CN103137804B - 发光二极管 - Google Patents

发光二极管 Download PDF

Info

Publication number
CN103137804B
CN103137804B CN201110395477.0A CN201110395477A CN103137804B CN 103137804 B CN103137804 B CN 103137804B CN 201110395477 A CN201110395477 A CN 201110395477A CN 103137804 B CN103137804 B CN 103137804B
Authority
CN
China
Prior art keywords
semiconductor layer
nano
fin
light
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110395477.0A
Other languages
English (en)
Other versions
CN103137804A (zh
Inventor
朱振东
李群庆
张立辉
陈墨
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201110395477.0A priority Critical patent/CN103137804B/zh
Priority to TW100145859A priority patent/TWI483422B/zh
Priority to US13/479,225 priority patent/US8624285B2/en
Priority to JP2012262636A priority patent/JP5980669B2/ja
Publication of CN103137804A publication Critical patent/CN103137804A/zh
Priority to US14/093,692 priority patent/US8981342B2/en
Priority to US14/604,371 priority patent/US9130100B2/en
Application granted granted Critical
Publication of CN103137804B publication Critical patent/CN103137804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提供一种发光二极管,其包括:依次层叠设置的一第一半导体层、一活性层及一第二半导体层,一第一电极覆盖所述第一半导体层远离活性层的表面,一第二电极与所述第二半导体层电连接,所述第二半导体层远离活性层的表面为所述发光二极管的出光面,其中,所述活性层至少一表面为多个三维纳米结构并排延伸形成的图案化的表面,且所述发光二极管的出光面或所述基底与第一半导体层接触的表面为多个三维纳米结构并排延伸形成的图案化的表面,每个三维纳米结构沿其延伸方向上的横截面为M形。

Description

发光二极管
技术领域
本发明涉及一种发光二极管,尤其涉及一种具有三维纳米结构阵列的发光二极管。
背景技术
由氮化镓半导体材料制成的高效蓝光、绿光和白光发光二极管具有寿命长、节能、绿色环保等显著特点,已被广泛应用于大屏幕彩色显示、汽车照明、交通信号、多媒体显示和光通讯等领域,特别是在照明领域具有广阔的发展潜力。
传统的发光二极管通常包括N型半导体层、P型半导体层、设置在N型半导体层与P型半导体层之间的活性层、设置在P型半导体层上的P型电极(通常为透明电极)以及设置在N型半导体层上的N型电极。发光二极管处于工作状态时,在P型半导体层与N型半导体层上分别施加正、负电压,这样,存在于P型半导体层中的空穴与存在于N型半导体层中的电子在活性层中发生复合而产生光子,且光子从发光二极管中射出。
然而,现有的发光二极管的发光效率不够高,部分原因是由于活性层与N型半导体层或P型半导体层之间的接触面积不够大,从而导致空穴与电子的复合密度较小,使得产生的光子数量较少。另外由于来自活性层的大角度光在半导体与空气的界面处发生全反射,从而大部分大角度光被限制在发光二极管的内部,直至以热等方式耗散。这对发光二极管而言非常不利。
发明内容
有鉴于此,确有必要提供一发光效率较高的发光二极管。
一种发光二极管,其包括:一第一半导体层,所述第一半导体层具有相对的一第一表面及一第二表面;一活性层及第二半导体层依次层叠设置于所述第一半导体层的第二表面,所述第二半导体层远离活性层的表面形成所述发光二极管的出光面;一第一电极覆盖所述第一半导体层的第一表面;一第二电极与所述第二半导体层电连接;其中,所述第一半导体层的第二表面及所述第二半导体层远离活性层的表面为多个三维纳米结构以阵列形式排布形成的图案化的表面,其中每一所述三维纳米结构包括一第一凸棱及一第二凸棱,所述第一凸棱与第二凸棱并排延伸,相邻的第一凸棱与第二凸棱之间具有一第一凹槽,相邻的三维纳米结构之间形成第二凹槽,所述第一凹槽的深度小于第二凹槽的深度,所述活性层与所述第一半导体层接触的表面与所述第一半导体层所述图案化的表面相啮合。
一种发光二极管,其包括:一第一半导体层,所述第一半导体层具有相对的一第一表面及一第二表面;一活性层及第二半导体层依次层叠设置于所述第一半导体层的第二表面,所述第二半导体层远离活性层的表面形成所述发光二极管的出光面;一第一电极覆盖所述第一半导体层的第一表面;一第二电极与所述第二半导体层电连接;其中,所述第一半导体层的第一表面及第二表面为多个三维纳米结构以阵列形式排布形成的图案化的表面,其中每一所述三维纳米结构包括一第一凸棱及一第二凸棱,所述第一凸棱与第二凸棱并排延伸,相邻的第一凸棱与第二凸棱之间具有一第一凹槽,相邻的三维纳米结构之间形成第二凹槽,所述第一凹槽的深度小于第二凹槽的深度,所述活性层与所述第一半导体层接触的表面与所述第一半导体层所述图案化的表面相啮合。
一种发光二极管,其包括:依次层叠设置的一第一半导体层、一活性层及一第二半导体层,一第一电极覆盖所述第一半导体层远离活性层的表面,一第二电极与所述第二半导体层电连接,所述第二半导体层远离活性层的表面为所述发光二极管的出光面,其中,所述活性层至少一表面为多个三维纳米结构并排延伸形成的图案化的表面,且所述第二半导体层远离活性层的表面或所述第一半导体层与第一电极接触的表面为多个三维纳米结构并排延伸形成的图案化的表面,每个三维纳米结构沿其延伸方向上的横截面为M形。
与现有技术相比较,本发明的发光二极管中,所述第一半导体层与所述活性层表面接触的表面具有多个M形三维纳米结构,形成一三维纳米结构阵列,从而形成一图案化的表面,因此增大了所述活性层与第一半导体层之间的接触面积,增大了空穴与电子的复合几率,提高了复合密度,进而提高了所述发光二极管的发光效率。同时,通过在所述发光二极管的出光面或所述第一半导体层远离活性层的表面设置多个三维纳米结构,当光子以大角度入射到该三维纳米结构时,可改变所述光子的出射角度,而使之从出光面射出,进一步提高了所述发光二极管的出光效率。
附图说明
图1为本发明第一实施例提供的发光二极管的结构示意图。
图2为图1所示的发光二极管中三维纳米结构阵列的结构示意图。
图3为图2所示的三维纳米结构阵列的扫描电镜照片。
图4为图2所示的三维纳米结构阵列沿IV-IV线的剖视图。
图5为图1所示的发光二极管中第二半导体层的结构示意图。
图6为本发明第二实施例提供的发光二极管的结构示意图。
图7为图6中所示发光二极管中活性层的结构示意图。
图8为本发明第三实施例提供的发光二极管的结构示意图。
图9为本发明第四实施例提供的发光二极管的结构示意图。
主要元件符号说明
发光二极管 10,20,30,40
基底 100
第一半导体层 110
本体部分 110a
凸起部分 110b
第一电极 112
三维纳米结构 113,115,123,133
第一凸棱 1132,1232,1332
第二凸棱 1134,1234,1334
第一凹槽 1136,1236,1336
第二凹槽 1138,1238,1338
第一棱面 1132a,1134a
第二棱面 1132b,1134b
活性层 120
第二半导体层 130
第二电极 132
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了对本发明作更进一步的说明,举以下具体实施例并配合附图进行详细描述。
请参阅图1,本发明第一实施例提供一种发光二极管10,其包括:依次层叠设置的一第一半导体层110、一活性层120、一第二半导体层130以及一第一电极112、一第二电极132。所述第二半导体层130远离活性层120的表面为所述发光二极管10的出光面。所述第一电极112覆盖所述第一半导体层110远离活性层120的表面。所述第二电极132与所述第二半导体层130电连接。所述第一半导体层110与活性层120接触的表面具有一纳米图形,所述发光二极管10的出光面为一图案化的表面。
所述第一半导体层110、第二半导体层130分别为N型半导体层和P型半导体层两种类型中的一种。具体地,当该第一半导体层110为N型半导体层时,第二半导体层130为P型半导体层;当该第一半导体层110为P型半导体层时,第二半导体层130为N型半导体层。所述N型半导体层起到提供电子的作用,所述P型半导体层起到提供空穴的作用。N型半导体层的材料包括N型氮化镓、N型砷化镓及N型磷化铜等材料中的一种或几种。P型半导体层的材料包括P型氮化镓、P型砷化镓及P型磷化铜等材料中的一种或几种。所述第一半导体层110的厚度为1微米至5微米。本实施例中,第一半导体层110的材料为N型氮化镓。
可选择地,一缓冲层(图未示)可以设置于基底100和第一半导体层110之间,并与基底100和第一半导体层110分别接触,此时第一半导体层110靠近基底100的表面与缓冲层接触。所述缓冲层有利于提高所述第一半导体层110的外延生长质量,减少晶格缺陷。所述缓冲层的厚度为10纳米至300纳米,其材料可以为氮化镓或氮化铝等。
本实施例中,所述第一半导体层110具有相对的第一表面(未标示)及第二表面(未标示),所述活性层120及所述第二半导体层130依次层叠设置于所述第一半导体层110的第二表面。
请一并参阅图1及图2,所述第一半导体层110的第二表面具有一纳米图形,为一图案化的表面,所述纳米图形分布于所述第一半导体层的第一区域。为了便于描述,将该第一半导体层110区分为一本体部分110a及一由该本体部分110a向远离该本体部分110a方向延伸的一凸起部分110b,所述本体部分110a与该凸起部分110b通过一“界面”整体分开,所述界面形成所述本体部分110a的表面。可以理解,所述“界面”是为方便描述而假设的平面,该平面可平行于所述第一半导体层110的第一表面。所述凸起部分110b可以看作从所述本体部分110a表面凸起的实体结构,所述凸起部分110b包括多个三维纳米结构113。所述多个三维纳米结构113以阵列形式设置,所述阵列形式设置指所述多个三维纳米结构113可以按照等间距排布、同心圆环排布等方式排列,形成所述第一半导体层110图案化的表面。所述相邻的两个三维纳米结构113之间的距离相等,为10纳米~1000纳米,优选为10纳米~30纳米。本实施例中,所述多个三维纳米结构113以等间距排列,且相邻两个三维纳米结构113之间的距离约为10纳米。
所述三维纳米结构113为一凸起结构,所述凸起结构为从所述第一半导体层110的本体部分110a向远离所述本体部分110a的方向突出的凸起实体。所述三维纳米结构113与所述第一半导体层110的本体部分110a为一体成型结构,即所述三维纳米结构113与所述第一半导体层110的本体部分110a之间无间隔的形成一体结构。所述多个三维纳米结构113的延伸方向相同,且在所述三维纳米结构113的延伸的方向上,所述三维纳米结构113的横截面为一M形。换个角度说,所述多个三维纳米结构113为形成于本体部分110a上的多个条形凸起结构,该多个条形凸起结构向同一方向延伸,在沿所述延伸方向的横截面为M形。
所述多个三维纳米结构113可在第一半导体层110的本体部分110a上以直线、折线或曲线的形式并排延伸。所述“并排”是指所述相邻的两个三维纳米结构113在延伸方向的任一相对位置具有相同的间距,该间距范围为0纳米~200纳米。所述多个三维纳米结构113的延伸方向可以是固定的,也可以是变化的。当所述延伸方向固定时,所述多个三维纳米结构113以直线的形式并排延伸,在该延伸方向上,所述多个三维纳米结构113的横截面均为形状、面积一致的M形;当所述延伸方向变化时,所述多个三维纳米结构113可以折线或曲线的形式并排延伸,在所述延伸方向上的任意一点位置处,所述多个三维纳米结构113在该点的横截面均为形状、面积一致的M形。请一并参阅图3,在本实施例中,所述三维纳米结构113为一条形凸起结构,所述多个三维纳米结构113在第一半导体层110的本体部分110a上以阵列形式分布,形成所述第一半导体层110的第二表面,该第二表面具有一纳米图形,为一图案化的表面。所述多个条形凸起结构基本沿同一方向延伸且彼此平行设置于所述本体部分110a。定义该多个条形凸起结构的延伸方向为X方向,垂直于所述凸起结构的延伸方向为Y方向。则在X方向上,所述条形凸起结构的两端分别延伸至所述第一半导体层110的本体部分110a相对的两边缘,具体的,所述多个条形凸起可在第一半导体层110的本体部分110a以直线、折线或曲线的形式沿X方向延伸;在Y方向上,所述三维纳米结构113为一双峰凸棱结构,所述多个条形凸起并排排列,且所述条形凸起的横截面的形状为M形,即所述三维纳米结构113为一M形三维纳米结构。
请一并参阅图4,所述M形三维纳米结构113包括一第一凸棱1132及一第二凸棱1134,所述第一凸棱1132与第二凸棱1134的延伸方向相同且均沿X方向并排延伸。所述第一凸棱1132具有相交的两棱面,即一第一棱面1132a及一第二棱面1132b,所述第一棱面1132a与第二棱面1132b相交形成所述第一凸棱1132的棱角。所述第一棱面1132a及第二棱面1132b可分别为平面,曲面或折面。本实施例中,所述第一棱面1132a及第二棱面1132b分别为平面。所述第一棱面1132a与所述第一半导体层110的本体部分110a表面形成一定角度α,所述α大于0度小于等于90度。所述第一棱面1132a具有相对的两端,一端与所述第一半导体层110的本体部分110a表面相交接;另一端以α角向远离该本体部分110a的方向延伸,并与所述第二棱面1132b相交。所述第二棱面1132b与所述第一半导体层110的本体部分110a表面所形成的角度β大于0度小于等于90度,可与α相同或不同。所述第二棱面1132b具有相对的两端,一端与所述第二凸棱1134相交,另一端向远离本体部分110a的方向延伸并与所述第一棱面1132a相交,形成所述第一凸棱1132的棱角θ。所述棱角θ大于零度小于180度,优选的,所述棱角θ大于等于30度小于等于60度。
同样,所述第二凸棱1134的结构与第一凸棱1132基本相同,包括一第一棱面1134a与第二棱面1134b,所述第一棱面1134a与第二棱面1134b分别向远离本体部分110a的方向延伸,并相交形成所述第二凸棱1134的棱角。所述第二凸棱1134的所述第一棱面1134a一端与所述本体部分110a的表面相交接,另一端以角度α向远离本体部分110a的方向延伸。所述第二棱面1134b具有相对的两端,一端与所述第一凸棱1132中第二棱面1132b的一端在靠近本体部分110a的表面相交,从而形成三维纳米结构113的第一凹槽1136,另一端与所述第一棱面1134a相交于第二凸棱1134的棱角。所述多个三维纳米结构113在本体部分110a的表面并排排列,相邻的三维纳米结构113之间形成一第二凹槽1138,故一个三维纳米结构113中的第二凸棱1134的第二棱面1134b和与其相邻的另一个三维纳米结构113的第一凸棱1132的第一棱面1132a在所述本体部分110a的表面相交接形成所述第二凹槽1138。
所述第一凸棱1132与第二凸棱1134从第一半导体层110的本体部分110a向远离本体部分110a表面延伸突出的高度不限,所述高度是指从所述本体部分110a表面至所述第一凸棱1132或所述第二凸棱1134的最高点之间的距离,所述第一凸棱1132与第二凸棱1134的高度可以相等或不相等,所述第一凸棱1132与第二凸棱1134的高度可为150纳米~200纳米。所述第一凸棱1132或所述第二凸棱1134的最高点的集合体可为直线形或非直线形线,如折线或曲线等,也即所述第一凸棱1132中所述第一棱面1132a与第二棱面1132b相交形成的线可为直线、折线或曲线等,同样所述第二凸棱1134的所述第一棱面1134a与第二棱面1134b相交形成的线也可为直线、折线或曲线等。同一个三维纳米结构113中,第一凸棱1132的最高点与所述第二凸棱1134最高点之间的距离可为20纳米~100纳米。本实施例中,所述第一凸棱1132与第二凸棱1134的高度相同,均为180纳米,且最高点的集合形成一直线。所述第一凸棱1132及第二凸棱1134沿X方向延伸,在Y方向上,所述第一凸棱1132及第二凸棱1134横截面的形状可为梯形或锥形。本实施例中,所述第一凸棱1132及第二凸棱1134的横截面为锥形。所述第一凸棱1132及第二凸棱1134的横截面组合呈M形,即所述三维纳米结构113的横截面为M形。所述第一凸棱1132与第二凸棱1134形成一双峰凸棱结构。所述第一凸棱1132、第二凸棱1134及第一半导体层110为一一体成型结构,即所述第一凸棱1132与所述第二凸棱1134之间无间隙或间隔,且与所述本体部分110a无间隙的结合。可以理解,由于工艺的限制及其他因素的影响,所述第一凸棱1132的第一棱面1132a与第二棱面1132b并非绝对的平面,可存在一定的误差,因此第一棱面1132a与第二棱面1132b相交形成的棱角θ也并非一绝对的尖角,可能为一弧形角等其他形式,但所述棱角的具体形状并不影响所述第一凸棱1132的整体结构,属于本发明的保护范围。同理,所述第二凸棱1134的棱角亦是如此。
同一个M形三维纳米结构113中,所述第一凸棱1132与第二凸棱1134之间,形成所述第一凹槽1136,所述第一凸棱1132中第二棱面1132b与所述第二凸棱1134中的第二棱面1134b作为第一凹槽1136的两个侧面,两个侧面相交处形成所述第一凹槽1136的底部。所述第一凹槽1136的延伸方向与所述第一凸棱1132或第二凸棱1134的延伸方向相同。所述第一凹槽1136横截面形状为V形,且所述多个第一凹槽1136深度h1均相等。所述第一凹槽1136的深度h1是指所述第一凸棱1132或第二凸棱1134的最高点到本体部分110a的表面的距离。在本体部分110a表面,所述多个三维纳米结构113彼此平行且等间距排列,相邻的M形三维纳米结构113之间形成的所述第二凹槽1138,所述第二凹槽1138的延伸方向与所述三维纳米结构113的延伸方向相同。所述第二凹槽1138的横截面为V形或倒梯形,在X方向上,所述横截面的形状及大小均基本相同。可以理解,由于工艺的限制或其他外界因素的影响,所述第一凹槽1136及第二凹槽1138横截面的形状、大小、深度并非绝对的相同,可存在一定的误差,但该误差并不影响所述横截面的整体形状及总体趋势。所述第二凹槽1138的深度h2均相等,所述第二凹槽1138的深度h2是指所述第一凸棱1132或第二凸棱1134的最高点与所述本体部分110a之间的距离。所述第二凹槽1138的深度h2与第一凹槽1136的深度h1不同,可根据实际需要进行选择。所述第二凹槽1138的深度h2大于所述第一凹槽1136的深度h1,进一步的,所述第一凹槽1136的深度h1与第二凹槽1138的深度h2的比值满足:1:1.2≤h1:h2≤1:3。所述第一凹槽1136的深度h1可为30纳米~120纳米,所述第二凹槽1138的深度h2可为100纳米~200纳米。本实施例中,所述第一凹槽1136的深度h1为80纳米,所述第二凹槽1138的深度h2为180纳米。
所述M形三维纳米结构113的宽度λ可为100纳米~300纳米。所述三维纳米结构113的“宽度”是指所述M形三维纳米结构113在Y方向上延伸的最大跨度。本实施例中,所述三维纳米结构113宽度是指在Y方向上,所述每一三维纳米结构113在所述本体部分110a表面扩展的跨度。并且在远离该本体部分110a表面的方向上,该跨度逐渐减小,也即每一三维纳米结构中,第一凸棱1132与第二凸棱1134的最高点之间的距离,小于该三维纳米结构的宽度。所述多个三维纳米结构113可间隔分布,任意两个相邻的三维纳米结构113之间具有相同的间距。所述间隔即形成所述第二凹槽1138。定义相邻两第二凹槽1138之间的距离为相邻的两个第二凹槽1138向第一半导体层110内部延伸的最深点之间的距离,则所述相邻两第二凹槽1138之间的距离等于所述三维纳米结构113的宽度。相邻两个三维纳米结构113之间的间距λ0可相等或不等。所述间距λ0随所述第一凸棱1132或第二凸棱1134高度的增加而增加,随其高度的减小而减小。在Y方向上,所述间距λ0也可逐渐变化,如逐渐变大或逐渐变小或周期性变化。相邻两三维纳米结构113之间的间距λ0可为0纳米~200纳米。当所述λ0为0时,所述第二凹槽1138横截面的形状为V形;当λ0大于0时,所述第二凹槽1138横截面的形状为倒梯形。在Y方向上,所述多个三维纳米结构113彼此平行设置于所述本体部分110a的表面,并且呈周期性分布。所述三维纳米结构113的周期P可为100纳米~500纳米。进一步的,所述周期P、三维纳米结构113的宽度λ以及相邻两三维纳米结构113之间的的间距λ0满足如下关系:
P=λ+λ0
所述周期P、三维纳米结构113的宽度λ以及相邻两三维纳米结构113之间的的间距λ0的单位均为纳米。所述周期P可为一固定值,此时当所述λ0增加时,则λ相应减小;当λ0减小时,所述λ相应增加。进一步的,所述多个三维纳米结构113可以多个周期形成于所述本体部分110a表面,即部分三维纳米结构113以周期P排列,另一部分以周期P′(P′≠P)分布。所述三维纳米结构113以多周期分布时,可进一步扩展其应用前景。在本实施例中,所述P约为200纳米,所述λ约为190纳米,所述λ0约为10纳米。
所述活性层120设置于所述第一半导体层110第二表面。具体的,所述活性层120覆盖所述多个三维纳米结构113的表面,并且所述活性层120与所述第一半导体层110接触的表面形成一图案化的表面。由于所述第一半导体层110的第二表面为多个三维纳米结构113形成的图案化的表面,因此所述活性层120的表面亦具有一与所述纳米图形相啮合的图形。具体的,所述活性层120与第一半导体层110接触的表面亦具有多个M形的三维纳米结构(图未标示),所述三维纳米结构为向活性层120内部延伸形成的凹进空间,并且该凹进空间与第一半导体层110中所述凸起实体的三维纳米结构113相啮合,进而形成一M形的凹进空间。所述“啮合”是指,所述活性层120表面形成的三维纳米结构同样形成多个凹槽及凸棱,并且,所述凹槽与所述三维纳米结构113中的第一凸棱1132及第二凸棱1134相配合;所述凸棱与所述三维纳米结构113中的第一凹槽1136及第二凹槽1138相配合,从而所述活性层120与所述第一半导体层110具有三维纳米结构113的表面无间隙的复合。所述活性层120为包含一层或多层量子阱层的量子阱结构(Quantum Well)。所述活性层120用于提供光子。所述活性层120的材料为氮化镓、氮化铟镓、氮化铟镓铝、砷化稼、砷化铝稼、磷化铟镓、磷化铟砷或砷化铟镓中的一种或几种,其厚度为0.01微米至0.6微米。本实施例中,所述活性层120为两层结构,包括一氮化铟镓层及一氮化镓层,其厚度为0.03微米。
请一并参阅图5,所述第二半导体层130设置于所述活性层120远离所述第一半导体层110的表面,具体的,所述第二半导体层130覆盖所述活性层120远离第一半导体层110的整个表面。所述第二半导体层130的厚度为0.1微米~3微米。所述第二半导体层130可为N型半导体层或P型半导体层两种类型,并且所述第二半导体层130与第一半导体层110分属两种不同类型的半导体层。所述第二半导体层130远离活性层120的表面作为发光二极管10的出光面。本实施例中,所述第二半导体层130为镁(Mg)掺杂的P型氮化镓,其厚度为0.3微米。进一步的,所述第二半导体层130远离活性层120的表面形成有多个三维纳米结构133,所述多个三维纳米结构以阵列的形式分布。即所述发光二极管10的出光面为所述多个三维纳米结构133形成的图案化的表面。所述三维纳米结构133的结构与第一半导体层110中所述三维纳米结构113的结构基本相同,所述三维纳米结构133为一向远离第二半导体层130方向凸起形成的条形凸起结构,且所述多个三维纳米结构133并排延伸。在沿所述三维纳米结构133延伸方向上,所述三维纳米结构133的横截面为M形。所述三维纳米结构133以阵列形式排布,其中每一所述三维纳米结构133包括一第一凸棱1332及一第二凸棱1334,所述第一凸棱1332与第二凸棱1334并排延伸,相邻的第一凸棱1332与第二凸棱1334之间具有一第一凹槽1336,相邻的三维纳米结构133之间形成第二凹槽1338,所述第一凹槽1336的深度小于第二凹槽1338的深度。所述三维纳米结构133的表面形成所述发光二极管10图案化的出光面。
所述第一电极112与所述第一半导体层110电连接,具体的,所述第一电极112覆盖所述第一半导体层110远离活性层120的整个表面,即覆盖所述第一半导体层110的第一表面。所述第一电极112可以为N型电极或P型电极,其与第一半导体层110的类型相同。所述第一电极112至少为一层的整体结构,其材料为钛、银、铝、镍、金或其任意组合。本实施例中,所述第一电极112为两层结构,一层为厚度15纳米的钛,另一层为厚度200纳米的金。所述第一电极112可同时用作所述发光二极管10的反射层,将所述活性层120中产生的光子进行反射而使之从发光二极管10的出光面出射。
所述第二电极132类型可以为N型电极或P型电极,其与第二半导体层130的类型相同。所述第二电极132至少为一层结构,其材料为钛、银、铝、镍、金或其任意组合,也可为ITO或碳纳米管膜。本实施例中,所述第二电极132为P型电极。所述第二电极132为两层结构,一层为厚度为15纳米的钛,另一层为厚度为100纳米的金,形成一钛/金电极。
进一步的,可在第一半导体层110及第一电极112之间设置一反射层(图未示),所述反射层覆盖所述第一半导体层110表面。所述反射层的材料可为钛、银、铝、镍、金或其任意组合。当活性层中产生的光子到达该反射层后,所述反射层可将光子反射,从而使之从所述发光二极管10的出光面射出,进而可进一步提高所述发光二极管10的出光效率。
本发明提供的发光二极管10可通过以下方法制备:
步骤S11,提供一基底100,所述基底100具有一外延生长面;
步骤S12,在所述外延生长面生长一第一半导体层110;
步骤S13,在所述第一半导体层110的表面形成多个三维纳米结构113;
步骤S14,在所述三维纳米结构113的表面生长一活性层120及一第二半导体层130;
步骤S15,刻蚀所述第二半导体层130远离活性层120的表面,形成多个三维纳米结构133;
步骤S16,去除所述基底100,暴露所述第一半导体层110表面;
步骤S17,设置一第一电极112覆盖所述第一半导体层110暴露的表面;
步骤S18,设置一第二电极132,所述第二电极132覆盖所述第二半导体层130远离活性层的表面。
本发明第一实施例提供的发光二极管10,由于所述第一半导体层110的表面具有多个三维纳米结构113,且所述活性层120设置于该多个三维纳米结构113的表面,从而增加了所述活性层120与所述第一半导体层110的接触面积,进而提高了所述空穴与电子的复合几率,增加了光子的产生数量,从而提高了所述发光二极管10的发光效率。同时,由于所述发光二极管10的出光面形成有多个三维纳米结构,从而形成一图案化的表面,进而当活性层120中产生的光子遇到三维纳米结构,会经三维纳米结构折射而改变出射光的出射方向。一方面,大角度光变成小角度光可以提高发光二极管的出光效率,另一方面,大角度光变成小角度光可以减小光线在发光二极管内部的传播路径,从而减小光线在传播过程中的损耗。另外,由于所述发光二极管10中所述第一电极112覆盖所述第一半导体层110的表面,因此可分散所述发光二极管10中的传导电流,进而减少热量,提高发光效率。
请参阅图6,本发明第二实施例提供一种发光二极管20,其包括:依次层叠设置的一第一半导体层110、一活性层120、一第二半导体层130以及一第一电极112、第二电极132。所述第二半导体层130远离活性层120的表面为所述发光二极管10的出光面。所述第一电极112覆盖所述第一半导体层110远离活性层120的表面。所述第二电极132与所述第二半导体层130电连接。所述第一半导体层110与活性层120接触的表面具有多个三维纳米结构113,形成一图案化的表面,所述发光二极管10的出光面具有多个三维纳米结构133,为一图案化的表面,所述活性层120远离第一半导体层110的表面具有多个M形三维纳米结构123。
本发明第二实施例提供的发光二极管20与第一实施例中所述发光二极管10的结构基本相同,其不同在于所述发光二极管20中,所述活性层120远离第一半导体层110的表面亦具有多个M形三维纳米结构123,所述三维纳米结构123为多个并排延伸的条形凸起结构。请参阅图7,所述M形三维纳米结构123与所述三维纳米结构113的结构基本相同具体的,所述三维纳米结构123包括一第一凸棱1232及第二凸棱1234,所述第一凸棱1232与第二凸棱1234之间形成一第一凹槽1236,相邻的三维纳米结构123之间形成一第二凹槽1238,并且所述三维纳米结构123与所述三维纳米结构113对应设置。所述“对应设置”是指所述活性层120表面的三维纳米结构123的起伏趋势与所述第一半导体层110表面的三维纳米结构113的起伏趋势对应相同,具体的,在所述活性层120的剖面中,所述第一凸棱1232与第一凸棱1132共轴设置,所述第二凸棱1234与所述第二凸棱1134共轴设置;所述第一凹槽1236与所述第二凹槽1138共轴设置,所述第二凹槽1238与所述第二凹槽1138共轴设置。
所述第二半导体层130设置于所述三维纳米结构123的表面,由于所述三维纳米结构123具有多个凹槽及凸棱,所述第二半导体层130与所述活性层120接触的表面亦形成多个三维纳米结构,所述第二半导体层130靠近所述活性层120的表面与所述活性层120远离第一半导体层110的表面相啮合。具体的,所述啮合是指所述第二半导体层130与活性层120接触的表面形成的三维纳米结构亦同时具有多个凹槽及凸棱,且所述第二半导体层130表面的凹槽与所述活性层120中的凸棱对应设置,所述第二半导体层130中的凸棱与所述活性层120中的凹槽对应设置。
本发明第二实施例提供的发光二极管20,由于所述活性层与所述第一半导体层和第二半导体层接触的表面同时形成多个三维纳米结构,即进一步增加了所述活性层与二者之间的接触面积,进而进一步提高了所述空穴与电子的复合几率,从而大大提高了所述发光二极管20的发光效率。
本发明第二实施例提供的发光二极管20可通过以下方法制备:
步骤S21,提供一基底100,所述基底100具有一外延生长面;
步骤S22,在所述外延生长面生长一第一半导体层110;
步骤S23,在所述第一半导体层110的表面形成多个三维纳米结构113;
步骤S24,在所述三维纳米结构113的表面生长一活性层120,所述活性层120远离第一半导体层的表面形成有多个三维纳米结构123;
步骤S25,在所述三维纳米结构123的表面生长一第二半导体层130,形成一发光二极管芯片预制体;
步骤S26,在所述第二半导体层130远离活性层120的表面形成多个三维纳米结构133;
步骤S27,去除所述基底100,暴露所述第一半导体层110表面;
步骤S28,设置一第一电极112覆盖所述第一半导体层110暴露的表面;
步骤S29,设置一第二电极132,与所述第二半导体层130电连接。
请参阅图8,本发明第三实施例提供一种发光二极管30,其包括:依次层叠设置的一第一半导体层110、一活性层120、一第二半导体层130以及一第一电极112、第二电极132。所述第二半导体层130远离活性层120的表面为所述发光二极管10的出光面。所述第一电极112覆盖所述第一半导体层110远离活性层120的表面。所述第二电极132与所述第二半导体层130电连接。所述第一半导体层110与活性层120接触的表面具有多个三维纳米结构113,形成一图案化的表面,所述第一半导体层110远离活性层120的表面具有多个三维纳米结构115,形成一图案化的表面。
本发明第三实施例提供的发光二极管30与第一实施例中所述发光二极管10的结构基本相同,其不同在于,所述发光二极管30中所述第一半导体层110与所述第一电极112接触的表面进一步包括多个三维纳米结构115,从而形成一图案化的表面。所述三维纳米结构115与所述三维纳米结构113的结构基本相同。所述多个三维纳米结构103为一条形凸起结构,且所述多个三维纳米结构115并排延伸,在沿所述三维纳米结构115的延伸方向上,所述三维纳米结构115的横截面为M形。所述第一电极112覆盖所述多个三维纳米结构115。
本发明第三实施例提供的发光二极管30可通过以下方法制备:
步骤S31,提供一基底100,所述基底100具有一外延生长面;
步骤S32,在所述外延生长面生长第一半导体层110;
步骤S33,在所述第一半导体层110远离基底100的表面形成多个三维纳米结构113;
步骤S34,在所述三维纳米结构113表面生长所述活性层120及第二半导体层130;
步骤S35,去除所述基底100,暴露出所述第一半导体层110表面;
步骤S36,刻蚀所述第一半导体层110暴露的表面,形成多个三维纳米结构115,形成所述图案化的表面;
步骤S37,设置一第一电极112覆盖所述三维纳米结构115;
步骤S38,设置一第二电极132与所述第二半导体层130电连接。
本发明第三实施例提供的发光二极管30,由于所述第一半导体层110的表面具有多个三维纳米结构113,且所述活性层120设置于该多个三维纳米结构113的表面,从而增加了所述活性层120与所述第一半导体层110的接触面积,进而提高了所述空穴与电子的复合几率,增加了光子的产生数量,从而提高了所述发光二极管10的发光效率。同时,由于所述第一半导体层110远离活性层120的表面具有多个三维纳米结构115,且所述第一电极112覆盖所述多个三维纳米结构115,因此当活性层120中产生的光子以大角度入射到该三维纳米结构115时,会经三维纳米结构反射而改变出射光的出射方向。一方面,大角度光变成小角度光可以提高发光二极管的出光效率,另一方面,大角度光变成小角度光可以减小光线在发光二极管内部的传播路径,从而减小光线在传播过程中的损耗,同时,所述第一电极112覆盖所述三维纳米结构115,可进一步分散所述发光二极管30中的传导电流,从而进一步减少热量的产生。
请参阅图9,本发明第四实施例提供一种发光二极管40,其包括:依次层叠设置的一第一半导体层110、一活性层120、一第二半导体层130以及一第一电极112、第二电极132。所述第二半导体层130远离活性层120的表面为所述发光二极管40的出光面。所述第一电极112覆盖所述第一半导体层110远离活性层120的表面。所述第二电极132与所述第二半导体层130电连接。所述第一半导体层110与活性层120接触的表面具有多个三维纳米结构113形成一纳米图形,所述第一半导体层110远离活性层120的表面具有多个三维纳米结构115形成一图案化的表面,所述活性层120远离第一半导体层110的表面具有多个M形三维纳米结构123,从而形成一图案化的表面。
本发明第四实施例提供的发光二极管40与第三实施例中所述发光二极管30的结构基本相同,其不同在于所述发光二极管40中,所述活性层120远离第一半导体层110的表面亦具有多个M形三维纳米结构123。所述M形三维纳米结构123与所述三维纳米结构113的结构基本相同,并且所述三维纳米结构123与所述三维纳米结构113可对应设置。进一步的,所述发光二极管40的出光面也可具有所述多个M形三维纳米结构形成图案化的表面。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (18)

1.一种发光二极管,其包括:
一第一半导体层,所述第一半导体层具有相对的一第一表面及一第二表面;
一活性层及第二半导体层依次层叠设置于所述第一半导体层的第二表面,所述第二半导体层远离活性层的表面形成所述发光二极管的出光面;
一第一电极覆盖所述第一半导体层的第一表面;
一第二电极与所述第二半导体层电连接;
其特征在于,所述第一半导体层的第二表面及所述第二半导体层远离活性层的表面为多个三维纳米结构以阵列形式排布形成的图案化的表面,其中每一所述三维纳米结构包括一第一凸棱及一第二凸棱,所述第一凸棱与第二凸棱并排延伸,相邻的第一凸棱与第二凸棱之间具有一第一凹槽,相邻的三维纳米结构之间形成第二凹槽,所述第一凹槽的深度小于第二凹槽的深度,所述活性层与所述第一半导体层接触的表面与所述第一半导体层所述图案化的表面相啮合。
2.如权利要求1所述的发光二极管,其特征在于,所述三维纳米结构为条形凸起结构,所述三维纳米结构在第一半导体层表面以直线、折线或曲线并排延伸。
3.如权利要求2所述的发光二极管,其特征在于,所述三维纳米结构在其延伸方向的横截面的形状为M形。
4.如权利要求3所述的发光二极管,其特征在于,所述第一凸棱及第二凸棱的横截面分别为锥形,所述第一凸棱与第二凸棱形成一双峰凸棱结构。
5.如权利要求1所述的发光二极管,其特征在于,所述第一凹槽的深度为30纳米~120纳米,所述第二凹槽的深度为100纳米~200纳米。
6.如权利要求1所述的发光二极管,其特征在于,所述多个三维纳米结构在第第一半导体层表面按照等间距排布、同心圆环排布或同心回形排布。
7.如权利要求6所述的发光二极管,其特征在于,所述多个三维纳米结构在第一半导体层表面按同一周期或多个周期排布,所述周期范围为100纳米~500纳米。
8.如权利要求1所述的发光二极管,其特征在于,相邻三维纳米结构之间的间距为0纳米~200纳米。
9.如权利要求1所述的发光二极管,其特征在于,所述三维纳米结构的宽度为100纳米~300纳米。
10.如权利要求1所述的发光二极管,其特征在于,所述活性层的与所述第一半导体层接触的表面形成多个凹槽及凸棱,所述凹槽与所述三维纳米结构中的第一凸棱及第二凸棱相配合,所述凸棱与第一凹槽及第二凹槽相配合。
11.如权利要求1所述的发光二极管,其特征在于,所述活性层远离第一半导体层的表面进一步形成有多个三维纳米结构,所述三维纳米结构为条形凸起结构。
12.如权利要求11所述的发光二极管,其特征在于,所述活性层远离第一半导体层表面的三维纳米结构与第一半导体层第二表面的三维纳米结构相一致且对应设置。
13.如权利要求12所述的发光二极管,其特征在于,所述第二半导体层与所述活性层接触的表面与所述活性层远离第一半导体层图案化的表面相啮合。
14.如权利要求1所述的发光二极管,其特征在于,所述活性层远离第一半导体层的表面为一平面。
15.如权利要求1所述的发光二极管,其特征在于,进一步包括一反射层设置于所述第一半导体层与第一电极之间并覆盖所述第一半导体层表面。
16.一种发光二极管,其包括:
一第一半导体层,所述第一半导体层具有相对的一第一表面及一第二表面;
一活性层及第二半导体层依次层叠设置于所述第一半导体层的第二表面,所述第二半导体层远离活性层的表面形成所述发光二极管的出光面;
一第一电极覆盖所述第一半导体层的第一表面;
一第二电极与所述第二半导体层电连接;
其特征在于,所述第一半导体层的第一表面及第二表面为多个三维纳米结构以阵列形式排布形成的图案化的表面,其中每一所述三维纳米结构包括一第一凸棱及一第二凸棱,所述第一凸棱与第二凸棱并排延伸,相邻的第一凸棱与第二凸棱之间具有一第一凹槽,相邻的三维纳米结构之间形成第二凹槽,所述第一凹槽的深度小于第二凹槽的深度,所述活性层与所述第一半导体层接触的表面与所述第一半导体层所述图案化的表面相啮合。
17.如权利要求16所述的发光二极管,其特征在于,所述活性层远离第一半导体层的表面进一步包括多个所述三维纳米结构形成一图案化的表面。
18.一种发光二极管,其包括:依次层叠设置的一第一半导体层、一活性层及一第二半导体层,一第一电极覆盖所述第一半导体层远离活性层的表面,一第二电极与所述第二半导体层电连接,所述第二半导体层远离活性层的表面为所述发光二极管的出光面,其特征在于,所述活性层至少一表面为多个三维纳米结构并排延伸形成的图案化的表面,且所述第二半导体层远离活性层的表面或所述第一半导体层与第一电极接触的表面为多个三维纳米结构并排延伸形成的图案化的表面,每个三维纳米结构沿其延伸方向上的横截面为M形,所述每个三维纳米结构包括一第一凸棱及一第二凸棱,所述第一凸棱与第二凸棱并排延伸,相邻的第一凸棱与第二凸棱之间具有一第一凹槽,相邻的三维纳米结构之间形成第二凹槽,所述第一凹槽的深度小于第二凹槽的深度。
CN201110395477.0A 2011-12-03 2011-12-03 发光二极管 Active CN103137804B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201110395477.0A CN103137804B (zh) 2011-12-03 2011-12-03 发光二极管
TW100145859A TWI483422B (zh) 2011-12-03 2011-12-12 發光二極體
US13/479,225 US8624285B2 (en) 2011-12-03 2012-05-23 Light emitting diode with three-dimensional nano-structures
JP2012262636A JP5980669B2 (ja) 2011-12-03 2012-11-30 発光ダイオード
US14/093,692 US8981342B2 (en) 2011-12-03 2013-12-02 Light emitting diode with three-dimensional nano-structures on a semiconductor layer and an active layer
US14/604,371 US9130100B2 (en) 2011-12-03 2015-01-23 Light emitting diode with three-dimensional nano-structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110395477.0A CN103137804B (zh) 2011-12-03 2011-12-03 发光二极管

Publications (2)

Publication Number Publication Date
CN103137804A CN103137804A (zh) 2013-06-05
CN103137804B true CN103137804B (zh) 2015-09-30

Family

ID=48497368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110395477.0A Active CN103137804B (zh) 2011-12-03 2011-12-03 发光二极管

Country Status (3)

Country Link
US (3) US8624285B2 (zh)
CN (1) CN103137804B (zh)
TW (1) TWI483422B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030106B (zh) * 2011-10-06 2015-04-01 清华大学 三维纳米结构阵列
CN103035800B (zh) * 2011-10-07 2016-06-08 清华大学 发光二极管
CN103035798B (zh) * 2011-10-07 2015-08-26 清华大学 发光二极管
CN103035799B (zh) * 2011-10-07 2015-08-26 清华大学 发光二极管
CN103137803B (zh) * 2011-12-03 2015-08-26 清华大学 发光二极管
DE102014111424A1 (de) * 2014-08-11 2016-02-11 Osram Oled Gmbh Organisches Licht emittierendes Bauelement und Verfahren zur Herstellung eines organischen Licht emittierenden Bauelements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859856A (zh) * 2010-06-04 2010-10-13 清华大学 发光二极管

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041225A2 (en) * 1999-12-03 2001-06-07 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
JP3782357B2 (ja) * 2002-01-18 2006-06-07 株式会社東芝 半導体発光素子の製造方法
US7795600B2 (en) * 2006-03-24 2010-09-14 Goldeneye, Inc. Wavelength conversion chip for use with light emitting diodes and method for making same
KR101330251B1 (ko) * 2007-03-06 2013-11-15 서울바이오시스 주식회사 패터닝된 기판 상에 질화물 반도체층을 형성하는 방법 및그것을 갖는 발광 다이오드
TW200919773A (en) * 2007-10-23 2009-05-01 Univ Nat Central Light emitting diode substrate using nano/micro spheres as periodical structure
TWI370558B (en) * 2007-11-07 2012-08-11 Ind Tech Res Inst Light emitting diode and process for fabricating the same
CN101939820B (zh) * 2008-02-15 2012-02-08 三菱化学株式会社 外延生长用基板、GaN类半导体膜的制造方法、GaN类半导体膜、GaN类半导体发光元件的制造方法以及GaN类半导体发光元件
US8247822B2 (en) * 2008-09-11 2012-08-21 Huga Optotech Inc. Semiconductor light-emitting device
JP2011192880A (ja) * 2010-03-16 2011-09-29 Toshiba Corp 半導体発光素子及び液晶表示装置
JP5229270B2 (ja) * 2010-05-14 2013-07-03 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
US8624279B2 (en) * 2011-06-02 2014-01-07 Sino-American Silicon Products Inc. Light emitting diode substrate and light emitting diode
CN103137817B (zh) * 2011-12-03 2015-11-25 清华大学 发光二极管
CN103137803B (zh) * 2011-12-03 2015-08-26 清华大学 发光二极管

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859856A (zh) * 2010-06-04 2010-10-13 清华大学 发光二极管

Also Published As

Publication number Publication date
US20140084243A1 (en) 2014-03-27
CN103137804A (zh) 2013-06-05
US20130140595A1 (en) 2013-06-06
TWI483422B (zh) 2015-05-01
US8624285B2 (en) 2014-01-07
US8981342B2 (en) 2015-03-17
TW201324851A (zh) 2013-06-16
US9130100B2 (en) 2015-09-08
US20150129837A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
CN103137803B (zh) 发光二极管
CN103137804B (zh) 发光二极管
CN103367383B (zh) 发光二极管
US10050181B2 (en) Light emitting diode and fabrication method thereof
CN101859856B (zh) 发光二极管
CN103137817B (zh) 发光二极管
CN102157654B (zh) 基于双面凹孔衬底及组分渐变缓冲层的倒装led芯片
CN101924116B (zh) 可扩展的超大尺寸发光二极管芯片及制造方法
US20040256627A1 (en) Semiconductor light-emitting device
CN202004040U (zh) 基于双面凹孔衬底及组分渐变缓冲层的led芯片
US20110254021A1 (en) Light emitting diode
CN103035785B (zh) 发光二极管的制备方法
CN103035799B (zh) 发光二极管
CN106486575B (zh) 一种薄膜发光二极管芯片及其制作方法
TWI426627B (zh) 發光二極體
CN114824000A (zh) 反极性红光发光二极管芯片及其制备方法
CN103137796B (zh) 发光二极管的制备方法
CN104733487A (zh) 一种具有立体发光结构的高压发光二极管
CN202305872U (zh) 导光板与光源模块
CN204720452U (zh) 一种具有立体发光结构的高压发光二极管
CN109980063B (zh) 一种发光二极管及其制作方法
CN103367570B (zh) 白光led
KR101221075B1 (ko) 나노 임프린트를 이용한 질화갈륨계 발광 다이오드 제조방법과 이를 통해 제조된 발광 다이오드 소자
TWI447963B (zh) 發光二極體
CN103035784B (zh) 发光二极管的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant