으나, 에틸렌 중합 또는 알파-올레핀과의 공중합 적용시에 CGC 대비하여 활성도 또는 공중합 성능 등의 측면에서 향상된 결과들을 얻지 못했다.
또한, 다른 접근 방법으로는 상기 CGC 의 아미도 리간드 대신에 옥시도 리간드로 구성된 화합물들 많이 합성되었으며, 이를 이용한 중합도 일부 시도되었다. 그 예들을 정리하면 다음과 같다.
Figure PCTKR2014009753-appb-I000005
(5)
Figure PCTKR2014009753-appb-I000006
(6)
Figure PCTKR2014009753-appb-I000007
(7)
Figure PCTKR2014009753-appb-I000008
(8)
화합물 (5)는 T. J. Marks 등에 의해 보고된 내용으로 Cp(시클로펜타디엔) 유도체와 옥시도 리간드가 오르토-페닐렌기에 의해 가교된 것이 특징이다 (Organometallics 1997, 16, 5958). 동일한 가교를 가지고 있는 화합물 및 이를 이용한 중합이 Mu 등에 의해서도 보고되었다(Organometallics 2004, 23, 540). 또한, 인데닐 리간드와 옥시도 리간드가 동일한 오르토-펜닐렌기에 의해 가교된 것이 Rothwell 등에 의해 발표되었다(Chem. Commun. 2003, 1034). 화합물 (6)은 Whitby 등이 보고한 내용으로 탄소 3개에 의해 시클로펜타니엔닐 리간드와 옥시도 리간드가 교각된 것이 특징인데(Organometallics 1999, 18, 348), 이런 촉매들이 신디오탁틱(syndiotactic) 폴리스티렌 중합에 활성을 보인다고 보고 되었다. 유사한 화합물이 또한 Hessen등에 의해서도 보고되었다(Organometallics 1998, 17, 1652). 화합물(7)은 Rau 등이 보고한 것으로 고온 및 고압(210 ℃, 150MPa)에서 에틸렌 중합 및 에틸렌/1-헥센 공중합에 활성을 보이는 것이 특징이다(J. Organomet. Chem. 2000, 608, 71). 또한, 이후 이와 유사한 구조의 촉매 합성(8) 및 이를 이용한 고온, 고압 중합이 스미토모 (Sumitomo)사에 의하여 특허 출원되었다(미국 특허 등록 제6,548,686호). 그러나, 상기 시도들 중에서 실제로 상업 공장에 적용되고 있는 촉매들은 소수이다. 따라서, 보다 향상된 중합 성능을 보여주는 촉매가 요구되며, 이러한 촉매들을 간단하게 제조하는 방법이 요구된다.
[선행기술문헌]
[특허문헌]
미국 특허 등록 제5,064,802호
미국 특허 등록 제6,548,686호
[비특허문헌]
Chem. Rev. 2003, 103, 283
Organometallics 1997, 16, 5958
Organometallics 2004, 23, 540
Chem. Commun. 2003, 1034
Organometallics 1999, 18, 348
Organometallics 1998, 17, 1652
J. Organomet. Chem. 2000, 608, 71
본 명세서에는 헤테로 원자를 갖는 신규한 구조의 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법이 기재된다.
본 명세서의 일 실시상태는 하기 화학식 1의 전이금속 화합물을 제공한다.
[화학식 1]
Figure PCTKR2014009753-appb-I000009
상기 화학식 1에 있어서,
M은 4족 전이금속이고,
Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이며; 상기 R1과 R2이 서로 연결되거나 R3과 R4가 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
R5 내지 R9는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며; R5 내지 R9 중 적어도 2개가 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
본 명세서의 또 하나의 실시상태는 상기 화학식 1의 전이금속 화합물을 포함하는 촉매 조성물을 제공한다.
본 명세서의 또 하나의 실시상태는 상기 촉매 조성물을 이용한 중합체의 제조방법을 제공한다.
본 발명에 따른 전이금속 화합물은, 아미도 리간드와 오르소-페닐렌이 축합 고리를 형성하고 또한 오르소-페닐렌에 결합한 5각 고리 파이-리간드에 도입된 티오펜의 헤테로 원자의 위치가 조절됨에 따라 공중합성이 우수한 촉매로서 사용될 수 있고, 이를 이용하여 저밀도를 가지는 고분자를 제조할 수 있다.
본 명세서의 일 실시상태에 따르면, 전술한 화학식 1의 전이금속 화합물을 제공한다.
본 명세서에 기재된 화학식 1의 전이금속 화합물은 페닐렌 브릿지에 고리 형태로 연결되어 있는 아미도 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속 자리가 연결되어 있어 구조적으로 Cp-M-N 각도는 좁고, 모노머가 접근하는 Q1-M-Q2 각도는 넓게 유지하는 특징이 있다. 따라서, 시클로펜타디엔, 페닐렌 브릿지, 질소 및 금속 자리가 순서대로 연결되어 더욱 안정하고 단단한 5 각형의 링 구조를 이룰 수 있다. 또한, 상기 화학식 1로 표시되는 화합물 구조에서는 시클로펜타디엔의 3번 위치에 헤테로고리인 황(S) 원자가 결합되도록 티오펜이 융합됨으로써, 촉매로 사용시 활성이 증가하고, 제조하는 중합체의 분자량 증가가 훨씬 크게 나타날 수 있다. 따라서, 상기 화학식 1의 전이금속 화합물은 공중합성이 우수하고 저밀도 고분자를 제조할 수 있는 촉매 역할을 할 수 있다.
일 예로서, 상기 화합물을 메틸알루미녹산 또는 B(C6F5)3와 같은 조촉매와 반응시켜 활성화한 다음에 올레핀 중합에 적용시, 높은 중합 온도에서도 고활성, 고분자량 및 고공중합성 등의 특징을 갖는 폴리올레핀을 생성하는 것이 가능하다. 특히, 촉매의 구조적인 특징상 밀도 0.91 ~ 0.93 g/cc 수준의 선형 저밀도 폴리에틸렌 뿐만 아니라 많은 양의 알파-올레핀이 도입 가능하기 때문에 밀도 0.91 g/cc 미만의 저밀도 폴리올레핀 공중합체도 제조할 수 있다. 특히, 상기 전이금속 화합물을 포함하는 촉매 조성물을 사용하여 CGC(Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다) 대비 MWD(Molecular Weight Distribution, 이하에서 MWD로 약칭한다)가 좁고 공중합성이 우수하며 저밀도 영역에서도 고분자량을 갖는 중합체의 제조가 가능하다. 또한, 티오펜이 융합된 시클로펜타디에닐 및 퀴놀린계에 다양한 치환체를 도입할 수 있는데, 이는 궁극적으로 금속 주위의 전자적, 입체적 환경을 쉽게 제어함으로써 생성되는 폴리올레핀의 구조 및 물성 등을 조절 가능하다. 상기 화학식 1의 화합물은 올레핀 단량체의 중합용 촉매를 제조하는 데 사용되는 것이 바람직하나 이에 한정되지는 않으며 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다.
본 명세서에 있어서, 알킬 및 알케닐은 각각 직쇄 또는 분지쇄일 수 있다.
본 명세서에 있어서, 실릴은 탄소수 1 내지 20의 알킬로 치환된 실릴일 수 있으며, 예컨대 트리메틸실릴 또는 트리에틸실릴일 수 있다.
본 명세서에 있어서, 아릴은 단환 또는 다환의 아릴을 포함하며, 구체적으로 페닐, 나프틸, 안트릴, 페난트릴, 크라이세닐, 파이레닐 등이 있다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 1 중 R8과 R9가 서로 결합하여 5원 또는 6원의 지방족 고리를 형성한다. 상기 화학식 1은 하기 화학식 2로 표시될 수 있다.
화학식 2
Figure PCTKR2014009753-appb-C000001
상기 화학식 2에 있어서,
Cy는 5원 또는 6원 지방족 고리이고,
R10은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며;
m은 Cy가 5원 지방족 고리인 경우 1 내지 4의 정수이고, Cy가 6원 지방족 고리인 경우 1 내지 6의 정수이며,
나머지 치환기는 화학식 1에서 정의한 바와 같다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 2는 하기 화학식 3 또는 4로 표시될 수 있다.
화학식 3
Figure PCTKR2014009753-appb-C000002
상기 화학식 3에 있어서,
R11 내지 R16은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
나머지 치환기는 화학식 1과 동일하다.
화학식 4
Figure PCTKR2014009753-appb-C000003
상기 화학식 4에 있어서,
R17 내지 R20은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
나머지 치환기는 화학식 1과 동일하다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 2는 하기 화학식 5 또는 6으로 표시될 수 있다.
화학식 5
Figure PCTKR2014009753-appb-C000004
상기 화학식 5에 있어서,
R 및 R11 내지 R16은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고, p는 1 내지 4의 정수이고,
나머지 치환기는 화학식 1과 동일하다.
화학식 6
Figure PCTKR2014009753-appb-C000005
상기 화학식 6에 있어서,
R 및 R17 내지 R20은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고, p는 1 내지 4의 정수이고,
나머지 치환기는 화학식 1과 동일하다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2는 수소 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2는 수소 또는 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2는 수소 또는 메틸이다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2 중 적어도 하나는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, R1은 탄소수 1 내지 20의 알킬이고, R2는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, R1은 탄소수 1 내지 6의 알킬이고, R2는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, R1은 메틸이고, R2는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2는 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, R1 및 R2는 메틸이다.
본 명세서의 또 하나의 실시상태에 따르면, R3 내지 R7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 2 내지 20의 알케닐이다.
본 명세서의 또 하나의 실시상태에 따르면, R3 내지 R7은 서로 같거나 상이하고, 각각 독립적으로, 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, R3 내지 R7은 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R16은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 2 내지 20의 알케닐이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R16은 각각 독립적으로 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R16 중 적어도 하나는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R15는 수소이고, R16은 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R15는 수소이고, R16은 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R15는 수소이고, R16은 메틸이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3의 R11 내지 R16은 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R20은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 2 내지 20의 알케닐이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R20은 각각 독립적으로 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R20 중 적어도 하나는 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R19는 수소이고, R20은 탄소수 1 내지 20의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R19는 수소이고, R20은 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R19는 수소이고, R20은 메틸이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4의 R17 내지 R20은 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, M은 Ti, Hf 또는 Zr이다.
본 명세서의 또 하나의 실시상태에 따르면, M은 Ti이다.
본 명세서의 또 하나의 실시상태에 따르면, Q1 및 Q2는 각각 독립적으로 할로겐이다.
본 명세서의 또 하나의 실시상태에 따르면, Q1 및 Q2는 Cl이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3 또는 5에 있어서 R1, R2 및 R11 내지 R16은 수소 또는 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3 또는 5에 있어서 R1 및 R2는 탄소수 1 내지 6의 알킬이고, R11 내지 R16은 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3 또는 5에 있어서 R1 및 R16은 탄소수 1 내지 6의 알킬이고, R2는 수소 또는 탄소수 1 내지 6의 알킬이고, R11 내지 R15는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4 또는 6에 있어서 R1, R2 및 R17 내지 R20은 수소 또는 탄소수 1 내지 6의 알킬이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4 또는 6에 있어서 R1 및 R2는 탄소수 1 내지 6의 알킬이고, R17 내지 R20은 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 4 또는 6에 있어서 R1 및 R20은 탄소수 1 내지 6의 알킬이고, R2는 수소 또는 탄소수 1 내지 6의 알킬이고, R17 내지 R19는 수소이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 1의 화합물은 하기 화학식으로 표시되는 화합물들 중에서 선택된다.
Figure PCTKR2014009753-appb-I000010
상기 화학식 1의 화합물은 하기와 같은 반응식에 의하여 제조될 수 있다.
[반응식 1]
Figure PCTKR2014009753-appb-I000011
상기 반응식 1에 있어서, 치환기는 상기 화학식 3의 정의와 같다.
상기 반응식에서 사용된 출발물질 및 반응물을 변경함으로써 최종 화합물의 치환기를 변경할 수 있다. 또한, 상기 반응식 1에서는 테트라하이드로퀴놀린을 사용하였으나, 테트라하이드로퀴놀린 대신 인돌린을 사용하는 경우 화학식 4의 화합물을 제조할 수 있다.
본 명세서는 또한 상기 화학식 1의 화합물을 포함하는 촉매 조성물을 제공한다.
상기 촉매 조성물은 조촉매를 더 포함할 수 있다. 조촉매로는 당 기술분야에 알려져 있는 것을 사용할 수 있다.
예컨대, 상기 촉매 조성물은 조촉매로서 하기 화학식 7 내지 12 중 적어도 하나를 더 포함할 수 있다.
[화학식 7]
-[Al(R21)-O]a-
상기 식에서, R21은 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며; a는 2 이상의 정수이며;
[화학식 8]
D(R22)3
상기 식에서, D가 알루미늄 또는 보론이며; R22이 각각 독립적으로 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며;
[화학식 9]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 식에서, L이 중성 또는 양이온성 루이스 산이고; H가 수소 원자이며; Z가 13족 원소이고; A가 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이며; 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
상기 촉매 조성물을 제조하는 방법으로서, 첫번째로 상기 화학식 1로 표시되는 전이금속 화합물과 상기 화학식 7 또는 화학식 8로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 9로 표시되는 화합물을 첨가하는 단계를 포함하는 제조 방법을 제공한다.
그리고, 두 번째로 상기 화학식 1로 표시되는 전이금속 화합물과 상기 화학식 9로 표시되는 화합물을 접촉시켜 촉매 조성물을 제조하는 방법을 제공한다.
상기 촉매 조성물 제조 방법들 중에서 첫 번째 방법의 경우에, 상기 화학식 1의 전이금속 화합물 대비 상기 화학식 7 또는 화학식 8로 표시되는 화합물의 몰비는 각각 1:2 내지 1:5,000 이 바람직하고, 더욱 바람직하게는 1:10 내지 1:1,000 이고, 가장 바람직하게는 1:20 내지 1:500 이다.
한편, 상기 화학식 1의 전이금속 화합물 대비 상기 화학식 9로 표시되는 화합물의 몰비는 1:1 내지 1:25이 바람직하고, 더욱 바람직하게는 1:1 내지 1:10 이고, 가장 바람직하게는 1:1 내지 1:5 이다.
상기 화학식 1의 전이금속 화합물 대비 상기 화학식 7 또는 화학식 8로 표시되는 화합물의 몰비가 1:2 미만일 경우에는 알킬화제의 양이 매우 작아 금속 화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고 1:5,000 초과인 경우에는 금속 화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 9의 활성화제 간의 부반응으로 인하여 알킬화된 금속 화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다. 또한 상기 화학식 1의 전이금속 화합물에 대비 상기 화학식 9로 표시되는 화합물의 비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고 1:25 초과인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
상기 촉매 조성물 제조 방법들 중에서 두 번째 방법의 경우에, 상기 화학식 1의 전이금속 화합물 대비 화학식 9로 표시되는 화합물의 몰비는 1:1 내지 1:500 이 바람직하며, 더욱 바람직하게는 1:1 내지 1:50이고, 가장 바람직하게는 1:2 내지 1:25이다. 상기 몰비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 1:500 초과인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
상기 조성물의 제조 시에 반응 용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매나, 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술 분야에서 사용 가능한 모든 용매가 사용될 수 있다.
또한, 상기 화학식 1의 전이금속 화합물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카나 알루미나가 사용될 수 있다.
상기 화학식 7으로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않는다. 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 8로 표시되는 화합물은 특별히 한정되지 않으나 바람직한 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 특히 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 9로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리디움테트라페틸보론, N,N-디에틸아닐리디움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플루오로페닐알루미늄, 디에틸암모니움테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론,트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리페닐카보니움테트라(p-트리플루오로메틸페닐)보론, 트리페닐카보니움테트라펜타플루오로페닐보론 등이 있다.
상기 화학식 1의 전이금속 화합물; 및 화학식 7 내지 화학식 9로 표시되는 화합물로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 조성물을 하나 이상의 올레핀 단량체와 접촉시켜 폴리올레핀 호모 중합체 또는 공중합체를 제조하는 것이 가능하다.
상기 촉매 조성물을 이용한 가장 바람직한 제조 공정은 용액 공정이며, 또한 이러한 조성물을 실리카와 같은 무기 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다.
제조 공정에서 상기 활성화 촉매 조성물은 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
상기 금속 화합물들과 조촉매를 사용하여 중합 가능한 올레핀계 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀계 단량체 또는 트리엔 올레핀계 단량체등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다.
특히, 본 발명의 제조 방법에서 상기 촉매 조성물은 90 ℃ 이상의 높은 반응온도에서도 에틸렌과 1-옥텐과 같은 입체적 장애가 큰 단량체의 공중합 반응에서 높은 분자량을 가지면서도 고분자 밀도 0.91 g/cc 이하의 공중합체의 제조가 가능하다는 특징을 가진다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.91 g/cc 미만이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.89 g/cc 미만이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.885 g/cc 이하이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tc가 75 ℃ 이하이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 95 ℃ 이하이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 91 ℃ 이하이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 87 ℃ 미만이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Mw가 100,000 이상이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Mw가 100,000 내지 1,000,000이다.
일 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 3 이하이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 1 내지 3이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 1.5 내지 2.9 이하이다.
또 하나의 실시상태에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 MWD가 2 내지 2.85 이하이다.
일 실시상태에 따르면, 본 발명에 따른 중합체는 MWD가 1 내지 3이고, Mw가 10만 내지 100만이며, 밀도가 0.91 g/cc 미만이다.
이하, 하기 실시예에 의거하여 본 발명을 보다 구체적으로 설명한다. 이들 실시예는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
유기 시약 및 용매는 특별한 언급이 없으면 알드리치(Aldrich)사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다.
전이금속 화합물의 합성
Figure PCTKR2014009753-appb-I000012
케톤 화합물의 합성
Figure PCTKR2014009753-appb-I000013
문헌 [Ryabov et al. Organometallics, 2002, 21, 14, 2842-2853]에 기재된 방법대로 합성하였다.
1H NMR (CDCl3): δ1.35 (d, 3H, CH3), 2.78 (dd, 1H), 3.05 (m, 1H, (CH2)2), 3.43 (dd, 1H), 1.91 (m, 6H, Cp-CH3), 7.14 (d, 1H), 7.34 (d, 1H) ppm
리간드의 합성
Figure PCTKR2014009753-appb-I000014
1,2,3,4 테트라하이드로퀴놀린 (560 mg, 4.2mmol)을 에테르 10 mL에 녹인 용액에 -40 ℃에서 n-부틸리튬(4.6mmol, 1.1 eq)를 서서히 적가하였다. 상온으로 서서히 승온시킨 뒤, 4시간 동안 상온 교반하였다. 온도를 다시 -40 ℃로 낮춘 CO2(g)를 주입한 뒤 저온에서 0.5시간 동안 반응을 유지시켰다. 서서히 승온시킨 뒤, 잔여하고 있는 CO2(g)를 버블러를 통해 제거하였다. -20℃에서 THF (4.6 mmol, 0.37ml과 tBuLi (4.6 mmol)을 주입한 뒤 -20℃에서 2시간 저온 숙성시켰다. 상기 케톤 화합물(540 mg, 3.57 mmol)을 디에틸 에테르 용액에 녹여 서서히 적가하였다. 12시간 동안 상온 교반 시킨 뒤 물 10mL을 주입한 뒤, 염산 (2N, 20mL)을 넣어 2분간 교반시킨 뒤 유기용매를 추출한 뒤 NaHCO3 수용액에 중화시켜 유기용매를 추출하여 MgSO4로 수분을 제거하였다. 실리카 겔 컬럼을 통해 (230 mg, 24%수율)로 노란색 오일을 얻었다.
1H NMR (C6D6): δ 1.83 (s, 3H, CH3), 2.40~2.38 (m, 4H, Cp-H quinoline-CH2), 2.62~2.60 (m, 2H, quinoline-CH2), 2.61~2.59 (m, 2H, quinoline-NCH2), 2.81~2.77 (d, 2H, quinoline-NCH2), 2.97~2.94 (d, 2H, quinoline-NCH2), 3.69 (broad, 1H, N-H), 6.77~6.74 (t, 1H, aromatic), 6.83~6.82 (s, 1H, aromatic), 6.93~6.92 (s, 1H, aromatic), 7.11~7.10 (s, 1H, aromatic), 7.30 (s, 1H, aromatic), 7.72~7.70 (d, 1H, aromatic) ppm
전이금속 화합물의 제조
Figure PCTKR2014009753-appb-I000015
상기 리간드 (147 mg, 0.55 mmol)에 n-부틸리튬(1.15 mmol, 2.1 eq)을 20℃에서 서서히 적가하였다. 노란색 슬러리가 형성되는 것이 관찰되었으며, 상온으로 서서히 승온시킨 뒤, 12시간 동안 상온 교반하였다.
TiCl4DME (154 mg, 0.55 mmol, 1.0 eq)를 적가한 뒤 12시간 동안 상온 교반 하였다. 용매를 제거한 뒤, 톨루엔으로 추출하여 붉은색 고체(63 mg, 30% 수율)를 얻었다.
1H NMR (C6D6): δ 1.46~1.467 (t, 2H, quinoline-NCH2), 1.81 (s, 3H, Cp-CH3), 2.10~2.07 (t, 2H, quinoline-NCH2), 4.45~4.41 (m, 2H, N-CH2), 4.53~4.50 (m, 2H, N-CH2), 6.00 (Cp, 1H), 6.38~6.37 (d, 1H, aromatic) 6.70~6.69 (d, 1H, aromatic) 6.85~6.83 (m, 2H, aromatic) 6.98~6.96 (d, 1H, aromatic) ppm
중합체의 제조예
실시예 1 및 2 및 비교예 1 및 2
2L 오토클레이브 반응기에 헥산 용매(1.0L)와 1-옥텐(0.84M)을 가한 후, 반응기의 온도를 120℃로 예열하였다. 그와 동시에 반응기의 압력을 에틸렌(35bar)으로 미리 채워 놓았다. 트리이소부틸알루미늄 화합물로 처리된 하기 표 1의 1번째 열의 화합물(2.0μmol)과 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트 조촉매(20 μmol)를 차례로 고압 아르곤 압력을 가하여 반응기에 넣었다(Al:Ti의 몰비=10:1). 이어서, 공중합 반응을 8분간 진행하였다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 과량의 에탄올에 가하여 침전을 유도하였다. 침전된 고분자를 에탄올 및 아세톤으로 각각 2 내지 3회 세척한 후, 80℃ 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.
물성 평가(무게, 활성도, 용융 지수, 녹는점, 밀도)
고분자의 용융지수 (Melt Index, MI) 는 ASTM D-1238 (조건 E, 190 ℃, 2.16 Kg 하중)로 측정하였다. 고분자의 녹는점(Tm)은 TA사에서 제조한 시차주사열량계 (DSC : Differential Scanning Calorimeter 2920)를 이용하여 얻었다. 즉, 온도를 200 ℃까지 증가시킨 후, 5 분 동안 그 온도에서 유지하고 그 다음 30 ℃까지 내리고, 다시 온도를 증가시켜 DSC 곡선의 꼭대기를 녹는점으로 측정하였다. 이 때, 온도의 상승과 내림의 속도는 10 ℃/min이고, 녹는점은 두 번째 온도가 상승하는 동안 얻어졌다. 또한, 고분자의 밀도(Density)는 산화 방지제(1,000 ppm) 로 처리된 샘플을 180 ℃ 프레스 몰드(Press Mold)로 두께 3 mm, 반지름 2 cm 의 시트를 제작하고 10 ℃/min으로 냉각하여 메틀러(Mettler) 저울에서 측정하였다.
상기 실시예 및 비교예에서 제조한 중합체의 물성을 하기 표 1에 나타내었다.
표 1
Figure PCTKR2014009753-appb-T000001
본 발명의 일 실시예에 따른 상기 전이금속 화합물은 공중합성이 우수하고 저밀도 고분자를 제조할 수 있으므로 다양한 용도의 공중합체 제조가 가능할 수 있다.

Claims (18)

  1. 하기 화학식 1의 전이금속 화합물:
    [화학식 1]
    Figure PCTKR2014009753-appb-I000016
    상기 화학식 1에 있어서,
    M은 4족 전이금속이고,
    Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
    R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이며; 상기 R1과 R2이 서로 연결되거나 R3과 R4가 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
    R5 내지 R9는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며; R5 내지 R9중 적어도 2개가 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며; 상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있다.
  2. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 2로 표시되는 것인 전이금속 화합물:
    [화학식 2]
    Figure PCTKR2014009753-appb-I000017
    상기 화학식 2에 있어서,
    Cy는 5원 또는 6원 지방족 고리이고,
    R10은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이며;
    m은 Cy가 5원 지방족 고리인 경우 1 내지 4의 정수이고, Cy가 6원 지방족 고리인 경우 1 내지 6의 정수이며,
    나머지 치환기는 화학식 1에서 정의한 바와 같다.
  3. 청구항 2에 있어서,
    R1 및 R2는 수소 또는 탄소수 1 내지 20의 알킬인 것인 전이금속 화합물.
  4. 청구항 2에 있어서,
    상기 화학식 2는 하기 화학식 3 또는 4로 표시되는 것인 전이금속 화합물:
    [화학식 3]
    Figure PCTKR2014009753-appb-I000018
    상기 화학식 3에 있어서,
    R11 내지 R16은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    나머지 치환기는 화학식 1과 동일하다.
    [화학식 4]
    Figure PCTKR2014009753-appb-I000019
    상기 화학식 4에 있어서,
    R17 내지 R20은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    나머지 치환기는 화학식 1과 동일하다.
  5. 청구항 4에 있어서,
    R1, R2, R16 및 R20은 수소 또는 탄소수 1 내지 20의 알킬인 것인 전이금속 화합물.
  6. 청구항 2에 있어서,
    상기 화학식 2는 하기 화학식 5 또는 6으로 표시되는 것인 전이금속 화합물:
    [화학식 5]
    Figure PCTKR2014009753-appb-I000020
    상기 화학식 5에 있어서,
    R 및 R11 내지 R16은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고, p는 1 내지 4의 정수이고,
    나머지 치환기는 화학식 1과 동일하다.
    [화학식 6]
    Figure PCTKR2014009753-appb-I000021
    상기 화학식 6에 있어서,
    R 및 R17 내지 R20은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고, p는 1 내지 4의 정수이고,
    나머지 치환기는 화학식 1과 동일하다.
  7. 청구항 6에 있어서,
    R1, R2, R16 및 R20은 수소 또는 탄소수 1 내지 20의 알킬인 것인 전이금속 화합물.
  8. 청구항 2에 있어서,
    M은 Ti, Hf 또는 Zr인 것인 전이금속 화합물.
  9. 청구항 1에 있어서,
    상기 화학식 1의 화합물은 하기 화학식으로 표시되는 화합물들 중에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것인 전이금속 화합물.
    Figure PCTKR2014009753-appb-I000022
  10. 청구항 1 내지 9 중 어느 하나의 항에 따른 전이금속 화합물을 포함하는 촉매 조성물.
  11. 청구항 10에 있어서,
    1 종 이상의 조촉매를 더 포함하는 촉매 조성물.
  12. 청구항 11에 있어서,
    상기 조촉매는 하기 화학식 7 내지 9 중에서 선택되는 하나 이상을 포함하는 것인 촉매 조성물.
    [화학식 7]
    -[Al(R22)-O]a-
    상기 식에서, R22은 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며; a는 2 이상의 정수이며;
    [화학식 8]
    D(R22)3
    상기 식에서, D가 알루미늄 또는 보론이며; R22이 각각 독립적으로 상기에 정의된 대로이며;
    [화학식 9]
    [L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
    상기 식에서, L이 중성 또는 양이온성 루이스 산이고; H가 수소 원자이며; Z가 13족 원소이고; A가 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이며; 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
  13. 청구항 10에 있어서,
    상기 촉매 조성물은 반응 용매를 더 포함하는 것인 촉매 조성물.
  14. 청구항 10에 따른 촉매 조성물이 담체에 담지된 담지 촉매.
  15. 청구항 10에 따른 촉매 조성물을 이용한 중합체의 제조방법.
  16. 청구항 15에 있어서,
    상기 중합체는 폴리올레핀의 호모중합체 또는 공중합체인 것인 중합체의 제조방법.
  17. 청구항 14에 따른 담지 촉매를 이용한 중합체의 제조방법.
  18. 청구항 17에 있어서,
    상기 중합체는 폴리올레핀의 호모중합체 또는 공중합체인 것인 중합체의 제조방법.
PCT/KR2014/009753 2013-10-16 2014-10-16 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법 WO2015057001A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14853389.6A EP2905285B1 (en) 2013-10-16 2014-10-16 Transition metal compound having heteroatom, a catalyst composition comprising same, and method for preparing polymer using same
CN201480003124.3A CN104797586B (zh) 2013-10-16 2014-10-16 具有杂原子的过渡金属化合物、包含其的催化剂组合物及使用其制备聚合物的方法
US14/439,159 US9359388B2 (en) 2013-10-16 2014-10-16 Transition metal compound having heteroatom, catalystic composition including the same, and method for preparing polymers using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0123476 2013-10-16
KR20130123476 2013-10-16

Publications (1)

Publication Number Publication Date
WO2015057001A1 true WO2015057001A1 (ko) 2015-04-23

Family

ID=52828375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009753 WO2015057001A1 (ko) 2013-10-16 2014-10-16 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법

Country Status (5)

Country Link
US (1) US9359388B2 (ko)
EP (1) EP2905285B1 (ko)
KR (1) KR101689063B1 (ko)
CN (1) CN104797586B (ko)
WO (1) WO2015057001A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101731177B1 (ko) * 2014-12-24 2017-04-27 주식회사 엘지화학 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR102050573B1 (ko) * 2015-10-21 2019-11-29 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법
KR101924198B1 (ko) 2015-12-23 2018-11-30 주식회사 엘지화학 필름 가공성 및 투명도가 우수한 저밀도 폴리에틸렌 공중합체
KR102320012B1 (ko) * 2018-01-12 2021-11-02 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102306523B1 (ko) * 2018-11-19 2021-09-29 롯데케미칼 주식회사 티오펜-축합고리 사이클로펜타디에닐 리간드 및 메탈로센 촉매 조성물의 제조방법
KR102524952B1 (ko) * 2019-06-13 2023-04-24 주식회사 엘지화학 신규 전이금속 화합물 및 이를 이용한 폴리프로필렌의 제조방법
CN114890987B (zh) * 2022-04-13 2023-12-19 万华化学集团股份有限公司 一种硫酚-噻吩配体及其制备方法、烯烃聚合催化剂及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
US6548686B2 (en) 2000-06-21 2003-04-15 Sumitomo Chemical Company, Limited Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
JP2003201308A (ja) * 2002-01-07 2003-07-18 Idemitsu Petrochem Co Ltd オレフィン重合用触媒及びポリオレフィンの製造方法
KR100820542B1 (ko) * 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR20080101542A (ko) * 2007-05-18 2008-11-21 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
KR100986301B1 (ko) * 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875421B1 (ko) 2006-07-27 2008-12-23 엘지전자 주식회사 영상 캡처 방법 및 이를 구현할 수 있는 단말기
KR100976131B1 (ko) * 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
WO2008140280A2 (en) 2007-05-16 2008-11-20 Lg Chem, Ltd. Long chain-branched ethylene-alpha olefin copolymer
ES2596719T3 (es) 2010-04-12 2017-01-11 Lotte Chemical Corporation Procedimiento de preparación de un copolímero de olefin-dieno usando un compuesto de metal de transición que incluye un ligando de ciclopentadienilo de anillo condensado con tiofeno
US8889581B2 (en) 2010-04-12 2014-11-18 Lotte Chemical Corporation Catalyst composition for olefin polymerization and preparation method for polyolefin using the same
EP2559711B1 (en) 2010-04-12 2017-06-14 Lotte Chemical Corporation Supported catalyst for polymerizing olefin and method for preparing polyolefin using same
EP2559713B1 (en) 2010-04-12 2016-08-10 Lotte Chemical Corporation Method for preparing polypropylene using a transition metal compound containing thiophene-fused cyclopentadienyl ligands

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
US6548686B2 (en) 2000-06-21 2003-04-15 Sumitomo Chemical Company, Limited Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
JP2003201308A (ja) * 2002-01-07 2003-07-18 Idemitsu Petrochem Co Ltd オレフィン重合用触媒及びポリオレフィンの製造方法
KR100820542B1 (ko) * 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR20080101542A (ko) * 2007-05-18 2008-11-21 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
KR100986301B1 (ko) * 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
CHEM. COMMUN., 2003, pages 1034
CHEM. REV., vol. 103, 2003, pages 283
HESSEN ET AL., ORGANOMETALLICS, vol. 17, 1998, pages 1652
J. ORGANOMET. CHEM., vol. 608, 2000, pages 71
KIM, SUNG HUN ET AL.: "Preparation of Thiophene-Fused and Tetrahydroquinoline-Linked Cyclopentadienyl Titanium Complexes for Ethylene/a-Olefin Copolymerization", CATALYSTS, vol. 3, 6 February 2013 (2013-02-06), pages 104 - 124, XP008166053 *
MU ET AL., ORGANOMETALLICS, vol. 23, 2004, pages 540
ORGANOMETALLICS, vol. 16, 1997, pages 5958
ORGANOMETALLICS, vol. 17, 1998, pages 1652
ORGANOMETALLICS, vol. 18, 1999, pages 348
ORGANOMETALLICS, vol. 23, 2004, pages 540
ROTHWELL ET AL., CHEM. COMMUN., 2003, pages 1034
RYABOV ET AL., ORGANOMETALLICS, vol. 21, no. 14, 2002, pages 2842 - 2853
See also references of EP2905285A4

Also Published As

Publication number Publication date
CN104797586B (zh) 2017-08-08
EP2905285A4 (en) 2015-11-18
US9359388B2 (en) 2016-06-07
US20150239916A1 (en) 2015-08-27
KR20150044413A (ko) 2015-04-24
CN104797586A (zh) 2015-07-22
KR101689063B1 (ko) 2016-12-22
EP2905285B1 (en) 2017-04-05
EP2905285A1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2015046705A1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2017188602A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2015057001A1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2015046930A1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
WO2019125050A1 (ko) 올레핀계 중합체
WO2017099491A1 (ko) 올레핀계 중합체
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019132475A1 (ko) 올레핀계 중합체
WO2020171631A1 (ko) 올레핀계 중합체
WO2019212308A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
EP2718303A2 (en) New cyclopenta[b]fluorenyl transition metal compound, catalyst composition containing the same, and method of preparing ethylene homopolymer or copolymer of ethylene and -olefin using the same
WO2020105922A1 (ko) 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
WO2019038605A1 (en) NEW TRANSITION METAL COMPOUND, CATALYST COMPOSITION CONTAINING THE SAME, AND PROCESS FOR PREPARING HOMOPOLYMER OR ETHYLENE COPOLYMER AND ALPHA-OLEFIN USING THE SAME
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2016153275A1 (ko) 올레핀계 중합체
WO2017111553A1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물
WO2021066486A1 (ko) 올레핀계 중합체
WO2021066490A1 (ko) 올레핀계 중합체
WO2018127772A1 (ko) 신규한 전이금속 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2016105170A1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2018106029A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2019212302A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2019182290A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14439159

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014853389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853389

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE