WO2009102033A1 - エピタキシャル成長用基板、GaN系半導体膜の製造方法、GaN系半導体膜、GaN系半導体発光素子の製造方法およびGaN系半導体発光素子 - Google Patents
エピタキシャル成長用基板、GaN系半導体膜の製造方法、GaN系半導体膜、GaN系半導体発光素子の製造方法およびGaN系半導体発光素子 Download PDFInfo
- Publication number
- WO2009102033A1 WO2009102033A1 PCT/JP2009/052432 JP2009052432W WO2009102033A1 WO 2009102033 A1 WO2009102033 A1 WO 2009102033A1 JP 2009052432 W JP2009052432 W JP 2009052432W WO 2009102033 A1 WO2009102033 A1 WO 2009102033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gan
- epitaxial growth
- substrate
- growth
- based semiconductor
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 122
- 239000004065 semiconductor Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 12
- 230000008569 process Effects 0.000 title description 4
- 239000013078 crystal Substances 0.000 claims abstract description 96
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000002344 surface layer Substances 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 71
- 229910052594 sapphire Inorganic materials 0.000 claims description 30
- 239000010980 sapphire Substances 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 10
- 238000005253 cladding Methods 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 230000009467 reduction Effects 0.000 description 8
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 229910002704 AlGaN Inorganic materials 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005136 cathodoluminescence Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
- C23C16/0236—Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/024—Group 12/16 materials
- H01L21/02403—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
- H01L21/02661—In-situ cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
- H01L33/18—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Definitions
- the present invention relates to an epitaxial growth substrate suitable for manufacturing a GaN-based semiconductor film made of a c-axis-oriented GaN-based semiconductor crystal, and more particularly to an epitaxial growth substrate having an uneven surface for epitaxial growth.
- the present invention also relates to a method for manufacturing a GaN-based semiconductor film using such a substrate for epitaxial growth, a GaN-based semiconductor film obtained thereby, and a method for manufacturing a GaN-based semiconductor light emitting device using the GaN-based semiconductor film.
- the present invention also relates to a GaN-based semiconductor light emitting device including the above epitaxial growth substrate.
- a GaN-based semiconductor is a compound semiconductor represented by the general formula Al a In b Ga 1-ab N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a + b ⁇ 1), and is a group III nitride It is also called a semiconductor or a nitride semiconductor.
- GaN-based semiconductor light-emitting elements such as LEDs (light-emitting diodes) and LDs (laser diodes), in which a pn-junction light-emitting element structure made of a GaN-based semiconductor is formed on a substrate, have been put into practical use. It is becoming popular as a light source for devices.
- a GaN single crystal substrate is mainly used for manufacturing LD, while a sapphire single crystal substrate is mainly used for manufacturing LEDs.
- a GaN-based semiconductor crystal having various orientations can be epitaxially grown on a single-crystal substrate made of GaN or sapphire, but the GaN-based semiconductor light-emitting device currently in practical use uses c-axis aligned GaN.
- the sapphire single crystal substrate includes a c-plane substrate, an a-plane substrate, and an r-plane substrate, and the c-plane substrate is suitable for manufacturing a c-axis oriented GaN-based semiconductor crystal.
- a substrate called a c-plane substrate includes a substrate having a surface slightly inclined from the c-plane (a substrate with a so-called off angle), which is common among those skilled in the art today. It is recognized (the same applies to a-plane substrates, r-plane substrates, etc.).
- a GaN-based semiconductor crystal epitaxially grown on a c-plane sapphire substrate contains dislocation defects due to lattice mismatch at a high density.
- an epitaxial growth technology (LEPS) that generates a lateral growth mode of a GaN-based semiconductor crystal by processing the substrate surface by etching or the like to form an uneven surface.
- LPS epitaxial growth technology
- Patent Document 1 Has been developed (Patent Document 1, Patent Document 2).
- a GaN-based semiconductor light-emitting device is formed using a sapphire substrate with an uneven surface for growing a semiconductor crystal (hereinafter also referred to as “Patterned Sapphire Substrate”), the effect of reducing dislocation defects can be reduced. Apart from that, it has been found that the effect of increasing the light extraction efficiency can be obtained (Patent Document 3).
- GaN-based semiconductor light-emitting elements are required to be further improved in luminous efficiency as their applications are expanded. This is no exception in general-purpose products using inexpensive substrates such as sapphire single crystal substrates and silicon single crystal substrates.
- it is necessary to lower the density of crystal defects contained in the GaN-based semiconductor crystal constituting the light-emitting element, particularly the GaN-based semiconductor crystal constituting the light-emitting portion. It is also important to make the light generated inside the light emitting element extracted more efficiently outside the element, that is, to increase the light extraction efficiency.
- the present invention has been made under such a background, and its main object is to provide a substrate for epitaxial growth provided with a novel concavo-convex surface pattern that can contribute to the improvement of the light emission efficiency of a GaN-based semiconductor light-emitting device. That is.
- the growth in the c-axis direction is moderately dominant over the growth in the direction perpendicular to the c-axis (lateral growth).
- an infinite number of fine three-dimensional crystals having inclined side surfaces (facets) such as the ⁇ 1-101> plane are formed on the surface of the substrate in the initial stage of growth. As these three-dimensional crystals grow further, the three-dimensional crystals eventually meet and coalesce. At this time, a change in the growth mode occurs, and the crystal growth surface becomes two-dimensional (flattened).
- an epitaxial growth substrate having the following configuration is provided: A single crystal part made of a material different from a GaN-based semiconductor is provided in at least the surface layer part, As a surface for epitaxial growth, a plurality of projections arranged so that each has three other nearest projections in different directions by 120 degrees, and a plurality of growth spaces each surrounded by the six projections And an uneven surface consisting of The single crystal portion is exposed at least in the growth space, whereby a c-axis oriented GaN-based semiconductor crystal can be grown from the growth space. Epitaxial growth substrate.
- the first feature of the substrate for epitaxial growth according to the present invention is that a growth space (corresponding to the bottom surface of the recess) surrounded by six protrusions is provided on the surface for epitaxial growth, and a c-axis oriented GaN system is formed from this space.
- the semiconductor crystal can be grown. Since the protrusions are two-dimensionally arranged so that each has three other closest protrusions in different directions by 120 degrees, the shape of the growth space is a regular hexagon or a shape close thereto. Therefore, when a GaN-based semiconductor crystal is grown on this substrate under growth conditions in which growth in the c-axis direction is moderately dominant over lateral growth, hexagonal pyramids that fit the size of the growth space are formed in each of the growth spaces.
- a hexagonal frustum-shaped three-dimensional crystal is formed. Since the crystal having such a shape has a large ratio of the area of the side surface to the volume, a high dislocation reduction effect occurs when the crystal growth surface becomes two-dimensional. This is because the direction of propagation is changed along with this change in growth mode because it is a dislocation line that reaches the side surface in the process of forming a three-dimensional crystal.
- the second feature of the substrate for epitaxial growth according to the present invention is that the concavo-convex pattern on the surface for epitaxial growth is determined so that the growth spaces are closely packed.
- the density of the hexagonal pyramid or hexagonal frustum-shaped crystal formed on the surface for epitaxial growth is maximized when the above growth conditions are used, and this occurs when the crystal growth surface becomes two-dimensional.
- the dislocation reduction effect is also maximized.
- the single crystal part can also be exposed on the convex part so that epitaxial growth is allowed also on the convex part, but the GaN-based semiconductor crystal is spontaneous because the shape of the crystal can be limited on the convex part. It tends to exhibit a pyramidal shape or a truncated pyramid shape that is stable in terms of energy.
- the growth space surrounded by the six convex portions is arranged in the most dense manner, and this is a step that is a boundary between the concave portion and the convex portion on the epitaxial growth surface. It is also to maximize the density. Since light scattering and irregular reflection occur at the level difference, the GaN-based semiconductor light-emitting element including the epitaxial growth substrate has excellent light extraction efficiency.
- a preferable shape of the growth space is a regular hexagon. This is because, when a c-axis oriented GaN-based semiconductor crystal is three-dimensionally grown, a shape that is easy to take as an energy stable shape is a hexagonal pyramid shape or a hexagonal frustum shape. If the growth space is a regular hexagon, the hexagonal pyramid or hexagonal frustum-shaped GaN-based semiconductor crystal that fits the shape of this growth space is stably formed. Become. Therefore, the dislocation reduction effect by the above mechanism lasts the longest. When the shape of the growth space is a regular hexagon, the pattern formed by the projection and the growth space when the substrate surface is viewed in plan is a kagome pattern.
- the concavo-convex surface may be formed by dry-etching a single crystal portion using an etching mask having a kagome pattern provided with regular hexagonal openings.
- an etching mask having a kagome pattern provided with regular hexagonal openings.
- the pattern of the uneven surface to be formed may deviate from the ideal kagome pattern due to deformation of the etching mask during processing.
- the single crystal portion may exist only in a surface layer portion of the substrate.
- the epitaxial growth substrate according to the present invention may be a single crystal substrate composed entirely of a single crystal.
- the epitaxial growth substrate is a single crystal sapphire substrate whose surface has been made uneven by dry etching, particularly a c-plane sapphire substrate.
- a c-axis oriented GaN-based semiconductor crystal grows in a hexagonal pyramid shape or a hexagonal frustum shape, its side surface is likely to be an r-plane (a growth condition window in which the side surface is the r-plane has a side surface that is another surface) It can be said to be wider than the condition window). Therefore, in a preferred embodiment of the epitaxial growth substrate, a straight line connecting the centers of two adjacent growth spaces is configured to be parallel to the a-axis of the c-axis oriented GaN-based semiconductor crystal grown from the growth space. To do. With this configuration, when a hexagonal pyramid-shaped or hexagonal frustum-shaped crystal having an r-plane as a side surface is formed, the shape of the crystal fits the shape of the growth space.
- the surface of the convex portion provided on the epitaxial growth surface may be a surface on which a GaN-based semiconductor crystal cannot grow.
- the surface of the convex portion may be formed of amorphous silicon oxide or silicon nitride which is a material used for a growth mask in an ELO (Epitaxial Lateral Overgrowth) method.
- an anti-surfactant substance may be adsorbed on the surface of the convex portion.
- the epitaxial growth substrate of the present invention By using the epitaxial growth substrate of the present invention, a high-quality GaN-based semiconductor film having a low dislocation density suitable for a light-emitting element can be formed.
- the GaN-based semiconductor light-emitting device configured to include the epitaxial growth substrate of the present invention has high light extraction efficiency and excellent light emission output, so it is preferably used for applications that require high output such as lighting. can do.
- FIG. 8A and 8B are views showing the structure of an epitaxial growth substrate according to an embodiment of the present invention, in which FIG. 8A is a plan view and FIG. 8B is a cross-sectional view taken along the line X-Y in FIG. It is a figure for demonstrating the arrangement
- FIG. 8 shows the structure of an epitaxial growth substrate according to an embodiment of the present invention.
- FIG. 8A is a plan view of the epitaxial growth surface of the substrate as viewed from directly above
- FIG. 8B is a cross-sectional view at the position of the XY line in FIG. 8A.
- the epitaxial growth substrate 1 includes a single crystal portion 1a made of a material different from a GaN-based semiconductor in a surface layer portion, and a plurality of convex portions 11 are arranged on the epitaxial growth surface which is an uneven surface. A plurality of growth spaces 12 each surrounded by six convex portions 11 are provided. The arrangement of the convex portions 11 will be described with reference to FIG. 9.
- Each convex portion 11 is different from the three other closest convex portions 111, 112, 113 by 120 degrees as the convex portion 110 in FIG. 9.
- the surface of the growth space 12 is an exposed surface of the single crystal portion 1a.
- a c-axis-oriented GaN-based semiconductor crystal can be epitaxially grown from the growth space 12.
- known techniques may be referred to. For example, sapphire c-plane, sapphire a-plane, 6H-SiC (0001) plane, magnesia spinel (111) plane, silicon (111) plane, ZnO c-plane, and the like.
- the shape of the upper surface 11 a of the convex portion is an equilateral triangle, but is not limited, and may basically be a shape having three-fold rotational symmetry.
- 10 and 11 are plan views of the concavo-convex surface of the substrate for epitaxial growth in which the shape of the upper surface of the convex portion is a shape other than an equilateral triangle as viewed from directly above.
- the distance between the apexes is preferably 0.5 ⁇ m to 5 ⁇ m.
- the thickness is preferably 1 ⁇ m to 3 ⁇ m, and particularly preferably 1.5 ⁇ m to 2.5 ⁇ m. If this distance is too large, the number density of the growth spaces 12 that can be formed on the surface for epitaxial growth is reduced, so that the effect of reducing dislocations is reduced. In addition, when a light emitting element is formed on this substrate, it is sufficient. The light extraction effect cannot be obtained.
- the angle ⁇ formed by the side surface 11b of the convex portion 11 and the surface of the growth space 12 is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and particularly preferably 70 ° to 90 °. If the angle ⁇ is too small, the outline of the growth space 12 becomes unclear, so that the crystal protrudes from the growth space 12 and easily grows two-dimensionally, and the dislocation reduction effect is reduced.
- the height h of the convex portion 11 is preferably 0.2 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 3 ⁇ m, and particularly preferably 1 ⁇ m to 2 ⁇ m.
- the height h of the convex portion 11 is too small, the outline of the growth space 12 becomes unclear, so that the crystal protrudes from the growth space 12 and grows two-dimensionally, and the dislocation reduction effect is reduced.
- the height h of the convex portion 11 is small, the degree of light scattering and irregular reflection by the convex portion 11 is also reduced. If the height h of the convex portion 11 is too large, the growth time required until the two-dimensionalization of the growth surface of the crystal epitaxially grown on the uneven surface is too long.
- FIG. 12 shows a cross-sectional view of a GaN-based semiconductor light emitting device according to an embodiment of the present invention.
- the GaN-based semiconductor light-emitting element 2 includes an undoped layer 22 made of a GaN-based semiconductor crystal, an n-type contact layer 23, an n-type cladding layer 24, an active layer on a substrate 21 for epitaxial growth via a buffer layer (not shown).
- a layer 25, a p-type cladding layer 26, and a p-type contact layer 27 are provided in this order.
- a positive side electrode 28 composed of a positive ohmic electrode 28a and a bonding pad 28b is also formed by dry etching.
- the epitaxial growth substrate 21 is a substrate embodying the present invention, and has at least a surface layer portion of a single crystal portion made of a material different from that of a GaN-based semiconductor, and each has three other nearest convex portions as an epitaxial growth surface. It has a concavo-convex surface comprising a plurality of convex portions arranged to have 120 degrees in different directions and a plurality of growth spaces each surrounded by six convex portions, and the single crystal portion is at least the above-mentioned It is exposed to the growth space.
- the GaN-based semiconductor crystal layers from the undoped layer 22 to the p-type contact layer 27 are epitaxially grown on the substrate 21 with c-axis orientation.
- the undoped layer 22 is a GaN layer having a film thickness of 2 ⁇ m to 6 ⁇ m that does not contain an intentionally added impurity.
- the n-type contact layer 23 is a GaN layer doped with Si (silicon) as an n-type impurity and having a carrier concentration of 1 ⁇ 10 18 cm ⁇ 3 to 2 ⁇ 10 19 cm ⁇ 3 and a film thickness of 2 ⁇ m to 6 ⁇ m.
- the n-type cladding layer 24 is an AlGaN layer or InGaN layer doped with Si as an n-type impurity and having a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 and a thickness of 10 nm to 500 nm.
- the active layer 25 includes an In x1 Ga 1-x1 N (0 ⁇ x1 ⁇ 1) well layer having a thickness of 1 nm to 10 nm, an In x2 Ga 1-x2 N (0 ⁇ x2 ⁇ x1) barrier layer having a thickness of 1 nm to 20 nm, and A multi-quantum well structure in which are stacked alternately.
- the barrier layer of the active layer is preferably doped with Si, and when the emission wavelength is less than 400 nm, either or both of the well layer and the barrier layer are preferably formed of a mixed crystal containing AlN. .
- the p-type cladding layer 26 is made of Al y1 Ga 1-y1 N (0.05 ⁇ y1) having a thickness of 10 nm to 200 nm doped with Mg (magnesium) at a concentration of 1 ⁇ 10 19 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3. ⁇ 0.4) layer.
- the p-type contact layer 27 is made of Al y2 Ga 1-y2 N (0 ⁇ y1 ⁇ 0) having a thickness of 20 nm to 200 nm doped with Mg (magnesium) at a concentration of 5 ⁇ 10 19 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3. .05).
- the positive ohmic electrode 28a is preferably formed of a transparent conductive oxide such as ITO (indium tin oxide), indium oxide, tin oxide, zinc oxide, or IZO (indium zinc oxide).
- the bonding pad 28b is preferably formed of Al, Ag, Ni, or a platinum group metal at a portion in contact with the positive ohmic electrode, and a surface layer portion of Au.
- a portion in contact with the n-type contact layer 23 is formed of Al, Ti, W or a transparent conductive oxide, and a surface layer portion is formed of Au.
- Example 1 A photoresist film for an etching mask was formed on a c-plane sapphire substrate having a diameter of 2 inches whose one surface was mirror-finished for epitaxial growth. Then, using a photolithography technique, this photoresist film was formed into a pattern represented by a blackened portion in FIG. In the pattern consisting of the triangle T and the hexagon H shown in FIG. 1, the triangles T are all regular triangles having the same area, the hexagons H are all regular hexagons having the same area, and the center of each hexagon is a triangular lattice. It arrange
- Such a pattern composed of the triangle T and the hexagon H is called a kagome pattern.
- the direction of the photoresist film pattern was determined so that each side of the triangle was parallel to the m-axis of sapphire, and the length of each side of the triangle was set to 2 ⁇ m.
- FIG. 2 shows an SEM image obtained by observing the concavo-convex surface of the sapphire processed substrate thus obtained from the direction directly above.
- a concave / convex surface pattern having a convex pattern corresponding to the pattern of the etching mask that is, a triangular prism-shaped or truncated pyramid-shaped convex portion having a regular triangular upper surface, and a regular hexagonal space (each 6 It is understood that an uneven surface pattern arranged so as to form a kagome pattern when viewed from above is formed.
- Example 2 The sapphire-processed substrate produced in Example 1 was placed in a growth furnace of a MOVPE apparatus, and after surface cleaning by heating in a hydrogen gas atmosphere, the substrate temperature was lowered to 400 ° C., and an AlGaN low temperature was formed on the uneven surface. A buffer layer was grown to 10 nm. Subsequently, the substrate temperature was raised to a temperature at which the single crystal was grown, and undoped GaN was grown using trimethyl gallium (TMG) as the Group 3 material and ammonia as the Group 5 material.
- TMG trimethyl gallium
- the gas supply amount into the growth furnace was 30 slm for nitrogen gas, 20 slm for hydrogen gas, 10 slm for ammonia, and the supply amount for TMG was 200 ⁇ mol / min.
- the growth time was a time corresponding to 1 ⁇ m growth on a normal flat substrate.
- FIG. 3 shows an SEM image obtained by observing the surface of the wafer on which the GaN crystal was grown from an oblique direction. Moreover, the SEM image which observed the same surface at higher magnification is shown in FIG. Side surfaces inclined with respect to the thickness direction of the substrate from the upper surface of the convex portion formed on the substrate surface and the regular hexagonal space (space surrounded by the six convex portions) separating the convex portions from each other It can be seen from these SEM images that the provided faceted GaN crystal has grown.
- Example 3 An undoped GaN crystal was grown on the sapphire processed substrate produced in Example 1 in the same manner as in Example 2. However, while the growth time of the undoped GaN crystal was set to a time corresponding to 1 ⁇ m growth on a normal flat substrate in Example 2, it corresponds to a growth of 4 ⁇ m on a normal flat substrate in Example 3. It was time. While using the same growth conditions as in Example 2, the growth surface of the undoped GaN crystal became flat by increasing the growth time in this way.
- an Si-doped GaN layer (also used as a cladding layer and a contact layer), an InGaN / GaN active layer, and an Mg-doped AlGaN layer were sequentially grown in order to form a light emitting device structure.
- the Si-doped GaN layer had a Si concentration of 5 ⁇ 10 18 cm ⁇ 3 and a film thickness of 4 ⁇ m.
- the InGaN / GaN active layer has a multiple quantum well structure in which InGaN well layers and GaN barrier layers are alternately stacked.
- the Mg-doped AlGaN layer has a two-layer structure in which a 40 nm thick contact layer made of Al 0.03 Ga 0.97 N is laminated on a 170 nm thick clad layer made of Al 0.09 Ga 0.91 N. did.
- the surface density of the dark spots ( ⁇ dislocation defect density) on the surface of the epitaxial layer was a low value of 1 ⁇ 10 8 cm ⁇ 2 .
- Example 4 Positive and negative electrodes were formed on each element forming portion of the epitaxial wafer produced in Example 3.
- An ITO film was formed as a positive ohmic electrode on the Al 0.03 Ga 0.97 N contact layer, and a metal bonding pad was formed on a part of the ohmic electrode.
- a negative electrode serving as an ohmic electrode and a bonding pad was formed on the surface of the Si-doped GaN layer partially exposed by RIE.
- the back side of the sapphire substrate is lapped to reduce the wafer thickness to 100 ⁇ m or less, and the wafer is divided into each element forming portion using a scriber to obtain a 350 ⁇ m square plate-like GaN-based
- a semiconductor light emitting device chip was obtained. When this light emitting element chip was flip-chip mounted on the stem via a submount and the light emission output at 20 mA energization in a bare chip state was measured using an integrating sphere, a high value of 15 mW was shown.
- a sapphire processed substrate was produced in the same manner as in Example 1 except that the pattern of the photoresist film was a pattern in which circles having a diameter of 2 ⁇ m were arranged at the lattice points of a triangular lattice. In the above pattern, the distance between the centers of two adjacent circles was 4 ⁇ m.
- the surface of the obtained sapphire processed substrate was an uneven surface formed by arranging a plurality of frustum-shaped convex portions whose upper surface diameter is slightly smaller than the diameter of the bottom surface at the lattice points of a triangular lattice.
- An epitaxial wafer was produced in the same manner as in Example 3 except that this sapphire processed substrate was used, and the density of dislocation defects on the surface of the epitaxial layer was examined. The result was 2 ⁇ 10 8 cm ⁇ 2 .
- a light-emitting element chip was produced in the same manner as in Example 4 except that this sapphire processed substrate was used, and the light emission output was measured to be 13 mW.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、また、かかるエピタキシャル成長用基板を用いたGaN系半導体膜の製造方法、それにより得られるGaN系半導体膜、および、該GaN系半導体膜を用いたGaN系半導体発光素子の製造方法に関する。
本発明は、また、上記エピタキシャル成長用基板を含むGaN系半導体発光素子に関する。
本発明はこのような背景の下になされたものであり、その主たる目的は、GaN系半導体発光素子の発光効率の改善に寄与し得る、新規な凹凸面パターンを備えたエピタキシャル成長用基板を提供することである。
本発明によれば次の構成を有するエピタキシャル成長用基板が提供される:
GaN系半導体とは異なる材料からなる単結晶部を少なくとも表層部分に備え、
エピタキシャル成長用表面として、それぞれが3個の最近接する他の凸部を120度ずつ異なる方向に有するよう配列された複数の凸部と、それぞれが6個の上記凸部により包囲された複数の成長スペースと、からなる凹凸面を有し、
上記単結晶部が少なくとも上記成長スペースに露出しており、それによって上記成長スペースからc軸配向したGaN系半導体結晶が成長可能となっている、
エピタキシャル成長用基板。
一方、凸部上においてもエピタキシャル成長が許容されるよう、凸部にも単結晶部を露出させることができるが、凸部上では結晶の取り得る形状の制約が小さいので、GaN系半導体結晶は自発的にエネルギー的に安定な角錐状または角錘台状を呈する傾向を示す。
なお、上記成長スペースの形状が正六角形であるとき、基板表面を平面視したときに凸部と成長スペースとがなすパターンはかごめパターンとなる。
また、本発明のエピタキシャル成長用基板を含むように構成したGaN系半導体発光素子は、光取り出し効率が高く、発光出力に優れたものとなるので、照明などの高出力が要求される用途に好ましく使用することができる。
2 GaN系半導体発光素子
11 凸部
12 成長スペース
21 エピタキシャル成長用基板
22 アンドープ層
23 n型コンタクト層
24 n型クラッド層
25 活性層
26 p型クラッド層
27 p型コンタクト層
28 正側電極
図8に本発明の一実施形態に係るエピタキシャル成長用基板の構造を示す。図8(a)は基板のエピタキシャル成長用表面を真上の方向から見た平面図、図8(b)は図8(a)のX-Y線の位置における断面図である。
エピタキシャル成長用基板1は、表層部分にGaN系半導体とは異なる材料からなる単結晶部1aを備えており、凹凸面とされたエピタキシャル成長用表面には、複数の凸部11が配列されているとともに、それぞれが6個の凸部11に包囲された複数の成長スペース12が設けられている。凸部11の配列を図9を用いて説明すると、いずれの凸部11も、図9の凸部110のように3個の最近接する他の凸部111、112、113を、120度ずつ異なった方向Aと方向Bと方向Cとに有している。
成長スペース12の表面は単結晶部1aの露出面となっているが、この表面を特定の結晶面とすることにより、成長スペース12からc軸配向したGaN系半導体結晶がエピタキシャル成長可能となる。そのような結晶面については公知技術を参照すればよいが、一例を挙げれば、サファイアのc面、サファイアのa面、6H-SiCの(0001)面、マグネシアスピネルの(111)面、シリコンの(111)面、ZnOのc面などがある。
凸部11の高さhは、好ましくは0.2μm~5μmであり、より好ましくは0.5μm~3μmであり、特に好ましくは1μm~2μmである。凸部11の高さhが小さ過ぎると、成長スペース12の外郭が不明瞭となるので、結晶が成長スペース12からはみ出して二次元的に成長し易くなり、転位低減効果が低くなる。凸部11の高さhが小さいときは、また、凸部11による光の散乱や乱反射の程度が小さくなる。凸部11の高さhが大き過ぎると、凹凸面上にエピタキシャル成長する結晶の成長面の二次元化が生じるまでに必要な成長時間が長くなり過ぎる。
図12に本発明の一実施形態に係るGaN系半導体発光素子の断面図を示す。このGaN系半導体発光素子2は、エピタキシャル成長用基板21の上に、バッファ層(図示せず)を介してGaN系半導体結晶からなるアンドープ層22、n型コンタクト層23、n型クラッド層24、活性層25、p型クラッド層26、p型コンタクト層27をこの順に備えており、p型コンタクト層27上には正オーミック電極28aとボンディングパッド28bとからなる正側電極28が、また、ドライエッチ加工により部分的に露出させたn型コンタクト層23の表面にはオーミック電極とボンディングパッドとを兼用する負側電極29が形成されている。
エピタキシャル成長用基板21は本発明を実施した基板であり、GaN系半導体とは異なる材料からなる単結晶部を少なくとも表層部分に備え、エピタキシャル成長用表面として、それぞれが3個の最近接する他の凸部を120度ずつ異なる方向に有するよう配列された複数の凸部と、それぞれが6個の上記凸部により包囲された複数の成長スペースと、からなる凹凸面を有し、上記単結晶部が少なくとも上記成長スペースに露出している。アンドープ層22からp型コンタクト層27までのGaN系半導体結晶層はこの基板21上にc軸配向してエピタキシャル成長している。
アンドープ層22は、意図的に添加された不純物を含まない、膜厚2μm~6μmのGaN層である。n型コンタクト層23はn型不純物としてSi(ケイ素)がドープされた、キャリア濃度1×1018cm-3~2×1019cm-3、膜厚2μm~6μmのGaN層である。n型クラッド層24はn型不純物としてSiがドープされた、キャリア濃度1×1017cm-3~5×1018cm-3、膜厚10nm~500nmのAlGaN層またはInGaN層である。活性層25は膜厚1nm~10nmのInx1Ga1-x1N(0<x1≦1)井戸層と膜厚1nm~20nmのInx2Ga1-x2N(0≦x2<x1)障壁層とを交互に積層した多重量子井戸構造を備える。活性層の障壁層にはSiをドープすることが好ましく、また、発光波長を400nm未満とする場合には、井戸層と障壁層のいずれかまたは両方をAlNを含む混晶で形成することが好ましい。p型クラッド層26はMg(マグネシウム)を1×1019cm-3~5×1020cm-3の濃度でドープした膜厚10nm~200nmのAly1Ga1-y1N(0.05<y1≦0.4)層である。p型コンタクト層27はMg(マグネシウム)を5×1019cm-3~5×1020cm-3の濃度でドープした膜厚20nm~200nmのAly2Ga1-y2N(0≦y1≦0.05)である。
正オーミック電極28aは、好ましくは、ITO(インジウム錫酸化物)、酸化インジウム、酸化錫、酸化亜鉛、IZO(インジウム亜鉛酸化物)などの透明導電性酸化物で形成する。ボンディングパッド28bは、好ましくは、正オーミック電極と接する部分をAl、Ag、Niまたは白金族金属で形成し、表層部をAuで形成する。負電極29は、好ましくは、n型コンタクト層23と接する部分をAl、Ti、Wまたは透明導電性酸化物で形成し、表層部をAuで形成する。
(実施例1)
片面がエピタキシャル成長用に鏡面仕上げされた直径2インチのc面サファイア基板の、その鏡面仕上げされた面上に、エッチングマスク用のフォトレジスト膜を形成した。そして、フォトリソグラフィ技法を用いて、このフォトレジスト膜を図1において黒く塗り潰した部分が呈するパターンに成形した。図1に示す三角形Tと六角形Hとからなるパターンにおいて、三角形Tは全て面積の等しい正三角形であり、六角形Hは全て面積の等しい正六角形であり、各六角形はその中心が三角格子の格子点に位置するように配置されている。三角形Tと六角形Hとからなるこのようなパターンは、かごめパターンと呼ばれるものである。フォトレジスト膜パターンの方向は三角形の各辺がサファイアのm軸と平行となるように定め、三角形の各辺の長さは2μmに設定した。
凹部の形成後、リムーバ液を用いて基板からフォトレジスト膜を除去し、更に、その残渣をも完全に除去するために、加工した基板表面を酸素プラズマに暴露した。このようにして得たサファイア加工基板の凹凸面を真上の方向から観察したSEM像を図2に示す。エッチングマスクのパターンに対応した凸部パターンを有する凹凸面パターン、すなわち、正三角形状の上面を有する三角柱状ないし三角錘台状の凸部と、凸部間を隔てる正六角形状スペース(それぞれが6個の凸部により包囲されている)とが、上面視したときにかごめパターンをなすように配置された凹凸面パターンが形成されていることが分かる。
実施例1で作製したサファイア加工基板をMOVPE装置の成長炉内に設置し、水素ガス雰囲気中で加熱することにより表面クリーニングをした後、基板温度を400℃に下げて、凹凸面上にAlGaN低温バッファ層を10nm成長させた。
続けて、基板温度を単結晶が成長する温度まで上昇させて、3族原料にトリメチルガリウム(TMG)、5族原料にアンモニアを用い、アンドープGaNを成長させた。このときの成長炉内へのガス供給量は、窒素ガスを30slm、水素ガスを20slm、アンモニアを10slmとし、TMGの供給量は200μmol/分とした。成長時間は、通常の平坦な基板上における1μmの成長に相当する時間とした。
実施例1において作製したサファイア加工基板上に、実施例2と同様にしてアンドープGaN結晶を成長させた。但し、アンドープGaN結晶の成長時間を、実施例2では通常の平坦な基板上における1μmの成長に相当する時間としたが、本実施例3では通常の平坦な基板上における4μmの成長に相当する時間とした。実施例2と同じ成長条件を用いながらも、成長時間をこのように長くすることによって、アンドープGaN結晶の成長面は平坦となった。
実施例3で作製したエピタキシャルウェハの各素子形成部に正負の電極を形成した。Al0.03Ga0.97Nコンタクト層上には正オーミック電極としてITO膜を形成し、そのオーミック電極の一部上に金属製のボンディングパッドを形成した。RIEによって部分的に露出させたSiドープGaN層の表面には、オーミック電極とボンディングパッドを兼用する負側の電極を形成した。電極形成後、サファイア加工基板の裏面をラッピングしてウェハの厚さを100μm以下に減じたうえで、スクライバーを用いてウェハを各素子形成部に分割することにより、350μm角の板状のGaN系半導体発光素子チップを得た。この発光素子チップをサブマウントを介してステム上にフリップチップ実装し、積分球を用いてベアチップ状態における20mA通電時の発光出力を測定したところ、15mWという高い値を示した。
フォトレジスト膜のパターンを、直径2μmの円を三角格子の格子点に配置したパターンとしたこと以外は実施例1と同様にして、サファイア加工基板を作製した。上記パターンにおいて、隣接する2つの円の中心間の距離は4μmとした。得られたサファイア加工基板の表面は、上面の直径が底面の直径より僅かに小さい複数の円錘台状の凸部を三角格子の格子点に配置してなる凹凸面となった。このサファイア加工基板を用いたこと以外は実施例3と同様にしてエピタキシャルウェハを作製し、エピタキシャル層表面における転位欠陥の密度を調べたところ、2×108cm-2であった。また、このサファイア加工基板を用いたこと以外は実施例4と同様にして発光素子チップを作製し、発光出力を測定したところ、13mWであった。
本出願は、2008年2月15日出願の日本特許出願(特願2008-034275号)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (14)
- GaN系半導体とは異なる材料からなる単結晶部を少なくとも表層部分に備え、
エピタキシャル成長用表面として、それぞれが3個の最近接する他の凸部を120度ずつ異なる方向に有するよう配列された複数の凸部と、それぞれが6個の上記凸部により包囲された複数の成長スペースと、からなる凹凸面を有し、
上記単結晶部が少なくとも上記成長スペースに露出しており、それによって上記成長スペースからc軸配向したGaN系半導体結晶が成長可能となっている、
エピタキシャル成長用基板。 - 請求項1に記載のエピタキシャル成長用基板であって、
上記エピタキシャル成長用表面を平面視したとき、上記凸部と上記成長スペースとがかごめパターンをなしている、エピタキシャル成長用基板。 - 請求項1に記載のエピタキシャル成長用基板であって、
上記エピタキシャル成長用表面が、正六角形の開口部を設けたかごめパターンのエッチングマスクを用いて上記単結晶部の表面をドライエッチ加工することにより形成される凹凸面である、エピタキシャル成長用基板。 - 請求項1乃至3のいずれかに記載のエピタキシャル成長用基板であって、
上記凸部が上記単結晶部の一部である、エピタキシャル成長用基板。 - 請求項1乃至4のいずれかに記載のエピタキシャル成長用基板であって、
少なくとも上記単結晶部がサファイアからなるエピタキシャル成長用基板。 - 請求項5に記載のエピタキシャル成長用基板であって、
表層部分を含む全体が単結晶サファイアからなるエピタキシャル成長用基板。 - 請求項6に記載のエピタキシャル成長用基板であって、
c面サファイア基板をドライエッチ加工して上記エピタキシャル成長用表面を形成してなるエピタキシャル成長用基板。 - c面サファイア基板をドライエッチ加工してなり、
エピタキシャル成長用表面として、略正三角形状の上面を有する三角柱状ないし三角錘台状の凸部と、6個の上記凸部により包囲された正六角形状の成長スペースとが、平面視したときにかごめパターンをなすように配置された凹凸面を有する、
エピタキシャル成長用基板。 - 請求項1乃至8のいずれかに記載のエピタキシャル成長用基板であって、
2つの隣接する上記成長スペースの中心同士を結ぶ直線が、上記成長スペースから成長するc軸配向のGaN系半導体結晶のa軸に平行である、エピタキシャル成長用基板。 - 請求項1乃至9のいずれかに記載のエピタキシャル成長用基板上にc軸配向したGaN系半導体結晶をエピタキシャル成長させる結晶成長ステップを含む、GaN系半導体膜の製造方法。
- 請求項10に記載の製造方法であって、
上記結晶成長ステップが、上記エピタキシャル成長用基板の上記成長スペースのそれぞれに六角錘状または六角錘台状のGaN系半導体結晶がひとつずつ形成された構造体を形成するステップを含む、GaN系半導体膜の製造方法。 - 請求項11に記載の製造方法により製造されるGaN系半導体膜。
- 請求項12に記載のGaN系半導体膜上に少なくとも活性層とこれを挟む二つのクラッド層とを含む複数のGaN系半導体結晶層をエピタキシャル成長により形成するステップを含む、GaN系半導体発光素子の製造方法。
- 請求項1乃至9のいずれかに記載のエピタキシャル成長用基板と、該基板上にc軸配向したGaN系半導体結晶をエピタキシャル成長させてなるGaN系半導体膜と、を有し、
該GaN系半導体膜が、少なくとも活性層とこれを挟む二つのクラッド層とを含む複数のGaN系半導体結晶層を含む、
GaN系半導体発光素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980104326.6A CN101939820B (zh) | 2008-02-15 | 2009-02-13 | 外延生长用基板、GaN类半导体膜的制造方法、GaN类半导体膜、GaN类半导体发光元件的制造方法以及GaN类半导体发光元件 |
JP2009553469A JP5532930B2 (ja) | 2008-02-15 | 2009-02-13 | エピタキシャル成長用基板、GaN系半導体膜の製造方法、GaN系半導体膜、GaN系半導体発光素子の製造方法およびGaN系半導体発光素子 |
US12/867,787 US8946772B2 (en) | 2008-02-15 | 2009-02-13 | Substrate for epitaxial growth, process for manufacturing GaN-based semiconductor film, GaN-based semiconductor film, process for manufacturing GaN-based semiconductor light emitting element and GaN-based semiconductor light emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-034275 | 2008-02-15 | ||
JP2008034275 | 2008-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009102033A1 true WO2009102033A1 (ja) | 2009-08-20 |
Family
ID=40957063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052432 WO2009102033A1 (ja) | 2008-02-15 | 2009-02-13 | エピタキシャル成長用基板、GaN系半導体膜の製造方法、GaN系半導体膜、GaN系半導体発光素子の製造方法およびGaN系半導体発光素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8946772B2 (ja) |
JP (1) | JP5532930B2 (ja) |
CN (1) | CN101939820B (ja) |
WO (1) | WO2009102033A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074534A1 (ja) * | 2009-12-17 | 2011-06-23 | 昭和電工株式会社 | 基板、テンプレート基板、半導体発光素子、半導体発光素子の製造方法、半導体発光素子を用いた照明装置および電子機器 |
WO2012032915A1 (ja) * | 2010-09-10 | 2012-03-15 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子 |
US20120074431A1 (en) * | 2010-08-06 | 2012-03-29 | Nichia Corporation | Sapphire substrate and semiconductor |
CN102412356A (zh) * | 2010-09-23 | 2012-04-11 | 展晶科技(深圳)有限公司 | 外延基板 |
JP2012079722A (ja) * | 2010-09-30 | 2012-04-19 | Toyoda Gosei Co Ltd | Iii族窒化物半導体発光素子の製造方法 |
JP2012079721A (ja) * | 2010-09-30 | 2012-04-19 | Toyoda Gosei Co Ltd | Iii族窒化物半導体発光素子の製造方法 |
CN102447023A (zh) * | 2010-09-30 | 2012-05-09 | 丰田合成株式会社 | 生产iii族氮化物半导体发光器件的方法 |
WO2012093601A1 (ja) * | 2011-01-07 | 2012-07-12 | 三菱化学株式会社 | エピタキシャル成長用基板およびGaN系LEDデバイス |
WO2013036589A1 (en) * | 2011-09-06 | 2013-03-14 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
JP2013084719A (ja) * | 2011-10-07 | 2013-05-09 | Sharp Corp | 窒化物半導体素子の製造方法 |
JP2014212354A (ja) * | 2014-08-20 | 2014-11-13 | 株式会社東芝 | 半導体発光素子及びその製造方法 |
US8981403B2 (en) | 2011-09-06 | 2015-03-17 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
US9202976B2 (en) | 2013-03-12 | 2015-12-01 | Toyoda Gosei Co., Ltd. | Group III nitride semiconductor light-emitting device and method for producing the same |
US9324560B2 (en) | 2011-09-06 | 2016-04-26 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
JP2017069463A (ja) * | 2015-09-30 | 2017-04-06 | 旭化成株式会社 | 半導体発光素子及びその製造方法 |
JP2017098467A (ja) * | 2015-11-26 | 2017-06-01 | 日亜化学工業株式会社 | 発光素子及びその製造方法 |
US10032956B2 (en) | 2011-09-06 | 2018-07-24 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
JP2019220704A (ja) * | 2013-06-19 | 2019-12-26 | ルミレッズ ホールディング ベーフェー | 放射場パターンに基づくパターン形成表面特徴部を持つled |
WO2021210398A1 (ja) * | 2020-04-14 | 2021-10-21 | 学校法人関西学院 | 窒化アルミニウム基板の製造方法、窒化アルミニウム基板及び窒化アルミニウム成長層への転位の導入を抑制する方法 |
WO2021210397A1 (ja) * | 2020-04-14 | 2021-10-21 | 学校法人関西学院 | 半導体基板の製造方法、半導体基板及び成長層への転位の導入を抑制する方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9012253B2 (en) * | 2009-12-16 | 2015-04-21 | Micron Technology, Inc. | Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods |
TW201214802A (en) * | 2010-09-27 | 2012-04-01 | Nat Univ Chung Hsing | Patterned substrate and LED formed using the same |
JP2012169366A (ja) * | 2011-02-10 | 2012-09-06 | Toshiba Corp | 半導体発光装置の製造方法 |
TWI470829B (zh) * | 2011-04-27 | 2015-01-21 | Sino American Silicon Prod Inc | 磊晶基板的製作方法、發光二極體,及其製作方法 |
CN103137804B (zh) * | 2011-12-03 | 2015-09-30 | 清华大学 | 发光二极管 |
CN103137803B (zh) * | 2011-12-03 | 2015-08-26 | 清华大学 | 发光二极管 |
JP5673581B2 (ja) * | 2012-02-24 | 2015-02-18 | 豊田合成株式会社 | Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、ランプ、並びに、レチクル |
EP2922103B1 (en) | 2012-08-21 | 2017-04-05 | Oji Holdings Corporation | Substrate for semiconductor light emitting elements and semiconductor light emitting element |
CN103811612B (zh) * | 2012-11-12 | 2017-01-18 | 展晶科技(深圳)有限公司 | 发光二极管制造方法及发光二极管 |
CN103840037B (zh) * | 2012-11-21 | 2017-04-12 | 中山市云创知识产权服务有限公司 | 发光二极管制造方法 |
CN103400913B (zh) * | 2013-07-22 | 2016-03-02 | 南昌黄绿照明有限公司 | 一种用于生长六方相GaN的矩形图形化硅衬底 |
CN103576440B (zh) * | 2013-10-11 | 2017-01-25 | 西安神光安瑞光电科技有限公司 | 梅花型掩膜版以及利用梅花型掩膜版制造图形化衬底的方法 |
WO2015083768A1 (ja) * | 2013-12-05 | 2015-06-11 | 日本碍子株式会社 | 窒化ガリウム基板および機能素子 |
JP6617401B2 (ja) * | 2014-09-30 | 2019-12-11 | 日亜化学工業株式会社 | 半導体発光素子 |
JP6135751B2 (ja) * | 2015-02-18 | 2017-05-31 | 日亜化学工業株式会社 | 発光素子 |
US9899569B2 (en) * | 2015-04-23 | 2018-02-20 | Research Cooperation Foundation Of Yeungnam University | Patterned substrate for gallium nitride-based light emitting diode and the light emitting diode using the same |
US20190103267A1 (en) * | 2017-09-29 | 2019-04-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor substrate and method of manufacturing thereof |
DE102018116783B4 (de) | 2017-09-29 | 2024-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Halbleitersubstrat und Verfahren zum Fertigen von diesem |
US10707308B2 (en) | 2017-12-24 | 2020-07-07 | HangZhou HaiCun Information Technology Co., Ltd. | Hetero-epitaxial output device array |
CN111319345B (zh) * | 2018-12-14 | 2021-05-14 | 天津环鑫科技发展有限公司 | 一种tvs芯片玻璃钝化丝网印刷网版及其工艺方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002293698A (ja) * | 2001-03-30 | 2002-10-09 | Toyoda Gosei Co Ltd | 半導体基板の製造方法及び半導体素子 |
JP2006316307A (ja) * | 2005-05-11 | 2006-11-24 | Furukawa Co Ltd | Iii族窒化物半導体基板の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1501118B1 (en) | 1999-03-17 | 2009-10-07 | Mitsubishi Chemical Corporation | Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method |
JP3556916B2 (ja) | 2000-09-18 | 2004-08-25 | 三菱電線工業株式会社 | 半導体基材の製造方法 |
KR20030074824A (ko) | 2001-02-14 | 2003-09-19 | 도요다 고세이 가부시키가이샤 | 반도체 결정의 제조 방법 및 반도체 발광 소자 |
US7053420B2 (en) | 2001-03-21 | 2006-05-30 | Mitsubishi Cable Industries, Ltd. | GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof |
JP4055503B2 (ja) * | 2001-07-24 | 2008-03-05 | 日亜化学工業株式会社 | 半導体発光素子 |
JP2006073578A (ja) * | 2004-08-31 | 2006-03-16 | Nokodai Tlo Kk | AlGaNの気相成長方法及び気相成長装置 |
KR100601138B1 (ko) * | 2004-10-06 | 2006-07-19 | 에피밸리 주식회사 | Ⅲ-질화물 반도체 발광소자 및 그 제조 방법 |
KR100956456B1 (ko) * | 2008-01-31 | 2010-05-06 | 주식회사 에피밸리 | 3족 질화물 반도체 발광소자 |
-
2009
- 2009-02-13 WO PCT/JP2009/052432 patent/WO2009102033A1/ja active Application Filing
- 2009-02-13 CN CN200980104326.6A patent/CN101939820B/zh active Active
- 2009-02-13 US US12/867,787 patent/US8946772B2/en active Active
- 2009-02-13 JP JP2009553469A patent/JP5532930B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002293698A (ja) * | 2001-03-30 | 2002-10-09 | Toyoda Gosei Co Ltd | 半導体基板の製造方法及び半導体素子 |
JP2006316307A (ja) * | 2005-05-11 | 2006-11-24 | Furukawa Co Ltd | Iii族窒化物半導体基板の製造方法 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129718A (ja) * | 2009-12-17 | 2011-06-30 | Showa Denko Kk | 基板、テンプレート基板、半導体発光素子、半導体発光素子の製造方法、半導体発光素子を用いた照明装置および電子機器 |
US9024331B2 (en) | 2009-12-17 | 2015-05-05 | Toyoda Gosei Co., Ltd. | Substrate, template substrate, semiconductor light emitting element, semiconductor light emitting element producing method, illumination device using semiconductor light emitting element and electronic device |
WO2011074534A1 (ja) * | 2009-12-17 | 2011-06-23 | 昭和電工株式会社 | 基板、テンプレート基板、半導体発光素子、半導体発光素子の製造方法、半導体発光素子を用いた照明装置および電子機器 |
US8847262B2 (en) | 2010-08-06 | 2014-09-30 | Nichia Corporation | Sapphire substrate having triangular projections with bottom sides formed of outwardly curved lines |
US9525103B2 (en) | 2010-08-06 | 2016-12-20 | Nichia Corporation | Sapphire substrate having elongated projection and semiconductor light emitting device utilizing the same |
US20120074431A1 (en) * | 2010-08-06 | 2012-03-29 | Nichia Corporation | Sapphire substrate and semiconductor |
US9070814B2 (en) | 2010-08-06 | 2015-06-30 | Nichia Corporation | LED sapphire substrate with groups of three projections on the surface |
US9012936B2 (en) * | 2010-08-06 | 2015-04-21 | Nichia Corporation | Sapphire substrate having triangular projections with portions extending in direction of substrate crystal axis |
US8847263B2 (en) | 2010-08-06 | 2014-09-30 | Nichia Corporation | Sapphire substrate having triangular projections with outer perimeter formed of continuous curve |
US8853829B2 (en) | 2010-09-10 | 2014-10-07 | Ngk Insulators, Ltd | Epitaxial substrate for semiconductor device, method for manufacturing epitaxial substrate for semiconductor device, and semiconductor device |
CN103109351A (zh) * | 2010-09-10 | 2013-05-15 | 日本碍子株式会社 | 半导体元件用外延基板、半导体元件用外延基板的制造方法、以及半导体元件 |
WO2012032915A1 (ja) * | 2010-09-10 | 2012-03-15 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子 |
CN102412356A (zh) * | 2010-09-23 | 2012-04-11 | 展晶科技(深圳)有限公司 | 外延基板 |
JP2012079721A (ja) * | 2010-09-30 | 2012-04-19 | Toyoda Gosei Co Ltd | Iii族窒化物半導体発光素子の製造方法 |
US8765509B2 (en) | 2010-09-30 | 2014-07-01 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride semiconductor light-emitting device |
JP2012079722A (ja) * | 2010-09-30 | 2012-04-19 | Toyoda Gosei Co Ltd | Iii族窒化物半導体発光素子の製造方法 |
CN102447023A (zh) * | 2010-09-30 | 2012-05-09 | 丰田合成株式会社 | 生产iii族氮化物半导体发光器件的方法 |
WO2012093601A1 (ja) * | 2011-01-07 | 2012-07-12 | 三菱化学株式会社 | エピタキシャル成長用基板およびGaN系LEDデバイス |
JPWO2012093601A1 (ja) * | 2011-01-07 | 2014-06-09 | 三菱化学株式会社 | エピタキシャル成長用基板およびGaN系LEDデバイス |
WO2013036589A1 (en) * | 2011-09-06 | 2013-03-14 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
US8981403B2 (en) | 2011-09-06 | 2015-03-17 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
US9324560B2 (en) | 2011-09-06 | 2016-04-26 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
US9634189B2 (en) | 2011-09-06 | 2017-04-25 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
US10032956B2 (en) | 2011-09-06 | 2018-07-24 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
JP2013084719A (ja) * | 2011-10-07 | 2013-05-09 | Sharp Corp | 窒化物半導体素子の製造方法 |
US9202976B2 (en) | 2013-03-12 | 2015-12-01 | Toyoda Gosei Co., Ltd. | Group III nitride semiconductor light-emitting device and method for producing the same |
JP2019220704A (ja) * | 2013-06-19 | 2019-12-26 | ルミレッズ ホールディング ベーフェー | 放射場パターンに基づくパターン形成表面特徴部を持つled |
JP2014212354A (ja) * | 2014-08-20 | 2014-11-13 | 株式会社東芝 | 半導体発光素子及びその製造方法 |
JP2017069463A (ja) * | 2015-09-30 | 2017-04-06 | 旭化成株式会社 | 半導体発光素子及びその製造方法 |
JP2017098467A (ja) * | 2015-11-26 | 2017-06-01 | 日亜化学工業株式会社 | 発光素子及びその製造方法 |
WO2021210398A1 (ja) * | 2020-04-14 | 2021-10-21 | 学校法人関西学院 | 窒化アルミニウム基板の製造方法、窒化アルミニウム基板及び窒化アルミニウム成長層への転位の導入を抑制する方法 |
WO2021210397A1 (ja) * | 2020-04-14 | 2021-10-21 | 学校法人関西学院 | 半導体基板の製造方法、半導体基板及び成長層への転位の導入を抑制する方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101939820A (zh) | 2011-01-05 |
CN101939820B (zh) | 2012-02-08 |
JP5532930B2 (ja) | 2014-06-25 |
US20110198560A1 (en) | 2011-08-18 |
US8946772B2 (en) | 2015-02-03 |
JPWO2009102033A1 (ja) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5532930B2 (ja) | エピタキシャル成長用基板、GaN系半導体膜の製造方法、GaN系半導体膜、GaN系半導体発光素子の製造方法およびGaN系半導体発光素子 | |
JP5082278B2 (ja) | 発光ダイオードの製造方法、集積型発光ダイオードの製造方法および窒化物系iii−v族化合物半導体の成長方法 | |
KR102141815B1 (ko) | 자외선 발광 다이오드 및 그 제조 방법 | |
US8765509B2 (en) | Method for producing group III nitride semiconductor light-emitting device | |
JP2004288799A (ja) | 半導体発光素子およびその製造方法、集積型半導体発光装置およびその製造方法、画像表示装置およびその製造方法ならびに照明装置およびその製造方法 | |
JP5997373B2 (ja) | 窒化物半導体発光素子 | |
US20110244610A1 (en) | Method for producing group iii nitride semiconductor light-emitting device | |
JP2006339534A (ja) | 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器 | |
US8822247B2 (en) | Optical semiconductor element and manufacturing method of the same | |
KR20080112385A (ko) | 질화 갈륨계 화합물 반도체 발광소자 | |
JP2013175553A (ja) | Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、ランプ、並びに、レチクル | |
JP2008199016A (ja) | 発光素子のエピタキシャル構造 | |
US20110001158A1 (en) | Iii-nitride semiconductor light emitting device | |
KR20110107618A (ko) | 질화물 반도체 발광소자 및 그 제조방법 | |
JP2007036174A (ja) | 窒化ガリウム系発光ダイオード | |
JP3896718B2 (ja) | 窒化物半導体 | |
WO2014136393A1 (ja) | 加工基板及びそれを用いた半導体装置 | |
JP5246236B2 (ja) | Iii族窒化物半導体発光素子の製造方法 | |
JP2005142415A (ja) | GaN系III−V族化合物半導体層の選択成長方法、半導体発光素子の製造方法および画像表示装置の製造方法 | |
JP2009141085A (ja) | 窒化物半導体素子 | |
JP5140979B2 (ja) | AlGaInP系発光ダイオード、光源セルユニット、ディスプレイおよび電子機器 | |
JP7305428B2 (ja) | 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法 | |
JP2005252086A (ja) | 半導体発光素子の製造方法、半導体発光素子、集積型半導体発光装置の製造方法、集積型半導体発光装置、画像表示装置の製造方法、画像表示装置、照明装置の製造方法および照明装置 | |
JP2004119964A (ja) | 半導体発光素子の製造方法、半導体発光素子、集積型半導体発光装置の製造方法、集積型半導体発光装置、画像表示装置の製造方法、画像表示装置、照明装置の製造方法および照明装置 | |
WO2019235459A1 (ja) | 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104326.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09710909 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009553469 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12867787 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09710909 Country of ref document: EP Kind code of ref document: A1 |