WO2009088008A1 - 常圧カチオン可染性ポリエステル及び繊維 - Google Patents

常圧カチオン可染性ポリエステル及び繊維 Download PDF

Info

Publication number
WO2009088008A1
WO2009088008A1 PCT/JP2009/050067 JP2009050067W WO2009088008A1 WO 2009088008 A1 WO2009088008 A1 WO 2009088008A1 JP 2009050067 W JP2009050067 W JP 2009050067W WO 2009088008 A1 WO2009088008 A1 WO 2009088008A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
fiber
yarn
polyester fiber
normal pressure
Prior art date
Application number
PCT/JP2009/050067
Other languages
English (en)
French (fr)
Inventor
Tetsuya Chikatsune
Kenji Kawamura
Kei Tachibana
Original Assignee
Teijin Fibers Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Limited filed Critical Teijin Fibers Limited
Priority to US12/811,961 priority Critical patent/US8297035B2/en
Priority to CN2009801017312A priority patent/CN101910244B/zh
Priority to AU2009203402A priority patent/AU2009203402A1/en
Priority to EP09701180.3A priority patent/EP2233510A4/en
Priority to CA 2711510 priority patent/CA2711510A1/en
Priority to MX2010007284A priority patent/MX2010007284A/es
Priority to JP2009548935A priority patent/JPWO2009088008A1/ja
Publication of WO2009088008A1 publication Critical patent/WO2009088008A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/692Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
    • C08G63/6924Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6926Dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/522Polyesters using basic dyes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a normal pressure cationic dyeable polyester which is dyeable to a cationic dye under normal pressure, and a fiber comprising the same.
  • Polyester fibers typified by polyethylene terephthalate have the disadvantage that a clear and deep hue is difficult to obtain because they can be dyed only with disperse dyes and azoic dyes because of their chemical properties.
  • a method for eliminating such drawbacks there has been proposed a method in which a metal salt of sulfoisophthalic acid is copolymerized with 2 to 3 mol% of polyester (see, for example, Patent Documents 1 and 2).
  • the polyester fiber obtained by such a method can be dyed only under high temperature and high pressure, and if it is dyed after knitting or weaving with natural fiber or urethane fiber, natural fiber and urethane fiber are embrittled. There was a problem. If it is intended to be sufficiently dyed at a temperature around 100 ° C. under normal pressure, it is necessary to copolymerize a large amount of the metal salt of sulfoisophthalic acid with the polyester. However, in this case, it was difficult to increase the degree of polymerization of the polyester due to the effect of increasing the melt viscosity by the action of the sulfonate group.
  • linear hydrocarbon dicarboxylic acid such as adipic acid and sebacic acid, or diethylene glycol, neopentyl glycol
  • a method for producing atmospheric pressure dyeability linear hydrocarbon dicarboxylic acid such as adipic acid and sebacic acid, or diethylene glycol, neopentyl glycol
  • a glycol component such as cyclohexanedimethanol or a polyalkylene glycol having a number average molecular weight of 400 to 1000 is copolymerized with polyester together with a metal salt of sulfoisophthalic acid (for example, Patent Documents 5 to 7). reference.).
  • the polyester fiber obtained has a high melt viscosity within the condition range disclosed in the document, and the resulting polyester fiber The strength of was not sufficient.
  • the conventional atmospheric pressure cationic dyeable polyester has a high hot water shrinkage ratio
  • the normal pressure cationic dyeable polyester yarn is difficult to become a core-sheath structure yarn that uniformly forms a sheath, and the fiber strength is low, so
  • a normal pressure cationic dyeable polyester fiber capable of solving the above-described problems has been demanded.
  • the present invention solves the above-described problems, and provides a normal pressure cationic dyeable polyester fiber that is capable of cationic dyeing under normal pressure, has high strength, has good heat setting properties, and is easy to fix crimps and the like. It is to provide an atmospheric pressure cationic dyeable polyester that can be obtained. Furthermore, it is providing the normal pressure cationic dyeable polyester fiber which consists of the polyester and can solve said subject, and the mixed yarn and composite yarn using the fiber.
  • the present invention is a copolyester in which the main repeating unit is composed of ethylene terephthalate, and is represented by the metal salt of sulfoisophthalic acid (A) and the following formula (I) in the acid component constituting the copolyester.
  • A sulfoisophthalic acid
  • I a copolyester containing a compound (B) satisfying the following mathematical formulas (1) and (2) at the same time, thereby providing an atmospheric pressure cationic dyeable polyester that satisfies the above-mentioned requirements can do.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • X represents a quaternary phosphonium ion or a quaternary ammonium ion.
  • a + B 5.0 (1) 0.3 ⁇ B / (A + B) ⁇ 0.7
  • A is the copolymerization amount (mol%) of the metal salt (A) of sulfoisophthalic acid based on the total acid component constituting the copolymer polyester
  • B is the total acid component constituting the copolymer polyester.
  • the copolymer polyester may have a glass transition temperature in the range of 70 to 85 ° C., and the intrinsic viscosity of the copolymer polyester obtained may be in the range of 0.55 to 1.00 dL / g. This is a preferred embodiment.
  • polyester fiber obtained by melt spinning and stretching the copolyester and a polyester fiber obtained by melt spinning with a fiber cross-sectional shape perpendicular to the fiber axis of the polyester fiber being 1.2 to 7.0.
  • Polyester fibers obtained by melt spinning having a hollow ratio of 2 to 70% are also within the scope of the present invention.
  • false twisted yarns, composite yarns, mixed yarns and covering yarns using these polyester fibers are also within the scope of the present invention.
  • the main repeating unit is a polyester fiber composed of ethylene terephthalate, the breaking strength is 3.0 cN / dtex or more, and a plain fabric is produced from the polyester fiber, and the plain fabric is dyed under the following atmospheric pressure cationic dyeing conditions.
  • the above problem can also be solved by a polyester fiber having a L * value of 24 or less when the dyed plain fabric is measured with a color difference meter.
  • false twisted yarn, composite yarn, mixed yarn and covering yarn using the polyester fiber are also within the scope of the present invention.
  • Black cationic dye Aizen CATHILON Black BL-DP (manufactured by Hodogaya Chemical Co., Ltd.) is used at 15% owf with respect to the polyester plain fabric, and 3 g / L of sodium sulfate as a dyeing assistant, acetic acid 0.3 g / L was added, and the plain fabric obtained under the conditions of 98 ° C. and 1 hour at a bath ratio of 1:50 was dyed.
  • the dyeing property by the dyeing operation using the cationic dye under normal pressure is good, the strength is higher than the conventional normal pressure cationic dyeable polyester, the heat setting property is good, and the crimping and the like.
  • Normal pressure cationic dyeable polyester and normal pressure cationic dyeable polyester fiber can be provided.
  • the mixed fiber yarn and covering yarn using the polyester fiber can be provided.
  • the mixed yarn and covering yarn can be mixed with other fibers that are difficult to dye at high temperature, and because of high strength and low hot water shrinkage, gentlemen and women who have a clear balance of color, texture, fiber strength and elongation. Suitable as clothing.
  • the normal pressure cationic dyeable polyester multifilament of the present invention or false twisted yarn and covering yarn using the same are high in strength and good in normal pressure cationic dyeability and dyeing fastness and can be used as fine yarns.
  • a fabric having a texture, softness and denseness can be obtained.
  • hollow fibers are produced as polyester fibers, they have high strength, good atmospheric pressure cationic dyeing properties and fastness to dyeing, and have excellent performance in heat retention, bulkiness, lightness, etc. Useful.
  • the spun-like composite false twisted yarn using the normal pressure cationic dyeable polyester fiber of the present invention has good bulkiness, and can be dyed by knitting and weaving with natural fiber or urethane fiber.
  • a soft and clear polyester fabric for men's clothing or polyester fabric for women's clothing can be provided.
  • the copolymerized polyester used in the present invention is a copolymerized polyester mainly composed of ethylene terephthalate obtained by polycondensation reaction of terephthalic acid or its ester-forming derivative and an ethylene glycol component.
  • a copolymer polyester containing a metal salt of sulfoisophthalic acid (A) and a compound (B) represented by the following formula (I) as the copolymerization component in a state satisfying the following mathematical expressions (1) and (2) at the same time. is there. More preferably, the glass transition temperature of the copolyester is in the range of 70 to 85 ° C., and the intrinsic viscosity of the copolyester obtained is in the range of 0.55 to 1.00 dL / g. .
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • X represents a quaternary phosphonium ion or a quaternary ammonium ion.
  • a + B 5.0 (1) 0.3 ⁇ B / (A + B) ⁇ 0.7
  • A is the copolymerization amount (mol%) of the metal salt (A) of sulfoisophthalic acid based on the total acid component constituting the copolymer polyester
  • B is the total acid component constituting the copolymer polyester.
  • the ester-forming derivative of terephthalic acid is dimethyl ester, diethyl ester, dipropyl ester, dibutyl ester, dihexyl ester, dioctyl ester, didecyl ester, diphenyl ester, terephthalic acid dichloride, or terephthalic acid. Dibromide can be mentioned, and among these, dimethyl terephthalate is preferred.
  • the copolyester in the present invention is a polyester having ethylene terephthalate as a main repeating unit.
  • the main repeating unit represents that 80 mol% or more of all repeating units constituting the copolymer polyester is an ethylene terephthalate unit. Preferably 90 mol% or more is an ethylene terephthalate unit. Other components may be copolymerized within a range of 20 mol% or less per all repeating units constituting the copolymer polyester.
  • copolymer components include dicarboxylic acid components such as isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, Examples thereof include diphenyl ketone dicarboxylic acid, 4,4′-diphenyl sulfone dicarboxylic acid, succinic acid, adipic acid, and azelaic acid.
  • dicarboxylic acid components such as isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, Examples thereof include diphenyl ketone dicarboxylic acid, 4,4′-diphenyl sulfone dicarboxylic acid, succ
  • copolymer components include glycol components such as 1,2-propylene glycol, trimethylene glycol, tetramethylene glycol, heptamethylene glycol, hexamethylene glycol, diethylene glycol, dipropylene glycol, bis (trimethylene glycol), bis (tetramethylene glycol). Methylene glycol), triethylene glycol, 1,4-dihydroxycyclohexane, 1,4-cyclohexanedimethanol.
  • a component obtained by reacting one or more dicarboxylic acid components with one or more glycol components may be copolymerized at a ratio of 20 mol% or less per all repeating units.
  • sulfoisophthalic acid metal salt (A) examples include 5-sulfoisophthalic acid alkali metal salts (lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt). If necessary, an alkaline earth metal salt such as magnesium salt or calcium salt of 5-sulfoisophthalic acid may be used in combination. These ester-forming derivatives are also preferably exemplified.
  • Ester-forming derivatives include 5-sulfoisophthalic acid metal salt dimethyl ester, diethyl ester, dipropyl ester, dibutyl ester, dihexyl ester, dioctyl ester, didecyl ester, diphenyl ester, or 5-sulfoisophthalic acid metal salt acid. Mention may be made of halides. Of these, dimethyl ester of 5-sulfoisophthalic acid metal salt is preferable.
  • an alkali metal salt of 5-sulfoisophthalic acid is preferably exemplified from the viewpoint of thermal stability, cost, etc., and in particular, 5-sodium sulfoisophthalic acid or 5-sodium sulfoisophthalic acid which is a dimethyl ester thereof. Particularly preferred is dimethyl acid.
  • a compound satisfying these conditions it is possible to achieve both sufficient normal pressure cationic dyeability and sufficient fiber strength when used as a polyester fiber.
  • the compound (B) represented by the above formula (I) includes quaternary phosphonium salts of 5-sulfoisophthalic acid or its lower alkyl ester or quaternary ammonium salts of 5-sulfoisophthalic acid or its lower alkyl ester.
  • quaternary phosphonium salt or quaternary ammonium salt a quaternary phosphonium salt or a quaternary ammonium salt in which an alkyl group, a benzyl group or a phenyl group is bonded to a phosphorus atom or a nitrogen atom is preferable, and a quaternary phosphonium salt is particularly preferable. preferable.
  • the four substituents bonded to the phosphorus atom or the nitrogen atom may be the same or different.
  • Specific examples of the compound represented by the above formula (I) include tetramethylphosphonium salt of 5-sulfoisophthalic acid, tetraethylphosphonium salt of 5-sulfoisophthalic acid, tetrabutylphosphonium salt of 5-sulfoisophthalic acid, and 5-sulfoisophthalic acid.
  • the phosphonium salt of these isophthalic acid derivatives is illustrated preferably.
  • the dimethyl ester of ammonium salt diethyl ester, dipropyl ester, dibutyl ester, dihexyl ester, dioctyl ester, or didecyl ester is illustrated preferably.
  • 5-sulfoisophthalic acid dimethyltetrabutylphosphonium salt 5-sulfoisophthalic acid dimethylbenzyltributylphosphonium salt, 5-sulfoisophthalic acid dimethyltetraphenylphosphonium salt, 5-sulfoisophthalic acid dimethyltetramethylammonium salt More preferred examples include salts, dimethyltetraethylammonium salt of 5-sulfoisophthalic acid, dimethyltetrabutylammonium salt of 5-sulfoisophthalic acid, and dimethylbenzyltrimethylammonium salt of 5-sulfoisophthalic acid.
  • the total copolymerization amount of the above-mentioned sulfoisophthalic acid metal salt (A) to be copolymerized with the polyester and the above-mentioned compound (B) is based on the total acid components constituting the copolymerized polyester (A).
  • the sum A + B of the component and the component (B) needs to be in the range of 3.0 to 5.0 mol%. When the amount is less than 3.0 mol%, sufficient dyeing cannot be obtained under cationic dyeing conditions under normal pressure.
  • the component ratio of the metal salt (A) of sulfoisophthalic acid and the compound (B) should be such that B / (A + B) is in the range of 0.3 to 0.7 at the above mol% value.
  • the component ratio is less than 0.3, that is, when the component (A) ratio is large, it is difficult to increase the degree of polymerization of the resulting copolyester due to the thickening effect of the metal salt of sulfoisophthalic acid.
  • the component ratio exceeds 0.7, that is, when the ratio of the compound (B) is large, the polycondensation reaction rate is slow, and when the ratio of the compound (B) is further increased, the thermal decomposition reaction proceeds, so the degree of polymerization. It becomes difficult to raise.
  • this component ratio is 0.32 to 0.65, more preferably 0.35 to 0.60.
  • the atmospheric pressure cationic dyeability can be imparted by copolymerizing the metal salt of sulfoisophthalic acid (A) to the polyester, the melt viscosity of the copolymerized polyester that appears to be derived from the ionic bond between the metal sulfonate bases. Because of this thickening effect, it has been difficult to increase the degree of polymerization of conventional copolyesters. Therefore, a copolyester having a sufficiently high degree of polymerization and a high intrinsic viscosity cannot be obtained, and the polyester fiber obtained from the copolyester having no high intrinsic viscosity has a problem that the fiber strength is remarkably lowered.
  • a tetraalkylammonium salt of sulfoisophthalic acid or a tetraalkylphosphonium salt of sulfoisophthalic acid that is, a compound (B) is copolymerized with a polyester.
  • the compound easily undergoes thermal decomposition during the polycondensation reaction, there is a problem that the thermal decomposition reaction tends to proceed when the amount of copolymerization is increased, and it is still difficult to increase the polyester fiber strength to a high value.
  • these sulfoisophthalic acid metal salt (A) and compound (B) are used in combination, and by setting the copolymerization amount and copolymerization ratio of both compounds within a specific range.
  • the dyeing property with sufficient atmospheric pressure cationic dye and high fiber strength are compatible, and that the heat setting property is good and the crimp is easily fixed.
  • the fiber using the copolyester had physical properties such as good dyeability with a cationic dye, high fiber strength and heat setting property, and easy fixing of crimps.
  • Tg glass transition temperature
  • the texture of the fabric obtained from the polyester fiber may be deteriorated.
  • a method for lowering the glass transition temperature it can be achieved by copolymerizing adipic acid, sebacic acid, diethylene glycol, polyethylene glycol or the like.
  • these copolymer components satisfy the above glass transition temperature conditions. As long as it is within the range, it may be minutely copolymerized.
  • a preferable range of Tg is 71 to 80 ° C.
  • the glass transition temperature of polyethylene terephthalate is about 70 to 80 ° C.
  • the copolymerized polyester of the present invention even if other copolymerization components are copolymerized as described above. Although it is good, it is not preferable to copolymerize a component that significantly lowers the glass transition temperature as a result of copolymerization.
  • the type and copolymerization ratio of the compounds that may be copolymerized listed in the description of the above-described copolymerized polyester are appropriately adjusted for copolymerization. I can list them.
  • the intrinsic viscosity (measurement solvent: orthochlorophenol, measurement temperature: 35 ° C.) of the copolyester of the present invention is preferably in the range of 0.55 to 1.00 dL / g.
  • the strength of the obtained polyester fiber may be insufficient.
  • the intrinsic viscosity exceeds 1.00 dL / g, the melt viscosity of the copolyester becomes too high, and melt molding becomes difficult, which may be undesirable.
  • the intrinsic viscosity of the normal pressure cationic dyeable polyester is more preferably in the range of 0.60 to 0.90 dL / g.
  • the intrinsic viscosity of the copolyester in the range of 0.55 to 1.00 dL / g, it is difficult to adjust the final polymerization temperature and polymerization time during the melt polymerization, or when it is difficult only by the melt polymerization method. Can be appropriately adjusted by solid phase polymerization.
  • the metal salt (A) of sulfoisophthalic acid and the compound (B) are copolymerized with polyethylene terephthalate so as to satisfy the above formulas (1) and (2), and are inherently obtained by the above-described method.
  • the viscosity can be 0.55 to 1.00 dL / g. (DEG content)
  • the diethylene glycol contained in the normal pressure cationic dyeable polyester in the present invention is preferably 2.5% by weight or less. More preferably, it is 2.2% by weight or less, and still more preferably 1.85 to 2.2% by weight.
  • a cationic dyeable monomer using at least one of tetraalkylphosphonium hydroxide, tetraalkylammonium hydroxide, trialkylamine and the like in the case of the present invention, the metal salt (A) of sulfoisophthalic acid and the compound (B)) It is preferable to add about 1 to 20 mol% with respect to the total molar amount).
  • the copolyester of the present invention may contain specific inert particles to form an atmospheric pressure cationic dyeable polyester composition. More specifically, the frequency distribution of particles having an average particle diameter in the range of 0.01 to 0.5 ⁇ m and a particle diameter exceeding 0.5 ⁇ m is the total weight of the inert particles. Inert particles that are 20% by weight or less on the basis of 0.1 to 5.0% by weight based on the weight of the normal pressure cationic dyeable polyester composition, It is to be.
  • the polyester composition in addition to being able to achieve both high dye strength and high fiber strength with a cationic dye when producing polyester fiber from the polyester composition, the clarity when dyeing the polyester fiber, Physical properties such as deep color dyeability can be improved at the same time.
  • the inert particles will be described in detail below.
  • the inert particles may be at least one kind of inert particles selected from the group consisting of calcium carbonate, calcium phosphate, calcium silicate, silicon oxide, aluminum oxide, silicone powder, kaolinite, silica sol, barium sulfate, and titanium oxide. preferable. Further, the inert particles may be a single type or a combination of multiple types. Of these, calcium carbonate, calcium phosphate, and silica sol are particularly preferably used. Further, as calcium phosphate, tricalcium phosphate having no active hydrogen atom is particularly preferably used.
  • the above normal pressure cationic dyeable polyester composition is the same as the above normal pressure cationic dyeable polyester in that the average particle size is in the range of 0.01 to 0.5 ⁇ m and the particle size exceeds 0.5 ⁇ m. It is preferable to contain 0.1 to 5.0% by weight of inert particles having a particle frequency distribution ratio of 20% by weight or less based on the total weight of the atmospheric pressure cationic dyeable polyester composition.
  • inert particles having a particle frequency distribution ratio of 20% by weight or less based on the total weight of the atmospheric pressure cationic dyeable polyester composition.
  • inert means that it does not cause a chemical reaction with the group constituting the copolymerized polyester chain in the process for producing the copolymerized polyester described later, the process for producing or treating the fiber or other molded article. ing.
  • the inert particles in the present invention preferably have an average particle size in the range of 0.01 to 0.5 ⁇ m. If the average particle diameter of the inert particles exceeds 0.5 ⁇ m, the inert particles tend to settle during the production process of the sol or copolymer polyester reaction stock solution, and the inert particles cannot be stably supplied and dispersed. On the other hand, when the average particle diameter of the inert particles is less than 0.01 ⁇ m, the specific surface area of the particles is too large, and aggregated particles may be easily formed during the reaction of the copolymerized polyester production process. As a result, the resulting normal pressure cationic dyeable polyester composition is not preferred because yarn breakage increases when yarn is produced by melt spinning.
  • the average particle diameter of the inert particles is preferably in the range of 0.02 to 0.4 ⁇ m, and more preferably in the range of 0.03 to 0.3 ⁇ m.
  • the frequency distribution rate of particles having a particle size exceeding 0.5 ⁇ m is preferably 20% by weight or less.
  • the frequency distribution ratio of particles having a particle size exceeding 0.5 ⁇ m exceeds 20% by weight, fine particles formed on the fiber surface even if the amount of alkali is reduced after threading the obtained normal pressure cationic dyeable polyester composition. Since the pores become large and a deep color effect during dyeing cannot be obtained, it is not preferable.
  • the frequency distribution ratio of particles (coarse particles) having a particle diameter exceeding 0.5 ⁇ m in the inert particles is preferably in the range of 15% by weight or less, and more preferably in the range of 10% by weight or less.
  • inert particle content The content of inert particles in the present invention is preferably in the range of 0.1 to 5.0% by weight based on the total weight of the normal pressure cationic dyeable polyester composition.
  • the content of the inert particles is less than 0.1% by weight, the deep color dyeability of the finally obtained polyester fiber becomes insufficient.
  • the content of the inert particles exceeds 5.0% by weight, the strength, heat resistance, and light resistance of the resulting polyester fiber are not preferable.
  • the particle content is preferably in the range of 0.15 to 3.0% by weight, and more preferably in the range of 0.2 to 1.0% by weight.
  • the production of the copolyester in the present invention is not particularly limited, and the metal salt (A) of sulfoisophthalic acid (hereinafter sometimes abbreviated as compound A) and the compound (B) are described in claim 1.
  • a polyester manufacturing method generally known is used except that it is used so as to satisfy the conditions.
  • a low polymer is produced by directly esterifying terephthalic acid and ethylene glycol, or an ester exchange reaction between an ester-forming derivative of terephthalic acid typified by dimethyl terephthalate and ethylene glycol to reduce the weight. A coalescence is produced. Subsequently, the low polymer as the reaction product can be produced by heating under reduced pressure in the presence of a polycondensation catalyst to cause a polycondensation reaction until a predetermined polymerization degree is reached.
  • a catalyst compound used for performing a normal transesterification reaction can be used.
  • the polycondensation catalyst commonly used antimony compounds, germanium compounds, and titanium compounds can be used.
  • a reaction product of a titanium compound and an aromatic polyvalent carboxylic acid or an aromatic polyvalent carboxylic acid anhydride, or a reaction product of a titanium compound and a phosphorus compound may be used.
  • an atmospheric pressure cationic dyeable polyester composition can be manufactured by adding at arbitrary processes in the process of the manufacturing method of said copolyester. Specifically, the stage from the beginning to the end of the esterification reaction process or the transesterification reaction process, the stage from the beginning to the end of the polycondensation reaction process, or once the polycondensation reaction process is completed, the copolymer polyester is remelted. At this stage, the inert particles can be added and melt kneaded in a molten state.
  • the copolymer polyester in the present invention contains a small amount of additives as necessary, for example, antioxidants, fluorescent whitening agents, antistatic agents, antibacterial agents, ultraviolet absorbers, light stabilizers, heat stabilizers, and light-shielding agents. Or a matting agent etc. may be included. In particular, antioxidants and matting agents are particularly preferably added.
  • Melt spinning method, spinning method There is no restriction
  • the polyester fiber obtained has sufficient strength and can be wound stably.
  • the undrawn yarn or the partially drawn yarn obtained by the above method is drawn in a range of about 1.2 to 6.0 times in the drawing step. This stretching process may be performed after winding the unstretched polyester fiber once, or may be performed continuously without winding.
  • the shape of the spinneret used for spinning is not particularly limited, and any of a polygon such as a circle, a triangle and a rectangle, three or more multi-leaf shapes, a C-shaped section, an H-shaped section, an X-shaped section, and a hollow section. It may be.
  • the irregular cross-section polyester fiber and hollow polyester fiber obtained using such a spinneret will be described later. Even in the case of a copolymerized polyester composition containing the above-mentioned inert particles, it can be melt-spun by the same technique.
  • the polyester fiber (multifilament made of copolyester) in which the main repeating unit is composed of ethylene terephthalate is obtained by melt spinning using the copolymerized polyester in the present invention and then stretching, and sulfoisophthalate is contained in the acid component constituting the polyester.
  • a polyester fiber characterized in that the metal salt (A) of the acid and the compound (B) represented by the general formula (1) are contained under the conditions satisfying the above mathematical formulas (1) and (2). Can do.
  • polyester fiber a normal pressure cationic dyeable polyester having a single yarn fineness of 7 dtex or less, a bundle of 24 or more single yarns, a strength of 2.0 cN / dtex or more, and an elongation of 60% or less.
  • a fiber (multifilament) is also preferable.
  • the discharge amount and the scooping off so that the scooping fineness after drawing becomes 84 dtex or less.
  • a speed relationship is preferred.
  • the number of perforations of the spinneret when extruding the polymer is preferably 24 holes or more.
  • the undrawn yarn or the partially drawn yarn obtained by the above method is drawn in a range of about 1.2 to 6.0 times in the drawing step. This stretching may be performed after winding the unstretched polyester fiber once, or may be performed continuously without winding.
  • the number of single yarns bundled at a single yarn fineness of 7 dtex or less is 24 or more, and the strength is 3.0 cN / dtex or more.
  • the degree is preferably 60% or less and the hot water shrinkage is 22% or less.
  • the hot water represents water at 98 ° C. or 98 ° C. to 100 ° C. More preferably, the strength is 3.5 cN / dtex or more.
  • the number of single yarns bundled at a single yarn fineness of 7 dtex or less is 24 or more, and when the single yarn fineness exceeds 7 dtex, the texture becomes hard, which is not preferable, and the number of single yarns is less than 24. If this is the case, the volume feeling of the fabric is lowered, which is not preferable.
  • the strength of the obtained polyester fiber is preferably 3.0 cN / dtex or more, and if the strength of the polyester fiber is less than 3.0 cN / dtex, the tear strength of the fabric is lowered, which is not preferable. More preferably, the strength of the polyester fiber is 3.5 cN / dtex or more.
  • the elongation of the polyester fiber is preferably 60% or less, more preferably 10 to 40%. If the elongation exceeds 60%, the shrinkage spots of the yarn become large, which may be undesirable. On the other hand, if the elongation is less than 10%, the weaving property is poor and it may be difficult to produce a woven fabric.
  • the hot water shrinkage of the normal pressure cationic dyeable polyester multifilament of the present invention is preferably 22% or less. More preferably, the hot water shrinkage of the polyester multifilament is 5 to 18%. When the hot water shrinkage rate exceeds 22%, the shrinkage of the fiber is large at the time of dyeing, and it is not preferable because it is used as a low shrinkage yarn of a different shrinkage blended yarn and becomes a sheath portion of a core-sheath blended yarn. .
  • a composite polyester fiber can also be produced using the copolymerized polyester of the present invention as one component.
  • the form of the composite fiber can be any of side-by-side type, core-sheath type, and sea-island type, and is not particularly limited. Since the polyester fiber using the copolymerized polyester of the present invention can increase the fiber strength as compared with the conventional cationic dyeable polyester fiber as described above, the sea island using the copolymerized polyester of the present invention as an island component It becomes possible to produce a mold composite fiber. As a result, it is possible to obtain a finer polyester fiber than the conventional cationic dyeable polyester fiber.
  • the polyester fiber of the present invention can be weight-reduced in an aqueous solution containing an alkali compound, similarly to the conventional polyester fiber.
  • the above-mentioned copolymerized polyester composition is a polyester fiber, it can be dyed with a cationic dye under normal pressure after an alkali weight loss treatment in order to develop a structure having fine pores in the fiber.
  • the alkali weight loss treatment and the atmospheric pressure cationic dyeing treatment can adopt known methods, but after making the woven or knitted fabric using the polyester fiber obtained by the above-mentioned method, the fiber is obtained by performing the alkali weight loss treatment. A structure having micropores can be obtained.
  • the polyester fiber of the present invention includes a modified cross-section polyester fiber composed of the above-described copolymer polyester. Although a fiber having an excellent hue can be obtained with only a modified cross-section, it is preferable that the cross-sectional shape of the polyester fiber in the present invention satisfies a numerical range of 1.2 to 7.0. By setting the fiber cross section to such a high value of the degree of irregularity, it is possible to obtain a polyester fiber having further excellent gloss.
  • the irregularity in the cross-sectional shape perpendicular to the fiber axis of the filament constituting the polyester multifilament is the diameter of a circle circumscribing the cross-sectional shape perpendicular to the fiber axis of the filament as shown in FIG. Is defined by the ratio of the diameter of the circumscribed circle to the diameter of the inscribed circle, where d2 is the diameter of the inscribed circle, that is, d2 / d1.
  • this value is preferably set to 1.2 to 7.0.
  • the degree of irregularity is the diameter of the circumscribed circle with respect to the difference between the diameter of the inscribed circle and the diameter of the hollow portion when the diameter of the hollow portion is d3. Ratio, that is, d2 / (d1-d3).
  • the hollow part in the cross section of the fiber is not circular or there are two or more hollow parts, it is assumed that the circular hollow part having the same area as the entire area of the hollow part is at the center of the cross section. The diameter of the hollow part at this time may be d3.
  • the fiber may not have sufficient gloss.
  • the irregularity degree of the filament which comprises this multifilament should just be 1.2 or more, Preferably it is 2.0 or more and 5.0 or less.
  • such a fiber of the present invention is usually called a modified cross-section fiber, and examples of its shape include multi-leaf, flat, Y-type, C-type, V-type, W-type, and I-type. However, it is not limited to these. However, considering the balance between physical properties and gloss, the shape is most preferably Y type.
  • the cross-sectional shape of the single yarn is a flat shape, and the flat shape is also a flat cross-sectional polyester fiber having a shape in which 3 to 6 round cross-section single yarns are joined in the longitudinal direction. It can be preferably employed for the purpose.
  • a method for producing a fiber having a deformed fiber cross section as in the present invention, a method of directly discharging a polymer from a spinneret having a deformed orifice is the simplest. Specifically, a method is used in which a multi-component polymer having different dissolution rates is produced by so-called compound spinning in which the same or different orifices are discharged and joined, and then the easily-eluting components are dissolved in a subsequent process to be deformed. You can also. In other cases, the modified cross-section polyester fiber can be obtained by appropriately applying the above-described spinning method.
  • the deformed cross-section polyester fiber of the present invention thus obtained is an excellent quality fiber having excellent hue and transparency with a good hue and little fibrillation.
  • the modified cross-section polyester fiber of the present invention is a variety of fibers such as textiles for clothing, curtains, carpets, interior / bedding fibers such as futonwata, various fabrics, various knitted fabrics, short fiber nonwoven fabrics, and long fiber nonwoven fabrics. It is suitably used for applications. (Hollow rate (%) and variation in hollow rate)
  • the polyester fiber of the present invention includes a hollow polyester fiber composed of the above copolymerized polyester.
  • the hollow ratio can be calculated by the following method.
  • the hollow polyester fiber can be obtained by the method described above except that a spinneret for hollow fibers is used as the spinneret.
  • the single yarn fineness is preferably 0.3 to 6.0 dtex. More preferably, it is 1.0 to 5.0 dtex.
  • the polyester fiber of the present invention includes a flat cross-sectional polyester fiber having a specific shape composed of the above-described copolymer polyester.
  • the polyester flat cross-section fiber is a flat cross-section fiber in which the cross-sectional shape of a single yarn is a flat shape, and the flat shape has a shape such that 3 to 6 round cross-section single yarns are joined in the longitudinal direction.
  • “as joined” does not mean that the members are actually joined at the melt spinning stage, but means that they have a “joined” shape as a result.
  • the cross-sectional shape of the flat cross-section fiber will be described with reference to FIG. (A) to (e) in FIG. 2 schematically show the cross-sectional shape of the flat cross-section fiber.
  • (A) is three pieces, (b) is four pieces, and (c) is five round pieces.
  • the cross-sectional single yarn is in a joined shape.
  • the cross-sectional shape of the flat cross-section fiber when it is preferable as the cross-sectional shape of the flat cross-section fiber, it is a shape in which round cross-section single yarns are joined in the longitudinal direction (long axis direction). More specifically, the convex portion and the convex portion (mountain and mountain), the concave portion and the concave portion (valley and valley) are symmetrically overlapped with each other about the major axis, and the round cross-section single yarn as described above The number is preferably 3-6. When the number of single round cross-section yarns is two, only softness similar to that obtained when a round cross-section fiber is used as a fabric can be obtained, and permeation resistance, low air permeability, and water absorption may be deteriorated. On the other hand, when the number of round cross-section single yarns exceeds 7, the fibers are easily broken and the wear resistance may be lowered.
  • the flatness represented by the ratio A / B of the maximum diameter length A (long axis) of the flat cross-section polyester fiber and the maximum diameter length B (short axis) perpendicular to the long axis is: It is preferably 3-6. When it is smaller than 3, the soft feeling tends to be lowered, and when it is larger than 6, a sticky feeling tends to occur.
  • the short axis maximum diameter B and the minimum diameter C (joint of the round cross section single yarn) from the point of eliminating the sticky feeling when the flat cross section polyester fiber is made into a fabric and improving water absorption
  • the secondary profile expressed by the ratio B / C of the minimum diameter of the part is preferably 1.0 ⁇ B / C ⁇ 5.0. That is, in a state where a plurality of the fibers having the flat cross section are gathered, moisture is diffused through the concave portion of the cross section due to the capillary phenomenon, so that excellent water absorption performance is obtained as compared with the round cross section fibers. However, when the degree of secondary deformation is 1.0, it becomes a mere flat fiber, a sticky feeling is produced, and water absorption is eliminated.
  • B / C is preferably 1.0 ⁇ B / C ⁇ 5.0, and more preferably 1.1 ⁇ B / C ⁇ 2.
  • the single yarn fineness of the flat cross-section fiber and the total fineness of the multifilament composed of the flat cross-section fibers are not particularly specified. However, when the flat cross-section fiber is used for clothing, the single yarn fineness is 0.3.
  • the total fineness of the multifilament is preferably 30 to 200 dtex.
  • the normal pressure cationic dyeable polyester multifilament of the present invention can be blended with other raw yarns by a known method. As another raw yarn, it is preferable to use a polyester multifilament or the like having a hot water shrinkage rate larger than that of the normal pressure cationic dyeable polyester multifilament of the present invention to obtain a different shrinkage mixed yarn.
  • the difference in hot water shrinkage is preferably 20% or more.
  • the low-shrinkage yarn forms a sheath by hot water shrinkage in the dyeing process after weaving the mixed yarn, and a uniform and clear dyeable fabric can be obtained.
  • the mixed yarn is preferably subjected to an entanglement treatment of about 60 / m by an air entanglement nozzle such as an interlace.
  • the hot water represents water at 98 ° C. or 98 ° C. to 100 ° C.
  • a typical mixed yarn process of the present invention will be described with reference to the attached drawing (FIG. 4).
  • the normal pressure cationic dyeable polyester multifilament (A1) of the present invention and the polyester multifilament (B1) larger than the hot water shrinkage of the normal pressure cationic dyeable polyester multifilament (A1) are drawn together to supply rollers ( 1), and then the yarn is entangled by the entanglement air injection nozzle (3). Then, it preheats with the preheating roller (2), and extends
  • the normal pressure cationic dyeable polyester multifilament (A1) of the present invention when the normal pressure cationic dyeable polyester multifilament (A1) of the present invention is not used, the strength of the conventional normal pressure cationic dyeable yarn cannot be obtained, and the condition of the mixed fiber processing is reduced, such as occurrence of yarn breakage and fluff frequently. Moreover, even when the different shrinkage mixed fiber is used, it is difficult to obtain a difference in shrinkage, and when it is dyed, it becomes a marbling tone and a high-quality fabric cannot be obtained.
  • the normal pressure cationic dyeable polyester multifilament has a single yarn fineness of 7 dtex or less, the number of bundled single yarns is 24 or more, and the strength is 2.0 cN.
  • a normal pressure cationic dyeable polyester multifilament having a / dtex or more and an elongation of 60% or less can be selected.
  • the hot water shrinkage of the normal pressure cationic dyeable polyester multifilament is preferably 22% or less.
  • the composite yarn in the present invention refers to a yarn including a composite false twisted yarn and other mixed yarn, a mixed twisted yarn, and a covering yarn described later.
  • a composite false twisted yarn can be raised as one type of mixed yarn.
  • the fiber portion can impart atmospheric pressure cationic dyeability and can achieve unprecedented fiber strength. (False twisted yarn)
  • the number of single yarns bundled at a single yarn fineness of 1.5 dtex or less is 5 or more, the strength is 1.5 cN / dtex or more, and the elongation is 60% or less.
  • the single yarn fineness is 1.5 dtex or less.
  • the number of bundled single yarns is preferably 5 or more, and less than 5 is not preferable because the weaving property is lowered or the texture becomes hard.
  • the fiber strength of the normal pressure cationic dyeable polyester multifilament is preferably 1.5 cN / dtex or more, and if the strength is less than 1.5 cN / dtex, yarn breakage and fluff are likely to occur in the false twisting process. Further, when it is made into a fabric, the tearing strength is lowered, which is not preferable. 2.0 to 5.0 cN / dtex is preferable. Further, the elongation is 60% or less, and preferably 20 to 40% for clothing. If the elongation exceeds 60%, the shrinkage in the width direction at the time of heat setting when the fabric is made becomes too large, and the fabric surface may be wavy, which is not preferable in terms of fabric quality.
  • the above-mentioned normal pressure cationic dyeable polyester multifilament is false twisted to obtain the normal pressure dyeable polyester false twisted yarn of the present invention.
  • a false twisting machine equipped with a contact-type heater as shown in FIG. 5 and subject the first false twisting heater to a stretch false twisting temperature of 200 to 500 ° C.
  • the elastic yarn as the core yarn used for the covering yarn of the present invention can be appropriately selected from those conventionally known as elastic yarns. Among them, it is preferable to use an elastic yarn made of a conventionally used polyurethane elastomer, polyether / polyester block copolymer, polyether, or synthetic rubber elastic body.
  • polyurethane elastomers examples include diol components having a divalent hydroxyl group such as polyester diol, polyether diol, or polycarbonate diol, polyisocyanate components, preferably diisocyanate components (such as diphenylmethane diisocyanate), and low molecular chain extenders (such as ethylene).
  • diol components having a divalent hydroxyl group such as polyester diol, polyether diol, or polycarbonate diol, polyisocyanate components, preferably diisocyanate components (such as diphenylmethane diisocyanate), and low molecular chain extenders (such as ethylene).
  • polyurethane elastomers obtained by reacting a low-molecular diol such as glycol) or optionally further reacting with a terminal stopper.
  • the polyether / polyester block copolymer examples include block copolymers having polybutylene terephthalate polyester as a hard segment and polyoxybut
  • the ultraviolet absorber and antioxidant as needed is preferably used for said polyurethane elastomer or polyether * polyester block copolymer.
  • the method for producing the covering yarn of the normal pressure cationic dyeable polyester yarn in the present invention is not particularly limited by the examples, and a conventionally known method may be adopted.
  • the covering means there are a method using a twisted yarn using a hollow spindle while drafting (extending) the elastic yarn, or a method using air mixing.
  • the former having a large cover effect is superior in the quality of the fabric.
  • the number of covering twisted yarns is preferably 200 T / m or more. Below this value, the cover effect is insufficient and the quality of the finished fabric is insufficient.
  • the number of covering twisted yarns is preferably 300 T / m or more. If the number of covering twisted yarns is 300 T / m or more, the required number of twisted yarns can be arbitrarily set.
  • the upper limit is practically about 1000 T / m.
  • the number of additional twists is 300 T / m or more, and the intended effect of the present invention is sufficiently expressed.
  • there is an optimum number of twists depending on the type of yarn constituting the covering yarn and it is not limited to the above range. Absent.
  • the same direction as a covering direction is good.
  • a 44 dtex polyether ester elastic yarn and a hollow spindle device were used as elastic yarns at 500 T / m. (Method for producing outer layer yarn in composite false twisted yarn)
  • the copolyester obtained as described above is produced by the method described above.
  • the obtained normal pressure cationic dyeable polyester is extruded into a fiber form in a molten state, melt-spun at a speed of 500 to 3500 m / min, drawn and heat-treated.
  • a method of melt spinning and stretching an atmospheric pressure cationic dyeable polyester at a speed of 1000 to 5000 m / min and a method of melting and spinning at a high speed of 5000 m / min or more and omitting the stretching process can be preferably mentioned.
  • the elongation of the normal pressure cationic dyeable polyester fiber of the outer layer yarn is preferably 45% or more. If it is less than 45%, the bulkiness of the composite false twisted yarn having an appropriate structure cannot be obtained, which is not preferable.
  • the single fiber fineness of the outer layer yarn is preferably 4 dtex or less. If it exceeds 4 dtex, it may be difficult to obtain a core-sheath structure at the time of fiber mixing.
  • the lower limit of the single fiber fineness is not particularly limited, but is preferably 0.1 dtex or more from the viewpoint that fibers can be formed practically and the wear resistance of the fabric is not significantly impaired.
  • the cross-sectional shape of the atmospheric pressure cationic dyeable polyester fiber of the outer layer yarn of the present invention can be any shape depending on the application, for example, in addition to a circle, a triangle, a flat shape, a star shape, a V shape, etc. Can be exemplified by the irregular cross-sections or hollow cross-sections thereof.
  • the core yarn of the composite false twisted yarn of the present invention a polyester fiber is preferable, and the boiling water shrinkage is preferably 10% or less. When the boiling water shrinkage rate exceeds 10%, the bulkiness of the composite false twisted yarn is not preferable.
  • the air entanglement may be either interlaced or Taslan processing.
  • the process of FIG. 6 can be shown.
  • the core yarn contracts and the outer layer yarn hardly contracts or self-extends, and a difference in the foot length occurs between the core yarn and the outer layer yarn. .
  • this yarn is used to form a fabric, the fabric swells and span-like properties are manifested by this difference in the thread foot.
  • the main repeating unit is a polyester fiber composed of ethylene terephthalate, the breaking strength is 3.0 cN / dtex or more, and a plain fabric is produced from the polyester fiber.
  • the main repeating unit is a copolymerized polyester composed of polyethylene terephthalate, and a metal salt of sulfoisophthalic acid (A) and a compound represented by the above formula (I) in the acid component constituting the copolymerized polyester (
  • the copolymer polyester containing B) in a state satisfying the above mathematical expressions (1) and (2) can be produced by performing melt spinning / stretching treatment under appropriate conditions.
  • a false twisted yarn, a composite yarn, and a covering yarn using the fiber can also be manufactured according to the above-described conditions.
  • Diethylene glycol (DEG) content The polyester sample was decomposed using hydrazine hydrate (hydrated hydrazine), and the content of diethylene glycol in the decomposition product was measured using gas chromatography (HP Hewlett Packard (HP 6850)).
  • C Glass transition temperature (Tg) of polymer: Using a differential scanning calorimeter (DSC manufactured by Seiko Instruments Inc .: Q10 type), the temperature was increased at a rate of temperature increase of 20 ° C./min.
  • E Tensile strength (breaking strength) and tensile elongation (breaking elongation) of polyester fiber Measurement was performed in accordance with the method described in Japanese Industrial Standards, JIS L1013: 1999 8.5.
  • F Hot water shrinkage: The boiling water shrinkage was measured according to Japanese Industrial Standards and JIS L 1013.
  • G Total number of crimps (TC): A false twisted crimped yarn sample was wound on a cassette frame with a tension of 0.044 cN / dtex to produce a cassette of about 3300 dtex.
  • a load of 0.00177 cN / dtex + 0.177 cN / dtex is applied to one end of the obtained casserole, and the length (L0) after 1 minute is measured.
  • the substrate is treated in boiling water at 100 ° C. for 20 minutes with the load of 0.177 cN / dtex removed. After the boiling water treatment, the load of 0.177 cN / dtex is removed, and only the load of 0.00177 cN / dtex is applied, followed by natural drying in a free state for 24 hours.
  • a load of 0.00177 cN / dtex + 0.177 cN / dtex is again applied to the naturally dried sample, and the length (L1) after 1 minute is measured.
  • the load of 0.177 cN / dtex is removed, the length (L2) after 1 minute is measured, and the total crimp rate TC (%) is calculated by the following equation. This measurement was performed 10 times and expressed as an average value.
  • Total crimp rate TC (%) ((L1-L2) / L0) ⁇ 100 (H) Normal pressure cationic dyeability
  • a method Cylinder knitting made of multifilament yarn, CATHILON BLUE CD-FRLH) 0.2 g / L, CD-FBLH 0.2 g / L (both cation dyeable dyes manufactured by Hodogaya Chemical Co., Ltd.), sodium sulfate 3 g / L was dyed in a dyeing solution of 0.3 g / L of acetic acid at 100 ° C. for 1 hour at a bath ratio of 1:50, and the dyeing rate was determined by the following formula.
  • Dyeing rate (OD 0 ⁇ OD 1 ) / OD 0 OD 0 : Absorbance at 576 nm of the dye solution before dyeing
  • OD 1 Absorbance at 576 nm of the dye solution after dyeing
  • the dyed fabric was obtained by dyeing at the temperature shown in 1 for 1 hour.
  • Thread breakage is good without fluff ⁇ : Thread breakage Fluff is not good (s) false twist process tone: The number of fluffs generated from false twisted yarn was evaluated.
  • ester exchange reaction was carried out while gradually raising the temperature from 140 ° C. to 240 ° C. while distilling methanol produced as a result of the reaction out of the reactor. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
  • the polycondensation reaction was terminated when the value of the stirrer power in the polycondensation tank reached a predetermined power or when a predetermined time had elapsed, and the copolymerized polyester obtained according to a conventional method was chipped.
  • the copolymerized polyester chip thus obtained was dried at 140 ° C. for 5 hours, and then a 330 dtex / 36 filament yarn was produced at a spinning temperature of 285 ° C. and a winding speed of 400 m / min.
  • a false twisted yarn of 83 dtex / 36 filaments was obtained by drawing 4.0 times by simultaneous false twisting and further subjected to relaxation heat treatment according to a conventional method. Details of the production conditions and evaluation results of the copolyester are shown in Table 1.
  • Examples 2 to 4 Comparative Examples 1 to 6
  • the same procedure as in Example 1 was performed except that the addition amount of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate was changed to the values shown in Table 1. Details of the production conditions and evaluation results of the copolyester are shown in Table 1.
  • Example 5 Add 0.03 parts by weight of manganese acetate and 0.12 parts by weight of sodium acetate trihydrate to a mixture of 100 parts by weight of dimethyl terephthalate, 4.1 parts by weight of dimethyl 5-sodium sulfoisophthalate and 60 parts by weight of ethylene glycol. Then, the ester exchange reaction was carried out while gradually raising the temperature from 140 ° C. to 240 ° C. while distilling methanol produced as a result of the reaction out of the reactor. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
  • the polycondensation reaction was terminated when the value of the stirrer power in the polycondensation tank reached a predetermined power or when a predetermined time had elapsed, and the copolymerized polyester obtained according to a conventional method was chipped.
  • the subsequent processing was performed in the same manner as in Example 1. Details of the production conditions and evaluation results of the copolyester are shown in Table 1.
  • Example 6 Add 0.03 parts by weight of manganese acetate and 0.12 parts by weight of sodium acetate trihydrate to a mixture of 100 parts by weight of dimethyl terephthalate, 4.1 parts by weight of dimethyl 5-sodium sulfoisophthalate and 60 parts by weight of ethylene glycol. Then, the ester exchange reaction was carried out while gradually raising the temperature from 140 ° C. to 240 ° C. while distilling methanol produced as a result of the reaction out of the reactor. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
  • the inside of the polycondensation tank was heated to 285 ° C., and the inside of the polycondensation tank was maintained at a high vacuum of 30 Pa or less to carry out the polycondensation reaction.
  • the reaction was terminated when the value of the agitator power in the polycondensation tank reached a predetermined power or when a predetermined time had elapsed, and the copolymerized polyester composition obtained according to a conventional method was chipped.
  • the copolyester composition chip thus obtained was dried at 140 ° C. for 5 hours, and a 330 dtex / 36 filament yarn was made at a spinning temperature of 285 ° C. and a winding speed of 400 m / min. Drawing was performed 4.0 times to obtain a drawn yarn of 83 dtex / 36 filament.
  • a plain woven fabric was woven using the obtained stretched polyester yarn for warp and weft. This fabric was refined and dried by a conventional method, and then heat-set at 180 ° C. Further, a part of the fabric subjected to the heat setting was subjected to alkali weight reduction treatment by a conventional method so that the weight loss rate was 20% by weight.
  • Table 2 shows the details of the production conditions and evaluation results of the copolymerized polyester composition.
  • Example 6 was carried out in the same manner as Example 6 except that the addition amounts of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate were changed to the values shown in Table 2.
  • Table 2 shows the details of the production conditions and evaluation results of the copolymerized polyester composition.
  • Example 6 In Example 6, it carried out like Example 6 except having changed the inert particle to add to the thing of the characteristic of Table 2.
  • Table 2 shows the details of the production conditions and evaluation results of the copolymerized polyester composition.
  • Example 12 (Manufacture of multifilament, blended yarn, false twisted yarn and covering yarn) [Example 12] After the copolymerized polyester chip obtained in Example 1 was dried at 140 ° C. for 5 hours, a spinneret with 24 die perforations was used, a spinning temperature of 285 ° C., a winding speed of 400 m / min, and 330 dtex / 24 filaments. A raw yarn was made, and then the raw yarn was drawn 4.0 times to obtain a drawn yarn of 83 dtex / 24 filament. Table 3 shows the evaluation results of the drawn yarn.
  • Example 13 to 15 Comparative Examples 15 to 18
  • the same procedure as in Example 12 was performed except that the addition amount of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate was changed to the values shown in Table 3.
  • Table 3 shows the evaluation results of the drawn yarn.
  • Example 16 In Example 15, the same procedure as in Example 15 was performed, except that a spinneret having 36 perforations at the time of spinning discharge was used. Table 3 shows the evaluation results of the drawn yarn.
  • Example 17 Using the multifilament yarn obtained in Example 12, using 33 dtex / 12 filament made of polyethylene terephthalate as a counterpart yarn, and a multifilament yarn having a hot water shrinkage of 40%, the number of entanglements was 55 in the blended yarn process shown in FIG. A 1 / m blended yarn was prepared. The blend yarn process tone was good and the occurrence of fluff was small. A cylindrical knitting was prepared using the mixed yarn in the same manner as in Example 12, and the constituent parts of the core-sheath structure of the present invention after normal pressure cationic dyeability and dyeing were observed. The evaluation results of the yarn are shown in Table 3.
  • Example 18 In Example 17, it carried out similarly to Example 17 except having used the multifilament yarn obtained in Example 13 instead of the multifilament yarn obtained in Example 12.
  • the multifilament of the present invention formed a core-sheath structure in which the sheath part was uniformly formed.
  • the evaluation results of the yarn are shown in Table 3.
  • Example 19 A multifilament of Example 12 and a 44 dtex polyetherester elastic yarn as an elastic yarn were prepared. Using these yarns, a covering yarn in which the multifilament of Example 12 was coated around an elastic yarn under the condition that the number of twisted covering yarns was 500 T / m using a hollow spindle device was produced. Since the strength and elongation of the multifilament were good, the covering process tone was good, and the atmospheric pressure cationic dyeability evaluation in the tubular knitting was also good. The evaluation results of the yarn are shown in Table 3.
  • Comparative Example 19 In Comparative Example 18, the same procedure as in Comparative Example 18 was performed, except that a spinneret having 12 nozzle punches was used during spinning discharge. The evaluation results of the yarn are shown in Table 3.
  • Comparative Example 21 Using the multifilament of Comparative Example 15, a mixed fiber was prepared in the same manner as in Example 17 and evaluated. In the process of blending, there was a lot of fluff due to insufficient strength of the raw yarn, and the core-sheath blended thread was only inadequate quality. Moreover, the core part was exposed due to a poor confounding, and a marbling appearance was obtained. The evaluation results of the yarn are shown in Table 3.
  • Comparative Example 22 Using the multifilament of Comparative Example 16, a mixed yarn was prepared and evaluated in the same manner as in Example 17. The evaluation results of the yarn are shown in Table 3.
  • Example 20 After the copolymerized polyester chip obtained in Example 1 was dried at 140 ° C. for 5 hours, a spinneret with 72 die perforations was used, a spinning temperature of 285 ° C., and a portion of 90 dtex / 72 filament at a winding speed of 3000 m / min. A drawn yarn was created. Further, the partially drawn yarn obtained using the false twisting apparatus shown in FIG. 5 was false twisted 1.6 times to obtain a 56 dtex / 72 filament false twisted yarn. The evaluation results of the obtained yarn are shown in Table 4.
  • Example 21 to 23 Comparative Examples 24 to 27
  • the same procedure as in Example 20 was performed except that the addition amount of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate was changed to the values shown in Table 4.
  • the evaluation results of the obtained yarn are shown in Table 4.
  • Example 24 In Example 23, the same procedure as in Example 20 was performed, except that a spinneret having 144 nozzle punches was used during spinning discharge. The evaluation results of the obtained yarn are shown in Table 4.
  • Example 25 A false twisted yarn obtained in Example 22 and a 44 dtex polyetherester elastic yarn as an elastic yarn were prepared. Using these yarns, a covering yarn in which the false twisted yarn of Example 22 was coated around the elastic yarn was produced using a hollow spindle device under the condition that the number of covering twisted yarns was 500 T / m. Since the strength and elongation of the false twisted yarn were good, the covering process tone was good, and the atmospheric pressure cationic dyeability evaluation in the tube was good.
  • Comparative Example 28 In Comparative Example 27, the same procedure as in Comparative Example 27 was performed, except that a spinneret having 144 nozzle perforations was used during spinning discharge. The evaluation results of the obtained yarn are shown in Table 4.
  • Comparative Example 30 A covering yarn was produced in the same manner as in Example 25 using the false twisted yarn of Comparative Example 24. Although the dyeability was good, the strength and elongation were not sufficient, and there were many yarn breaks and fluffs in the covering process, and the process condition was poor.
  • Example 26 (Manufacture of hollow fibers and irregular cross-section fibers) [Example 26] After the copolymerized polyester chip obtained in Example 1 was dried at 140 ° C. for 5 hours, the spinning temperature was 285 ° C., the slit width was 0.08 mm, the circumferential arrangement diameter (PCD) was 0.8 mm, and the number of die perforations Extruded a polymer from 24 spinnerets and produced a 330 dtex / 24 filament yarn at a winding speed of 400 m / min. Next, the raw yarn was drawn 4.0 times to obtain a hollow drawn yarn of 83 dtex / 24 filament. Table 5 shows the evaluation results of the obtained hollow drawn yarn.
  • Example 26 was carried out in the same manner as Example 26 except that the addition amounts of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate were changed to the values shown in Table 5.
  • Table 5 shows the evaluation results of the obtained hollow drawn yarn.
  • Example 30 In Example 29, the same procedure as in Example 29 was used, except that a spinneret having a slit width of 0.08 mm, a circumferential arrangement diameter (PCD) of 0.8 mm and a number of perforations of 36 was used. did. Table 5 shows the evaluation results of the obtained hollow drawn yarn.
  • Example 31 The hollow multifilament of Example 30 and a 44 dtex polyetherester elastic yarn were prepared as the elastic yarn. Using these yarns, a covering yarn in which the hollow multifilament of Example 30 was coated around an elastic yarn was produced using a hollow spindle apparatus under the condition that the number of twisted covering yarns was 500 T / m. Since the strength and elongation of the hollow multifilament were good, the covering process was good, and the atmospheric pressure cationic dyeability evaluation in the tube was good. The evaluation results of the yarn are shown in Table 5.
  • Comparative Example 35 In Comparative Example 34, the same procedure as in Example 29 was performed, except that a spinneret with 12 nozzle punches was used at the time of spinning discharge. The evaluation results of the yarn are shown in Table 5.
  • Example 32 The copolyester chip obtained in Example 1 was spun at a spinning temperature of 290 ° C. from a spinneret having 36 discharge holes having a single yarn cross-sectional shape shown in FIG. Was taken up at a spinning speed of 3000 m / min. Thereafter, without being wound once, the film was stretched under the conditions of a preheating temperature of 85 ° C., a heat setting temperature of 120 ° C. and a draw ratio of 1.67, and wound at a speed of 5000 m / min to obtain a single yarn fineness of 2.4 dtex and a total fineness of 86 dtex. A multifilament made of flat cross-section fibers was obtained.
  • the degree of profile of the multifilament was 4.0.
  • the obtained multifilament was woven at a weaving density of 110 pieces / 2.54 cm and untwisted to obtain a plain woven fabric, followed by dyeing according to a conventional method, and the obtained fabric was evaluated by the above methods. Went.
  • the evaluation results of the multifilament and the fabric are shown in Table 6.
  • Examples 33 to 35, Comparative Examples 36 to 39 The same procedure as in Example 32 was performed except that the addition amount of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate was changed to the values shown in Table 6. In the same manner as in Example 32, the value of A / B in Table 6 coincided with the value of the irregularity. The evaluation results of the multifilament and the fabric are shown in Table 6.
  • Example 32 was carried out in the same manner as Example 32 except that a spinneret having 36 discharge holes having a single yarn cross-sectional shape shown in b) and c) of FIG. 2 was used.
  • the evaluation results of the multifilament and the fabric are shown in Table 6.
  • Example 38 (Manufacture of composite false twisted yarn) [Example 38] Using dried polyethylene terephthalate, a polyester filament yarn (96 dtex / 24 filament) having an elongation of 70% obtained by melt spinning at a speed of 4500 m / min was produced. Further, the normal pressure cationic dyeable copolyester chip obtained in Example 1 was melted at 285 ° C. and scraped at a spinning speed of 2500 m / min by a known melt spinning method to obtain an elongation of 150. % Polyester filament yarn (180 dtex / 48 filament) was produced. These two kinds of polyester filament yarns were aligned and entangled and stretched false twisted in the process of FIG.
  • the two yarns are supplied to the feed roller 6 and are interlaced with the first delivery roller 8 by the interlace nozzle 7 at an overfeed rate of 0.5% and a pressure / air pressure of 4 kg / cm 2. m entanglement was given. Subsequently, the roller 8 is supplied to the false twist zone, the draw ratio is 1.284 times, the false twist number is 2400 T / m, the heater temperature is 210 ° C., and the yarn speed, that is, the speed of the second delivery roller 11 is 250 m / min. Twisting was performed.
  • the processed yarn thus obtained is observed with a microscope, it is a composite false-twisted yarn having a uniform alternating twisted two-layer structure, and the yarn constituting the core (elongation 30%) and the outer layer (elongation 55). %) was a processed yarn having a partial entanglement (23 pieces / M) in which filaments are intertwined with each other. Further, when weaving using this yarn, there was no trouble such as generation of neps in the weaving process, and the resulting woven fabric had a spun-like texture. Also, good results were obtained in dyeability. The results are shown in Table 7.
  • Example 39 to 41 Comparative Examples 40 to 43
  • Example 38 The same procedure as in Example 38 was performed except that the addition amount of dimethyl 5-sodium sulfoisophthalate and tetrabutylphosphonium 5-sulfoisophthalate was changed to the values shown in Table 7.
  • Table 7 shows the results.
  • a normal pressure cationic dyeable polyester capable of obtaining a polyester fiber having good dyeability with a cationic dye under normal pressure and higher strength than a conventional normal pressure cationic dyeable polyester fiber.
  • the blended yarn and covering yarn using the polyester fiber manufactured from the normal pressure cationic dyeable polyester can be provided.
  • the blended yarn and covering yarn can be mixed with other fibers that are difficult to dye at high temperature and have the property of high strength and low hot water shrinkage, so it has a clear color, texture, strength and elongation. It is suitable as a men's and women's apparel application that requires a balance.
  • the normal pressure cationic dyeable polyester multifilament or false twisted yarn and covering yarn using the same of the present invention have high strength and good atmospheric pressure cationic dyeability and fastness, and can be used as fine yarns. Therefore, a fabric having a texture, softness, and denseness can be obtained.
  • hollow fibers or irregular cross-section fibers are produced as polyester fibers, they have high strength, good atmospheric pressure cationic dyeability and fastness, and excellent performance in heat retention, bulkiness, lightness, etc. It is suitably used for fibers, and is also suitably used for materials such as interior and bedding fibers such as curtains, carpets, and futonwa, various fabrics, various knitted fabrics, short fiber nonwoven fabrics, and long fiber nonwoven fabrics.
  • the spun-like composite false twisted yarn using the normal pressure cationic dyeable polyester fiber of the present invention has good bulkiness, and can be dyed by knitting and weaving with natural fiber or urethane fiber.
  • a soft and clear polyester fabric for men's clothing or polyester fabric for women's clothing can be provided. Its industrial significance is extremely great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の課題は、常圧下でのカチオン染色が可能で、且つ高強度の常圧カチオン可染性ポリエステルを提供することである。その課題は主たる繰返し単位がエチレンテレフタレートより構成されるポリエステルであり、該ポリエステルを構成する酸成分中にスルホイソフタル酸の金属塩(A)及びスルホイソフタル酸のホスホニウム塩等である化合物(B)を2つの数式を同時に満足する状態で含有する共重合ポリエステルであることを特徴とする常圧カチオン可染性ポリエステルにより解決することができる。好ましくはその共重合ポリエステルのガラス転移温度が70~85°Cの範囲にあり、且つその共重合ポリエステルの固有粘度が0.55~1.00dL/gの範囲にあることである。またその共重合ポリエステルを溶融紡糸することによりポリエステル繊維を提供することができる。

Description

常圧カチオン可染性ポリエステル及び繊維
 本発明は、常圧下でカチオン染料に可染性である常圧カチオン可染性ポリエステル及びそれよりなる繊維等に関する。
 ポリエチレンテレフタレートを代表とするポリエステル繊維は、その化学的特性から分散染料、アゾイック染料でしか染色できないため、鮮明且つ深みのある色相が得られにくいという欠点があった。かかる欠点を解消する方法として、ポリエステルにスルホイソフタル酸の金属塩を2~3モル%共重合する方法が提案されている(例えば、特許文献1,2参照。)。
 しかしながら、かかる方法によって得られるポリエステル繊維は、高温・高圧下でしか染色することができず、天然繊維やウレタン繊維などと交編、交織した後に染色すると、天然繊維、ウレタン繊維が脆化するという問題があった。これを常圧下、100℃付近の温度で十分に染色しようとすれば、スルホイソフタル酸の金属塩を多量にポリエステルに対して共重合されることが必要となる。しかし、この場合スルホネート基の作用による溶融粘度の増粘効果から、ポリエステルの重合度を高くすることが困難であった。故にそのポリエステルを用いて溶融紡糸にて得られるポリエステル繊維の強度が著しく低下し、さらに紡糸操業性が著しく悪化するという問題があった。特に単糸繊度が2dtex以下の細繊度の常圧カチオン可染性ポリエステル繊維は製造が難しいという問題があった。
 一方、このような問題を解決するため、イオン結合性分子間力の小さいカチオン可染性モノマーを共重合する技術が開示されている(例えば、特許文献3、4参照。)。イオン結合性分子間力の小さいカチオン可染性モノマーとしては、5-スルホイソフタル酸テトラブチルホスニウムなどが例示されている。これらのカチオン可染性モノマーを共重合したポリエステルは熱安定性が悪い問題があった。すなわち、常圧カチオン可染化させるため、それらの化合物の共重合量を増加させようとしても、重合反応途中で熱分解が進行し、高分子量化させることが困難であった。さらに溶融紡糸する際の熱履歴による分解が大きく、結果として得られる糸の強度が弱くなるという欠点を有していた。また、使用する5-スルホイソフタル酸テトラブチルホスホニウムは非常に高価であり、結果として得られる常圧カチオン可染性ポリエステルのコストが大幅に増大するという問題があった。
 かかる問題を解決する方法として、耐光性の低下が少なく、且つ常圧可染性を出す方法としてアジピン酸、セバシン酸のような直鎖状の炭化水素のジカルボン酸、若しくはジエチレングリコール、ネオペンチルグリコール、若しくはシクロヘキサンジメタノールのようなグリコール成分、又は数平均分子量が400~1000のポリアルキレングリコールを、スルホイソフタル酸の金属塩と共にポリエステルに共重合する方法が提案されている(例えば、特許文献5~7参照。)。
 これらの方法は、共重合成分によりポリエステルのガラス転移温度を低下させることにより、100℃以下の温度におけるポリエステル中への染料の拡散速度を上げることで、常圧でのカチオン可染化を可能にしている。しかしながら、いずれの方法でも得られたポリエステルを溶融紡糸して得られる常圧カチオン可染性ポリエステル繊維の強度が低くなる。従って、その繊維を用いて得られる布帛の引き裂き強度が低下する、ポリエステルのガラス転移温度が低くなるために熱セット性が悪化し、仮撚捲縮加工性が悪く風合いが硬くなる、染色堅牢度が低いなどの問題があった。更には繊維強度が低いために細繊度化するのが難しく、その結果風合いのやわらかい布帛を得るのが難しいという問題もあった。
 また、5-ナトリウムスルホイソフタル酸を共重合したポリエステルを鞘部に配し、95モル%以上がエチレンテレフタレートの繰返し単位からなるポリエステルを芯部に配した複合繊維が提案されている(例えば特許文献7参照。)。しかしながら、鞘部を構成する共重合ポリエステル中のスルホイソフタル酸金属塩成分の共重合量には、前述と同様の理由で限界があり、十分な染着性を得ることが困難であること、並びに複合繊維とすることで紡糸工程での加工コストが増加すること、又は繊維断面形状などに制約が生じるなどの課題があった。また複数種のスルホイソフタル酸成分を併用することについても開示があるが(例えば特許文献8参照)、その文献中に開示された条件範囲では、得られるポリエステルの溶融粘度が高く、得られるポリエステル繊維の強度が充分でなかった。
 更に常圧カチオン可染性ポリエステルマルチフィラメントとこれより熱水収縮性の大なるポリエステル繊維糸条とを使用して異収縮ポリエステル混繊糸とする場合に以下のような問題点があった。つまり、従来の常圧カチオン可染性ポリエステルでは熱水収縮率が高く、常圧カチオン可染性ポリエステル糸が均一に鞘を形成する芯鞘構造糸となりにくいという問題や、繊維強度が低いため混繊糸工程で断糸、毛羽発生が多く品質の良い混繊糸を製造する上で大きな問題があった。こうした現状に鑑み上記の問題点を解決できる常圧カチオン可染性ポリエステル繊維が求められていた。
 又常圧カチオン可染性ポリエステルを仮撚加工糸とする場合にも以下のような問題点があった。つまり、従来の常圧カチオン可染性ポリエステルでは仮撚加工工程に耐えうる強度と伸度を満足する糸条が得られず、断糸、毛羽発生が大になるという大きな問題があった。こうした現状に鑑み細繊度で強度、伸度、満足する等上記の問題を解決することができる常圧カチオン可染性ポリエステル繊維、常圧カチオン可染性ポリエステル仮撚加工糸が求められていた。
特公昭34-10497号公報 特開昭62-89725号公報 特開平1-162822号公報 特開2006-176628号公報 特開2002-284863号公報 特開2006-200064号公報 特開平7-126920号公報 特開平1-172425号公報
 本発明は上記の課題を解決するものであり、常圧下でのカチオン染色が可能で、且つ高強度で、熱セット性も良好で捲縮等が固定しやすい常圧カチオン可染性ポリエステル繊維を得ることができる常圧カチオン可染性ポリエステルを提供することである。更に、そのポリエステルよりなり、上記の課題を解決しうる常圧カチオン可染性ポリエステル繊維、及びその繊維を用いた混合糸、複合糸を提供することである。
 上記の課題に鑑み本発明者らは鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は、主たる繰返し単位がエチレンテレフタレートより構成される共重合ポリエステルであり、該共重合ポリエステルを構成する酸成分中にスルホイソフタル酸の金属塩(A)及び下記式(I)で表される化合物(B)を下記数式(1)及び(2)を同時に満足する状態で含有する共重合ポリエステルであり、これにより上記の課題となっている要件を満たす常圧カチオン可染性ポリエステルを提供することができる。
Figure JPOXMLDOC01-appb-C000002
[上記式中、Rは水素原子又は炭素数1~10個のアルキル基を表し、Xは4級ホスホニウムイオン又は4級アンモニウムイオンを表す。]
  3.0≦A+B≦5.0       (1)
  0.3≦B/(A+B)≦0.7   (2)
[上記数式中、Aは共重合ポリエステルを構成する全酸成分を基準としたスルホイソフタル酸の金属塩(A)の共重合量(モル%)を、Bは共重合ポリエステルを構成する全酸成分を基準とした上記式(I)で表される化合物(B)の共重合量(モル%)を表す。]
なお、その共重合ポリエステルは該共重合ポリエステルのガラス転移温度が70~85℃の範囲にあり、且つ得られる共重合ポリエステルの固有粘度が0.55~1.00dL/gの範囲にあることも好ましい態様である。
 またその共重合ポリエステルを溶融紡糸、延伸して得られたポリエステル繊維、ポリエステル繊維の繊維軸と直角方向の繊維断面の異形度が1.2~7.0であり溶融紡糸して得られるポリエステル繊維、及び中空率が2~70%である溶融紡糸して得られたポリエステル繊維も本発明の範疇である。さらにそれらのポリエステル繊維を用いた仮撚加工糸、複合糸、混合糸、カバリング糸をも本発明の範疇である。
 また主たる繰り返し単位がエチレンテレフタレートからなるポリエステル繊維であって、破断強度が3.0cN/dtex以上、且つ該ポリエステル繊維から平織物を製造し、該平織物を下記の常圧カチオン染色条件で染色を行い、染色後の平織物を色差計にて測定したときのL*値が24以下となることを特徴とするポリエステル繊維によっても上記の課題を解決することができる。更に、そのポリエステル繊維を用いた仮撚加工糸、複合糸、混合糸、カバリング糸をも本発明の範疇である。
・常圧カチオン染色条件
黒色カチオン染料:Aizen CATHILON Black BL-DP(保土ヶ谷化学株式会社製)をポリエステル平織物に対して15%owfとなるように用い、染色助剤として硫酸ナトリウム3g/L、酢酸0.3g/Lを添加し、浴比1:50にて、98℃、1時間の条件で得られた平織物に対して染色処理行った。
 本発明によれば、常圧下でのカチオン染料を用いた染色操作による染着性が良好で、且つ従来の常圧カチオン可染性ポリエステルよりも強度が高く、熱セット性も良好で捲縮等が固定しやすい常圧カチオン可染性ポリエステル、及び常圧カチオン可染性ポリエステル繊維を提供することができる。またそのポリエステル繊維を用いた混繊糸及びカバリング糸を提供することができる。その混繊糸及びカバリング糸は、他の高温染色が難しい他の繊維との混合が可能で、高強度低熱水収縮であるので鮮明な色合い、風合い、繊維強度や伸度のバランスした紳士婦人衣料として好適である。さらに本発明の常圧カチオン可染性ポリエステルマルチフィラメント又これを用いた仮撚加工糸、カバリング糸は強度が高く且つ常圧カチオン染色性や染色堅牢度が良好で細繊度糸で用いることができ、風合い、ソフト性、緻密性のある布帛が得られる。ポリエステル繊維として中空繊維を製造した場合には、強度が高く且つ常圧カチオン染色性や染色堅牢度が良好で、保温性、嵩高性、軽量性などにおいて優れた性能を有するので衣料、資材用途に有用である。最後に、本発明の常圧カチオン可染性ポリエステル繊維を使用したスパンライク様の複合仮撚加工糸は嵩高性が良好で、天然繊維やウレタン繊維などと交編、交織して染色することができ、ソフトで鮮明な紳士衣料用ポリエステル布帛又は婦人衣料用ポリエステル布帛を提供できる。
本発明の異形断面ポリエステル繊維における断面の異形度を表すための図面である。 本発明のポリエステル偏平断面繊維の中で特有の形状を有する場合の単糸断面の模式図を示すものである。 本発明のポリエステル偏平断面繊維の単糸断面図の模式図を示すものである。 本発明の混繊糸工程の一例を示す概略図である。 本発明の仮撚加工糸工程の一例を示す概略図である。 実施例で使用した本発明の複合仮撚加工を実施する装置の一態様を示す概略図である。
図面の符号
d1:フィラメントの繊維軸と直角方向の繊維断面形状に内接する円の直径
d2:フィラメントの繊維軸と直角方向の繊維断面形状に外接する円の直径
(a)、(b)、(c):本発明のポリエステル偏平断面繊維を構成する単糸の好ましい場合の断面図
(d):同じく好ましくない場合である2つの山を有する偏平糸の断面図
(e):同じく好ましくない場合である7つの山を有する偏平糸の断面図
(f):同じく好ましくない場合であるの偏平断面糸の断面図
A:扁平断面繊維の長軸
B:扁平断面繊維の短軸の最大径
C:扁平断面繊維の短軸の最小径
A1:常圧カチオン可染性ポリエステルフィラメントからなる原糸
B1:A以外の特徴を付与せしむる原糸
1:フィードローラー
2:予熱ローラー
3:交絡用空気噴射ノズル
4:引き取りローラー
5:セットヒーター
6:捲取パッケージ(本発明の常圧カチオン可染性混繊糸)
7:本発明の常圧カチオン可染性ポリエステル糸
8:糸ガイド
9、9':フィードローラー
10:インターレースノズル
11:第1ヒーター
12:冷却プレート
13:仮撚ディスクユニット
14:第1デリベリーローラー
15:第2ヒーター
16:第2デリベリーローラー
17:巻取ローラー
18:ポリエステル仮撚加工糸チーズ
19、19’:原糸
20:ガイド
21:張力装置
22:フィードローラー
23:インターレースノズル
24:第1デリベリローラー
25:ヒーター
26:仮撚具、
27:第2デリベリローラー
28:巻取ローラー
29:巻取チーズ
 以下、本発明について詳細に説明する。
 本発明に使用される共重合ポリエステルとは、テレフタル酸又はそのエステル形成性誘導体と、エチレングリコール成分とを重縮合反応せしめて得られるエチレンテレフタレートを主たる繰返し単位とする共重合ポリエステルである。その共重合成分としてスルホイソフタル酸の金属塩(A)及び下記式(I)で表される化合物(B)を下記数式(1)及び(2)を同時に満足する状態で含有する共重合ポリエステルである。該共重合ポリエステルのガラス転移温度が70~85℃の範囲にあり、且つ得られる共重合ポリエステルの固有粘度が0.55~1.00dL/gの範囲にあることがより好ましい共重合ポリエステルである。
Figure JPOXMLDOC01-appb-C000003
[上記式中、Rは水素原子又は炭素数1~10個のアルキル基を表し、Xは4級ホスホニウムイオン又は4級アンモニウムイオンを表す。]
  3.0≦A+B≦5.0       (1)
  0.3≦B/(A+B)≦0.7   (2)
[上記数式中、Aは共重合ポリエステルを構成する全酸成分を基準としたスルホイソフタル酸の金属塩(A)の共重合量(モル%)を、Bは共重合ポリエステルを構成する全酸成分を基準とした上記式(I)で表される化合物(B)の共重合量(モル%)を表す。]
 ここでテレフタル酸のエステル形成性誘導体とは、テレフタル酸の、ジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステル、ジヘキシルエステル、ジオクチルエステル、ジデシルエステル、若しくはジフェニルエステル又はテレフタル酸ジクロライド、若しくはテレフタル酸ジブロマイドを挙げる事ができるが、これらの中でもテレフタル酸ジメチルエステルが好ましい。
(共重合ポリエステル)
 本発明における共重合ポリエステルとはエチレンテレフタレートを主たる繰返し単位とするポリエステルである。ここで、主たる繰り返し単位とは共重合ポリエステルを構成する全繰り返し単位あたり80モル%以上がエチレンテレフタレート単位であることを表している。好ましくは90モル%以上がエチレンテレフタレート単位であることである。共重合ポリエステルを構成する全繰り返し単位あたり20モル%以下の範囲内で他の成分が共重合されていても良い。その他の共重合成分としては、ジカルボン酸成分としてはイソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4'-ジフェニルジカルボン酸、4,4'-ジフェニルメタンジカルボン酸、ジフェニルケトンジカルボン酸、4,4'-ジフェニルスルホンジカルボン酸、コハク酸、アジピン酸、アゼライン酸を挙げる事ができる。またその他の共重合成分としてグリコール成分としては1,2-プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘプタメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、ジプロピレングリコール、ビス(トリメチレングリコール)、ビス(テトラメチレングリコール)、トリエチレングリコール、1,4-ジヒドロキシシクロヘキサン、1,4-シクロヘキサンジメタノールが挙げる事ができる。これらの1種以上のジカルボン酸成分と1種以上のグリコール成分を反応させて得られる成分を、全繰り返し単位あたり20モル%以下の割合で共重合されていても良い。
(スルホイソフタル酸の金属塩(A))
 本発明で使用されるスルホイソフタル酸の金属塩(A)としては、5-スルホイソフタル酸のアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩)を例示することができる。必要に応じて5-スルホイソフタル酸のマグネシウム塩、カルシウム塩等のアルカリ土類金属塩を併用しても良い。また、これらのエステル形成性誘導体も好ましく例示される。エステル形成性誘導体としては5-スルホイソフタル酸金属塩のジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステル、ジヘキシルエステル、ジオクチルエステル、ジデシルエステル、ジフェニルエステル、又は5-スルホイソフタル酸金属塩の酸ハロゲン化物を挙げる事ができる。これらの中でも5-スルホイソフタル酸金属塩のジメチルエステルが好ましい。これらの化合物群の中では、熱安定性、コストなどの面から、5-スルホイソフタル酸のアルカリ金属塩が好ましく例示され、特に5-ナトリウムスルホイソフタル酸又はそのジメチルエステルである5-ナトリウムスルホイソフタル酸ジメチルが特に好ましく例示される。これらの条件を満たす化合物である場合に、ポリエステル繊維とした場合の充分な常圧カチオン可染性と充分な繊維強度の両立が可能となる。
(化合物(B))
 また、上記式(I)で表される化合物(B)としては、5-スルホイソフタル酸若しくはその低級アルキルエステルの4級ホスホニウム塩又は5-スルホイソフタル酸若しくはその低級アルキルエステルの4級アンモニウム塩を挙げることができる。4級ホスホニウム塩、4級アンモニウム塩としては、リン原子又は窒素原子にアルキル基、ベンジル基又はフェニル基が結合した4級ホスホニウム塩、4級アンモニウム塩が好ましく、特に4級ホスホニウム塩であることが好ましい。また、リン原子又は窒素原子に結合している4つの置換基は同一であっても異なっていても良い。上記式(I)で表される化合物の具体例としては、5-スルホイソフタル酸テトラメチルホスホニウム塩、5-スルホイソフタル酸テトラエチルホスホニウム塩、5-スルホイソフタル酸テトラブチルホスホニウム塩、5-スルホイソフタル酸エチルトリブチルホスホニウム塩、5-スルホイソフタル酸ベンジルトリブチルホスホニウム塩、5-スルホイソフタル酸フェニルトリブチルホスホニウム塩、5-スルホイソフタル酸テトラフェニルホスホニウム塩、5-スルホイソフタル酸ブチルトリフェニルホスホニウム塩、5-スルホイソフタル酸ベンジルトリフェニルホスホニウム塩、5-スルホイソフタル酸テトラメチルアンモニウム塩、5-スルホイソフタル酸テトラエチルアンモニウム塩、5-スルホイソフタル酸テトラブチルアンモニウム塩、5-スルホイソフタル酸テトラフェニルアンモニウム塩、5-スルホイソフタル酸フェニルトリブチルアンモニウム塩、5-スルホイソフタル酸ベンジルトリメチルアンモニウム塩、又は5-スルホイソフタル酸ベンジルトリブチルアンモニウム塩を挙げることができる。あるいはこれらイソフタル酸誘導体のホスホニウム塩、アンモニウム塩のジメチルエステル、ジエチルエステル、ジプロプルエステル、ジブチルエステル、ジへキシルエステル、ジオクチルエステル、又はジデシルエステルが好ましく例示される。これらのイソフタル酸誘導体の中でも、5-スルホイソフタル酸ジメチルテトラブチルホスホニウム塩、5-スルホイソフタル酸ジメチルベンジルトリブチルホスホニウム塩、5-スルホイソフタル酸ジメチルテトラフェニルホスホニウム塩、5-スルホイソフタル酸ジメチルテトラメチルアンモニウム塩、5-スルホイソフタル酸ジメチルテトラエチルアンモニウム塩、5-スルホイソフタル酸ジメチルテトラブチルアンモニウム塩、5-スルホイソフタル酸ジメチルベンジルトリメチルアンモニウム塩がより好ましく例示される。これらの条件を満たす化合物である場合に、ポリエステル繊維とした場合の充分な常圧カチオン可染性と充分な繊維強度の両立が可能となる。
(数式(1))
 本発明において、ポリエステルに共重合させる上記のスルホイソフタル酸の金属塩(A)と上記の化合物(B)の共重合量の合計は共重合ポリエステルを構成する全酸成分を基準として、(A)成分と(B)成分の和A+Bが3.0~5.0モル%の範囲である必要がある。3.0モル%より少ないと、常圧下でのカチオン染色条件では十分な染着を得ることができない。一方、5.0モル%より多くなると、得られるポリエステル糸の強度が低下するため実用に適さない。さらに染料を過剰に消費するため、コスト面でも不利である。好ましくは3.2~4.8モル%であり、より好ましくは3.3~4.7モル%である。
(数式(2))
 また、スルホイソフタル酸の金属塩(A)と化合物(B)の成分比率は上記のモル%の値にて、B/(A+B)が0.3~0.7の範囲にある必要がある。成分比率が0.3未満、つまり成分(A)の比率が多い状態では、スルホイソフタル酸金属塩による増粘効果により、得られる共重合ポリエステルの重合度を上げることが困難になる。一方、成分比率が0.7を超えると、つまり化合物(B)の割合が多い状態では、重縮合反応速度が遅くなり、さらに化合物(B)の比率が多くなると熱分解反応が進むため重合度を上げることが困難となる。さらに、化合物(B)の比率多くなると共重合ポリエステルの熱安定性が悪化し、溶融紡糸段階で再溶融した際の熱分解反応による分子量の低下が大きくなるため、得られるポリエステル糸の強度が低下するため好ましくない。好ましくはこの成分比率は0.32~0.65であり、より好ましくは0.35~0.60である。
 スルホイソフタル酸の金属塩(A)をポリエステルに共重合することにより常圧カチオン可染性は付与する事ができるが、スルホン酸金属塩基間のイオン結合に由来すると思われる共重合ポリエステルの溶融粘度の増粘効果のため、従来共重合ポリエステルを高重合度化することが困難であった。そのため十分に高い重合度、高い固有粘度を有する共重合ポリエステルが得られず、その高い固有粘度でない共重合ポリエステルから得られるポリエステル繊維は、繊維強度が著しく低下する問題があった。一方その問題を解消するためにスルホイソフタル酸のテトラアルキルアンモニウム塩又はスルホイソフタル酸のテトラアルキルホスホニウム塩、即ち化合物(B)をポリエステルに共重合することが開示されている。しかし、当該化合物は重縮合反応中に熱分解を起こしやすいため、共重合量を上げようとすると熱分解反応が進みやすい問題があり、ポリエステル繊維強度を高い値にすることが依然として困難であった。本発明の共重合ポリエステルにおいては、これらのスルホイソフタル酸の金属塩(A)と化合物(B)を併用し、双方の化合物の共重合量、共重合比率を特定の範囲に設定することによって、充分な常圧カチオン染料による染色性と高い繊維強度を両立させ、且つ熱セット性が良好で捲縮を固定しやすいと言った物性をも同時に有する事を我々は見出した。その結果我々は本発明に至ったものである。この共重合ポリエステルを用いた繊維がカチオン染料による染色性、高い繊維強度及び熱セット性が良好で捲縮を固定しやすいという物性をも有することは驚くべき事であった。さらに、その共重合ポリエステルのガラス転移温度及び固有粘度を特定の範囲に設定することによって、充分な常圧カチオン染料による染色性と高い繊維強度を両立させ、
(ガラス転移温度)
 本発明の共重合ポリエステルは、DSC(示差走査熱量測定)法による測定方法(昇温速度=20℃/min)でのガラス転移温度(Tg)が70~85℃の範囲であることも好ましい。Tgが70℃未満の場合、溶融紡糸による得られたポリエステル繊維の熱セット性が悪化し、仮撚捲縮加工性が悪化し、撚りがかからない状態となることがあるため、該共重合ポリエステルからなるポリエステル繊維から得られる布帛の風合いが悪化することがある。ガラス転移温度を下げる方法としては、アジピン酸、セバシン酸、ジエチレングリコール、ポリエチレングリコールなどを共重合することで達成されるが、本発明においてはこれら共重合成分が、上記のガラス転移温度の条件を満足する範囲であれば微量共重合されていても良い。Tgの好ましい値の範囲は71~80℃である。
 一方通常、ポリエチレンテレフタレートのガラス転移温度は70~80℃くらいであることが知られているので、本発明の共重合ポリエステルにおいては、上述のように他の共重合成分が共重合されていても良いが、共重合した結果ガラス転移温度を著しく降下させる成分については共重合させることは好ましくない。ガラス転移温度を上記の値の範囲にするには、例えば上述の共重合ポリエステルの説明の項で挙げた共重合されても良い化合物の種類・共重合率を適宜調整して共重合させることを挙げる事ができる。
(固有粘度)
 本発明の共重合ポリエステルの固有粘度(測定溶媒:オルトクロロフェノール、測定温度:35℃)は0.55~1.00dL/gの範囲であることが好ましい。固有粘度が0.55dL/g未満である場合、得られるポリエステル繊維の強度が不足することがある。一方、固有粘度が1.00dL/gを超える場合、共重合ポリエステルの溶融粘度が高くなりすぎて溶融成型が困難になるため好ましくないことがある。また、固有粘度が1.00dL/gを超える場合には、溶融重合法に引続いて固相重合法により共重合ポリエステルの固有粘度を上げることが通常行われているので、重縮合工程での生産コストが大幅に増大するため好ましくない。常圧カチオン可染性ポリエステルの固有粘度としては、0.60~0.90dL/gの範囲が更に好ましい。共重合ポリエステルの固有粘度を0.55~1.00dL/gの範囲するためには、溶融重合を行う際の最終の重合温度、重合時間を調整したり、溶融重合法のみでは困難な場合には固相重合を行って適宜調整することができる。本発明においては、スルホイソフタル酸の金属塩(A)及び化合物(B)を上記数式(1)及び(2)を満たすようにポリエチレンテレフタレートに対して共重合を行い、上述のような手法により固有粘度を0.55~1.00dL/gにすることが可能となる。
(DEG含有量)
 本発明における常圧カチオン可染性ポリエステルに含有されるジエチレングリコールは、2.5重量%以下であることが好ましい。より好ましくは2.2重量%以下、更により好ましくは1.85~2.2重量%である。一般に常圧カチオン可染性ポリエステルを製造する際には、ポリエステルの製造工程において副生するジエチレングリコール(DEG)量を抑制するために、DEG抑制剤として少量のアルカリ金属塩、アルカリ土類金属塩、水酸化テトラアルキルホスホニウム、水酸化テトラアルキルアンモニウム、トリアルキルアミンなどの少なくとも1種類を、使用するカチオン可染性モノマー(本発明の場合はスルホイソフタル酸の金属塩(A)及び化合物(B)の全モル量)に対して、1~20モル%程度を添加することが好ましい。
(不活性粒子の種類)
 さらに、本発明の共重合ポリエステルには特定の不活性粒子を含有させ、常圧カチオン可染性ポリエステル組成物とすることもできる。より具体的には上述のような共重合ポリエステルに、平均粒子径が0.01~0.5μmの範囲であって粒子径が0.5μmを越える粒子の頻度分布率が不活性粒子全重量を基準として20重量%以下である不活性粒子を常圧カチオン可染性ポリエステル組成物の重量を基準にして0.1~5.0重量%含有させて、常圧カチオン可染性ポリエステル組成物とすることである。当該ポリエステル組成物とすることで、そのポリエステル組成物からポリエステル繊維を製造した際にカチオン染料による充分な染色性と高い繊維強度を両立できることに加えて、そのポリエステル繊維を染色した際の鮮明性、深色染色性と言った物性をも同時に改良することができる。その不活性粒子について以下詳細に説明する。
 またその不活性粒子が炭酸カルシウム、リン酸カルシウム、珪酸カルシウム、酸化ケイ素、酸化アルミニウム、シリコーンパウダー、カオリナイト、シリカゾル、硫酸バリウム及び酸化チタンよりなる群から選ばれる少なくとも1種の不活性粒子であることが好ましい。また、不活性粒子は単一種であっても、複数種を併用しても良い。更にこれらの中でも特に炭酸カルシウム、リン酸カルシウム、シリカゾルが好ましく使用される。また、リン酸カルシウムとしては活性水素原子を持たない第三リン酸カルシウムが特に好ましく使用される。
 上記の常圧カチオン可染性ポリエステル組成物は上記の常圧カチオン可染性ポリエステルに、更に平均粒子径が0.01~0.5μmの範囲であって、かつ粒子径が0.5μmを超える粒子の頻度分布率が20重量%以下である不活性粒子を常圧カチオン可染性ポリエステル組成物の全重量を基準として0.1~5.0重量%含有していることが好ましい。ここで不活性とは後述する共重合ポリエステルの製造方法の工程、繊維その他の成形品を製造又は処理する工程において共重合ポリエステル鎖を構成している基と化学反応を起こすことがないことを示している。
(不活性粒子の粒子径)
 本発明における不活性粒子は、平均粒子径が0.01~0.5μmの範囲であることが好ましい。不活性粒子の平均粒子径が0.5μmを超えると、ゾル又は共重合ポリエステル反応原液等の製造工程中で不活性粒子が沈降しやすく、不活性粒子を安定に供給・分散する事ができない。一方、不活性粒子の平均粒子径が0.01μm未満では、粒子の比表面積が大きすぎ、共重合ポリエステル製造工程の反応中に容易に凝集粒子を形成することがある。その結果、得られた常圧カチオン可染性ポリエステル組成物を溶融紡糸により製糸を行う時に断糸が増大するため好ましくない。該不活性粒子の平均粒子径は0.02~0.4μmの範囲が好ましく、0.03~0.3μmの範囲が更に好ましい。
 本発明における不活性粒子においては、粒径が0.5μmを超える粒子の頻度分布率が20重量%以下であることが好ましい。粒径が0.5μmを超える粒子の頻度分布率が20重量%を超えると、得られた常圧カチオン可染性ポリエステル組成物を製糸化後、アルカリ減量しても繊維表面に形成される微細孔が大きくなり、染色時の深色効果が得られないので好ましくない。該不活性粒子中の粒径が0.5μmを超える粒子(粗大粒子)の頻度分布率は15重量%以下の範囲が好ましく10重量%以下の範囲が更に好ましい。これらの観点から常圧カチオン可染性ポリエステル組成物を製造する際には、不活性粒子の種類、粒子径に充分留意して適切な不活性粒子を選択することが重要である。
(不活性粒子の含有量)
 本発明における不活性粒子含有量は、常圧カチオン可染性ポリエステル組成物の全重量を基準として0.1~5.0重量%の範囲にあることが好ましい。該不活性粒子含有量が0.1重量%未満の場合、最終的に得られるポリエスエテル繊維の深色染色性が不十分となる。また、該不活性粒子含有量が5.0重量%を超える場合は得られるポリエステル繊維の強度や耐熱性、耐光性が低下する為好ましくない。該粒子含有量は0.15~3.0重量%の範囲が好ましく、0.2~1.0重量%の範囲が更に好ましい。
(共重合ポリエステルの製造方法)
 本発明における共重合ポリエステルの製造は特に限定されず、スルホイソフタル酸の金属塩(A)(以下化合物Aと略称することがある。)及び化合物(B)を請求の範囲第1項に記載の条件を満たすように用いることに留意する他は、通常知られているポリエステルの製造方法が用いられる。すなわち、初めにテレフタル酸とエチレングリコールを直接エステル化反応させて低重合体を製造する、あるいはテレフタル酸ジメチルに代表されるテレフタル酸のエステル形成性誘導体とエチレングリコールとをエステル交換反応させて低重合体を製造する。次いでこの反応生成物である低重合体を重縮合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることにより製造することができる。スルホイソフタル酸を含有する芳香族ジカルボン酸及び/又はそのエステル誘導体(スルホイソフタル酸の金属塩(A)及び化合物(B))を共重合する方法についても通常知られている製造方法を用いる事ができる。これらの化合物の反応工程への添加時期は、エステル交換反応又はエステル化反応の開始当初から重縮合反応の開始までの任意の時期に添加することができる。熱分解を起こしやすい化合物(B)についてはエステル化反応又はエステル交換反応が終了し、重縮合反応が開始するまでに添加することが好ましく選択できる。
 またエステル交換反応時の触媒についても通常のエステル交換反応を行う際に用いられる触媒化合物を用いる事ができる。重縮合触媒についても通常用いられるアンチモン化合物、ゲルマニウム化合物、チタン化合物を用いる事ができる。またチタン化合物と、芳香族多価カルボン酸若しくは芳香族多価カルボン酸の無水物との反応生成物、又はチタン化合物とリン化合物の反応生成物を用いても良い。
 また上記の不活性粒子を添加する場合には、上記の共重合ポリエステルの製造方法の工程において任意の工程で添加することによって常圧カチオン可染性ポリエステル組成物を製造することができる。具体的にはエステル化反応工程若しくはエステル交換反応工程の当初から終わりまでの段階、重縮合反応工程の当初から終わりまでの段階、又は一旦重縮合反応工程が終わった後で共重合ポリエステルを再溶融した段階で不活性粒子を溶融状態で添加・溶融混練することができる。
(その他添加剤)
 また、本発明における共重合ポリエステルは、必要に応じて少量の添加剤、例えば酸化防止剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤又は艶消し剤などを含んでいても良い。特に酸化防止剤、艶消し剤などは特に好ましく添加される。
(溶融紡糸方法、製糸方法)
 本発明における共重合ポリエステルの製糸方法は、特に制限は無く、従来公知の方法が採用される。すなわち、乾燥した共重合ポリエステルを270℃~300℃の範囲で溶融紡糸して製造することが好ましく、溶融紡糸を行うときの紡糸速度は400~5000m/分で紡糸することが好ましい。紡糸速度がこの範囲にあると、得られるポリエステル繊維の強度も十分なものであると共に、安定して巻取りを行うこともできる。さらに、上述の方法で得られた未延伸糸若しくは部分延伸糸を、延伸工程にて1.2倍~6.0倍程度の範囲で延伸することが好ましい。この延伸工程は未延伸ポリエステル繊維を一旦巻き取ってから行ってもよく、一旦巻き取ることなく連続的に行ってもよい。また、紡糸時に使用する紡糸口金の形状についても特に制限は無く、円形、三角形・四角形等の多角形、3以上の多葉形、C型断面、H型断面、X型断面、中空断面のいずれであってもよい。このような紡糸口金を用いて得た異形断面ポリエステル繊維、中空ポリエステル繊維については後述する。上述の不活性粒子を含有する共重合ポリエステル組成物の場合であっても同様の手法にて溶融紡糸することができる。
(共重合ポリエステルからなるマルチフィラメント)
 本発明における共重合ポリエステルを用いて溶融紡糸、次いで延伸することによって、主たる繰返し単位がエチレンテレフタレートより構成されるポリエステル繊維(マルチフィラメント)であって、該ポリエステルを構成する酸成分中に、スルホイソフタル酸の金属塩(A)及び上記一般式(1)で表される化合物(B)が上記の数式(1)、(2)を満足する条件で含まれることを特徴とするポリエステル繊維を得ることができる。またそのポリエステル繊維においては、単糸繊度が7dtex以下で束ねられた単糸の数が24本以上、且つ強度が2.0cN/dtex以上、伸度が60%以下の常圧カチオン可染性ポリエステル繊維(マルチフィラメント)であることも好ましい。
 最終的にそのポリエステル繊維を使用する用途が主に衣料用途であれば、上記のような製糸方法により紡糸を行う際に、延伸後の捲き取り繊度が84dtex以下になるような吐出量と捲き取り速度の関係が好ましい。またポリマーを押し出しする際の紡糸口金の穿孔数は24ホール以上であることが好ましい。さらに、上述の方法で得られた未延伸糸若しくは部分延伸糸を、延伸工程にて1.2倍~6.0倍程度の範囲で延伸することが好ましい。この延伸は未延伸ポリエステル繊維を一旦巻き取ってから行ってもよく、一旦巻き取ることなく連続的に行ってもよい。また、紡糸時に使用する紡糸口金の形状については特に制限は無い。
 上記の製糸方法の範囲で調整し、本発明の延伸したポリエステル繊維においては、単糸繊度が7dtex以下で束ねられた単糸の数が24本以上、且つ強度が3.0cN/dtex以上、伸度が60%以下、熱水収縮率が22%以下とすることが好ましい。ここで熱水とは98℃、若しくは98℃~100℃の水のことを表す。より好ましくは強度が3.5cN/dtex以上であることである。ここで単糸繊度が7dtex以下で束ねられた単糸の数が24本以上であることが好ましく、単糸繊度が7dtexを超える場合は風合いが硬くなり好ましくなく、単糸数が24本未満であれば布帛のボリューム感が低下し好ましくない。
 得られたポリエステル繊維の強度は3.0cN/dtex以上が好ましく、ポリエステル繊維の強度が3.0cN/dtex未満であれば布帛とした時引き裂き強力が低下し好ましくない。より好ましくはポリエステル繊維の強度は3.5cN/dtex以上であることである。またポリエステル繊維の伸度は60%以下が好ましく、より好ましくは10~40%である。伸度が60%を超えると糸の収縮斑が大きくなり好ましくないことがある。また伸度が10%未満であると製織性が悪く、織物が作成しにくいことがある。
 又本発明の常圧カチオン可染性ポリエステルマルチフィラメントの熱水収縮率は22%以下とすることが好ましい。より好ましくはポリエステルマルチフィラメントの熱水収縮率は5~18%である。熱水収縮率が22%を超える場合は染色時に繊維の収縮が大きく、又異収縮混繊糸の低収縮糸として使用し芯鞘構造混繊糸の鞘部とする場合制約が大きくなり好ましくない。
 また本発明の共重合ポリエステルを一方の成分として用いて、複合ポリエステル繊維を製造することもできる。複合繊維の形態はサイドバイサイド型、芯鞘型、海島型のいずれも採用することができ、特に限定されることはない。本発明の共重合ポリエステルを用いたポリエステル繊維は、上述のように従来のカチオン可染性ポリエステル繊維に比べて繊維強度を上げることができるので、本発明の共重合ポリエステルを島成分に用いた海島型複合繊維を製造することが可能となる。その結果従来のカチオン可染性ポリエステル繊維に比べて極細のポリエステル繊維を得ることが可能となる。
(アルカリ減量加工)
 本発明のポリエステル繊維は従来のポリエステル繊維と同様に、アルカリ化合物を含む水溶液中にて減量加工を行うことができる。特に上記の共重合ポリエステル組成物をポリエステル繊維とした場合には、繊維に微細孔を有する構造を発現させるため、アルカリ減量処理を施したのち、常圧下でカチオン染料による染色を行うこともできる。アルカリ減量処理ならびに常圧カチオン染色処理は公知の方法を採用する事ができるが、前述の手法により得られたポリエステル繊維を用いて織編物の状態にした後に、アルカリ減量処理を施すことにより、繊維微細孔を有する構造にすることができる。その結果、ポリエステル繊維表面での光散乱効果、並びに繊維内部までカチオン染料が浸透することにより、繊維断面内部まで染色することが可能になり、これにより本発明の課題の1つである深色性を向上させることが可能となる。
(異形断面繊維について)
 本発明のポリエステル繊維には、上記の共重合ポリエステルから構成される異形断面ポリエステル繊維も含まれる。異形断面だけでも色相の優れた繊維を得ることができるが、本発明におけるポリエステル繊維の断面形状は異形度を1.2~7.0の数値範囲を満足することが好ましい。このような異形度の値の高い繊維断面とすることにより、さらに優れた光沢を有するポリエステル繊維とすることができる。
 本発明において、ポリエステルマルチフィラメントを構成するフィラメントの繊維軸と直角方向の横断面形状における異形度とは、図1に示すようにフィラメントの繊維軸と直角方向の横断面形状に外接する円の直径をd2、内接する円の直径をd1とした時の内接円の直径に対する外接円の直径の比すなわちd2/d1で定義されるものである。この値が1.0に近いほど横断面形状は円に近くなり、この値が大きいほど繊維の断面形状が鋭い形状となることを表している。本発明の異形断面ポリエステル繊維においては、この値を1.2~7.0とすることが好ましい。
 ただし、繊維の横断面内に円形の中空部を有している場合の異形度は、中空部の直径をd3とした時の内接円の直径と中空部の直径の差に対する外接円の直径の比、すなわちd2/(d1-d3)で定義される。また、繊維の横断面内の中空部が円形でない場合又は中空部が2個以上ある場合には、中空部の全面積と同一の面積を持つ円形の中空部が横断面の中央にあると仮定した時の中空部の直径をd3とすれば良い。同心円状の中空糸(横断面形状が円形、中空部も円形)の場合にはd1=d2=R(糸の横断面形状の直径)とすれば良い。
 この異形度が1.2未満では繊維の光沢が充分でないことある。そして、該マルチフィラメントを構成するフィラメントの異形度は1.2以上であればよく、好ましくは2.0以上5.0以下であればよい。
 また、本発明のこのような繊維は通常、異形断面繊維と呼ばれるものであり、その形状としては例えば多葉、扁平、Y型、C型、V型、W型、I型等が挙げられるが、これらに限定されるものではない。ただし物性や光沢のバランスを考慮すると、その形状はY型が最も好ましい。また後述するように単糸の断面形状が偏平形状であり、該偏平形状は長手方向に丸断面単糸の3~6個が接合したような形状を有している偏平断面ポリエステル繊維も特定の目的のためには好ましく採用することができる。
 そして本発明のように繊維断面が異形である繊維の製造方法としては、異形オリフィスを有する紡糸口金から直接ポリマーを吐出することによって製造する方法が最も簡便である。具体的には、溶解速度の異なる複数成分のポリマーを同一オリフィスあるいは異なるオリフィスから吐出し接合する所謂複合紡糸によって製造した後、後工程で易溶出成分を溶解処理して異形化する方法を用いることもできる。他は上述の製糸方法を適宜適用することによって異形断面ポリエステル繊維を得ることができる。
 このようにして得られる本発明の異形断面ポリエステル繊維は、良好な色相を有しながら透明感のある光沢に優れ、かつフィブリル化の少ない品質の優れた繊維である。そして本発明の異形断面ポリエステル繊維は、衣料用繊維、カーテン、カーペット、ふとんわた等に代表されるインテリア・寝装用繊維、各種織物、各種編物、短繊維不織布、長繊維不織布用、等の各種繊維用途に好適に用いられる。
(中空率(%)及び中空率のばらつき)
 本発明のポリエステル繊維には、上記の共重合ポリエステルから構成される中空ポリエステル繊維も含まれる。このように本発明のポリエステル繊維が中空繊維の場合には、以下の手法により中空率を算出することができる。紡糸巻き取りしたポリエステルマルチフィラメントの断面写真(600倍)をとり、中空破れが認められる断面を除き、各単糸の繊維軸に直交する断面の中空部面積(A)及び断面を囲む面積(B)を測定し、下記式で計算し、全測定値の平均値を中空率(%)とした。
中空率(%)=A/B×100
また、測定値の変動率〔(標準偏差/平均値)×100〕を中空率のばらつきとした。本発明のポリエステル繊維が中空繊維の場合は、このようにして算出される中空率が2~70%であることが好ましい。
(中空破れ発生率(%))
 上記で得た断面写真で、中空破れのある単糸断面数を数え、全単糸断面数に占める割合(%)を中空破れ発生率とした。なお中空ポリエステル繊維は、紡糸口金として中空繊維用紡糸口金を用いることを除いては、上述の方法により得ることができる。なお中空繊維として用いる場合には、単糸繊度が0.3~6.0dtexであることが好ましい。より好ましくは1.0~5.0dtexである。
(扁平断面繊維)
 本発明のポリエステル繊維には、上記の共重合ポリエステルから構成される特有の形状を有している扁平断面ポリエステル繊維も含まれる。以下、単糸の断面形状が偏平形状であり、該偏平形状が特有の形状を有しているポリエステル偏平断面繊維の場合について詳細に説明する。そのポリエステル偏平断面繊維は、単糸の断面形状が偏平形状であり、該偏平形状は長手方向に丸断面単糸の3~6個が接合したような形状を有している偏平断面繊維である。ここで"接合したような"とは、現実にその溶融紡糸の段階で接合されることを示しているのでは無く、結果として"接合したような"形状を有しているという意味である。
 その偏平断面繊維の断面形状を図2により説明する。図2中の(a)~(e)は偏平断面繊維の断面形状を模式的に示したものであり、(a)は3個、(b)は4個、(c)は5個の丸断面単糸が接合したような形状を示している。
 すなわち、その偏平断面繊維の断面形状として好ましい場合は、長手方向(長軸方向)に丸断面単糸が接合したような形状である。より具体的には、長軸を軸として凸部と凸部(山と山)、凹部と凹部(谷と谷)が対称に互いに重なり合う形をしており、上記のように丸断面単糸の数は3~6個であることが好ましい。丸断面単糸の数が2個の場合には、単に丸断面繊維を布帛にした場合に近いソフト性しか得られず、防透性、低通気性、吸水性も悪くなることがある。一方、丸断面単糸の数が7個を超えると、繊維が割れ易くなり、耐磨耗性が低下することがある。
 次に図3を用いて説明する。本発明においては、偏平断面ポリエステル繊維の最大径の長さA(長軸)と該長軸に直行する最大径の長さB(短軸)の比A/Bで表される偏平度が、3~6であることが好ましい。3より小さい場合は、ソフト感が低下する傾向にあり、6より大きい場合は、ベトツキ感が生じる傾向にあり、好ましくない。
 また、その偏平断面ポリエステル繊維を用いて布帛にした時のベトツキ感を無くし、吸水性を向上させる点から、偏平断面ポリエステル繊維の短軸の最大径Bと最小径C(丸断面単糸の接合部の最小の径)の比B/Cで表される二次異形度が、1.0<B/C<5.0であることが好ましい。すなわちその偏平断面繊維が複数本集合した状態にあっては、毛細管現象によりその断面の凹部を伝わって水分が拡散する為、丸断面繊維と比較して優れた吸水性能が得られる。しかしこの二次異形度が1.0の場合は単なる偏平繊維となり、ベトツキ感が生じ、吸水性も無くなる。一方二次異形度が5以上の場合、ベトツキ感は無く、吸水性も付与できるが、丸断面単糸の接合部が短くなり過ぎ、偏平断面繊維の強度が低下し、断面が割れ易くなる等、別の欠点が生じてくる。これらの観点から、B/Cは1.0<B/C<5.0とするのが好ましく、より好ましくは1.1≦B/C≦2である。
 その偏平断面繊維の単糸繊度、及び該偏平断面繊維で構成されるマルチフィラメントの総繊度は特に規定していないが、その偏平断面繊維を衣料用途に用いる場合は、単糸繊度は0.3~3.0dtex、マルチフィラメントの総繊度は30~200dtexとするのが好ましい。
(混繊糸・複合糸)
 本発明の常圧カチオン可染性ポリエステルマルチフィラメントを公知の方法により他の原糸と混繊することができる。他の原糸としては本発明の常圧カチオン可染性ポリエステルマルチフィラメントよりも大きい熱水収縮率をもつポリエステルマルチフィラメント等を用いて異収縮混繊糸とすることが好ましい。ここで熱水収縮率差は20%以上であることが好ましい。この条件の時、混繊糸を製織後に染色工程等での熱水収縮によって低収縮糸が鞘部を形成し、均一で鮮明な染色性の布帛が得られる。混繊糸はインターレース等の空気交絡ノズルにより、60ケ/m程度の交絡処理を施すことが好ましい。ここで熱水とは98℃、若しくは98℃~100℃の水のことを表す。
 本発明の代表的な混繊糸工程を添付図面(図4)により説明する。本発明の常圧カチオン可染性ポリエステルマルチフィラメント(A1)と常圧カチオン可染性ポリエステルマルチフィラメント(A1)の熱水収縮率より大きいポリエステルマルチフィラメント(B1)とを、引き揃えて供給ローラー(1)に供給し、その後交絡用空気噴射ノズル(3)にて糸を交絡させる。その後、予熱ローラー(2)にて予熱し引き取りローラー(4)にて所定の倍率に延伸する。この時、予熱ローラーと引き取りローラーの間に設けたセットヒーター(5)により、これら混繊糸条を熱セットする。また引き取りローラーにて引き取られた糸条は、後方に配された捲取装置に連続して捲き取られ、目的とする混繊糸パッケージ(6)となる。
 一方本発明の常圧カチオン可染性ポリエステルマルチフィラメント(A1)を用いない場合、従来の常圧カチオン可染糸では強度が取れなく断糸や毛羽の発生が多発するなど混繊加工調子が低下し、又異収縮混繊糸としても収縮差が取れにくく染色したとき霜降り調となってしまい品位の良い布帛が得られない。
 なお上述のような混繊糸にあっては、常圧カチオン可染性ポリエステルマルチフィラメントとしては、単糸繊度が7dtex以下で束ねられた単糸の数が24本以上、且つ強度が2.0cN/dtex以上、伸度が60%以下の常圧カチオン可染性ポリエステルマルチフィラメントを選択することができる。さらにその常圧カチオン可染性ポリエステルマルチフィラメントの熱水収縮率は22%以下であることが好ましい。
 また本発明における複合糸とは、後述の複合仮撚糸その他の混繊糸、合撚糸、カバリング糸を包含している糸を指している。また混繊糸の1種として複合仮撚加工糸を上げることができる。またそのような複合糸は本発明の共重合ポリエステルを用いた繊維を用いることにより、その繊維部分は常圧カチオン可染性を付与し、且つ従来にない繊維強度を達成することができる。
(仮撚加工糸)
 本発明の共重合ポリエステルを用いて仮撚加工糸を製造する場合には、以下に示すようなマルチフィラメントを準備することが好ましい。即ち、上記の製糸方法の範囲で調整し、単糸繊度が1.5dtex以下で束ねられた単糸の数が5本以上、且つ強度が1.5cN/dtex以上、伸度が60%以下の常圧カチオン可染性ポリエステルマルチフィラメントとすることが好ましい。ここで単糸繊度が1.5dtex以下であることが好ましく、単糸繊度が1.5dtexを超える場合は衣料用繊維としては風合いが硬く、また常圧カチオン染色布帛においては合成繊維的外観が強く好ましくなく、又束ねられた単糸の数が5本以上であることが好ましく、5本未満であれば製織性低下、又は風合いが硬くなるのため好ましくない。
 常圧カチオン可染性ポリエステルマルチフィラメントの繊維強度は1.5cN/dtex以上であることが好ましく、強度が1.5cN/dtex未満であれば仮撚工程での断糸、毛羽発生が発生し易く又布帛とした時引き裂き強力が低下し好ましくない。好ましくは2.0~5.0cN/dtexである。又伸度は60%以下で、特に衣料用においては20~40%が好ましい。伸度が60%を超えると布帛とした時の熱セット時の巾方向の収縮が大きくなりすぎ布帛表面が波打つ事があるので布帛品位上好ましくない。
 上記の常圧カチオン可染性ポリエステルマルチフィラメントを仮撚加工して本発明の常圧可染性ポリエステル仮撚加工糸とするが、仮撚加工法としては公知の方法で行うことが出来る。例えば図5で示されるような接触式のヒーターを備えた仮撚加工機を用い、第1仮撚ヒーターの温度が200~500℃で延伸仮撚加工することが好ましい。
(カバリング糸)
 本発明のカバリング糸に使用する芯糸としての弾性糸は、従来から弾性糸として知られているものの中から適切に選択することができる。その中でも従来から使用されているポリウレタンエラストマー、ポリエーテル・ポリエステルブロック共重合体、ポリエーテル、合成ゴム弾性体からなる弾性糸を使用することが好ましい。ポリウレタンエラストマーとしては、ポリエステルジオール、ポリエーテルジオール、若しくはポリカーボネートジオールのような2価の水酸基を有するジオール成分、ポリイソシアネート成分好ましくはジイソシアネート成分(例えばジフェニルメタンジイソシアネート等)、及び低分子鎖伸長剤(例えばエチレングリコール等の低分子ジオール)を反応させるか、又は所望により更に末端停止剤を反応させて得られるポリウレタンエラストマーが例示することができる。また、ポリエーテル・ポリエステルブロック共重合体としては、ポリブチレンテレフタレート系ポリエステルをハードセグメントとし、ポリオキシブチレングリゴールをソフトセグメントとするブロック共重合体が例示することができる。なお、上記のポリウレタンエラストマーやポリエーテル・ポリエステルブロック共重合体には、必要に応じて紫外線吸収剤や酸化防止剤を添加したものが好ましく使用される。本発明における常圧カチオン可染性ポリエステル糸のカバリング糸の製造方法は、実施例によって特に限定されるものではなく、従来公知の方法を採用してよい。
 カバリング手段としては、弾性糸にドラフト(伸長)をかけながら中空スピンドルを利用した撚糸による方法又は空気混繊による方法がある。一般には、カバー効果の大きい前者が布帛の品位上優れている。ここでカバリング撚糸数は200T/m以上が好ましく、この値未満ではカバー効果が不充分で仕上げ織物の品位が不充分である。特に仮撚加工を施していないマルチフィラメント(生糸)では、カバリング撚糸数は300T/m以上が好ましい。カバリング撚糸数が300T/m以上であれば必要撚糸数は任意に設定できるが、製造コストが高くなることから、その上限は1000T/m程度までが実用的である。一方、追撚撚数は300T/m以上で本発明の意図する効果が充分発現されるが、カバリング糸条を構成する糸のタイプにより最適の撚数があり、上記範囲に限定されるものではない。また、追撚を行う場合はカバリング方向と同方向がよい。本発明の実施例では、弾性糸に44dtexのポリエーテルエステル系弾性糸と中空スピンドル装置を用いて500T/mにて作製した。
(複合仮撚加工糸における外層部糸の製糸方法)
 上記により得られた共重合ポリエステルは上述の方法により製糸する。例えば、得られた常圧カチオン可染性ポリエステルを溶融状態で繊維状に押出し、それを500~3500m/分の速度で溶融紡糸し、延伸、熱処理する方法が挙げることができる。また常圧カチオン可染性ポリエステルを1000~5000m/分の速度で溶融紡糸し延伸する方法、5000m/分以上の高速で溶融紡糸し用途によっては延伸工程を省略する方法などが好ましく挙げることができる。外層部糸の常圧カチオン可染性ポリエステル繊維の伸度は45%以上であることが好ましい。45%未満では適切な構造を有する複合仮撚加工糸の嵩高性が得られず好ましくない。
 その外層部糸の単繊維繊度は4dtex以下が好ましい。4dtexを超える場合には、混繊時に芯鞘構造とすることが難しくなることがある。一方、単繊維繊度の下限については特に制限はないが、実用的に繊維形成可能で、かつ布帛の耐摩耗性を著しく損なわないという観点から、0.1dtex以上が好ましい。本発明の外層部糸の常圧カチオン可染性ポリエステル繊維の断面形状は、用途等に応じて任意の形状とすることができ、例えば円形の他、三角形、偏平形、星型、V型等の異形断面又はそれらの中空断面が例示できる。
(複合仮撚加工糸における芯糸)
 次に本発明の複合仮撚加工糸の芯糸としては、ポリエステル繊維が好ましく、沸水収縮率が10%以下であることが好ましい。沸水収縮率が10%を超える場合複合仮撚加工糸の嵩高性が取れなくなり好ましくない。
(複合仮撚加工糸の製造方法)
 複合仮撚加工糸とするためには上述の芯糸及び外層部糸を引きそろえて空気交絡処理に付され、その後非接触ヒーターで延伸仮撚加工する工程を経ることにより得られる。この場合、両者の使用割合は芯糸:外層部糸=25:75~75:25(重量比率)とすればよい。空気交絡としては、インターレース、タスラン加工の何れであってもよい。 具体的には図6の工程を示すことができる。ここで、交絡付与後にオーバーフィードをかけながらヒーターで熱処理すると、芯糸は収縮し、外層部糸は殆ど収縮しないかあるいは自己伸張し、芯糸と外層部糸との間に糸足差が生じる。この糸を用いて布帛とした時に、この糸足差により布帛の膨らみ、スパンライク性が発現する。
(強度と染色性が規定されたポリエステル繊維)
 また本発明には主たる繰り返し単位がエチレンテレフタレートからなるポリエステル繊維であって、破断強度が3.0cN/dtex以上、且つ該ポリエステル繊維から平織物を製造し、該平織物を下記の常圧カチオン染色条件で染色を行い、染色後の平織物を色差計にて測定したときのL*値が24以下となることを特徴とするポリエステル繊維も包含される。このようなポリエステル繊維をを得るには、以下の方法を上げることができる。すなわち、主たる繰り返し単位がポリエチレンテレフタレートより構成される共重合ポリエステルであり、該共重合ポリエステルを構成する酸成分中にスルホイソフタル酸の金属塩(A)及び上記式(I)で表される化合物(B)を上記数式(1)及び(2)を同時に満足する状態で含有する共重合ポリエステルを適切な条件にて、溶融紡糸・延伸処理を行うことで製造することができる。その繊維を用いた仮撚加工糸、複合糸、カバリング糸についても上述の条件に準じて製造することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、実施例中の分析項目などは、下記記載の方法により測定した。
(ア)固有粘度:
 ポリエステル試料を100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。なお、表1、表2においてチップの固有粘度をηC、紡糸後の未延伸糸の固有粘度をηFと称する。なお不活性粒子が添加されている場合には、希薄溶液中に存在している不活性粒子は、希薄溶液を粘度計に移す前にろ過により取り除いた。
(イ)ジエチレングリコール(DEG)含有量:
 ヒドラジンヒドラート(抱水ヒドラジン)を用いてポリエステル試料を分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィー(ヒューレットパッカード社製(HP6850型))を用いて測定した。
(ウ)ポリマーのガラス転移温度(Tg):
 示差走査熱量計(セイコーインスツルメント社製DSC:Q10型)を用いて、昇温速度=20℃/minで測定した。
(エ)繊維の繊度:
 日本工業規格、JIS L1013記載の方法に準拠して測定を行った。
(オ)ポリエステル繊維の引張強度(破断強度)、引張伸度(破断伸度)
 日本工業規格、JIS L1013:1999 8.5に記載の方法に準拠して測定を行った。
(カ)熱水収縮率:
 日本工業規格、JIS L 1013に準拠して沸水収縮率を測定した。
(キ)全捲縮数(TC):
 仮撚捲縮加工糸サンプルに0.044cN/dtexの張力をかけてカセ枠に巻取り、約3300dtexのカセを作った。得られたカセの一端に0.00177cN/dtex+0.177cN/dtexの荷重を負荷し、1分間経過後の長さ(L0)を測定する。次いで0.177cN/dtexの荷重を除去した状態で100℃の沸水中にて20分間処理する。沸水処理後、0.177cN/dtexの荷重を除去し、0.00177cN/dtexの荷重のみを負荷し24時間自由な状態で自然乾燥する。自然乾燥した試料に再び0.00177cN/dtex+0.177cN/dtexの荷重を負荷し、1分間経過後の長さ(L1)を測定する。次いで、0.177cN/dtexの荷重を除去し、1分間経過後の長さ(L2)を測定し、次式で全捲縮率TC(%)を算出する。この測定を10回実施し、その平均値で表した。
  全捲縮率TC(%)=((L1-L2)/L0)×100
(ク)常圧カチオン可染性A法:
 マルチフィラメント糸にて作製した筒編みを、CATHILON BLUE CD-FRLH)0.2g/L、CD-FBLH0.2g/L(いずれも保土ヶ谷化学株式会社製のカチオン可染性染料)、硫酸ナトリウム3g/L、酢酸0.3g/Lの染色液中にて100℃で1時間、浴比1:50で染色を行い、次式により染着率を求めた。
染着率=(OD0-OD1)/OD0
  OD0:染色前の染液の576nmの吸光度
  OD1:染色後の染液の576nmの吸光度
本発明の実施例では、染着率98%以上のものを可染性良好と判断した。
(ケ)常圧カチオン可染性B法:
 マルチフィラメント糸にて作製した筒編みを、Estrol Brilliant Blue N-RL 2%owf、硫酸ナトリウム 3g/L、酢酸 0.5g/L、浴比1:50の染色液中にて表3~5等に示す温度で1時間、染色を行って染色布帛を得た。染色された布帛について、マクベス カラーアイ(Macbeth COLOR―EYE)モデルM―2020PLを使用し、JISZ 8729-1980に規定された、国際照明委員会(CIE)推奨のL*a*b*系色表示により表される明度L*値を測定した。この明度L*を染色の濃さの代表値として用いた。
(コ)常圧カチオン可染性C法
 ポリエステル繊維試料より常法によりポリエステル平織物を作成した。そして、黒色カチオン染料:Aizen CATHILON Black BL-DP(保土ヶ谷化学株式会社製)をポリエステル平織物に対して15%owfとなるように用い、染色助剤として硫酸ナトリウム3g/L、酢酸0.3g/Lを添加し、浴比1:50にて、98℃、1時間の条件で得られた平織物に対して染色処理行った。得られた染色後の平織物をグレタマクベス社製測色色差計(CE-3000型)により測色し、L*を求めた。このL*値が24以下のものを深色性良好と判断した。
(サ)製糸性
 複合紡糸設備で1週間溶融紡糸を連続して行い断糸した回数を記録し、1日1錘当りの紡糸断糸回数を紡糸断糸回数とした。ただし、人為的あるいは機械的要因による断糸は断糸回数から除外した。その紡糸断糸回数の多い、少ないで紡糸性を判定した。
 ○:紡糸断糸回数が少なく、安定して連続紡糸を行うことができた。
 ×:紡糸断糸回数が多く、安定して連続紡糸を行うことができなかった。
(シ)混繊工程調子:
 断糸、毛羽の発生で評価した。
 ○:断糸 毛羽無く良好
 ×:断糸 毛羽が見られ不良
(ス)仮撚工程調子:
 仮撚加工糸の発生毛羽数で評価した。
 東レ(株)製DT-104型毛羽カウンター装置を用いて、ポリエステル仮撚加工糸サンプルを500m/分の速度で20分間連続測定して発生毛羽数を計測し、サンプル長1万m当たりの個数で表した。
○ 毛羽少なく良好(10ケ/1万m未満)
△ やや毛羽発生多い
× 毛羽多く製品品位悪い(10ケ/1万m以上)
(セ)布帛ソフト性
(ソフト感)
 レベル1:ソフトでしなやかな感触がある
 レベル2:ややソフト感が乏しいが反撥性は感じられる
 レベル3:カサカサした触感あるいは硬い触感である。
(共重合ポリエステル及び共重合ポリエステル組成物の製造)
  [実施例1]
 テレフタル酸ジメチル100重量部、5-ナトリウムスルホイソフタル酸ジメチル4.1重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを反応器外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
 その後、エステル交換反応の反応生成物に三酸化アンチモン0.05重量部、5-スルホイソフタル酸テトラブチルホスホニウム2.8重量部、水酸化テトラエチルアンモニウム0.3重量部及びトリエチルアミン0.003重量部を添加して重縮合槽に移した。重縮合槽の内部を285℃まで昇温し、重縮合槽の内部を30Pa以下の高真空に保って重縮合反応を行った。重縮合槽の攪拌機電力の値が所定電力に到達した段階若しくは所定時間を経過した段階で重縮合反応を終了させ、常法に従い得られた共重合ポリエステルをチップ化した。
 このようにして得られた共重合ポリエステルチップを140℃、5時間乾燥後、紡糸温度285℃、巻取り速度400m/minで330dtex/36フィラメントの原糸を作った。次いで延伸同時仮撚加工により4.0倍に延伸して83dtex/36フィラメントの仮撚加工糸を得て、更に常法に従い弛緩熱処理を実施した。共重合ポリエステルの製造条件と評価結果の詳細を表1に示した。
  [実施例2~4、比較例1~6]
 実施例1において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表1に記載の値となるように変更した事以外は実施例1と同様に実施した。共重合ポリエステルの製造条件と評価結果の詳細を表1に示した。
  [実施例5]
 テレフタル酸ジメチル100重量部、5-ナトリウムスルホイソフタル酸ジメチル4.1重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを反応器外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
 その後、エステル交換反応の反応生成物に三酸化アンチモン0.05重量部、5-スルホイソフタル酸テトラブチルホスホニウム2.8重量部、水酸化テトラエチルアンモニウム0.3重量部及びトリエチルアミン0.003重量部を添加し、さらにアジピン酸1.5重量部を添加して重縮合槽に移した。重縮合槽の内部を285℃まで昇温し、重縮合槽の内部を30Pa以下の高真空に保って重縮合反応を行った。重縮合槽の攪拌機電力の値が所定電力に到達した段階若しくは所定時間を経過した段階で重縮合反応を終了させ、常法に従い得られた共重合ポリエステルをチップ化した。それ以降の処理は実施例1と同様に実施した。共重合ポリエステルの製造条件と評価結果の詳細を表1に示した。
Figure JPOXMLDOC01-appb-T000004
  [実施例6]
 テレフタル酸ジメチル100重量部、5-ナトリウムスルホイソフタル酸ジメチル4.1重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを反応器外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
 その後、エステル交換反応の反応生成物に三酸化アンチモン0.05重量部、5-スルホイソフタル酸テトラブチルホスホニウム2.8重量部、水酸化テトラエチルアンモニウム0.3重量部、トリエチルアミン0.003重量部及び不活性粒子として平均粒子径0.06μmの第三リン酸カルシウムの20重量%エチレングリコールスラリー2.6重量部を添加した後、重縮合槽に移した。重縮合槽の内部を285℃まで昇温し、重縮合槽の内部を30Pa以下の高真空に保って重縮合反応を行った。重縮合槽の攪拌機電力の値が所定電力に到達した段階若しくは所定時間を経過した段階で反応を終了させ、常法に従い得られた共重合ポリエステル組成物をチップ化した。
 このようにして得られた共重合ポリエステル組成物チップを140℃、5時間乾燥後、紡糸温度285℃、巻取り速度400m/minで330dtex/36フィラメントの原糸を作り、次にその原糸を4.0倍に延伸して83dtex/36フィラメントの延伸糸を得た。次いで得られたポリエステル延伸糸を経糸及び緯糸に使用して平織物を製織し、この布帛を常法により精錬、乾燥したのち、180℃でヒートセットを行った。また、そのヒートセットを行った布帛の一部を常法により、減量率が20重量%となるようにアルカリ減量処理を行った。共重合ポリエステル組成物の製造条件と評価結果の詳細を表2に示した。
  [実施例7~9、比較例7~14]
 実施例6において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表2に記載の値となるように変更したこと以外は実施例6と同様に実施した。共重合ポリエステル組成物の製造条件と評価結果の詳細を表2に示した。
  [実施例10~11]
 実施例6において、添加する不活性粒子を表2に記載の性状のものに変更したこと以外は実施例6と同様に実施した。共重合ポリエステル組成物の製造条件と評価結果の詳細を表2に示した。
Figure JPOXMLDOC01-appb-T000005
(マルチフィラメント、混繊糸、仮撚加工糸及びカバリング糸の製造)
  [実施例12]
 実施例1にて得られた共重合ポリエステルチップを140℃、5時間乾燥後、口金穿孔数が24個の紡糸口金を用い、紡糸温度285℃、巻取り速度400m/minで330dtex/24フィラメントの原糸を作り、次にその原糸を4.0倍に延伸して83dtex/24フィラメントの延伸糸を得た。延伸糸の評価結果を表3に示した。
  [実施例13~15、比較例15~18]
 実施例12において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表3に記載の値となるように変更した事以外は実施例12と同様に実施した。延伸糸の評価結果を表3に示した。
  [実施例16]
 実施例15において、紡糸吐出時に口金穿孔数が36個の紡糸口金を用いた以外は実施例15と同様に実施した。延伸糸の評価結果を表3に示した。
  [実施例17]
 実施例12で得られたマルチフィラメント糸を用い、相手方糸としてポリエチレンテレフタレートからなる33dtex/12フィラメント、熱水収縮率40%のマルチフィラメント糸を用い、図4に示す混繊糸工程で交絡数55ケ/mの混繊糸を作成した。混繊糸工程調子は良好で毛羽の発生は少なかった。該混繊糸を用い実施例12と同様に筒編を作成し、常圧カチオン可染性及び染色後の本発明の芯鞘構造の構成部位を観察した。糸の評価結果を表3に示した。
  [実施例18]
 実施例17において、実施例12で得られたマルチフィラメント糸の代わりに実施例13で得られたマルチフィラメント糸を用いた以外は、実施例17と同様に実施した。本発明のマルチフィラメントが均一に鞘部を構成する芯鞘構造を形成していた。糸の評価結果を表3に示した。
  [実施例19]
 実施例12のマルチフィラメントと、弾性糸として44dtexのポリエーテルエステル系弾性糸を準備した。これらの糸を用い、中空スピンドル装置を用いてカバリング撚糸数が500T/mになる条件にて、弾性糸のまわりに実施例12のマルチフィラメントが被覆されてなるカバリング糸を作製した。マルチフィラメントの強度、伸度が良好なためカバリング工程調子は良好で、筒編での常圧カチオン可染性評価も良好であった。糸の評価結果を表3に示した。
  [比較例19]
 比較例18において、紡糸吐出時に口金穿孔数が12個の紡糸口金を用いた以外は比較例18と同様に実施した。糸の評価結果を表3に示した。
  [比較例20]
 A成分及びB成分が共重合されていないポリエチレンテレフタレートを用いて実施例12と同様の方法で評価した。糸の評価結果を表3に示した。
  [比較例21]
 比較例15のマルチフィラメントを用いて実施例17と同様の方法で混繊糸を作成し評価を行った。混繊過程において原糸強度不足による毛羽発生が多く、芯鞘構造混繊糸としては不十分な品位にしか至らなかった。また交絡不良により芯部が剥き出しになり霜降り調外観となった。糸の評価結果を表3に示した。
  [比較例22]
 比較例16のマルチフィラメントを用いて実施例17と同様の方法で混繊糸を作成し評価を行った。糸の評価結果を表3に示した。
  [比較例23]
 比較例15のマルチフィラメントを用いて実施例19と同様な方法でカバリング糸を作成した。カバリング過程において原糸強度不足による毛羽発生が多く工程調子が悪かった。糸の評価結果を表3に示した。
Figure JPOXMLDOC01-appb-T000006
  [実施例20]
 実施例1にて得られた共重合ポリエステルチップを140℃、5時間乾燥後、口金穿孔数が72個の紡糸口金を用い、紡糸温度285℃巻取り速度3000m/minで90dtex/72フィラメントの部分延伸糸を作成した。更に図5に示した仮撚加工装置を用いて得られた部分延伸糸を1.6倍に仮撚延伸加工して、56dtex/72フィラメントの仮撚加工糸を得た。得られた糸の評価結果を表4に示した。
  [実施例21~23、比較例24~27]
 実施例20において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表4の記載の値となるように変更した事以外は実施例20と同様に実施した。得られた糸の評価結果を表4に示した。
  [実施例24]
 実施例23において、紡糸吐出時に口金穿孔数が144個の紡糸口金を用いた以外は実施例20と同様に実施した。得られた糸の評価結果を表4に示した。
  [実施例25]
 実施例22にて得られた仮撚加工糸と、弾性糸として44dtexのポリエーテルエステル系弾性糸を準備した。これらの糸を用い、中空スピンドル装置を用いてカバリング撚糸数が500T/mになる条件にて、弾性糸のまわりに実施例22の仮撚加工糸が被覆されてなるカバリング糸を作製した。仮撚加工糸の強度、伸度が良好なためカバリング工程調子は良好で、筒編での常圧カチオン可染性評価も良好であった。
  [比較例28]
 比較例27において、紡糸吐出時に口金穿孔数が144個の紡糸口金を用いた以外は比較例27と同様に実施した。得られた糸の評価結果を表4に示した。
  [比較例29]
 成分A、成分Bを含まないポリエチレンテレフタレート樹脂のみを用いて実施例20と同様の方法で評価した。常圧カチオン染色性が悪く見栄えの悪いものであった。得られた糸の評価結果を表4に示した。
  [比較例30]
 比較例24の仮撚加工糸を用いて実施例25と同様な方法でカバリング糸を作成した。染色性は良好であったが強度、伸度が十分でなくカバリング工程で断糸、毛羽が多く工程調子が悪かった。
Figure JPOXMLDOC01-appb-T000007
(中空繊維、異形断面繊維の製造)
  [実施例26]
 実施例1にて得られた共重合ポリエステルチップを140℃、5時間乾燥後、紡糸温度285℃にて、スリット巾が0.08mm、円周配置直径(PCD)が0.8mmで口金穿孔数が24個の紡糸口金からポリマーを押し出しし、巻取り速度400m/minで330dtex/24フィラメントの原糸を作った。次にその原糸を4.0倍に延伸して83dtex/24フィラメントの中空延伸糸を得た。得られた中空延伸糸の評価結果を表5に示した。
  [実施例27~29、比較例31~34]
 実施例26において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表5に記載の値となるように変更した事以外は実施例26と同様に実施した。得られた中空延伸糸の評価結果を表5に示した。
 [実施例30]
 実施例29において、紡糸吐出時に用いたスリット巾が0.08mm、円周配置直径(PCD)が0.8mmで口金穿孔数が36個の紡糸口金を用いた以外は実施例29と同様に実施した。得られた中空延伸糸の評価結果を表5に示した。
  [実施例31]
 実施例30の中空マルチフィラメントと、弾性糸として44dtexのポリエーテルエステル系弾性糸を準備した。これらの糸を用い、中空スピンドル装置を用いてカバリング撚糸数が500T/mになる条件にて、弾性糸のまわりに実施例30の中空マルチフィラメントが被覆されてなるカバリング糸を作製した。中空マルチフィラメントの強度、伸度が良好なためカバリング工程調子は良好で、筒編での常圧カチオン可染性評価も良好であった。糸の評価結果を表5に示した。
  [比較例35]
 比較例34において、紡糸吐出時に口金穿孔数が12個の紡糸口金を用いた以外は実施例29と同様に実施した。糸の評価結果を表5に示した。
Figure JPOXMLDOC01-appb-T000008
  [実施例32]
 実施例1にて得られた共重合ポリエステルチップを、図2中の(a)に示した単糸断面形状となる吐出孔を36個有した紡糸口金から、紡糸温度290℃で紡出し、油剤を付与し、紡糸速度3000m/minで引き取った。その後、一旦巻き取ることなく、予熱温度85℃、熱セット温度120℃、延伸倍率1.67の条件で延伸し、5000m/minの速度で巻取り、単糸繊度2.4dtex、総繊度86dtexの偏平断面繊維からなるマルチフィラメントを得た。そのマルチフィラメントの異形度は4.0であった。得られたマルチフィラメントを110本/2.54cmの織密度、経緯無撚で製織し、平織物とした後、常法に従い、染色加工をし、得られた布帛について、上記の各方法で評価を行った。マルチフィラメントと布帛の評価結果を表6に示した。
  [実施例33~35、比較例36~39]
 実施例32において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表6に記載の値となるように変更した事以外は実施例32と同様に実施した。以下実施例32と同様に表6中のA/Bの値が異形度の値と一致した。マルチフィラメントと布帛の評価結果を表6に示した。
  [実施例36、37]
 実施例32において、図2中のb)、c)に示した単糸断面形状となる吐出孔を36個有した紡糸口金を用いる以外は実施例32と同様に実施した。マルチフィラメントと布帛の評価結果を表6に示した。
Figure JPOXMLDOC01-appb-T000009
(複合仮撚加工糸の製造)
  [実施例38]
 乾燥したポリエチレンテレフタレートを用い、速度4500m/minの溶融紡糸によって得られた伸度70%のポリエステルフィラメント糸(96dtex/24フィラメント)を製造した。また、上記の実施例1にて得られた常圧カチオン可染性共重合ポリエステルチップを285℃で溶融し、公知の溶融紡糸法により紡糸速度2500m/分で捲取り、得られた伸度150%のポリエステルフィラメント糸(180dtex/48フィラメント)を製造した。これらの2種のポリエステルフィラメント糸を引き揃えて図6の工程で交絡処理及び延伸仮撚加工を行った。
 即ち前記2糸条をフィードローラー6に供給し、第1デリベリローラー8との間で、オーバーフィード率0.5%、圧空圧4Kg/cm2でインターレースノズル7によりインターレース処理し、40個/mの交絡を付与した。引き続いてローラー8を介して仮撚ゾーンに供給し、延伸倍率1.284倍、仮撚数2400T/m、ヒーター温度210℃、糸速即ち第2デリベリローラー11の速度250m/minで延伸仮撚加工を行った。
 このようにして得た加工糸を顕微鏡で観察すると均斉な交互撚二層構造を有する複合仮撚加工糸で、かつ芯部を構成する糸条(伸度30%)と外層部(伸度55%)を構成する糸条との間にフィラメントが互いに入り組んでなる部分的交絡(23ケ/M)を有する加工糸であった。またこの糸を使って製織したところ、製織工程でのネップ発生等のトラブルもなく、得られた織物もスパンライクな風合を有していた。また、染色性も良好な結果が得られた。結果を表7に示した。
  [実施例39~41、比較例40~43]
 実施例38において、5-ナトリウムスルホイソフタル酸ジメチル及び5-スルホイソフタル酸テトラブチルホスホニウムの添加量を表7に記載の値となるように変更した事以外は実施例38と同様に実施した。表7にその結果を示した。
Figure JPOXMLDOC01-appb-T000010
 本発明によれば、常圧下でのカチオン染料による染着性が良好で、且つ従来の常圧カチオン可染性ポリエステル繊維よりも強度の高いポリエステル繊維を得ることができる常圧カチオン可染性ポリエステルを提供することができる。またその常圧カチオン可染性ポリエステルから製造されるポリエステル繊維を用いた混繊糸及びカバリング糸を提供することができる。その混繊糸及びカバリング糸は、他の高温染色が難しい他の繊維との混合が可能で高強度低熱水収縮の性質を有しているので、鮮明な色合い、風合い、強度や伸度のバランスが要求される紳士婦人衣料用途として好適である。さらに本発明の常圧カチオン可染性ポリエステルマルチフィラメント又これを用いた仮撚加工糸、カバリング糸は強度が高く且つ常圧カチオン染色性や堅牢度が良好で、細繊度糸で用いることができるので風合い、ソフト性、緻密性のある布帛を得ることができる。ポリエステル繊維として中空繊維又は異形断面繊維を製造した場合には、強度が高く且つ常圧カチオン染色性や堅牢度が良好で、保温性、嵩高性、軽量性などにおいて優れた性能を有するので衣料用繊維に好適に用いられ、カーテン、カーペット、ふとんわた等に代表されるインテリア・寝装用繊維、各種織物、各種編物、短繊維不織布、長繊維不織布等の資材用途にも好適に用いられる。最後に、本発明の常圧カチオン可染性ポリエステル繊維を使用したスパンライク様の複合仮撚加工糸は嵩高性が良好で、天然繊維やウレタン繊維などと交編、交織して染色することができ、ソフトで鮮明な紳士衣料用ポリエステル布帛又は婦人衣料用ポリエステル布帛を提供できる。その産業上の意義はきわめて大きい。

Claims (17)

  1.  主たる繰返し単位がエチレンテレフタレートより構成される共重合ポリエステルであり、該共重合ポリエステルを構成する酸成分中にスルホイソフタル酸の金属塩(A)及び下記式(I)で表される化合物(B)を下記数式(1)及び(2)を同時に満足する状態で含有する共重合ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
    [上記式中、Rは水素原子又は炭素数1~10個のアルキル基を表し、Xは4級ホスホニウムイオン又は4級アンモニウムイオンを表す。]
      3.0≦A+B≦5.0       (1)
      0.3≦B/(A+B)≦0.7   (2)
    [上記数式中、Aは共重合ポリエステルを構成する全酸成分を基準としたスルホイソフタル酸の金属塩(A)の共重合量(モル%)を、Bは共重合ポリエステルを構成する全酸成分を基準とした上記式(I)で表される化合物(B)の共重合量(モル%)を表す。]
  2.  該共重合ポリエステルのガラス転移温度が70~85℃の範囲にあり、且つ得られる共重合ポリエステルの固有粘度が0.55~1.00dL/gの範囲である請求項1記載の共重合ポリエステル。
  3.  請求項1~2のいずれか1項記載の共重合ポリエステルを溶融紡糸、延伸して得られたポリエステル繊維。
  4.  請求項1~2のいずれか1項記載の共重合ポリエステルを溶融紡糸してなる異形断面ポリエステル繊維であり、その繊維の繊維軸と直角方向の繊維断面の異形度が1.2~7.0のポリエステル繊維。
  5.  請求項1~2のいずれか1項記載の共重合ポリエステルを溶融紡糸してなる中空ポリエステル繊維であり、その繊維の中空率が2~70%のポリエステル繊維。
  6.  請求項1~2のいずれか1項記載の共重合ポリエステルを溶融紡糸して得られた繊維を仮撚加工してなる仮撚加工糸。
  7.  請求項3~5のいずれか1項記載のポリエステル繊維を含む複合糸。
  8.  請求項6記載の仮撚加工糸を含む複合糸。
  9.  弾性繊維にポリエステル繊維を被覆してなるカバリング糸において、該ポリエステル繊維が請求項3~5のいずれか1項記載のポリエステル繊維であるカバリング糸。
  10.  弾性繊維に仮撚加工糸を被覆してなるカバリング糸において、該仮撚加工糸が請求項6記載の仮撚加工糸であるカバリング糸。
  11.  主たる繰り返し単位がエチレンテレフタレートからなるポリエステル繊維であって、破断強度が3.0cN/dtex以上、且つ該ポリエステル繊維から平織物を製造し、該平織物を下記の常圧カチオン染色条件で染色を行い、染色後の平織物を色差計にて測定したときのL*値が24以下となることを特徴とするポリエステル繊維。
    ・常圧カチオン染色条件
    黒色カチオン染料:Aizen CATHILON Black BL-DP(保土ヶ谷化学株式会社製)をポリエステル平織物に対して15%owfとなるように用い、染色助剤として硫酸ナトリウム3g/L、酢酸0.3g/Lを添加し、浴比1:50にて、98℃、1時間の条件で得られた平織物に対して染色処理行った。
  12.  繊維軸と直角方向の繊維断面の異形度が1.2~7.0の請求項11記載のポリエステル繊維。
  13.  請求項11記載のポリエステル繊維を仮撚加工してなる仮撚加工糸。
  14.  請求項11~12のいずれか1項記載のポリエステル繊維を含む複合糸。
  15.  請求項13項記載の仮撚加工糸を含む複合糸。
  16.  弾性繊維にポリエステル繊維を被覆してなるカバリング糸において、該ポリエステル繊維が請求項11~12のいずれか1項記載のポリエステル繊維であるカバリング糸。
  17.  弾性繊維に仮撚加工糸を被覆してなるカバリング糸において、該仮撚加工糸が請求項13記載の仮撚加工糸であるカバリング糸。
PCT/JP2009/050067 2008-01-08 2009-01-07 常圧カチオン可染性ポリエステル及び繊維 WO2009088008A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/811,961 US8297035B2 (en) 2008-01-08 2009-01-07 Normal pressure cationic dyeable polyester and fiber
CN2009801017312A CN101910244B (zh) 2008-01-08 2009-01-07 常压阳离子可染性聚酯及纤维
AU2009203402A AU2009203402A1 (en) 2008-01-08 2009-01-07 Normal pressure cation dyeable polyester and fiber
EP09701180.3A EP2233510A4 (en) 2008-01-08 2009-01-07 CATIONIC COLORABLE NORMAL PRESSURE POLYESTER AND FIBER
CA 2711510 CA2711510A1 (en) 2008-01-08 2009-01-07 Normal pressure cationic dyeable polyester and fiber
MX2010007284A MX2010007284A (es) 2008-01-08 2009-01-07 Fibra y poliester que se pueden teñir cationicamente a presion normal.
JP2009548935A JPWO2009088008A1 (ja) 2008-01-08 2009-01-07 常圧カチオン可染性ポリエステル及び繊維

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-001387 2008-01-08
JP2008001387 2008-01-08
JP2008218081 2008-08-27
JP2008-218081 2008-08-27

Publications (1)

Publication Number Publication Date
WO2009088008A1 true WO2009088008A1 (ja) 2009-07-16

Family

ID=40853121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050067 WO2009088008A1 (ja) 2008-01-08 2009-01-07 常圧カチオン可染性ポリエステル及び繊維

Country Status (11)

Country Link
US (1) US8297035B2 (ja)
EP (1) EP2233510A4 (ja)
JP (4) JPWO2009088008A1 (ja)
KR (1) KR20100112605A (ja)
CN (2) CN102418165B (ja)
AU (1) AU2009203402A1 (ja)
CA (1) CA2711510A1 (ja)
MX (1) MX2010007284A (ja)
RU (1) RU2010132907A (ja)
TW (1) TW200948854A (ja)
WO (1) WO2009088008A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047882A (ja) * 2008-08-25 2010-03-04 Teijin Fibers Ltd 染色された共重合ポリエステル繊維構造体の製造方法および染色された共重合ポリエステル繊維構造体および繊維製品
JP2010280861A (ja) * 2009-06-08 2010-12-16 Teijin Fibers Ltd カチオン可染性共重合ポリブチレンテレフタレート
JP2011106071A (ja) * 2009-11-19 2011-06-02 Teijin Fibers Ltd ポリエステル繊維
JP2011140528A (ja) * 2010-01-05 2011-07-21 Teijin Fibers Ltd 共重合ポリエステル組成物の製造方法
CN102408554A (zh) * 2011-09-19 2012-04-11 江苏中鲈科技发展股份有限公司 一种抗紫外线、阳离子可染聚酯切片的制备方法
JP2013181250A (ja) * 2012-02-29 2013-09-12 Toray Ind Inc ポリエステル融着延伸仮撚加工糸
JP2013213293A (ja) * 2012-03-31 2013-10-17 Kb Seiren Ltd カチオン易染ポリエステル繊維およびその製造方法、ならびにその繊維を用いた繊維製品
JP2018516997A (ja) * 2016-04-19 2018-06-28 ヒョスン コーポレーション ポリエチレンテレフタレートポリマー及びこれを含むなま糸やカーマットの製造方法
JP2022543073A (ja) * 2019-08-02 2022-10-07 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド 芯鞘型複合仮撚糸およびその製造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404886B2 (en) * 2009-02-27 2013-03-26 Future Fuel Chemical Company Purification of 5-sulfoisophthalic acid by the use of an acetic acid wash on a crude cake
PL2491012T3 (pl) 2009-10-20 2015-04-30 Futurefuel Chemical Co Zastosowanie mieszaniny rozpuszczalników kwasu octowego/wody do przygotowania soli monolitowej kwasu 5-sulfoizoftalowego o niskiej zawartości siarczanów z kwasu 5-sulfoizoftalowego
KR101156193B1 (ko) * 2010-03-15 2012-06-18 코오롱글로텍주식회사 난연성 및 일광견뢰도가 우수한 복합섬유 및 이를 활용한 인테리어 원단
US8884045B2 (en) 2010-10-19 2014-11-11 Future Fuel Chemical Company Use of an acetic acid wash to prepare low-sulfate 5-sulfoisophthalic acid, mono-lithium salt
KR101779442B1 (ko) 2010-12-15 2017-09-18 코오롱인더스트리 주식회사 폴리에스테르 원사 및 그의 제조방법
CN102560815A (zh) * 2010-12-22 2012-07-11 东丽纤维研究所(中国)有限公司 一种轻量保温织物
WO2012118973A2 (en) 2011-03-02 2012-09-07 Futurefuel Chemical Company Metal salts of a dialkyl ester of 5-sulfoisophthalic acid and method of preparing same
US8809565B2 (en) * 2011-08-29 2014-08-19 Futurefuel Chemical Company 5-sulfoisophthalic acid salts and process for the preparation thereof
CN104233604B (zh) * 2013-06-07 2017-04-26 东丽纤维研究所(中国)有限公司 一种含中空纤维的面料及其生产方法
CN103726201A (zh) * 2013-11-04 2014-04-16 泉州海天材料科技股份有限公司 一种多色针织平面绒布及其制备方法
KR102637213B1 (ko) * 2015-03-17 2024-02-15 주식회사 쿠라레 카티온 염료로 염색된 입모풍 인공 피혁 및 그 제조 방법
KR101620573B1 (ko) * 2015-07-31 2016-05-13 주식회사 효성 해사성이 우수한 폴리우레탄우레아 탄성사 및 이의 제조방법
US11692284B2 (en) 2016-08-18 2023-07-04 Aladdin Manufacturing Corporation Trilobal filaments and spinnerets for producing the same
CN106283316A (zh) * 2016-08-31 2017-01-04 巨石集团有限公司 一种高强拉挤用玻璃纤维膨体纱的制备方法
USD841838S1 (en) 2016-11-04 2019-02-26 Mohawk Industries, Inc. Filament
KR101921388B1 (ko) * 2016-12-29 2018-11-22 효성티앤씨 주식회사 상압에서 가염이 가능한 폴리에스테르 중합물의 제조방법 및 이에 의해 제조된 폴리에스테르 원사
US11339504B2 (en) * 2017-02-10 2022-05-24 Basf Se Process for producing elastic fiber, process for producing elastic fiber article, elastic fiber and elastic fiber article
KR102240789B1 (ko) * 2017-03-30 2021-04-14 도레이첨단소재 주식회사 카치온 가염형 폴리에스테르섬유 및 이의 제조방법
JP2018168512A (ja) * 2017-03-30 2018-11-01 帝人フロンティア株式会社 扁平多葉断面ポリエステル繊維
EP3633101A4 (en) * 2017-05-31 2021-04-14 Kuraray Co., Ltd. LEATHER TRACK AND FIBER STRUCTURE
JP7238311B2 (ja) * 2017-11-29 2023-03-14 東レ株式会社 ポリエステル組成物およびその製造方法
JP7200624B2 (ja) * 2017-12-01 2023-01-10 東レ株式会社 扁平断面ポリエステル仮撚糸
CN110644123B (zh) * 2018-04-04 2021-03-09 南京边城体育用品股份有限公司 一种持久抗菌的易染亲水聚酯纤维面料
KR102584784B1 (ko) * 2019-04-15 2023-10-06 데이진 프론티아 가부시키가이샤 직물 및 의료
JP7278923B2 (ja) * 2019-10-18 2023-05-22 Kbセーレン株式会社 常圧カチオン可染性ポリエステル扁平繊維及びそれを用いた布帛
KR102410767B1 (ko) * 2019-11-07 2022-06-21 주식회사 휴비스 카티온 가염성 폴리에스테르계 탄성 수지 및 이를 이용한 염색성이 개선된 카티온 가염성 폴리에스테르계 탄성 섬유
CN111334896A (zh) * 2020-03-24 2020-06-26 张家港市科达化纤有限公司 一种涤纶膨体长丝及其制备方法
CN112538672A (zh) * 2020-11-23 2021-03-23 杭州临兴新材料有限公司 一种常温常压可印染地毯纱及其制作工艺
CN115821418B (zh) * 2022-10-18 2024-04-05 浙江恒逸石化研究院有限公司 一种基于自催化制备高磺酸盐含量抗菌阻燃阳离子染料可染聚酯纤维的方法
CN117089058B (zh) * 2023-10-18 2024-04-02 上海洁宜康化工科技有限公司 抗菌聚酯的制备方法和抗菌纤维的生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289725A (ja) 1985-10-15 1987-04-24 Teijin Ltd 改質ポリエステルの製造方法
JPH01162822A (ja) 1987-03-20 1989-06-27 Teijin Ltd 改質ポリエステルの製造法および改質ポリエステル繊維
JPH01172425A (ja) 1987-12-28 1989-07-07 Teijin Ltd 改質ポリエステルの製造法
JPH0525708A (ja) * 1991-07-16 1993-02-02 Toyobo Co Ltd 改質ポリエステル繊維
JPH07126920A (ja) 1993-11-04 1995-05-16 Mitsubishi Rayon Co Ltd ポリエステル常圧カチオン可染性霜降り調太細繊維の製造方法
JP2002030137A (ja) * 2000-07-18 2002-01-31 Nippon Ester Co Ltd 改質ポリエステルの製造方法
JP2002284863A (ja) 2001-03-23 2002-10-03 Kanebo Ltd 常圧カチオン可染ポリエステル及びその連続製造方法
JP2005336385A (ja) * 2004-05-28 2005-12-08 Nippon Ester Co Ltd 共重合ポリエステル及びそれを用いてなる繊維並びに共重合ポリエステルの製造方法
JP2006176628A (ja) 2004-12-22 2006-07-06 Teijin Fibers Ltd カチオン可染性ポリエステル及び高強力カチオン可染性ポリエステル繊維
JP2006200064A (ja) 2005-01-20 2006-08-03 Mitsubishi Rayon Co Ltd カチオン可染ポリエステル太細糸及びその製造方法並びにその太細糸を用いた織編物
WO2006095627A1 (ja) * 2005-03-07 2006-09-14 Kb Seiren, Ltd. 常圧カチオン可染ポリエステル、その繊維製品およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127431A (en) * 1979-03-27 1980-10-02 Toray Ind Inc Production of polyester
JPS6032823A (ja) * 1983-08-01 1985-02-20 Teijin Ltd ポリエステルの製造法
JPH04149269A (ja) * 1990-10-12 1992-05-22 Teijin Ltd 改質ポリエステル組成物
JPH04359016A (ja) * 1991-06-05 1992-12-11 Teijin Ltd 改質ポリエステルの製造方法
JP3215714B2 (ja) * 1992-04-21 2001-10-09 株式会社クラレ 易染性ポリエステル繊維
JP3022703B2 (ja) * 1993-05-31 2000-03-21 帝人株式会社 改質ポリエステルおよび改質ポリエステル繊維
JP3294385B2 (ja) * 1993-07-06 2002-06-24 帝人株式会社 改質ポリエステルの製造方法
JPH07118373A (ja) * 1993-10-22 1995-05-09 Teijin Ltd 改質ポリエステルの製造方法
US6479619B1 (en) * 2001-03-15 2002-11-12 E. I. Du Pont De Nemours And Company Sulfoisophthalic acid solution process therewith
CN1362548A (zh) * 2002-02-05 2002-08-07 东华大学 阳离子染料易染共聚酯切片或纤维及制备方法
TWI294926B (en) * 2002-04-25 2008-03-21 Teijin Fibers Ltd Polyester fine false twisting textured yarn, and methods for producing the same
JP4329427B2 (ja) * 2003-06-26 2009-09-09 東レ株式会社 ポリエステル組成物及びそれからなる繊維
ITMI20032165A1 (it) * 2003-11-11 2005-05-12 Zambon Spa Processo di preparazione di gabapentina
KR100561083B1 (ko) * 2004-05-10 2006-03-15 주식회사 효성 카치온 염료 가염성 난연성 폴리에스터 중합물 및 이의제조방법, 그리고 이로부터 제조되는 코폴리에스터 섬유
CN100413907C (zh) * 2004-09-16 2008-08-27 洛阳高新技术开发区南峰聚酯有限公司 阳离子染料常压深染共聚酯及其制备方法
JP4922941B2 (ja) * 2004-11-15 2012-04-25 テクストロニクス, インク. 機能性弾性複合ヤーン、それを作る方法およびそれを含む物品
JP2007284599A (ja) * 2006-04-18 2007-11-01 Teijin Fibers Ltd 共重合ポリエステル組成物及び繊維
JP5218887B2 (ja) * 2008-01-09 2013-06-26 帝人株式会社 常圧カチオン可染性ポリエステル組成物及びそれからなるポリエステル繊維

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289725A (ja) 1985-10-15 1987-04-24 Teijin Ltd 改質ポリエステルの製造方法
JPH01162822A (ja) 1987-03-20 1989-06-27 Teijin Ltd 改質ポリエステルの製造法および改質ポリエステル繊維
JPH01172425A (ja) 1987-12-28 1989-07-07 Teijin Ltd 改質ポリエステルの製造法
JPH0525708A (ja) * 1991-07-16 1993-02-02 Toyobo Co Ltd 改質ポリエステル繊維
JPH07126920A (ja) 1993-11-04 1995-05-16 Mitsubishi Rayon Co Ltd ポリエステル常圧カチオン可染性霜降り調太細繊維の製造方法
JP2002030137A (ja) * 2000-07-18 2002-01-31 Nippon Ester Co Ltd 改質ポリエステルの製造方法
JP2002284863A (ja) 2001-03-23 2002-10-03 Kanebo Ltd 常圧カチオン可染ポリエステル及びその連続製造方法
JP2005336385A (ja) * 2004-05-28 2005-12-08 Nippon Ester Co Ltd 共重合ポリエステル及びそれを用いてなる繊維並びに共重合ポリエステルの製造方法
JP2006176628A (ja) 2004-12-22 2006-07-06 Teijin Fibers Ltd カチオン可染性ポリエステル及び高強力カチオン可染性ポリエステル繊維
JP2006200064A (ja) 2005-01-20 2006-08-03 Mitsubishi Rayon Co Ltd カチオン可染ポリエステル太細糸及びその製造方法並びにその太細糸を用いた織編物
WO2006095627A1 (ja) * 2005-03-07 2006-09-14 Kb Seiren, Ltd. 常圧カチオン可染ポリエステル、その繊維製品およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047882A (ja) * 2008-08-25 2010-03-04 Teijin Fibers Ltd 染色された共重合ポリエステル繊維構造体の製造方法および染色された共重合ポリエステル繊維構造体および繊維製品
JP2010280861A (ja) * 2009-06-08 2010-12-16 Teijin Fibers Ltd カチオン可染性共重合ポリブチレンテレフタレート
JP2011106071A (ja) * 2009-11-19 2011-06-02 Teijin Fibers Ltd ポリエステル繊維
JP2011140528A (ja) * 2010-01-05 2011-07-21 Teijin Fibers Ltd 共重合ポリエステル組成物の製造方法
CN102408554A (zh) * 2011-09-19 2012-04-11 江苏中鲈科技发展股份有限公司 一种抗紫外线、阳离子可染聚酯切片的制备方法
JP2013181250A (ja) * 2012-02-29 2013-09-12 Toray Ind Inc ポリエステル融着延伸仮撚加工糸
JP2013213293A (ja) * 2012-03-31 2013-10-17 Kb Seiren Ltd カチオン易染ポリエステル繊維およびその製造方法、ならびにその繊維を用いた繊維製品
JP2018516997A (ja) * 2016-04-19 2018-06-28 ヒョスン コーポレーション ポリエチレンテレフタレートポリマー及びこれを含むなま糸やカーマットの製造方法
JP2022543073A (ja) * 2019-08-02 2022-10-07 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド 芯鞘型複合仮撚糸およびその製造方法
JP7316444B2 (ja) 2019-08-02 2023-07-27 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド 芯鞘型複合仮撚糸およびその製造方法

Also Published As

Publication number Publication date
AU2009203402A1 (en) 2009-07-16
EP2233510A4 (en) 2013-08-28
JP2015045026A (ja) 2015-03-12
US20100275568A1 (en) 2010-11-04
RU2010132907A (ru) 2012-02-20
JP2013199653A (ja) 2013-10-03
CN101910244B (zh) 2013-04-24
EP2233510A1 (en) 2010-09-29
CN102418165B (zh) 2014-04-09
US8297035B2 (en) 2012-10-30
MX2010007284A (es) 2010-08-11
CN101910244A (zh) 2010-12-08
CN102418165A (zh) 2012-04-18
CA2711510A1 (en) 2009-07-16
JP2014080718A (ja) 2014-05-08
KR20100112605A (ko) 2010-10-19
JPWO2009088008A1 (ja) 2011-05-26
TW200948854A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
WO2009088008A1 (ja) 常圧カチオン可染性ポリエステル及び繊維
JP6973079B2 (ja) 吸湿性に優れた海島型複合繊維、仮撚糸および繊維構造体
EP1192302B2 (en) Fine denier yarn from poly(trimethylene terephthalate)
WO2003083194A1 (fr) Fil composite etirable du type ame-gaine et tissu-tricot etirable
CN114008255A (zh) 具有良好伸缩性的聚酯复合纤维及其制备方法
KR20150070865A (ko) 신축성이 우수한 폴리에스테르 복합섬유, 그 제조방법 및 이를 이용한 복합가공사
KR101276098B1 (ko) 난연성이 우수한 폴리에스테르 섬유 및 그 제조방법
KR101558058B1 (ko) 신축성이 우수한 폴리에스테르 복합섬유용 방사구금 및 이를 이용한 폴리에스테르 복합섬유 제조방법
JP2008240169A (ja) カチオン可染極細仮撚加工糸の製造方法
JP2007231473A (ja) 混繊複合糸及びその製造法
JP2020076172A (ja) 吸湿性極細複合繊維および繊維構造体
JP7268365B2 (ja) 吸湿性芯鞘型複合繊維および繊維構造体
JP2009174063A (ja) 常圧カチオン可染性ポリエステル糸条及びそれからなる仮撚加工糸
JPH03241024A (ja) カチオン可染極細仮撚加工糸の製造方法
KR102402950B1 (ko) 신축성이 우수한 폴리에스테르계 ity 복합사 및 이의 제조방법
JP2009249767A (ja) ポリエステル繊維
JPH08209443A (ja) ポリエステル系異収縮混繊糸
JP2021188175A (ja) ポリエステル複合繊維
US7958714B2 (en) False twisting yarn and production method thereof
JP2009174062A (ja) 常圧カチオン可染性ポリエステル糸条及びそれを用いた混繊糸
JP2006057194A (ja) ポリエステル繊維とアクリル繊維との混用品
JP2009228167A (ja) スパンライク様2層構造糸およびそれを用いた布帛
JP2005299044A (ja) 易染性ポリエステル繊維とポリトリメチレンテレフタレート系繊維との混用品
JPH10325039A (ja) 軽量弾性布帛の製造方法
JP2010229596A (ja) 異染性ポリエステル混繊糸

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101731.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548935

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12010501446

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 4557/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009203402

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/007284

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2711510

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12811961

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009203402

Country of ref document: AU

Date of ref document: 20090107

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009701180

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107017371

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010003180

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 2010132907

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0907245

Country of ref document: BR

Free format text: VERIFICOU-SE NO PROCESSO FISICO (TANTO NO ORIGINAL, COMO NAS COPIAS) QUE, APESAR DE CONSTAR 69 PAGINAS DE RELATORIO DESCRITIVO NA RELACAO DE DOCUMENTOS DA PETICAO NO 020100061097, EXISTEM APENAS 68 PAGINAS, NAO TENDO SIDO APRESENTADA A PAGINA 66. APRESENTE A PAGINA QUE FALTA DO RELATORIO DESCRITIVO.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0907245

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2501 DE 11/12/2018.