WO2008120533A1 - ハイブリッド車両の制御装置および制御方法 - Google Patents

ハイブリッド車両の制御装置および制御方法 Download PDF

Info

Publication number
WO2008120533A1
WO2008120533A1 PCT/JP2008/054232 JP2008054232W WO2008120533A1 WO 2008120533 A1 WO2008120533 A1 WO 2008120533A1 JP 2008054232 W JP2008054232 W JP 2008054232W WO 2008120533 A1 WO2008120533 A1 WO 2008120533A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
input
electric motor
control unit
Prior art date
Application number
PCT/JP2008/054232
Other languages
English (en)
French (fr)
Inventor
Kenji Yamada
Takeshi Itoh
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN200880010493XA priority Critical patent/CN101652282B/zh
Priority to EP08721649.5A priority patent/EP2127982B1/en
Priority to US12/449,742 priority patent/US8212502B2/en
Priority to BRPI0810085A priority patent/BRPI0810085B1/pt
Publication of WO2008120533A1 publication Critical patent/WO2008120533A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a control device for a hybrid vehicle, and more particularly to a control device for a hybrid vehicle having a configuration in which a control unit (ECU) is independently provided for each electric motor.
  • ECU control unit
  • FIG. 9 discloses in FIG. 9 the configuration of a motor drive used in a hybrid vehicle with a two-motor system of motors M 1 and M 2.
  • a common control device is conceptually described as a control device for driving control of the motors M 1 and M 2.
  • a single control device for example, electronic control unit: ECU
  • ECU electronice control unit
  • a configuration in which a control unit (ECU) is divided and arranged independently for each motor, and a drive control calculation of the motor in charge by each control unit (ECU) is executed is realistic.
  • a motor drive control device can be realized without excessively increasing the processing load and processing speed required for each control device, that is, without increasing the cost of each control device (ECU).
  • control unit ECU
  • An example of coordinated control is power balance control to limit the sum of input and output power across a plurality of motors within a certain range.
  • the power balance is managed by one of a plurality of control devices arranged in a divided manner, and the electric power of the motor in charge of the control device is limited as necessary.
  • a control configuration is preferred from the standpoint of quick response.
  • data used for power balance control Synchronization may be lost.
  • the present invention has been made to solve such problems, and the object of the present invention is to provide a hybrid vehicle control device in which a control unit (ECU) is divided and arranged for each electric motor. It is to appropriately execute power balance control that eliminates the influence of communication time between control units and limits the sum of each motor power within a predetermined range.
  • ECU control unit
  • the hybrid vehicle is equipped with the first and second electric motors and a power storage device configured to be able to transfer electric power between the first and second electric motors.
  • the control device includes: a first and a second control unit for driving and controlling the first and second electric motors, a communication path for communicating data between the first and the second control units, and an estimation unit. And a power balance control unit. Based on the data about the first electric motor acquired by the first control unit, the estimation unit determines the communication delay time in the communication path during data transmission from the first control unit to the second control unit. To estimate the input / output power of the first motor at the timing synchronized with the second motor. The power balance control unit uses the second control unit to estimate the sum of the input and output powers of the first and second motors within a predetermined range by using the estimated input and output power values of the first motor by the estimation unit. Restrict.
  • the hybrid vehicle includes the first and second electric motors, the power storage device, and the first and second control units. ⁇ and the above communication path are installed. Then, the control method is based on data about the first motor acquired by the first control unit, and communication is performed on the communication path when data is transmitted from the first control unit to the second control unit.
  • the first control step according to the above estimation step by the step and the second control unit Limiting the sum of the input and output powers of the first and second motors within a predetermined range using the estimated input / output power of the motor.
  • the power balance control unit includes a torque limiting unit.
  • the torque limiting unit is configured so that the sum of the input / output power of the second motor calculated by the second control unit and the estimated input / output power by the estimation unit does not exceed a predetermined range. Limit the output torque.
  • the step of limiting includes the step of adjusting the second motor so that the sum of the input / output power of the second motor calculated by the second control unit and the estimated input / output power by the estimation unit does not exceed a predetermined range. Limiting the output torque of the motor.
  • the power balance control can be executed with high accuracy without being affected by the communication time delay between the control units. As a result, it is possible to ensure vehicle performance while preventing charge / discharge and overdischarge of the power storage device.
  • the first control unit drives and controls the first electric motor in accordance with a smooth torque command value obtained by smoothing the torque command value of the first electric motor in the time direction.
  • the estimation unit obtains the estimated torque command value obtained by smoothing the torque command value of the first motor in the time direction with a time constant smaller than the smoothing processing for obtaining the smooth torque command value.
  • the estimating step includes an estimated torque command obtained by smoothing the torque command value of the first motor in the time direction with a time constant smaller than the smoothing process for obtaining the smooth torque command value. Use the value to obtain the estimated input / output power.
  • the data for the second control unit that executes the power balance control is stored.
  • an estimated torque command value in which the communication time delay is corrected can be obtained based on the torque command value.
  • the second control unit can estimate the input / output power of the first motor after correcting the communication time delay based on the estimated torque command value, so that the power balance control can be executed with high accuracy.
  • the estimation unit estimates the rotation speed of the first motor at the time when the communication delay time has passed based on the rate of change of the rotation speed of the first motor, and the estimated rotation speed of the first motor. Is used to obtain the estimated input / output power.
  • the estimating step estimates the rotation speed of the first motor when the communication delay time elapses based on the rate of change of the rotation speed of the first motor, and uses the estimated rotation speed of the first motor. To obtain the estimated input / output power.
  • the second control unit can estimate the input / output power of the first motor after correcting the communication time delay based on this estimated rotational speed, so power balance control is performed with high accuracy. it can.
  • the first control unit sequentially calculates input / output power from the torque and rotation speed of the first motor. Then, the estimation unit obtains an estimated input / output power value at the time when the communication delay time has elapsed based on the sequentially calculated input / output power and the rate of change thereof. Alternatively, the estimating step obtains an estimated input / output power at the time when the communication delay time has elapsed based on the sequentially calculated input / output power and the rate of change thereof.
  • the input / output power of the first motor can be estimated by correcting the communication time delay. For this reason, since the second control unit can estimate the input / output power of the first motor after correcting the communication time delay, the power balance control can be executed with high accuracy.
  • the first electric motor is configured to be capable of generating electric power as the engine is operated, and the second electric motor is configured to generate electric power at the time of regenerative braking while consuming electric power during driving and generating vehicle driving force. Composed.
  • the first motor which mainly functions as a generator
  • the vehicle drive It is possible to execute power balance control such that the sum of input and output power with the second motor functioning as the force generating motor is maintained within a predetermined range set according to the state of the power storage device. Therefore, it is possible to ensure vehicle performance while preventing charging / discharging and overdischarge of the power storage device.
  • the power balance control unit determines that the operating state of the first motor is changing in a direction in which the generated power of the first motor increases
  • the power balance control unit calculates the input / output power estimated value by the estimation unit.
  • the input / output power of the first motor that is recognized including the communication delay time is used to limit the sum of the input / output power of the first and second motors within a predetermined range.
  • the control method includes the steps of determining whether or not the operating state of the first motor has changed in a direction in which the generated electric power of the first motor increases, and the first motor in the direction in which the generated electric power increases.
  • the input / output power of the first motor that is recognized including the communication delay time is replaced with the second input / output power, instead of the input / output power estimated value by the estimating step. And transmitting to the control unit.
  • the limiting step limits the sum of the input / output powers of the first and second motors within a predetermined range using the input / output powers of the first motor transmitted to the second control unit.
  • the power balance control unit or the above-described determining step is configured such that when the absolute value of the torque command value increases during power generation of the first motor, the first generation power increases in the direction in which the generated power increases. It is determined that the operating state of the motor has changed.
  • the power balance control unit or the determining step may be configured to operate the first electric motor in the direction in which the generated electric power increases when the absolute value of the rotational speed changes during the electric power generation in the first electric motor. Judge that the state has changed.
  • the first control unit sequentially calculates the input / output power of the first motor, and the power balance control control unit or the step of determining the absolute value of the calculated value of the input / output power at the time of power generation by the first motor When the value changes in the increasing direction, it is determined that the operating state of the first motor is changing in the direction in which the generated power increases.
  • FIG. 1 is a schematic block diagram showing an overall configuration of a hybrid vehicle controlled by a control device for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining the control configuration of the motor generator shown in FIG. 1 in more detail.
  • Fig. 3 is a conceptual diagram illustrating the effect of communication delay time occurring between ECUs on power balance control.
  • FIG. 4 is a schematic block diagram illustrating power balance control by the hybrid vehicle control device according to the embodiment of the present invention.
  • FIG. 5 is a waveform diagram illustrating the function of the power estimation unit.
  • FIG. 6 is a flowchart for explaining the control process in MG 1 -ECU regarding the power balance control according to the embodiment of the present invention.
  • FIG. 7 is a flowchart for explaining a control process in MG 2 -E CU relating to power balance control according to the embodiment of the present invention.
  • FIG. 8 is a conceptual diagram for explaining a method for obtaining a torque estimated value with the communication delay time corrected.
  • FIG. 9 is a conceptual diagram illustrating a method for obtaining the estimated rotational speed value with the communication delay time corrected.
  • FIG. 10 is a conceptual diagram illustrating a method for obtaining an estimated power value with corrected communication delay time.
  • FIG. 11 is a waveform diagram for explaining power balance control according to a modification of the embodiment of the present invention.
  • Fig. 12 shows MG 1 regarding power balance control according to a modification of the embodiment of the present invention.
  • 1 is a flowchart explaining the control processing in the ECU.
  • FIG. 13 is a waveform diagram of an experimental result showing the effect of power balance control by the hybrid vehicle control device of the embodiment of the present invention.
  • FIG. 1 is a schematic block diagram showing an overall configuration of a hybrid vehicle controlled by a hybrid vehicle control device according to an embodiment of the present invention.
  • a hybrid vehicle 500 includes a DC power source 51, a power control unit (PCU) 5 20 which performs power conversion for driving a motor, and a motor generator 5 3 0 which mainly operates as an electric motor.
  • Engine 5 4 power split mechanism 5 5 0, motor generator 5 6 0 mainly operating as a generator, reducer 5 7 0, drive wheels 5 8 0 a, 5 8 0 b and hybrid vehicle 5 0 0 ECU 5 90 is provided to control the overall operation.
  • the motor generators 5 3 0 and 5 6 0 correspond to the “motor” of the present invention.
  • a motor generator that can operate as both a motor and a generator is applied as an example of “motor J.
  • FIG. 1 shows a hybrid in which only the front wheels are drive wheels. Although an automobile is shown, it is also possible to construct a 4WD hybrid vehicle by installing a motor for driving the rear wheels.
  • the DC power supply 51 is composed of a rechargeable secondary battery (for example, a secondary battery such as nickel metal hydride or lithium ion) or a power storage device such as an electric double layer capacitor.
  • Power control unit 5 2 0 includes an inverter (not shown) for driving and controlling motor generator 5 3 0.
  • This inverter converts the DC voltage supplied from the DC power source 5 10 into an AC voltage for driving the motor generator 5 30.
  • this inverter is configured to be capable of bi-directional power conversion, and functions to convert the generated power (AC voltage) generated by the regenerative braking operation of the motor generator 5 30 into a DC voltage for charging the DC power source 5 10. It shall have both.
  • power control unit 5 20 may further include a step-up / down converter (not shown) that performs DC voltage level conversion.
  • a step-up / step-down converter By arranging such a step-up / step-down converter, the motor generator 53 0 can be driven by an AC voltage whose amplitude is higher than the supply voltage of the DC power source 51 0, thus improving motor drive efficiency. can do.
  • the engine 5 40 outputs driving force by fuel combustion.
  • the power split mechanism 5 50 is coupled to the engine 5 40, the motor generator 5 30, and the motor generator 5 60, and distributes power among them. That is, the driving force generated by the engine 5 40 is divided into a path for transmitting to the driving wheels 5 80 a and 5 80 b via the speed reducer 5 70 and a path for transmitting to the motor generator 5 60. Is possible.
  • a planetary gear mechanism having three rotation shafts of a sun gear, a planetary carrier, and a ring gear can be used. These three rotary shafts are connected to the rotary shafts of the engine 5 40, the motor generator 5 3 0, and the motor generator 5 6 0, respectively.
  • the rotor of the motor generator 5 6 0 is hollow and the crank 5 of the engine 5 4 0 is passed through the center of the rotor so that the power split mechanism 5 5 0 and the engine 5 4 0 and the motor generator 5 3 0, the motor generator 5 6 0 Can be mechanically connected.
  • the rotor of motor generator 5 60 is connected to the sun gear
  • the crankshaft of engine 5 40 is connected to the planetary carrier
  • output shaft 5 5 5 is connected to the ring gear.
  • the rotation of the output shaft 5 55 is transmitted to the drive wheels 5 80 a and 5 80 b via the speed reducer 5 70.
  • Motor generator 5600 is rotated by the driving force from engine 5400 transmitted through power split device 5500 to generate electric power.
  • Power control unit 5 20 further includes an inverter (not shown) for driving and controlling motor generator 5 60.
  • This inverter converts the electric power (AC voltage) generated by the motor generator 5 60 into the DC power used as the charging power of the DC power source 5 10 or the driving power of the motor generator 5 30.
  • this inverter is configured so that bidirectional power conversion is possible.
  • the motor generator 5 60 may be configured to operate as an electric motor for the engine 5 40 and start the engine 5 40.
  • the motor generator 5 3 0 is rotationally driven by the AC voltage supplied from the power control unit 5 2 0, and the driving force is driven through the output shaft 5 5 5 and the speed reducer 5 7 0 to drive wheels 5 8 0 a , 5 8 O b is transmitted to the vehicle driving force. Further, during the regenerative braking operation in which the motor generator 5 30 is rotated as the drive wheels 5 80 a and 5 80 b are decelerated, the motor generator 5 30 acts as a generator.
  • the motor 5 4 0 In the hybrid vehicle 5 0 0, at the time of start-up and low-speed driving or light load such as when going down a gentle hill, the motor 5 4 0 is used without using the driving force of the engine 5 40 to avoid the area where the engine efficiency is low. Drives with the driving force of generator 5 3 0. Therefore, in this case, the operation of the engine 5400 is stopped except when the warm-up operation or the charging operation of the DC power source 510 by driving the motor generator 5600 is necessary. When warm-up operation or charging operation is necessary, the engine 5 40 is idled.
  • the engine 5 40 is started, and the driving force output from the engine 5 40 is driven by the power split mechanism 5 5 0 with the driving force of the driving wheels 5 8 0 a and 5 8 0 b and the motor It is divided into the driving force for power generation by the generator 5 60.
  • the electric power generated by motor generator 5 60 is used to drive motor generator 5 30. Therefore, during normal traveling, the driving power from the engine 5 40 is assisted by the driving power from the motor energy generator 5 30, and the driving wheels 5 80 a and 5 8 Ob are driven. Further, at the time of full open acceleration, the electric power supplied from the DC power source 5 10 is further used for driving the motor generator 5 30, and the driving power of the driving wheels 5 80 a and 5 80 b is further increased.
  • the motor generator 5 3 0 is rotationally driven by the drive wheels 5 80 a and 5 80 b to generate electric power.
  • the electric power recovered by the regenerative power generation of the motor generator 5 30 is converted into a DC voltage by the power control unit 5 20 and used for charging the DC power source 5 10. Furthermore, when the vehicle is stopped, the engine 540 is automatically stopped.
  • the hybrid vehicle 5 0 0 was generated by the engine 5 4 0 By combining the driving force and the driving force generated by the motor generator 53 0 using the electric energy as a source, that is, by controlling the operation of the engine 5 40 0 and the motor generator 53 0 according to the vehicle situation. Car driving with improved fuel efficiency.
  • the hybrid ECU 59 0 controls the sharing of the driving force generated by the motor generator 5 30 and the engine 5 40 according to the vehicle status based on the operation command (accelerator opening, brake operation, etc.).
  • FIG. 2 is a block diagram for explaining the control configuration of motor generator 5 30 (MG 2) and motor generator 5 60 (MG 1) shown in FIG. 1 in more detail.
  • rechargeable DC power supply 5 1 0 outputs DC voltage V B to power supply line 5 0 2.
  • Power control unit 5 2 0 includes converter 5 2 2, smoothing capacitor 5 2 3, and inverters 5 2 4 and 5 2 6.
  • the operations of converter 5 2 2 and inverters 5 2 4 and 5 2 6 in power control unit 5 2 0 are controlled by MG 2—ECU 6 2 0 and MG 1-ECU 6 1 0, which are arranged separately for each motor generator. Each is controlled.
  • the converter 5 2 2 includes an IGBT (Insulated Gate Bipolar Transistor), a power MOO (Metal Oxide Semiconductor) transistor, or a power semiconductor switching element (not shown) such as a power bipolar transistor. It is a buck-boost converter capable of bidirectional voltage conversion. Converter 5 2 2 boosts DC voltage V B of power supply line 5 0 2 by switching control in response to switching control signal S G 0 and outputs DC voltage V H to power supply line 5 0 4. Alternatively, the converter 5 2 2 can step down the DC voltage VH of the power line 5 0 4 and output the DC voltage VB to the power line 5 0 2 by switching control in response to the switching control signal SG 0. . The voltage conversion ratio (step-up ratio or step-down ratio) in converter 5 2 2 is variably controlled by switching control signal S GO.
  • Each of motor generator 5 3 0 (MG 2) and motor generator 5 6 0 (MG 1) typically includes a stator (not shown) provided with a three-phase coil winding and a rotor not shown. Including a three-phase synchronous motor as a motor generator that has both the functions of a motor and a generator. Since each of the inverters 5 2 4 and 5 2 6 is a general three-phase inverter composed of a power semiconductor switching element, a detailed description of the configuration is omitted.
  • the inverter 5 2 4 receives from the power line 5 0 4 by the on / off control (switching control) of the power semiconductor switching element (not shown) in response to the switching control signal SG 2 from the MG 2—ECU 6 2 0
  • the DC voltage VH can be converted into a three-phase AC voltage, and the converted three-phase AC voltage can be output to the motor generator 53 (MG 2).
  • motor generator 53 0 is driven and controlled so as to generate output torque in accordance with the Tonlek command value.
  • Inverter 5 2 4 controls switching of the three-phase AC voltage generated by motor generator 5 3 0 in response to the rotational force from wheels 5 80 a and 5 80 b during regenerative braking of hybrid vehicle 5 0 0. It can be converted to DC voltage by switching control according to the signal SG2, and the converted DC voltage can be output to the power supply line 504. Thus, inverter 5 24 performs bidirectional power conversion for MG 2 (motor generator 5 30).
  • regenerative braking here refers to braking with regenerative power generation when the driver driving a hybrid vehicle performs a regenerative power generation or turning off the accelerator pedal while driving, although the foot brake is not operated. This includes decelerating (or stopping acceleration) the vehicle while generating regenerative power.
  • the inverter 5 2 6 can generate the output torque according to the torque command value by the motor generator 5 6 0 by the switching control in response to the switching control signal SG 1 from the MG 1—ECU 6 1 0. . Further, when the motor generator 5 60 is driven by the engine 5 40 to generate power, the inverter 5 26 generates power by the motor generator 5 60 by switching control in response to the switching control signal SG 1. The three-phase AC voltage can be converted into a DC voltage, and the converted DC voltage can be output to the power line 50 4. In this way, inverter 5 26 performs bidirectional power conversion for MG 1 (motor generator 5 60).
  • the ECU 5 90 shown generally in FIG. 1 is an HV—ECU 6 0 0 as a host ECU and an M provided independently for each of MG 1 and MG 2.
  • G l— ECU 6 10 and MG 2 ECU 620 and hierarchical structure.
  • HV—ECU 600 generates torque command values T q r 1 and T q r 2 for MG 1 and MG 2 according to vehicle conditions based on operation commands (accelerator command, brake command, etc.).
  • the HV—ECU 600 determines the direct current voltage VH command value so that MG 1 and MG 2 can be optimally driven according to the operating state of MG 1 and MG 2 transmitted via the communication path 625. Is generated. These operation command values are transmitted to MG 2 -ECU 620 via communication path 625. Further, a communication path 6 15 is provided between the MG 2 -E CU 620 and the M G 1 -ECU 6 10. The communication paths 6 1 5 and 6 25 are typically configured by wireless and wireless or wired LAN (Local Area Network). As a result, data and information can be exchanged between the HV-ECU 600, MG 1 -ECU 61, and MG 2-ECU 620. In the configuration example of FIG. 2, a communication path may be further provided between the HV-ECU 600 and the MG 1-ECU 610.
  • the converter 522 outputs a switching control signal S so as to output an output voltage corresponding to the voltage command value of the DC voltage VH set by the HV—ECU 600 or MG 1—ECU 610 or MG 2—ECU 620. Operates in response to GO.
  • the MG 1—ECU 610 and MG 2—ECU 620 control the switching control signal SG so that the operation control (motor control) of the MG 1 and MG 2 is executed according to the operation command value from the HV—ECU 600. 1, SG 2 is generated. That is, the DC-AC voltage conversion operation in inverters 524 and 526 is controlled so that MG 1 and MG 2 generate output torque according to the torque command value.
  • the input / output power of MG 1 (hereinafter also referred to as MG 1 power), which basically operates as a generator, and MG 2 which basically operates as a motor for generating vehicle driving force.
  • MG 1 power which basically operates as a generator
  • MG 2 which basically operates as a motor for generating vehicle driving force.
  • the excess and deficiency of the entire motor generator MG 1 and MG 2 indicated by the sum of the input and output power (hereinafter also referred to as MG 2 power) will be covered by the input and output power of the DC power supply 5 1 °. Power balance.
  • each of MG 1 power and MG 2 power is indicated by a positive value (> 0) when power is consumed and indicated by a negative value ( ⁇ 0) when power is generated.
  • hybrid vehicle 500 if the power consumption in MG 2 increases rapidly due to the occurrence of a slip or the like, the increase in generated power in MG 1 will not be in time, and a phenomenon will occur in which power is suddenly taken out from DC power source 5 10 and DC power source 5 10 May adversely affect the life of the product.
  • output possible power Wout (> 0) indicating the allowable value of output power from DC power supply 5 10 and input allowable power indicating the allowable value of input power (charging power) to DC power supply 5 10 W in «0) is sequentially set according to the state of the DC power supply 5 10 (for example, the charging rate: SOC, battery temperature, etc.), and the following ( Power balance control is executed according to 1).
  • the power balance control is executed by the ECU directly controlling the motor generator, that is, by the MG 1—ECU 6 10 or the MG 2—ECU 620 rather than the HV—ECU 600.
  • the ECU directly controlling the motor generator that is, by the MG 1—ECU 6 10 or the MG 2—ECU 620 rather than the HV—ECU 600.
  • the MG 2 — ECU 620 transmits the torque command value T q 1 from the HV — ECU 600 to the MG 1 -ECU 6 10.
  • MG l—ECU6 1 CKi transmitted A switching control signal SG 1 for switching control of the inverter 526 is generated so that MG 1 generates an output torque according to the torque command value Tq r 1.
  • the data MG 1—ECU 6 10 is sequentially transmitted to the data DAT power MG 2—E CU 620 for recognizing the MG 1 power Pm 1.
  • MG2—ECU 620 is the MG2 power Pm2 obtained based on the operating state of MG 2 (typically torque command value and rotation speed), and MG 1—MG 1 power recognized based on the received data from ECU610. It has a function to correct the torque command value T qr 2 as necessary so that the sum with Pm 1 satisfies Eq. (1).
  • MG 2—ECU 620 determines the upper limit value T 2 m a X (W o t side) and lower limit value T 2 m i n (W for the torque command value of MG 2 according to the following equations (2) and (3):
  • Nm2 in Eqs. (2) and (3) indicates the rotation speed (rpm) of MG2.
  • T2ma x (Wo u t-Pml) / (2 ⁇ -Nm 2/60)... (2)
  • MG 1 power Pm 1 is changing
  • MG 1 power Pml at time t a is MG 2—ECU 6 at time t b when communication delay time T cm has elapsed.
  • the power balance control at time t b is executed with an error of ⁇ P for the MG 1 power Pm 1.
  • the output of hybrid vehicles has been increased, and a configuration in which a speed reducer is provided between the MG 2 for driving the vehicle and the output shaft has begun to be adopted.
  • the change in vehicle output per hour becomes steep, and accordingly, the amount of change in MG 1 power P m 1 and MG 2 power Pm2 per hour also increases.
  • FIG. 4 is a schematic block diagram illustrating power balance control by the hybrid vehicle control apparatus according to the embodiment of the present invention.
  • power estimation unit 650 generates estimated value Pml e of MG 1 power Pml based on the torque and rotation speed of MG 1.
  • the power balance control unit 660 executes the power balance control expressed by the equations (1) to (3) based on the torque and rotation speed of the MG 2 and the input / output available power W in, Woot of the DC power supply 510.
  • the power balance control unit 660 limits the torque command value of MG 2 within the range of T 2min to T 2max according to Eqs. (2) and (3) as necessary based on the power balance control.
  • Includes a torque limiter 665 that generates the final torque command value Tq r 2 # for MG 2.
  • FIG. 5 shows changes in MG 1 torque and MG 1 power when the MG 1 rotation speed is constant, in order to explain the function of power estimation section 650.
  • the actual torque command value T q r 1 # of MG 1 is obtained by smoothing the torque command value T q r 1 of HV—ECU 600, etc. in the time direction. That is, the torque command value Tq r 1 # corresponds to the “smooth torque command value”.
  • the actual torque command value Tq r 1 # also goes to 0 as the torque command value Tq r 1 rises to zero in a stepwise manner. It is smoothed and changed.
  • the MG 1 power recognized by the MG2—ECU 620 becomes Pm 1 T indicated by the dotted line in the figure. Is overrecognized. Therefore, when the total power of MG 1 and MG 2 exceeds the output power Wout, the DC power supply 510 may be overdischarged.
  • the power error ⁇ (Fig. 3) force is continuously generated, so that the output power from the DC power supply 5 10 is continuously excessive, and its life is shortened. There is concern about the potential for adverse effects.
  • the power estimation unit 650 generates a power estimation value Pml e in which the communication time delay T cm is corrected, and uses Pml e as Pml in the equation (1).
  • appropriate power balance control is executed.
  • an estimated torque value T qr 1 e is generated by correcting the communication delay T cm for the torque command value T qr 1 #, and this estimated torque value T qr 1 e and MG 1 rotation
  • the estimated MG 1 power Pml e with the communication delay T cm corrected according to the following equation (4) can be obtained.
  • the estimated MG 1 power Pml e is used for power balance control after the communication delay time T cm has elapsed, so that the MG 1 power recognized by the MG 2—ECU 620 is the actual MG 1 1 Power Pml will be matched.
  • FIG. 6 is a flowchart for explaining the control process in MG 1 -ECU 610 regarding the power balance control according to the embodiment of the present invention.
  • MG 1—ECU 6 10 receives torque command value T qr 1 from the host EC in step S100.
  • the torque command value T qr is generated by the HV-ECU 600 and transmitted via the MG2-E CU 620 through the communication paths 6 15 and 625.
  • MG 1 -ECU 6 10 generates the actual torque command value Tq r 1 # by smoothing the torque command value Tq r 1 received in step S 100 in the time direction in step SI 10.
  • step S 120 MG 1 and ECU 6 10 control inverter 526 so that MG 1 outputs a torque according to torque command value T qr 1 # after the smoothing process.
  • step S 1 30 MG 1 -ECU 6 10 generates estimated MG 1 power Pm 1 e in which the communication delay time T cm is pre-read (corrected) based on the torque command value of MG 1 and the actual number of revolutions.
  • step S 140 MG 1 -ECU 6 10 transmits estimated MG 1 power Pml e to MG 2 -ECU 620 for power balance control.
  • FIG. 7 is a flowchart showing a control process of MG2-ECU 620 in the power balance control according to the embodiment of the present invention.
  • MG2—ECU62 (i, in step S200, HV—ECU 600, which is the host ECU, receives torque command value T qr 2, and in step S2 10, torque command value T qr 2 Furthermore, MG 2 — ECU 620, based on torque command value Tq r 2 smoothed in S 210 and MG 2 rotation speed record Nm 2 in step S 220, Pm 2 is calculated.
  • MG2 ECU62 ( ⁇ i, in step S 230, MG 1—Estimated MG 1 power Pm 1 e from ECU 6 10 is acquired. Furthermore, MG 2—ECU 620 is acquired in step S 240, in step S 230 It is determined whether or not the total power Pm 1 e + P m 2 force, which is the sum of the estimated MG 1 power and the MG 2 power calculated in S 220, falls within the range of Win to W out.
  • MG 2—ECU.620 controls inverter 524 so that, in step S 270, MG 2 generates an output torque according to torque command value T qr 2 # set in step S 250 or S 260. To do.
  • MG 2 the ECU 620 that can control the MG 2 at the highest speed—performs power balance control between ECUs.
  • Power balance control can be executed with high accuracy without being affected by the communication time delay. As a result, charging / discharging and overdischarge of the DC power supply 510 can be prevented, that is, the hybrid vehicle can be controlled to ensure vehicle performance without adversely affecting the life of the DC power supply (power storage device). .
  • MG 1 power can be calculated according to the product of MG 1 torque command value and actual rotation speed.
  • an estimated value of the rotation speed with the communication delay time corrected may be obtained.
  • the MG 1 power P m 1 is sequentially calculated based on the product of the torque command value T qr 1 # and the actual rotation speed N m 1, and based on the calculated MG 1 power P m 1 Electric power balance control may be executed.
  • the power balance control based on the power estimation considering the communication delay time described above is stopped when the generated power of MG 1 is increased, and is executed only when the generated power is decreased.
  • the configuration is as follows.
  • FIG. 11 schematically shows power balance control according to a modification of the embodiment of the present invention.
  • MG 1 power Pml decreases in an operation pattern in which MG 1 starts power generation from time t X and then the power generation amount gradually decreases from time tz and power generation ends.
  • the actual MG 1 power Pml is estimated as it is without correcting the communication delay time T cm. Execute control.
  • the communication time delay T cm is set to the actual MG 1 power Pml, as in the above-described embodiment. Power balance control is executed using the corrected estimated power Pml e. As a result, when the power generation amount of MG 1 is reduced, it is possible to appropriately predict the reduction of the power generation amount due to MG 1 and to perform accurate power balance control so as to prevent overdischarge of the DC power source 5 10.
  • FIG. 12 is a flowchart explaining a control process in the MG 1 ECU related to the power balance control according to the modification of the embodiment of the present invention. Compared to Fig. 6 in Fig. 12 and Fig. 6, in the power balance control according to the modification of the embodiment, MG
  • the ECU 6 10 further executes step S 125 and step S 150 in addition to the step group shown in FIG.
  • step S 1 25 determines in step S 1 25 whether the power generation amount of MG 1 is increasing.
  • step S 1 25 for example, when the absolute value of the torque command value Tq r 1 # increases during power generation of MG 1, it can be determined that the power generation amount of MG 1 is increasing. Alternatively, it can be determined that the power generation amount of MG 1 is increasing in response to the increase in the absolute value of the MG 1 rotation speed during the power generation of MG 1.
  • MG 1 power Pm 1 is calculated sequentially based on the product of torque command value T qr 1 # and MG 1 rotation speed Nm 1, and step S is calculated based on the calculated positive / negative and change direction of MG 1 power Pml. It is also possible to execute the determination according to 1 25.
  • MG 1—ECU 610 executes steps S 130 and S 140 similar to those in FIG. 6 when MG 1 power generation is not increasing (S 125 is NO), and uses estimated MG 1 power P ml e as power. Sends MG 2—ECU 620 for balance control. On the other hand, when MG 1—ECU 6 10 is increasing MG 1 power generation (S 1 25 is Y
  • step S 150 MG 1 power Pm 1 not considering communication delay time is transmitted to MG 2 — ECU 620 for power balance control.
  • FIG. 13 shows the experimental results showing the effect of the power balance control by the hybrid vehicle control device of the embodiment of the present invention.
  • MG 1 and MG 2 are compared with the period without control, that is, the normal power balance control without correcting the communication delay time. It is understood that the effect of limiting the total power to less than the output power W ut is high.
  • the estimated MG 1 power Pm 1 e used for the power balance control is calculated by MG 1 -ECU 610, and MG 2 -ECU 6
  • the control configuration for transmission was illustrated, but the estimated MG 1 power Pml e was calculated as MG2. It can also be executed by the ECU 620, and in this case, it will be confirmed that the same effect can be obtained.
  • the actual value of MG 1 is sequentially transmitted from MG 1 -ECU 610 to MG 2 -ECU 620, and the function of power estimation unit 650 shown in FIG. 4 is executed by MG 2 -ECU 620. That is, the function of power estimation section 650 shown in FIG. 4 can be executed by either MG 1-ECU 6 10 or MG 2-ECU 620.
  • the present invention can be applied to control of a hybrid vehicle equipped with a plurality of electric motors connected to a common power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 モータジェネレータ(MG1,MG2)ごとにMG1−ECU(610)およびMG2−ECU(620)が独立に設けられる。MG2−ECU(620)は、MG1電力およびMG2電力の和が直流電源(510)の入出力可能電力範囲(Win~Wout)内となるように、必要に応じてMG2トルク指令値を修正することにより電力収支制御を行なう。この電力収支制御は、MG1電力について、MG1−ECU(610)が取得したデータを基に、MG1−ECU(610)およびMG2−ECU(620)間の通信遅れ時間を補正するように推定された推定値を用いて実行される。これにより。複数個のモータジェネレータ(電動機)が搭載されたハイブリッド車両で電動機全体での入出力電力の和を所定範囲内に制限する電力収支制御を適切に実行することができる。

Description

明細書 ハイプリッド車両の制御装置および制御方法 技術分野
この発明は、 ハイブリッド車両の制御装置に関し、 より特定的には、 電動機ご とに制御ユニット (ECU) が独立に設けられた構成のハイブリッド車両の制御 装置に関する。 背景技術
ハイプリッド車両に適用されるモータ駆動制御装置の一種として、 複数の電動 機を駆動制御するものが用いられている。 たとえば、 国際公開公報 W02003 01 5254には、 その図 9に、 電動機 M 1および M 2の 2モータシステムに よるハイプリッド車両に用いられるモータ駆 »制御装置の構成が開示されている 国際公開公報 WO 2003 015254の図 9では、 電動機 M 1, M 2の駆 動制御のための制御装置として、 共通の制御装置が概念的に記載されている。 し かしながら、 実際のモータ駆動制御装置では、 単一の制御装置 (たとえば電子制 御ュニット : ECU) によって、 モータ Mlおよび M 2の両方について制御演算 を実行する構成とすると、 ECUの処理負荷が過大となって、 高性能の ECUが 必要となる可能性がある。
したがって、 電動機ごとに独立に制御装置 (ECU) を分割配置して、 各制御 装置 (ECU) によって担当する電動機の駆動制御演算を実行する構成が現実的 である。 このような構成とすると、 各制御装置への処理負荷および処理速度の要 求を過大にすることなく、 すなわち各制御装置 (ECU) を高コスト化すること なくモータ駆動制御装置を実現できるようになる。
しかしながら、 電動機ごとに制御装置 (ECU) を独立に分割配置する場合に は、 モータ M 1および M 2間の協調制御を実行する際に問題が生じる。 協調制御 の一例としては、 複数個の電動機全体での入出力電力の総和を一定範囲内に制限 するための電力収支制御が挙げられる。 この電力収支制御を高速に行なうためには、 分割配置された複数の制御装置の うちの 1つで電力収支を管理し、 かつ、 当該制御装置が担当する電動機の電力を 必要に応じて制限する制御構成とすることが即応性の面から好ましい。 しかしな がら、 このような制御構成では、 電力収支制御を担当する制御装置と他の制御装 置との間で生じる通信時間の影響によって、 電力収支制御に用いるデータ ■情報 について複数の電動機間で同期が崩れる可能性がある。 すなわち、 通信時間分、 データ ·情報の認識がずれることにより、 特に電動機出力 (回転数、 トルク) が 変化している期間では、 適切な電力収支制御を実行できなくなる可能性が否定で きない。 発明の開示 .
この発明は、 このような問題点を解決するためになされたものであって、 この 発明の目的は、 電動機ごとに制御ユニット (E C U) が分割配置された構成のハ イブリツド車両の制御装置において、 制御ュニット間での通信時間の影響を排除 して、 各電動機電力の総和を所定範囲内に制限する電力収支制御を適切に実行す ることである。
この発明によるハイプリッド車両の制御装置において、 ハイプリッド車両には、 第 1および第 2の電動機ならびに第 1および第 2の電動機との間で電力を授受可 能に構成された蓄電装置が搭載される。 制御装置は; 第 1および第 2の電動機を それぞれ駆動制御するための第 1および第 2の制御ュニットと、 第 1および第 2 の制御ユニット間でデータを通信するための通信経路と、 推定部と、 電力収支制 御部とを備える。 推定部は、 第 1の制御ユニットにより取得される第 1の電動機 についてのデータに基づき、 第 1の制御ュニットから第 2の制御ュニットへのデ ータ伝送の際の通信経路での通信遅れ時間を補正して、 第 2の電動機と同期した タイミングにおける、 第 1の電動機の入出力電力を推定する。 電力収支制御部は、 第 2の制御ュニットにより、 推定部による第 1の電動機の入出力電力推定値を用 レ、て、 第 1および第 2の電動機の入出力電力の和を所定範囲内に制限する。
この発明によるハイプリッド車両の制御方法において、 ハイプリッド車両には、 上記第 1および第 2の電動機、 上記蓄電装置、 上記第 1および第 2の制御ュニッ 卜ならびに上記通信経路が搭載される。 そして、 制御方法は、 第 1の制御ュニッ トにより取得される第 1の電動機についてのデータに基づき、 第 1の制御ュニッ トから第 2の制御ュニットへのデータ伝送の際の通信経路での通信遅れ時間を補 正して、 第 2の電動機と同期したタイミングにおける、 第 1の電動機の入出力電 力を推定するス.テツプと、 第 2の制御ユニットにより、 上記推定するステップに よる第 1の電動機の入出力電力推定値を用いて、 第 1および第 2の電動機の入出 力電力の和を所定範囲内に制限するステップとを備える。
好ましくは、 電力収支制御部は、 トルク制限部を含む。 トルク制限部は、 第 2 の制御ュニットにより算出される第 2の電動機の入出力電力および、 推定部によ る入出力電力推定値の和が所定範囲を超えないように、 第 2の電動機の出力トル クを制限する。 あるいは、 上記制限するステップは、 第 2の制御ユニットにより 算出される第 2の電動機の入出力電力および、 推定部による入出力電力推定値の 和が所定範囲を超えないように、 第 2の電動機の出力トルクを制限するステップ を含む。
上記ハイブリッド車両の制御装置では、 第 1および第 2の電動機にそれぞれ対 応して設けられた第 1および第 2の制御ュニットの一方によって、 電動機電力の 総和を管理する電力収支制御を高速に実行可能とするとともに、 制御ュニット間 での通信時間遅れの影響を受けることなく電力収支制御を高精度に実行できる。 この結果、 蓄電装置の充放電および過放電を防止した上で、 車両性能を確保する ことが可能となる。
また好ましくは、 第 1の制御ユニットは、 第 1の電動機のトルク指令値を時間 方向に平滑化して得られる平滑トルク指令値に従って第 1の電動機を駆動制御す る。 そして、 推定部は、 第 1の電動機のトルク指令値を、 平滑トルク指令値を得 るための平滑化処理よりも小さい時定数で時間方向に平滑化処理して得られる推 定トルク指令値を用いて、 入出力電力推定値を求める。 あるいは、 上記推定する ステップは、 第 1の電動機のトルク指令値を、 平滑トルク指令値を得るための平 滑化処理よりも小さい時定数で時間方向に平滑化処理して得られる推定トルク指 令値を用いて、 入出力電力推定値を求める。
このようにすると、 電力収支制御を実行する第 2の制御ュニットに対してデー タを送信する第 1の制御ュニットに制御される第 1の電動機については、 トルク 指令値に基づいて、 通信時間遅れ分を補正した推定トルク指令値を求めることが できる。 このため、 第 2の制御ユニットでは、 この推定トルク指令値に基づいて 通信時間遅れを補正した上で第 1の電動機の入出力電力を推定できるので、 電力 収支制御を高精度に実行できる。
あるいは好ましくは、 推定部は、 第 1の電動機の回転数の変化率に基づいて通 信遅れ時間鋒過時点の第 1の電動機の回転数を推定するとともに、 推定した第 1 の電動機の回転数を用いて入出力電力推定値を求める。 あるいは、 上記推定する ステップは、 第 1の電動機の回転数の変化率に基づいて通信遅れ時間経過時点の 第 1の電動機の回転数を推定するとともに、 推定した第 1の電動機の回転数を用 いて入出力電力推定値を求める。
このようにすると、 第 1の電動機の回転数が変化している状況においても、 通 信時間遅れ分を補正して第 1の電動機の回転数を推定することができる。 このた め、.第 2の制御ュニットでは、 この推定回転数に基づいて通信時間遅れを補正し た上で第 1の電動機の入出力電力を推定できるので、 電力収支制御を高精度に実 行できる。
好ましくは、 第 1の制御ユニットは、 第 1の電動機のトルクおよび回転数から 入出力電力を逐次算出する。 そして、 推定部は、 逐次算出された入出力電力およ びその変化率に基づいて、 通信遅れ時間経過時点での入出力電力推定値を求める。 あるいは、 上記推定するステップは、 逐次算出された入出力電力およびその変化 率に基づいて、 通信遅れ時間経過時点での入出力電力推定値を求める。
このようにすると、 第 1の電動機の入出力電力が変化している状況においても、 通信時間遅れ分を補正して第 1の電動機の入出力電力を推定することができる。 このため、 第 2の制御ユニットでは、 通信時間遅れを補正した上で第 1の電動機 の入出力電力を推定できるので、 電力収支制御を高精度に実行できる。
好ましくは、 第 1の電動機は、 エンジン運転に伴って発電可能に構成され、 第 2の電動機は、 カ行時に電力を消費して車両駆動力を発生する一方で、 回生制動 時に発電するように構成される。
このようにすると、 主に発電機として機能する第 1の電動機と、 主に車両駆動 力発生用電動機として機能する第 2の電動機との入出力電力の総和が蓄電装置の 状態に応じて設定される所定範囲内に維持されるような電力収支制御が実行可能 となる。 したがって、 蓄電装置の充放電および過放電を防止した上で、 車両性能 を確保することが可能となる。
また好ましくは、 電力収支制御部は、 第 1の電動機の発電電力が増加する方向 に第 1の電動機の運転状態が変化していると判断した場合には、 推定部による入 出力電力推定値に代えて、 通信遅れ時間を含んで認識される第 1の電動機の入出 力電力を用いて、' 第 1および第 2の電動機の入出力電力の和を所定範囲内に制限 する。 あるいは、 制御方法は、 第 1の電動機の発電電力が増加する方向に第 1の 電動機の運転状態が変化しているか否かを判定するステップと、 発電電力が増加 する方向に第 1の電動機の運転状態が変化していると判定された場合には、 上記 推定するステップによる入出力電力推定値に代えて、 通信遅れ時間を含んで認識 される第 1の電動機の入出力電力を第 2の制御ュニットへ送信するステップとを さらに備える。 そして、 制限するステップは、 第 2の制御ユニットへ送信された 第 1の電動機の入出力電力を用いて、 第 1および第 2の電動機の入出力電力の和 を所定範囲内に制限する。
具体的には、 電力収支制御部または上記判定するステップは、 第 1の電動機の 発電時にトルク指令値の絶対値が増加する方向に変化している場合に、 発電電力 が増加する方向に第 1の電動機の運転状態が変化していると判断する。 あるいは、 電力収支制御部または上記判定するステップは、 第 1の電動機の発電時に回転数 の絶対値が増加する方向に変化している場合に、 発電電力が増加する方向に第 1 の電動機の運転状態が変化していると判断する。 または、 第 1の制御ユニットは、 第 1の電動機の入出力電力を逐次算出し、 電力収支制御制御部または上記判定す るステップは、 第 1の電動機の発電時に入出力電力の算出値の絶対値が増加する 方向に変化している場合に、 発電電力が増加する方向に第 1の電動機の運転状態 が変化していると判断する。
このようにすると、 第 1の電動機の発電時に発電電力が減少する方向に第 1の 電動機の運転状態が変化している場合には、 通信時間遅れ分を補正するための推 定を中止することによって、 蓄電装置の過放電の保護に対して安全側の電力収支 制御を実行することができる。
したがって、 この発明による主たる利点は、 電動機ごとに制御ユニット (E C U) が分割配置された構成のハイブリッド車両の制御装置において、 制御ュニッ ト間での通信時間遅れの影響を排除して、 各電動機電力の総和を所定範囲内に制 限する電力収支制御を適切に実行できる点にある。 図面の簡単な説明 - 図 1は、 この発明の実施の形態によるハイプリッド車両の制御装置によって制 御されるハイプリッド車両の全体構成を示す概略ブロック図である。
図 2は、 図 1に示したモータジェネレータの制御構成をより詳しく説明するブ ロック図である。
図 3は、 E C U間で発生する通信遅れ時間が電力収支制御へ与える影響を説明 する概念図である。
図 4は、 本発明の実施の形態によるハイプリッド車両の制御装置による電力収 支制御を説明する概略ブロック図である。
図 5は、 電力推定部の機能を説明する波形図である。
図 6は、 この発明の実施の形態の電力収支制御に関する MG 1— E C Uでの制 御処理を説明するフローチヤ一トである。
図 7は、 この発明の実施の形態の電力収支制御に関する MG 2— E C Uでの制 御処理を説明するフローチャートである。
図 8は、 通信遅れ時間を補正したトルク推定値の取得方法を説明する概念図で ある。
図 9は、 通信遅れ時間を補正した回転数推定値の取得方法を説明する概念図で ある。
図 1 0は、 通信遅れ時間を補正した電力推定値の取得方法を説明する概念図で ある。
図 1 1は、 この発明の実施の形態の変形例による電力収支制御を説明する波形 図である。
図 1 2は、 この発明の実施の形態の変形例による電力収支制御に関する MG 1 一 E C Uでの制御処理を説明するフローチヤ一トである。
図 1 3は、 本発明の実施の形態のハイプリッド車両の制御装置による電力収支 制御の効果を示す実験結果の波形図である。 発明を実施するための最良の形態
以下に、 本発明の実施の形態について図面を参照して詳細に説明する。 なお以 下図中の同一または相当部分には同一符号を付してその詳細な説明は原則的に繰 返さないものとする。
図 1は、 この発明の実施の形態によるハイプリッド車両の制御装置によって制 御されるハイブリッド車両の全体構成を示す概略ブロック図である。
図 1を参照して、 ハイブリッド車両 5 0 0は、 直流電源 5 1 0、 モータ駆動の ための電力変換を行なう電力制御ユニット (P C U) 5 2 0、 主に電動機として 動作するモータジェネレータ 5 3 0、 エンジン 5 4 0、 動力分割機構 5 5 0、 主 に発電機として動作するモータジェネレータ 5 6 0、 減速機 5 7 0、 駆動輪 5 8 0 a , 5 8 0 bおよび、 ハイブリッド車両 5 0 0の全体動作を制御する E C U 5 9 0を備える。
モータジェネレータ 5 3 0, 5 6 0は、 本発明の 「電動機」 に相当する。 すな わち、 この実施の形態では、 電動機としても発電機としても動作可能であるモー タジェネレータを 「電動機 J の一例として適用する。 なお、 図 1には、 前輪のみ が駆動輪であるハイブリッド自動車を示したが、 さらに後輪駆動用の電動機を設 けて、 4 WDハイプリッド自動車を構成することも可能である。
直流電源 5 1 0は、 充電可能な二次電池 (たとえばニッケル水素またはリチウ ムイオン等の二次電池) あるいは、 電気二重層キャパシタ等の蓄電装置から構成 される。 電力制御ュニット 5 2 0は、 モータジェネレータ 5 3 0を駆動制御する ためのインバータ (図示せず) を含む。 このインバータは、 直流電源 5 1 0から 供給された直流電圧をモータジェネレータ 5 3 0駆動用の交流電圧に変換する。 さらに、 このインバータは、 双方向の電力変換が可能なように構成され、 モータ ジェネレータ 5 3 0の回生制動動作による発電電力 (交流電圧) を直流電源 5 1 0充電用の直流電圧に変換する機能を併せ持つものとする。 さらに、 電力制御ュニット 5 2 0は、 直流電圧のレベル変換を行なう昇降圧コ ンバータ (図示せず) をさらに含んでもよい。 このような昇降圧コンバータを配 置することにより、 直流電源 5 1 0の供給電圧よりも高電圧を振幅とする交流電 圧によってモータジェネレータ 5 3 0を駆動することができるので、 モータ駆動 効率を向上することができる。
エンジン 5 4 0は、 燃料燃焼により駆動力を出力する。 動力分割機構 5 5 0は、 動力分割機構 5 5 0は、 エンジン 5 4 0とモータジェネレータ 5 3 0, モータジ エネレータ 5 6 0とに結合されており、 これらの間で動力を分配する。 すなわち、 エンジン 5 4 0によって生じた駆動力を、 減速機 5 7 0を介して駆動輪 5 8 0 a , 5 8 0 bへ伝達する経路と、 モータジェネレータ 5 6 0へ伝達する経路とに分割 可能である。
たとえば、 動力分割機構 5 5 0としては、 サンギア、 プラネタリキャリアおよ びリングギアの 3つの回転軸を有する遊星歯車機構を用いることができる。 この 3つの回転軸がエンジン 5 4 0およびモータジェネレータ 5 3 0, モ一タジエネ レータ 5 6 0の各回転軸にそれぞれ接続される。 たとえば、 モータジェネレータ 5 6 0のロータを中空としてその中心にエンジン 5 4 0のクランク $ϊを通すこと で動力分割機構 5 5 0にエンジン 5 4 0とモータジェネレータ 5 3 0 , モータジ エネレータ 5 6 0とを機械的に接続することができる。 具体的には、 モータジェ ネレータ 5 6 0のロータをサンギアと接続し、 エンジン 5 4 0のクランク軸をプ ラネタリキャリアと接続し、 かつ、 出力軸 5 5 5をリングギアと接続する。 出力 軸 5 5 5の回転は、 減速機 5 7 0を介して、 駆動輪 5 8 0 a , 5 8 0 bへ伝達さ れる。 、
このように、 モータジェネレータ 5 6 0は、 動力分割機構 5 5 0を介して伝達 されたエンジン 5 4 0からの駆動力によって回転されて発電する。 電力制御ュニ ット 5 2 0は、 モータジェネレータ 5 6 0を駆動制御するためのインバータ (図 示せず) をさらに含む。 このインバータは、 モータジェネレータ 5 6 0による発 電電力 (交流電圧) を直流電源 5 1 0の充電電力、 あるいはモータジェネレータ 5 3 0の駆動電力として用いられる直流電圧に変換する。 さらに、 このインバ一 タを双方向の電力変換が可能なように構成して、 直流電源 5 1◦からの直流電圧 によりモータジェネレータ 5 6 0をエンジン 5 4 0に対して電動機として動作さ せ、 エンジン 5 4 0の始動を行ない得るように構成してもよレ、。
モータジェネレータ 5 3 0は、 電力制御ュニット 5 2 0から供給された交流電 圧によって回転駆動されて、 その駆動力は、 出力軸 5 5 5および減速機 5 7 0を 介して駆動輪 5 8 0 a , 5 8 O bへ伝達されて、 車両駆動力となる。 また、 モー タジェネレータ 5 3 0が駆動輪 5 8 0 a , 5 8 0 bの減速に伴って回転される回 生制動動作時には、 モータジェネレータ 5 3 0は発電機として作用する。
ハイブリッド車両 5 0 0では、 発進時ならびに低速走行時あるいは緩やかな坂 を下るときとの軽負荷時には、 エンジン効率の悪い領域を避けるために、 ェンジ ン 5 4 0の駆動力を用いることなく、 モータジェネレータ 5 3 0による駆動力で 走行する。 したがって、 この場合には、 暖機運転やモータジヱネレ一タ 5 6 0の 駆動による直流電源 5 1 0の充電運転が必要な場合を除いてエンジン 5 4 0の運 転が停止される。 なお、 暖機運転や充電運転が必要な場合には、 エンジン 5 4 0 はアイドル運転される。
一方、 通常走行時には、 エンジン 5 4 0が始動され、 エンジン 5 4 0から出力 された駆動力は、 動力分割機構 5 5 0によって駆動輪 5 8 0 a, 5 8 0 bの駆動 力と、 モータジェネレータ 5 6 0での発電用駆動力とに分割される。 モータジェ ネレータ 5 6 0による発電電力は、 モータジェネレータ 5 3 0の駆動に用いられ る。 したがって、 通常走行時には、 エンジン 5 4 0による駆動力をモ一タジエネ レ一タ 5 3 0による駆動力でアシス トして、 駆動輪 5 8 0 a , 5 8 O bが駆動さ れる。 さらに、 全開加速時には、 直流電源 5 1 0から供給される電力がモータジ エネレータ 5 3 0の駆動にさらに用いられて、 駆動輪 5 8 0 a , 5 8 0 bの駆動 力がさらに増加する。
減速および制動時には、 モータジェネレータ 5 3 0は、 駆動輪 5 8 0 a , 5 8 0 bによって回転駆動されて発電する。 モータジェネレータ 5 3 0の回生発電に よって回収された電力は、 電力制御ュニット 5 2 0によって直流電圧に変換され て直流電源 5 1 0の充電に用いられる。 さらに、 車両停止時には、 エンジン 5 4 0は自動的に停止される。
このように、 ハイブリッド車両 5 0 0は、 エンジン 5 4 0によって発生された 駆動力と電気工ネルギを源としてモータジェネレータ 5 3 0によって発生された 駆動力との組合せによって、 すなわち車両状況に応じてエンジン 5 4 0およびモ ータジェネレータ 5 3 0の動作を制御することにより燃費を向上させた車両運転 を行なう。 ハイブリッド E C U 5 9 0は、 モータジェネレータ 5 3 0およびェン ジン 5 4 0が発生する駆動力の分担を、 運転指令 (アクセル開度、 ブレーキ操作 等) に基づき車両状況に応じて制御する。
図 2は、 図 1に示したモータジェネレータ 5 3 0 (MG 2 ) およびモータジェ ネレータ 5 6 0 (MG 1 ) の制御構成をより詳しく説明するブロック図である。 図 2を参照して、 充電可能な直流電源 5 1 0は、 電源ライン 5 0 2に直流電圧 V Bを出力する。 電力制御ユニット 5 2 0は、 コンバータ 5 2 2と、 平滑コンデ ンサ 5 2 3と、 インバ一タ 5 2 4, 5 2 6を含む。 電力制御ユニット 5 2 0中の コンバータ 5 2 2およびインバータ 5 2 4 , 5 2 6の動作は、 モータジエネレー タごとに分割配置ざれた MG 2— E C U 6 2 0および MG 1 - E C U 6 1 0によ つて、 それぞれ制御される。
コンバータ 5 2 2は、 I G B T (Insulated Gate Bipolar Transistor) 、 電 力用 M〇S (Metal Oxide Semiconductor) トランジスタあるいは、 電力用バイ ポーラトランジスタ等の電力用半導体スイッチング素子 (図示せず) を含んで構 成された、 双方向の電圧変換可能な昇降圧コンバータである。 コンバータ 5 2 2 は、 スィッチング制御信号 S G 0に応答したスィッチング制御により、 電源ライ ン 5 0 2の直流電圧 V Bを昇圧して、 直流電圧 V Hを電源ライン 5 0 4に出力す る。 あるいは、 コンバータ 5 2 2は、 スイッチング制御信号 S G 0に応答したス イッチング制御により、 電源ライン 5 0 4の直流電圧 V Hを降圧して、 直流電圧 V Bを電源ライン 5 0 2に出力することもできる。 コンバータ 5 2 2での電圧変 換比 (昇圧比または降圧比) は、 スイッチング制御信号 S G Oにより可変制御さ れる。
モータジェネレータ 5 3 0 (MG 2 ) およびモータジェネレータ 5 6 0 (MG 1 ) の各々は、 代表的には、 三相のコイル巻線が設けられた固定子 (図示せず) および図示しない回転子を含む、 電動機および発電機の機能を併せ持つモータジ エネレ一タとしての三相同期電動機により構成される。 インバ一タ 5 2 4 , 5 2 6の各々は、 電力用半導体スイッチング素子から構成 された一般的な三相インバータであるので、 構成の詳細説明は省略する。
インバータ 5 2 4は、 MG 2— E C U 6 2 0からのスイッチング制御信号 S G 2に応答した電力用半導体スイッチング素子 (図示せず) のオンオフ制御 (スィ ツチング制御) により、 電源ライン 5 0 4から受ける直流電圧 V Hを三相交流電 圧に変換し、 その変換した三相交流電圧をモータジェネレータ 5 3 0 (MG 2 ) へ出力することができる。 これにより、 モータジェネレータ 5 3 0は、 トノレク指 令値に従った出力トルクを発生するように駆動制御される。
また、 インバータ 5 2 4は、 ハイブリッド車両 5 0 0の回生制動時、 車輪 5 8 0 a , 5 8 0 bからの回転力を受けてモータジェネレータ 5 3 0が発電した三相 交流電圧をスィツチング制御信号 S G 2に従ったスィツチング制御により直流電 圧に変換し、 その変換した直流電圧を電源ライン 5 0 4へ出力することができる。 このように、 インバータ 5 2 4は、 MG 2 (モータジェネレータ 5 3 0 ) に対し て双方向の電力変換を行なう。
なお、 ここで言う回生制動とは、 ハイプリッド自動車を運転するドライバーに よるフットブレーキ操作があった場合の回生発電を伴う制動や、 フットブレーキ を操作しないものの、 走行中にアクセルペダルをオフすることで回生発電をさせ ながら車両を減速 (または加速の中止) させることを含む。
インバ一タ 5 2 6は、 MG 1—E C U 6 1 0からのスイッチング制御信号 S G 1に応答したスイッチング制御により、 トルク指令値に従った出力トルクをモー タジェネレータ 5 6 0により発生させることができる。 さらに、 インバータ 5 2 6は、 モータジェネレータ 5 6 0がエンジン 5 4 0によって駆動されて発電する 場合には、 スイッチング制御信号 S G 1に応答したスイッチング制御により、 モ ータジェネレータ 5 6 0が発電した三相交流電圧を直流電圧に変換して、 その変 換した直流電圧を電源ライン 5 0 4へ出力することができる。 このように、 イン バータ 5 2 6は、 MG 1 (モ タジェネレータ 5 6 0 ) に対して双方向の電力変 換を行なう。
図 1において総括的に示した E C U 5 9 0は、 図 2に示すように、 上位 E C U としての H V— E C U 6 0 0と、 MG 1および MG 2ごとに独立に設けられた M G l— ECU6 10および MG 2— ECU620との階層構造とされる。
HV— ECU 600は、 運転指令 (アクセル指令、 ブレーキ指令等) に基づき 車両状況に応じて、 MG 1および MG 2のトルク指令値 T q r 1 , T q r 2を生 成する。
また、 HV— ECU 600は、 通信経路 625を介して伝送された MG 1およ び MG 2の動作状態に応じて、 MG 1および MG 2を最適に駆動できるように直 流電圧 VHの指令値を生成する。 これらの動作指令値は、 通信経路 625を介し て MG 2— ECU 620へ伝送される。 さらに、 MG 2— E CU 620および M G 1—ECU 6 10の間には通信経路 6 1 5が設けられる。 通信経路 6 1 5, 6 25は、 代表的には、 無線およびノまたは有線の LAN (Local Area Network) により構成される。 これにより、 HV— ECU600, MG 1 -ECU 6 10, MG 2-ECU620の間で相互にデータ ·情報等を授受可能に構成されている。 なお、 図 2の構成例において、 HV— ECU 600および MG 1— ECU 610 の間にさらに通信経路を設けることも可能である。
コンバータ 522は、 HV— ECU 600、 または MG 1— E C U 610、 ま たは MG 2— ECU 620により設定された直流電圧 VHの電圧指令値に応じた 出力電圧を出力するように、 スィツチング制御信号 S GOに応答して動作する。 また、 MG 1— ECU 610および MG 2— ECU620は、 HV— ECU60 0からの動作指令値に従った、 MG 1および MG 2の動作制御 (電動機制御) が 実行されるように、 スイッチング制御信号 SG 1, SG 2を生成する。 すなわち、 MG 1 , MG 2がトルク指令値に従った出力トルクを発生するように、 インバー タ 524, 526での直流一交流電圧変換動作が制御される。
さらに、 ハイプリッド車両 500では、 基宇的には発電機として動作する MG 1の入出力電力 (以下、 MG 1電力とも称する) と、 基本的には車両駆動力発生 用の電動機として動作する MG 2の入出力電力 (以下、 MG 2電力とも称する) との和で示される、 モータジェネレータ MG 1, MG 2全体での電力の過不足分 が、 直流電源 5 1◦の入出力電力によって賄われるような電力収支が構成される。 なお、 以下の説明では、 MG 1電力および MG 2電力の各々は、 電力消費時に正 値 (>0) で示され、 発電時に負値 (<0) で示されるものとする。 ハイブリッド車両 500では、 スリップ等の発生により MG 2での消費電力が 急増すると、 MG 1での発電電力の増加が間に合わず直流電源 5 10から電力を 急激に持ち出す現象が発生し、 直流電源 5 10の寿命に悪影響を与える可能性が ある。
したがって、 ハイブリッド車両 500では、 直流電源 5 10からの出力電力の 許容値を示す出力可能電力 Wo u t (> 0) および直流電源 5 10への入力電力 (充電電力) の許容値を示す入力可能電力 W i n « 0) を、 直流電源 5 10の 状態 (たとえば、 充電率: SOCや電池温度等) に応じて逐次設定するとともに、 設定した入出力可能電力 W i n, Wo u tに基づいて、 下記 (1) に従った電力 収支制御が実行される。
W i n≤ (Pm 1 + Pm 2) ≤Wo u t -" (1)
(1) 式中において、 Pmlは MG 1電力であり、 Pm2は MG 2電力である。 なお、 実際には、 インバータ 524, 526およびモータジェネレータ MG 1 , MG 2で発生する損失 P l o s sを考慮して、 (Pml + Pm2 + P 1 o s s ) が Wi n〜Wo u tの範囲内に収まるように電力収支制御を行なうことが好まし いが、 以下では、 説明の簡単のため (1) 式に従って、 電力収支制御が行なわれ るものとする。 . ,
上記電力収支制御では、 Pml + Pm2を逐次監視して、 Wi n〜W o u tの 範囲を外れるときには、 Pm 1および Pm2の少なくとも一方を修正して、 モー タジエネレータ全体での消費電力または発電電力が過大とならないように制限を 行なう。 したがって、 電力収支制御を速やかに機能させるためには、 モータジェ ネレ一タを直接制御する ECUによって、 すなわち、 HV— ECU600よりは MG 1— ECU 6 10または MG 2— ECU620によって、 電力収支制御を実 行することが好ましい。
本実施の形態では、 主に車両駆動用電動機として動作して電力を消費するモー タジェネレータ MG 2の電力制限が必要となるので、 MG 2— ECU 620によ り電力収支制御を行なう制御構成を例示する。
MG 2— ECU620は、 MG 1 -ECU6 10に対して、 HV— ECU60 0からのトルク指令値 T q 1を送信する。 MG l—ECU6 1 CKi、 伝送された トルク指令値 Tq r 1に従った出力トルクを MG 1が発生するように、 インバー タ 526のスィツチング制御を行なうためのスィツチング制御信号 SG 1を生成 する。
MG 1—ECU 6 10からは、 MG 1電力 Pm 1を認識するためのデータ DA T力 MG 2— E CU 620へ対して逐次送信される。 MG2— ECU620は、 MG 2の動作状態 (代表的にはトルク指令値および回転数) に基づいて得られる MG2電力 Pm2と、 MG 1— ECU610からの受信データに基づいて認識さ れた MG 1電力 Pm 1との和が (1) 式を満たすように、 必要に応じてトルク指 令値 T q r 2を修正する機能を有する。
具体的には、 MG 2— ECU 620は、 下記 (2) 、 (3) 式に従って MG 2 のトルク指令値の上限値 T 2 m a X (W o u t側) および下限値 T 2 m i n (W
1 n側) を設定し、 実際のトルク指令値を T 2m i n〜T2ma xの範囲内に制 限することによって、 電力収支制御を実行している。 なお、 (2) , (3) 式中 の Nm2は、 MG2の回転数 ( r p m) を示す。
T2ma x= (Wo u t-Pml) / (2 π - Nm 2/60) … (2)
T 2m i n= (W i n— Pml) / (2 π · Nm 2/60) … (3) 次に、 ECU間で発生する通信遅れ時間が MG 2— ECU 620による電力収 支制御に与える影響について図 3を用いて説明する。
図 3を参照して、 MG 1電力 Pm 1が変化している途中では、 時刻 t aでの M G 1電力 Pmlは、 通信遅れ時間 T cmが経過した時刻 t bに MG 2— ECU 6
20で認識され、 その時点での電力収支制御に用いられる。
一方、 実際の MG 1電力は、 時刻 t bでは、 時刻 t aのときから Δ P変化して いる。 したがって、 時刻 t bでの電力収支制御は、 MG 1電力 Pm 1について厶 Pの誤差を含んで実行されることとなる。 特に昨今では、 ハイブリッド車両の高 出力化が進められており、 また車両駆動用の MG 2と出力軸の間に减速機を設け る構成も採用され始めている。 これらのハイブリッド車両では、 時間当たりの車 両出力変化が急峻なものとなるので、 これに伴い、 時間当たりでの MG 1電力 P m 1および MG 2電力 Pm2の変化量も大きくなる。
この結果、 ECU間の通信遅れ時間 T c mの間での Pm 1 , Pm 2の変化量も 大きくなり、 図 3の Δ Pが大きくなることにより (1) 式による電力収支制御の 精度が低下する問題点が発生する。
本発明の実施の形態によるハイプリッド車両の制御装置では、 このような問題 点に対処するために、 以下に説明するような電力収支制御を実行する。
図 4は、 本発明の実施の形態によるハイブリッド車両の制御装置による電力収 支制御を説明する概略プロック図である。
図 4を参照して、 電力推定部 650は、 MG 1のトルクおよび回転数に基づい て、 MG 1電力 Pmlの推定値 Pml eを生成する。 電力収支制御部 660は、 MG 2のトルクおよび回転数と、 直流電源 510の入出力可能電力 W i n, Wo u tに基づき、 (1) 〜 (3) 式で示した電力収支制御を実行する。 すなわち、 電力収支制御部 660は、 電力収支制御に基づき必要に応じて (2) , (3) 式 による T 2m i n〜T 2ma xの範囲内に MG 2のトルク指令値を制限するよう に、 最終的な MG 2のトルク指令値 Tq r 2 #を生成するトルク制限部 665を 含む。
図 5には、 電力推定部 650の機能を説明するために、 MG 1回転数が一定の ときの MG 1 トルクおよび MG 1電力の推移が示される。
図 5を参照して、 MG 1の実際のトルク指令値 T q r 1 #は、 HV— ECU6 00力ゝらのトルク指令値 T q r 1を時間方向に平滑化処理することによって得ら れる。 すなわち、 トルク指令値 Tq r 1 #は、 「平滑トルク指令値」 に対応する。
MG 1回転数が一定である図 5の例では、 トルク指令値 T q r 1が階段状に 0 から低下していくのに伴って、 トルク指令値 Tq r 1 #に従って MG 1の負トル クが大きくなる。 これにより、 MG 1の発電電力が増加して MG 1電力 Pm 1の 絶対値が徐々に増加する。
しかしながら、 実際のトルク指令値 T q r 1 #あるいは MG 1電力 Pm 1に基 づいて MG 2— ECU 620での電力収支制御を実行すると、 通信遅れ時間 T c mの影響により、 MG 2—ECU620で認識される MG 1電力は、 図中に点線 で示す Pml Tとなる。 この結果、 MG 1による発電電力が増加していく過程で は、 MG 1での発電量が過小に認識された電力収支制御が行なわれることとなり、 出力可能電力 Wo u tに対して、 MG 1および MG 2の合計電力が不足する可能 性がある。 この結果、 MG 2の出力電力、 すなわち車両駆動力の発生を過度に制 限して、 車両性能を十分に引き出せない可能性がある。
一方、 MG 1による発電電力が低下していく過程では、 トルク指令値 Tq r 1 が階段状に 0に肉かって上昇していくのに伴い、 実際のトルク指令値 Tq r 1 # も 0に向かって平滑化されて変化する。 この場合にも、 通信遅れ時間 T cmの影 響によって、 MG2— ECU620で認識される MG 1電力は、 図中に点線で示 す Pm 1 Tとなるので、 この過程では MG 1での発電量が過大に認識されること となる。 したがって、 出力可能電力 Wo u tに対して MG 1および MG 2の合計 電力が超過することによって、 直流電源 510の過放電が発生する可能性がある。 特に、 MG 1電力 P mlが緩やかに上昇する局面では、 電力誤差 ΔΡ (図 3) 力 継続的に発生することによって直流電源 5 10からの出力電力が継続的に過大と なって、 その寿命に悪影響を及ぼす可能性が懸念される。
したがって、 本発明の実施の形態では、 電力推定部 650により、 通信時間遅 れ T cmを補正した電力推定値 Pml eを生成して、 Pml eを (1) 式中にお ける Pmlとして用いることにより、 適切な電力収支制御を実行するものである。 たとえば、 図 5に示すように、 トルク指令値 T q r 1 #に対して通信遅れ T c m分を補正したトルク推定値 T q r 1 eを生成し、 このトルク推定値 T q r 1 e と MG 1回転数 Nml (r pm) とに従い、 下記 (4) 式に従って通信遅れ T c mを補正した推定 MG 1電力 Pml eを求めることができる。
Pml e =Tq r l e - Nm 1 - (2 π/60) ··· (4)
図 5から理解されるように、 推定 MG 1電力 Pml eが通信遅れ時間 T c mの 経過後に電力収支制御に用いられることにより、 MG 2— ECU 620で認識さ れる MG 1電力は、 実際の MG 1電力 Pmlと合致するようになる。
図 6は、 この発明の実施の形態め電力収支制御に関する MG 1—ECU 610 での制御処理を説明するフローチャートである。
図 6を参照して、 MG 1— ECU6 10は、 ステップ S 100では、 上位 EC からトルク指令値 T q r 1を受信する。 図 2の構成例では、 トルク指令値 T q rは HV—ECU600で生成され、 通信経路 6 15, 625により MG2— E CU620を介して伝送される。 そして MG 1 -ECU6 10は、 ステップ S I 10により、 ステップ S 100 で受信したトルク指令値 Tq r 1を時間方向に平滑化処理することより、 実際の トルク指令値 Tq r 1 #を生成する。 さらに、 MG 1一 ECU6 10は、 ステツ プ S 1 20では、 MG 1が平滑化処理後のトルク指令値 T q r 1 #に従ったトル クを出力するように、 インバータ 526を制御する。
一方、 MG 1— ECU 6 10は、 ステップ S 1 30では、 MG 1のトルク指令 値および回転数実績に基づき通信遅れ時間 T cmを先読み (補正) した推定 MG 1電力 Pm 1 eを生成する。 そして、 MG 1— ECU6 10は、 ステップ S 14 0では、 推定 MG 1電力 Pml eを電力収支制御用として MG 2— ECU 620 へ送信する。
図 7は、 この発明の実施の形態の電力収支制御における MG 2— ECU 620 の制御処理を示すフローチャートである。
図 7を参照して、 MG2— ECU62 ( i、 ステップ S 200では、 上位 EC Uである HV— ECU 600からトルク指令値 T q r 2を受信し、 ステップ S 2 10では、 トルク指令値 T q r 2を時間方向に平滑化処理する。 さらに、 MG 2 — ECU620は、 ステップ S 220により、 S 210により平滑化処理したト ルク指令値 Tq r 2および MG 2回転数実績 Nm 2に基づいて、 MG2電力 Pm 2を算出する。
そして、 MG2— ECU62 (^i、 ステップ S 230では、 MG 1— ECU6 10からの推定 MG 1電力 Pm 1 eを取得する。 さらに、 MG 2— ECU620 は、 ステップ S 240により、 S 230で取得した推定 MG 1電力および S 22 0で算出した MG 2電力の和である合計電力 Pm 1 e + P m 2力 W i n〜W o u tの範囲内に収ま'つているかどうかの判定を行なう。
そして、 MG2— ECU620は、 Wi n≤ Pm 1 e + Pm 2≤Wo u tが成 立するとき (S 240が YES判定) には、 ステップ S 250により、 時間方向 平滑処理後のトルク指令値 Tq r 2をそのまま実際のトルク指令値 T q r 2 に B AL ^る α
一方、 MG2— ECU620は、 合計電力 Pml e + P m 2が W i n〜W o u tの範囲外のとき (S 240が NO判定) には、 ステップ S 260により、 上記 (2) , (3) 式において Pm 1の代わりに推定 MG 1電力 Pm 1 eを用いて求 められたトルク上限値 T 2m a xおよびトルク下限値 T 2m i nにトルク指令値 を修正する。 すなわち、 平滑化処理後のトルク指令値が T 2ma Xより大きいと きには、 実際のトルク指令値 Tq r 2# = T 2ma Xに設定して、 トルク上限値 を超えた (正方向) トルク指令値が発生されないように制限する。 同様に、 平滑 化処理後のトルク指令値が T 2m i nより小さいときには、 実際のトルク指令値 T q r 2 # = T 2m i nに設定して、 トルク下限値よりも低い (負方向) トルク 指令値が発生されないように制限する。 このように、 S 260の処理は、 (1) に従った電力収支制御により、 MG2 トルク指令値が制限に掛かって MG 2電力 Pm 2が修正された状態に相当する。
さらに、 MG 2— ECU.620は、 ステップ S 270では、 ステップ S 250 または S 260によって設定されたトルク指令値 T q r 2 #に従った出力トルク を MG 2が発生するように、 インバータ 524を制御する。
このような構成とすることにより、 電力収支制御に基づいて電力制限が実行さ れる MG 2に対して最も高速に制御が可能な MG 2— ECU 620によって電力 収支制御を実行するとともに、 ECU間での通信時間遅れの影響を受けることな く電力収支制御を高精度に実行できる。 この結果、 直流電源 510の充放電およ び過放電を防止して、 すなわち、 直流電源 (蓄電装置) の寿命に悪影響を与えな ることなく車両性能を確保するハイプリッド車両の制御が可能となる。
次に、 推定 MG 1電力 Pml eの取得方法の実施例についてさらに詳細に説明 する。
(4) 式に示したように、 MG 1電力は、 MG 1のトルク指令値および回転数 実績の積に従って算出できる。
したがって、 図 8に示すように、 HV— ECU600で設定される本来のトル ク指令値 Tq r l (階段状) を時間方向に平滑化処理して実際のトルク指令値 T q r 1 #を求める際に、 Tq r l #を求めるための平滑化フィルタと比較して、 その平滑化時定数が通信遅れ時間 T c mだけ短いフィルタを別途準備することに より、 このフィルタの出力 Tq r 1を用いて、 平滑化された実際のトルク指令値 Tq r l #に対して通信遅れ時間 T cmが補正されたトルク推定値 T q r 1 eを 得ることができる。 したがって、 このトルク推定値 T q r 1 #を用いて、 具体的 にはトルク推定値 Tq r 1 #と MG 1の回転数実績 Nm 1との積に基づいて、 推 定 MG 1電力 Pmlを求めることができる。
あるいは、 MG 1回転数が変化している場合に対処するために、 図 9に示すよ うに、 通信遅れ時間を補正した回転数の推定値を求めてもよい。
図 9を参照して、 MG 1回転数が変化している局面では、 実績値 Nmlをその まま MG 1 -ECU 6 10から MG 2 -E CU 620に伝送すると、 電力収支制 御に反映される MG 1回転数実績は Nm 1 T (図中点線) のようになり、 通信遅 れ時間を含んだものとなってしまう。
したがって、 MG 1回転数については、 実績値 Nm 1とともに、 その時点での 回転数の時間変化率 Km 1 (r pm/s) を求めることにより、 下記 (5) 式に 従って推定 MG 1回転数 Nml eを求めることができる。
Nml e=Nml +Kml - T c m--- (5)
そして、 推定 MG 1回転数 Nml eを用いて、 具体的には推定 MG 1回転数 N m 1 eおよびトルク指令値の積に基づいて、 推定 MG 1電力 P m 1 eを求めるこ とにより、 MG 1回転数が変化している局面においても通信遅れ時間の影響を排 除した電力収支制御を実現できる。
あるいは、 図 10に示すように、 トルク指令値 T q r 1 #および回転数実績 N m 1の積に基づいて MG 1電力 P m 1を逐次算出し、 算出した MG 1電力 P m 1 に基づいて電力収支制御を実行してもよい。
この場合には、 MG 1— ECU610で算出した MG 1電力 Pmlを MG2— ECU 620へそのまま伝送すると、 電力収支制御に反映される MG 1電力は P m 1 T (図中点線) のようになり、 通信遅れ時間を含んだものとなってしまう。 したがって、 図 9での回転数実績 Nm 1の推定と同様に、 MG 1電力 Pmlの 演算に併せて、 その時間変化率 KP 1 (W/ s ) を求めることにより、 下記 (6) 式に従って推定 MG 1電力 Pml eを求めることができる。
Pml e = Pml+KP l - Tc m--- (6)
このように求めた推定 MG 1電力 Pm 1 eに従って電力収支制御を実行するこ とにより、 MG 1電力が変化している局面においても通信遅れ時間の影響を排除 した電力収支制御を実現できる。
(変形例)
上述のように、 MG 1での発電量が減少方向に変化している場合には、 通信遅 れ時間による電力収支制御の誤差は、 直流電源 5 10からの出力電力を過大とす る方向に作用する。 その一方で、 MG 1の発電量が増加方向に変化している場合 には、 通信遅れによる電力収支制御の誤差は、 直流電源 5 10の過放電に対して は安全方向に作用する。 したがって、 以下に説明する本実施の形態の変形例では、 上述の通信遅れ時間を考慮した電力推定に基づく電力収支制御を、 MG 1の発電 電力増加時には中止して、 発電電力減少時のみに実行する構成とする。
図 1 1には、 本発明の実施の形態例の変形例に従う電力収支制御が概略的に示 される。
図 1 1を参照して、 MG 1が時刻 t Xから発電を開始し、 その後、 時刻 t zか ら発電量が徐々に低下して発電を終了するような動作パターンにおいて、 MG 1 電力 Pmlが低下、 すなわち発電電力が増加している区間 (時刻 t x~t y) に おいては、 通信遅れ時間 T cmを補正することなく、 実際の MG 1電力 Pmlを そのまま推定 MG 1電力 Pml eとして、 電力収支制御を実行する。
この結果、 通信遅れ時間の影響を受けた MG 1電力 Pm 1 Tに基づいて電力収 ¾制御が実行されることとなり、 発電電力の増加中では、 MG 1での発電量が過 小に認、識されることとなる。 したがって、 MG 1および MG 2の合計電力が出力 可能電力 Wo u tを超過して直流電源 510が過放電となることに対しては、 安 全側の電力収支制御とすることができる。
一方、 MG 1電力 Pmlが上昇、 すなわち発電電力が減少していく区間 (時刻 t z以降) においては、 上述の実施の形態と同様に、 実際の MG 1電力 Pmlに 対して通信時間遅れ T cmを補正した推定電力 Pml eを用いて電力収支制御を 実行する。 これにより、 MG 1の発電量減少時には、 MG 1による発電量の減少 を適切に予測して、 直流電源 5 10の過放電を防止するように正確な電力収支制 御を実行できる。
図 12は、 この発明の実施の形態の変形例による電力収支制御に関する MG 1 一 ECUでの制御処理を説明するフローチヤ一トである。 図 1 2を図 6と比較して、 実施の形態の変形例による電力収支制御では、 MG
1一 ECU 6 10は、 図 6に示したステップ群に加えて、 ステップ S 1 25およ びステップ S 150をさらに実行する。
MG 1— ECU 6 10は、 ステップ S 1 25では、 MG 1の発電量が増加中で あるかどうかを判定する。 ステップ S 1 25では、 たとえば MG 1の発電中にト ク指令値 Tq r 1 #の絶対値が増加していることに応じて、 MG 1の発電量増 加中と判定することができる。 あるいは、 MG 1の発電中に MG 1回転数の絶対 値が増加していることに応じて、 MG 1の発電量増加中と判定することもできる。 また、 トルク指令値 T q r 1 #および MG 1回転数 Nm 1の積に基づいて逐次 M G 1電力 Pm 1を算出し、 算出した MG 1電力 Pmlの正 /負および変化方向に 基づいて、 ステップ S 1 25による判定を実行することも可能である。
MG 1— ECU 610は、 MG 1発電量が増加中でないとき (S 125が NO 判定) には、 図 6と同様のステップ S 130および S 140を実行して、 推定 M G 1電力 Pml eを電力収支制御用として MG 2— ECU 620 送信する。 一方、 MG 1— ECU 6 10は、 MG 1発電量が増加中のとき (S 1 25が Y
ES判定) には、 ステップ S 1 50により、 通信遅れ時間を考慮しない MG 1電 力 Pm 1を電力収支制御用として MG 2— ECU 620 送信する。
これにより、 図 1 1の時刻 t x t y間のような MG 1発電量が増加中の期間 では、 通信遅れ時間の影響を受けた電力収支制御を敢えて実行することにより、 直流電源 5 10の過放電に対して安全側の電力収支制御を実行することができる。 図 1 3には、 本発明の実施の形態のハイプリッド車両の制御装置による電力収 支制御の効果を示す実験結果が示される。
図 1 3に示されるように、 本発明の実施の形態による電力収支制御有りの期間 では、 制御無し期間、 すなわち通信遅れ時間を補正しない通常の電力収支制御と 比較して、 MG 1および MG 2の合計電力を出力可能電力 Wo u t以下に制限す る効果が高いことが理解される。
なお、 以上の実施の形態およびその変形例では、 電力収支制御に用いる推定 M G 1電力 Pm 1 eを MG 1— ECU610によって演算して、 MG2— ECU6
20 伝送する制御構成を例示したが、 推定 MG 1電力 Pml eの算出を MG2 一 ECU 620によって実行することも可能であり、 この場合にも同様の効果が 得られることについて確認的に記載する。 この場合には、 MG 1— ECU610 からは MG 1の実績値が MG 2 -ECU 620へ逐次送信され、 図 4に示した電 力推定部 650の機能は、 MG 2— ECU620により実行される。 すなわち、 図 4に示した電力推定部 650の機能については、 MG 1—ECU6 10および MG 2-ECU620のいずれで実行することも可能である。
また、 以上説明した実施の形態およびその変形例では、 2個のモータジエネレ ータ MG 1, MG 2を搭載したハイプリッド車両の電力収支制御を説明したが、 さらに多数のモータジェネレータ (電動機) を搭載した場合には、 このジエネレ ータを制御する E C Uと電力収支制御を実行する E C U間での通信遅れ時間の影 響を同様の手法により排除した電力収支制御を実現することも可能である。 今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。 産業上の利用可能性
この発明は、 共通電源に接続された複数の電動機を搭載するハイプリッド車両 の制御に適用できる。

Claims

請求の範囲
1. 第 1および第 2の電動機 (560, 5 30) ならびに前記第 1および第 2の電動機との間で電力を授受可能に構成された蓄電装置 (5 1 0) を搭載した ハイブリッド車両の制御装置であって、
前記第 1および第 2の電動機をそれぞれ駆動制御するための第 1および第 2の 制御ュニット (6 1 0, 6 20) と、
前記第 1および第 2の制御ュニット間でデータを通信するための通信経路 (6 1 5) と、
前記第 1の制御ユニット (6 1 0) により取得される前記第 1の電動機 (56
0) についてのデータに基づき、 前記第 1の制御ユニットから前記第 2の制御ュ ニットへのデータ伝送の際の前記通信経路での通信遅れ時間 (T cm) を補正し て、 前記第 2の電動機と同期したタイミングにおける、 前記第 1の電動機の入出 力電力 (Pm l) を推定する推定部 (6 50) と、 - 前記第 2の制御ユニット (6 20) により、 前記推定部による前記第 1の電動 機の入出力電力推定値 (Pm l e) を用いて、 前記第 1および前記第 2の電動機 の入出力電力の和 (Pm l +Pm2) を所定範囲 (W i n〜Wo u t) 内に制限 するための電力収支制御部 (660) とを備える、 ハイブリツド車両の制御装置。
2. 前記第 1の制御ュニット (6 1 0) は、 前記第 1の電動機 (560) の トルク指令値 (T q r 1 ) を時間方向に平滑化して得られる平滑トルク指令値 (T q r 1 #) に従って前記第 1の電動機を駆動制御し、
前記推定部 (6 50) は、 前記第 1の電動機のトルク指令値を、 前記平滑トル ク指令値を得るための平滑化処理よりも小さレ、時定数で時間方向に平滑化処理し て得られる推定トルク指令値 (T q 1: 1 e) を用いて、 前記入出力電力推定値 (Pm l e) を求める、 請求の範囲第 1項記載のハイブリッド車両の制御装置。
3. 前記推定部 (6 50) は、 前記第 1の電動機 (560) の回転数 (Nm
1 ) の変化率に基づいて前記通信遅れ時間経過時点の前記第 1の電動機の回耘数 を推定するとともに、 推定した前記第 1の電動機の回転数 (Nm l e) を用いて 前記入出力電力推定値 (Pm l e) を求める、 請求の範囲第 1項記載のハイプリ ッド車両の制御装置。
4. 前記第 1の制御ユニット (6 10) は、 前記第 1の電動機 (560) の トルクおよび回転数から入出力電力 (Pml) を逐次算出し、
前記推定部 (650) は、 逐次算出された前記入出力電力およびその変化率に 基づいて、 前記通信遅れ時間経過時点での前記入出力電力推定値 (Pm l e) を 求める、 請求の範囲第 1項記載のハイプリッド車両の制御装置。
5. 前記電力収支制御部 (660) は、
前記第 2の制御ユニット (620) により算出される前記第 2の電動機 (53 0) の入出力電力 (Pm2) および、 前記推定部 (6.50) による前記入出力電 力推定値 (Pml e) の和が前記所定範囲 (W i n〜Wo u t) を超えないよう に、 前記第 2の電動機の出力トルクを制限するトルク制限部 (665) を含む、 請求の範囲第 1項記載のハイブリッド車両の制御装置。
6. 前記第 1の電動機 (560) は、 エンジン運転に伴って発電可能に構成 され、
前記第 2の電動機 (530) は、 カ行時に電力を消費して車両駆動力を発生す る一方で、 回生制動時に発電するように構成される、 請求の範囲第 1〜 5項のい ずれか 1項に記載のハイブリッド車両の制御装置。
7. 前記電力収支制御部 (660) は、 前記第 1の電動機 (560) の発電 電力が増加する方向に前記第 1の電動機の運転状態が変化していると判断した場 合には、 前記推定部 (650) による前記入出力電力推定値 (Pml e) に代え て、 前記通信遅れ時間 (T cm) を含んで認識される前記第 1の電動機の入出力 電力 (Pml) を用いて、 前記第 1および前記第 2の電動機の入出力電力の和を 前記所定範囲 (W i n〜Wo u t) 内に制限する、 請求の範囲第 6項記載のハイ ブリッド車両の制御装置。
8. 前記電力収支制御部 (660) は、 前記第 1の電動機 (560) の発電 時に前記トルク指令値 (T q r 1) の絶対値が増加する方向に変化している場合 に、 発電電力が増加する方向に前記第 1の電動機の運転状態が変化していると判 断する、 請求の範囲第 7項記載のハイプリッド車両の制御装置。
9. 前記電力収支制御部 (660) は、 前記第 1の電動機 (560) の発電 時に前記回転数 (Nml) の絶対値が増加する方向に変化している場合に、 発電 電力が増加する方向に前記第 1の電動機の運転状態が変化していると判断する、 請求の範囲第 7項記載のハイブリッド車両の制御装置。
10. 前記第 1の制御ュニット (6 10) は、 前記第 1の電動機 (560) の入出力電力 (Pml) を逐次算出し、
前記電力収支制御制御部 (660) は、 前記第 1の電動機 (560) め発電時 に前記入出力電力 (Pml) の算出値の絶対値が増加する方向に変化している場 合に、 発電電力が増加する方向に前記第 1の電動機の運転状態が変化していると 判断する、 請求の範囲第 7項記載のハイブリッド車両の制御装置。
1 1. 第 1および第 2の電動機 (560, 530) と、 前記第 1および第 2 の電動機との間で電力を授受可能に構成された蓄電装置 (510) と、 前記第 1 および第 2の電動機をそれぞれ駆動制御するための第 1および第 2の制御ュニッ ト (6 10, 620) と、 前記第 1および第 2の制御ュニット間でデータを通信 するための通信経路 (6 15) とを搭載したハイプリッド車両の制御方法であつ て、
前記第 1の制御ユニット (6 10) により取得される前記第 1の電動機 (56 0 ) についてのデータに基づき、 前記第 1の制御ュニットから前記第 2の制御ュ ニットへのデータ伝送の際の前記通信経路での通信遅れ時間 (T cm) を補正し て、 前記第 2の電動機と同期したタイミングにおける、 前記第 1の電動機の入出 力電力 (Pml) を推定するステップ (S 130) と、
前記第 2の制御ュニットにより、 前記推定するステップによる前記第 1の電動 機の入出力電力推定値 (Pml e) を用いて、 前記第 1および前記第 2の電動機 の入出力電力の和 (Pml + Pm2) を所定範囲 (W i n〜W o u t ) 内に制限 するステップ (S 240〜S 270) とを備える、 ハイブリッド車両の制御方法。
1 2. 前記第 1の制御ュニット (6 10.) は、 前記第 1の電動機 (560) のトルク指令値 (Tq r 1) を時間方向に平滑化して得られる平滑トルク指令値
(Tq r 1 #) に従って前記第 1の電動機を駆動制御し、
前記推定するステップ (S 130) は、 前記第 1の電動機のトルク指令値を、 前記平滑トルク指令値を得るための平滑化処理よりも小さい時定数で時間方向に 平滑化処理して得られる推定トルク指令値 (T q r 1 e) を用いて、 前記入出力 電力推定値 (Pm l e) を求める、 請求の範囲第 1 1項記載のハイプリッド車両 の制御方法。
1 3. 前記推定するステップ (S 1 30) は、 前記第 1の電動機 (5 60) の回転数 (Nm l) の変化率に基づいて前記通信遅れ時間経過時点の前記第 1の 電動機の回転数を推定するとともに、 推定した前記第 1の電動機の回転数 (Nm 1 e) を用いて前記入出力電力推定ィ直 (Pm l e) を求める、 請求の範囲第 1 1 項記載のハイプリッド車両の制御方法。
1 4. 前記第 1の制御ュニット (6 1 0) は、 前記第 1の電動機 (560) のトルクおよび回転数から入出力電力 (Pml) を逐次算出し、
前記推定するステップ (S 1 30) は、 逐次算出された前記入出力電力および その変化率に基づいて、 前記通信遅れ時間経過時点での前記入出力電力推定値 (Pm l e) を求める、 請求の範囲第 1 1項記載のハイプリッド車両の制御方法。
1 5. 前記制限するステップ (S 240〜S 2 70) は、
前記第 2の制御ユニット (6 20) により算出される前記第 2の電動機.(5 3 0) の入出力電力 (Pm2) および、 前記推定部 (6 50) による前記入出力電 力推定値 (Pm l e) の和が前記所定範囲 (W i n〜Wo u t) を超えないよう に、 前記第 2の電動機の出力トルクを制限するステップ (S 260) を含む、 請 求の範囲第 1 1項記載のハイプリッド車両の制御方法。
1 6. 前記第 1の電動機 (5 60) は、 エンジン運転に伴って発電可能に構 成され、
前記第 2の電動機 (5 30) は、 カ行時に電力を消費して車両駆動力を発生す る一方で、 回生制動時に発電するよ.うに構成される、 請求の範囲第 1 1〜 1 5項 のいずれか 1項に記載のハイブリッド車両の制御方法。
1 7. 前記第 1の電動機 (560) の 電電力が増加する方向に前記第 1の 電動機の運転状態が変化しているか否かを判定するステップ (S 1 2 5) と、 前記発電電力が増加する方向に前記第 1の電動機の運転状態が変化していると 判定された場合には、 前記推定するステップ (S 1 30) による前記入出力電力 推定値 (Pm l e) に代えて、 前記通信遅れ時間 (T cm) を含んで認識される 前記第 1の電動機の入出力電力 (Pml) を前記第 2の制御ユニットへ送信する ステップ (S 1 50) とをさらに備え、
前記制限するステップ ( S 240〜 S 270 ) は、 前記第 2の制御ュニットへ 送信された前記第 1の電動機の入出力電力 (Pml) を用いて、 前記第 1および 前記第 2の電動機の入出力電力の和を前記所定範囲 (Wi n〜Wo u t) 内に制 限する、 請求の範囲第 16項記載のハイプリッド車両の制御方法。
18. 前記判定するステップ ( S 125 ) は、 前記第 1の電動機 (560) の発電時に前記トルク指令値 (Tq r 1) の絶対値が増加する方向に変化してい る場合に、 発電電力が増加する方向に前記第 1の電動機の運転状態が変化してい ると判定する、 請求の範囲第 1 7項記載のハイプリッド車両の制御方法。
1 9. 前記判定するステップ (S 125) は、 前記第 1の電動機 (560) の発電時に前記回転数 (Nml) の絶対値が増加する方向に変化している場合に、 発電電力が増加する方向に前記第 1の電動機の運転状態が変化していると判定す る、 請求の範囲第 1 7項記載のハイプリッド車両の制御方法。
20. 前記第 1の制御ュニット (6 10) は、 前記第 1の電動機 (560) の入出力電力 (Pml) を逐次算出し、
前記前記判定するステップ (S 125) は、 前記第 1の電動機 (560) の発 電時に前記入出力電力 (Pml) の算出値の絶対値が増加する方向に変化してい る場合に、 発電電力が増加する方向に前記第 1の電動機の運転状態が変化してい ると判定する、 請求の範囲第 1 7項記載のハイブリッド車両の制御方法。
PCT/JP2008/054232 2007-03-29 2008-03-03 ハイブリッド車両の制御装置および制御方法 WO2008120533A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880010493XA CN101652282B (zh) 2007-03-29 2008-03-03 混合动力车辆的控制装置及控制方法
EP08721649.5A EP2127982B1 (en) 2007-03-29 2008-03-03 Control apparatus and control method for hybrid vehicle
US12/449,742 US8212502B2 (en) 2007-03-29 2008-03-03 Control apparatus and control method for hybrid vehicle
BRPI0810085A BRPI0810085B1 (pt) 2007-03-29 2008-03-03 aparelho de controle e método de controle para veículo híbrido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007088495A JP4221494B2 (ja) 2007-03-29 2007-03-29 ハイブリッド車両の制御装置
JP2007-088495 2007-03-29

Publications (1)

Publication Number Publication Date
WO2008120533A1 true WO2008120533A1 (ja) 2008-10-09

Family

ID=39808117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054232 WO2008120533A1 (ja) 2007-03-29 2008-03-03 ハイブリッド車両の制御装置および制御方法

Country Status (7)

Country Link
US (1) US8212502B2 (ja)
EP (1) EP2127982B1 (ja)
JP (1) JP4221494B2 (ja)
CN (1) CN101652282B (ja)
BR (1) BRPI0810085B1 (ja)
RU (1) RU2408483C1 (ja)
WO (1) WO2008120533A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961278B2 (ja) * 2007-06-22 2012-06-27 三菱自動車工業株式会社 電気自動車の制御装置
JP5115444B2 (ja) * 2008-10-21 2013-01-09 トヨタ自動車株式会社 電動車両およびその制御方法
JP2010184514A (ja) * 2009-02-10 2010-08-26 Nissan Motor Co Ltd ハイブリッド車両のモータ制御装置
JP5657425B2 (ja) * 2011-02-25 2015-01-21 Ntn株式会社 電気自動車
EP2680434B1 (en) 2011-02-25 2020-09-30 NTN Corporation Electric automobile
US9290107B2 (en) * 2011-11-29 2016-03-22 Ruijie Shi System and method for energy management in an electric vehicle
JP6024482B2 (ja) * 2013-01-28 2016-11-16 株式会社デンソー ハイブリッド車の制御装置
JP6229556B2 (ja) * 2013-04-01 2017-11-15 株式会社デンソー 車載回転機の制御装置
KR101461895B1 (ko) * 2013-05-03 2014-11-13 현대자동차 주식회사 배터리 팩의 셀 밸런싱 시스템 및 셀 밸런싱 방법
DE102014201345A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Bordnetz und Verfahren zum Betrieb eines Bordnetzes
WO2015131180A1 (en) * 2014-02-28 2015-09-03 Atieva, Inc. All-wheel drive electric vehicle motor torque safety monitor
SE537896C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE539660C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE538735C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera bränsleförbrukningen
SE539661C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor hos en hybriddrivlina, fordon med en sådan förbränningsmotor, datorprogram för att starta en sådan förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE539662C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE539032C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539028C2 (sv) * 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
SE537897C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramprodukt innefattande programkod
SE540693C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE538187C2 (sv) 2014-03-20 2016-03-29 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539002C2 (sv) 2014-03-20 2017-03-14 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE538737C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539030C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE538736C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera det drivande momentet från en hos hybriddrivlinan anordnad förbränningsmotor
SE540692C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
JP6314967B2 (ja) * 2015-12-24 2018-04-25 トヨタ自動車株式会社 電力システム
JP7131079B2 (ja) 2018-05-25 2022-09-06 日産自動車株式会社 車両駆動システムの制御方法および制御装置
CN109494854A (zh) * 2018-12-05 2019-03-19 合肥同智机电控制技术有限公司 一种车载取力行车发电蓄电池充电系统及控制方法
CN114206660A (zh) * 2019-07-11 2022-03-18 沃尔沃卡车集团 用于电力传输系统的控制单元
JP7156233B2 (ja) * 2019-10-09 2022-10-19 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015254A1 (fr) 2001-08-02 2003-02-20 Toyota Jidosha Kabushiki Kaisha Appareil de commande d'entrainement de moteur
JP2003204606A (ja) * 2002-10-04 2003-07-18 Toyota Motor Corp ハイブリッド車両およびその制御方法
WO2006006293A1 (ja) * 2004-07-12 2006-01-19 Toyota Jidosha Kabushiki Kaisha 動力出力装置およびこれを搭載する車両並びにその制御方法
JP2006121784A (ja) * 2004-10-19 2006-05-11 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2006174567A (ja) * 2004-12-14 2006-06-29 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2006180602A (ja) * 2004-12-21 2006-07-06 Toyota Motor Corp モータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2193814C2 (ru) 1997-03-19 2002-11-27 Хитачи Лтд. Устройство и способ управления асинхронным электродвигателем
JP3337076B2 (ja) * 1997-03-19 2002-10-21 株式会社日立製作所 誘導電動機の制御装置
JP3473545B2 (ja) 2000-03-22 2003-12-08 株式会社日立製作所 パラレル・ハイブリッド車両の制御装置
JP2001263120A (ja) 2000-03-23 2001-09-26 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP3702749B2 (ja) * 2000-05-24 2005-10-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP3676336B2 (ja) * 2002-10-02 2005-07-27 本田技研工業株式会社 ハイブリッド車両の出力制御装置
JP3894168B2 (ja) * 2003-07-15 2007-03-14 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに自動車
JP4774975B2 (ja) 2005-12-15 2011-09-21 トヨタ自動車株式会社 電動機の制御装置
JP5090840B2 (ja) * 2007-10-03 2012-12-05 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP4569696B2 (ja) * 2008-10-15 2010-10-27 トヨタ自動車株式会社 電動車両およびその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015254A1 (fr) 2001-08-02 2003-02-20 Toyota Jidosha Kabushiki Kaisha Appareil de commande d'entrainement de moteur
JP2003204606A (ja) * 2002-10-04 2003-07-18 Toyota Motor Corp ハイブリッド車両およびその制御方法
WO2006006293A1 (ja) * 2004-07-12 2006-01-19 Toyota Jidosha Kabushiki Kaisha 動力出力装置およびこれを搭載する車両並びにその制御方法
JP2006121784A (ja) * 2004-10-19 2006-05-11 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2006174567A (ja) * 2004-12-14 2006-06-29 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2006180602A (ja) * 2004-12-21 2006-07-06 Toyota Motor Corp モータ制御装置

Also Published As

Publication number Publication date
CN101652282A (zh) 2010-02-17
JP4221494B2 (ja) 2009-02-12
US8212502B2 (en) 2012-07-03
BRPI0810085B1 (pt) 2018-11-06
EP2127982A1 (en) 2009-12-02
RU2408483C1 (ru) 2011-01-10
EP2127982B1 (en) 2018-09-26
JP2008247097A (ja) 2008-10-16
BRPI0810085A2 (pt) 2015-07-21
US20100045220A1 (en) 2010-02-25
CN101652282B (zh) 2012-10-17
EP2127982A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP4221494B2 (ja) ハイブリッド車両の制御装置
JP4774975B2 (ja) 電動機の制御装置
JP5387597B2 (ja) 車両の制御装置
JP3933106B2 (ja) 動力出力装置およびその制御方法並びに自動車
JP4407741B2 (ja) 車両およびその制御方法
JP4595829B2 (ja) 二次電池の制御装置および制御方法
US20020063001A1 (en) Method and arrangement in hybrid vehicle for maintaining a catalyst in an effective state
JP5708178B2 (ja) 車両の制御装置
CN103328292B (zh) 车辆及车辆用控制方法
JP5803507B2 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
JP5729475B2 (ja) 車両および車両の制御方法
JP2010058579A (ja) ハイブリッド車両
JP2009126258A (ja) 車両およびその制御方法
JP2013133041A (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP4016897B2 (ja) 蓄電装置の充放電制御装置および自動車
JP4853281B2 (ja) ハイブリッド車両の歯打ち音低減装置
JP3478132B2 (ja) パラレル・ハイブリッド車両の駆動制御装置
JP4692207B2 (ja) 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
JP4311379B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2013103593A (ja) ハイブリッド車両の制御装置
JP4000750B2 (ja) 動力出力装置およびその制御方法
JP2009040275A (ja) 車両用制駆動力制御装置
JP2010136509A (ja) 車両およびその制御方法
JP2014046870A (ja) ハイブリッド車
JP2011093457A (ja) 車両およびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880010493.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12449742

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008721649

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009139928

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0810085

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090929