WO2009096264A1 - 半導体装置の製造方法、半導体装置、電子機器、半導体製造装置及び記憶媒体 - Google Patents

半導体装置の製造方法、半導体装置、電子機器、半導体製造装置及び記憶媒体 Download PDF

Info

Publication number
WO2009096264A1
WO2009096264A1 PCT/JP2009/050753 JP2009050753W WO2009096264A1 WO 2009096264 A1 WO2009096264 A1 WO 2009096264A1 JP 2009050753 W JP2009050753 W JP 2009050753W WO 2009096264 A1 WO2009096264 A1 WO 2009096264A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film
substrate
semiconductor device
interlayer insulating
Prior art date
Application number
PCT/JP2009/050753
Other languages
English (en)
French (fr)
Inventor
Kenji Matsumoto
Hitoshi Itoh
Hiroshi Sato
Junichi Koike
Koji Neishi
Original Assignee
Tokyo Electron Limited
National University Corporation Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, National University Corporation Tohoku University filed Critical Tokyo Electron Limited
Priority to US12/864,824 priority Critical patent/US8247321B2/en
Priority to KR1020107016843A priority patent/KR101178650B1/ko
Priority to CN200980101317.1A priority patent/CN101897016A/zh
Publication of WO2009096264A1 publication Critical patent/WO2009096264A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76844Bottomless liners

Definitions

  • the present invention relates to a manufacturing method of a semiconductor device in which copper is embedded in a recess formed in an interlayer insulating film to form a copper wiring, a semiconductor device manufactured by this method, an electronic apparatus provided with this semiconductor device, a semiconductor manufacturing device, and a semiconductor device
  • the present invention relates to a storage medium storing the method.
  • a multilayer wiring structure of a semiconductor device is formed by embedding a metal wiring in an interlayer insulating film, but copper (Cu) is used as the material of this metal wiring because of its low electromigration and low resistance.
  • the damascene process is generally used as the formation process.
  • the interlayer insulating film a film made of a silicon compound containing, for example, silicon (Si) and oxygen (O) or carbon (C) as a low dielectric constant material, such as SiO, SiOF, SiC, SiOC, SiCOH, SiCN, porous silica Porous methylsilsesquioxane, polyarylene, SiLK (registered trademark), or fluorocarbon is used.
  • a processing gas composed of a CF-based gas and an oxygen gas is turned into plasma to etch the interlayer insulating film, and a trench for embedding wiring drawn in the layer, and upper and lower wirings are formed.
  • a recess including a via hole for embedding a connection wiring to be connected is formed.
  • an ashing process using oxygen gas plasma is performed to remove a photoresist mask made of, for example, an organic material used as a mask in the etching process.
  • a residue which is a by-product generated by the plasma treatment adheres to the side surface and the back surface of the substrate, for example, a hydrofluoric acid (HF) aqueous solution (hydrofluoric acid) is used to remove the residue.
  • HF hydrofluoric acid
  • the substrate is dipped in) to perform wet cleaning. Thereafter, Cu is buried in the recess by CVD or electrolytic plating.
  • a barrier film such as Ta / TaN and a copper seed layer are formed by, for example, sputtering.
  • the step coverage characteristics of the recesses are poor in such a sputtering method, and it becomes difficult to adhere to the sidewalls of the recesses.
  • this sputtering is performed twice (indicating Ta and TaN), the film becomes thick, and it is difficult to cope with the miniaturization of the wiring density.
  • manganese (Mn) is formed in a recess by a sputtering method, and then copper is formed, and then annealing is performed on the substrate, thereby producing manganese oxide.
  • a technique for forming a self-forming barrier film made of (MnOx (x: any positive number)) and a copper wiring layer is described. Excess manganese remaining in the metal wiring is diffused into the upper layer of the metal wiring by this annealing treatment, and is removed by a subsequent CMP (Chemical-Mechanical-Polishing) process.
  • manganese and oxygen, for example, contained in the interlayer insulating film react with each other by the above annealing process to generate manganese oxide, and this manganese oxide serves as a barrier film and the interface between the interlayer insulating film and the metal wiring. Therefore, an extremely thin barrier film can be obtained.
  • the surface of the metal wiring exposed on the bottom surface of the recess is oxidized by the plasma of the oxygen gas. Further, since the subsequent wet cleaning is performed in the air, a natural oxide film is further formed on the surface of the metal wiring.
  • oxygen and manganese in the oxide film react to form manganese oxide.
  • This manganese oxide is an insulator and causes a large increase in wiring resistance, and since it is passive, it has poor reactivity, and it is necessary to add a process such as punch-through for its removal.
  • an interlayer insulating film is used.
  • an oxide film formed on the surface of the metal wiring has not been studied.
  • Manganese oxide has various types such as MnO, Mn 3 O 4 , Mn 2 O 3 , and MnO 2 depending on the valence of Mn. Here, these are collectively referred to as MnOx (x: any positive number). To do.
  • the present invention has been made based on such a situation, and an object of the present invention is to form a barrier film on the exposed surface of an interlayer insulating film on which a recess is formed on a substrate, and to form a metal on the lower layer side in the recess.
  • Another object is to provide a semiconductor manufacturing apparatus and a storage medium.
  • a method for manufacturing a semiconductor device of the present invention includes: For a substrate having an interlayer insulating film in which a recess is formed, and a lower layer metal wiring having a first metal as a main component and exposed on the bottom surface of the recess, A vapor of an organometallic compound containing a second metal is supplied, and the organometallic compound containing the second metal reacts with a part of the components of the interlayer insulating film, whereby the second metal A step (a) of forming a barrier film on the exposed surface of the interlayer insulating film, which is a compound of the above and prevents diffusion of the first metal; Then, a step (b) of embedding a metal wiring containing a first metal as a main component in the concave portion is included.
  • the lower layer metal wiring does not include a component that reacts with the organometallic compound containing the second metal to form a second metal compound, whereby the bottom surface of the recess It is preferable not to form a barrier film on the lower layer metal wiring exposed to the surface.
  • metal oxidation is performed on the surface of the metal wiring mainly composed of the first metal on the lower layer side exposed at the bottom surface of the recess formed in the interlayer insulating film on the substrate. It is preferable that the step (c) of reducing or etching the object to remove or reduce oxygen on the surface of the metal wiring is performed.
  • the first metal is formed on the surface of the interlayer insulating film and in the recess. It is preferable to perform the process of forming the seed layer which consists of these.
  • the interlayer insulating film preferably contains oxygen or carbon. It is preferable that a part of the component in the vicinity of the surface of the interlayer insulating film or in the interlayer insulating film is oxygen, a compound containing oxygen atoms such as water, or carbon.
  • the first metal is preferably one or more metals selected from the group consisting of Al, Cu, and Ag.
  • the second metal is one or more selected from the group consisting of Mg, Al, Ti, V, Cr, Mn, Ni, Ge, Y, Zr, Nb, Tc, Rh, Pd, Sn, Re, and Pt. A metal is preferred.
  • the substrate is preferably heated.
  • the organometallic compound containing the second metal preferably does not contain oxygen.
  • the organometallic compound containing the second metal preferably undergoes a decomposition reaction in the presence of oxygen.
  • the interlayer insulating film includes an SiO film, an SiOF film, an SiC film, an SiOC film, an SiCOH film, an SiCN film, a porous silica film, a porous methylsilsesquioxane film, a polyarylene film, an SiLK (registered trademark) film, and a fluorocarbon film. It is preferable to consist of one or more films selected from the group consisting of
  • the first metal is Cu
  • the second metal is Mn.
  • the substrate is heated, and the first metal to the substrate is included while supplying vapor of an organometallic compound including the second metal to the substrate.
  • the ratio of the first metal to the second metal becomes the surface layer.
  • a step of forming an adhesion layer that gradually increases toward the upper layer of the barrier film may be performed.
  • the metal oxide on the surface of the metal wiring on the lower layer side is generated when the substrate is transported to the atmosphere, or is performed before the step (c) for removing or reducing the oxygen, and the interlayer insulating film Alternatively, it may be generated by an etching process in which a plasma of a processing gas containing oxygen is supplied to form a recess.
  • the step (c) of removing or reducing the oxygen is a step of supplying an organic acid to the recess, a heat treatment step of supplying hydrogen to the recess, or an argon sputter etching step.
  • the organic acid is preferably formic acid.
  • a heat treatment (annealing) step (d) may be performed after the step (b) of embedding the metal wiring.
  • the step (a) of forming the barrier film may include a step of heating the substrate to 100 ° C. or higher and lower than 500 ° C.
  • the barrier film is preferably amorphous and preferably has a thickness of 5 nm or less.
  • a semiconductor device of the present invention is manufactured by the above-described method for manufacturing a semiconductor device.
  • An electronic apparatus according to the present invention includes the above-described semiconductor device.
  • a vacuum transfer chamber module comprising a transfer chamber in a vacuum atmosphere into which a substrate is loaded, and a substrate transfer means provided in the transfer chamber;
  • a processing vessel that is hermetically connected to the vacuum transfer chamber module and includes a mounting table on which a substrate is mounted; and means for supplying a vapor of an organometallic compound containing a second metal to the substrate. And a part of the component of the interlayer insulating film on the substrate reacts with the organometallic compound containing the second metal to thereby diffuse the first metal which is the compound of the second metal.
  • a barrier film forming module for forming a barrier film to prevent on the exposed surface of the interlayer insulating film;
  • a processing vessel which is airtightly connected to the vacuum transfer chamber module and has a mounting table on which a substrate is placed, a means for heating the substrate, and a vapor of a raw material mainly composed of a first metal
  • a first metal wiring forming module comprising: a first metal wiring forming unit that supplies a substrate and embeds a raw material mainly composed of the first metal in the recess; The substrate transfer means for transferring the substrate carried into the vacuum transfer chamber module to the barrier film forming module and then transferring the substrate to the first metal wiring formation module via the vacuum transfer chamber module. And a control unit for controlling.
  • the metal oxide on the surface of the metal wiring mainly composed of the first metal on the lower layer side exposed at the bottom surface of the recess formed in the interlayer insulating film on the substrate is reduced or etched.
  • the vacuum transfer chamber module includes a seed layer forming module provided with seed layer forming means for forming a seed layer mainly composed of the first metal in the surface of the interlayer insulating film and in the recess. Are connected in an airtight manner, and the control unit forms the seed layer via the vacuum transfer chamber module after transferring the substrate to the barrier film forming module and before transferring to the first metal wiring forming module. It is preferable to control the substrate transfer means so as to transfer the substrate to the module.
  • the processing container of the barrier film forming module may also serve as the processing container of the first metal wiring forming module.
  • the interlayer insulating film preferably contains oxygen or carbon.
  • the first metal is preferably one or more metals selected from the group consisting of Al, Cu, and Ag.
  • the second metal is one or more selected from the group consisting of Mg, Al, Ti, V, Cr, Mn, Ni, Ge, Y, Zr, Nb, Tc, Rh, Pd, Sn, Re, and Pt.
  • a metal is preferred.
  • the barrier film forming module may include means for heating the substrate.
  • the organometallic compound containing the second metal preferably does not contain oxygen, and preferably causes a decomposition reaction due to the presence of oxygen.
  • the interlayer insulating film includes an SiO film, an SiOF film, an SiC film, an SiOC film, an SiCOH film, an SiCN film, a porous silica film, a porous methylsilsesquioxane film, a polyarylene film, an SiLK (registered trademark) film, and a fluorocarbon film.
  • the first metal is Cu
  • the second metal is M
  • the reducing means or removing means is preferably a means for supplying an organic acid to the recess, a means for supplying hydrogen to the recess, or an argon sputter etching means.
  • the organic acid is preferably formic acid.
  • the vacuum transfer chamber module is airtightly connected with an annealing unit provided with a heating means for heating the substrate, and the control unit transfers the substrate to the first metal wiring formation module and then the vacuum. It is preferable to control the substrate transfer means so as to transfer the substrate to the annealing unit via a transfer chamber module.
  • the barrier film forming module may include a heating means for heating the substrate to 100 ° C. or more and less than 500 ° C.
  • the barrier film is preferably amorphous and preferably has a thickness of 5 nm or less.
  • the storage medium of the present invention is A storage medium storing a computer program used on a semiconductor manufacturing apparatus for processing a substrate and operating on a computer,
  • the computer program includes a group of steps so as to implement the above-described method for manufacturing a semiconductor device.
  • the barrier film is formed on the exposed surface of the interlayer insulating film in which the concave portion is formed on the substrate, and the metal wiring electrically connected to the lower layer side metal wiring is formed in the concave portion.
  • a vapor of an organometallic compound containing two metals is supplied to the substrate, a second metal compound is grown on the exposed surface of the interlayer insulating film, and a second metal compound is grown on the sidewall of the recess and the upper surface of the interlayer insulating film.
  • a barrier film is formed to suppress diffusion of metal wiring mainly composed of one metal. Therefore, the film thickness of the barrier film can be kept thin, and the step coverage can be improved because the barrier film is formed by the CVD method.
  • a thin and uniform barrier film can be formed even if the opening width of the recess is narrow. Further, such a barrier film can be formed even if a pattern having a variation in the opening width of the concave portion is mixed on the substrate. Therefore, this barrier film can be applied from the local wiring to the global wiring in the copper multilayer wiring.
  • the copper multilayer wiring can be miniaturized, the operation speed of the device can be improved and the chip size can be reduced, so that the number of semiconductor device chips obtained from one wafer is increased. Minute device costs can be reduced. Furthermore, since the operation speed of the device is improved, the calculation speed or information processing speed of the electronic computer equipped with this device can be increased.
  • the present invention can be used for an information terminal such as a mobile phone that requires downsizing.
  • FIGS. 1 and 2 An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 1 and 2 corresponding to a DD (Dual Damascene) process of VFTL (Via First Trench Last).
  • a semiconductor wafer (hereinafter referred to as “wafer”) W which is a substrate used in the manufacturing method of the present invention will be described.
  • a silicon oxide film 11 containing, for example, silicon and oxygen is formed as an interlayer insulating film on the lower wiring layer 10 provided on the wafer W.
  • a copper wiring 13 mainly composed of copper, which is a first metal, is embedded via a barrier film 12.
  • reference numeral 17 denotes an etching stop film.
  • TEOS Tetra Ethoxy Silane also known as Tetraethyl Orthosilicate
  • a Cu diffusion barrier / etching stop film 14 which is an insulating film made of SiO or SiC.
  • a silicon oxide film 15 containing oxygen and silicon formed by a coating method is formed as an interlayer insulating film.
  • An etching stop film 24 which is, for example, a hard mask is formed at, for example, an intermediate position in the film thickness direction in the silicon oxide film 15, and this etching stop film 24 is used when a groove 21a is formed by an etching process described later.
  • the depth position of the groove 21a is set to the upper end position of the etching stop film 24.
  • a sacrificial film 16 made of, for example, an organic photoresist mask or an inorganic hard mask is laminated in order to form a later-described recess 21 in the silicon oxide film 15. .
  • the upper wiring layer 20 is formed on the wafer W as follows.
  • the silicon oxide film 11 and the silicon oxide film 15 are used as the interlayer insulating film.
  • the present invention is not limited to this.
  • SiO film SiO2 film etc.
  • SiOF film film containing silicon, oxygen and fluorine
  • SiC film film containing silicon and carbon
  • SiOC film film containing silicon, oxygen and carbon
  • SiCOH film Sicon, A film comprising carbon, oxygen and hydrogen
  • a SiCN film a film containing silicon, carbon and nitrogen
  • a porous silica film a porous methylsilsesquioxane film
  • It may be composed of one or more films selected from the group consisting of an inorganic film such as a SiOC film, and polyarylene.
  • An organic film such as may be a hybrid structure obtained by laminating.
  • the material structure may be a dense film or a porous film having pores.
  • a film made of such a material with a low relative dielectric constant k is called a Low-k film, and a film made of a material with a low relative dielectric constant k is called Ultra Low-k. : Called ULK membrane.
  • a recess 21 formed of a trench groove 21a and a via hole 21b is formed by etching, for example, by a dual damascene method using a sacrificial film 16.
  • This etching is performed by, for example, converting a processing gas such as CF 4 gas and O 2 gas into plasma in a known parallel plate type plasma processing apparatus.
  • the sacrificial film 16 is removed by supplying plasma such as O 2 gas to the wafer W and performing an ashing process or the like.
  • the Cu diffusion barrier / etching stop film 14 remaining on the bottom of the via is removed by an etching process to expose the surface of the copper wiring 13 of the lower wiring layer 10.
  • HF hydrofluoric acid
  • the low-k film or the ULK film is used as the interlayer insulating film.
  • damage is caused by exposure to plasma or chemicals in the etching, ashing, and cleaning processes. (Decomposition and alteration).
  • Si—CH 3 groups in the film are decomposed to generate Si—OH groups.
  • This Si—OH group has a high hygroscopicity, and causes the k value to increase, or deteriorates the barrier metal coverage, thereby lowering the Cu diffusion barrier function.
  • FIGS. 2B to 2D are views schematically showing the state of the copper oxide 13a and the recess 21 at this time, and the actual aspect ratio of the recess 21 is about 2 to 5, for example.
  • the etching stop films 14 and 24 described above are omitted, and the etching stop films 14 and 24 are also omitted in FIGS. 2B to 2D described below. ing.
  • the wafer W is loaded again into the dry process semiconductor manufacturing apparatus, and a reducing agent such as a vapor of a carboxylic acid such as organic acid (HCOOH) as an organic acid is supplied to the wafer W to reduce the copper oxide 13a.
  • a reducing agent such as a vapor of a carboxylic acid such as organic acid (HCOOH) as an organic acid is supplied to the wafer W to reduce the copper oxide 13a.
  • HCOOH organic acid
  • the wafer W is heated to, for example, 200 ° C., and a second metal that is a metal for a self-forming barrier, such as manganese (Mn), is a precursor (precursor) that does not include oxygen, such as an organometallic compound.
  • a vapor of (EtCp) 2 Mn bisethylcyclopentadienyl manganese
  • H 2 gas a carrier gas
  • This organometallic compound decomposes when it comes into contact with oxygen during heating, and manganese has the property of being easily bonded to oxygen and easily bonded to carbon. Therefore, as shown in FIG.
  • manganese reacts with oxygen or carbon which is a part of components contained in the silicon oxide film 15 and the etching stop films 14 and 24, or adsorbed moisture near the surfaces of the silicon oxide film 15 and the etching stop films 14 and 24.
  • manganese oxide MnOx (x: any positive number)
  • manganese carbide MnCx (x: any positive number)
  • manganese oxide MnCxOy (x, y: any positive number)
  • both the metallic manganese and manganese oxide (or manganese carbide or manganese oxide carbide) 25 tend to hardly adhere to the surface of the copper wiring 13, and the silicon oxide film containing oxygen or carbon 15 and manganese oxide (or manganese carbide or manganese oxide carbide) 25 tend to adhere selectively only to the etching stop films 14 and 24.
  • the gaseous raw material is used as described above, the raw material is uniformly diffused in the vicinity of the wafer W. Therefore, by continuing this process for a predetermined time, for example, about 5 minutes, the silicon oxide film 15 and the etching stop film are used.
  • the exposed surfaces 14 and 24 are uniformly covered with manganese oxide (or manganese carbide or manganese oxide carbide) 25, and are self-forming barrier films as shown in FIGS. 1 (d) and 2 (d).
  • a barrier film 26 is formed.
  • the barrier film 26 is a film for suppressing diffusion of a metal such as copper from the later-described metal copper 27 embedded in the recess 21 into the silicon oxide film 15.
  • this manganese oxide (or manganese carbide or manganese oxide carbide) 25 is passive and has a characteristic (passivation property) that is very low in reactivity because it is stable as a compound. This passivation property places a self-limit on the manganese oxide deposition reaction, so the thickness of the manganese oxide 25 does not increase beyond a certain level.
  • the organometallic compound such as (EtCp) 2 Mn diffuses on the surface of the manganese oxide (or manganese carbide or manganese oxide carbide) 25 once deposited, the manganese oxide (or manganese carbide or oxide carbonization) Manganese) 25 has a strong compound bond and does not break, and since the diffusion of manganese, carbon, and oxygen is slow and the supply of atoms is interrupted, the reaction does not proceed easily. The difficulty of ionization also makes it difficult for the reaction to proceed. Under these circumstances, the organometallic compound is hardly decomposed.
  • this manganese oxide (or manganese carbide or manganese oxide carbide) 25 has an amorphous structure, and since it does not have a grain boundary like a crystal structure, it has a feature that it has almost no atomic diffusion path. This is considered to be a factor that makes it difficult to proceed and the film thickness does not increase. For this reason, for example, when one barrier film 26 is formed, the film thickness hardly increases beyond that. Therefore, the barrier film 26 is an extremely thin layer having a film thickness of, for example, about 2 to 5 nm.
  • the interlayer insulating film (especially the low-k film or the ULK film) is damaged (decomposed or altered) by being exposed to plasma or chemicals in the etching, ashing, or cleaning process. Many. This process is also effective in repairing this damage.
  • Si—CH 3 groups in the film are decomposed to generate Si—OH groups, but Mn tends to be associated with O rather than C, so it is generated by damage. It reacts preferentially with the Si—OH group. Therefore, since the Si—OH group is reduced, it is possible to avoid decreasing the Cu diffusion barrier function by increasing the hygroscopicity of the SiOC film, increasing the k value, or deteriorating the barrier metal coverage. I can expect.
  • the CVD reaction can be said to be a process under conditions close to the reaction rate rather than the supply rate, the step coverage of the barrier film 26 with respect to the silicon oxide film 15 and the etching stop films 14 and 24 becomes extremely high. . Even under conditions close to the supply rate control as a CVD reaction, the deposition reaction of the manganese oxide 25 is subject to a self-limit, so that the film thickness uniformity of the formed barrier film 26 is increased and a good step film property can be obtained.
  • a vapor of Cu (hfac) TMVS which is a copper raw material such as a beta diketone copper complex
  • a carrier gas such as H 2 gas.
  • the copper complex is decomposed on the surface of the wafer W to become metallic copper 27, and is deposited on the surface of the wafer W including the inside of the recess 21 as shown in FIG.
  • CMP Chemical Mechanical Polishing
  • a heat treatment (annealing) step may be performed if necessary. Even when a heat treatment (annealing) step is performed, it can be expected that the annealing step can be performed at a lower temperature and in a shorter time than in the prior art. The reason is that heat is already applied in the CVD process and only the minimum amount of manganese (Mn) necessary for the formation of the barrier film is deposited, so it is necessary to diffuse excess manganese (Mn) by annealing. This is because there is no sex.
  • the wafer W on which the metal copper 27 is deposited is heated to a predetermined process temperature, for example, about 100 to 450 ° C. in a processing container having an oxygen-containing gas atmosphere having a predetermined concentration.
  • a barrier film 26 made of manganese oxide 25 is reliably formed in a self-aligned manner at the boundary portion between the silicon oxide film 15 and the metal copper 27.
  • oxygen or the like oxygen supply means or the like is not shown
  • the oxygen partial pressure can be controlled to about 10 ppb or less, for example. Good.
  • FIG. 3 shows a semiconductor manufacturing apparatus called, for example, a multi-chamber system.
  • the wafer W is put on standby by switching the first transfer chamber 72, which is an atmospheric atmosphere, and the vacuum atmosphere and the atmospheric atmosphere in this order from the front side in the figure.
  • load lock chambers 73a and 73b arranged side by side and a second transfer chamber 74 which is a vacuum transfer chamber module are hermetically connected via a gate G.
  • the front side of the first transfer chamber 72 there are provided, for example, three load ports 71 in the horizontal direction in which the hermetic carrier 1 storing a plurality of, for example, 25 wafers W is placed.
  • the front wall of the first transfer chamber 72 is provided with a gate door GT which is connected to the carrier 1 placed on the load port 71 and is opened and closed together with the lid of the carrier 1.
  • An alignment chamber 77 for adjusting the orientation and eccentricity of the wafer W is connected to the side surface of the first transfer chamber 72.
  • Cu-MnOxCVD module 5 and plasma treatment apparatus 6 to be described later are hermetically connected to the second transfer chamber 74 two by two through the gate G, respectively.
  • the inside is set, for example, in a vacuum atmosphere so that the copper wiring 13 described above is not oxidized.
  • the first transfer chamber 72 and the second transfer chamber 74 are respectively provided with a first transfer means 75 and a second transfer means 76 which are substrate transfer means.
  • the first transfer means 75 is a transfer arm for transferring the wafer W between the load port 71, the load lock chamber 73, and the alignment chamber 77. In addition, it is configured to be movable along the line.
  • the second transfer means 76 is a transfer arm for transferring the wafer W between the load lock chamber 73 and the formic acid processing module 3, the Cu-MnOxCVD module 5, and the plasma processing apparatus 6, and rotates around the vertical axis.
  • the second transfer chamber 74 is freely movable between the front side and the back side as viewed from the load port 71 side.
  • reference numeral 31 denotes a processing container that forms a vacuum chamber made of, for example, Al (aluminum), and reference numeral 31 a denotes a transfer port for carrying in and out the wafer W.
  • a mounting table 32 on which the wafer W is mounted is provided.
  • An electrostatic chuck 35 in which a chuck electrode 34 is embedded in a dielectric layer 33 is provided on the surface of the mounting table 32 in order to electrostatically attract the wafer W.
  • the chuck voltage is applied from the power supply unit that does not.
  • G is a gate.
  • a heater 36 serving as a heating unit is provided inside the mounting table 32 so that the wafer W mounted on the electrostatic chuck 35 can be heated to a predetermined temperature, for example, 200 ° C.
  • the mounting table 32 is provided with lifting pins 37 for transferring the wafer W to and from the second transfer means 76 so as to be able to protrude and retract from the mounting surface.
  • the elevating pin 37 is connected to a drive unit 39 via a support member 38 on the lower side of the processing container 31, and is configured to move up and down by the drive unit 39.
  • a gas shower head 41 is provided on the upper portion of the processing container 31 so as to face the mounting table 32, and a number of gas supply holes 42 are formed on the lower surface of the gas shower head 41.
  • a first gas supply passage 43 for supplying a reducing agent for reducing the above-described copper oxide 13a, for example, a vapor of organic acid carboxylic acid such as formic acid.
  • a reducing agent for reducing the above-described copper oxide 13a for example, a vapor of organic acid carboxylic acid such as formic acid.
  • One end side is connected.
  • the other end of the first gas supply path 43 is connected to a reducing agent supply source 45 serving as a reducing means or a removing means via a valve V1, a mass flow controller M1 that is a gas flow rate adjusting unit, and a valve V2.
  • An exhaust means 43b is connected between the valve V2 and the mass flow controller M1 by a pipe 43a provided with a valve V6.
  • the exhaust means 43b is configured to remove gas (mainly atmospheric air) mixed in the pipe (first gas supply path 43) when the reducing agent supply source 45 is replaced.
  • the reducing agent supply source 45 includes, for example, a stainless steel storage container 46 provided with a heater 48 on the outside, and for example, a liquid reducing agent is stored in the storage container 46.
  • the storage container 46 is connected to a carrier gas supply path 49 having one end opened below the liquid level of the reducing agent in the storage container 46, and the other end side of the carrier gas supply path 49 is connected to the storage container 46.
  • the exhaust means 43d is connected between the mass flow controller M3 and the valve V7 through a pipe 43c provided with a valve V8.
  • the exhaust means 43d is configured to remove gas (mainly atmospheric air) mixed in the pipe (carrier gas supply path 49) when the reducing agent supply source 45 is replaced.
  • the above-mentioned formic acid supply method is called a bubbling method.
  • Formic acid has a relatively high vapor pressure, and therefore the gaseous reducing agent obtained by heating the storage container 46 with the heater 48 is used as the mass flow controller M1. Alternatively, the flow rate may be directly controlled and supplied to the gas shower head 41.
  • one end side of the second gas supply path 44 is connected to the gas shower head 41, and the other end side of the second gas supply path 44 is connected via a valve V3, a mass flow controller M2, and a valve V4. It is connected to the dilution gas supply source 47 described above.
  • the gas shower head 41 the aforementioned gaseous reducing agent and dilution gas are mixed, and this mixed gas is supplied into the processing container 31 from the gas supply hole 42.
  • the formic acid treatment module 31, the gas shower head 41, the first gas supply path 43, the valve V 1, the mass flow controller M 1, and the valve V 2 are provided with a heater 40. 3, when the wafer W is processed, the formic acid is heated so as not to condense.
  • One end side of an exhaust pipe 31A is connected to the bottom surface of the processing container 31, and a vacuum pump 31B as vacuum exhaust means is connected to the other end side of the exhaust pipe 31A.
  • the pressure in the processing vessel 31 can be maintained at a predetermined pressure by a pressure adjusting mechanism (not shown) provided in the exhaust pipe 31A.
  • the Cu—MnOxCVD module 5 which is a barrier film forming module that also serves as the first metal wiring forming module will be described with reference to FIG.
  • the Cu—MnOxCVD module 5 includes a processing container 50, and a stage 51 for horizontally placing the wafer W is provided in the processing container 50.
  • a heater 51a that serves as a heating means for the wafer W is provided in the stage 51.
  • the stage 51 is provided with a hole (not shown) for projecting and retracting three lifting pins 51c (only two are shown for convenience) that can be lifted and lowered by a lifting mechanism 51b.
  • the wafer W is transferred between the second transfer means 76 and the stage 51.
  • An exhaust pipe 52a is connected to the bottom of the processing vessel 50, and the other end side of the exhaust pipe 52a is connected to a vacuum pump (DP (Dry
  • a detoxification device (not shown) is connected to the downstream side of the vacuum pump 53b, and is configured to render the exhausted gas harmless and discharge it outside the system.
  • bypass line 52b One end of a bypass line 52b is connected to the exhaust pipe 52a on the upstream side of the valve 58a, and the other end of the bypass line 52b is connected to a valve 58b via a valve 58c and an APC (Auto Pressure Controller) 58d. And an exhaust pipe 52a between the vacuum pump 53b and the vacuum pump 53b.
  • APC Auto Pressure Controller
  • an exhaust pipe 52a between the bypass line 52b and the vacuum pump 53b is provided with a dilution gas such as nitrogen in order to prevent an explosion of a processing gas such as hydrogen flowing through the exhaust pipe 52a and the bypass line 52b.
  • a dilution gas such as nitrogen
  • the valve 58a is closed and the valve 58c is opened, and the processing gas is exhausted together with the dilution gas via the bypass line 52b while controlling the pressure in the processing container 50 by the APC 58d.
  • the valve 58a and the valve 58b are opened and the valve 58c is closed, and the inside of the processing container 50 is exhausted through the TMP 53a.
  • a transfer port 54 that is opened and closed by a gate valve G is formed on the side wall of the processing container 50.
  • a gas shower head 55 is provided on the ceiling of the processing container 50 so as to face the stage 51.
  • the gas shower head 55 includes gas chambers 56A and 56B which are partitioned from each other, and the gas supplied to the gas chambers 56A and 56B is supplied into the processing container 50 from the gas supply holes 57A and 57B, respectively.
  • On the upper surface of the gas shower head 55 one end side of a copper source supply path 61A for introducing a copper (Cu) source gas into the gas chamber 56A and a manganese (Mn) source gas into the gas chamber 56B are introduced.
  • the one end side of the manganese raw material supply path 61B is connected.
  • These copper raw material supply path 61A and manganese raw material supply path 61B are provided with a heater 59 so that the vapor of the raw material flowing therethrough is not condensed.
  • a vaporizer 65 having a heater for vaporizing the liquid copper raw material, a flow rate adjusting unit 64A including a liquid mass flow controller and a valve, and a valve V10 are provided.
  • the copper raw material reservoir 62A as the first metal wiring forming means is connected.
  • An exhaust unit 70a is connected between the valve V10 and the flow rate adjusting unit 64A by a pipe 60a in which the valve V11 is interposed.
  • the exhaust means 70a is configured to remove gas (mainly atmospheric air) mixed in the pipe (copper raw material supply pipe 61A) when replacing the copper raw material reservoir 62A.
  • a copper organometallic compound that is a copper raw material for example, Cu (hfac) TMVS that is a beta diketone copper complex is stored in a liquid state.
  • a pressurization unit 63A is connected to the copper raw material storage unit 62A via a gas supply pipe 61C provided with a valve V12, and copper is supplied by an inert gas such as He or Ar gas supplied from the pressurization unit 63A.
  • an exhaust means 70b is connected between the pressurizing portion 63A and the valve V12 by a pipe 60b provided with a valve V13.
  • the exhaust means 70b is configured to remove gas (mainly the atmosphere) mixed in the pipe (gas supply pipe 61C) when replacing the copper raw material reservoir 62A.
  • the vaporizer 65 is connected to a carrier gas supply source 66A in which a carrier gas such as H 2 gas is stored by a carrier gas introduction pipe 68A provided with a flow rate adjusting unit 67A.
  • a carrier gas such as H 2 gas
  • the carrier gas is heated, the carrier gas and the liquid copper raw material described above are contacted and mixed to vaporize the copper raw material, and the vapor of the copper raw material is supplied to the gas chamber 56A. It is configured.
  • the vapor of the organometallic compound containing manganese and not containing oxygen is supplied to the wafer W through the dilution unit 69, the flow rate adjustment unit 64B, and the valve V14.
  • a manganese raw material reservoir 62B which is a means for supplying, is connected, and in this manganese raw material reservoir 62B, an organometallic compound of manganese, for example, (EtCp) 2 Mn (bisethylcyclopentadienyl manganese) is in a liquid state It is stored at.
  • An exhaust means 70c is connected between the valve V14 and the flow rate adjusting unit 64B by a pipe 60c in which the valve V15 is interposed.
  • the exhaust means 70c is configured to remove gas (mainly atmospheric air) mixed in the pipe (manganese raw material supply path 61B) when the manganese raw material storage section 62B is replaced.
  • a heater 83 is provided around the manganese raw material storage part 62B, and is configured so that the raw material in the manganese raw material storage part 62B can be heated to 80 ° C., for example.
  • a carrier gas supply path 80 provided with a heater (not shown) is connected to the manganese raw material reservoir 62B so as to open below the liquid surface of the liquid material inside.
  • a carrier gas supply source 66B in which a carrier gas such as H 2 gas is stored is connected to the other end side of the carrier gas supply path 80 via a valve V16 and a flow rate adjusting unit 81.
  • the vaporized manganese material is supplied to the diluting unit 69 together with the carrier gas.
  • An exhaust means 70d is connected between the valve V16 and the flow rate adjusting unit 81 by a pipe 60d provided with a valve V17.
  • the exhaust means 70d is configured to remove gas (mainly atmospheric air) mixed in the pipe (carrier gas supply path 80) when the manganese raw material storage section 62B is replaced.
  • One end side of a dilution gas path 84 provided with a heater (not shown) is connected to the dilution section 69, and the carrier gas supply described above is connected to the other end side of the dilution gas path 84 via the flow rate adjustment section 85.
  • a source 66B is connected.
  • the dilution unit 69 is configured so that the source gas is diluted to a predetermined concentration and supplied to the gas chamber 56B.
  • the plasma processing apparatus 6 is a parallel plate type processing apparatus.
  • the wafer W is mounted on the mounting table 102 that also serves as the lower electrode in the processing container 101.
  • the processing gas is supplied into the processing container 101 from the gas shower head 103 which is provided so as to face the mounting table 102 and also serves as an upper electrode through the processing gas supply path 104, and is used for generating plasma from the upper power source 105.
  • the wafer W is subjected to plasma processing with plasma obtained by converting the processing gas into plasma.
  • 107 is an exhaust pipe
  • 108 is a vacuum pump
  • 109 is a transfer port
  • G is a gate.
  • this semiconductor manufacturing apparatus is provided with a control unit 2A composed of, for example, a computer.
  • the control unit 2A includes a data processing unit including a program, a memory, and a CPU.
  • the control unit 2A sends a control signal from the control unit 2A to each unit of the semiconductor manufacturing apparatus so as to advance each step described above. Instructions (each step) are incorporated.
  • the memory includes an area in which processing parameter values such as processing pressure, processing temperature, processing time, gas flow rate, and power value are written, and these processing parameters are stored when the CPU executes each instruction of the program.
  • the control signal is read out and a control signal corresponding to the parameter value is sent to each part of the semiconductor manufacturing apparatus.
  • This program (including programs related to processing parameter input operations and display) is stored in the storage unit 2B such as a computer storage medium such as a flexible disk, a compact disk, a hard disk, or an MO (magneto-optical disk) and installed in the control unit 2A.
  • a computer storage medium such as a flexible disk, a compact disk, a hard disk, or an MO (magneto-optical disk) and installed in the control unit 2A.
  • wafer flow First, for example, after the plasma processing is performed on the wafer W in advance by the plasma processing apparatus 6 described above to form the recesses 21 by etching or ashing, for example, wet cleaning is performed.
  • the carrier 1 storing the wafer W is transferred to a semiconductor manufacturing apparatus by a transfer means (not shown) and placed on the load port 71.
  • the wafer W in the carrier 1 is transferred to the alignment chamber 77 via the first transfer chamber 72, adjusted for orientation and eccentricity, and then transferred to the load lock chamber 73.
  • the pressure in the load lock chamber 73 is adjusted, and the wafer W is loaded into the formic acid processing module 3 through the second transfer chamber 74.
  • the wafer W is mounted on the mounting table 32, the inside of the processing container 31 is evacuated to a predetermined degree of vacuum, for example, about 100 to 500 Pa (0.75 to 3.75 Torr), and the wafer W is set to a predetermined temperature. For example, it is heated to about 150 to 300 ° C.
  • a gaseous reducing agent such as formic acid (and carrier gas) is supplied into the gas shower head 41 at a predetermined flow rate such as 10 to 100 sccm and 0 to 100 sccm, respectively.
  • the gaseous formic acid and the dilution gas are mixed here, and this mixed gas is supplied to the wafer W.
  • the copper oxide 13a is reduced or etched by this formic acid.
  • the supply of the reducing agent, the carrier gas, and the dilution gas is stopped, the inside of the processing container 31 is evacuated, and the wafer W is removed from the second transfer chamber 74. To be taken out.
  • the wafer W is transferred to the Cu—MnOxCVD module 5 and placed on the stage 51 in the processing container 50, and the wafer W is heated to a predetermined temperature, for example, about 100 to 500 ° C., more specifically 200 ° C. Heat.
  • the carrier gas (and dilution gas) is supplied at a predetermined flow rate, for example, about 10 to 100 sccm, more specifically, so that the organometallic compound of manganese has a predetermined flow rate, for example, about 2 to 10 sccm, more specifically, about 7 sccm.
  • these gases are mixed in the diluting unit 69, and this mixed gas is supplied to the wafer W for a predetermined time, for example, 5 minutes or more.
  • a film is formed.
  • the wafer W may not be heated by adjusting the film formation conditions such as the film formation time so that the barrier film 26 is formed.
  • the supply of the above mixed gas is stopped and the inside of the processing vessel 50 is evacuated, and then a gaseous copper raw material is supplied to the wafer W at a predetermined flow rate, and metallic copper is applied to the surface of the wafer W including the recess 21. 27 is deposited. Thereafter, the supply of gas is stopped, the inside of the processing container 50 is evacuated, and the wafer W is unloaded to the carrier 1 via the second transfer chamber 74, the load lock chamber 73, and the first transfer chamber 72.
  • the copper oxide 13a on the surface of the copper wiring 13 oxidized by this etching process or cleaning is reduced or etched using formic acid, Oxygen on the surface of the copper wiring 13 is removed.
  • the surface of the wafer W has a silicon oxide film 15 and etching stop films 14 and 24 containing oxygen. Produces manganese oxide 25, while preventing manganese oxide 25 from being produced on the surface of the copper wiring 13 containing no oxygen. Therefore, the barrier film 26 can be selectively formed on the silicon oxide film 15 and the etching stop films 14 and 24 while copper is exposed on the surface of the copper wiring 13.
  • a copper raw material is supplied to the wafer W to form a metal copper 27 on the surface of the wafer W including the concave portion 21, and such a series of processes is performed. Since the process is performed in a vacuum atmosphere, an insulator such as manganese oxide 25 or a natural oxide film of copper is not interposed between the copper wiring 13 and the metal copper 27. Therefore, an increase in wiring resistance can be suppressed. Furthermore, since the surface of the barrier film 26, that is, the inside of the copper metal 27 does not contain or is extremely small in excess metal manganese, it is possible to suppress an increase in wiring resistance and to discharge manganese. Since the annealing process can be omitted, the throughput can be increased.
  • a heat treatment (annealing) step may be performed if necessary. Even when a heat treatment (annealing) step is performed, it can be expected that the annealing step can be performed at a lower temperature and in a shorter time than in the prior art. The reason for this is that heat is already applied in the CVD process and that only the minimum amount of manganese (Mn) necessary for the formation of the barrier film is deposited, so that excess manganese (Mn) is diffused by annealing. This is because there is no necessity.
  • a processing container provided with a mounting table for mounting the wafer W therein, a heating means for heating the wafer W, and means for maintaining the inside of the processing container in an oxygen-containing gas atmosphere, for example, gas supply
  • the annealing unit 100 provided with a path or the like (both not shown) may be airtightly connected to the second transfer chamber 74 described above (FIG. 7).
  • the wafer W on which the metal copper 27 is deposited is heated, for example, to a predetermined process temperature, for example, about 100 to 450 ° C. in an atmosphere of an oxygen-containing gas having a predetermined concentration.
  • a barrier film 26 made of manganese oxide 25 is reliably formed in a boundary portion with the copper 27 in a self-aligning manner.
  • the oxygen partial pressure can be controlled to about 10 ppb or less, for example. Good.
  • the barrier film 26 By forming the barrier film 26 in this way, even in a thin film thickness as shown in the examples described later, an extremely high barrier performance can be obtained for copper. However, even when exposed to a heat treatment step of about 400 ° C., for example, the diffusion of copper into the silicon oxide film 15 can be suppressed, so that an increase in leakage current can be suppressed. Further, when the barrier film 26 is formed at a low temperature, for example, less than 500 ° C. as described above, the barrier film 26 becomes amorphous, so that the grain boundaries of the manganese oxide 25 disappear, and thus the copper diffusion path is closed. Therefore, it is considered that an extremely high barrier performance can be obtained even with a thin film as described above.
  • the barrier film 26 is formed on an oxide (a film containing oxygen) by an incubation time (incubation time refers to the period from when the source gas is supplied to the wafer W until the reactant starts to be deposited on the wafer W.
  • incubation time refers to the period from when the source gas is supplied to the wafer W until the reactant starts to be deposited on the wafer W.
  • the film formation temperature is 200 ° C.
  • the adhesion is performed on the surfaces of the silicon oxide film 15 and the etching stop films 14 and 24 by performing the process for a predetermined time such as 1 minute or more. Reaction of the decomposed manganese organometallic compound is likely to occur and adhere as manganese oxide 25, while the deposited manganese organometallic compound decomposes and oxidizes on the surface of the copper wiring 13 (film not containing oxygen).
  • the barrier film 26 can be selectively formed as described above. However, if the film formation time of the barrier film 26 is longer than the incubation time on the metal, for example, 60 minutes or longer when the film formation temperature is 200 ° C., the film is formed on either the oxide or the metal. In addition, since a reaction occurs in which the organometallic compound of the manganese adhering decomposes and adheres as the manganese oxide 25, the barrier film 26 is not selectively formed.
  • the film thickness of such a barrier film 26 is preferably 1 to 7 nm, more preferably 1.5 nm to 4 nm, and further preferably 2 nm to 3 nm.
  • the film thickness of the deposited manganese (Mn) is described as 2 nm.
  • the film thickness increases about 2.7 times. Therefore, when the 2 nm manganese film is oxidized to become manganese oxide, the film thickness is 5 Corresponds to a 5 nm barrier film.
  • the step coverage is improved even when the opening size of the recess 21 is narrow, and the barrier film 26 is made homogeneous. Can be formed. Further, such a barrier film 26 can be formed even if, for example, patterns having variations in the opening width of the recesses 21 are mixed on the wafer W. Therefore, the barrier film 26 can be applied from the local wiring to the global wiring in the copper multilayer wiring. Further, since the copper multilayer wiring can be miniaturized, the operation speed of the device can be improved and the chip size can be reduced, so that a semiconductor device chip (for example, logic, memory, etc.) obtained from one wafer W can be obtained. ) And the cost of the device can be reduced accordingly.
  • the operation speed of the device is improved, the calculation speed or information processing speed of an electronic computer (for example, an electronic computer, a communication device, an information terminal, a mobile phone, etc.) provided with this device can be increased. Furthermore, since the barrier film 26 can suppress copper diffusion of the metal wiring, the leakage current of the interlayer insulating film can be suppressed and the reliability of the wiring can be improved. The life of the equipment can be extended. In addition, since necessary calculations can be performed with a smaller circuit, the present invention can be used for an information terminal such as a mobile phone that requires downsizing.
  • an electronic computer for example, an electronic computer, a communication device, an information terminal, a mobile phone, etc.
  • the barrier film 26 which is a direct manganese oxide is formed instead of the method of once forming the metal manganese film and then oxidizing it, the barrier film 26 is selectively grown depending on the presence or absence of oxygen as described above. Moreover, since the barrier function against copper is exhibited immediately after the formation of the barrier film 26, extremely high barrier performance can be obtained even with a thin film thickness.
  • the barrier film 26 may contain C (carbon) in addition to oxygen, as will be described in the following examples.
  • the raw material used for forming the barrier film 26 is preferably an organometallic compound that does not contain oxygen, and preferably contains a cyclic hydrocarbon. Moreover, it is preferable that it is a compound decomposed
  • examples of such raw materials include Cp 2 Mn (biscyclopentadienyl manganese), (MeCp) 2 Mn (bismethylcyclopentadienyl manganese), (i-PrCp) 2 Mn (bisisopropylcyclopentadienyl manganese). ) Or the like, or a combination of a plurality of such raw materials may be used.
  • the compound contains oxygen but does not react with manganese alone after decomposition, such as CO, for example, (MeCp) Mn (CO) 3 (tricarbonylmethylcyclopentadienyl manganese) is used. Also good.
  • a reducing gas or an inert gas such as Ar gas may be used.
  • the reducing agent used for the reduction treatment in addition to formic acid, an organic acid such as acetic acid or hydrogen may be used. Further, the copper oxide 13a may be physically removed by sputtering using argon gas.
  • the metal copper 27 is separately formed. Therefore, these processes may be performed in separate processing containers 50. Further, in order to strengthen the adhesion between the barrier film 26 and the metal copper 27, for example, when the formation of the barrier film 26 is started, the supply of the copper raw material is started and the supply amount of the copper raw material is gradually increased. Thus, an adhesion layer that gradually increases as the proportion of copper toward the surface layer with respect to the amount of manganese may be formed. In this case, since the interface between the barrier film 26 and the metal copper 27 is complicated and becomes ambiguous, the adhesion between the barrier film 26 and the metal copper 27 is improved.
  • CuMn alloy, Cu + MnOx (x: arbitrary positive number) mixture, Cu + MnCx (x: arbitrary positive number) mixture, or Cu + MnCxOy (x, y: arbitrary positive number) Either a mixture, or a CuMnxOy (x, y: any positive number) compound, or a CuMnxCy (x, y: any positive number) compound, or a CuMnxCyOz (x, y, z: any positive number) compound, or It is thought that it is a mixture of these.
  • a copper seed layer may be formed by sputtering, for example, and the metal copper 27 may be embedded in the recess 21.
  • a seed layer forming module which is a processing container for performing sputtering, is hermetically connected to the second transfer chamber 74, and a seed layer is formed by a seed layer forming means provided in the processing container.
  • the sputtering method adhesion can be expected by an anchor effect in which sputtered metal atoms are injected into the barrier film 26.
  • the sputtering method DC (direct current) bipolar sputtering method, RF (high frequency) sputtering method, plasma sputtering method, magnetron sputtering method, ion beam sputtering method and the like can be used, and collimation sputtering method for improving step coverage. Further, a long distance sputtering method or an ionization sputtering method can be used.
  • the wafer W may be heated or cooled to, for example, 0 ° C. or less while being formed by sputtering. At this time, the wafer W is transferred in vacuum so that the surface of the copper wiring 13 and the seed layer are not oxidized.
  • the metal copper 27 is formed by the CVD method.
  • the PVD method such as the sputtering method may be used, or the metal copper 27 may be formed by the electrolytic plating method or the electroless plating method.
  • a metal film serving as a seed layer such as copper, may be deposited in the recess 21 by CVD or sputtering.
  • the barrier film 26 and the metal copper 27 may be formed by a plasma CVD method or a photo CVD method.
  • the barrier film 26 may be formed by, for example, ALD (Atomic). (Layer Deposition) method or the like.
  • ALD Atomic
  • Layer Deposition Layer Deposition
  • the metal copper 27 is not limited to pure copper, but may be, for example, a metal mainly composed of copper, Al or Ag, or a plurality of these metals.
  • the above-described copper oxide 13a has been described as being generated by etching or the like, the semiconductor device manufacturing method of the present invention can be applied even when it is generated during atmospheric transfer, for example. Further, when the copper oxide 13a is not generated, the above-described reduction process may not be performed. Furthermore, even if the copper oxide 13a is generated, if the manganese oxide 25 is selectively generated on the side wall of the recess 21, the copper oxide 13a is reduced without being completely removed.
  • the copper oxide 13a is generated without being completely removed.
  • the barrier film 26 formed by supplying an organometallic compound of manganese on the silicon oxide film 15 containing oxygen or the like has been described as the manganese oxide 25 made of MnOx (x: any positive number).
  • the silicon oxide film 15 takes in silicon and reacts to become MnSixOy (x, y: any positive number), and discussions are divided in academic societies and the like. Therefore, the expression MnOx (x: any positive number) and MnSixOy (x, y: any positive number) is expressed as manganese oxide 25 here.
  • the silicon oxide film 15 is used as an interlayer insulating film which is a base film
  • the present invention is not limited to this, and the above-described Low-k film or ULK film such as an organic film or a porous film is used. May be.
  • manganese (Mn) is used as the second metal
  • the present invention is not limited to this, and other metals such as Mg, Al, Ti, V, Cr, Ni, Ge, and Y are used.
  • Zr, Nb, Tc, Rh, Pd, Sn, Re, Pt, or one or more metals selected from the group may be used.
  • the film forming apparatus described here is merely an example.
  • a heating lamp such as a halogen lamp may be used instead of a resistance heater as a heating means for the substrate, and the heat treatment apparatus is a single sheet. Not only leaf type but also batch type may be used.
  • a semiconductor wafer has been described as an example of an object to be processed here, the present invention is not limited thereto, and the present invention can be applied to a glass substrate, an LCD substrate, a ceramic substrate, an organic substrate such as plastic, and the like.
  • a dummy wafer W shown in FIG. 8A was used.
  • This wafer W was manufactured as follows. First, a 100 nm-thickness silicon oxide film 91 was obtained by forming a film at 350 ° C. on a silicon substrate 90 by plasma CVD using TEOS (TetraTEthyl Silane, also known as Tetraethyl Orthosilicate). Next, a manganese oxide layer 92 was formed on the silicon oxide film 91 under the following film formation conditions in the Cu—MnOxCVD module 5 described above.
  • TEOS TetraTEthyl Silane, also known as Tetraethyl Orthosilicate
  • a copper film 93 was formed on the surface of the wafer W by sputtering so as to have a film thickness of 100 nm. Thereafter, the wafer W was heat-treated under the following annealing conditions in order to confirm the presence or absence of copper diffusion. An experiment described below was performed on the wafer W. Since this experiment was not an experiment requiring good step coverage, a substrate without a pattern was used. Therefore, as described above, the copper film 93 is formed by the sputtering method instead of the CVD method, but the film quality and physical properties other than the step coverage are not particularly problematic even by this method.
  • the reason why the deposition time of the manganese oxide layer 92 was as long as 30 minutes as described below is that, as described above, the CVD deposition of the manganese oxide layer 92 is made by utilizing the difference in the incubation time depending on the base. This is to more clearly show the background selectivity in the film. That is, when the organometallic compound of manganese is supplied to a film containing oxygen, for example, when the deposition temperature is 200 ° C., the deposited organometallic compound of manganese decomposes and adheres as manganese oxide when the deposition time is 1 minute or longer. Since it was found from an experiment conducted in advance that the starting of the film was started, the film formation time was set in this way. It has been confirmed that a manganese oxide continuous film is not formed on the copper surface even when the organometallic compound of manganese is supplied to copper for a long time.
  • the heat treatment performed under the annealing conditions performed this time was performed for a heating acceleration test for verifying the Cu diffusion barrier performance, and was not performed in an oxygen atmosphere. That is, this is different from the conventional heat treatment performed in an oxygen atmosphere for the purpose of self-forming the barrier film and diffusing / exhausting excess manganese.
  • FIGS. 9 and 11 described above are diagrams showing copied TEM images so that the boundaries between the regions can be easily identified.
  • 10 and 12 are diagrams showing TEM images actually taken with respect to the diagrams schematically shown in FIGS. 9 and 11, respectively.
  • the wafer W formed at 500 ° C. some island-like grain growth was confirmed. Further, between the silicon oxide film 91 and the copper film 93, a layer having relatively high crystallinity, a layer considered to be rich in carbon, and an amorphous layer were laminated in this order from the top. This amorphous layer is considered to correspond to an extremely thin manganese oxide layer 92 formed between the silicon oxide film 91 and the copper film 93, which was found in the wafer W formed at 300 ° C. and 400 ° C. However, since the island-shaped grain growth, that is, abnormal grain growth occurs when the deposition temperature is increased in this way, it is understood that the deposition temperature of the manganese oxide layer 92 is preferably less than 500 ° C. . As described above, it has been confirmed that the manganese oxide layer 92 is formed even at 100 ° C. or 200 ° C. by experiments conducted separately.
  • the manganese oxide layer 92 has a very good Cu diffusion barrier property, and there is no pin hole (for example, a Cu diffusion path such as a crystal grain boundary) from which Cu exudes. did it.
  • FIGS. 13 and 14 are diagrams showing the images actually obtained in the same manner as FIGS. 9 and 11 described above.
  • the wafer W formed at 500 ° C. it was found that the island-like grain growth portion described above contained a large amount of manganese and thus abnormally grown. Therefore, it was reconfirmed that the phenomenon observed in Experiment 1 was due to the abnormal grain growth of manganese.
  • the copper peak rapidly decreases in the manganese oxide layer 92 from the upper side to the lower side, and the silicon oxide film 91 Almost no peak was observed at the upper end (the lower end of the manganese oxide layer 92) (the peak value seen here is a signal of a detection limit level and a noise level, so the presence of Cu in the silicon oxide film 91 is Can be regarded as almost zero).
  • the manganese oxide layer 92 is such a thin film, it has extremely high barrier performance.
  • the same experimental results as described above were confirmed for the wafers W formed at 100 ° C., 200 ° C., and 500 ° C. Further, the manganese peak is extremely sharp so as to correspond to the result of Experiment 2. Further, since the carbon peak was confirmed so as to overlap with the manganese peak, it was confirmed that the manganese atoms incorporated carbon contained in the organometallic compound of manganese.
  • the impurity scavenging effect by manganese atoms can be expected, it is contained in the organometallic compound of Cu when a CVD film is formed using the same organometallic compound, for example, a Cu precursor (raw material). It can be expected that impurities in the copper film 93 can be reduced by reacting manganese and impurities such as carbon and fluorine into the manganese oxide layer 92. Alternatively, when Cu is formed by an electrolytic plating method or an electroless plating method, impurities such as chlorine derived from the plating solution and manganese contained in the Cu film react and are taken into the manganese oxide layer 92. It can be expected that impurities in the copper film 93 can be reduced.
  • step coverage was verified using a wafer W for confirmation of step coverage of the deposited film shown in FIG. 8B.
  • a silicon oxide film 91 made of plasma TEOS having a thickness of 510 nm is deposited on a silicon substrate, and fine holes are patterned in the plasma TEOS film.
  • manganese oxide 92 was formed in the described Cu—MnOxCVD module 5 under the above-described film formation conditions (however, the film formation temperatures were 200 ° C. and 400 ° C.). The cut surface of the wafer W created in this way was observed using a TEM (Transmission Electron Microscopy).
  • the diameter is about 180 nm and the aspect ratio (ratio derived from the hole width and depth) is 2 as shown in FIG.
  • a very thin manganese oxide layer 92 having a thickness of about 5 nm is formed along the surface of the silicon oxide film 91 having a minute hole pattern of about .8 or a minute hole pattern having a diameter of about 125 nm and an aspect ratio of about 4.0. confirmed.
  • This film was a smooth continuous film with no irregularities on its surface. Therefore, it can be seen that by forming the above-described barrier film 26 by such a method, it is possible to form a film with a good step coverage even for a minute hole pattern.
  • the organometallic compound of manganese used in the present invention reacts with a film containing oxygen to produce manganese oxide 25 in a relatively short time, while containing no oxygen. There is a feature that the membrane does not react in a relatively short time. Therefore, in order to confirm the characteristics, the following reference experiment was conducted. In the experiment, the following three types of samples were used as the wafer W. Further, in the above-described Cu—MnOxCVD module 5, manganese oxide film formation was performed under the following film formation conditions. Then, the adhesion film thickness of manganese was computed with respect to each sample.
  • Example 1 Silicon oxide film formed by the plasma CVD method using TEOS as described above 2. A silicon oxide film obtained by heat-treating bare silicon in an oxidizing atmosphere. Untreated bare silicon (deposition conditions) Precursor (raw material): (EtCp) 2 Mn Carrier gas: H 2 , 25 sccm Deposition temperature: 500 ° C Processing pressure: 133 Pa (1 Torr) Deposition time: 30 minutes
  • Example 17 As shown in FIG. 17, a sample containing oxygen 1.2. In Example 3, the amount of manganese deposited was large, but it did not contain oxygen. The amount of manganese deposited was less. As a result, the characteristics of the organometallic compound of manganese described above were confirmed. Samples containing no oxygen 3. As for the reason why manganese has adhered to the film, the film forming temperature is high enough to grow abnormal grains. Further, even with the same silicon oxide film, there was a difference in the amount of manganese deposited due to the difference in film formation method (samples 1 and 2). This is considered to be because there is a difference in the amount of oxygen in the silicon oxide film due to the difference in film formation method.
  • the copper wiring 13 described above is subjected to a reduction process or an etching process so that the amount of oxygen is extremely small. Further, a natural oxide film is not formed on the copper wiring 13 and the barrier film 26 is further formed. By performing the film forming process at a low temperature of less than 500 ° C., the generation of manganese oxide 25 on the surface of the copper wiring 13 can be suppressed, and the barrier film 26 can be selectively grown on the oxygen-containing film. Conceivable.
  • Dual Damascene Sample A sample of the dual damascene structure shown in FIG. 18 was purchased from SEMATECH. 120 is an interlayer insulating film made of silicon oxide, 121 is a Cu wiring portion, and 122 is a SiN film. (2) CVD-Mn deposition Mn was deposited on the dual damascene structure sample under the following conditions. The film forming conditions are as follows.
  • the annealing conditions are as follows. Gas flow rate: Ar, 50 SCCM Substrate temperature: 400 ° C Pressure: 667 Pa (5 Torr) Time: 20 minutes (temperature rise time) + 40 minutes (temperature holding time) (5) Measurement Measuring instrument for cross-sectional observation: Transmission electron microscope (TEM) Elemental analysis instrument: Energy dispersive X-ray spectrometer (EDX)
  • FIG. 19 is a TEM photograph of the sample processed as described above.
  • FIG. 19A is a via hole and a trench portion
  • FIG. 19B is the vicinity of the bottom of the via hole
  • FIG. 19C is a via hole.
  • a region extending from the side wall to the bottom of the trench is shown enlarged.
  • FIG. 20 also shows the entire via hole and trench including the underlying Cu wiring. It was found that a 3 to 4 nm thick Mn compound film was present at the interface between copper and the interlayer insulating film (silicon oxide film).
  • the continuous thin film of the Mn compound film has a thickness of 3 to 4 nm on both the uppermost surface of the interlayer insulating film and the inner wall of the via hole, and has good step coverage.
  • the Mn layer present at the interface between the lower layer copper wiring (M1-Cu) and PVD-Cu (M2-Cu) is not a continuous thin film but a discontinuous layer with a thickness of 5 to 10 nm with the upper and lower interfaces blurred. understood. Although not all via hole bottoms, there is an interface where continuous Cu crystal grains exist from the lower layer copper wiring (M1-Cu) to PVD-Cu (M2-Cu). That is, it can be said that an electrical path that penetrates the Mn layer from the lower layer copper wiring (M1-Cu) and reaches the copper in the via hole is formed.
  • FIG. 21 is a schematic diagram for showing measurement points. Mn was not detected at measurement points * 1, * 4, but Mn was detected at measurement points * 2, * 3, and * 5. Therefore, it can be seen that Mn does not exist at the EDX level in the central portion of the Cu wiring layer but diffuses to the peripheral portion thereof. It can also be seen that a part of Mn remains at the bottom of the via hole. Furthermore, since O (oxygen) was detected at measurement point * 5, it can be seen that a barrier film containing Mn and O was formed on the surface layer portion of the interlayer insulating film.
  • O oxygen
  • FIG. 22 (a) is a TEM photograph taken so that the interface is located at the center of the laminated portion of the upper PVD-Cu and the lower PVD-Cu
  • Fig. 22 (b) visualizes the Mn-K line signal
  • FIG. 22 (c) shows the result of EDX analysis of the lower PVD-Cu portion of the portion shown in FIG. 22 (a) about 50 nm below the interface. From this result, it was found that the CVD-Mn layer was present along the interface between the lower PVD-Cu and the upper PVD-Cu as a film having a thickness of 5 to 10 nm with unclear both interfaces. . There are continuous Cu crystal grains from the lower PVD-Cu to the upper PVD-Cu.
  • the CVD-Mn film is not a continuous film but is discontinuous, and an electrical passage extending from the lower layer copper wiring through the CVD-Mn film to the upper layer copper wiring is formed.
  • Mn was contained in the lower layer Cu / upper layer Cu interface and the PVD-Cu / p-TEOS interface. From this, it is considered that Mn adhering (deposited) to the lower PVD-Cu during the Mn film formation diffused by dissolving in Cu and precipitated (segregated) at the Cu / p-TEOS interface.
  • the Mn—K line signal from the Cu bulk portion is a noise level, and there is little residual manganese in the Cu bulk. From the above results, even if a CVD-Mn film is present at the interface between the lower layer Cu and the upper layer Cu, it is considered that the action as an electrical resistance is extremely small or hardly becomes a resistance. In this experiment, it was shown that a manganese compound film was not formed on the copper film. In the above-mentioned experiments 1, 2, and 3, it was shown that a manganese compound film was formed on the silicon oxide film. Comparing the two, it was shown that the selective growth of manganese compounds on the damascene insulating film is possible.
  • Example 8 Verification experiment of relationship between film formation time and copper resistivity
  • A. Experimental procedure and experimental conditions (1) Sample preparation As a sample, a substrate on which a Cu film was formed on the entire surface was prepared. (2) CVD-Mn deposition Mn was deposited under the following conditions. Substrate temperature: 200 ° C Pressure: 133 Pa (1 torr) Carrier gas flow rate: H 2 , 25 SCCM Film formation time: 0.3 minutes (20 seconds) to 30 minutes (3) Specific resistance measurement The specific resistance of the copper film was measured by the 4-terminal method.
  • B. Experimental Results As shown in FIG. 23, the specific resistance is substantially constant even when the film formation time is increased. This is presumed that Mn was excluded from Cu as a result of solid solution and diffusion of Mn in the Cu layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 基板上の凹部が形成された層間絶縁膜の露出面にバリア膜を成膜し、凹部内に下層側の金属配線と電気的に接続される銅配線を形成するにあたり、段差被覆性の良好なバリア膜を形成することができ、しかも配線抵抗の上昇を抑える。層間絶縁膜に形成された凹部の底面に露出した下層側の銅配線の表面の酸化膜を還元あるいはエッチングして、当該銅配線の表面の酸素を除去した後、マンガンを含み、酸素を含まない有機金属化合物を供給することによって、凹部の側壁及び層間絶縁膜の表面などの酸素を含む部位に自己形成バリア膜である酸化マンガンを選択的に生成させる一方、銅配線の表面にはこの酸化マンガンを生成させないようにする。その後、この凹部に銅を埋め込む。

Description

半導体装置の製造方法、半導体装置、電子機器、半導体製造装置及び記憶媒体
 本発明は、層間絶縁膜に形成された凹部に銅を埋め込んで銅配線を形成する半導体装置の製造方法、この方法により製造された半導体装置、この半導体装置を備えた電子機器、半導体製造装置及び上記方法が記憶された記憶媒体に関する。
 半導体装置の多層配線構造は、層間絶縁膜中に金属配線を埋め込むことにより形成されるが、この金属配線の材料としてはエレクトロマイグレーションが小さくまた低抵抗であることなどから、銅(Cu)が使用され、その形成プロセスとしてはダマシン工程が一般的になっている。また、層間絶縁膜としては、低誘電率材料として例えばシリコン(Si)及び酸素(O)又は炭素(C)を含むシリコン化合物からなる膜例えばSiO、SiOF、SiC、SiOC、SiCOH、SiCN、ポーラスシリカ、ポーラスメチルシルセスキオキサン、ポリアリレン、SiLK(登録商標)、あるいはフロロカーボンなどが用いられている。
 このダマシン工程では、先ず、例えばCF系のガスと酸素ガスとからなる処理ガスをプラズマ化して層間絶縁膜をエッチングし、層内に引き回される配線を埋め込むためのトレンチと、上下の配線を接続する接続配線を埋め込むためのビアホールと、からなる凹部を形成する。その後、例えば酸素ガスのプラズマを用いたアッシング処理を行うことにより、エッチング処理においてマスクとして用いた例えば有機物からなるフォトレジストマスクを除去する。そして、基板の側面や裏面には、これらのプラズマ処理により生成した副生成物である残渣が付着しているので、この残渣を除去するために、例えば弗酸(HF)水溶液(弗化水素酸)に基板を浸漬してウェット洗浄を行う。その後、凹部にCVD法や電解めっき法などによりCuが埋め込まれることとなる。
 ところで、CVD法を利用する場合には銅の埋め込みを良好に行うために、前記層間絶縁膜表面及びその凹部内面に沿って極薄の銅シード層を形成することが好ましく、また電解めっき法を利用する場合には、電極となる銅シード層を前記層間絶縁膜表面及び凹部に形成する必要がある。また、銅が層間絶縁膜中に拡散しやすいことから、凹部内に銅の拡散を抑えるためのバリア膜を形成する必要がある。
 そこで、従来では例えばTa/TaNなどのバリア膜と銅のシード層とを例えばスパッタ法により形成するようにしていた。しかし、配線密度が高くなり、凹部の開口径が小さくなるに従って、このようなスパッタ法では凹部のステップカバレージ特性が悪く、凹部の側壁に付着しにくくなってしまう。また、このスパッタを2回(TaとTaNとを指す)行うので厚膜となり、配線密度の微細化には対応しにくい。JP2005-277390A(特に、段落0018~0020)には、凹部内にマンガン(Mn)をスパッタ法により成膜し、次いで銅を成膜した後この基板に対してアニール処理を行うことにより、酸化マンガン(MnOx(x:任意の正数))からなる自己形成バリア膜と銅の配線層とを形成する技術が記載されている。金属配線内に残った余剰のマンガンは、このアニール処理により当該金属配線の上層に拡散していき、その後のCMP(Chemical Mechanical Polishing)工程により除去されることとなる。このような方法では、上記のアニール処理によりマンガンと層間絶縁膜に含まれる例えば酸素とが反応して酸化マンガンが生成し、この酸化マンガンがバリア膜として層間絶縁膜と金属配線との間の界面に形成されるので、極めて薄いバリア膜を得ることができる。
 しかし、既述のように、このようなスパッタ法では凹部の側壁に比べて底面に多くマンガンが成膜されてしまう。そのため、凹部の側壁においてはマンガンが十分に付着せず、必要なバリア性能が得られないおそれがある。また、凹部の底面においては、多くのマンガンが残ってしまうと、上記のアニール処理を行ってもこのマンガンを取り除くことが困難になる。このマンガンは、銅よりも電気抵抗が大きいので、金属配線内にこのマンガンが残ってしまうと、配線抵抗の上昇の原因となってしまう。
 また、既述のプラズマ処理には処理ガスとして酸素ガスを用いているので、この酸素ガスのプラズマにより凹部の底面に露出した金属配線の表面が酸化されてしまう。また、その後のウェット洗浄が大気中で行われるため、当該金属配線の表面に更に自然酸化膜が形成されてしまう。この基板に対して上記の自己形成バリア膜を形成すると、この酸化膜中の酸素とマンガンとが反応して、酸化マンガンとなってしまう。この酸化マンガンは、絶縁体であり、配線抵抗の上昇の大きな原因となってしまうし、また不動態なので反応性に乏しくその除去には、パンチスルーなどの工程を追加する必要がある。
 既述のJP2005-277390A、並びに、JP2007-67107A(特に、図3-1、段落0028~0029、段落0037)およびJP11-200048A(特に、段落0026、段落0036~0038)には、層間絶縁膜に形成された凹部内に銅とマンガンとの化合物などからなる膜を形成する技術が記載されているが、金属配線の表面に形成された酸化膜については検討されていない。
 なお酸化マンガンは、Mnの価数によってMnO、Mn、Mn、MnO等の種類が存在するが、ここではそれらを総称してMnOx(x:任意の正数)と記述する。
 本発明は、このような事情に基づいてなされたものであり、その目的は、基板上の凹部が形成された層間絶縁膜の露出面にバリア膜を成膜し、凹部内に下層側の金属配線と電気的に接続される金属配線を形成するにあたり、段差被覆性(ステップカバレッジ性)の良好なバリア膜を形成することができ、しかも配線抵抗の上昇を抑えることのできる半導体装置の製造方法、半導体製造装置及び記憶媒体を提供することにある。
 本発明の半導体装置の製造方法は、
 凹部が形成された層間絶縁膜と、第1の金属を主成分とし凹部の底面に露出した下層金属配線と、を有する基板に対し、
 第2の金属を含む有機金属化合物の蒸気を供給して、前記第2の金属を含む有機金属化合物と、前記層間絶縁膜の成分の一部と、が反応することにより、前記第2の金属の化合物であり第1の金属の拡散を防ぐバリア膜を前記層間絶縁膜の露出面に形成する工程(a)と、
 その後、前記凹部内に第1の金属を主成分とする金属配線を埋め込む工程(b)と、を含むことを特徴とする。
 前記バリア膜形成工程(a)において、前記下層金属配線が、前記第2の金属を含む有機金属化合物と反応して第2の金属の化合物を形成する成分を含まないことにより、前記凹部の底面に露出した下層金属配線の上にはバリア膜を形成させないことが好ましい。
 前記バリア膜を形成する工程(a)に先立ち、前記基板上の前記層間絶縁膜に形成された凹部の底面に露出した下層側の第1の金属を主成分とする金属配線の表面の金属酸化物を還元あるいはエッチングして、当該金属配線の表面の酸素を除去又は低減する工程(c)がおこなわれることが好ましい。
 前記バリア膜を形成する工程(a)と前記第1の金属を主成分とする金属配線を埋め込む工程(b)との間に、前記層間絶縁膜の表面及び前記凹部内に前記第1の金属からなるシード層を成膜する工程を行うことが好ましい。
 前記層間絶縁膜は、酸素又は炭素を含むことが好ましい。
 前記層間絶縁膜の表面近傍又は前記層間絶縁膜中の成分の一部は、酸素、又は水などの酸素原子を含んだ化合物、又は炭素であることが好ましい。
 前記第1の金属は、Al,Cu,Agよりなる群から選択される1以上の金属であることが好ましい。
 前記第2の金属は、Mg,Al,Ti,V,Cr,Mn,Ni,Ge,Y,Zr,Nb,Tc,Rh,Pd,Sn,Re,Ptよりなる群から選択される1以上の金属であることが好ましい。
 前記バリア膜を形成する工程(a)において、前記基板を加熱することが好ましい。
 前記第2の金属を含む有機金属化合物は、酸素を含まないことが好ましい。
 前記第2の金属を含む有機金属化合物は、酸素の存在により分解反応を起こすことが好ましい。
 前記層間絶縁膜は、SiO膜とSiOF膜とSiC膜とSiOC膜とSiCOH膜とSiCN膜とポーラスシリカ膜とポーラスメチルシルセスキオキサン膜とポリアリレン膜とSiLK(登録商標)膜とフロロカーボン膜とよりなる群から選択される1つ以上の膜よりなることが好ましい。
 前記第2の金属を含む有機金属化合物は、CpMetal[=Metal(C],(MeCp)Metal[=Metal(CH],(MeCp)Metal[=Metal((CH],(EtCp)Metal[=Metal(C],(i-PrCp)Metal[=Metal(C],(t-BuCp)Metal[=Metal(C],Metal(DMPD)(EtCp)[=Metal(C11)](ここで、Metalは前記第2の金属元素をあらわす)よりなる群から選択される1つ以上の有機金属化合物よりなることが好ましい。
 前記第1の金属は、Cuであり、前記第2の金属は、Mnであることが好ましい。
 前記バリア膜を形成する工程(a)の後に、前記基板を加熱すると共に、前記第2の金属を含む有機金属化合物の蒸気を前記基板に供給しながら前記基板への前記第1の金属を含む有機金属化合物の蒸気の供給を開始して、当該第1の金属を含む有機金属化合物の蒸気の供給量を増やしていくことによって、前記第2の金属に対する前記第1の金属の割合が表層に向かって徐々に増えていく密着層を前記バリア膜の上層に形成する工程を行うようにしても良い。
 前記下層側の金属配線の表面の金属酸化物は、前記基板を大気搬送した時に生成したものであるか、あるいは前記酸素を除去又は低減する工程(c)の前に行われ、前記層間絶縁膜に対して酸素を含む処理ガスのプラズマを供給して凹部を形成するエッチング処理により生成したものであっても良い。
 前記酸素を除去又は低減する工程(c)は、前記凹部に対して有機酸を供給する工程であるか、あるいは前記凹部に対して水素を供給する熱処理工程、又はアルゴンスパッタエッチング工程であることが好ましい。前記有機酸は、蟻酸であることが好ましい。
 金属配線を埋め込む工程(b)の後に、熱処理(アニール)工程(d)を行うようにしても良い。
 前記バリア膜を形成する工程(a)は、前記基板を100℃以上500℃未満に加熱する工程を含んでいても良い。
 前記バリア膜は、アモルファス状であることが好ましく、また膜厚が5nm以下であることが好ましい。
 本発明の半導体装置は、上記の半導体装置の製造方法により製造されたことを特徴とする。
 本発明の電子機器は、上記の半導体装置を備えたことを特徴とする。
 本発明の半導体製造装置は、
 上記の製造方法を実施するための半導体製造装置において、
 基板が搬入される真空雰囲気の搬送室と、この搬送室内に設けられた基板搬送手段と、を備えた真空搬送室モジュールと、
 前記真空搬送室モジュールに気密に接続され、基板を載置する載置台が内部に設けられた処理容器と、第2の金属を含む、有機金属化合物の蒸気を前記基板に供給する手段と、を備え、前記基板上の層間絶縁膜の成分の一部と、前記第2の金属を含む有機金属化合物と、が反応することにより、前記第2の金属の化合物であり第1の金属の拡散を防ぐバリア膜を当該層間絶縁膜の露出面に形成するバリア膜形成モジュールと、
 前記真空搬送室モジュールに気密に接続され、基板を載置する載置台が内部に設けられた処理容器と、前記基板を加熱する手段と、第1の金属を主成分とする原料の蒸気を前記基板に供給し、前記凹部内に前記第1の金属を主成分とする原料を埋め込む第1の金属配線形成手段と、を備えた第1の金属配線形成モジュールと、
 前記真空搬送室モジュールに搬入された基板を前記バリア膜形成モジュールに搬送し、次いで前記真空搬送室モジュールを介して前記第1の金属配線形成モジュールに前記基板を搬送するように、前記基板搬送手段を制御する制御部と、を備えたことを特徴とする。
 前記真空搬送室モジュールには、前記基板上の前記層間絶縁膜に形成された凹部の底面に露出した下層側の第1の金属を主成分とする金属配線の表面の金属酸化物を還元あるいはエッチングする還元手段または除去手段を内部に備えた前処理モジュールが気密に接続され、前記制御部は、前記基板を前記バリア膜形成モジュールに搬送する前に、前記真空搬送室モジュールを介して前記前処理モジュールに前記基板を搬送するように、前記基板搬送手段を制御することが好ましい。
 前記真空搬送室モジュールには、前記層間絶縁膜の表面及び前記凹部内に前記第1の金属を主成分とするシード層を成膜するためのシード層形成手段を内部に備えたシード層形成モジュールが気密に接続され、前記制御部は、前記基板を前記バリア膜形成モジュールに搬送した後、前記第1の金属配線形成モジュールに搬送する前に、前記真空搬送室モジュールを介して前記シード層形成モジュールに前記基板を搬送するように、前記基板搬送手段を制御することが好ましい。
 前記バリア膜形成モジュールの処理容器は、前記第1の金属配線形成モジュールの処理容器を兼用していても良い。
 前記層間絶縁膜は、酸素又は炭素を含むことが好ましい。
 前記層間絶縁膜の表面近傍又は前記層間絶縁膜中の成分の一部は、酸素、又は水などの酸素原子を含んだ化合物、又は炭素であることが好ましい。
 前記第1の金属は、Al,Cu,Agよりなる群から選択される1以上の金属であることが好ましい。
 前記第2の金属は、Mg,Al,Ti,V,Cr,Mn,Ni,Ge,Y,Zr,Nb,Tc,Rh,Pd,Sn,Re,Ptよりなる群から選択される1以上の金属であることが好ましい。
 前記バリア膜形成モジュールは、基板を加熱する手段を備えていても良い。
 前記第2の金属を含む有機金属化合物は、酸素を含まないことが好ましく、また酸素の存在により分解反応を起こすことが好ましい。
 前記層間絶縁膜は、SiO膜とSiOF膜とSiC膜とSiOC膜とSiCOH膜とSiCN膜とポーラスシリカ膜とポーラスメチルシルセスキオキサン膜とポリアリレン膜とSiLK(登録商標)膜とフロロカーボン膜とよりなる群から選択される1つ以上の膜よりなることが好ましい。
 前記第2の金属を含む有機金属化合物は、CpMetal[=Metal(C],(MeCp)Metal[=Metal(CH],(MeCp)Metal[=Metal((CH],(EtCp)Metal[=Metal(C],(i-PrCp)Metal[=Metal(C],(t-BuCp)Metal[=Metal(C],Metal(DMPD)(EtCp)[=Metal(C11)](ここで、Metalは前記第2の金属元素をあらわす)よりなる群から選択される1つ以上の有機金属化合物よりなることが好ましい。
 前記第1の金属は、Cuであり、前記第2の金属は、Mnであることが好ましい。
 前記還元手段または除去手段は、前記凹部に対して有機酸を供給する手段であるか、あるいは前記凹部に対して水素を供給する手段、又はアルゴンスパッタエッチングする手段であることが好ましい。前記有機酸は、蟻酸であることが好ましい。
 前記真空搬送室モジュールには、基板を加熱する加熱手段を内部に備えたアニールユニットが気密に接続され、前記制御部は、前記基板を前記第1の金属配線形成モジュールに搬送した後、前記真空搬送室モジュールを介して前記アニールユニットに前記基板を搬送するように、前記基板搬送手段を制御することが好ましい。
 前記バリア膜形成モジュールは、前記基板を100℃以上500℃未満に加熱する加熱手段を備えていても良い。
 前記バリア膜は、アモルファス状であることが好ましく、また膜厚が5nm以下であることが好ましい。
 本発明の記憶媒体は、
 基板に対して処理を行う半導体製造装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
 前記コンピュータプログラムは、上記の半導体装置の製造方法を実施するようにステップ群が組まれていることを特徴とする。
 本発明によれば、基板上の凹部が形成された層間絶縁膜の露出面にバリア膜を形成し、凹部内に下層側の金属配線と電気的に接続される金属配線を形成するにあたり、第2の金属を含む、有機金属化合物の蒸気を前記基板に供給し、前記層間絶縁膜の露出面に第2の金属の化合物を成長させて、前記凹部の側壁および前記層間絶縁膜の上面に第1の金属を主成分とする金属配線の拡散を抑えるためのバリア膜を形成している。そのため、バリア膜の膜厚を薄く抑えることができ、またバリア膜をCVD法により形成しているので、段差被覆性を高めることができる。従って、凹部の開口幅が狭くても薄くて均一なバリア膜を形成することができる。また、基板上に例えば凹部の開口幅にばらつきのあるパターンが混在していても、このようなバリア膜を形成することができる。このことから、銅多層配線において、ローカル配線からグローバル配線までこのバリア膜を適用できる。また、銅多層配線の微細化が可能となるので、デバイスの動作速度を向上させることができると共に、チップサイズを小さくできるので、1枚のウェハから得られる半導体デバイスチップの個数が多くなり、その分デバイスのコストを下げることができる。更に、デバイスの動作速度が向上するので、このデバイスを備えた電子計算機の計算速度又は情報処理速度を高めることができる。更にまた、上記のバリア膜により、第1の金属の拡散を抑えることができるので、層間絶縁膜のリーク電流を抑えることができ、配線の信頼性が向上するため、このデバイスを備えた電子機器の寿命を延ばすことができる。また、必要な計算をより小さい回路でおこなうことができるので、携帯電話などの小型化が要求される情報端末に利用することができる。
本発明の半導体装置の製造方法の一例を示す工程図である。 上記製造方法を示す模式図である。 上記製造方法を実施するための半導体製造装置の一例を示す平面図である。 上記半導体製造装置に含まれる蟻酸処理モジュールの一例を示す縦断側面図である。 上記半導体製造装置に含まれるCu-MnOxCVDモジュールの一例を示す縦断側面図である。 上記半導体製造装置に含まれるプラズマ処理装置の一例を示す縦断面側面図である。 上記の半導体製造装置にアニールユニットを適用した例を示す平面図である。 本発明の実施例に用いたウェハの構造を模式的に示す断面図である。 上記の実施例において得られた結果を模式的に示す特性図である。 上記の模式的に示した特性図について実際に撮影されたTEM画像を示す特性図である。 上記の実施例において得られた結果を模式的に示す特性図である。 上記の模式的に示した特性図について実際に撮影されたTEM画像を示す特性図である。 上記の実施例において得られた結果を示す特性図である。 上記の実施例において得られた結果を示す特性図である。 上記の実施例において得られた結果を示す特性図である。 上記の実施例において得られた結果を示す特性図である。 上記の実施例において得られた結果を示す特性図である。 上記の実施例に用いたウェハを概略的に示す縦断面図である。 上記のウェハの縦断面を撮影したTEM写真図である。 上記のウェハの縦断面を撮影したTEM写真図である。 上記のウェハの縦断面の模式図である。 この実施例にて得られた結果を示す特性図である。 上記の実施例で得られた銅膜の比抵抗を示す特性図である。
発明を実施するための形態
 (ウェハの構成)
 本発明の半導体装置の製造方法の実施の形態について、VFTL(Via First Trench Last)のDD(Dual Damascene)工程に対応した、図1及び図2を参照して説明する。先ず、本発明の製造方法に用いられる基板である半導体ウェハ(以下「ウェハ」という)Wについて説明する。図1(a)に示すように、このウェハWに設けられた下層側の配線層10には、例えばシリコンと酸素とを含むシリコン酸化膜11が層間絶縁膜として形成されており、このシリコン酸化膜11内には、バリア膜12を介して例えば第1の金属である銅を主成分とする銅配線13が埋め込まれている。尚、図中17は、エッチングストップ膜である。
 この配線層10の上層側には、SiOまたはSiCなどからなる絶縁膜であるCu拡散バリア兼エッチングストップ膜14を介して、例えばTEOS(Tetra Ethoxy Silane別名Tetraethyl Orthosilicate)などを原料としてプラズマCVD法又は塗布法を用いて成膜された酸素とシリコンとを含むシリコン酸化膜15が層間絶縁膜として形成されている。このシリコン酸化膜15内の膜厚方向の例えば中間位置には、例えばハードマスクであるエッチングストップ膜24が形成されており、このエッチングストップ膜24は、後述のエッチング処理により溝21aを形成する時に、この溝21aの深さ位置を当該エッチングストップ膜24の上端位置に設定するためのものである。シリコン酸化膜15の上側には、このシリコン酸化膜15に対して後述の凹部21を形成するために、例えば有機物であるフォトレジストマスクや無機物のハードマスクなどからなる犠牲膜16が積層されている。このウェハWに対して、以下のようにして上層側の配線層20を形成する。
 なお、ここでは層間絶縁膜としてシリコン酸化膜11およびシリコン酸化膜15を用いたが、これに限らず、例えばシリコン(Si)及び酸素(O)又は炭素(C)を含むシリコン化合物からなる膜例えばSiO膜(SiO2膜など)、SiOF膜(シリコン、酸素及びフッ素を含む膜)、SiC膜(シリコン及び炭素を含む膜)、SiOC膜(シリコン、酸素及び炭素を含む膜)、SiCOH膜(シリコン、炭素、酸素及び水素を含む膜)、SiCN膜(シリコン、炭素及び窒素を含む膜)、ポーラスシリカ膜、ポーラスメチルシルセスキオキサン膜、ポリアリレン膜及びSiLK(登録商標)膜あるいはフロロカーボン膜よりなる群から選択される1つ以上の膜よりなることとしてもよく、SiOC膜のような無機膜と、ポリアリレンのような有機膜と、を積層したハイブリッド構造としてもよい。また材料の構造としてはデンス膜であってもよいし、細孔を有するポーラス膜であってもよい。配線性能の向上のため、比誘電率kの値を低くしたこのような材料からなる膜をLow-k膜と呼び、さらに比誘電率kの値を低くした材料からなる膜をUltra Low-k:ULK膜と呼ぶ。
 (ウェハの処理)
 先ず、図1(b)に示すように、犠牲膜16を利用した例えばデュアルダマシン法によって、トレンチの溝21aとビアホール21bとからなる凹部21をエッチングにより形成する。このエッチングは、例えば公知の平行平板型のプラズマ処理装置において、処理ガス例えばCFガス及びOガスなどをプラズマ化して行われる。次いで、例えば上記のプラズマ処理装置において、例えばOガスなどのプラズマをウェハWに供給してアッシング処理などを行うことによって犠牲膜16を除去する。ここで、ビア底に残っているCu拡散バリア兼エッチングストップ膜14をエッチング処理によって除去し、下層側の配線層10の銅配線13の表面を露出させる。
 その後、上記のエッチング処理やアッシング処理により凹部21内に付着した残渣を除去するために、例えばAr(アルゴン)ガスのプラズマを用いたドライクリーニングを行う。また、このウェハWの側面や裏面には、同様に残渣が付着しているので、例えばこのウェハWをこれらのドライプロセスの半導体製造装置から搬出して大気中を搬送し、別途用意されたウェットプロセスの半導体製造装置に搬入して例えば弗酸(HF)溶液(=弗化水素酸)に浸析してウェット洗浄を行う。上述の工程を経ることで、銅配線13の露出面は、エッチング工程におけるダメージ、洗浄工程におけるダメージ、そして大気搬送されることによる大気中酸素との接触、にさらされることとなり、当該露出面が酸化されて銅酸化物13aが生成する。
 ここで、層間絶縁膜としては上述したようにLow-k膜やULK膜が用いられるが、この層間絶縁膜にも着目すると、エッチングやアッシング、洗浄工程においてプラズマや薬液にさらされることにより、ダメージ(分解や変質)を受ける。例えば、SiOC膜は酸素プラズマにさらされることにより、膜中のSi-CH基が分解してSi-OH基を生成する。このSi-OH基は吸湿性が高く、k値を上げる原因となったり、バリアメタルの被覆性を悪化させたりしてCu拡散バリア機能を低下させる。
 図2(a)は、この時の銅酸化物13a及び凹部21の様子を模式的に示した図であり、実際の凹部21のアスペクト比は例えば2~5程度となっている。尚、同図において、既述のエッチングストップ膜14、24については省略しており、また以下に説明する図2(b)~(d)についても同様にエッチングストップ膜14、24については省略している。
 そして、ウェハWを再度ドライプロセスの半導体製造装置内に搬入し、このウェハWに対して還元剤例えば有機酸であるカルボン酸例えば蟻酸(HCOOH)の蒸気を供給して、銅酸化物13aの還元処理を行う。この処理により、図1(c)及び図2(b)に示すように、銅酸化物13aが以下に示す反応式に従って還元されることにより、あるいは蟻酸の化学的なエッチング作用により、凹部21の底面には金属銅が露出する。
 (反応式)
 CuO+HCOOH→2Cu+HO+CO
 尚、このドライプロセスの半導体製造装置内における一連の処理においては、ウェハWは真空雰囲気において搬送される。
 次に、このウェハWを例えば200℃に加熱すると共に、自己形成バリア用の金属である第2の金属例えばマンガン(Mn)を含み、酸素を含まない前駆体(プリカーサ)である有機金属化合物例えば(EtCp)Mn(ビスエチルシクロペンタジエニルマンガン)の蒸気を例えばHガスなどのキャリアガスと共にウェハWに供給する。この有機金属化合物は、加熱中に酸素に触れると分解し、またマンガンは酸素と強く結合しやすく炭素とも結合しやすい性質を持っているので、図2(c)に示すように、有機金属化合物あるいはマンガンがシリコン酸化膜15及びエッチングストップ膜14、24に含まれる成分の一部である酸素又は炭素と反応して、もしくはシリコン酸化膜15及びエッチングストップ膜14、24の表面近傍の吸着水分等と反応して例えば酸化マンガン(MnOx(x:任意の正数))又は炭化マンガン(MnCx(x:任意の正数))又は酸化炭化マンガン(MnCxOy(x、y:任意の正数))25となり、当該シリコン酸化膜15及びエッチングストップ膜14、24に付着していく。一方、銅配線13の露出面においては、既述の還元処理により酸素が除去されているので、この銅配線13の表面には有機金属化合物が付着しにくくなり、又は付着したとしても分解しにくくなる。従って、短時間のうちには銅配線13の表面には金属状のマンガン及び酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25のいずれについても付着しにくい傾向となり、酸素又は炭素を含むシリコン酸化膜15及びエッチングストップ膜14、24にだけ選択的に酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25が付着する傾向となる。
 上記のように気体状の原料を用いているので、この原料がウェハWの近傍において均一に拡散し、従ってこの処理を所定の時間例えば5分程度続けることにより、シリコン酸化膜15及びエッチングストップ膜14、24の露出面が酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25によって一様に覆われていき、図1(d)、図2(d)に示すように、自己形成バリア膜であるバリア膜26が形成される。このバリア膜26は、凹部21に埋め込まれる後述の金属銅27からシリコン酸化膜15への例えば銅などの金属の拡散を抑えるための膜である。
 ここで、この酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25は不動態であり、化合物として安定であることから非常に反応性が低いという特徴(パッシベーション性)を有する。このパッシベーション性により、酸化マンガン堆積反応にセルフリミットがかかるため、酸化マンガン25の膜厚は一定以上に増加しない。より詳しく述べると、一度堆積した酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25の表面に上記の有機金属化合物例えば(EtCp)Mnが拡散してきても、当該酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25は化合物の結合が強くて切れず、マンガン、炭素、酸素の拡散速度が遅くて原子の供給が途絶えるため、反応が進みにくく、また一定膜厚になると電界がかかりにくくなって物質がイオン化しにくくなることも反応を進みにくくしており、これらの状況から有機金属化合物はほとんど分解しない。またこの酸化マンガン(又は炭化マンガン又は酸化炭化マンガン)25はアモルファス構造となっており、結晶構造のような粒界を持たないことから原子の拡散経路をほとんど有しないという特徴を持つことも反応が進みにくく膜厚が増加しない要因と考えられる。そのため、例えば1層のバリア膜26が成膜されると、それ以上には膜厚がほとんど増えないので、このバリア膜26は、膜厚が例えば2~5nm程度の極めて薄い層となる。
 また、上述したようにエッチングやアッシング、洗浄工程においてプラズマや薬液にさらされることにより、層間絶縁膜(特にLow-k膜やULK膜になるほど)はダメージ(分解や変質)を受けていることが多い。このダメージの修復にも本プロセスは有効である。例えば、酸素プラズマにさらされたSiOC膜は、膜中のSi-CH基が分解してSi-OH基を生成するが、MnはCよりもOと結びつき易い傾向を持つため、ダメージによって生成したSi-OH基と優先的に反応する。よって、Si-OH基が少なくなるので、SiOC膜の吸湿性が高くなったり、k値が上がったり、バリアメタルの被覆性を悪化させたりしてCu拡散バリア機能を低下させることを回避させることが期待できる。
 さらに、CVD反応としては供給律速よりもむしろ反応律速に近い条件でのプロセスと言えるので、シリコン酸化膜15及びエッチングストップ膜14、24に対するバリア膜26の段差被覆性(ステップカバレージ)が極めて高くなる。CVD反応として供給律速に近い条件においても、酸化マンガン25の堆積反応にセルフリミットがかかるため形成バリア膜26の膜厚均一性が高くなり、また良好な段差被膜性を得ることが可能である。
 次に、マンガンの有機金属化合物を排出した後、加熱されたウェハWに対して銅の原料例えばベータジケトン銅錯体であるCu(hfac)TMVSの蒸気をキャリアガス例えばHガスと共に供給する。この銅錯体は、ウェハWの表面において分解して金属銅27となり、図1(e)に示すように、凹部21内を含むウェハWの表面に堆積する。その後、CMP(Chemical Mechanical Polishing)により余剰の銅金属及び上面側のバリア膜26が除去されて、上層側の配線層20が形成される。
 なお、金属銅27を堆積した後、必要に応じて熱処理(アニール)工程を施すようにしてもよい。熱処理(アニール)工程を施す場合であっても、従来に比べて低温、短時間のアニール工程で済ませることができると期待できる。その理由は、CVD工程において既に熱を加えていることと、バリア膜の形成に必要最低限のマンガン(Mn)のみを堆積していることから、アニールによって余剰のマンガン(Mn)を拡散させる必要性が無いためである。
 熱処理(アニール)を行う場合には、上記金属銅27を堆積したウェハWを例えば所定の濃度の酸素含有ガスの雰囲気の処理容器内で所定のプロセス温度、例えば100~450℃程度に加熱し、これによりシリコン酸化膜15と金属銅27との境界部分に、自己整合的に酸化マンガン25からなるバリア膜26を確実に形成する。なお、熱処理(アニール)時には上述したように処理容器内に酸素等(酸素供給手段等は図示せず)を供給する際に、酸素分圧を例えば10ppb程度又はそれ以下にコントロール可能な構成としてもよい。
 (装置構成)
 次に、上記の半導体装置の製造方法に用いられる半導体製造装置について、図3~図5を参照して説明する。
 図3は、例えばマルチチャンバシステムなどと呼ばれる半導体製造装置であり、同図中手前側から順に、大気雰囲気である第1の搬送室72、真空雰囲気と大気雰囲気とを切り替えてウェハWを待機させるための例えば左右に並ぶロードロック室73a、73b及び真空搬送室モジュールである第2の搬送室74がゲートGを介して気密に接続されている。第1の搬送室72の正面側には、複数枚例えば25枚のウェハWが収納された密閉型のキャリア1が載置されるロードポート71が横方向に例えば3カ所に設けられている。また、第1の搬送室72の正面壁には、ロードポート71に載置されたキャリア1が接続されて、このキャリア1の蓋と共に開閉されるゲートドアGTが設けられている。この第1の搬送室72の側面には、ウェハWの向きや偏心の調整を行うためのアライメント室77が接続されている。
 第2の搬送室74には、後述の蟻酸処理モジュール3、Cu-MnOxCVDモジュール5及びプラズマ処理装置6がゲートGを介して夫々2基ずつ気密に接続されており、この第2の搬送室74内は、既述の銅配線13が酸化しないように、例えば真空雰囲気となるように設定されている。
 第1の搬送室72及び第2の搬送室74には、それぞれ基板搬送手段である第1の搬送手段75及び第2の搬送手段76が設けられている。第1の搬送手段75は、ロードポート71、ロードロック室73及びアライメント室77の間においてウェハWの受け渡しを行うための搬送アームであり、鉛直軸回りに回転自在、進退自在及びロードポート71の並びに沿って移動自在に構成されている。第2の搬送手段76は、ロードロック室73と蟻酸処理モジュール3、Cu-MnOxCVDモジュール5及びプラズマ処理装置6との間でウェハWの受け渡しを行うための搬送アームであり、鉛直軸回りに回転自在、進退自在及び第2の搬送室74内をロードポート71側から見て手前側と奥側との間において移動自在に構成されている。
 続いて、既述の前処理モジュールである蟻酸処理モジュール3について図4を参照して説明する。図4中31は、例えばAl(アルミニウム)からなる真空チャンバをなす処理容器であり、31aはウェハWの搬出入を行うための搬送口である。この処理容器31の底部には、ウエハWを載置する載置台32が設けられている。この載置台32の表面部には、ウェハWを静電吸着するために、誘電体層33内にチャック電極34を埋設してなる静電チャック35が設けられており、このチャック電極34に図示しない電源部からチャック電圧が印加されるようになっている。尚、同図中Gはゲートである。
 また、載置台32の内部には加熱手段であるヒータ36が設けられており、静電チャック35に載置されたウエハWを所定の温度例えば200℃に加熱できるようになっている。この載置台32には、第2の搬送手段76との間でウェハWの受け渡しを行うための昇降ピン37が載置面から出没自在に設けられている。前記昇降ピン37は、処理容器31の下方側の支持部材38を介して駆動部39に連結されており、この駆動部39により昇降するように構成されている。
 処理容器31の上部には、載置台32に対向するようにガスシャワーヘッド41が設けられており、このガスシャワーヘッド41における下面には、多数のガス供給孔42が形成されている。また、ガスシャワーヘッド41の上面側には、既述の銅酸化物13aを還元するための還元剤例えば有機酸であるカルボン酸例えば蟻酸の蒸気を供給するための第1のガス供給路43の一端側が接続されている。
 第1のガス供給路43の他端側は、バルブV1、気体流量調整部であるマスフローコントローラM1及びバルブV2を介して還元手段または除去手段をなす還元剤供給源45に接続されている。バルブV2とマスフローコントローラM1との間には、バルブV6が介設された配管43aにより排気手段43bが接続されている。この排気手段43bにより、還元剤供給源45の交換時に配管(第1のガス供給路43)に混入するガス(主に大気)を除去するように構成されている。この還元剤供給源45は、例えば外側にヒーター48が設けられたステンレス製の貯留容器46を備えており、この貯留容器46内には、例えば液体状の還元剤が貯留されている。この貯留容器46には、一端側が当該貯留容器46内の還元剤の液面よりも下方側にて開口するキャリアガス供給路49が接続されており、このキャリアガス供給路49の他端側は、バルブV7、マスフローコントローラM3及びバルブV5を介して希釈ガス例えばAr(アルゴン)ガスを供給するための希釈ガス供給源47に接続されている。従って、このヒーター48により液体状の還元剤が気化されて、希釈ガスをキャリアガスとして気体状の還元剤がガスシャワーヘッド41に供給されるように構成されている。
 マスフローコントローラーM3とバルブV7との間には、バルブV8が介設された配管43cにより排気手段43dが接続されている。この排気手段43dにより、還元剤供給源45の交換時に配管(キャリアガス供給路49)に混入するガス(主に大気)を除去するように構成されている。上述の蟻酸の供給方式はバブリング方式と呼ばれるものであるが、蟻酸は比較的高い蒸気圧を持つことから、貯留容器46をヒーター48で加熱して得られた気体状の還元剤をマスフローコントローラーM1で直接流量制御してガスシャワーヘッド41に供給するようにしてもよい。
 また、ガスシャワーヘッド41には、第2のガス供給路44の一端側が接続されており、この第2のガス供給路44の他端側は、バルブV3、マスフローコントローラM2及びバルブV4を介して既述の希釈ガス供給源47に接続されている。このガスシャワーヘッド41内において、既述の気体状の還元剤と希釈ガスとが混合されて、この混合ガスがガス供給孔42から処理容器31内に供給される。尚、蟻酸の接触する部位である処理容器31、ガスシャワーヘッド41、第1のガス供給路43、バルブV1、マスフローコントローラM1、バルブV2には、ヒーター40が設けられており、この蟻酸処理モジュール3においてウェハWの処理を行う時には、蟻酸が凝縮しないように加熱される。
 処理容器31の底面には、排気管31Aの一端側が接続されており、この排気管31Aの他端側には、真空排気手段である真空ポンプ31Bが接続されている。処理容器31内の圧力は、この排気管31Aに設けられた図示しない圧力調整機構により所定の圧力に維持できるようになっている。
 次に、図5を参照しながら第1の金属配線形成モジュールを兼用するバリア膜形成モジュールであるCu-MnOxCVDモジュール5について説明する。このCu-MnOxCVDモジュール5は、処理容器50を備えており、処理容器50内には、ウエハWを水平に載置するためのステージ51が設けられている。このステージ51内には、ウエハWの加熱手段をなすヒータ51aが設けられている。また、ステージ51には、昇降機構51bにより昇降自在な3本の昇降ピン51c(便宜上2本のみ図示)が突没するための図示しない孔部が設けられており、昇降ピン51cを介して第2の搬送手段76とステージ51との間でウエハWの受け渡しが行われる。
 処理容器50の底部には排気管52aの一端側が接続され、この排気管52aの他端側には、バルブ58a、TMP(Turbo Molecular Pump)53a及びバルブ58bを介して真空ポンプ(DP(Dry Pump))53bが接続されている。真空ポンプ53bの下流側には、図示しない除害装置が接続されており、排気されてきたガスを無害化して系外に排出するように構成されている。バルブ58aの上流側における排気管52aには、バイパスライン52bの一端側が接続されており、このバイパスライン52bの他端側は、バルブ58cとAPC(Auto Pressure Controller)58dとを介して、バルブ58bと真空ポンプ53bとの間における排気管52aに接続されている。
 また、バイパスライン52bと真空ポンプ53bとの間における排気管52aには、排気管52a、バイパスライン52b内を通流する処理ガス例えば水素などの爆発を防止するために、希釈用のガス例えば窒素を供給するための不活性ガスパージライン52cが接続されている。成膜プロセスを行っている時には、バルブ58aを閉じてバルブ58cを開けて、APC58dにより処理容器50内の圧力を制御しながらバイパスライン52bを経由して処理ガスが希釈ガスと共に排気され、成膜プロセスを行っていない時にはバルブ58a、バルブ58bを開けてバルブ58cを閉じて、TMP53aを介して処理容器50内が排気される。このTMP53aを用いて処理容器50内を排気することで、処理容器50内の残留ガスを低減させ、質の良い真空度を保つことができる。また、処理容器50の側壁には、ゲートバルブGにより開閉される搬送口54が形成されている。
 処理容器50の天井部には、ステージ51に対向するようにガスシャワーヘッド55が設けられている。ガスシャワーヘッド55は、互いに区画されたガス室56A,56Bを備え、これらガス室56A,56Bに供給されたガスは夫々ガス供給孔57A,57Bから処理容器50内に供給される。
 ガスシャワーヘッド55の上面には、銅(Cu)の原料ガスをガス室56Aに導入するための銅原料供給路61Aの一端側と、マンガン(Mn)の原料ガスをガス室56Bに導入するためのマンガン原料供給路61Bの一端側と、が接続されている。これらの銅原料供給路61A及びマンガン原料供給路61Bには、内部を通流する原料の蒸気が凝縮しないように、ヒーター59が設けられている。
 銅原料供給路61Aの他端側には、液体状の銅原料を気化させるための例えばヒータを備えたベーパライザ65と、液体マスフローコントローラやバルブを含む流量調整部64Aと、バルブV10と、を介して第1の金属配線形成手段である銅原料貯留部62Aが接続されている。バルブV10と流量調整部64Aとの間には、バルブV11が介設された配管60aにより排気手段70aが接続されている。この排気手段70aにより、銅原料貯留部62Aの交換時に配管(銅原料供給管61A)に混入するガス(主に大気)を除去するように構成されている。銅原料貯留部62Aには、銅原料である銅の有機金属化合物例えばベータジケトン銅錯体であるCu(hfac)TMVSが液体の状態で貯留されている。
 銅原料貯留部62Aには、バルブV12を備えた気体供給管61Cを介して加圧部63Aが接続されており、この加圧部63Aから供給されたHeやArガス等の不活性ガスによって銅原料貯留部62A内を加圧することにより、液体状の銅原料をベーパライザ65に向けて押し出すことができるようになっている。また、この加圧部63AとバルブV12との間には、バルブV13が介設された配管60bにより排気手段70bが接続されている。この排気手段70bにより、銅原料貯留部62Aの交換時に配管(気体供給管61C)に混入するガス(主に大気)を除去するように構成されている。
 ベーパライザ65には、流量調整部67Aが介設されたキャリアガス導入管68Aにより、例えばHガスなどのキャリアガスが貯留されたキャリアガス供給源66Aが接続されている。このベーパライザ65では、例えばキャリアガスを加熱して、このキャリアガスと既述の液体状の銅原料とを接触混合させて当該銅原料を気化させ、銅原料の蒸気をガス室56Aに供給するように構成されている。
 マンガン原料供給路61Bの他端側(上流側)には、例えば希釈部69と流量調整部64BとバルブV14とを介して、マンガンを含み、酸素を含まない有機金属化合物の蒸気をウェハWに供給する手段であるマンガン原料貯留部62Bが接続されており、このマンガン原料貯留部62B内には、マンガンの有機金属化合物例えば(EtCp)Mn(ビスエチルシクロペンタジエニルマンガン)が液体の状態で貯留されている。バルブV14と流量調整部64Bとの間には、バルブV15が介設された配管60cにより排気手段70cが接続されている。この排気手段70cにより、マンガン原料貯留部62Bの交換時に配管(マンガン原料供給路61B)に混入するガス(主に大気)を除去するように構成されている。このマンガン原料貯留部62Bの周囲には、ヒーター83が設けられており、マンガン原料貯留部62B内の原料を例えば80℃に加熱できるように構成されている。
 マンガン原料貯留部62Bには、内部の液体材料の液面よりも下方側にて開口するように、例えば図示しないヒーターが設けられたキャリアガス供給路80の一端側が接続されている。このキャリアガス供給路80の他端側には、バルブV16及び流量調整部81を介して例えばHガスなどのキャリアガスが貯留されたキャリアガス供給源66Bが接続されており、ヒーター83で加熱されて気化されたマンガン材料がこのキャリアガスと共に希釈部69に供給されるように構成されている。バルブV16と流量調整部81との間には、バルブV17が介設された配管60dにより排気手段70dが接続されている。この排気手段70dにより、マンガン原料貯留部62Bの交換時に配管(キャリアガス供給路80)に混入するガス(主に大気)を除去するように構成されている。
 希釈部69には、図示しないヒーターが設けられた希釈ガス路84の一端側が接続されており、この希釈ガス路84の他端側には、流量調整部85を介して既述のキャリアガス供給源66Bが接続されている。この希釈部69において、原料ガスが所定の濃度に希釈されてガス室56Bに供給されるように構成されている。
 プラズマ処理装置6は、既述のように平行平板型の処理装置であり、図6に概略的に示すと、処理容器101内の下部電極を兼用する載置台102上にウェハWを載置して、載置台102に対向するように設けられ、上部電極を兼用するガスシャワーヘッド103から処理ガス供給路104を介して処理容器101内に処理ガスを供給し、上部電源105からプラズマ発生用の高周波を供給すると共に、下部電源106からイオンをウェハWに引き込むためのバイアス用高周波を供給することによって、処理ガスをプラズマ化したプラズマによりウェハWに対してプラズマ処理を行うものである。尚、同図中107は排気管、108は真空ポンプ、109は搬送口、Gはゲートである。
 既述の図3に示すように、この半導体製造装置には、例えばコンピュータからなる制御部2Aが設けられている。この制御部2Aはプログラム、メモリ、CPUからなるデータ処理部などを備えており、前記プログラムには制御部2Aから半導体製造装置の各部に制御信号を送り、既述の各ステップを進行させるように命令(各ステップ)が組み込まれている。また、例えばメモリには処理圧力、処理温度、処理時間、ガス流量または電力値などの処理パラメータの値が書き込まれる領域を備えており、CPUがプログラムの各命令を実行する際これらの処理パラメータが読み出され、そのパラメータ値に応じた制御信号がこの半導体製造装置の各部位に送られることになる。このプログラム(処理パラメータの入力操作や表示に関するプログラムも含む)は、コンピュータ記憶媒体例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)などの記憶部2Bに格納されて制御部2Aにインストールされる。
 (ウェハの流れ)
 先ず、例えば既述のプラズマ処理装置6などにおいて予めウェハWにプラズマ処理を行ってエッチングやアッシングにより凹部21を形成した後、例えばウェット洗浄を行う。次いで、図示しない搬送手段によりこのウェハWが格納されたキャリア1を半導体製造装置に搬送して、ロードポート71に載置する。その後、キャリア1内のウェハWを第1の搬送室72を介してアライメント室77に搬送し、向きや偏心の調整を行った後、ロードロック室73に搬送する。このロードロック室73内の圧力を調整して、ウエハWを第2の搬送室74を介して蟻酸処理モジュール3に搬入する。
 次いで、ウェハWを載置台32上に載置して、処理容器31内を所定の真空度例えば100~500Pa(0.75~3.75Torr)程度に真空引きすると共に、ウェハWを所定の温度例えば150~300℃程度に加熱する。そして、気体状の還元剤例えば蟻酸(及びキャリアガス)を夫々所定の流量例えば夫々10~100sccm、0~100sccmでガスシャワーヘッド41内に供給する。また、希釈ガスを所定の流量例えば0~200sccmでガスシャワーヘッド41内に供給すると、ここで気体状の蟻酸と希釈ガスとが混合されて、この混合ガスがウェハWに供給される。そして、既述のように、この蟻酸により銅酸化物13aが還元あるいはエッチングされていく。この還元処理を所定の時間例えば1~10分程度行った後、還元剤、キャリアガス及び希釈ガスの供給を停止し、処理容器31内を真空排気して、ウェハWを第2の搬送室74に搬出する。
 続いて、ウェハWをCu-MnOxCVDモジュール5に搬送し、処理容器50内のステージ51上に載置すると共に、ウェハWを所定の温度例えば100~500℃程度、より具体的には200℃に加熱する。そして、マンガンの有機金属化合物が所定の流量例えば2~10sccm程度、より具体的には7sccm程度となるようにキャリアガス(及び希釈ガス)を所定の流量例えば夫々10~100sccm程度、より具体的には25sccm、(0~100sccm程度)に調整し、これらのガスを希釈部69において混合し、この混合ガスをウェハWに所定の時間例えば5分以上供給することによって、既述のバリア膜26が成膜される。尚、バリア膜26が成膜されるように成膜条件例えば成膜時間を調整することによって、ウェハWを加熱しないようにしても良い。その後、上記の混合ガスの供給を停止して処理容器50内を真空排気した後、気体状の銅の原料を所定の流量でウェハWに供給し、凹部21を含むウェハWの表面に金属銅27を成膜する。その後、ガスの供給を停止して処理容器50内を真空排気して、第2の搬送室74、ロードロック室73及び第1の搬送室72を介してウェハWをキャリア1に搬出する。
 上述の実施の形態によれば、例えばエッチング処理により凹部21を形成した後、このエッチング処理や洗浄などによって酸化した銅配線13の表面の銅酸化物13aを蟻酸を用いて還元あるいはエッチングし、当該銅配線13の表面の酸素を除去している。そして、ウェハWの表面に対して酸素を含まず、また酸素と反応性の高いマンガンの有機金属化合物をウェハWに供給することにより、酸素を含むシリコン酸化膜15及びエッチングストップ膜14、24においては酸化マンガン25を生成させ、一方酸素を含まない銅配線13の表面においては酸化マンガン25を生成させないようにしている。そのために、銅配線13の表面に銅を露出させたまま、シリコン酸化膜15及びエッチングストップ膜14、24に対して、選択的にバリア膜26を形成することができる。
 また、バリア膜26を形成した後、このウェハWに対して銅の原料を供給して凹部21を含むウェハWの表面に金属銅27を成膜しており、またこのような一連の処理を真空雰囲気において行うようにしているので、銅配線13と金属銅27との間には、酸化マンガン25や銅の自然酸化膜などの絶縁物が介在していない。従って、配線抵抗の上昇を抑えることができる。
 更に、バリア膜26の表面つまり金属銅27の内部には余分な金属マンガンが含まれていないか、あるいは極めて少なくなっているので、配線抵抗の上昇を抑えることができ、またマンガンを排出するためのアニール処理を省略することができるので、スループットを高めることができる。
 なお、金属銅27を堆積した後、必要に応じて熱処理(アニール)工程を施すようにしてもよい。熱処理(アニール)工程を施す場合であっても、従来に比べて低温、短時間のアニール工程で済ませることができると期待できる。その理由は、CVD工程において既に熱を加えていることと、バリア膜の形成に必要最低限のマンガン(Mn)のみを堆積していることと、からアニールによって余剰のマンガン(Mn)を拡散させる必要性が無いためである。
 熱処理(アニール)を行う場合には、ウェハWを載置する載置台を内部に備えた処理容器、ウェハWを加熱するための加熱手段及び処理容器内を酸素含有ガス雰囲気に保つ手段例えばガス供給路など(いずれも図示せず)が設けられたアニールユニット100を既述の第2の搬送室74に気密に接続するようにしても良い(図7)。この場合には、上記金属銅27を堆積したウェハWを例えば所定の濃度の酸素含有ガスの雰囲気中で所定のプロセス温度、例えば100~450℃程度に加熱し、これによりシリコン酸化膜15と金属銅27との境界部分に、自己整合的に酸化マンガン25からなるバリア膜26を確実に形成する。なお、熱処理(アニール)時には上述したように処理容器内に酸素等(酸素供給手段についても図示せず)を供給する際に、酸素分圧を例えば10ppb程度又はそれ以下にコントロール可能な構成としてもよい。
 このようにバリア膜26を形成することにより、後述の実施例にも示すように薄い膜厚であっても、銅に対して極めて高いバリア性能を得ることができるので、この後のデバイス形成工程において、例えば400℃程度の熱処理工程にさらされた場合でも、シリコン酸化膜15への銅の拡散が抑えられるため、リーク電流の増大を抑えることができる。また、上記のように低温例えば500℃未満でバリア膜26を形成することにより、当該バリア膜26がアモルファス状になるので、酸化マンガン25の粒界がなくなり、従って銅の拡散経路が閉ざされることから、上記のように薄膜であっても極めて高いバリア性能を得ることができると考えられる。
 また、このバリア膜26の成膜を酸化物(酸素を含む膜)上におけるインキュベーション時間(インキュベーション時間とは、原料ガスをウェハWに供給し始めてから、ウェハW上に反応物が堆積し始めるまでの時間のことを言う)以上、例えば成膜温度が200℃の場合においては1分以上といった所定の時間以上行うことにより、シリコン酸化膜15及びエッチングストップ膜14、24の表面上においては、付着したマンガンの有機金属化合物が分解して酸化マンガン25として付着する反応が起こり易くなり、一方銅配線13(酸素を含まない膜)の表面においては、付着したマンガンの有機金属化合物が分解して酸化マンガン25として付着する反応に至らないため、既述のように選択的にバリア膜26を形成できる。ただし、バリア膜26の成膜時間を金属上におけるインキュベーション時間以上、例えば成膜温度が200℃の場合においては60分以上といった所定の時間以上行ってしまうと、酸化物上と金属上のいずれにおいても付着したマンガンの有機金属化合物が分解して酸化マンガン25として付着する反応が起こるため、選択的なバリア膜26の成膜とはならない。
 このようなバリア膜26の膜厚としては、1~7nmが好ましく、より好ましくは1.5nm~4nm、更に2nm~3nmであることが好ましい。なお、既述のJP2007-67107Aに記載された内容によると、堆積したマンガン(Mn)の膜厚は2nmと記載されている。しかし、金属マンガン膜が酸化して酸化マンガン膜に変化するとその膜厚が約2.7倍に増加するため、2nmのマンガン膜が酸化して酸化マンガンとなった場合は、膜厚としては5.5nmのバリア膜に相当する。
 上記のように、気体状の原料を用いたCVD法によりバリア膜26を成膜することによって、凹部21の開口寸法が狭い場合であっても段差被覆性が高くなり、バリア膜26を均質に形成することができる。また、ウェハW上に例えば凹部21の開口幅にばらつきのあるパターンが混在していても、このようなバリア膜26を形成することができる。このことから、銅多層配線において、ローカル配線からグローバル配線までこのバリア膜26を適用できる。また、銅多層配線の微細化が可能となるので、デバイスの動作速度を向上させることができると共に、チップサイズを小さくできるので、1枚のウェハWから得られる半導体デバイスチップ(例えばロジック、メモリー等)の個数が多くなり、その分デバイスのコストを下げることができる。
 更に、デバイスの動作速度が向上するので、このデバイスを備えた電子計算機(例えば電子計算機、通信機器、情報端末、携帯電話等)の計算速度又は情報処理速度を高めることができる。更にまた、上記のバリア膜26により、金属配線の銅の拡散を抑えることができるので、層間絶縁膜のリーク電流を抑えることができ、配線の信頼性が向上するため、このデバイスを備えた電子機器の寿命を延ばすことができる。また、必要な計算をより小さい回路でおこなうことができるので、携帯電話などの小型化が要求される情報端末に利用することができる。
 更にまた、一度金属マンガンを成膜してその後酸化させる方法ではなく、直接酸化マンガンであるバリア膜26を形成しているので、既述のように酸素の有無に応じてバリア膜26を選択成長させることができ、またバリア膜26の形成後直ちに銅に対するバリア機能が発揮されるので、薄い膜厚であっても、極めて高いバリア性能を得ることができる。尚、このバリア膜26には、後述の実施例に示すように、酸素の他に、C(炭素)が含まれていても良い。
 上記のバリア膜26の成膜に用いられる原料としては、酸素を含まない有機金属化合物が好ましく、環状の炭化水素を含んでいることが好ましい。また、上記のように酸素の存在により分解する化合物であることが好ましい。そのような原料としては、例えばCpMn(ビスシクロペンタジエニルマンガン)、(MeCp)Mn(ビスメチルシクロペンタジエニルマンガン)、(i-PrCp)Mn(ビスイソプロピルシクロペンタジエニルマンガン)などを用いても良いし、このような原料の複数を組み合わせて用いても良い。また、酸素を含んでいても、分解後に酸素が単独でマンガンと反応しない化合物例えばCOなどであれば、例えば(MeCp)Mn(CO)(トリカルボニルメチルシクロペンタジエニルマンガン)などを用いても良い。キャリアガスとしては、H以外にも還元性ガスあるいは不活性ガス例えばArガスなどを用いても良い。
 また、還元処理に用いる還元剤としては、蟻酸の他にも、有機酸例えば酢酸あるいは水素などを用いても良い。更に、アルゴンガスを用いたスパッタ法により、銅酸化物13aを物理的に除去するようにしても良い。
 更に、上記の例では、バリア膜26を形成した後、別途金属銅27を成膜するようにしているので、これらの処理を夫々別の処理容器50において行うようにしても良い。また、バリア膜26と金属銅27との密着性を強くするためには、例えばバリア膜26の形成開始と共に、銅の原料の供給を開始して少しずつこの銅の原料の供給量を増やすことによって、マンガンの量に対して銅の割合が表層に向かうにつれて徐々に増加する密着層を形成するようにしても良い。この場合には、バリア膜26と金属銅27との界面が入り組んであいまいになるので、バリア膜26と金属銅27との密着性が向上する。尚、この場合において金属銅27内に含まれる余剰のマンガンの量を少なくするためには、銅の原料の供給を増やす一方でマンガンの供給量を徐々に減らして行くことが好ましい。なお、上述の密着層の状態としては、CuMn合金、又はCu+MnOx(x:任意の正数)混合物、又はCu+MnCx(x:任意の正数)混合物、又はCu+MnCxOy(x、y:任意の正数)混合物、又はCuMnxOy(x、y:任意の正数)化合物、又はCuMnxCy(x、y:任意の正数)化合物、又はCuMnxCyOz(x、y、z:任意の正数)化合物のいずれか、もしくはこれらの混合物になっていると考えられる。
 また、バリア膜26を形成した後、例えばスパッタ法により銅のシード層を成膜し、上記の金属銅27を凹部21に埋め込むようにしても良い。この場合には、例えば第2の搬送室74にスパッタを行うための処理容器であるシード層形成モジュールを気密に接続し、この処理容器内に設けられたシード層形成手段によりシード層が形成される。シード層形成手段とは、処理容器内に設けられたスパッタ用の金属源(スパッタリングターゲット)に例えばDCマグネトロン法などによって作り出されたアルゴンイオンなどを衝突させてスパッタされた(=弾き出された)金属原子を基板上に堆積させることが可能なように構成されたものである。スパッタ法に拠れば、スパッタされた金属原子がバリア膜26に射ち込まれるアンカー効果によって密着性が期待できる。スパッタ方式としては、DC(直流)2極スパッタ法やRF(高周波)スパッタ法、プラズマスパッタ法、マグネトロンスパッタ法、イオンビームスパッタ法などが使用可能であり、ステップカバレージの改善のためにコリメーションスパッタ法、遠距離スパッタ法、イオン化スパッタ法を用いることができる。この場合において、スパッタにより成膜しながらウェハWを加熱又は例えば0℃以下に冷却するようにしても良い。この時、銅配線13の表面及びシード層が酸化されないように、ウェハWは真空搬送される。
 尚、上記の例ではCVD法により金属銅27を成膜したが、スパッタ法などのPVD法などでも良いし、電解めっき法あるいは無電解めっき法により金属銅27を成膜するようにしても良い。この場合にも、バリア膜26の形成後、CVD法やスパッタ法によりシード層となる金属膜例えば銅を凹部21に堆積させるようにしても良い。また、上記のバリア膜26や金属銅27の成膜方法としては、例えば熱CVD法以外にも、プラズマCVD法、光CVD法であっても良いし、またバリア膜26については例えばALD(Atomic Layer Deposition)法などであっても良い。更に、上記の例では、バリア膜26と金属銅27とを同じ処理容器50内にて成膜したが、夫々の成膜処理を異なる処理容器50内で行うようにしても良い。
 また、上記の金属銅27としては、純銅だけでなく、例えば銅を主成分とする金属やAlやAgであっても良いし、これらの金属が複数含まれていても良い。更に、既述の銅酸化物13aとしては、エッチング処理などにより生成したものとして説明したが、例えば大気搬送中に生成した場合であっても、本発明の半導体装置の製造方法を適用できる。また、銅酸化物13aが生成していない場合には、既述の還元処理を行わなくても良い。更に、銅酸化物13aが生成している場合であっても、酸化マンガン25が凹部21の側壁に選択的に生成するのであれば、銅酸化物13aを完全に除去せずに、低減させるようにしても良い。なお、ここでは酸素を含むシリコン酸化膜15等の上にマンガンの有機金属化合物を供給して成膜したバリア膜26は、MnOx(x:任意の正数)からなる酸化マンガン25として説明したが、シリコン酸化膜15のシリコンを取り込んで反応し、MnSixOy(x、y:任意の正数)になっていると言う説も有り、学会などでも議論が分かれている。よって、ここではMnOx(x:任意の正数)とMnSixOy(x、y:任意の正数)を含めたものとして酸化マンガン25という表現をしている。
 また、ここでは下地膜である層間絶縁膜としてシリコン酸化膜15を用いた場合を例にとって説明したが、これに限定されず、有機膜やポーラス膜など上述のLow-k膜やULK膜を用いてもよい。
 また、ここでは第2の金属としてマンガン(Mn)を用いた場合を例にとって説明したが、これに限定されず、他の金属、例えばMg,Al,Ti,V,Cr,Ni,Ge,Y,Zr,Nb,Tc,Rh,Pd,Sn,Re,Ptよりなる群から選択される1以上の金属を用いてもよい。従って、既述の有機化合物としては、CpMetal[=Metal(C],(MeCp)Metal[=Metal(CH],(MeCp)Metal[=Metal((CH],(EtCp)Metal[=Metal(C],(i-PrCp)Metal[=Metal(C],(t-BuCp)Metal[=Metal(C],Metal(DMPD)(EtCp)[=Metal(C11)](ここで、Metalは上記の第2の金属元素をあらわす)よりなる群から選択される1つ以上の化合物を用いるようにしても良い。
 また、ここで説明した成膜装置は単に一例を示したに過ぎず、例えば基板の加熱手段として抵抗加熱ヒータに代えてハロゲンランプ等の加熱ランプを用いるようにしてもよいし、熱処理装置は枚葉式のみならずバッチ式のものであってもよい。
 更に、ここでは被処理体として半導体ウェハを例にとって説明したが、これに限定されず、ガラス基板、LCD基板、セラミック基板、プラスチック等の有機基板等にも本発明を適用することができる。
 以下に、本発明について行った実験について説明する。実験には、図8(a)に示すダミー用のウェハWを用いた。このウェハWは、以下のようにして作製した。先ず、シリコン基板90上にTEOS(Tetra Ethoxy Silane、別名Tetraethyl Orthosilicate)を用いたプラズマCVD法により350℃にて成膜して、膜厚100nmのシリコン酸化膜91を得た。次に、このシリコン酸化膜91の上に既述のCu-MnOxCVDモジュール5において以下の成膜条件において酸化マンガン層92を成膜した。また、このウェハWの表面に、スパッタ法により銅膜93を膜厚が100nmとなるように成膜した。その後、このウェハWに対して、銅の拡散の有無を確かめるために以下のアニール条件において熱処理を行った。そして、このウェハWに対して以下に説明する実験を行った。尚、この実験では良好なステップカバレージを必要とする実験ではなかったため、パターンの無い基板を使用した。そのため、上記のように、CVD法ではなくスパッタ法により銅膜93を形成したが、この方法によっても膜質やステップカバレージ以外の物性などは特に問題ないレベルである。
 ここで、以下に示すように酸化マンガン層92の成膜時間を30分と長くとったのは、上述したように、下地によるインキュベーション時間の差を利用して、酸化マンガン層92のCVD成膜における下地選択性をよりはっきりと示すためである。つまり、マンガンの有機金属化合物を酸素を含む膜に対して供給すると、例えば成膜温度が200℃の場合においては、1分以上になると付着したマンガンの有機金属化合物が分解して酸化マンガンとして付着し始めることが予め行った実験により分かったので、このように成膜時間を設定した。尚、このように長時間マンガンの有機金属化合物を銅に供給しても、銅表面には酸化マンガンの連続膜が形成されないことは確認済みである。
 なお、今回実施したアニール条件による熱処理は、Cu拡散バリア性能を検証するための加熱加速度試験のためにおこなったものであり、酸素雰囲気ではおこなっていない。すなわち、従来例のような、バリア膜を自己形成させると共に余剰のマンガンを拡散・排出させる目的で酸素雰囲気においておこなう熱処理とは異なっている。
 (成膜条件)
 プリカーサ(原料):(EtCp)Mn
 ヒーター83の設定温度:70℃
 キャリアガス:H、25sccm
 成膜温度:300、400、500℃
 処理圧力:133Pa(1Torr)
 成膜時間:30分
 (アニール条件)
 供給ガス:Ar、50sccm
 ウェハWの加熱温度:400℃
 アニール時の圧力:667Pa(5Torr)
 アニール時間:20分(昇温時間)+40分(温度保持時間)
 (実験1:断面観察)
 上記の3種類のウェハWの切断面をTEM(Transmission Electron Microscopy)を用いて観察した。その結果、300℃及び400℃において成膜したウェハWにおいては、図9及び図11に示すように、シリコン酸化膜91と銅膜93との間には、極めて薄い5nm程度の酸化マンガン層92が確認された。この膜は、界面が凹凸の無い滑らかな連続膜となっており、かつアモルファス状となっていて結晶粒界のような亀裂が全く見られない。また、シリコン酸化膜91と銅膜93との間には、余剰のマンガンが残留したり偏析したりしたような部分は見られていない。図示はしていないが、100℃及び200℃において成膜したウェハWにおいても上述のような実験結果を確認した。このときに得られた酸化マンガン層92の膜厚はさらに薄く、2~3nm程度であった。
 従って、このような方法により既述のバリア膜26を形成することにより、余剰のマンガンを排出するためのアニール処理、すなわち酸素雰囲気でのアニール処理が不要になることが分かる。尚、既述の図9及び図11は、各領域の境界を判別しやすいように、実際に撮影したTEM画像を写し取って示した図である。また、図10及び図12は、夫々図9及び図11に模式的に示した図について実際に撮影されたTEM画像を示す図である。
 ところが、500℃で成膜したウェハWにおいては、アイランド状の粒成長がいくつか確認された。また、シリコン酸化膜91と銅膜93との間には、比較的結晶性の高い層、炭素の多いと考えられる層及びアモルファス層が上側からこの順番で積層されていた。このアモルファス層は、300℃及び400℃において成膜したウェハWにおいてみられた、シリコン酸化膜91と銅膜93との間に形成された、極めて薄い酸化マンガン層92に相当すると考えられる。しかし、このように成膜温度が高くなることにより、アイランド状の粒成長、すなわち異常粒成長がおこってしまうことから、酸化マンガン層92の成膜温度としては、500℃未満が好ましいことが分かる。尚、既述のように、別途行った実験により、100℃や200℃においてもこの酸化マンガン層92が成膜されることは確認済みである。
 (実験2:断面の組成マッピング)
 次に、上記の各ウェハWに対して、EDX(Energy Dispersive X-ray Analysis)を用いて断面の組成分析を行った。尚、いずれのウェハWにおいても、分析のために、銅膜93の表面に接着剤を塗布してある。
 300℃及び400℃で成膜したウェハWでは、図13及び図14に示すように、マンガンからの信号はシリコン酸化膜91と銅膜93との間に形成された極めて薄い層92においてのみ確認されている。このことから、この極めて薄い層92には確実にマンガンが含まれており、後述のSIMSの結果を考慮すると、酸化マンガンになっていると考えられる。また、シリコン酸化膜91の部分からはCuの信号は検出されておらず、Cuがシリコン酸化膜91に染み出している様子はみられなかった。
 このことから、酸化マンガン層92は極めて良好なCu拡散バリア性を有しており、Cuが染み出すようなピンホール(例えば結晶粒界のようなCu拡散経路)も存在していないことが確認できた。なお、図示はしていないが、100℃及び200℃において成膜したウェハWにおいても上述と同様の実験結果を確認した。また、図13及び図14についても、既述の図9及び図11と同様に、実際に得られた画像を写し取って示した図である。
 一方、500℃で成膜したウェハWについては、既述のアイランド状の粒成長部分にはマンガンが多く含まれており、異常成長していることが分かった。従って、実験1において観察された現象がマンガンの異常粒成長によるものだということが再確認された。
 (実験3:膜厚方向の元素分析)
 上記の各ウェハWに対して、SIMS(Secondary Ion Mass Spectrometry)を用いて膜厚方向にエッチングを行いながら深さ方向の元素分析を行った。また測定に際しては、表面側(図15及び図16におけるCu膜側)から膜をエッチングすると、酸化マンガン層92及びシリコン酸化膜91の成分分析中に上層のCu原子が混入することから、シリコン基板の裏面側からエッチングをおこなった。図15及び図16に示すように、300℃及び400℃で成膜したウェハWでは、上側から下側に向かうにつれて、酸化マンガン層92において銅のピークが急激に減少し、シリコン酸化膜91の上端(酸化マンガン層92の下端)ではほとんどピークが見られなかった(ここでみられているピーク値は検出限界程度の信号でノイズレベルであることから、シリコン酸化膜91内におけるCuの存在は略ゼロとみなすことができる)。
 このことから、酸化マンガン層92がこのような薄膜であっても、極めて高いバリア性能を持っていることが分かる。なお、図示はしていないが、100℃及び200℃及び500℃において成膜したウェハWにおいても上述と同様の実験結果を確認した。
 また、実験2の結果に対応するように、マンガンのピークは極めてシャープとなっている。またこのマンガンのピークに重なるように、炭素のピークが確認されていることから、マンガンの有機金属化合物中に含まれていた炭素をマンガン原子が取り込んでいることが確認できた。このことから、マンガン原子による不純物スカベンジング効果が期待できるので、同様の有機金属化合物、例えばCuプリカーサ(原料)を用いてCVD成膜させたときに、Cuの有機金属化合物中に含まれている炭素や弗素などの不純物とマンガンが反応して酸化マンガン層92に取り込むことにより銅膜93中の不純物を低減させることができると期待できる。あるいは、電解めっき法や無電解めっき法によってCuを成膜させたときに、Cu膜に含まれている、めっき液由来の塩素などの不純物とマンガンが反応して酸化マンガン層92に取り込むことにより銅膜93中の不純物を低減させることができると期待できる。
 (実験4:微細孔におけるステップカバレージ観察)
 上記の3種類のウェハWとは別に、図8(b)に示す、堆積膜のステップカバレージ確認のためのウェハWを用いてステップカバレージの検証をおこなった。このウェハWはシリコン基板上に膜厚510nmのプラズマTEOSからなるシリコン酸化膜91を堆積し、このプラズマTEOS膜に対して微細孔がパターニングされている。このシリコン酸化膜91の上に記述のCu-MnOxCVDモジュール5において既述の成膜条件(ただし、成膜温度は200℃及び400℃である)において酸化マンガン92を成膜した。このようにして作成したウェハWの切断面をTEM(Transmission Electron Microscopy)を用いて観察した。
 その結果、200℃及び400℃において成膜したウェハWいずれにおいても、図8(b)に示したような、直径が180nm程度、アスペクトレシオ(孔の広さと深さとから導かれる比率)が2.8程度の微小な孔パターン又は直径が125nm程度、アスペクトレシオが4.0程度の微小な孔パターンとなっているシリコン酸化膜91の表面に沿って、極めて薄い5nm程度の酸化マンガン層92が確認された。この膜は、その表面が凹凸の無い滑らかな連続膜となっていた。従って、このような方法により既述のバリア膜26を形成することにより、微小な孔パターンに対しても良好なステップカバレージで成膜が可能であることが分かる。
 (参考実験:酸化マンガンの膜厚の下地依存性確認)
 本発明において用いたマンガンの有機金属化合物は、既述のように酸素が含まれている膜に対しては比較的短い時間で反応して酸化マンガン25を生成し、一方酸素が含まれていない膜に対しては比較的短い時間では反応しないという特徴がある。そこで、その特徴を確認するために、以下の参考実験を行った。
 実験には、ウェハWとして以下の3種類のサンプルを用いた。また、既述のCu-MnOxCVDモジュール5において、以下の成膜条件で酸化マンガンの成膜処理を行った。その後、各サンプルに対してマンガンの付着膜厚を算出した。
 (サンプル)
 1.既述のTEOSを用いたプラズマCVD法により成膜したシリコン酸化膜
 2.ベアシリコンを酸化性雰囲気において熱処理を行ったシリコン酸化膜
 3.未処理のベアシリコン
 (成膜条件)
 プリカーサ(原料):(EtCp)Mn
 キャリアガス:H、25sccm
 成膜温度:500℃
 処理圧力:133Pa(1Torr)
 成膜時間:30分
 (実験結果)
 図17に示すように、酸素を含むサンプル1.2.についてはマンガンの付着量が多くなっていたが、酸素を含まないサンプル3.についてはマンガンの付着量が少なくなっていた。これにより既述のマンガンの有機金属化合物の特徴が確認された。尚、酸素を含まないサンプル3.についてもマンガンが付着していた理由としては、異常粒成長するほどに成膜温度が高いことがその一因として挙げられる。
 また、同じシリコン酸化膜であっても、成膜方法の違い(サンプル1.と2.)によって、マンガンの付着量に差が生じていた。これは、成膜方法の違いによって、シリコン酸化膜中の酸素の量に差があるからではないかと考えられる。
 この実験により、既述の銅配線13において、酸素の量が極めて少なくなるように還元処理あるいはエッチング処理を行い、またこの銅配線13に自然酸化膜が形成されないようにして、更にバリア膜26の成膜処理を500℃未満の低温にて行うことによって、銅配線13の表面に酸化マンガン25が生成することを抑え、酸素を含む膜に対してバリア膜26の選択成長を行うことができると考えられる。
 (実験5:デュアルダマシン構造のサンプルへの埋め込み実験)
A.実験手順、実験条件
(1)デュアルダマシン試料
  SEMATECHから図18に示すデュアルダマシン構造のサンプルを購入した。120はシリコン酸化物からなる層間絶縁膜、121はCu配線部、122はSiN膜である。
(2)CVD-Mn堆積
  デュアルダマシン構造サンプルの上に、下記の条件でMnを堆積した。
  成膜条件は以下の通りである。
  下地:SEMATECHパターン800AZ
  プリカーサ:(EtCp)Mn
  プリカーサボトル内部の温度:80℃(測定方法は熱電対)
  供給方式:バブリング方式
  バブリングガス:H、25SCCM
  基板温度:200℃
  プロセス圧力:133Pa(1torr)
  成膜時間:10min
(3)PVD-Cu堆積(Cap Cu堆積)
  CVD-Mnを堆積したサンプルを大気暴露せず、CVD-Mnの上に、保護膜としてCuをスパッタ法で堆積した。
  成膜条件は以下の通りである。
  基板温度:室温
  膜厚:500nm
(4)アニール
  PVD-Cuを堆積した後アニールを行った。
  アニール条件は以下の通りである。
  ガス流量:Ar、50SCCM
  基板温度:400℃
  圧力:667Pa(5Torr)
  時間:20分(昇温時間)+40分(温度保持時間)
(5)測定
  断面観察用測定器:透過型電子顕微鏡(TEM)
  元素分析用測定器:エネルギー分散型X線分光器(EDX)
B.実験結果
 図19は上述のように処理を行ったサンプルのTEM写真であり、図19(a)はビアホール及びトレンチ部分、図19(b)はビアホールの底部付近、図19(c)はビアホールの側壁からトレンチの底部に亘る領域を拡大して示している。また図20は、下層のCu配線を含む、ビアホール及びトレンチ全体を示している。
 銅と層間絶縁膜(シリコン酸化膜)との界面には、膜厚3~4nmのMn化合物膜が存在していることがわかった。このMn化合物膜の連続薄膜は層間絶縁膜の最上面、ビアホール内壁のいずれでも3~4nmの膜厚であり、良好なステップカバレージを有する。
 下層銅配線(M1-Cu)とPVD-Cu(M2-Cu)の界面に存在するMn層は連続薄膜ではなく、上下の界面がぼやけた厚さ5~10nmの不連続な層であることが判った。
 すべてのビアホール底ではないが、下層銅配線(M1-Cu)からPVD-Cu(M2-Cu)にかけて、連続したCuの結晶粒が存在する界面が存在する。即ち、下層銅配線(M1-Cu)から前記Mn層を突き抜けてビアホール内の銅に達する電気的なパスが形成されていると言える。
 以上のデータから、ダマシン構造の層間絶縁膜(シリコン酸化膜)上へのMn化合物の選択成長が可能であると示されたと言える。ここでEDXを用いてサンプルの縦断面を元素分析した結果を示しておく。図21は、測定ポイントを示すための模式図であり、測定ポイント※1、※4ではMnが検出されなかったが、測定ポイント※2、※3及び※5ではMnが検出された。従ってMnはCuの配線層の中心部にはEDXレベルでは存在しておらず、その周縁部に拡散していることが分かる。またMnの一部がビアホールの底に残留していることも伺える。更に、測定ポイント※5ではO(酸素)が検出されたことから、層間絶縁膜の表層部にMnとOとを含むバリア膜が形成されていることが分かる。
 (実験6:Cuベタ膜上へのマンガン化合物の成膜実験)
A.実験手順、実験条件
(1)基板
  Bare-Si基板の上に、p(プラズマCVD)-TEOS膜が全面に形成された基板を準備した。
(2)PVD-Cu堆積(下層)
  下記の条件で下層のPVD-Cuを堆積した。
  膜厚:100nm
  基板温度:室温
  後処理:アニールなし
(3)CVD-Mn堆積
  下記の条件でCVD-Mnを堆積した。成膜条件は、下地の条件を除いて実験5の(2)に記載した条件と同じである。
(4)PVD-Cu堆積(上層)
  下記の条件で上層のPVD-Cuを堆積した。
  膜厚:100nm
  基板温度:室温
  後処理:アニールなし
(5)測定
  断面観察用測定器:透過型電子顕微鏡(TEM)
  元素分析用測定器:エネルギー分散型X線分光器(EDX)
B.実験結果
 図22(a)は上層のPVD-Cuと下層のPVD-Cuとの積層部分について界面が中央に位置するように撮像したTEM写真、図22(b)はMn-K線シグナルを可視化したイメージ図、図22(c)は図22(a)に示す部位において界面よりも50nm程度下方側の下層のPVD-Cuの部位についてEDXにより分析した結果である。この結果から、CVD-Mn層は、両界面が不明瞭な、厚さ5~10nmの膜として、下層のPVD-Cuと上層のPVD-Cuの界面に沿って存在していることがわかった。下層のPVD-Cuから上層のPVD-Cuにかけて、連続したCuの結晶粒が存在している。このことは、CVD-Mn膜が連続膜ではなく、不連続であり、下層銅配線からCVD-Mn膜を突き抜けて上層銅配線に達する電気的な通路が形成されていることを示している。EDXのデータから、下層Cu/上層Cuの界面の不明瞭な層と、PVD-Cu/p-TEOS界面にはMnが含まれていることがわかった。このことから、Mnの成膜中に下層のPVD-Cuに付着した(堆積した)Mnは、Cuに固溶して拡散し、Cu/p-TEOS界面に析出(偏析)したと考えられる。
 また、EDXのデータから、Cuのバルク部分(界面以外の部分)からのMn-K線シグナルはノイズレベルであり、Cuのバルク中へのマンガンの残留は少ないと考えられる。
 以上の結果から、下層Cu/上層Cuの界面にCVD-Mn膜が存在していたとしても、電気的抵抗としての作用が極めて小さくなっているか、あるいはほとんど抵抗とはならないと考えられる。
 この実験では銅膜の上にマンガン化合物膜が形成されないことが示された。前述の実験1,2,3ではシリコン酸化膜上にマンガン化合物膜が形成されることが示された。両者を比較すると、ダマシン構造の絶縁膜上へのマンガン化合物の選択成長が可能であることが示された。
 (実験7:成膜時間と膜厚の関係の検証実験)
A.実験手順、実験条件
(1)サンプル準備
 サンプルとして、絶縁膜(p-TEOS膜)が全面に成膜された基板を準備した。
(2)CVD-Mn堆積
 下記の条件でMnを堆積した。
 基板温度:200℃
 圧力:133Pa(1torr)
 キャリアガス流量:H、25SCCM
 成膜時間:0.3分(20秒)~30分
(3)膜厚測定
 測定方法:蛍光X線分析(XRF)
B.実験結果
 p-TEOS膜上では、成膜時間に依存せず、成膜時間は20秒程度で十分であり、マンガン化合物の膜厚はほぼ一定である。膜厚の増加にセルフリミットがかかっている。
(実験8:成膜時間と銅の比抵抗の関係の検証実験)
A.実験手順、実験条件
(1)サンプル準備
 サンプルとして、Cu膜が全面に成膜された基板を準備した。
(2)CVD-Mn堆積
 下記の条件でMnを堆積した。
 基板温度:200℃
 圧力:133Pa(1torr)
 キャリアガス流量:H、25SCCM
 成膜時間:0.3分(20秒)~30分
(3)比抵抗測定
 4端子法により、銅膜の比抵抗を測定した。
B.実験結果
 図23に示すように、成膜時間が増えても比抵抗はほぼ一定である。このことは、Cu層中にMnが固溶・拡散した結果、Cu中からMnが排除されたものと推定される。既述の図22(c)の結果から、排除されたMnはCu/p-TEOS界面に偏析しているものと推定される。そのため、Cuの比抵抗が純Cu並みに低く抑えられていると考えられる。尚、Cu中にMnのような不純物があると、比抵抗が高くなる。
 以上の結果は、CVD-Mn工程はCu配線の電気抵抗上昇を引き起こさないことを示しており、半導体デバイスへの適用が期待される。

Claims (48)

  1.  凹部が形成された層間絶縁膜と、第1の金属を主成分とし凹部の底面に露出した下層金属配線と、を有する基板に対し、
     第2の金属を含む有機金属化合物の蒸気を供給して、前記第2の金属を含む有機金属化合物と、前記層間絶縁膜の成分の一部と、が反応することにより、前記第2の金属の化合物であり第1の金属の拡散を防ぐバリア膜を前記層間絶縁膜の露出面に形成する工程(a)と、
     その後、前記凹部内に第1の金属を主成分とする金属配線を埋め込む工程(b)と、を含むことを特徴とする半導体装置の製造方法。
  2.  前記バリア膜形成工程(a)において、前記下層金属配線が、前記第2の金属を含む有機金属化合物と反応して第2の金属の化合物を形成する成分を含まないことにより、前記凹部の底面に露出した下層金属配線の上にはバリア膜を形成させないことを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記バリア膜を形成する工程(a)に先立ち、前記基板上の前記層間絶縁膜に形成された凹部の底面に露出した下層側の第1の金属を主成分とする金属配線の表面の金属酸化物を還元あるいはエッチングして、当該金属配線の表面の酸素を除去又は低減する工程(c)がおこなわれることを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4.  前記バリア膜を形成する工程(a)と前記第1の金属を主成分とする金属配線を埋め込む工程(b)との間に、前記層間絶縁膜の表面及び前記凹部内に前記第1の金属からなるシード層を成膜する工程を行うことを特徴とする請求項1ないし3のいずれか一つに記載の半導体装置の製造方法。
  5.  前記層間絶縁膜は、酸素又は炭素を含むことを特徴とする請求項1ないし4のいずれか一つに記載の半導体装置の製造方法。
  6.  前記層間絶縁膜の表面近傍又は前記層間絶縁膜中の成分の一部は、酸素、又は水などの酸素原子を含んだ化合物、又は炭素であることを特徴とする請求項1ないし5のいずれか一つに記載の半導体装置の製造方法。
  7.  前記第1の金属は、Al,Cu,Agよりなる群から選択される1以上の金属であることを特徴とする請求項1ないし6のいずれか一つに記載の半導体装置の製造方法。
  8.  前記第2の金属は、Mg,Al,Ti,V,Cr,Mn,Ni,Ge,Y,Zr,Nb,Tc,Rh,Pd,Sn,Re,Ptよりなる群から選択される1以上の金属であることを特徴とする請求項1ないし7のいずれか一つに記載の半導体装置の製造方法。
  9.  前記バリア膜を形成する工程(a)において、前記基板を加熱することを特徴とする請求項1ないし8のいずれか一つに記載の半導体装置の製造方法。
  10.  前記第2の金属を含む有機金属化合物は、酸素を含まないことを特徴とする請求項1ないし9のいずれか一つに記載の半導体装置の製造方法。
  11.  前記第2の金属を含む有機金属化合物は、酸素の存在により分解反応を起こすことを特徴とする請求項1ないし10のいずれか一つに記載の半導体装置の製造方法。
  12.  前記層間絶縁膜は、SiO膜とSiOF膜とSiC膜とSiOC膜とSiCOH膜とSiCN膜とポーラスシリカ膜とポーラスメチルシルセスキオキサン膜とポリアリレン膜とSiLK(登録商標)膜とフロロカーボン膜とよりなる群から選択される1つ以上の膜よりなることを特徴とする請求項1ないし11のいずれか一つに記載の半導体装置の製造方法。
  13.  前記第2の金属を含む有機金属化合物は、CpMetal[=Metal(C],(MeCp)Metal[=Metal(CH],(MeCp)Metal[=Metal((CH],(EtCp)Metal[=Metal(C],(i-PrCp)Metal[=Metal(C],(t-BuCp)Metal[=Metal(C],Metal(DMPD)(EtCp)[=Metal(C11)](ここで、Metalは前記第2の金属元素をあらわす)よりなる群から選択される1つ以上の有機金属化合物よりなることを特徴とする請求項1ないし12のいずれか一つに記載の半導体装置の製造方法。
  14.  前記第1の金属は、Cuであり、前記第2の金属は、Mnであることを特徴とする請求項1ないし13のいずれか一つに記載の半導体装置の製造方法。
  15.  前記バリア膜を形成する工程(a)の後に、前記基板を加熱すると共に、前記第2の金属を含む有機金属化合物の蒸気を前記基板に供給しながら前記基板への前記第1の金属を含む有機金属化合物の蒸気の供給を開始して、当該第1の金属を含む有機金属化合物の蒸気の供給量を増やしていくことによって、前記第2の金属に対する前記第1の金属の割合が表層に向かって徐々に増えていく密着層を前記バリア膜の上層に形成する工程を行うことを特徴とする請求項1ないし14のいずれか一つに記載の半導体装置の製造方法。
  16.  前記下層側の金属配線の表面の金属酸化物は、前記基板を大気搬送した時に生成したものであることを特徴とする請求項3ないし15のいずれか一つに記載の半導体装置の製造方法。
  17.  前記下層側の金属配線の表面の金属酸化物は、前記酸素を除去又は低減する工程(c)の前に行われ、前記層間絶縁膜に対して酸素を含む処理ガスのプラズマを供給して凹部を形成するエッチング処理により生成したものであることを特徴とする請求項3ないし15のいずれか一つに記載の半導体装置の製造方法。
  18.  前記酸素を除去又は低減する工程(c)は、前記凹部に対して有機酸を供給する工程であることを特徴とする請求項3ないし17のいずれか一つに記載の半導体装置の製造方法。
  19.  前記酸素を除去又は低減する工程(c)は、前記凹部に対して水素を供給する熱処理工程、又はアルゴンスパッタエッチング工程であることを特徴とする請求項3ないし17のいずれか一つに記載の半導体装置の製造方法。
  20.  前記有機酸は、蟻酸であることを特徴とする請求項18に記載の半導体装置の製造方法。
  21.  金属配線を埋め込む工程(b)の後に、熱処理(アニール)工程(d)を行うことを特徴とする請求項1ないし20のいずれか一つに記載の半導体装置の製造方法。
  22.  前記バリア膜を形成する工程(a)は、前記基板を100℃以上500℃未満に加熱する工程を含むことを特徴とする請求項1ないし21のいずれか一つに記載の半導体装置の製造方法。
  23.  前記バリア膜は、アモルファス状であることを特徴とする請求項1ないし22のいずれか一つに記載の半導体装置の製造方法。
  24.  前記バリア膜は、膜厚が5nm以下であることを特徴とする請求項1ないし23のいずれか一つに記載の半導体装置の製造方法。
  25.  請求項1ないし24に記載の半導体装置の製造方法により製造されたことを特徴とする半導体装置。
  26.  請求項25に記載の半導体装置を備えたことを特徴とする電子機器。
  27.  請求項1の製造方法を実施するための半導体製造装置において、
     基板が搬入される真空雰囲気の搬送室と、この搬送室内に設けられた基板搬送手段と、を備えた真空搬送室モジュールと、
     前記真空搬送室モジュールに気密に接続され、基板を載置する載置台が内部に設けられた処理容器と、第2の金属を含む有機金属化合物の蒸気を前記基板に供給する手段と、を備え、前記基板上の層間絶縁膜の成分の一部と、前記第2の金属を含む有機金属化合物と、が反応することにより、前記第2の金属の化合物であり第1の金属の拡散を防ぐバリア膜を当該層間絶縁膜の露出面に形成するバリア膜形成モジュールと、
     前記真空搬送室モジュールに気密に接続され、基板を載置する載置台が内部に設けられた処理容器と、前記基板を加熱する手段と、第1の金属を主成分とする原料の蒸気を前記基板に供給し、前記凹部内に前記第1の金属を主成分とする原料を埋め込む第1の金属配線形成手段と、を備えた第1の金属配線形成モジュールと、
     前記真空搬送室モジュールに搬入された基板を前記バリア膜形成モジュールに搬送し、次いで前記真空搬送室モジュールを介して前記第1の金属配線形成モジュールに前記基板を搬送するように、前記基板搬送手段を制御する制御部と、を備えたことを特徴とする半導体製造装置。
  28.  前記真空搬送室モジュールには、前記基板上の前記層間絶縁膜に形成された凹部の底面に露出した下層側の第1の金属を主成分とする金属配線の表面の金属酸化物を還元あるいはエッチングする還元手段または除去手段を内部に備えた前処理モジュールが気密に接続され、
     前記制御部は、前記基板を前記バリア膜形成モジュールに搬送する前に、前記真空搬送室モジュールを介して前記前処理モジュールに前記基板を搬送するように、前記基板搬送手段を制御することを特徴とする請求項27に記載の半導体製造装置。
  29.  前記真空搬送室モジュールには、前記層間絶縁膜の表面及び前記凹部内に前記第1の金属を主成分とするシード層を成膜するためのシード層形成手段を内部に備えたシード層形成モジュールが気密に接続され、
     前記制御部は、前記基板を前記バリア膜形成モジュールに搬送した後、前記第1の金属配線形成モジュールに搬送する前に、前記真空搬送室モジュールを介して前記シード層形成モジュールに前記基板を搬送するように、前記基板搬送手段を制御することを特徴とする請求項27または28に記載の半導体製造装置。
  30.  前記バリア膜形成モジュールの処理容器は、前記第1の金属配線形成モジュールの処理容器を兼用していることを特徴とする請求項27ないし29のいずれか一つに記載の半導体製造装置。
  31.  前記層間絶縁膜は、酸素又は炭素を含むことを特徴とする請求項27ないし30のいずれか一つに記載の半導体製造装置。
  32.  前記層間絶縁膜の表面近傍又は前記層間絶縁膜中の成分の一部は、酸素、又は水などの酸素原子を含んだ化合物、又は炭素であることを特徴とする請求項27ないし31のいずれか一つに記載の半導体製造装置。
  33.  前記第1の金属は、Al,Cu,Agよりなる群から選択される1以上の金属であることを特徴とする請求項27ないし32のいずれか一つに記載の半導体製造装置。
  34.  前記第2の金属は、Mg,Al,Ti,V,Cr,Mn,Ni,Ge,Y,Zr,Nb,Tc,Rh,Pd,Sn,Re,Ptよりなる群から選択される1以上の金属であることを特徴とする請求項27ないし33のいずれか一つに記載の半導体製造装置。
  35.  前記バリア膜形成モジュールは、基板を加熱する手段を備えたことを特徴とする請求項27ないし34のいずれか一つに記載の半導体製造装置。
  36.  前記第2の金属を含む有機金属化合物は、酸素を含まないことを特徴とする請求項27ないし35のいずれか一つに記載の半導体製造装置。
  37.  前記第2の金属を含む有機金属化合物は、酸素の存在により分解反応を起こすことを特徴とする請求項27ないし36のいずれか一つに記載の半導体製造装置。
  38.  前記層間絶縁膜は、SiO膜とSiOF膜とSiC膜とSiOC膜とSiCOH膜とSiCN膜とポーラスシリカ膜とポーラスメチルシルセスキオキサン膜とポリアリレン膜とSiLK(登録商標)膜とフロロカーボン膜とよりなる群から選択される1つ以上の膜よりなることを特徴とする請求項27ないし37のいずれか一つに記載の半導体製造装置。
  39.  前記第2の金属を含む有機金属化合物は、CpMetal[=Metal(C],(MeCp)Metal[=Metal(CH],(MeCp)Metal[=Metal((CH],(EtCp)Metal[=Metal(C],(i-PrCp)Metal[=Metal(C],(t-BuCp)Metal[=Metal(C],Metal(DMPD)(EtCp)[=Metal(C11)](ここで、Metalは前記第2の金属元素をあらわす)よりなる群から選択される1つ以上の有機金属化合物よりなることを特徴とする請求項27ないし38のいずれか一つに記載の半導体製造装置。
  40.  前記第1の金属は、Cuであり、前記第2の金属は、Mnであることを特徴とする請求項27ないし39のいずれか一つに記載の半導体製造装置。
  41.  前記還元手段または除去手段は、前記凹部に対して有機酸を供給する手段であることを特徴とする請求項27ないし40のいずれか一つに記載の半導体製造装置。
  42.  前記還元手段または除去手段は、前記凹部に対して水素を供給する手段、又はアルゴンスパッタエッチングする手段であることを特徴とする請求項27ないし40のいずれか一つに記載の半導体製造装置。
  43.  前記有機酸は、蟻酸であることを特徴とする請求項41に記載の半導体製造装置。
  44.  前記真空搬送室モジュールには、基板を加熱する加熱手段を内部に備えたアニールユニットが気密に接続され、
     前記制御部は、前記基板を前記第1の金属配線形成モジュールに搬送した後、前記真空搬送室モジュールを介して前記アニールユニットに前記基板を搬送するように、前記基板搬送手段を制御することを特徴とする請求項27ないし43のいずれか一つに記載の半導体製造装置。
  45.  前記バリア膜形成モジュールは、前記基板を100℃以上500℃未満に加熱する加熱手段を備えたことを特徴とする請求項27ないし44のいずれか一つに記載の半導体製造装置。
  46.  前記バリア膜は、アモルファス状であることを特徴とする請求項27ないし45のいずれか一つに記載の半導体製造装置。
  47.  前記バリア膜は、膜厚が5nm以下であることを特徴とする請求項27ないし46のいずれか一つに記載の半導体製造装置。
  48.  基板に対して処理を行う半導体製造装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
     前記コンピュータプログラムは、請求項1ないし24のいずれか一つに記載の半導体装置の製造方法を実施するようにステップ群が組まれていることを特徴とする記憶媒体。
PCT/JP2009/050753 2008-01-28 2009-01-20 半導体装置の製造方法、半導体装置、電子機器、半導体製造装置及び記憶媒体 WO2009096264A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/864,824 US8247321B2 (en) 2008-01-28 2009-01-20 Method of manufacturing semiconductor device, semiconductor device, electronic instrument, semiconductor manufacturing apparatus, and storage medium
KR1020107016843A KR101178650B1 (ko) 2008-01-28 2009-01-20 반도체 장치의 제조 방법, 반도체 장치, 전자 기기, 반도체 제조 장치 및 기억 매체
CN200980101317.1A CN101897016A (zh) 2008-01-28 2009-01-20 半导体装置的制造方法、半导体装置、电子机器、半导体制造装置及存储介质

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-015803 2008-01-28
JP2008015803 2008-01-28
JP2008217257A JP5366235B2 (ja) 2008-01-28 2008-08-26 半導体装置の製造方法、半導体製造装置及び記憶媒体
JP2008-217257 2008-08-26

Publications (1)

Publication Number Publication Date
WO2009096264A1 true WO2009096264A1 (ja) 2009-08-06

Family

ID=40912617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050753 WO2009096264A1 (ja) 2008-01-28 2009-01-20 半導体装置の製造方法、半導体装置、電子機器、半導体製造装置及び記憶媒体

Country Status (6)

Country Link
US (1) US8247321B2 (ja)
JP (1) JP5366235B2 (ja)
KR (1) KR101178650B1 (ja)
CN (1) CN101897016A (ja)
TW (1) TWI469218B (ja)
WO (1) WO2009096264A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061187A (ja) * 2010-07-15 2011-03-24 Tohoku Univ コンタクトプラグ、配線、半導体装置およびコンタクトプラグ形成方法
US20150371898A1 (en) * 2014-06-23 2015-12-24 Global Foundries, Inc. Integrated circuits including modified liners and methods for fabricating the same
US9564356B2 (en) * 2015-04-16 2017-02-07 International Business Machines Corporation Self-forming metal barriers

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883745B2 (en) 2007-07-30 2011-02-08 Micron Technology, Inc. Chemical vaporizer for material deposition systems and associated methods
JP5133013B2 (ja) * 2007-09-10 2013-01-30 東京エレクトロン株式会社 成膜装置の排気系構造、成膜装置、および排ガスの処理方法
KR20100090974A (ko) * 2009-02-09 2010-08-18 삼성전자주식회사 반도체 소자의 형성 방법
JP5307072B2 (ja) * 2009-06-17 2013-10-02 東京エレクトロン株式会社 金属酸化物膜の形成方法及び成膜装置
US8653664B2 (en) * 2009-07-08 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier layers for copper interconnect
JP5585909B2 (ja) * 2010-02-16 2014-09-10 合同会社先端配線材料研究所 コンタクトプラグ、配線、半導体装置およびコンタクトプラグ形成方法
US8531033B2 (en) * 2009-09-07 2013-09-10 Advanced Interconnect Materials, Llc Contact plug structure, semiconductor device, and method for forming contact plug
JP5653018B2 (ja) * 2009-09-24 2015-01-14 東京エレクトロン株式会社 酸化マンガン膜の成膜方法
US8653663B2 (en) * 2009-10-29 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier layer for copper interconnect
US8361900B2 (en) 2010-04-16 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier layer for copper interconnect
JP5429078B2 (ja) * 2010-06-28 2014-02-26 東京エレクトロン株式会社 成膜方法及び処理システム
JP2012204522A (ja) * 2011-03-24 2012-10-22 Tokyo Electron Ltd 成膜方法およびCu配線の形成方法
US8461683B2 (en) * 2011-04-01 2013-06-11 Intel Corporation Self-forming, self-aligned barriers for back-end interconnects and methods of making same
US9965850B2 (en) * 2012-07-05 2018-05-08 Bernard Fryshman Object image recognition and instant active response with enhanced application and utility
US8691709B2 (en) * 2011-09-24 2014-04-08 Tokyo Electron Limited Method of forming metal carbide barrier layers for fluorocarbon films
KR101348010B1 (ko) * 2012-03-20 2014-01-08 한국산업기술대학교산학협력단 기판 배선전극 형성방법 및 이에 의해 제조된 기판
US9054109B2 (en) * 2012-05-29 2015-06-09 International Business Machines Corporation Corrosion/etching protection in integration circuit fabrications
US10521896B2 (en) * 2012-07-05 2019-12-31 Bernard Fryshman Object image recognition and instant active response with enhanced application and utility
US8871639B2 (en) * 2013-01-04 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US9343400B2 (en) * 2013-03-13 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Dual damascene gap filling process
US9142488B2 (en) 2013-05-30 2015-09-22 International Business Machines Corporation Manganese oxide hard mask for etching dielectric materials
US9064937B2 (en) 2013-05-30 2015-06-23 International Business Machines Corporation Substrate bonding with diffusion barrier structures
JP6318744B2 (ja) * 2014-03-18 2018-05-09 東京エレクトロン株式会社 半導体装置の製造方法
US9418889B2 (en) * 2014-06-30 2016-08-16 Lam Research Corporation Selective formation of dielectric barriers for metal interconnects in semiconductor devices
US9508545B2 (en) * 2015-02-09 2016-11-29 Applied Materials, Inc. Selectively lateral growth of silicon oxide thin film
JP2016167545A (ja) * 2015-03-10 2016-09-15 東京エレクトロン株式会社 ビアホール底のクリーニング方法および半導体装置の製造方法
US9412654B1 (en) * 2015-04-27 2016-08-09 International Business Machines Corporation Graphene sacrificial deposition layer on beol copper liner-seed for mitigating queue-time issues between liner and plating step
CN106328513B (zh) * 2015-07-02 2019-03-12 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
JP6506702B2 (ja) 2016-01-04 2019-04-24 株式会社日立ハイテクノロジーズ 磁気抵抗素子の製造方法および真空処理装置
KR102496037B1 (ko) 2016-01-20 2023-02-06 삼성전자주식회사 플라즈마 식각 방법 및 장치
KR20170110332A (ko) * 2016-03-23 2017-10-11 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR102616489B1 (ko) 2016-10-11 2023-12-20 삼성전자주식회사 반도체 장치 제조 방법
PT3309279T (pt) * 2016-10-14 2020-09-08 Atotech Deutschland Gmbh Método, aparelho de processamento de substrato do tipo bolacha e sua utilização
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US10566428B2 (en) * 2018-01-29 2020-02-18 Raytheon Company Method for forming gate structures for group III-V field effect transistors
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure
US11152294B2 (en) 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US10741442B2 (en) 2018-05-31 2020-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier layer formation for conductive feature
US11398406B2 (en) * 2018-09-28 2022-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Selective deposition of metal barrier in damascene processes
DE102018131694A1 (de) 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Selektives abscheiden einer metallsperrschicht bei damascene-prozessen
WO2020101856A2 (en) * 2018-11-13 2020-05-22 Corning Incorporated 3d interposer with through glass vias - method of increasing adhesion between copper and glass surfaces and articles therefrom
CN113474311B (zh) 2019-02-21 2023-12-29 康宁股份有限公司 具有铜金属化贯穿孔的玻璃或玻璃陶瓷制品及其制造过程
JP2022539871A (ja) * 2019-07-09 2022-09-13 インテグリス・インコーポレーテッド 多孔質炭素質真空チャンバライナ
US20210209352A1 (en) * 2019-12-26 2021-07-08 Bernard Fryshman Insect and other small object image recognition and instant active response with enhanced application and utility
JP7486123B2 (ja) * 2020-07-02 2024-05-17 パナソニックIpマネジメント株式会社 ガスセンサ装置
CN115226325A (zh) * 2021-04-14 2022-10-21 鹏鼎控股(深圳)股份有限公司 电路板的制作方法以及电路板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277390A (ja) * 2004-02-27 2005-10-06 Handotai Rikougaku Kenkyu Center:Kk 半導体装置及びその製造方法
JP2007157959A (ja) * 2005-12-05 2007-06-21 Sony Corp 半導体装置の製造方法および半導体装置
JP2007173511A (ja) * 2005-12-22 2007-07-05 Sony Corp 半導体装置の製造方法
JP2007221103A (ja) * 2006-01-20 2007-08-30 Fujitsu Ltd 半導体装置の製造方法
JP2007287816A (ja) * 2006-04-14 2007-11-01 Sony Corp 半導体装置の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840650B2 (ja) 1998-01-21 2006-11-01 株式会社トリケミカル研究所 配線用銅合金膜形成材料および配線用銅合金膜形成方法
US6271136B1 (en) * 2000-04-04 2001-08-07 Taiwan Semiconductor Manufacturing Company Multi-step plasma process for forming TiSiN barrier
US6797608B1 (en) * 2000-06-05 2004-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming multilayer diffusion barrier for copper interconnections
KR100407678B1 (ko) * 2000-06-15 2003-12-01 주식회사 하이닉스반도체 반도체 소자의 구리 금속배선 형성 방법
JP2002057126A (ja) * 2000-08-10 2002-02-22 Fujitsu Ltd 半導体装置とその製造方法
US20020089063A1 (en) * 2001-01-08 2002-07-11 Ahn Kie Y. Copper dual damascene interconnect technology
JP2003068850A (ja) * 2001-08-29 2003-03-07 Tokyo Electron Ltd 半導体装置およびその製造方法
US6589887B1 (en) * 2001-10-11 2003-07-08 Novellus Systems, Inc. Forming metal-derived layers by simultaneous deposition and evaporation of metal
US6905964B2 (en) * 2003-01-09 2005-06-14 Chartered Semiconductor Manufacturing Ltd. Method of fabricating self-aligned metal barriers by atomic layer deposition on the copper layer
WO2004112114A1 (ja) * 2003-06-16 2004-12-23 Tokyo Electron Limited 成膜方法、半導体装置の製造方法、半導体装置および成膜装置
JP2005050954A (ja) * 2003-07-31 2005-02-24 Toshiba Corp 半導体装置およびその製造方法
US7030023B2 (en) * 2003-09-04 2006-04-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method for simultaneous degas and baking in copper damascene process
KR100588665B1 (ko) * 2003-12-30 2006-06-12 동부일렉트로닉스 주식회사 반도체 소자의 장벽금속층 형성 방법
US7176571B2 (en) * 2004-01-08 2007-02-13 Taiwan Semiconductor Manufacturing Company Nitride barrier layer to prevent metal (Cu) leakage issue in a dual damascene structure
JP2005228818A (ja) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP4236201B2 (ja) * 2005-08-30 2009-03-11 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP4523535B2 (ja) * 2005-08-30 2010-08-11 富士通株式会社 半導体装置の製造方法
JP4816052B2 (ja) * 2005-12-13 2011-11-16 東京エレクトロン株式会社 半導体製造装置及び半導体装置の製造方法
JP2008013848A (ja) * 2006-06-08 2008-01-24 Tokyo Electron Ltd 成膜装置及び成膜方法
JP5275553B2 (ja) * 2006-06-27 2013-08-28 スリーエム イノベイティブ プロパティズ カンパニー 分割チップの製造方法
KR100769144B1 (ko) * 2006-07-24 2007-10-22 동부일렉트로닉스 주식회사 에스아이피 구조의 반도체 장치 및 그 제조방법
JP5343369B2 (ja) * 2008-03-03 2013-11-13 東京エレクトロン株式会社 半導体装置の製造方法、半導体製造装置及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277390A (ja) * 2004-02-27 2005-10-06 Handotai Rikougaku Kenkyu Center:Kk 半導体装置及びその製造方法
JP2007157959A (ja) * 2005-12-05 2007-06-21 Sony Corp 半導体装置の製造方法および半導体装置
JP2007173511A (ja) * 2005-12-22 2007-07-05 Sony Corp 半導体装置の製造方法
JP2007221103A (ja) * 2006-01-20 2007-08-30 Fujitsu Ltd 半導体装置の製造方法
JP2007287816A (ja) * 2006-04-14 2007-11-01 Sony Corp 半導体装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061187A (ja) * 2010-07-15 2011-03-24 Tohoku Univ コンタクトプラグ、配線、半導体装置およびコンタクトプラグ形成方法
US20150371898A1 (en) * 2014-06-23 2015-12-24 Global Foundries, Inc. Integrated circuits including modified liners and methods for fabricating the same
US9613906B2 (en) * 2014-06-23 2017-04-04 GlobalFoundries, Inc. Integrated circuits including modified liners and methods for fabricating the same
US9564356B2 (en) * 2015-04-16 2017-02-07 International Business Machines Corporation Self-forming metal barriers

Also Published As

Publication number Publication date
TWI469218B (zh) 2015-01-11
CN101897016A (zh) 2010-11-24
US20110049718A1 (en) 2011-03-03
JP2009206472A (ja) 2009-09-10
KR101178650B1 (ko) 2012-08-30
US8247321B2 (en) 2012-08-21
KR20100093138A (ko) 2010-08-24
JP5366235B2 (ja) 2013-12-11
TW200949948A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
JP5366235B2 (ja) 半導体装置の製造方法、半導体製造装置及び記憶媒体
TWI627706B (zh) Semiconductor device manufacturing method, semiconductor device, and semiconductor manufacturing device
US8440563B2 (en) Film forming method and processing system
KR101291821B1 (ko) CVD-Ru막의 형성 방법 및 반도체 장치의 제조 방법
JP4503356B2 (ja) 基板処理方法および半導体装置の製造方法
US8017519B2 (en) Semiconductor device and manufacturing method thereof
US20100140802A1 (en) Film forming method and film forming apparatus
JP6117588B2 (ja) Cu配線の形成方法
US20140363971A1 (en) Manganese oxide film forming method
JP5969306B2 (ja) Cu配線の形成方法
US10096548B2 (en) Method of manufacturing Cu wiring
TWI663277B (zh) 釕膜之成膜方法及成膜裝置,以及半導體裝置之製造方法
US8936829B2 (en) Method of aftertreatment of amorphous hydrocarbon film and method for manufacturing electronic device by using the aftertreatment method
TWI434351B (zh) 半導體裝置的製造方法以及半導體裝置
KR20100024416A (ko) 성막 방법 및 처리 시스템
JP2006024668A (ja) 半導体装置の製造方法
TW202333223A (zh) 用於氧化鎢移除之氟化鎢浸泡及處理
JP2006024667A (ja) 半導体装置の製造方法
JP2006024666A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101317.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12864824

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09705110

Country of ref document: EP

Kind code of ref document: A1