JP2005050954A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2005050954A
JP2005050954A JP2003204578A JP2003204578A JP2005050954A JP 2005050954 A JP2005050954 A JP 2005050954A JP 2003204578 A JP2003204578 A JP 2003204578A JP 2003204578 A JP2003204578 A JP 2003204578A JP 2005050954 A JP2005050954 A JP 2005050954A
Authority
JP
Japan
Prior art keywords
methyl group
semiconductor device
silicon
dielectric constant
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003204578A
Other languages
English (en)
Inventor
Katsura Watanabe
桂 渡邉
Takahito Nagamatsu
貴人 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003204578A priority Critical patent/JP2005050954A/ja
Priority to US10/697,438 priority patent/US20050023691A1/en
Priority to TW093119200A priority patent/TWI251896B/zh
Publication of JP2005050954A publication Critical patent/JP2005050954A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • H01L21/3124Layers comprising organo-silicon compounds layers comprising polysiloxane compounds layers comprising hydrogen silsesquioxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3125Layers comprising organo-silicon compounds layers comprising silazane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】本発明は、Cu拡散防止のためのメチル基含有窒化珪素膜上に形成される、メチル基を含む低誘電率層の機械的強度や界面密着性を向上できるようにすることを最も主要な特徴としている。
【解決手段】たとえば、第一のCu配線14aが形成された下層絶縁膜12上には、第一のメチル基含有窒化珪素膜15aが設けられている。このメチル基含有窒化珪素膜15a上には、FT−IR peak height比が22%以下とされた、10nm厚程度のバッファ層16が形成されている。そして、このバッファ層16を介して、FT−IR peak height比が25%以上とされ、比誘電率が3.1以下とされた低誘電率層17が設けられてなる構成となっている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関するもので、特に、プラズマ化学気相成長(plasma CVD(Chemical Vapor Deposition))法による半導体処理基板上への低誘電率酸化珪素膜の形成に関するものである。
【0002】
【従来の技術】
従来、半導体装置においては、素子配線を電気的に隔離するための絶縁膜として、シリコン酸化(SiO)膜が多く用いられている。このSiO膜は、主に、SiHやテトラエトキシシラン(TEOS)などのガスを原料とし、減圧または常圧のCVD法によって形成されている。特に、400℃程度の低温で形成できることから、最近では、TEOSガスとOガスとを用いたプラズマCVD法によるSiO膜が多用されている。通常、CVD法では、反応ソースとして高純度のガスを用いることが多い。そのため、他の薄膜形成法に比べ、高品質膜を得ることができる。
【0003】
近年、この種の半導体装置では、信号伝達の遅延が懸念されるようになってきた。これは、素子の微細化にともなって配線の間隔が狭くなることにより、配線−配線間の容量が増大するためである。この信号伝達の遅延の問題は、半導体装置の性能の向上を妨げる要因の一つになる。この問題を解決するためには、配線間の絶縁膜の誘電率をできるだけ低下させることが必要である。
【0004】
一方、配線材料についても、従来のアルミニウム(Al)の1/2程度の比抵抗を有する銅(Cu)の検討が盛んに行われている。しかしながら、Al配線技術として長年採用されてきた配線のRIE(Reactive Ion Etching)加工プロセスが、Cu配線の形成には適用できない。それは、蒸気圧が十分に高いCu化合物が存在しないためである。そのため、Cu配線の形成には専らダマシン法が用いられている。
【0005】
また、誘電率を低下させるための絶縁膜として、近年では、メチル基含有酸化珪素膜(Metylsilsesquioxane;以降、MSQ膜)の開発が進められている(たとえば、特許文献1参照)。このMSQ膜の形成には、平行平板型プラズマCVD法や塗布(SOD;Spin On Dielectric)法が採用されている。MSQ膜は、膜中にSi−CH結合が多く存在することにより、分子構造内に間隙を生じる。そのために多孔質となり、誘電率が低下する、と説明されている。プラズマCVD法によりMSQ膜を形成するためのSi原料としては、たとえば、SiH(CHやSi(CHが報告されている。
【0006】
【特許文献1】
特開2002−93805
【0007】
【発明が解決しようとする課題】
しかし、MSQ膜には、多孔質構造を起因とした機械的強度の劣化や他種膜との界面密着性の劣化という問題がある。つまり、従来からの報告のように、ウェーハプロセス過程で印加される熱応力や、ボンディング工程・ダイシング工程に代表されるパッケージング過程で受ける機械的応力、もしくは、実使用時に想定される温度範囲における熱サイクル応力を与えた場合に、MSQ膜はクラックや膜剥がれを引き起こしやすい。このように、MSQ膜の採用は、半導体装置の性能を向上し得るものの、信頼性の低下を招く可能性があった。
【0008】
そこで、この発明は、性能を向上し得るとともに、信頼性が低下されるのを改善することが可能な半導体装置およびその製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本願発明の一態様によれば、半導体基板の上方に設けられた金属配線と、前記金属配線上に形成された金属拡散防止膜と、前記金属拡散防止膜上に形成された、少なくとも珪素−メチル基結合および珪素−酸素結合を含むバッファ層と、前記バッファ層上に形成された、少なくとも珪素−メチル基結合および珪素−酸素結合を含む低誘電率層とを具備し、前記バッファ層の珪素−メチル基結合量が、前記低誘電率層の珪素−メチル基結合量よりも少ないことを特徴とする半導体装置が提供される。
【0010】
また、本願発明の一態様によれば、半導体基板の上方に設けられた金属配線上に金属拡散防止膜を形成する工程と、前記金属拡散防止膜上に、少なくとも珪素−メチル基結合および珪素−酸素結合を含むバッファ層、および、前記バッファ層上に、少なくとも珪素−メチル基結合および珪素−酸素結合を含む低誘電率層を形成する工程とを備え、前記バッファ層を、その珪素−メチル基結合量が、前記低誘電率層の珪素−メチル基結合量よりも少なくなるように成膜することを特徴とする半導体装置の製造方法が提供される。
【0011】
上記した構成によれば、低誘電率層の機械的強度や界面密着性が劣化するのを抑制できるようになる。これにより、クラックや膜剥がれを引き起こしたりすることなく、配線−配線間の容量を減少させることが可能となるものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0013】
図1は、本発明の一実施形態にしたがった半導体装置の構成例を示すものである。なお、ここでは二層の多層配線構造を有する半導体装置を例に説明する。すなわち、図1に示すように、素子の形成されたシリコン(以下、Siと略記する)基板11上には、下層絶縁膜12が設けられている。下層絶縁膜12の表面部には、選択的に、第一のバリアメタル膜13aを介して、下層(第一層目)の金属配線としての第一の銅(以下、Cuと略記する)配線14aが埋め込まれている。
【0014】
また、第一のCu配線14aが形成された、上記下層絶縁膜12上には、たとえば、金属拡散防止膜としての第一のメチル基含有窒化珪素膜(SiCN膜)15aが設けられている。この第一のメチル基含有窒化珪素膜15a上には、少なくとも珪素−メチル基結合および珪素−酸素結合を含むバッファ層(第一のメチル基含有酸化珪素膜:MSQ膜)16が形成されている。このバッファ層16は、その膜厚が10nm程度(望ましくは、30nm以下)とされている。
【0015】
さらに、上記バッファ層16上には、少なくとも珪素−メチル基結合および珪素−酸素結合を含む低誘電率層(第二のメチル基含有酸化珪素膜)17が設けられている。この低誘電率層17は、その比誘電率εが3.1以下とされている(好ましくは、ε≦3)。
【0016】
ここで、上記バッファ層16は、その珪素−メチル基(Si−CH)結合量が、上記低誘電率層17の珪素−メチル基結合量よりも少なくされている。たとえば、上記バッファ層16の珪素−酸素結合に対する珪素−メチル基結合量(以下、FT−IR peak height比)は22%以下とされ、上記低誘電率層17のFT−IR peak height比は25%以上とされている。
【0017】
本実施形態の場合、上記低誘電率層17の表面部には、第二のバリアメタル膜13bを介して、上層(第二層目)の金属配線としての第二のCu配線14b−1,14b−2が埋め込まれている。上記第二のCu配線14b−1,14b−2のうち、たとえば、一方の第二のCu配線14b−1は、上記低誘電率層17、上記バッファ層16および上記第一のメチル基含有窒化珪素膜15aを貫通し、上記第一のCu配線14aと電気的に接続されている。また、上記第二のCu配線14b−1,14b−2が形成された、上記低誘電率層17上には、金属拡散防止膜としての第二のメチル基含有窒化珪素膜(SiCN膜)15bが設けられている。
【0018】
こうして、少なくとも二層の多層配線構造を有する半導体装置が構成されている。
【0019】
上記したように、バッファ層16の珪素−メチル基結合量を、低誘電率層17の珪素−メチル基結合量よりも少なくすることにより、第一のメチル基含有窒化珪素膜15aとバッファ層16との界面、かつ、バッファ層16と低誘電率層17との界面の機械的強度や界面密着性が劣化するのを抑制できるようになる。すなわち、低誘電率層17の密着性改善のために、第一のメチル基含有窒化珪素膜15aと低誘電率層17との間に、珪素−メチル基結合密度が低誘電率層17よりも少ないバッファ層16を設けるようにしている。これにより、第一のメチル基含有窒化珪素膜15a上に、メチル基を含む有機珪素化合物を原料に用いた低誘電率層17を設けてなる半導体装置においては、クラックや膜剥がれを引き起こしたりすることなく、配線−配線間の容量を減少させることが可能となる。したがって、半導体装置の性能を向上し得るとともに、信頼性が低下するのを改善できるものである。
【0020】
図2は、上記した半導体装置の製造に用いられるプラズマCVD装置の構成例を示すものである。ここでは、13.56MHzの高周波電源を用いる、平行平板型プラズマCVD装置を例に説明する。この平行平板型プラズマCVD装置は、反応容器101を備えている。反応容器101は、メタルチャンバー部101aおよび原料ガス導入部101bを有して構成されている。上記メタルチャンバー部101a内には、図示していないマスフローコントローラ(MFC)によって流量の制御された原料ガス(たとえば、SiH(CH,O,He)が供給される。原料ガスは、上記原料ガス導入部101bより上記メタルチャンバー部101a内に導入され、その際に、ガス分散板103によって均一に分散される。
【0021】
上記ガス分散板103は、上部電極であるRF(Radio Frequency)電極を兼ねており、RF電源105を介して接地されている。容量結合モードにおいて、上記RF電源105からの電力を上記RF電極に印加することにより、上記メタルチャンバー部101a内の空間に容量結合型プラズマが発生する。
【0022】
サセプタである基板接地電極107は、上記Si基板をSiウェーハ(半導体処理基板)1の状態で保持することが可能となっている。また、この基板接地電極107は、リフト機構107aにより上下動自在に支持されており、上記ガス分散板103と上記Siウェーハ1との間の距離を制御できるように構成されている。さらに、上記基板接地電極107はヒータ109を備え、上記Siウェーハ1の温度を制御(たとえば、450℃程度まで加熱)することが可能となっている。
【0023】
上記メタルチャンバー部101aには、ドライポンプ111が接続されている。このドライポンプ111は、上記メタルチャンバー部101a内を真空にする。また、メタルチャンバー部101a内の圧力は、スロットルバルブ113により制御することが可能となっている。
【0024】
次に、このような平行平板型プラズマCVD装置を用いて、図1に示した構成の半導体装置を製造する場合の方法について説明する。まず、素子が形成されたSi基板(図示していない)上の下層絶縁膜12の表面部に、第一のバリアメタル膜13aを介して、第一のCu配線14aが形成され、さらに、全面に第一のメチル基含有窒化珪素膜15aが形成されたSiウェーハ1が用意される。
【0025】
上記Siウェーハ1は、図2に示した平行平板型プラズマCVD装置のメタルチャンバー部101a内に挿入され、基板接地電極107上に保持される。その際、リフト機構107aによって、上記Siウェーハ1とガス分散板103との間の距離が制御される。また、ヒータ109によって、上記Siウェーハ1の温度が制御される。この後、原料ガス導入部101bより原料ガスが導入される。この原料ガスは、ガス分散板103を介して、メタルチャンバー部101a内に供給される。この例の場合、上記原料ガスとしては、たとえば、SiH(CHが500sccm、Oが250sccm、Heが100sccmの条件で導入される。
【0026】
一方、ドライポンプ111によって上記メタルチャンバー部101a内が真空状態にされるとともに、上記メタルチャンバー部101a内の圧力がスロットルバルブ113によって2torr程度(好ましくは、3torr以下)に制御される。そして、圧力とガス流量とが安定したところで、RF電源105より1000W程度の電力がガス分散板103に印加される。これにより、成膜時のRF電力密度が2W/cm以上に制御されて、所定の期間、成膜が行われる。その結果、たとえば図3に示すように、上記第一のメチル基含有窒化珪素膜15a上に、FT−IR peak height比が22%以下となる、10nm程度の膜厚のバッファ層16が形成される。
【0027】
上記バッファ層16を形成した後、今度は、上記メタルチャンバー部101a内に、たとえば、SiH(CHが500sccm、Oが250sccm、Heが100sccmの条件で原料ガスが導入される。また、上記メタルチャンバー部101a内の圧力がスロットルバルブ113によって5torr程度に制御される。そして、圧力とガス流量とが安定したところで、RF電源105より750W程度の電力がガス分散板103に印加される。これにより、成膜時のRF電力密度が1.5W/cm以上に制御されて、所定の期間、成膜が行われる。その結果、たとえば図4に示すように、上記バッファ層16上に、上記FT−IR peak height比が25%以上となる、400nm〜600nm程度の膜厚の低誘電率層17が形成される。
【0028】
なお、上記バッファ層16および上記低誘電率層17の形成は、RF電源105をオフすることなく、同一工程により連続させて成膜させる場合の他、たとえば上記バッファ層16を形成する第一の工程と、上記低誘電率層17を形成する第二の工程とに分けて成膜することも可能である。また、上記低誘電率層17上に、プラズマCVD法によって保護膜としての酸化珪素膜を200nm程度の膜厚により堆積するようにしても良い。
【0029】
上記低誘電率層17を形成した後には、第二のCu配線14b−1,14b−2の形成が行われる。本実施形態の場合、まず、第一のCu配線14aとの電気的コンタクトを得るための接続プラグを形成する。すなわち、上記低誘電率層17上に、リソグラフィー工程により所望のパターンを転写したレジストを形成する。そのレジストをマスクに、反応性イオンエッチングなどにより上記低誘電率層17、上記バッファ層16を選択的に除去し、上記第一のCu配線14aにつながる接続プラグ埋め込み用の貫通孔21の一部を形成する。続いて、上記低誘電率層17上に、同様にして、リソグラフィー工程により所望のパターンを転写したレジストを形成し直す。そして、そのレジストをマスクに、反応性イオンエッチングなどにより上記低誘電率層17をエッチングして、上記第二のCu配線14b−1,14b−2のための配線溝23をそれぞれ形成する。続いて、反応性イオンエッチングなどにより、上記第一のメチル基含有窒化珪素膜15aを選択的に除去し、上記第一のCu配線14aにつながる接続プラグ埋め込み用の貫通孔21を形成する。その際、少なくとも1つの配線溝23は、上記貫通孔21に接続される。この後、上記貫通孔21内および上記配線溝23内に、第二のバリアメタル膜13bを、スパッタリング法またはMOCVD(Metal Organic CVD)法により堆積させる(以上、図5参照)。
【0030】
続いて、たとえば図6に示すように、第二のバリアメタル膜13bが形成された上記貫通孔21内および上記配線溝23内に、Cu膜14を、スパッタリング法およびメッキ法により埋め込む。そして、CMP(Chemical Mechanical Polishing)法により、余分なCu膜14を除去すると同時に、上記低誘電率層17上の上記第二のバリアメタル膜13bを除去して、表面の平坦化を行う。これにより、たとえば図7に示すように、第二のCu配線14b−1,14b−2が形成される。第二のCu配線14b−1,14b−2のうち、一方の第二のCu配線14b−1は、上記第一のCu配線14aにつながる接続プラグを有して形成されている。
【0031】
最後に、上記第二のバリアメタル膜13bおよび上記第二のCu配線14b−1,14b−2を含む、上記低誘電率層17上に、同様にして、第二のメチル基含有窒化珪素膜15bを堆積させる。これにより、図1に示した、二層の多層配線構造を有する半導体装置が完成する。
【0032】
図8は、上述したバッファ層16および低誘電率層17の、FT−IR peak height比と界面密着強度との関係について示すものである。この図からも明らかなように、界面密着強度KIC(MPa・√m)は、FT−IR peak height比(%)に依存する。つまり、FT−IR peak height比が少ないほど、バッファ層16の界面密着強度KIC(MPa・√m)は向上する。したがって、本実施形態のように、たとえばFT−IR peak height比が22%以下とされたバッファ層16を用いることにより、第一のメチル基含有窒化珪素膜15aに対する界面密着強度KIC(MPa・√m)を0.37以上にまで向上させることできる(バッファ層16を用いない場合の、FT−IR peak height比が25%以上とされる低誘電率層17の界面密着強度KICは0.33MPa・√m程度である)。
【0033】
ここで、上記したバッファ層16および低誘電率層17のFT−IR peak height比の求め方について説明する。まず、Siウェーハ1上に堆積した各々の膜(層)の赤外吸収スペクトルを、フーリエ変換赤外分光光度計(Fourier Transform Infrared Spectrometer(FT−IR分析器))を用いて取得する。次いで、1245cm−1〜950cm−1付近の範囲に現れる珪素−炭素/珪素−酸素結合を含んだpeak height(a値)と、1330cm−1〜1245cm−1付近の範囲に現れる珪素−メチル基結合からなるpeak height(b値)とを求める。そして、(b値/a値)×100で得られる値(%)を、FT−IR peak height比とする。
【0034】
次に、第一のメチル基含有窒化珪素膜15aとバッファ層16および低誘電率層17の界面密着性(界面密着強度)の求め方について説明する。まず、Siウェーハ上にメチル基含有窒化珪素膜を堆積させ、その上にバッファ層を堆積させた後、さらに低誘電率層を堆積させたサンプルを得る。そして、このサンプルの界面密着強度KIC(MPa・√m)を、m−ELT(modified−Edge Lift off Test)法によりを求める。
【0035】
なお、上述の実施形態においては、第一のメチル基含有窒化珪素膜15aと低誘電率層17との間にのみ、バッファ層16を設けるようにした場合について説明した。これに限らず、バッファ層16は、たとえば低誘電率層17と第二のメチル基含有窒化珪素膜15bとの間にも設けることが可能である。その場合、さらに低誘電率をもつ層間絶縁膜の機械的強度や界面密着性を向上でき、半導体装置の熱的安定性および機械的応力に対する耐性の確保が容易に可能となる。
【0036】
また、本実施形態においては、金属拡散防止膜として、第一,第二のメチル基含有窒化珪素膜15a,15bを用いた場合について説明したが、これに限らず、メチル基含有窒化珪素膜の代わりに、より低誘電率なメチル基含有炭化珪素膜、あるいは、メチル基含有窒化珪素膜とメチル基含有炭化珪素膜との積層膜を用いてもよい。
【0037】
また、本実施形態においては、Cu配線を二層とした場合を例に説明した。これに限らず、二層以上の多層配線構造を有する半導体装置にも同様に適用することが可能である。
【0038】
その他、本願発明は、上記(各)実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、上記(各)実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。たとえば、(各)実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題(の少なくとも1つ)が解決でき、発明の効果の欄で述べられている効果(の少なくとも1つ)が得られる場合には、その構成要件が削除された構成が発明として抽出され得る。
【0039】
【発明の効果】
以上、詳述したようにこの発明によれば、性能を向上し得るとともに、信頼性が低下されるのを改善することが可能な半導体装置およびその製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態にしたがった、半導体装置の基本構成を示す断面図。
【図2】半導体装置の製造に用いられるプラズマCVD装置の一例を示す構成図。
【図3】半導体装置の製造方法を説明するために示す断面図。
【図4】半導体装置の製造方法を説明するために示す断面図。
【図5】半導体装置の製造方法を説明するために示す断面図。
【図6】半導体装置の製造方法を説明するために示す断面図。
【図7】半導体装置の製造方法を説明するために示す断面図。
【図8】バッファ層および低誘電率層の、FT−IR peak height比と界面密着強度との関係について示す図。
【符号の説明】
1…Siウェーハ、11…Si基板、12…下層絶縁膜、13a…第一のバリアメタル膜、13b…第二のバリアメタル膜、14…Cu膜、14a…第一のCu配線、14b−1,14b−2…第二のCu配線、15a…第一のメチル基含有窒化珪素膜、15b…第二のメチル基含有窒化珪素膜、16…バッファ層、17…低誘電率層、21…接続プラグ埋め込み用の貫通孔、23…配線溝、101…反応容器、101a…メタルチャンバー部、101b…原料ガス導入部、103…ガス分散板(RF電極)、105…RF電源、107…基板接地電極、107a…リフト機構、109…ヒータ、111…ドライポンプ、113…スロットルバルブ。

Claims (23)

  1. 半導体基板の上方に設けられた金属配線と、
    前記金属配線上に形成された金属拡散防止膜と、
    前記金属拡散防止膜上に形成された、少なくとも珪素−メチル基結合および珪素−酸素結合を含むバッファ層と、
    前記バッファ層上に形成された、少なくとも珪素−メチル基結合および珪素−酸素結合を含む低誘電率層と
    を具備し、
    前記バッファ層の珪素−メチル基結合量が、前記低誘電率層の珪素−メチル基結合量よりも少ないことを特徴とする半導体装置。
  2. 前記バッファ層は、その膜厚が30nm以下であることを特徴とする請求項1に記載の半導体装置。
  3. 前記低誘電率層は、その比誘電率が3.1以下であることを特徴とする請求項1に記載の半導体装置。
  4. 前記バッファ層の、珪素−酸素結合に対する珪素−メチル基結合量が22%以下であることを特徴とする請求項1に記載の半導体装置。
  5. 前記低誘電率層の、珪素−酸素結合に対する珪素−メチル基結合量が25%以上であることを特徴とする請求項1に記載の半導体装置。
  6. 前記金属配線は銅配線であり、前記銅配線は素子が形成された前記半導体基板上に設けられた絶縁膜層の表面部に埋め込まれていることを特徴とする請求項1に記載の半導体装置。
  7. 前記金属拡散防止膜は、メチル基含有窒化珪素膜、メチル基含有炭化珪素膜のいずれか、あるいは、その積層膜であることを特徴とする請求項1に記載の半導体装置。
  8. 前記バッファ層は、メチル基を含む有機珪素化合物を原料に用いて形成される第一のメチル基含有酸化珪素膜であることを特徴とする請求項1に記載の半導体装置。
  9. 前記低誘電率層は、メチル基を含む有機珪素化合物を原料に用いて形成される第二のメチル基含有酸化珪素膜であることを特徴とする請求項1に記載の半導体装置。
  10. さらに、前記低誘電率層、前記バッファ層および前記金属拡散防止膜をそれぞれ貫通し、前記金属配線につながる上層の金属配線を備えることを特徴とする請求項1に記載の半導体装置。
  11. 半導体基板の上方に設けられた金属配線上に金属拡散防止膜を形成する工程と、
    前記金属拡散防止膜上に、少なくとも珪素−メチル基結合および珪素−酸素結合を含むバッファ層、および、前記バッファ層上に、少なくとも珪素−メチル基結合および珪素−酸素結合を含む低誘電率層を形成する工程と
    を備え、
    前記バッファ層を、その珪素−メチル基結合量が、前記低誘電率層の珪素−メチル基結合量よりも少なくなるように成膜することを特徴とする半導体装置の製造方法。
  12. 前記バッファ層は、その膜厚が30nm以下に制御されることを特徴とする請求項11に記載の半導体装置の製造方法。
  13. 前記低誘電率層は、その比誘電率が3.1以下に制御されることを特徴とする請求項11に記載の半導体装置の製造方法。
  14. 前記バッファ層は、珪素−酸素結合に対する珪素−メチル基結合量が22%以下となるように成膜されることを特徴とする請求項11に記載の半導体装置の製造方法。
  15. 前記バッファ層は、成膜時の圧力が3torr以下に制御されることを特徴とする請求項11に記載の半導体装置の製造方法。
  16. 前記バッファ層は、成膜時のRF(Radio Frequency)電力密度が2W/cm以上に制御されることを特徴とする請求項11に記載の半導体装置の製造方法。
  17. 前記バッファ層は、成膜時のメチル基含有有機珪素化合物および酸素の流量比が1:5に制御されることを特徴とする請求項11に記載の半導体装置の製造方法。
  18. 前記低誘電率層は、珪素−酸素結合に対する珪素−メチル基結合量が25%以上となるように成膜されることを特徴とする請求項11に記載の半導体装置の製造方法。
  19. 前記金属配線は銅配線であり、前記銅配線は素子が形成された前記半導体基板上に設けられた絶縁膜層の表面部に埋め込み形成されることを特徴とする請求項11に記載の半導体装置の製造方法。
  20. 前記金属拡散防止膜には、メチル基含有窒化珪素膜、メチル基含有炭化珪素膜のいずれか、あるいは、その積層膜が用いられることを特徴とする請求項11に記載の半導体装置の製造方法。
  21. 前記バッファ層および前記低誘電率層は、メチル基を含む有機珪素化合物を原料に用いて形成されることを特徴とする請求項11に記載の半導体装置の製造方法。
  22. 前記バッファ層および前記低誘電率層は、同一工程にて、連続して形成されることを特徴とする請求項21に記載の半導体装置の製造方法。
  23. 前記バッファ層および前記低誘電率層を形成する工程は、前記バッファ層を形成する第一の工程と、前記低誘電率層を形成する第二の工程とを含むことを特徴とする請求項11に記載の半導体装置の製造方法。
JP2003204578A 2003-07-31 2003-07-31 半導体装置およびその製造方法 Pending JP2005050954A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003204578A JP2005050954A (ja) 2003-07-31 2003-07-31 半導体装置およびその製造方法
US10/697,438 US20050023691A1 (en) 2003-07-31 2003-10-31 Semiconductor device and manufacturing method thereof
TW093119200A TWI251896B (en) 2003-07-31 2004-06-29 Semiconductor device and the manufacturing device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204578A JP2005050954A (ja) 2003-07-31 2003-07-31 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2005050954A true JP2005050954A (ja) 2005-02-24

Family

ID=34100669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204578A Pending JP2005050954A (ja) 2003-07-31 2003-07-31 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US20050023691A1 (ja)
JP (1) JP2005050954A (ja)
TW (1) TWI251896B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147644A (ja) * 2006-11-21 2008-06-26 Applied Materials Inc ウェットエッチングアンダカットを最小にし且つ超低k(k<2.5)誘電体をポアシーリングする方法
KR20160060561A (ko) * 2014-11-20 2016-05-30 삼성전자주식회사 도핑을 이용하여 형성된 저유전 다공성 실란트 및 금속-확산 방지막, 그리고 그 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804115B2 (en) * 1998-02-25 2010-09-28 Micron Technology, Inc. Semiconductor constructions having antireflective portions
US6274292B1 (en) * 1998-02-25 2001-08-14 Micron Technology, Inc. Semiconductor processing methods
US6268282B1 (en) * 1998-09-03 2001-07-31 Micron Technology, Inc. Semiconductor processing methods of forming and utilizing antireflective material layers, and methods of forming transistor gate stacks
US6828683B2 (en) * 1998-12-23 2004-12-07 Micron Technology, Inc. Semiconductor devices, and semiconductor processing methods
US7067414B1 (en) * 1999-09-01 2006-06-27 Micron Technology, Inc. Low k interlevel dielectric layer fabrication methods
US6440860B1 (en) * 2000-01-18 2002-08-27 Micron Technology, Inc. Semiconductor processing methods of transferring patterns from patterned photoresists to materials, and structures comprising silicon nitride
JP5366235B2 (ja) * 2008-01-28 2013-12-11 東京エレクトロン株式会社 半導体装置の製造方法、半導体製造装置及び記憶媒体
US9293392B2 (en) 2013-09-06 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC interconnect apparatus and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338978A (ja) * 2000-05-25 2001-12-07 Hitachi Ltd 半導体装置及びその製造方法
US6358839B1 (en) * 2000-05-26 2002-03-19 Taiwan Semiconductor Manufacturing Company Solution to black diamond film delamination problem
JP3934343B2 (ja) * 2000-07-12 2007-06-20 キヤノンマーケティングジャパン株式会社 半導体装置及びその製造方法
US6455417B1 (en) * 2001-07-05 2002-09-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming damascene structure employing bi-layer carbon doped silicon nitride/carbon doped silicon oxide etch stop layer
US6620727B2 (en) * 2001-08-23 2003-09-16 Texas Instruments Incorporated Aluminum hardmask for dielectric etch
US6800548B2 (en) * 2002-01-02 2004-10-05 Intel Corporation Method to avoid via poisoning in dual damascene process
US20030153176A1 (en) * 2002-02-14 2003-08-14 Fujitsu Limited Interconnection structure and interconnection structure formation method
US20030183905A1 (en) * 2002-02-14 2003-10-02 Fujitsu Limited Interconnection structure and interconnection structure formation method
JP4109531B2 (ja) * 2002-10-25 2008-07-02 松下電器産業株式会社 半導体装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147644A (ja) * 2006-11-21 2008-06-26 Applied Materials Inc ウェットエッチングアンダカットを最小にし且つ超低k(k<2.5)誘電体をポアシーリングする方法
KR20160060561A (ko) * 2014-11-20 2016-05-30 삼성전자주식회사 도핑을 이용하여 형성된 저유전 다공성 실란트 및 금속-확산 방지막, 그리고 그 제조 방법
KR102546660B1 (ko) 2014-11-20 2023-06-22 삼성전자주식회사 도핑을 이용하여 형성된 저유전 다공성 실란트 및 금속-확산 방지막, 그리고 그 제조 방법

Also Published As

Publication number Publication date
US20050023691A1 (en) 2005-02-03
TW200507160A (en) 2005-02-16
TWI251896B (en) 2006-03-21

Similar Documents

Publication Publication Date Title
KR100495896B1 (ko) 실리콘 카바이드 접착 프로모터 층을 이용하여 저유전상수플루오르화 비결정 탄소에 대한 실리콘 질화물의 접착을강화하는 방법
KR100649917B1 (ko) 유기 절연막 및 그 제조 방법과, 유기 절연막을 이용한반도체 장치 및 그 제조 방법
US6342448B1 (en) Method of fabricating barrier adhesion to low-k dielectric layers in a copper damascene process
US7867922B2 (en) Film forming method for dielectric film
JP4338495B2 (ja) シリコンオキシカーバイド、半導体装置、および半導体装置の製造方法
US7888741B2 (en) Structures with improved interfacial strength of SiCOH dielectrics and method for preparing the same
US6239016B1 (en) Multilevel interconnection in a semiconductor device and method for forming the same
US20080166870A1 (en) Fabrication of Interconnect Structures
US7465676B2 (en) Method for forming dielectric film to improve adhesion of low-k film
US20090104774A1 (en) Method of manufacturing a semiconductor device
JP3967567B2 (ja) 半導体装置およびその製造方法
KR20000017275A (ko) 반도체 장치 및 그 제조 공정
JP3173426B2 (ja) シリカ絶縁膜の製造方法及び半導体装置の製造方法
US7202160B2 (en) Method of forming an insulating structure having an insulating interlayer and a capping layer and method of forming a metal wiring structure using the same
US20080188074A1 (en) Peeling-free porous capping material
KR19990077752A (ko) 반도체 장치의 제조 방법
JP2004253791A (ja) 絶縁膜およびそれを用いた半導体装置
JP2005050954A (ja) 半導体装置およびその製造方法
US7351653B2 (en) Method for damascene process
US20050095828A1 (en) Process for sealing plasma-damaged, porous low-k materials
JP2003303880A (ja) 積層層間絶縁膜構造を利用した配線構造およびその製造方法
JP2001118928A (ja) 集積回路の製造方法
JP2000200786A (ja) 絶縁膜の形成方法
JP4747755B2 (ja) 有機絶縁膜とその作製方法,及び有機絶縁膜を用いた半導体装置
US8092861B2 (en) Method of fabricating an ultra dielectric constant (K) dielectric layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311