JP2010058579A - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP2010058579A
JP2010058579A JP2008224591A JP2008224591A JP2010058579A JP 2010058579 A JP2010058579 A JP 2010058579A JP 2008224591 A JP2008224591 A JP 2008224591A JP 2008224591 A JP2008224591 A JP 2008224591A JP 2010058579 A JP2010058579 A JP 2010058579A
Authority
JP
Japan
Prior art keywords
motor
power
engine
hybrid vehicle
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008224591A
Other languages
English (en)
Inventor
Eiji Maeda
英治 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008224591A priority Critical patent/JP2010058579A/ja
Publication of JP2010058579A publication Critical patent/JP2010058579A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】回生制動時の発電電力を有効利用してエネルギー効率を向上させる。
【解決手段】ハイブリッド車両10は、動力を出力可能なエンジン12と、エンジン12の動力を受けて発電可能なモータMG1と、エンジン12の動力を走行用動力として車輪42に出力可能であると共にエンジン12の動力の全部または一部をモータMG1へ入力可能である動力分配機構14と、バッテリ50からの電力供給を受けて走行用動力を出力可能であると共に回生制動時には発電機として機能するモータMG2と、エンジン12、モータMG1およびモータMG2の各作動を制御するハイブリッドECU66とを備える。ハイブリッドECU66は、モータMG2の回生制動時に、バッテリ50が充電制限されている場合において、モータMG2の発電電力を用いてモータMG1を力行させる制御を実行する。
【選択図】図3

Description

本発明は、ハイブリッド車両に係り、特に、回生制動時の発電電力を有効利用してエネルギー効率を向上させるハイブリッド車両に関する。
従来、ガソリンや軽油等を燃料として動力を出力するエンジンと、蓄電装置からの電力供給を受けて動力を出力する走行用モータと、エンジンの動力の全部または一部分配を受けて発電を行う発電用モータとを備えたハイブリッド車両が普及してきている。
このようはハイブリッド車両では、エンジン、発電用モータおよび走行用モータの各動力伝達系が例えば遊星歯車機構で構成される動力分配統合機構を介して接続されており、走行用モータの動力だけで走行するモータ走行(以下、EV走行ともいう)、エンジンからの動力だけで走行するエンジン走行モード、および、エンジンおよび走行用モータの両方からの動力で走行するハイブリッド走行モードを適宜に切り替えることで燃費向上を図っている。
上記のようなハイブリッド車両について、特許文献1には、車速が所定速度以上でエンジン停止指令が発せられたときに、発電機が上限回転数を超えて回転するのを防止して発電機を保護する技術が開示されている。また、特許文献2には、エンジンと発電機とがクラッチ機構によって選択的に連結され得る状態で搭載されたハイブリッド車両において、クラッチ機構によって発電機がエンジンを含む動力伝達系から連結解除されたときに発電機のロータが有する回転エネルギーを回生電力として回収し、これによりエネルギー効率を向上させることが開示されている。
特開平10−295003号公報 特開2005−151699号公報
ところで、上記のようにエンジンと発電用モータおよび走行用モータを搭載したハイブリッド車両において、運転者によるフットブレーキ操作やアクセル戻しによる減速時、あるいは、車両が下り坂を走行しているときなどに、走行用モータは車両制御部からの回生指令に応じて発電機として機能する回生制動状態になる。このとき走行用モータによって発電される回生電力は、バッテリに充電され、その後の走行用モータの力行等に用いられることでエネルギー効率の向上、ひいては燃費向上が図られている。
しかしながら、バッテリが満充電状態にあって充電制限されているときには、回生電力を充電することができないため、走行用モータによる回生制動を使えないことがある。この場合には、必要とされる制動力は、専ら運転者によるフットブレーキ操作に依存することになり、バッテリの充電制限がないときには回生電力として回収可能なエネルギーがブレーキでの摩擦による発熱として捨てられてしまう結果になっていた。
本発明の目的は、回生制動時の発電電力を有効利用してエネルギー効率を向上させるハイブリッド車両を提供することにある。
本発明に係るハイブリッド車両は、動力を出力可能なエンジンと、エンジンの動力を受けて発電可能な第1モータと、エンジンの動力を走行用動力として車輪に出力可能であると共にエンジンの動力の全部または一部を第1モータへ入力可能である動力分配機構と、蓄電装置からの電力供給を受けて走行用動力を出力可能であると共に回生制動時には発電機として機能する第2モータと、エンジン、第1モータおよび第2モータの各作動を制御する制御部と、を備えるハイブリッド車両であって、制御部は、第2モータの回生制動時に、前記蓄電装置が充電制限されている場合において、第2モータの発電電力を用いて第1モータを力行させる制御を実行することを特徴とする。
本発明に係るハイブリッド車両において、前記動力分配機構を介して連結されるエンジンおよび第1モータ間の動力伝達系統に設けられエンジンと第1モータとを接続または接続解除するクラッチ機構をさらに備え、前記制御部は、前記クラッチ機構を接続解除した状態で第2モータの発電電力によって第1モータを逆転力行させてもよい。
また、本発明に係るハイブリッド車両において、前記制御部は、第2モータの発電電力によって第1モータを正転力行させてもよい。この場合、前記制御部は、第2モータの発電電力によって第1モータを正転力行させるとき、エンジンについて気筒休止または吸排気バルブ開放を行うことが好ましい。
また、本発明に係るハイブリッド車両において、前記制御部は、第2モータの発電電力が第1モータの上限回転数またはその付近での回転を維持できる程度に抑えるよう第2モータの回生制動を制御してもよい。
さらに、本発明に係るハイブリッド車両において、前記制御部は、前記第1モータの回生制動の制御に伴って不足する制動力を、機械式ブレーキ装置で補う制御を実行してもよい。
本発明に係るハイブリッド車両によれば、第2モータの回生制動時に、蓄電装置が充電制限されていても、第2モータの発電電力を用いて第1モータを力行させる制御を実行することで、蓄電装置に充電できない回生電力を第1モータのロータの回転エネルギーに変換して蓄えることができる。その結果、上記第1モータに蓄えられた回転エネルギーを後に有効利用することで、ハイブリッド車両におけるエネルギー効率の向上ひいては燃費向上を図れる。
以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。
図1は、本発明の第1の実施形態であるハイブリッド車両10の概略構成を示す図である。図1において、動力伝達系は実線で、電力ラインは一点鎖線で、信号ラインは点線でそれぞれ示されている。ハイブリッド車両10は、走行用の動力を出力可能なエンジン12と、2つの3相交流同期型モータジェネレータ(以下、単に「モータ」という)MG1(第1モータ),MG2(第2モータ)と、動力分配統合機構14とを備える。
エンジン12は、ガソリンや軽油等を燃料とする内燃機関である。エンジン12は、エンジン用ECU(Electronic Control Unit)(以下、「エンジンECU」という)16と電気的に接続されており、エンジンECU16からの制御信号を受けて燃料噴射、点火、吸引空気量、吸気バルブおよび排気バルブの開閉等が制御されるようになっている。エンジン12の回転数Neは、エンジン12からの動力を出力する出力軸13に近接して設けられた回転位置センサ11から入力される検出値に基づいてエンジンECU16において算出される。
動力分配統合機構14は、中心部に配置されるサンギヤ18と、サンギヤ18と同心上に配置され円環内周部に内歯を有するリングギヤ20と、サンギヤ18とリングギヤ20の両方に噛合する複数のキャリア22とを含んで構成される遊星歯車機構からなっている。複数のキャリア22は、キャリア支持部材26の端部にそれぞれ回転可能に取り付けられている。
動力分配統合機構14において、キャリア支持部材26に連結されるキャリア軸28にはトルク衝撃緩和用のダンパ24を介してエンジン12の出力軸13が連結され、サンギヤ18にはモータMG1のロータ29に接続される回転軸30がクラッチ機構72を介して連結され、リングギヤ20にはリングギヤ軸32を介して減速機34が連結されている。
上記クラッチ機構72は、エンジン12とモータMG1との間の動力伝達系統に設けられており、ディスク式クラッチ、流体式クラッチ、ドグクラッチ等の周知構成のものを用いることができる。このクラッチ機構72が接続(以下、オンもという)されるとサンギヤ18およびキャリア22等を介してエンジン12とモータMG1とが連結され、クラッチ機構72が接続解除(以下、オフともいう)されるとエンジン12とモータMG1とが連結解除されるようになっている。
上記クラッチ機構72がオンされている条件の下で上記動力分配統合機構14では、モータMG1が発電機として機能するときにはキャリア軸28を介してキャリア22に入力されるエンジン12からの動力がサンギヤ18側とリングギヤ20側とにそのギヤ比に応じて分配され、モータMG1が電動機として機能するときにはキャリア軸28を介してキャリア22に入力されるエンジン12の動力とサンギヤ18から入力されるMG1からの動力が統合されてリングギヤ20からリングギヤ軸32を介して所定減速比のギヤ列を含む減速機34へ入力されるようになっている。
モータMG2のロータ36に接続される回転軸38もまた減速機34に接続されており、モータMG2が電動機として機能するときにはモータMG2からの動力が減速機34へ入力されるようになっている。
リングギヤ軸32およびモータMG2の回転軸38の少なくとも一方から入力される動力は、減速機34を介して車軸40へ伝達され、これにより車輪42が回転駆動される。一方、回生制動時に車輪42および車軸40から減速機34を介して回転軸38に動力が入力されるとき、モータMG2は発電機として機能する。ここで、回生制動時は、運転者がブレーキ操作を行って車両速度を減速した場合に限らず、運転者がアクセルペダルの踏み込みを解除して車両加速を中止した場合や、車両が下り坂を重力作用によって走行している場合等を含む。
モータMG1,MG2は、それぞれ対応するインバータ44,46に電気的にそれぞれ接続され、各インバータ44,46は、DC/DCコンバータ(以下、単に「コンバータ」という)48を介して蓄電装置としてのバッテリ50に電気的に接続されている。バッテリ50は、ニッケル水素電池やリチウムイオン電池等の二次電池が好適に用いられる。また、バッテリに代えて、化学反応を伴わないキャパシタが蓄電装置として用いられてもよい。
モータMG1,MG2が電動機として機能するとき、バッテリ50から平滑コンデンサ52を介して供給される直流電圧Vbがコンバータ48で出力電圧Vcに昇圧されてから、平滑コンデンサ54を介してインバータ44,46に入力され(コンバータ出力電圧Vcはインバータ入力電圧およびシステム電圧VHに相当する、以下に同じ)、インバータ44,46で交流電圧に変換されてモータMG1,MG2に入力される。
逆に、モータMG1,MG2が発電機として機能するとき、バッテリ50が充電制限されていないことを条件に、モータMG1,MG2から出力される発電電力はインバータ44,46で交流電圧から直流電圧に変換されて後、コンバータ48で降圧してバッテリ50に充電される。また、インバータ44,46は、コンバータ48に接続される電力ライン56および接地ライン58を共通にしていることから、モータMG1,MG2のうち一方のモータで発電した電力がコンバータ48を介さずに他方のモータに供給されて回転駆動または力行させることもできる。
さらに、モータMG1は、印加する交流電圧を調整してトルク制御することにより、エンジン回転数を連続的に変速し得る無段変速機として機能し得ると共に、後述する回転角センサの検出値に基づいて算出されるモータ回転数が上限回転数を超えて回転することが抑制される。
インバータ44,46は、モータ用ECU(以下、モータECUという)60にそれぞれ電気的に接続されている。モータMG1,MG2は、モータECU60から送信される制御信号に基づいてそれぞれ作動制御される。また、モータMG1,MG2には、各ロータ29,36の回転角を検出する回転角センサ31,37が設けられている。各回転角センサ31,37による検出値は、モータECU60に入力されて各モータ回転数Nm1,Nm2を算出するために用いられる。
バッテリ50には、充電状態または残容量(SOC:State Of Charge)を検出するための電流センサ62が設けられている。電流センサ62による検出値は、バッテリ用ECU(以下、「バッテリECU」という)64に入力される。また、バッテリECU64には、図示しない電圧センサで検出されるバッテリ電圧Vbや、図示しない温度センサによって検出されるバッテリ温度等が入力されるようになっている。バッテリECU64は、電流センサ62により検出される充放電電流の積算値に基づいてバッテリ残容量SOCが適正範囲に維持されるように監視しており、満充電状態では充電制限信号を、適正範囲下限近傍では出力制限および充電要求の信号を後述するハイブリッド用ECUへ出力する。
エンジンECU16、モータECU60およびバッテリECU64は、ハイブリッド用ECU(以下、ハイブリッドECUという)66に電気的に接続されている。ハイブリッドECU66は、制御プログラムを実行するCPU、制御プログラム等を格納するROM、各種検出値を随時に読み出しおよび書換え可能に記憶するRAM等から構成されている。ハイブリッドECU66は、エンジン12およびモータMG1,MG2を統括的に作動制御すると共にバッテリ50を管理する機能を有する。
ハイブリッドECU66は、エンジンECU16との間で、必要に応じてエンジン制御信号を送信し、必要に応じてエンジン作動状態に関するデータ(例えばエンジン回転数Ne等)を受信する。また、ハイブリッドECU66は、モータECU60との間で、必要に応じて要求トルク指令Tr*を送信し、必要に応じてモータ作動状態に関するデータ(例えばモータ回転数Nm1,Nm2、モータ電流等)を受信する。さらに、ハイブリッドECU66は、バッテリECU64からバッテリ残容量SOC、バッテリ電圧、バッテリ温度、充電制限信号、および出力制限信号等のバッテリ管理に必要なデータを受信する。
ハイブリッドECU66には、また、車速センサ68およびアクセル開度センサ70が電気的に接続されており、ハイブリッド車両10の走行速度である車速Svと、図示しないアクセルペダルの踏み込み量に対応するアクセル開度Acとがそれぞれ入力される。
さらに、図2に示すように、ハイブリッド車両10は、車輪42にブレーキをかけて車両10を減速または停止させるための機械式のブレーキ装置74が各車輪42に対応して設けられている。ブレーキ装置74には、例えば油圧式ディスクブレーキが好適に用いられるが、公知のどのような機械式ブレーキ機構が用いられてもよい。また、ブレーキ装置74は、ブレーキ用ECU(以下、ブレーキECUという)76によって作動制御される。ブレーキECU76は、ハイブリッドECUに電気的に接続されている。
ハイブリッドECU66には、運転者操作による図示しないフットブレーキの踏み込み量または踏み込み力を検出するブレーキセンサ78が電気的に接続されている。ハイブリッドECU66は、ブレーキセンサ78から検出値Bkの入力を受けて、要求される制動力をブレーキ装置74によって発生させるようブレーキECU76に対して指令を送信するようになっている。また、ハイブリッドECU66は、後述するようにモータMG2の回生制動が制限されることによって不足する制動力を補填するようブレーキECU76に対して指令を送信することもできる。
続いて、上記構成からなるハイブリッド車両10におけるエンジン12およびモータMG1,MG2の作動について概略的に説明する。なお、ここではクラッチ機構72がオンされていて、エンジン12とモータMG1とが連結状態にあることを条件としている。
例えば、ハイブリッド車両10の始動時、モータMG1をいわゆるセルモータとして利用してエンジン12を始動する。このエンジン始動時、モータMG1は、バッテリ50からコンバータ48およびインバータ44を介して供給される電力によって駆動される。ただし、これに続く車両発進時にモータMG2から出力される動力だけで発進する場合、ここでのエンジン始動は暖機運転のためだけのものとなる。
ハイブリッド車両10が停車状態から発進するとき、通常は、バッテリ50からコンバータ48およびインバータ46を介してモータMG2に電力供給して駆動し、モータMG2だけから動力を出力させて発進する(モータ走行モード)。ただし、このときバッテリ50の残容量SOCが低下していてバッテリECU64からの充電要求があるときには、エンジン12から出力されて動力分配統合機構14で分配された動力をモータMG1の回転軸30に入力して発電し、発電された電力をバッテリ50に充電する。
例えば、ハイブリッド車両10が低速走行しているときや坂を下っているとき等の比較的軽負荷走行時には、低中回転領域での効率が比較的良くないエンジン12から動力を出力させると燃費が悪化するため、エンジン12を停止させる一方で、バッテリ50の残容量SOCを監視しながらモータMG2だけからの動力で走行する(モータ走行モード)。このとき、バッテリ残容量SOCが低下してくると、バッテリECU64からの充電要求に応じてエンジン12を適宜に間欠作動させ、エンジン動力によりモータMG1で発電してバッテリ50に充電する。
例えば、ハイブリッド車両10がほぼ一定の安定した速度で走行している通常走行時には、中高速回転領域で効率が比較的良好になるエンジン12から動力を出力させて走行する(エンジン走行モード)。このとき、必要に応じて、例えばアクセルが一時的に大きく踏み込まれて急加速するとき等には、エンジン動力の分配を受けて発電状態にあるモータMG1やバッテリ50から電力供給してモータMG2からも動力を出力させ、エンジン12の動力をアシストする(ハイブリッド走行モード)。また、バッテリ残容量SOC低下している場合には、エンジン12の出力を上昇させてモータMG1へ分配される動力を大きくし、モータMG1により発電される電力の一部をバッテリ50に充電する。
例えば、ブレーキ操作によってハイブリッド車両10が減速される回生制動時には、車輪42から車軸40および減速機34を介して回転軸38に動力が入力され、モータMG2が発電機として機能する。回生制動時には、モータMG2の回転抵抗に伴う制動力がハイブリッド車両10に作用すると共に、モータMG2によって発電された回生電力がインバータ46で直流電圧に変換されコンバータ48で降圧されてから充電制限がかかっていないバッテリ50に充電される。
次に、上記ハイブリッド車両10のハイブリッドECU66(制御部)において実行される制御について、図3および図4A−4Cを参照して説明する。図3はその制御手順を示すフローチャート、図4A−4CはモータMG1、エンジン12およびモータMG2の各回転数の関係を示す共線図である。なお、ここではハイブリッドECU66だけで制御部を構成するものとして説明するが、例えばモータECU60等の他のECUと協働して制御部を構成してもよい。また、図3に示す制御手順は、モータMG2回生指令が発せられると所定時間毎に繰り返し実行される。
図4Aではオン状態にあるクラッチ機構72は1本の太線で示され、図4B,4Cではオフ状態にあるクラッチ機構72が2本の太線で示されている。また、図4A−4C(図7A−7Cについても同様)において、中央の横軸が回転数「0」の位置を示し、「0」より上のプラス領域は正方向の回転数領域を、「0」より下のマイナス領域は負方向の回転数領域をそれぞれ示す。
ハイブリッドECU66は、ブレーキセンサ78、アクセル開度センサ70、車速センサ68等による検出結果に基づいてハイブリッド車両10が回生可能な状態にあると判定されると、モータECU60にモータMG2回生指令を送信するとともに、図3の制御手順を開始する。
図4A中の直線80は、モータ走行モードでの通常の回生制動状態を示す。このとき、モータMG2は、正方向の或る回転数で回転しながら発電を行っている。また、エンジン12は運転停止状態にあって回転数ゼロである。一方、モータMG2は、オン状態にあるクラッチ機構72を介してエンジン12とモータMG1とが連結され、かつ、モータMG1に対するのと同じ回転力がリングギヤ軸32を介して動力分配統合機構14に入力されることによって、モータMG2の回転の反動として負方向の或る回転数で空転している状態にある。
まず、ハイブリッドECU66は、バッテリ50についての充電制限があるか否かを判定する(ステップS10)。この判定は、バッテリECU64からの充電制限信号に基づいて行う。充電制限がかかっていない場合(ステップS10でNO)、通常運転を実行し(ステップS26)、処理を終了する。ここでの通常運転では、モータMG2によって発電される回生電力がバッテリ50に充電される。
一方、バッテリ50に充電制限がかかっている場合(ステップS10でYES)、クラッチ機構72をオフしてモータMG1とエンジン12との間の連結を解除して(ステップS12)、モータMG2による回生電力82でモータMG1を逆転力行させる(ステップS14)。このときの状態が図4Bに示される。このように逆転力行されるモータMG1は、クラッチ機構72がオフされているためにエンジン12の影響を受けることなく負方向に回転数が増加していく。これにより、充電制限によってバッテリ50に充電できない回生電力が、モータMG1のロータ29の回転エネルギーとして蓄えられる。
そして、回転角センサ31の検出値から算出されるモータMG1の回転数が所定の上限回転数に達すると、それ以降、モータMG1の回転数は上限回転数またはその付近に維持される(ステップS16)。そのために、モータMG2による回生電力をモータMG1の回転数を維持できる程度に抑えるように、モータMG2の回生制動を制御または制限する。このとき、モータMG2の回生制動の制限に伴って不足するハイブリッド車両10の制動力は、機械式のブレーキ装置74によって補うことができる。このような制動力の補填は、ハイブリッドECU66からブレーキECU76への指令送信によって自動的に実行されてもよいし、あるいは、制動力不足を感じた運転者によるブレーキ操作に委ねられてもよい。
次いで、モータMG2についての力行指令があるまで、モータMG1の回転数を上限回転数またはその付近に維持する制御が継続される(ステップS18でNO、ステップS16)。そして、モータMG2の力行指令があると(ステップS18でYES)、モータECU60にモータMG1回生指令を送信し、これによりモータMG1はロータ29に蓄えられた回転エネルギーで回生発電を行い、その回生電力84がモータMG2に供給されてモータ駆動電力として用いられる(ステップS20)。このときの状態が図4Cに示される。
回生状態にあるモータMG1の回転数は次第に低下してくるが、回転が停止するまでモータMG1による回生電力でモータMG2を力行させる制御を継続し(ステップS22でNO、ステップS20)。そして、モータMG1が回転停止すると(ステップS22でYES)、クラッチ機構72をオンしてモータMG1とエンジン12とを連結してから(ステップS24)、通常運転に移行して(ステップS26)、処理を終了する。ここでの通常運転では、モータMG2はバッテリ50からの電力供給を受けて力行されることになる。
なお、ここではモータMG1が回転停止するまでモータMG1の回生電力でモータMG2の力行を行うものとして説明したが、回転停止する前にモータMG1の回転数または回生電力が所定の閾値以下になったときに、クラッチ機構72をオンしてバッテリ50からモータMG2に電力供給する通常運転に切り替えるようにしてもよい。
上述したように本実施形態のハイブリッド車両10によれば、モータMG2の回生制動時に、バッテリ50が充電制限されていても、モータMG2の回生電力を用いてモータMG1を逆転力行させる制御を実行することで、バッテリ50に充電できない回生電力をモータMG1のロータ29の回転エネルギーに変換して蓄えておくことができる。その結果、モータMG1に蓄えられた回転エネルギーを後に回生電力に変換してモータMG2の力行に有効利用することができ、ハイブリッド車両10におけるエネルギー効率の向上ひいては燃費向上を図れる。
次に、本発明に係る第2の実施形態であるハイブリッド車両85について、図5〜7Cを参照して説明する。図5は、ハイブリッド車両85の概略構成図、図6はハイブリッド車両85のエンジンECU66において実行される制御手順を示すフローチャート、図7A−7Cは図6に示す制御状態を示す図4A−4Cとほぼ同様の共線図である。
図5に示される本実施形態のハイブリッド車両85は、第1実施形態のハイブリッド車両10と比べて、モータMG1とエンジン12との間を連結または連結解除するクラッチ機構が設けられていない点においてのみ異なっている。したがって、他の同一の構成には同一符号を付し、ハイブリッド車両85の作動の概略説明を含めて、重複することとなる再度の説明を援用により省略する。
続いて、図6および図7A−7Cを参照して、ハイブリッドECU66における制御手順について説明する。なお、ここではハイブリッドECU66だけで制御部を構成するものとして説明するが、例えばモータECU60等の他のECUと協働して制御部を構成してもよい。また、図6に示す制御手順は、モータMG2回生指令が発せられると所定時間毎に繰り返し実行される。
ハイブリッドECU66は、ブレーキセンサ78、アクセル開度センサ70、車速センサ68等による検出結果に基づいてハイブリッド車両85が回生可能な状態にあると判定されると、モータECU60にモータMG2回生指令を送信するとともに、図6の制御手順を開始する。
図7A中の直線86は、モータ走行モードでの通常の回生制動状態を示す。このとき、モータMG2は、正方向の或る回転数で回転しながら回生発電を行っている。また、エンジン12は運転停止状態にあって回転数ゼロである。一方、モータMG2は、モータMG1に対するのと同じ回転力がリングギヤ軸32を介して動力分配統合機構14に入力されることによって、モータMG2の回転の反動として負方向の或る回転数で空転している状態にある。
まず、ハイブリッドECU66は、バッテリ50についての充電制限があるか否かを判定する(ステップS10)。この判定は、バッテリECU64からの充電制限信号に基づいて行う。充電制限がかかっていない場合(ステップS10でNO)、通常運転を実行し(ステップS26)、処理を終了する。ここでの通常運転では、モータMG2によって発電される回生電力がバッテリ50に充電される。
一方、バッテリ50に充電制限がかかっている場合(ステップS10でYES)、エンジン12の全気筒について燃料供給を停止した状態で、吸気バルブおよび排気バルブを全閉にして気筒休止させるか、または、吸気バルブおよび排気バルブを全開にして(ステップS30)、モータMG2による回生電力88でモータMG1を正転力行させる(ステップS32)。このときの状態が図7Bに示される。図7Bにおいて、非運転状態にあるエンジン12は正方向の或る回転数で回転しているが、上記のように気筒休止または全バルブ開放によってポンピングロスを抑制してエンジン回転抵抗を低減しているため、正転力行されるモータMG1は、エンジン12の空回転と共に正方向に回転数が増加していく。これにより、充電制限によってバッテリ50に充電できない回生電力が、モータMG1のロータ29の回転エネルギーとして蓄えられる。
そして、回転角センサ31の検出値から算出されるモータMG1の回転数が所定の上限回転数に達すると、それ以降、モータMG1の回転数は上限回転数またはその付近に維持される(ステップS16)。そのために、モータMG2による回生電力をモータMG1の回転数を維持できる程度に抑えるように、モータMG2の回生制動を制御または制限する。このとき、モータMG2の回生制動の制限に伴って不足するハイブリッド車両85の制動力は、機械式のブレーキ装置74によって補うことができる。このような制動力の補填は、ハイブリッドECU66からブレーキECU76への指令送信によって自動的に実行されてもよいし、あるいは、制動力不足を感じた運転者によるブレーキ操作に委ねられてもよい。
次いで、モータMG2についての力行指令があるまで、モータMG1の回転数を上限回転数またはその付近に維持する制御が継続される(ステップS18でNO、ステップS16)。そして、モータMG2の力行指令があると(ステップS18でYES)、モータECU60にモータMG1回生指令を送信し、これによりモータMG1はロータ29に蓄えられた回転エネルギーで回生発電を行い、その回生電力90がモータMG2に供給されてモータ駆動電力として用いられる(ステップS20)。このときの状態が図7Cに示される。
回生状態にあるモータMG1の回転数は次第に低下してくるが、回転が停止するまでモータMG1による回生電力でモータMG2を力行させる制御を継続し(ステップS22でNO、ステップS20)。そして、モータMG1が回転停止すると(ステップS22でYES)、エンジン12の気筒休止または全バルブ開放を通常状態に復帰させてから(ステップS32)、通常運転に移行して(ステップS26)、処理を終了する。ここでの通常運転では、モータMG2はバッテリ50からの電力供給を受けて力行されることになる。
なお、ここではモータMG1が回転停止するまでモータMG1の回生電力でモータMG2の力行を行うものとして説明したが、回転停止する前にモータMG1の回転数または回生電力が所定の閾値以下になったときに、エンジン12を通常状態に復帰させてバッテリ50からモータMG2に電力供給する通常運転に切り替えるようにしてもよい。
上述したように本実施形態のハイブリッド車両85によれば、モータMG2の回生制動時に、バッテリ50が充電制限されていても、モータMG2の回生電力を用いてモータMG1を正転力行させる制御を実行することで、バッテリ50に充電できない回生電力をモータMG1のロータ29の回転エネルギーに変換して蓄えておくことができる。その結果、モータMG1に蓄えられた回転エネルギーを後に回生電力に変換してモータMG2の力行に有効利用することができ、ハイブリッド車両85におけるエネルギー効率の向上ひいては燃費向上を図れる。
なお、上記においてはポンピングロスを抑制してエンジン回転抵抗を低減するべく気筒休止または全バルブ開放を行うものとして説明したが、これらを行わなくてもエンジン12の空回転は可能であるため上記ステップS30を省略することもできる。
第1実施形態のハイブリッド車両の概略構成図である。 図1のハイブリッド車両におけるブレーキ装置を示す図である。 ハイブリッドECUにおいて実行される制御手順を示すフローチャートである。 図3の制御手順の一状態を示す共線図である。 図3の制御手順の一状態を示す共線図である。 図3の制御手順の一状態を示す共線図である。 第2実施形態のハイブリッド車両の概略構成図である。 ハイブリッドECUにおいて実行される制御手順を示すフローチャートである。 図6の制御手順の一状態を示す共線図である。 図6の制御手順の一状態を示す共線図である。 図6の制御手順の一状態を示す共線図である。
符号の説明
10,85 ハイブリッド車両、11 回転位置センサ、12 エンジン、13 出力軸、14 動力分配統合機構、16 エンジンECU、18 サンギヤ、20 リングギヤ、22 キャリア、24 ダンパ、26 キャリア支持部材、28 キャリア軸、29 ロータ、30 回転軸、31 回転角センサ、32 リングギヤ軸、34 減速機、36 ロータ、37 回転角センサ、38 回転軸、40 車軸、42 車輪、44,46 インバータ、48 コンバータ、50 バッテリ、52,54 平滑コンデンサ、56 電力ライン、58 接地ライン、60 モータECU、62 電流センサ、64 バッテリECU、66 ハイブリッドECU、68 車速センサ、70 アクセル開度センサ、72 クラッチ機構、74 ブレーキ装置、76 ブレーキECU、78 ブレーキセンサ、MG1,MG2 モータ。

Claims (6)

  1. 動力を出力可能なエンジンと、エンジンの動力を受けて発電可能な第1モータと、エンジンの動力を走行用動力として車輪に出力可能であると共にエンジンの動力の全部または一部を第1モータへ入力可能である動力分配機構と、蓄電装置からの電力供給を受けて走行用動力を出力可能であると共に回生制動時には発電機として機能する第2モータと、前記エンジン、第1モータおよび第2モータの各作動を制御する制御部と、を備えるハイブリッド車両であって、
    前記制御部は、第2モータの回生制動時に、前記蓄電装置が充電制限されている場合において、第2モータの発電電力を用いて第1モータを力行させる制御を実行することを特徴とするハイブリッド車両。
  2. 請求項1に記載のハイブリッド車両において、
    前記動力分配機構を介して連結されるエンジンおよび第1モータ間の動力伝達系統に設けられエンジンと第1モータとを接続または接続解除するクラッチ機構をさらに備え、
    前記制御部は、前記クラッチ機構を接続解除した状態で第2モータの発電電力によって第1モータを逆転力行させることを特徴とするハイブリッド車両。
  3. 請求項1に記載のハイブリッド車両において、
    前記制御部は、第2モータの発電電力によって第1モータを正転力行させることを特徴とするハイブリッド車両。
  4. 請求項2または3に記載のハイブリッド車両において、
    前記制御部は、第2モータの発電電力が第1モータの上限回転数またはその付近での回転を維持できる程度に抑えるよう第2モータの回生制動を制御することを特徴とするハイブリッド車両。
  5. 請求項4に記載のハイブリッド車両において、
    前記制御部は、前記第1モータの回生制動の制御に伴って不足する制動力を、機械式ブレーキ装置で補う制御を実行することを特徴とするハイブリッド車両。
  6. 請求項3に記載のハイブリッド車両において、
    前記制御部は、第2モータの発電電力によって第1モータを正転力行させるとき、エンジンについて気筒休止または吸排気バルブ開放を行うことを特徴とするハイブリッド車両。
JP2008224591A 2008-09-02 2008-09-02 ハイブリッド車両 Pending JP2010058579A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224591A JP2010058579A (ja) 2008-09-02 2008-09-02 ハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224591A JP2010058579A (ja) 2008-09-02 2008-09-02 ハイブリッド車両

Publications (1)

Publication Number Publication Date
JP2010058579A true JP2010058579A (ja) 2010-03-18

Family

ID=42185902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224591A Pending JP2010058579A (ja) 2008-09-02 2008-09-02 ハイブリッド車両

Country Status (1)

Country Link
JP (1) JP2010058579A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207408A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp 充電制御システム
EP2388761A2 (en) 2010-03-16 2011-11-23 Fujitsu Limited Marker placement device, marker placement detecting device, and computer readable storage medium for storing marker placement program
JP2013038845A (ja) * 2011-08-04 2013-02-21 Toyota Motor Corp 車両の駆動装置
JP2013169098A (ja) * 2012-02-16 2013-08-29 Toyota Motor Corp 車両、車両の通知装置および車両の制御方法
JP2013169099A (ja) * 2012-02-16 2013-08-29 Toyota Motor Corp 車両、車両の通知装置および車両の制御方法
JP2013216133A (ja) * 2012-04-05 2013-10-24 Toyota Motor Corp ハイブリッド車両
JP2015033921A (ja) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2015524363A (ja) * 2012-06-27 2015-08-24 ルノー エス.ア.エス. ハイブリッド車でエネルギーを管理する方法
KR101769705B1 (ko) * 2015-03-06 2017-08-18 도요타지도샤가부시키가이샤 하이브리드 차의 제어 장치
KR101776380B1 (ko) * 2015-06-16 2017-09-07 현대자동차주식회사 친환경 차량용 동력 전달 시스템
US10618421B2 (en) 2017-04-24 2020-04-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2021146772A (ja) * 2020-03-16 2021-09-27 本田技研工業株式会社 車両用駆動装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388761A2 (en) 2010-03-16 2011-11-23 Fujitsu Limited Marker placement device, marker placement detecting device, and computer readable storage medium for storing marker placement program
JP2011207408A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp 充電制御システム
JP2013038845A (ja) * 2011-08-04 2013-02-21 Toyota Motor Corp 車両の駆動装置
JP2013169098A (ja) * 2012-02-16 2013-08-29 Toyota Motor Corp 車両、車両の通知装置および車両の制御方法
JP2013169099A (ja) * 2012-02-16 2013-08-29 Toyota Motor Corp 車両、車両の通知装置および車両の制御方法
JP2013216133A (ja) * 2012-04-05 2013-10-24 Toyota Motor Corp ハイブリッド車両
JP2015524363A (ja) * 2012-06-27 2015-08-24 ルノー エス.ア.エス. ハイブリッド車でエネルギーを管理する方法
JP2015033921A (ja) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN105452037A (zh) * 2013-08-09 2016-03-30 丰田自动车株式会社 用于混合动力车辆的控制设备和控制方法
KR101769705B1 (ko) * 2015-03-06 2017-08-18 도요타지도샤가부시키가이샤 하이브리드 차의 제어 장치
US9796375B2 (en) 2015-03-06 2017-10-24 Toyota Jidosha Kabushiki Kaisha Control system for hybrid vehicle
KR101776380B1 (ko) * 2015-06-16 2017-09-07 현대자동차주식회사 친환경 차량용 동력 전달 시스템
US10618421B2 (en) 2017-04-24 2020-04-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2021146772A (ja) * 2020-03-16 2021-09-27 本田技研工業株式会社 車両用駆動装置

Similar Documents

Publication Publication Date Title
JP2010058579A (ja) ハイブリッド車両
US9796375B2 (en) Control system for hybrid vehicle
JP5725037B2 (ja) 車両および車両用制御方法
JP5648984B2 (ja) ハイブリッド車両
JP5729475B2 (ja) 車両および車両の制御方法
JP2006136143A (ja) 駆動装置およびこれを搭載する自動車
JP5652479B2 (ja) 車両および車両用制御方法
JP5598555B2 (ja) 車両および車両用制御方法
JP2006312352A (ja) 駆動システムの制御装置
JP4743049B2 (ja) 車両の制動制御装置
JP2008260428A (ja) 車両およびその制御方法
JP2009189217A (ja) 自動車およびその制御方法
JP4858060B2 (ja) 車両の駆動トルク制御装置
JP5644868B2 (ja) 車両および車両の制御方法
JP2010111182A (ja) ハイブリッド車およびその制御方法
JP2011097666A (ja) 自動車およびその制御方法
JP2006197756A (ja) 車両の回生制動制御装置
JP2008094238A (ja) ハイブリッド車の制御装置
JP4285483B2 (ja) 車両およびその制御方法
JP2010058629A (ja) ハイブリッド車両
JP5652546B2 (ja) 車両および車両用制御方法
JP5304957B2 (ja) 電動車両およびその制御方法
JP2007296933A (ja) 車両およびその制御方法
JP2012224304A (ja) 車両の制振制御装置
JP2012162097A (ja) 車両