WO2008081691A1 - 電源システムおよびそれを備える車両、ならびにその制御方法 - Google Patents

電源システムおよびそれを備える車両、ならびにその制御方法 Download PDF

Info

Publication number
WO2008081691A1
WO2008081691A1 PCT/JP2007/073900 JP2007073900W WO2008081691A1 WO 2008081691 A1 WO2008081691 A1 WO 2008081691A1 JP 2007073900 W JP2007073900 W JP 2007073900W WO 2008081691 A1 WO2008081691 A1 WO 2008081691A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power storage
unit
storage unit
voltage conversion
Prior art date
Application number
PCT/JP2007/073900
Other languages
English (en)
French (fr)
Inventor
Shinji Ichikawa
Eiji Sato
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07850451.1A priority Critical patent/EP2117106B1/en
Priority to US12/312,745 priority patent/US7923866B2/en
Priority to CN2007800492269A priority patent/CN101573860B/zh
Publication of WO2008081691A1 publication Critical patent/WO2008081691A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power supply system having a plurality of power storage units, a vehicle including the power supply system, and a control method therefor, and particularly to a control technique when the power storage unit is disconnected from the power supply system.
  • hybrid vehicles that travels by efficiently combining an engine and a motor has been put into practical use.
  • Such hybrid vehicles are equipped with chargeable / dischargeable power storage units that generate power by supplying power to the motor when starting or accelerating, while kinetic energy of the vehicle is used during downhill or braking. Is recovered as electricity.
  • nickel-metal hydride batteries and lithium-ion batteries with large input / output power and charge / discharge capacities are used for power storage units mounted on hybrid vehicles.
  • a configuration called a plug-in that can charge the power storage unit using an external power source such as a commercial power source has been proposed.
  • This plug-in method is used for traveling over a relatively short distance, such as commuting or shopping, by using the power stored in the power storage unit from an external power source while keeping the engine stopped. The purpose is to further improve the overall fuel consumption efficiency.
  • the so-called EV (Electric Vehicle) driving mode it is necessary to output electric power constantly, so the power storage unit used in the plug-in system has a normal hybrid vehicle. Compared to the power storage unit mounted on the battery, a larger charge / discharge capacity is required, but the input / output power may be relatively small.
  • U.S. Pat. No. 6,60,083 includes an electric motor power management that provides a desired DC high voltage level for a high voltage vehicle traction system.
  • the electric motor power management system includes a plurality of power stages each having a battery and a boost Z-back DC / DC converter and connected in parallel to provide DC power to at least one inverter, and a plurality of power stages.
  • a controller that controls the plurality of power supply stages so that the batteries of the power supply stage are charged and discharged evenly so that the plurality of power supply stages maintain the battery voltage to at least one inverter.
  • an abnormal state is constantly monitored from the viewpoint of safety based on the state value of the power storage unit. For example, the degree of deterioration is determined based on the internal resistance value of the power storage unit. If it is determined that the state is abnormal, the power storage unit needs to be electrically disconnected from the system.
  • the electric motor power management system disclosed in the above-mentioned US Pat. No. 6,600,396, no consideration is given to the case where an abnormality occurs in the battery (power storage unit). There is also no disclosure of a configuration for electrically disconnecting the power storage unit in which an abnormality has occurred. As a result, if any one of the power storage units malfunctions, the entire system must be stopped. Disclosure of the invention
  • the present invention has been made to solve such a problem, and the object thereof is when some of the power storage units are electrically disconnected for some reason.
  • it is to provide a power supply system capable of continuing power supply to the load device, a vehicle including the power supply system, and a control method thereof.
  • a power supply system for supplying power to the first and second load devices.
  • the power supply system includes a first power line pair electrically connected to the first load device, a plurality of chargeable / dischargeable power storage units, and a plurality of voltage conversion units respectively associated with the plurality of power storage units.
  • the plurality of voltage conversion units are connected in parallel to the first power line pair, and each is connected between the first power line pair and the corresponding power storage unit. It is configured to perform a voltage conversion operation.
  • the power supply system is associated with a plurality of power storage units, each of which has a plurality of disconnecting portions for electrically disconnecting between the corresponding power storage unit and the corresponding voltage conversion unit, and a plurality of one ends.
  • the first voltage conversion unit which is one of the voltage conversion units, is electrically connected between the corresponding disconnection unit and the other end is electrically connected to the second load device.
  • 2 power line pairs and a control unit.
  • the control unit When the control unit is electrically disconnected between the corresponding power storage unit and the corresponding voltage conversion unit by any one of the plurality of disconnecting units, the control unit generates power from the remaining power storage unit.
  • a plurality of power supply units so that power supply to the first load device is continued through the first power line pair and power supply to the second load device is continued through the second power line pair. Controls the voltage converter.
  • the power supply system further includes an abnormality detection unit that detects an abnormal state for each of the plurality of power storage units.
  • Each of the plurality of disconnecting units is configured to electrically disconnect between the corresponding power storage unit and the corresponding voltage conversion unit in response to detection of an abnormal state in the corresponding power storage unit by the abnormality detection unit.
  • the abnormality detection unit detects an abnormal state for each of the plurality of power storage units based on at least one of a temperature, a voltage value, a current value, and an internal resistance value of the corresponding power storage unit.
  • control unit is configured such that when the first voltage conversion unit and the corresponding power storage unit are electrically disconnected by the corresponding disconnection unit, the power from the remaining power storage unit is the first power line.
  • the voltage converters corresponding to the remaining power storage units are controlled so that they are supplied to the first load device via the pair, and the second load device is connected from the first power line pair via the second power line pair.
  • the first voltage converter is controlled so that electric power is supplied to the first voltage converter.
  • control unit for each of the plurality of voltage conversion units, stops the power conversion operation between the first power line pair and the corresponding power storage unit, and makes the two electrically conductive. .
  • each of the plurality of voltage conversion units is connected in series with the inductor, and is disposed between one power line of the first power line pair and one electrode of the corresponding power storage unit, and electrically connects both. And a wiring for electrically connecting the other power line of the first power line pair and the other electrode of the corresponding power storage unit.
  • the control unit For each of the plurality of voltage converters, the conducting state is maintained by turning on the switching element.
  • control unit controls the remaining voltage conversion unit excluding the first voltage conversion unit so that the electric power from the corresponding power storage unit is supplied to the first power line pair with a boost operation,
  • the first voltage converter is controlled so that power from the first power line pair is supplied to the second load device with a step-down operation.
  • control unit controls the first voltage conversion unit in accordance with a first control mode for setting the voltage value after step-down supplied to the second load device to a predetermined target value.
  • control unit activates at least one of the remaining voltage conversion units according to a second control mode for setting the boosted voltage value supplied to the first power line pair to a predetermined target value. Control.
  • the first voltage conversion unit in a state where the first voltage conversion unit and the corresponding power storage unit are electrically connected, the first voltage conversion unit is set to the second control mode to perform the voltage conversion operation.
  • Each of the remaining voltage conversion units is set to a third control mode for setting the power value exchanged between the first power line pair and the corresponding power storage unit to a predetermined target value.
  • the voltage conversion operation is performed.
  • the control unit responds to at least one of the remaining voltage conversion units and the first voltage conversion unit. Switch the control mode for.
  • a vehicle including the above-described power supply system and a driving force generation unit for generating a driving force for traveling as a first load device.
  • the vehicle further includes an auxiliary machine group for the vehicle as the second load device.
  • a method for controlling a power supply system for supplying power to first and second load devices includes a first power line pair electrically connected to the first load device, a plurality of chargeable / dischargeable power storage units, and a plurality of voltage conversion units respectively associated with the plurality of power storage units. including.
  • the plurality of voltage conversion units are connected in parallel to the first power line pair, and each is configured to perform a voltage conversion operation between the corresponding power storage unit and the first power line pair.
  • a power supply system is associated with each of a plurality of power storage units, and each of the power storage systems is associated with a corresponding power storage unit and a corresponding voltage conversion. Between the first voltage conversion unit, one end of which is one of the plurality of voltage conversion units, and the corresponding disconnection unit. And a second power line pair electrically connected to the second load device at the other end.
  • the control method includes a step of detecting presence / absence of an abnormal state for each of the plurality of power storage units, and a storage unit in which the abnormal state is detected when an abnormal state is detected for any one of the plurality of power storage units.
  • the first power line pair using the step of electrically disconnecting the power supply unit and the corresponding voltage conversion unit by the corresponding disconnection unit, and using the power from the remaining power storage unit excluding the disconnected power storage unit. And controlling the plurality of voltage converters so as to continue supplying power to the first load device via the second power line pair and continuing to supply power to the second load device via the second power line pair. Including.
  • the power supply system capable of continuing power supply to the load device and the power supply system are provided.
  • the vehicle provided and the control method thereof can be realized.
  • FIG. 1 is a schematic configuration diagram showing a main part of a vehicle including an electric system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of the converter according to the first embodiment of the present invention.
  • 3A and 3B are diagrams showing an outline (case 1) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • FIGS. 4A and 4B are diagrams showing an outline (case 2) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • FIGS. 5A and 5B are diagrams showing an outline (case 3) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • FIGS. 6A and 6B are diagrams showing an outline (case 4) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • FIG. 7 is an operational state diagram of the converter in the conduction mode shown in FIG. 3B and FIG. 4B.
  • Figure 8 shows the control structure in the battery ECU for detecting an abnormal state of the battery.
  • FIG. 9 is a block diagram showing a control structure in battery E CU for detecting an abnormal state of the power storage unit.
  • FIG. 10 is a block diagram showing a control structure related to generation of a switching command in converter ECU.
  • Fig. 11 is a block diagram showing the control structure of the control system (normal time) corresponding to Fig. 3A and Fig. 5A.
  • Fig. 12 is a block diagram showing the control structure of the control system (normal time) corresponding to Fig. 4A and Fig. 6A.
  • Fig. 13 is a block diagram showing the control structure of the control system (at the time of abnormality) corresponding to Fig. 3B and Fig. 4B.
  • Fig. 14 is a block diagram showing the control structure of the control system (at the time of abnormality) corresponding to Fig. 5B and Fig. 6B.
  • FIG. 15 is a flowchart relating to the control method of the power supply system according to the first embodiment of the present invention.
  • FIG. 16 is a diagram showing an outline of power supply to the driving force generation unit and the auxiliary machinery group according to the modification of the first embodiment of the present invention.
  • FIG. 17 is an operational state diagram of the converter in the voltage control mode (step-up / step-down) shown in FIG. 3B and FIG. 4B.
  • Fig. 18 is a block diagram showing the control structure of the control system (during abnormality) corresponding to Fig. 3B and Fig. 4B.
  • FIG. 19 is a diagram showing an outline of power supply to the driving force generation unit and the auxiliary machinery group according to the modification of the second embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a main part of vehicle 1 including power supply system 100 according to the first embodiment of the present invention.
  • a vehicle 1 includes a power supply system 100, a first inverter (I NV 1) 40, a second inverter (I NV2) 42, a third inverter (I NV3) 44, a motor generator (M / G) Includes MG1, MG2, a drive ECU (Electronic Control Unit) 50, an air conditioner 70, a low-voltage auxiliary device 82, a step-down converter 80, and a sub power storage unit SB.
  • I NV 1 includes a power supply system 100, a first inverter (I NV 1) 40, a second inverter (I NV2) 42, a third inverter (I NV3) 44, a motor generator (M / G)
  • M / G Includes MG1, MG2, a drive ECU (Electronic Control Unit) 50, an air conditioner 70, a low-voltage auxiliary device 82, a step-down converter 80, and a sub power storage unit SB.
  • power supply system 100 including two power storage units 10 and 20 will be described as an example of a power supply system including a plurality of power storage units.
  • Inverters 40 and 42, motor generators MG 1 and MG 2, and drive ECU 50 constitute a “drive force generator” for generating a drive force for traveling of vehicle 1.
  • driving force generation unit is the “first load device”
  • the vehicle 1 travels by transmitting the driving force generated by the electric power supplied from the power supply system 100 to the driving force generator to the wheels (not shown).
  • the air conditioner 70, the low-voltage auxiliary equipment 82, the step-down converter 80, and the auxiliary power storage unit SB constitute an “auxiliary machine group” for the vehicle.
  • this “auxiliary machine group” is set as the “second load device” is illustrated.
  • Inverters 40 and 42 are connected in parallel to main positive bus MPL and main negative bus MNL, which are the first power line pair, and each transfer electric power to and from power supply system 100. That is, inverters 40 and 42 are connected to main positive bus MP L and main negative bus MN.
  • the power supplied via L (DC power) is converted to AC power and supplied to motor generators MG 1 and MG 2 respectively, while the AC power generated by motor generators MG 1 and MG 2 is converted to DC power. Converted and returned to the power supply system 100 as regenerative power.
  • inverters 40 and 4 2 are configured by a bridge circuit including switching elements for three phases, and switching (in accordance with switching commands P WM 1 and P WM 2 received from driving ECU 50), respectively ( (Circuit open / close) Power conversion is realized by performing the operation.
  • Motor generators MG 1 and MG 2 can generate rotational driving force by receiving AC power supplied from inverters 40 and 42, respectively, and can generate electric power by receiving external rotational driving force. Is done.
  • motor generators MG 1 and MG 2 are three-phase AC rotating electric machines having rotors in which permanent magnets are embedded. Motor generators MG 1 and MG 2 are mechanically connected to an engine (not shown) via a power transmission mechanism 46.
  • Arithmetic processing is executed in the drive E C U 50 so that the drive forces generated by the engine and the motor generators MG 1 and MG 2 are in an optimum ratio. More specifically, the drive ECU 50 executes a program stored in advance, thereby transmitting a signal transmitted from each sensor (not shown), a traveling state, a change rate of the accelerator opening, and a stored map. Based on the above, the driving force that should be generated by the engine and motor generator] ⁇ G 1, MG 2 is determined. Motor generator MG 1 can be made to function exclusively as a generator, and motor generator MG 2 can be made to function exclusively as an electric motor.
  • the air conditioner 70 is a device for mainly air-conditioning the vehicle interior, and is driven by an inverter 7 2 connected to the low-voltage positive line LPL and the low-voltage negative line LNL, which are the second pair of power lines, and an inverter 72. Compressors 7 and 4 are included.
  • the inverter 72 converts the DC power supplied from the power supply system 100 into AC power and supplies it to the compressor 74.
  • the compressor 7 4 is a device for realizing air conditioning by generating heat of vaporization by executing a refrigeration cycle (not shown) that reverses compression and expansion with respect to a refrigerant (for example, chlorofluorocarbons). 7 Supply from 2
  • the refrigerant is compressed using the rotational driving force generated by the AC power generated.
  • the low-pressure auxiliary machinery 8 2 is a trap that operates at a low pressure (eg, 1 2 V or 2 4 V) compared to the voltage value (eg, 2 8 8 V) of power supplied from the power supply system 100
  • a low pressure eg, 1 2 V or 2 4 V
  • the low-voltage auxiliary machinery 82 is operated by low-voltage DC power supplied from the step-down comparator 80 or the sub power storage unit S B.
  • the step-down converter 80 is a device for stepping down the power supplied from the power supply system 100, and is connected to the low-voltage positive line LPL and the low-voltage negative line LNL. Supply to sub power storage unit SB.
  • the step-down comparator 80 converts DC power into AC power, performs voltage conversion using a transformer, and reconverts the AC power after voltage conversion into DC power. It consists of a so-called “transformer” type circuit.
  • the sub power storage unit SB is composed of a lead storage battery, for example, and is connected to the output side of the step-down converter 80 and charged with the output DC power, while supplying the charging power to the low-voltage auxiliary equipment 82. . That is, the sub power storage unit S B also functions as a power buffer for compensating for the imbalance between the output power from the step-down converter 80 and the demand power in the low-voltage auxiliary devices 82.
  • inverter 44 is connected in parallel with inverters 40 and 42 to main positive bus M P L and main negative bus MNL.
  • Inverter 44 is a charging device for charging power storage units 10 and 20 included in power supply system 100 using external electric power from outside the vehicle.
  • the inverter 44 is electrically connected to a commercial power source (both not shown) from a house outside the vehicle via the charging connector 60 and the supply line ACL, and receives power from the external power source. Configured to be acceptable.
  • the inverter 44 converts the electric power from the external power source into DC power for supplying to the power source system 100.
  • the inverter 44 is typically composed of a single-phase inverter corresponding to the power supply form of a commercial power source used in a house (not shown) outside the vehicle.
  • the plug-in configuration is not limited to the configuration shown in FIG. It may be configured to be electrically connected to an external power source through the neutral point of the MG 1 and MG 2.
  • the power supply system 100 includes a smoothing capacitor C, power storage units 10 and 20, converters (CONV) 18 and 28, temperature detection units 12 and 22, voltage detection units 14, 24 and 52, and current detection unit 16 26, 54, system relays SMR1, SMR2, a battery ECU 32, and a converter ECU 30.
  • Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces the fluctuation component included in the power transferred between power supply system 100 and the driving force generator.
  • the voltage detection unit 52 is connected between the main positive bus MP L and the main negative bus MN L, and is a voltage value of power transmitted and received between the power supply system 100 and the driving force generation unit.
  • the value Vc is detected and the detection result is output to the converter ECU 30.
  • the current detection unit 54 detects a bus current value I c, which is a current value of power transmitted and received between the power supply system 100 and the driving force generation unit, via the main positive bus MP L. The detection result is output to converter ECU 30.
  • the power storage units 10 and 20 are chargeable / dischargeable DC power storage elements, which include, for example, a secondary battery such as a nickel metal hydride battery or a lithium ion battery, or an electric double layer capacitor.
  • a secondary battery such as a nickel metal hydride battery or a lithium ion battery, or an electric double layer capacitor.
  • Converters 18 and 28 are connected in parallel to main positive bus / line MPL and main negative bus / line MN L, and power storage units 10 and 20 corresponding to main positive bus MPL and main negative bus MN L, respectively.
  • a voltage converter configured to perform a power conversion operation between the two.
  • converters 18 and 28 can boost the discharge power from corresponding power storage units 10 and 20 to a predetermined voltage and supply them to the driving force generation unit, while being supplied from the driving force generation unit.
  • the regenerative power can be stepped down to a predetermined voltage and supplied to the corresponding power storage units 10 and 20, respectively.
  • converters 18 and 28 are both configured as “Chopper” type circuits.
  • the temperature detectors 1 2 and 22 are arranged close to the battery cells and the like constituting the power storage units 10 and 20, respectively, and detect the temperatures Tbl and Tb2 of the power storage units 10 and 20, respectively. The output result is output to the battery ECU 32.
  • the temperature detection units 12 and 22 are configured to output representative values obtained from detection values obtained by a plurality of detection elements arranged in association with a plurality of battery cells constituting the power storage units 10 and 20, respectively. Also good.
  • the voltage detection unit 14 is connected between the positive line PL 1 and the negative line NL 1 that electrically connect the power storage unit 10 and the converter 18, and detects the voltage value V b 1 related to the input and output of the power storage unit 10. Then, the detection result is output to the battery ECU 32 and the converter ECU 30.
  • the voltage detection unit 24 is connected between the positive line PL 2 and the negative line NL 2 that electrically connect the power storage unit 20 and the converter 28, and is related to the input / output of the power storage unit 20. The voltage value Vb 2 is detected, and the detection result is output to the battery ECU 32 and the converter ECU 30.
  • Current detectors 16 and 26 are interposed in positive lines PL 1 and PL 2 that connect power storage units 10 and 20 and converters 18 and 28, respectively, and currents related to charging and discharging of the corresponding power storage units 10 and 20 respectively.
  • the values I b 1 and I b 2 are detected, and the detection results are output to the battery ECU 3 2 and the converter ECU 30.
  • System relay S MR 1 is inserted into positive line PL 1 and negative line NL 1 that electrically connect power storage unit 10 and converter 18, and receives a system-on command SON 1 from battery ECU 32 described later. In response, the power storage unit 10 and the converter 18 are electrically connected or disconnected.
  • the electrical connection state is also referred to as the “on” state
  • the electrical disconnection state is also referred to as the “off” state.
  • low voltage positive line LP L and low voltage negative line LNL are connected to positive line P L 1 and negative line NL 1, respectively, at a position between system relay SMR 1 and converter 18.
  • a part of the electric power flowing through the positive line P L 1 and the negative line NL 1 can be supplied to the vehicle auxiliary machinery group.
  • the system relay SMR 1 is in the cut-off state, power storage unit 10 is electrically disconnected from the driving force generation unit and the auxiliary machinery group.
  • the system relay SMR 2 is connected to a positive line PL 2 and a negative line NL 2 that electrically connect the power storage unit 20 and the converter 28, and a system-on command SON 2 from a battery ECU 32 described later. In response to this, the power storage unit 20 and the converter 28 are electrically connected or disconnected.
  • the system relays SMR 1 and SMR 2 Corresponds to the “number separation”.
  • the battery ECU 32 is a device that monitors and controls the power storage units 10 and 20, and is connected to the converter ECU 30 connected via the control line LN K1 to charge the power storage units 10 and 20 (SOC: State Of Charge).
  • SC State Of Charge
  • the battery ECU 32 includes temperatures T b 1 and T b 2 from the temperature detection units 12 and 22, voltage values V b 1 and V b 2 from the voltage detection units 14 and 24, and a current detection unit 16. Based on the current values lb 1 and I b 2 from, 26, calculate the SOC of power storage units 10 and 20, respectively. Then, battery ECU 32 sends the calculated SOC and allowable power (charge allowable power and discharge allowable power) determined depending on the SOC to converter ECU 30.
  • the battery ECU 32 is connected to the power storage unit: based on the temperature Tb1, Tb2, the voltage values Vb1, Vb2, the current value Ib1, lb2 and the internal resistance value of L0, L20. Detect an abnormal condition for each of 10 and 20. If the power storage units 10 and 20 are both normal, the battery ECU 32 activates the system-on commands SON 1 and SO N 2 in response to an idling-on command (not shown) by the driver. Drive system relays SMR 1 and SMR 2 to the ON state. On the other hand, if an abnormality has occurred in either of power storage units 10 and 20, battery ECU 32 determines that electrical disconnection is necessary, and deactivates the corresponding system-on commands SON1 and SON2. The corresponding power storage units 10 and 20 are electrically disconnected from the power supply system 100.
  • the converter ECU 30 cooperates with the battery ECU 32 connected via the control line LNK1 and the drive ECU 50 connected via the control line LNK 2, so that the electric power value required by the driving force generator is stored in the power storage unit 10 and
  • the power conversion operations in converters 18 and 28 are controlled so that 20 can be shared at a predetermined ratio.
  • converter ECU 30 implements switching commands PW C 1 and PWC 2 according to a control mode selected in advance among a plurality of control modes described later for each of converters 18 and 28.
  • the converter operating as the “master” is the voltage value of the power supplied from the electric system 100 to the driving force generator (the bus voltage value V c between the main positive bus MPL and the main negative bus MN L ) Is controlled according to the “Voltage Control Mode (Boosting)” for setting a predetermined voltage target value.
  • the converter that operates as a “slave” is the power shared by the corresponding power storage unit among the power supplied from the power supply system 100 to the driving force generation unit (the power storage unit and main positive bus MPL, main negative bus
  • the power is controlled according to the “power control mode” for setting the power to and from MNL as a predetermined power target value. At this time, a part of the electric power discharged from the power storage unit 10 is supplied to the auxiliary machinery group.
  • converter 28 when abnormality occurs in power storage unit 10 and it is electrically disconnected from power supply system 100, converter 28 continues to supply power from power storage unit 20 to the driving force generation unit. Thus, while the voltage conversion operation is continued, converter 18 performs the voltage conversion operation so that a part of the power flowing through main positive bus MPL and main negative bus MNL is supplied to the auxiliary machinery group. In this case, converter 28 corresponding to power storage unit 20 needs to operate as “master one”. Therefore, immediately before power storage unit 10 is electrically disconnected, if converter 2 8 is operating as a “slave”, converter 2 8 The mode is switched to operate as “master”.
  • converter 18 is connected from power storage unit 10 to the driving force generation unit and the auxiliary equipment group. While the voltage conversion operation is performed so that the power supply is continued, converter 28 stops the voltage conversion operation. In this case, the comparator 18 corresponding to the power storage unit 10 needs to operate as a “master”. Therefore, if power storage unit 20 is operating as converter 18 power S “slave” immediately before power storage unit 20 is electrically disconnected, converter 18 is The mode is switched to operate as “Master 1”.
  • converter ECU 30 corresponds to a “control unit”
  • battery ECU 32 corresponds to an “abnormality detection unit”.
  • converter 18 according to the first embodiment of the present invention is supplied from power storage unit 10 when power storage unit 10 is discharged in response to switching command PWC 1 from converter ECU 30 (FIG. 1). While the DC power generated is boosted, the DC power supplied from the main positive bus MPL and the main negative bus MNL is stepped down when the power storage unit 10 is charged.
  • the converter 18 includes transistors Q 1A and Q 1 B which are switching elements, an inductor L 1, a wiring L N C 1, diodes D 1 A and D 1 B, and a smoothing capacitor C 1.
  • Transistor Q1 B is connected in series with inductor L 1 and arranged between positive line PL 1 (positive side of power storage unit 10) and main positive bus MP L.
  • the collector of transistor Q 1 B is connected to positive bus MP L.
  • the transistor Q 1 B electrically connects or disconnects the positive line P L 1 and the main positive bus MP L in response to the second switching command PWC 1 B included in the switching command PWC 1.
  • the wiring L N C 1 electrically connects the negative line N L 1 (the negative electrode side of the power storage unit 10) and the main negative bus MN L.
  • the transistor Q 1 A is further connected between the connection point between the transistor Q 1 B and the inductor L 1 and the wiring L N C 1. Note that the emitter of transistor Q 1A is connected to wiring LNC 1.
  • the transistor Q 1 A electrically connects or disconnects the positive line P L 1 and the negative line NL 1 in response to the first switching command PWC 1 A included in the switching command PWC 1.
  • diodes D 1 A and D 1 B that allow current from the respective emitter side to the collector side are connected between the collector and emitter of the transistors Q 1A and Q 1 B.
  • Smoothing capacitor C 1 is connected between positive line PL 1 and negative line NL 1 (or wiring LNC 1), and is included in the power transferred between power storage unit 10 and converter 18. Reduce the AC component.
  • system relay SMR 1 system relay SMR 1
  • the duty ratio is also referred to as “Du t y”.
  • transistor Q 1 A When transistor Q 1 A is in the ON state (conducting state), the first current path from the positive side of power storage unit 10 to the main positive bus MPL and the positive side of power storage unit 10 returns to the negative side via inductor L 1 A second current path is formed. At this time, the pump current flowing through the second current path is stored as electromagnetic energy in the inductor L 1. Subsequently, when the transistor Q 1 A transitions from the on state to the off state (non-conducting state), the second current path is opened, and the pump current is cut off. At this time, the inductor L 1 releases the stored electromagnetic energy in order to maintain the current value flowing through it. This released electromagnetic energy is superimposed on the current output from the converter 18 to the main positive bus MP L. As a result, the electric power supplied from the power storage unit 10 is boosted and output by a voltage value corresponding to the electromagnetic energy stored in the inductor L 1.
  • a converter that operates as a “master” can be freely selected, and one of power storage units 10 and 20 is disconnected from power supply system 100. However, it is necessary to continue supplying power to the driving force generator and the auxiliary machinery group.
  • FIGS. 3A and 3B are diagrams showing an outline (case 1) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • FIG. 3B shows the case where power storage units 10 and 2 0 are normal, and
  • FIG. 3B shows the case where abnormality occurs in power storage unit 10.
  • FIG. 3A if power storage units 10 and 20 are both normal, system relays SMR1 and SMR2 are maintained in the on state. As a result, discharge power P b 1 is discharged from power storage unit 10, a part of which is supplied to the auxiliary machinery group, and the remaining part is supplied to the driving force generation unit. Further, all of the discharge power P b 2 from the power storage unit 20 is supplied to the driving force generation unit. Therefore, the supply power P c and P s supplied to the driving force generation unit and the auxiliary machinery group and the power storage units 10 and 20 are discharged, respectively. Between the discharge power P b 1 and P b 2
  • Discharge power P b 1 + Discharge power P b 2 Supply power P c + Supply power P s
  • Converter 18 operating as a “master” performs a voltage conversion operation according to the voltage control mode (boost). That is, converter 18 is controlled so that bus voltage value V c becomes a predetermined voltage target value V c *.
  • converter 28 operating as a “slave” performs a boosting operation according to the power control mode in order to realize power distribution (power management) in power storage units 10 and 20.
  • the converter 28 controls the power value exchanged between the corresponding power storage unit 20 and the main positive bus MPL and main negative bus MN L to be a predetermined power target value P b 2 *. Is done.
  • the discharge power P b 2 from the power storage unit 20 can be arbitrarily adjusted, so that the discharge power P b 1 from the power storage unit 10 can also be indirectly controlled.
  • the voltage value of the supplied power P s supplied to the auxiliary machinery group via the low-voltage positive line LPL and the low-voltage negative line LNL varies depending on the SOC of the power storage unit 10 and so on.
  • the inverter 7 2 (Fig. 1) and the step-down converter 80 included in 0 have a voltage adjustment function, so that the auxiliary machinery group operates normally even when there is a predetermined voltage fluctuation in the power storage unit 10. be able to.
  • system relay S MR 1 is driven to an off state as shown in FIG. 3B, and power storage unit 10 is electrically disconnected from power supply system 100. It is.
  • converter 1 is configured so that power can be supplied from power storage unit 20 to the auxiliary machinery group. 8 and 28 The control mode in 8 needs to be switched.
  • discharge power P b 2 from power storage unit 20 is supplied to main positive bus M P L and main negative bus MNL through corresponding converter 28.
  • a part of the discharge power P b 2 is supplied to the driving force generation unit, and the remaining part is supplied to the auxiliary machinery group through the converter 18 and the low-voltage positive line LPL and the low-voltage negative line LNL. .
  • power supply to the driving force generation unit and the auxiliary machinery group is continued.
  • the discharge power P b 2 discharged from the power storage unit 20 and the supply power P c and P s respectively supplied to the driving force generation unit and the auxiliary machinery group
  • Discharge power P b 2 Supply power P c + Supply power P s
  • FIG. 4A and 4B are diagrams showing an outline (Case 2) of power supply to the driving force generation unit and the auxiliary machinery group according to Embodiment 1 of the present invention.
  • 4A shows a case where power storage units 10 and 2 0 are normal
  • FIG. 4B shows a case where abnormality occurs in power storage unit 10.
  • FIG. 4A as in FIG. 3A described above, if power storage units 10 and 20 are both normal, system relays SMR1 and SMR2 are maintained in the on state. As a result, discharge power P b 1 is discharged from power storage unit 10, a part of which is supplied to the auxiliary machinery group, and the remaining part is supplied to the driving force generation unit. Further, all the discharge power P b 2 from the power storage unit 20 is supplied to the driving force generation unit.
  • converter 2 8 force S operates as “master” and converter 1 8 operates as “slave”. That is, the converter 28 that operates as a “master” is controlled so that the bus voltage value V c becomes a predetermined voltage target value V c *.
  • converter 18 operating as a “slave” has a power value exchanged between corresponding power storage unit 10 and main positive bus MPL and main negative bus MN L as a predetermined power target value P b 1 *. To be controlled.
  • system relay SMR 1 is driven to an off state as shown in FIG. 4B, and power storage unit 10 is charged. Electrically disconnected.
  • converters 18 and 28 stop the voltage conversion operation, and electrical connection between power storage units 10 and 20 and main positive spring MP L and main negative bus MNL, respectively. To maintain proper conduction.
  • discharge power P b 2 from power storage unit 20 is supplied to main positive bus MP L and main negative bus MNL via converter 28.
  • a part of the discharge power P b 2 is supplied to the driving power generation unit, and the remaining part is supplied to the auxiliary machinery group via the converter 18 and the low-voltage positive line LP L and the low-voltage negative line LNL. .
  • FIG. 5A and FIG. 5B are diagrams showing an outline (case 3) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • 5A shows a case where power storage units 10 and 20 are normal
  • FIG. 5B shows a case where abnormality has occurred in power storage unit 20.
  • FIG. 5A as in FIG. 3A described above, if power storage units 10 and 20 are both normal, system relays SMR 1 and SMR 2 are maintained in the on state. As a result, discharge power P b 1 is discharged from power storage unit 10, a part of which is supplied to the auxiliary machinery group, and the remaining part is supplied to the driving force generation unit. Further, all of the discharge power Pb2 from the power storage unit 20 is supplied to the driving force generation unit.
  • converter 18 force S operates as "master” and converter 28 operates as "slave". That is, “the converter 18 operating as the master-J is controlled so that the bus voltage value V c becomes a predetermined voltage target value V c *.
  • the converter 28 operating as the“ slave ” Control is performed so that the power value exchanged between the unit 20 and the main positive bus MP L and the main negative bus MN L is a predetermined power target value Pb 2 *.
  • converter 28 stops the voltage conversion operation and electrically opens between system relay SMR 2 and main positive bus MP L and main negative bus MNL. That is, the control mode of converter 28 is voltage control Switch from mode (boost) to open mode.
  • converter 18 that is operating as a “master” performs voltage conversion operation according to the voltage control mode (boost), and therefore disconnects power storage unit 20 from power supply system 100 and controls converter 28.
  • the bus voltage value Vc between the main positive bus MPL and the main negative bus MNL can be continuously stabilized without being affected by the mode switching. Therefore, even after power storage unit 20 is electrically disconnected from power supply system 100, the power supply from power storage unit 10 to the driving force generation unit and the auxiliary machinery group is continued.
  • FIG. 6A and 6B are diagrams showing an outline (case 4) of power supply to the driving force generation unit and the auxiliary machinery group according to the first embodiment of the present invention.
  • 6A shows a case where power storage units 10 and 2 0 are normal
  • FIG. 6B shows a case where abnormality occurs in power storage unit 20.
  • FIG. 6A as in FIG. 3A described above, if power storage units 10 and 20 are both normal, system relays SMR1 and SMR2 are maintained in the on state. As a result, discharge power P b 1 is discharged from power storage unit 10, a part of which is supplied to the auxiliary machinery group, and the remaining part is supplied to the driving force generation unit. Further, all the discharge power P b 2 from the power storage unit 20 is supplied to the driving force generation unit.
  • the converter 2 operates as “master” and the converter 18 operates as “slave”. That is, the converter 28 that operates as the “master one” is controlled so that the bus voltage value V c becomes the predetermined voltage target value V c *.
  • converter 18 that operates as a “slave” has a predetermined power target value P b 1 * that is the power value exchanged between the corresponding power storage unit 10 and main positive bus MPL and main negative bus MN L. It is controlled to
  • converter 28 stops the voltage conversion operation and electrically opens between system relay SMR2 and main positive bus MPL and main negative bus MN L. That is, the control mode of converter 28 is switched from the voltage control mode (boost) to the open mode. As the control mode of this converter 28 is switched, the bus voltage value V c between the main positive bus MPL and the main negative spring MN L cannot be stabilized, so the converter 1 8 operating as a “slave” It is switched to operate as “Master”.
  • control mode of converter 18 is switched from the power control mode to the voltage control mode (boost).
  • boost voltage control mode
  • the control mode of converter 18 is switched from the power control mode to the voltage control mode (boost).
  • the bus voltage value V c between the main positive bus MPL and the main negative bus MN L is stabilized and stored.
  • the power supply from the unit 10 continues to supply power to the driving force generation unit and the auxiliary machinery group.
  • FIG. 7 is an operational state diagram of converters 1 8 and 2 8 in the conduction mode shown in FIG. 3B and FIG. 4B.
  • transistors Q 1 B and Q 2 B connected to main positive bus M P L are maintained in the on state. That is, a switching command with a duty ratio of 100% is given to the transistors Q 1 B and Q 2 B from the converter E C U 30 (FIG. 1).
  • transistors Q 1 A and Q 2 A connected to main negative bus MN L in converters 18 and 28 are both kept off. That is, a switching command with a duty ratio of 0% is given to the transistors Q 1 A and Q 2 A from the converter E C U 30 (FIG. 1).
  • positive line P L 1 is electrically connected to main positive bus M P L via inductor L 1 and transistor Q 1 B, and negative line N L 1 is directly connected to main negative bus MN L.
  • Positive line P L 2 is electrically connected to main positive bus M P L via inductor L 2 and transistor Q 2 B, and negative line N L 2 is directly connected to main negative bus M N L.
  • converters 18 and 28 are formed of a chopper type circuit, so that a “conduction mode” can be realized unlike a transformer type circuit. sand In other words, converters l 8 and 28 are non-isolated voltage conversion circuits, and the transistors on the current path are easily turned on to maintain electrical continuity between the input and output sides. be able to.
  • a voltage converter composed of a transformer-type circuit such as step-down converter 80 (Fig. 1)
  • the input side and the output side are insulated by the feeder transformer. It is difficult to realize a “conduction mode” like a form.
  • FIG. 8 is a block diagram showing a control structure in battery ECU 32 for detecting an abnormal state of power storage unit 10.
  • FIG. 9 is a block diagram showing a control structure in battery ECU 32 for detecting an abnormal state of power storage unit 20.
  • battery E CU 32 detects an abnormal state of power storage unit 10 based on temperature T b 1, voltage value V b 1, current value I b 1, and internal resistance value. Note that it is not necessary to use all of the four judgment elements consisting of temperature T b 1, voltage value V b 1, current value I b 1 and internal resistance value. In other words, it is sufficient that at least one of these judgment elements is included, and another judgment element may be added.
  • the control structure of battery E C U 32 includes a logical sum unit 320, a blocking unit 328, comparison units 321, 322, 323, 325, 326, 327, and a division unit 324.
  • the logical sum unit 320 generates an abnormality detection signal FAL 1 for notifying an abnormal state in the power storage unit 10 by taking a logical sum of the determination results at each half-lj disconnection element described later. That is, when the output from any of the comparison units 321, 322, 323, 325, 326, and 327 described below is activated, the logical sum unit 320 outputs the abnormality detection signal FAL 1 to the outside and Is output to the shut-off unit 328.
  • Comparison units 321 and 322 are units for monitoring voltage value V b 1 of power storage unit 10. It is PT / JP2007 / 073900, and it is judged whether or not the voltage value V b 1 is within the predetermined voltage value range (threshold voltage value a 2 ⁇ Vb 1 threshold voltage value 1). Specifically, comparison unit 321 activates the output when voltage value Vb 1 exceeds threshold voltage value ⁇ 1. The comparator 32 2 activates the output when the voltage value Vb 1 falls below the threshold voltage value H2.
  • the comparison unit 323 is a part for monitoring the current value I b 1 of the power storage unit 10 and determines whether or not an excessive current flows through the power storage unit 10. Specifically, the comparator 32 3 activates the output when the current value I b 1 exceeds the threshold current value 3.
  • Division unit 324 and comparison unit 325 are parts for monitoring the internal resistance value of power storage unit 10, and determine whether or not the internal resistance value is excessively increased due to deterioration. Specifically, the dividing unit 324 divides the voltage #: V b 1 of the power storage unit 10 by the current value I b 1 to calculate the internal resistance value Rb 1, and the comparing unit 325 calculates the internal resistance value Rb Determine whether 1 exceeds the threshold resistance value 4 or not. The comparator 325 activates the output when the internal resistance value exceeds the threshold resistance value ⁇ 4.
  • Comparison units 326 and 327 are parts for monitoring temperature T b 1 of power storage unit 10, and temperature T b 1 is within a predetermined temperature range (threshold temperature 6 Tb 1 threshold temperature a 5). Judge whether there is. Specifically, the comparison unit 326 activates the output when the temperature Tb l exceeds the threshold temperature ⁇ 5, and the comparison unit 327 activates the output when the temperature Tb1 falls below the threshold temperature ⁇ 6. Turn into.
  • battery ECU 32 further detects an abnormal state of power storage unit 20 based on temperature Tb 2, voltage value Vb 2, current value I b 2, and internal resistance value. It should be noted that it is not necessary to use all of the four judgment elements consisting of temperature T b 2, voltage value V b 2, current value I b 2 and internal resistance value. That is, it is sufficient that at least one of these judgment elements is included, and another judgment element may be added.
  • the control structure of battery ECU 32 further includes a logical sum unit 330, a cutoff unit 338, comparison units 3 31, 332, 333, 335, 336, 337, and a division unit 334.
  • the functions of these units are the same as those of the above-described OR unit 320, blocking unit 328, comparison units 321, 322, 323, 325, 326, 327, and division unit 324, so detailed description will not be repeated.
  • threshold values ⁇ 1 to ⁇ 6 shown in FIGS. 8 and 9 can be obtained experimentally in advance, or may be set based on design values of power storage units 10 and 20. 'When the characteristics of power storage unit 10 and power storage unit 20 are different, threshold values ⁇ 1 to ⁇ 6 shown in FIGS. 8 and 9 may be different from each other.
  • FIG. 10 is a block diagram showing a control structure related to generation of switching commands PWC 1 and PWC 2 in converter ECU 30.
  • control structure of converter ECU 30 includes a switching command generation unit 300 and a distribution unit 302.
  • Switching command generator 300 is configured to control switching commands PWC 1, PWC for controlling the voltage conversion operations of converters 18, 28 according to power target values P b 1 *, Pb 2 * and voltage target value Vh *. Generate 2 each. Further, the switching command generator 300 includes a control system (normal time) 304 and a control system (normal time) 306, and an abnormality detection signal FAL 1 (Fig. 8), FAL 2 (Fig. 9) from the battery ECU 32. In response to, activate either one. Each of the control system (normal time) 304 and the control system (abnormality) 306 has a predetermined control mode based on the current values I b 1 and I b 2 and the voltage values V b 1 and V b 2. The switching commands P WC 1 and PWC 2 are generated according to
  • the distribution unit 302 distributes the required power P s * from the drive ECU 50 (FIG. 1) to the power target values P b 1 P b 2 * that the power storage units 10 20 should share, and sends them to the switching command generation unit 300. give. Distribution unit 302 determines the distribution rate based on the SOC (not shown) of power storage units 10 and 20 given from battery ECU 32 (FIG. 1).
  • FIG. 11 is a block diagram showing the control structure of the control system (normal time) 304 corresponding to FIGS. 3A and 5A.
  • control structure of control system (normal) 304 is The configuration for controlling the data 18 in accordance with the “voltage control mode (boost)” includes a modulation unit (MOD) 402, 404, a division unit 410, a subtraction unit 412, 416, and a PI control unit 414. .
  • MOD modulation unit
  • Modulator 402 generates a second switching command PWC 1 B for driving transistor Q I B (FIG. 2) of converter 18 according to the given duty ratio command. Specifically, the modulation unit 402 compares the duty ratio command with a carrier wave (carrier wave) generated by an oscillation unit (not shown), and generates the second switching command PW C 1 B. When the converter 18 performs the voltage conversion operation according to the “voltage control mode (boost)”, the transistor Q1 B (FIG. 2) is maintained in the ON state, so that the modulation unit 402 has “1” (100 ° / 100 ° .) Is entered.
  • boost voltage control mode
  • Modulation section 404 generates a first switching command PWC 1 A for driving transistor Q 1 A (FIG. 2) of converter 18 in accordance with the duty ratio command given from subtraction section 416 as will be described later.
  • the subtraction unit 416 subtracts the PI output from the PI control unit 414 from the theoretical duty ratio from the division unit 410, and supplies the result to the modulation unit 404 as a duty ratio command.
  • the subtracting unit 412 calculates the voltage deviation AVc of the bus voltage value Vc with respect to the voltage target value Vc *, and supplies it to the PI control unit 414.
  • the PI control unit 414 generates a PI output corresponding to the voltage deviation AVc according to a predetermined proportional gain and integral gain, and outputs the PI output to the subtraction unit 416.
  • PI control unit 414 includes a proportional element (P) 418, an integral element (I) 420, and an adder 422.
  • the proportional element 418 multiplies the voltage deviation ⁇ V c by a predetermined proportional gain K p 1 and outputs the result to the adder 422.
  • the integral element 420 has a predetermined integral gain K 1 1 (integration time: 1 / K i 1).
  • the voltage deviation AVc is integrated with and output to the adder 422.
  • the unit 4 2 2 adds the outputs from the proportional element 4 1 8 and the integral element 4 2 0 to generate the PI output.
  • This PI output corresponds to the feedback component for realizing the “voltage control mode (boost) j”.
  • control structure of the control system (normal time) 3 0 4 includes a modulation unit (MOD) 4 0 6 and 4 0 8 as a configuration for controlling the converter 2 8 according to the “power control mode”, and a division unit. 4 3 0, a multiplication unit 4 3 4, a subtraction unit 4 3 2, 4 3 8, and a PI control unit 4 3 6.
  • MOD modulation unit
  • Modulating section 40 6 generates a second switching command P W C 2 B for driving transistor Q 2 B (FIG. 2) of converter 28. Since the rest is the same as that of the modulation section 4002 described above, detailed description will not be repeated.
  • the modulation unit 4 0 8 receives the first switching command P WC for driving the transistor Q 2 A (FIG. 2) of the converter 28 according to the duty ratio command given from the subtraction unit 4 3 8. 2 Generates A.
  • the subtracting unit 4 3 8 subtracts the PI output from the PI control unit 4 3 6 from the theoretical duty ratio from the dividing unit 4 3 0 and gives it to the modulating unit 4 0 8 as a duty ratio command.
  • Multiplying unit 4 3 4 multiplies current i direct I b 2 and voltage value V b 2 to calculate discharge power P b 2 of power storage unit 20. Then, the subtractor 4 3 2 calculates the power deviation ⁇ P b 2 of the discharge power P b 2 calculated by the multiplier 4 3 4 with respect to the power target value P b 2 *, and the PI controller 4 3 6 Give to. That is, in the “voltage control mode (boost)” described above, the voltage deviation is configured to be given to the PI control unit, whereas in the “power control mode”, the power deviation is given to the PI control unit. Is done.
  • the PI control unit 4 3 6 generates a PI output corresponding to the power deviation ⁇ P b 1 according to the predetermined proportional gain K p 2 and the integral gain K i 2 and outputs the PI output to the subtraction unit 4 3 8.
  • PI controller 4 3 6 includes proportional element 4 4 0, integral element 4 4 2, and adder 4 4 4. Since the functions of these parts are the same as those of PI controller 4 14 described above, detailed description will not be repeated.
  • FIG. 12 is a block diagram showing a control structure of Figure 4 A and 6 control system corresponding to A (normal) 304.
  • control system (normal time) 304 has a control structure as a configuration for controlling converter 18 according to "power control mode”. 2, 404, division unit 410, multiplication unit 474, subtraction units 472 and 416, and PI control unit 414 are further included. The functions of these units are the same as those of the modulation units (MOD) 406 and 408, the division unit 430, the multiplication unit 434, the subtraction units 432 and 438, and the PI control unit 436 in FIG. 11 described above. Therefore, the detailed explanation is not repeated.
  • MOD modulation units
  • control structure of the control system (normal time) 304 is configured to control the converter 28 in accordance with the “voltage control mode (boost)”, and includes a modulation unit (MOD) 406, 408, a division unit 430, It further includes a subtraction unit 482, 438 and a PI control unit 436.
  • the functions of these units are the same as those of the modulation units (MOD) 402, 404, the division unit 410, the subtraction units 412, 416, and the PI control unit 414 in FIG. 11 described above. Do not repeat.
  • FIG. 13 is a block diagram showing a control structure of the control system (at the time of abnormality) 306 corresponding to FIG. 3B and FIG. 4B.
  • FIG. 8 and FIG. 10 when an abnormality occurs in power storage unit 10 and power storage unit 10 is electrically disconnected from power supply system 1 0 0, control system (at the time of abnormality) 306 is activated.
  • transistors Q 1 B and Q 2 B are kept on, and transistors Q 1 A and Q 2 A are kept off.
  • FIG. 14 is a block diagram showing a control structure of the control system (at the time of abnormality) 306 corresponding to FIG.
  • control system (at the time of abnormality) 306 when an abnormality occurs in power storage unit 20 and power storage unit 20 is electrically disconnected from power supply system 100, control system (at the time of abnormality) 306 is activated. .
  • the control system (during abnormality) 306 controls the converter 18 according to the same control structure as the control system (normal time) 304 shown in FIG.
  • the control structure of control system (at the time of abnormality) 3 06 is a configuration for controlling converter 18 according to “voltage control mode (boost)”. , 4 04, a division unit 4 1 0, a subtraction unit 4 1 2, 4 1 6, and a PI control unit 4 14. Since the functions of these units have been described above, detailed description will not be repeated.
  • the converter 28 is controlled to be in the “open mode”. Specifically, in the control system (at the time of abnormality) 30 6, the modulation units 406 and 408 are “0”.
  • converter 28 electrically opens between system relay SMR2 and main positive bus MPL and main negative bus MNL.
  • FIG. 15 is a flowchart relating to a method for controlling power supply system 100 according to the first embodiment of the present invention.
  • the flowchart shown in FIG. 15 can be realized by executing a program stored in advance in converter ECU 30 and battery ECU 3 2.
  • battery E CU 3 2 acquires temperature T b 1, voltage value V b 1, and current value I b 1 of power storage unit 10 (step S 100).
  • the battery ECU 3 2 calculates the internal resistance value R b 1 of the power storage unit 10 from the voltage value V b 1 and the current value I b 1, and then calculates the temperature T b 1 and voltage value of the power storage unit 10. Based on V b 1, current value I b 1, internal resistance value Rb 1, etc., determine whether an abnormality has occurred in power storage unit 10
  • Step S 1 0 2 That is, it is determined whether or not power storage unit 10 needs to be electrically disconnected.
  • step S 1 0 2 When abnormality occurs in power storage unit 10 (YES in step S 1 0 2), that is, when power storage unit 10 needs to be electrically disconnected, battery ECU 3 2 Drive relay SMR 1 to OFF state, and power storage unit 10 to power supply system Electrically disconnect from 100 (step S104).
  • the battery ECU 32 sends the abnormality detection signal FAL 1 to the converter ECU 30 (step S106).
  • converter ECU 30 stops the voltage conversion operation in converters 18 and 28 (step S 108), and switches converters 18 and 28 to the conduction mode (step S 1). Ten) . Then, the process is terminated.
  • step S102 battery ECU 32 detects temperature Tb 2, voltage value Vb 2 and current value I of power storage unit 20.
  • b 2 is acquired (step S112).
  • the battery EC U32 calculates the internal resistance value Rb 2 of the power storage unit 20 from the voltage value Vb 2 and the current value I b 2, and then calculates the temperature Tb 2, voltage value Vb 2, current value I of the power storage unit 20.
  • step S 114 it is determined whether or not an abnormality has occurred in power storage unit 20 (step S 114). That is, it is determined whether or not the power storage unit 20 needs to be electrically disconnected.
  • step S 1 14 When an abnormality has occurred in power storage unit 20 (YES in step S 1 14), that is, when power storage unit 20 needs to be electrically disconnected, battery ECU 3 2 sets system relay SMR 2 to The power storage unit 20 is electrically disconnected from the power supply system 100 by driving to the off state (step S 1 16). At the same time, the battery ECU 32 sends the abnormality detection signal FAL 2 to the converter ECU 30 (step S 1 18). C The converter ECU 30 responds to the abnormality detection signal FAL 2 from the battery ECU 32, and the converter is force S Determine if it is operating as a “master” (step S 1 20). Converter 18 If not operating as “master” (NO in step S 1 20), switch converter 18 to voltage control mode (boost) to operate converter 18 as “master” ( Step S122).
  • step S 1 22 After converter 18 has been switched to voltage control mode (boost) (after step S 1 22 has been executed) or when converter 18 is operating as the “master” (in the case of YES in step S 120)
  • the converter ECU 30 switches the converter 28 to the open mode (step S 1 24). And the process is Is terminated.
  • converters 18 and 28 are not connected. Is also set to conduction mode. As a result, electric power is supplied from the power storage unit 20 to the driving force generator through the main positive bus MPL and the main negative bus MN L, and one of the electric power supplied to the main positive bus MPL and the main negative bus MN L. Is supplied to the auxiliary machinery group.
  • converter 18 is set to the voltage control mode (boost).
  • Converter 28 is set to open mode.
  • power is supplied from the power storage unit 10 to the driving force generation unit via the main positive bus MPL and the main negative bus MN L, and the auxiliary machine via the low voltage positive line LPL and the low voltage negative line LNL. Power is supplied to the group. In this way, even if one of power storage units 10 and 20 is electrically disconnected from power supply system 100, power supply to the driving force generation unit and the auxiliary machinery group can be continued.
  • converters 18 and 28 are both converted to power. Since the operation is stopped, the switching loss related to the power supply from the corresponding power storage unit to the main positive bus MPL and the main negative bus MNL can be reduced. Therefore, even if the current value flowing through converter 28 becomes relatively large due to power supply from power storage unit 20 alone, unnecessary loss can be suppressed.
  • Embodiment 1 a power supply system including two power storage units has been described. However, a power supply system including three or more power storage units can be similarly expanded.
  • FIG. 16 is a diagram showing an outline of power supply to the driving force generation unit and the auxiliary machinery group according to the modification of the first embodiment of the present invention.
  • the power supply system according to the modification of the first embodiment typically includes a converter 18 that operates as a “master” and a converter 2 8—1-28 that operates as a “slave”. Including N.
  • power storage units 2 0-1 to 2 0 -N and system relays S MR 2-1 to S MR 2 __N are provided.
  • converter 18 performs boost operation according to the voltage control mode (boost) and converter 2 8 __ 1 to 2 8—N performs boost operation according to the power control mode.
  • the number of power storage units configuring the power supply system is not limited, an appropriate number of power storage units and auxiliary machinery groups are appropriately selected depending on the power capacity of the driving force generation unit and the auxiliary machinery group.
  • a power storage unit can be provided. Therefore, in addition to the effects of the first embodiment of the present invention described above, a power supply system that can flexibly change the power supply capacity can be realized.
  • Embodiment 1 described above when power storage unit 10 is disconnected from power supply system 100, power having a voltage substantially equal to voltage value Vb2 of power storage unit 20 is supplied to the driving force generation unit.
  • the voltage conversion operation in the comparators 18 and 28 may be actively executed so that power having a higher voltage can be supplied.
  • FIG. 17 is an operational state diagram of converters 18 and 28 in the voltage control mode (step-up / step-down) shown in FIGS. 3B and 4B.
  • converter 28 uses main positive bus M PL with the boosting operation so that the voltage value becomes a predetermined voltage target value V c *. , Supply to main negative bus MNL.
  • the converter 18 uses a positive line PL with a step-down operation such that a part of the power flowing through the main positive bus MP L and the main negative bus MN L becomes a predetermined voltage target value V b *. 1, Supply to auxiliary machinery group through negative line NL 1.
  • the driving force generation unit can be supplied with electric power having substantially the same voltage value as before the power storage unit 10 is disconnected, and the auxiliary equipment group is close to the voltage value Vb 1 of the power storage unit 10.
  • the power of the target voltage Vb * can be supplied. Therefore, from the viewpoint of the driving force generation unit and the auxiliary machinery group, almost the same operation can be continued regardless of the electrical disconnection of the power storage unit 10.
  • converter ECU 3 OA The control structure of converter ECU 3 OA according to the second embodiment is the same as that of converter ECU CU 30 according to the first embodiment shown in FIG. Is provided. Others are the same as in the first embodiment described above, and thus detailed description will not be repeated.
  • FIG. 18 is a block diagram showing the control structure of the control system (at the time of abnormality) 308 corresponding to FIGS. 3B and 4B.
  • Control system (at the time of abnormality) 308 is activated when an abnormality occurs in power storage unit 10 and power storage unit 10 is electrically disconnected from the power supply system.
  • the control structure of control system (at the time of abnormality) 308 is As a configuration for controlling the barter 18 in accordance with the “voltage control mode (step-down)”, a modulation unit (MOD) 402, 404 and a division unit 450 are included.
  • MOD modulation unit
  • the duty ratio of the first switching command PW C 1 A is fixed to 0%, and the transistor Q 1 A (FIG. 11) of the converter 18 is maintained in the OFF state. Is done.
  • control structure of the control system (at the time of abnormality) 308 includes a modulation unit (MOD) 406, 408, a division unit 452, and a subtraction unit as a configuration for controlling the converter 28 according to the “voltage control mode (boost)”. 454, 458 and PI control unit 456 are included.
  • MOD modulation unit
  • division unit 452 division unit
  • subtraction unit subtraction unit
  • the PI control unit 456 outputs a PI output corresponding to the voltage deviation ⁇ Vc of the bus voltage value Vc with respect to the voltage target value Vc * calculated by the subtraction unit 454, to a predetermined proportional gain Kp3 and integral gain K. Generate according to i 3 and output to subtractor 458. This PI output corresponds to a feedback component for realizing the “voltage control mode (boost)”.
  • the PI control unit 456 includes a proportional element 460, an integral element 462, and an adder 464. Since these parts are the same as those of PI control unit 414 described above, detailed description will not be repeated.
  • the subtractor 458 performs PI control against the theoretical duty ratio from the divider 452.
  • the value obtained by subtracting the PI output from unit 4 5 6 is applied to modulation unit 4 0 8 as a duty ratio command.
  • Modulation section 40 8 generates a first switching command PWC 2 A for driving transistor Q 2 A (FIG. 17) of converter 28 according to the output value from subtraction section 45 8.
  • the power storage unit 10 in response to the occurrence of an abnormality in the power storage unit 10, the power storage unit 10 is connected to the power supply system by switching from the control system (normal time) 3 0 4 to the control system (at the time of abnormality) 3 0 8.
  • the drive force generator and the auxiliary machinery group can be continuously operated even after being electrically disconnected from the vehicle.
  • converter 28 performs a boosting operation and converter 18 performs a lowering operation. Therefore, the electric power discharged from power storage unit 20 is boosted by converter 28 and then supplied to the driving force generation unit, and part of the power boosted by converter 28 is converted to converter 18 After being stepped down, it is supplied to the auxiliary machinery group.
  • the voltage range of the electric power supplied to the driving force generation unit and the auxiliary machinery group is maintained in the same range as before the power storage unit 10 is electrically disconnected. Therefore, even after the electrical storage unit 10 is electrically disconnected, the operating range (rotational speed range) of the motor generators MG 1 and MG 2 constituting the driving force generation unit can be secured, so that the vehicle's running performance Etc. can be maintained.
  • the power supply system including two power storage units has been described.
  • the power supply system including three or more power storage units can be similarly expanded.
  • Figure 1 9 is a diagram showing an outline of a power supply to the drive force generation unit and the auxiliary unit group according to the modification of the second embodiment of the present invention ⁇
  • the power supply system according to the modification of the second embodiment is similar to the power supply system according to the modification of the first embodiment shown in FIG.
  • converters 2 8-1 to 2 8-N operating as “slave”.
  • power storage units 2 0-1 to 2 0 -N and system relays S MR 2-1 to S MR 2 -N are provided.
  • converter 18 performs a voltage conversion operation according to the voltage control mode (boost) and converter 2 8— 1 ⁇ 2 8-N performs voltage conversion operation according to the power control mode.
  • boost voltage control mode
  • comparator 18 is switched to “voltage control mode (step-down)” and converters 2 8-1 to 2 8-N At least one of them is switched to “voltage control mode (boost)”. This is to make it possible to control the bus voltage value V c supplied to the driving force generator, and any one converter performs a power conversion operation according to the “voltage control mode (boost)”.
  • V c The voltage value V c is stabilized. It is possible to set all of converters 2 8-1 to 2 8-N to “voltage control mode (boost)”, but from the viewpoint of power management of the entire power supply system, It is desirable to increase the number of converters that are maintained.
  • boost voltage control mode
  • the number of power storage units constituting the power supply system is not limited, an appropriate number of power storage units and auxiliary machinery groups are appropriately selected depending on the power capacity of the driving force generation unit and the auxiliary machinery group.
  • a power storage unit can be provided. Therefore, in addition to the effects of the second embodiment of the present invention described above, a power supply system that can flexibly change the power supply capacity can be realized.
  • Embodiments 1 and 2 of the present invention and modifications thereof when power storage unit 10 or 20 is in an abnormal state, the power storage unit in the abnormal state is electrically connected from the power supply system.
  • the force is not limited to this.
  • a vehicle equipped with a power supply system according to the present invention may be E
  • the storage unit is selected one by one from the plurality of storage units, and the selected storage unit is discharged to its limit. It is necessary to disconnect the power storage unit that has been discharged to the power supply system.
  • the power supply system according to the present invention can also be applied to such usage modes.
  • the configuration using the driving force generation unit and the catcher group as an example of the first and second load devices has been described. It is not limited to.
  • the power supply system according to the present invention can be applied to a device having two types of load devices that consume power in addition to being mounted on a vehicle.

Abstract

 蓄電部(10)および(20)がいずれも正常であれば、システムリレー(SMR1)および(SMR2)がオン状態に維持される。コンバータ(18)は、電圧制御モード(昇圧)に従って電圧変換動作を行ない、コンバータ(28)は、電力制御モードに従って昇圧動作を行う。蓄電部(10)に何らかの異常が発生してシステムリレー(SMR1)がオフ状態に駆動されると、コンバータ(18)および(28)は、電圧変換動作を停止するとともに、それぞれ蓄電部(10)および(20)と主正母線(MPL),主負母線(MNL)との間を電気的な導通状態に維持する。

Description

明細書 電源システムおよびそれを備える車両、 ならびにその制御方法 技術分野
この発明は、 複数の蓄電部を有する電源システムおよびそれを備える車両、 な らぴにその制御方法に関し、 特に蓄電部を電源システムから切離したときの制御 技術に関する。 背景技術
近年、 環境問題を考慮して、 エンジンとモータとを効率的に組み合わせて走行 するハイプリッド車両が実用化されている。 このようなハイプリッド車両は、 充 放電可能な蓄電部を搭載し、 発進時や加速時などにモータへ電力を供給して駆動 力を発生する一方で、 下り坂や制動時などに車両の運動エネルギーを電力として 回収する。 そのため、 ハイブ.リツド車両に搭載される蓄電部には、 入出力電力お よび充放電容量の大きなニッケル水素電池やリチウムイオン電池などが採用され ている。
このようなハイプリッド車両に対して、 商用電源などの外部電源を用いて蓄電 部を充電可能なプラグイン (plug- in) と呼ばれる構成が提案されている。 この プラグイン方式は、 通勤や買い物などの比較的短距離の走行に対して、 エンジン を停止状態に保つたまま、 外部電源から予め蓄電部に蓄えておいた電力を用いて 走行することで、 総合的な燃料消費効率をより高めることを目的とするものであ る。
蓄電部からの電力のみを用いた走行モード、 いわゆる E V ( Electric Vehicle) 走行モードでは、 電力を定常的に出力する必要があるので、 プラグィ ン方式に使用される蓄電部には、 通常のハイプリッド車両に搭載される蓄電部に 比較して、 より大きな充放電容量が要求される一方で、 入出力電力は相対的に小 さくてもよレヽ。
このように、 プラグイン方式のハイブリッド車両では、 異なる性能をもつ蓄電 部が必要となる。 そこで、 充放電特性の異なる複数の蓄電部を搭載する構成が望 ましい。 複数の蓄電部を搭载する構成としては、 たとえば、 米国特許第 6 , 6 0 8 , 3 9 6号明細書には、 高電圧車両牽引システムに所望の直流高電圧レベルを 提供する電動モータ電源管理システムが開示されている。 この電動モータ電源管 理システムは、 それぞれが電池とブースト Zバック直流 ·直流コンバータとを有 しかつ並列に接続された、 少なくとも 1つのインバータに直流電力を提供する複 数の電源ステージと、 複数の電源ステージの電池を均等に充放電させて複数の電 源ステージが少なくとも 1つのインバータへの電池電圧を維持するように複数の 電源ステージを制御するコントローラとを含む。
一般的に、 蓄電部には比較的大量の電気エネルギーが蓄えられるので、 安全上 の観点から、 蓄電部の状態値に基づいて異常状態が常時監視される。 たとえば、 蓄電部の内部抵抗値に基づいて劣化度合いなどが判定される。 そして、 異常状態 であると判定されると、 当該蓄電部をシステムから電気的に切離す必要が生じる。 上述の米国特許第 6 , 6 0 8, 3 9 6号明細書に開示される電動モータ電源管 理システムでは、 電池 (蓄電部) に異常が発生した場合について何らの考慮もな されておらず、 異常が発生した蓄電部を電気的に切離す構成も開示されていない。 そのため、 複数の蓄電部のうちいずれか 1つでも異常が発生すると、 システム全 体を停止せざるを得ないという問題があった。 発明の開示
この発明は、 このような問題点を解決するためになされたものであって、 その 目的は、 複数の蓄電部のうち一部の蓄電部が何らかの理由によって電気的に切離 されたときであっても、 負荷装置への電力供給を継続可能な電源システムおよび それを備える車両、 ならびにその制御方法を提供することである。
この発明のある局面に従えば、 第 1および第 2の負荷装置へ電力を供給するた めの電源システムを提供する。 電源システムは、 第 1の負荷装置と電気的に接続 された第 1の電力線対と、 充放電可能な複数の蓄電部と、 複数の蓄電部にそれぞ れ対応付けられた複数の電圧変換部とを含む。 複数の電圧変換部は、 第 1の電力 線対に対して並列接続され、 かつ各々が第 1の電力線対と対応の蓄電部との間で 電圧変換動作を行なうように構成される。 電源システムは、 複数の蓄電部にそれ ぞれ対応付けられ、 かつ各々が対応の蓄電部と対応の電圧変換部との間を電気的 に切離すための複数の切離部と、 一端が複数の電圧変換部のうちの 1つである第 1の電圧変換部と対応の切離部との間に電気的に接続され、 他端が第 2の負荷装 置に電気的に接続された第 2の電力線対と、 制御部とをさらに含む。 制御部は、 複数の切離部のいずれか 1つの切離部によって対応の蓄電部と対応の電圧変換部 との間が電気的に切離された場合に、 残余の蓄電部からの電力を用いて、 第 1の 電力線対を介して第 1の負荷装置への電力供給を継続するとともに、 第 2の電力 線対を介して第 2の負荷装置への電力供給を継続するように、 複数の電圧変換部 を制御する。
好ましくは、 電源システムは、 複数の蓄電部の各々についての異常状態を検出 する異常検出部をさらに含む。 複数の切離部の各々は、 異常検出部による対応の 蓄電部における異常状態の検出に応答して、 対応の蓄電部と対応の電圧変換部と の間を電気的に切離すように構成される。
好ましくは、 異常検出部は、 対応の蓄電部の温度、 電圧値、 電流値および内部 抵抗値の少なくとも 1つに基づいて、 複数の蓄電部の各々についての異常状態を 検出する。
好ましくは、 制御部は、 第 1の電圧変換部と対応の蓄電部との間が対応の切離 部によって電気的に切離されたときに、 残余の蓄電部からの電力が第 1の電力線 対を介して第 1の負荷装置へ供給されるように残余の蓄電部にそれぞれ対応する 電圧変換部を制御するとともに、 第 1の電力線対から第 2の電力線対を介して第 2の負荷装置へ電力が供給されるように第 1の電圧変換部を制御する。
さらに好ましくは、 制御部は、 複数の電圧変換部の各々について、 第 1の電力 線対と対応の蓄電部との間での電力変換動作を停止した上で両者を電気的に導通 状態にする。
さらに好ましくは、 複数の電圧変換部の各々は、 インダクタと直列接続された 上で、 第 1の電力線対の一方の電力線と対応の蓄電部の一方極との間に配置され、 両者を電気的に断続可能なスィツチング素子と、 第 1の電力線対の他方の電力線 と対応の蓄電部の他方極とを電気的に接続するための配線とを含む。 制御部は、 複数の電圧変換部の各々について、 スィツチング素子をオン状態にすることで導 通状態に維持する。 '
また好ましくは、 制御部は、 対応の蓄電部からの電力が昇圧動作を伴って第 1 の電力線対へ供給されるように第 1の電圧変換部を除く残余の電圧変換部を制御 するとともに、 第 1の電力線対からの電力が降圧動作を伴って第 2の負荷装置へ 供給されるように第 1の電圧変換部を制御する。
さらに好ましくは、 制御部は、 第 2の負荷装置へ供給される降圧後の電圧値を 所定の目標値とするための第 1の制御モードに従って、 第 1の電圧変換部を制御 する。
さらに好ましくは、 制御部は、 第 1の電力線対へ供給される昇圧後の電圧値を 所定の目標値とするための第 2の制御モードに従って、 残余の電圧変換部の少な くとも 1つを制御する。
さらに好ましくは、 第 1の電圧変換部と対応の蓄電部との間が電気的に接続さ れた状態において、 第 1の電圧変換部は、 第 2の制御モードに設定されて電圧変 換動作を実行するとともに、 残余の電圧変換部の各々は、 第 1の電力線対と対応 の蓄電部との間で授受される電力値を所定の目標値とするための第 3の制御モー ドに設定されて電圧変換動作を実行する。 制御部は、 対応の切離部による第 1の 電圧変換部と対応の蓄電部との間の電気的な切離しに応答して、 残余の電圧変換 部の少なくとも 1つおよび第 1の電圧変換部についての制御モードを切替える。 この発明の別の局面に従えば、 上述の電源システムと、 第 1の負荷装置として 走行用の駆動力を発生するための駆動力発生部とを含む車両を提供する。
好ましくは、 車両は、 第 2の負荷装置として車両用の補機群をさらに含む。 この発明のさらに別の局面に従えば、 第 1および第 2の負荷装置へ電力を供給 するための電源システムの制御方法を提供する。 電源システムは、 第 1の負荷装 置と電気的に接続された第 1の電力線対と、 充放電可能な複数の蓄電部と、 複数 の蓄電部にそれぞれ対応付けられた複数の電圧変換部とを含む。 複数の電圧変換 部は、 第 1の電力線対に対して並列接続され、 かつ各々が対応の蓄電部と第 1の 電力線対との間で電圧変換動作を行なうように構成される。 電源システムは、 複 数の蓄電部にそれぞれ対応付けられ、 かつ各々が対応の蓄電部と対応の電圧変換 部との間を電気的に切離すための複数の切離部と、 一端が複数の電圧変換部のう ちの 1つである第 1の電圧変換部と対応の切離部との間に電気的に接続され、 他 端が第 2の負荷装置に電気的に接続された第 2の電力線対とをさらに含む。 制御 方法は、 複数の蓄電部の各々についての異常状態の有無を検出するステップと、 複数の蓄電部のいずれか 1つの蓄電部について異常状態を検出した場合に、 当該 異常状態が検出された蓄電部と対応の電圧変換部との間を対応の切離部によって 電気的に切離すステップと、 切離された蓄電部を除く残余の蓄電部からの電力を 用いて、 第 1の電力線対を介して第 1の負荷装置への電力供給を継続するととも に、 第 2の電力線対を介して第 2の負荷装置への電力供給を継続するように複数 の電圧変換部を制御するステップとを含む。
この発明によれば、 複数の蓄電部のうち一部の蓄電部が何らかの理由によって 電気的に切離されたときであっても、 負荷装置への電力供給を継続可能な電源シ ステムおよびそれを備える車両、 ならびにその制御方法を実現できる。 図面の簡単な説明
図 1は、 本発明の実施の形態 1に従う電¾§システムを備える車両の要部を示す 概略構成図である。
図 2は、 本発明の実施の形態 1に従うコンバータの概略構成図である。
図 3 A, 3 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群への 電力供給の概要 (ケース 1 ) を示す図である。
図 4 A, 4 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群への 電力供給の概要 (ケース 2 ) を示す図である。
図 5 A, 5 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群への 電力供給の概要 (ケース 3 ) を示す図である。
図 6 A, 6 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群への 電力供給の概要 (ケース 4 ) を示す図である。
図 7は、 図 3 Bおよび図 4 Bに示す導通モードにおけるコンバータの作動状態 図である。
図 8は、 蓄電部の異常状態を検出するための電池 E C Uにおける制御構造を示 すブロック図である。
図 9は、 蓄電部の異常状態を検出するための電池 E C Uにおける制御構造を示 すブロック図である。
図 1 0は、 コンバータ E C Uにおけるスィツチング指令の生成に係る制御構造 を示すブロック図である。
図 1 1は、 図 3 Aおよび図 5 Aに対応する制御系 (通常時) の制御構造を示す ブロック図である。
図 1 2は、 図 4 Aおよび図 6 Aに対応する制御系 (通常時) の制御構造を示す ブロック図である。
図 1 3は、 図 3 Bおよび図 4 Bに対応する制御系 (異常時) の制御構造を示す プロック図である。
図 1 4は、 図 5 Bおよび図 6 Bに対応する制御系 (異常時) の制御構造を示す ブロック図である。
図 1 5は、 本発明の実施の形態 1に従う電源システムの制御方法に係るフロー チャートである。
図 1 6は、 本発明の実施の形態 1の変形例に従う駆動力発生部および補機群へ の電力供給の概要を示す図である。
図 1 7は、 図 3 Bおよび図 4 Bに示す電圧制御モード (昇圧/降圧) における コンバータの作動状態図である。
図 1 8は、 図 3 Bおよび図 4 Bに対応する制御系 (異常時) の制御構造を示す ブロック図である。
図 1 9は、 本発明の実施の形態 2の変形例に従う駆動力発生部および補機群へ の電力供給の概要を示す図である。 発明を実施するための最良の形態
本発明の実施の形態について、 図面を参照しながら詳細に説明する。 なお、 図 中の同一または相当部分については、 同一符号を付してその説明は繰返さない。
[実施の形態 1 ]
(車両の構成) 図 1は、 本発明の実施の形態 1に従う電源システム 100を備える車両 1の要 部を示す概略構成図である。
図 1を参照して、 車両 1は、 電源システム 100と、 第 1インバータ (I NV 1 ) 40, 第 2インバータ (I NV2) 42, 第 3インバータ (I NV3) 44 と、 モータジェネレータ (M/G) MG1, MG2と、 駆動 ECU (Electronic Control Unit) 50と、 エアコン装置 70と、 低圧補機類 82と、 降圧コンバー タ 80と、 副蓄電部 S Bとを含む。
本実施の形態 1においては、 複数の蓄電部を備える電源システムの一例として、 2つの蓄電部 10, 20を含む電源システム 100について説明する。
インバータ 40, 42と、 モータジェネレータ MG 1 , MG2と、 駆動 ECU 50とは、 車両 1の走行用の駆動力を発生するための 「駆動力発生部」 を構成す る。 本明細書では、 この 「駆動力発生部」 を 「第 1の負荷装置」 とする場合につ いて例示する。 すなわち、 車両 1は、 電源システム 100から駆動力発生部へ供 給される電力により生じる駆動力を、 車輪 (図示せず) に伝達することで走行す る。
また、 エアコン装置 70と、 低圧補機類 82と、 降圧コンバータ 80と、 副蓄 電部 SBとは、 車両用の 「補機群」 を構成する。 本明細書では、 この 「補機群」 を 「第 2の負荷装置」 とする場合について例示する。
本明細書では、 いずれかの 「蓄電部」 が電源システムから電気的に切離された としても、 「第 1の負荷装置」 に相当する 「駆動力発生部」 に加えて、 「補機 群」 に対しても電力供給を継続可能な構成について例示する。 「蓄電部」 を電気 的に切離す必要が生じるのはさまざまな状況が想定されるが、 本実施の形態 1お よび 2ならびにそれらの変形例では、 当該蓄電部が異常状態になったことによつ て、 当該蓄電部を電源システムから電気的に切離す必要があると判断する場合を 例示する。
(駆動力発生部の構成)
インバータ 40, 42は、 第 1の電力線対である主正母線 MP Lおよび主負母 茅泉 MNLに並列接続され、 それぞれ電源システム 100との間で電力の授受を行 なう。 すなわち、 インバータ 40, 42は、 主正母線 MP Lおよび主負母線 MN Lを介して供給される電力 (直流電力) ·を交流電力に変換してそれぞれモータジ エネレータ MG 1 , MG 2へ供給する一方、 モータジェネレータ MG 1, MG 2 がそれぞれ発生する交流電力を直流電力に変換して回生電力として電源システム 1 0 0へ返還する。 一例として、 インバータ 4 0, 4 2は、 三相分のスィッチン グ素子を含むプリッジ回路で構成され、 それぞれ駆動 E C U 5 0から受けたスィ ツチング指令 P WM 1 , P WM 2に応じて、 スイッチング (回路開閉) 動作を行 なうことで、 電力変換を実現する。
モータジェネレータ MG 1 , MG 2は、 それぞれインバータ 4 0 , 4 2から供 給される交流電力を受けて回転駆動力を発生可能であるとともに、 外部からの回 転駆動力を受けて発電可能に構成される。 一例として、 モータジェネレータ MG 1, MG 2は、 永久磁石が埋設されたロータを有する三相交流回転電機である。 そして、 モータジェネレータ MG 1, MG 2は、 それぞれ動力伝達機構 4 6を介 して図示しないエンジンと機械的に接続される。
エンジンおよびモータジェネレータ MG 1, MG 2がそれぞれ発生する駆動力 が最適な比率となるように、 駆動 E C U 5 0において演算処理が実行される。 よ り詳細には、 駆動 E C U 5 0は、 予め格納されたプログラムを実行することで、 図示しない各センサから送信された信号、 走行状況、 アクセル開度の変化率、 お よび格納しているマツプなどに基づいて、 ェンジンぉよびモータジェネレータ]^ G 1 , MG 2で発生させるべき駆動力を決定する。 なお、 モータジヱネレータ M G 1をもっぱら発電機として機能させ、 モータジェネレータ MG 2をもっぱら電 動機として機能させることもできる。
(補機群の構成)
エアコン装置 7 0は、 車室内を主として空調するための装置であり、 第 2の電 源線対である低圧正線 L P Lおよび低圧負線 L N Lに接続されたィンバータ 7 2 と、 インバータ 7 2によって駆動されるコンプレッサ 7 4とを含む。 インバータ 7 2は、 電源システム 1 0 0から供給される直流電力を交流電力に変換してコン プレッサ 7 4へ供給する。 コンプレッサ 7 4は、 冷媒 (たとえば、 フロン類) に 対して圧縮および膨張を操返す冷凍サイクル (図示しない) を実行することで、 気化熱を生じさせて空調を実現するための装置であり、 インバータ 7 2から供給 される交流電力によって発生する回転駆動力を用いて冷媒を圧縮する。
低圧補機類 8 2は、 電源システム 1 0 0から供給される電力の電圧値 (例えば、 2 8 8 V) に比較して低圧 (例えば、 1 2 Vもしくは 2 4 V) で作動する捕機類 の総称であり、 一例として、 カーナビゲーシヨンシステム、 カーオーディオ、 車 内灯、 車内インジケータなどを含む。 そして、 低圧補機類 8 2は、 降圧コンパ一 タ 8 0もしくは副蓄電部 S Bから供給される低圧の直流電力によって作動する。 降圧コンバータ 8 0は、 電源システム 1 0 0からの供給電力を降圧するための 装置であり、 低圧正線 L P Lおよび低圧負線 L N Lに接続され、 降圧後の直流電 力を低圧補機類 8 2および副蓄電部 S Bへ供給する。 一例として、 降圧コンパ一 タ 8 0は、 直流電力を交流電力に変換した上で卷線変圧器 (トランス) を用いて 電圧変換を行ない、 電圧変換後の交流電力を直流電力に再変換する、 いわゆる 「トランス」 型の回路で構成される。
副蓄電部 S Bは、 一例として鉛蓄電池などからなり、 降圧コンバータ 8 0の出 力側に接続され、 出力される直流電力で充電される一方、 低圧補機類 8 2へその 充電電力を供給する。 すなわち、 副蓄電部 S Bは、 降圧コンバータ 8 0からの出 力電力と、 低圧補機類 8 2での需要電力とのアンバランスを補うための電力バッ ファとしても機能する。
(プラグイン構成)
さらに、 本実施の形態 1においては、 インバータ 4 4が、 主正母線 M P Lおよ び主負母線 MN Lに対してインバータ 4 0, 4 2と並列に接続される。 インバー タ 4 4は、 車両外部からの外部電力を用いて電源システム 1 0 0に含まれる蓄電 部 1 0, 2 0を充電するための充電装置である。 具体的には、 インバータ 4 4は、 充電コネクタ 6 0および供給線 A C Lを介して、 車両外部の住宅などからの商用 電源 (ともに図示せず) と電気的に接続され、 外部電源からの電力を受入可能に 構成される。 そして、 インバ一タ 4 4は、 外部電源からの電力を電源システム 1 0 0へ供給するための直流電力に変換する。 一例として、 インバータ 4 4は、 車 両外部の住宅 (図示せず) 内で使用される商用電源の給電形態に対応させて、 代 表的に単相ィンバータで構成される。
なお、 プラグイン構成は、 図 1に示す構成に限られものではなく、 モータジェ ネレータ MG 1および MG 2の中性点を介して外部電源と電気的に接続するよう に構成してもよい。
(電源システムの構成)
電源システム 100は、 平滑コンデンサ Cと、 蓄電部 10, 20と、 コンバー タ (CONV) 18, 28と、 温度検出部 1 2, 22と、 電圧検出部 14, 24, 52と、 電流検出部 16, 26, 54と、 システムリ レー SMR 1, SMR2と、 電池 ECU 32と、 コンバータ ECU 30とを備える。
平滑コンデンサ Cは、 主正母線 MP Lと主負母線 MNLとの間に接続され、 電 源システム 100と駆動力発生部との間で授受される電力に含まれる変動成分を 低減する。
電圧検出部 52は、 主正母線 MP Lと主負母線 MN Lとの線間に接続され、 電 源システム 100と駆動力発生部との間で授受される電力の電圧値である、 母線 電圧値 Vcを検出し、 その検出結果をコンバータ ECU 30へ出力する。 また、 電流検出部 54は、 主正母線 MP Lに介揷され、 電源システム 100と駆動力発 生部との間で授受される電力の電流値である母線電流値 I cを検出し、 その検出 結果をコンバータ ECU 30へ出力する。
蓄電部 10, 20は、 充放電可能な直流電力の貯蔵要素であり、 一例として、 ニッケル水素電池やリチウムイオン電池などの二次電池、 もしくは電気二重層キ ャパシタからなる。
コンバータ 18および 28は、 主正母/線 M P L , 主負母/線 MN Lに対して並列 接続されるとともに、 それぞれ対応する蓄電部 10および 20と主正母線 MP L, 主負母線 MN Lとの間で電力変換動作を行なうように構成された電圧変換部であ る。 具体的には、 コンバータ 18および 28は、 それぞれ対応する蓄電部 10お よび 20からの放電電力を所定電圧に昇圧して駆動力発生部へ供給可能である一 方、 駆動力発生部から供給される回生電力を所定電圧に降圧してそれぞれ対応す る蓄電部 10および 20へ供給可能である。 一例として、 コンバータ 18, 28 は、 いずれも 「チヨッパ」 型の回路で構成される。
温度検出部 1 2, 22は、 それぞれ蓄電部 10, 20を構成する電池セルなど に近接して配置され、 蓄電部 10, 20の温度 Tb l, Tb 2を検出し、 その検 出結果を電池 ECU 32へ出力する。 なお、 温度検出部 12, 22は、 それぞれ 蓄電部 10, 20を構成する複数の電池セルに対応付けて配置された複数の検出 素子による検出値から得られる代表値を出力するように構成してもよい。
電圧検出部 14は、 蓄電部 10とコンバータ 18とを電気的に接続する正線 P L 1および負線 N L 1の線間に接続され、 蓄電部 10の入出力に係る電圧値 V b 1を検出し、 その検出結果を電池 ECU 32およびコンバータ ECU 30へ出力 する。 同様に、 電圧検出部 24は、 蓄電部 20とコンバータ 28とを電気的に接 続する正線 P L 2およぴ負線 N L 2の線間に接続され、 蓄電部 20の入出力に係 る電圧値 Vb 2を検出し、 その検出結果を電池 ECU 32およびコンバータ EC U 30へ出力する。
電流検出部 16, 26は、 それぞれ蓄電部 10, 20とコンバータ 18, 28 とを接続する正線 PL 1, P L 2に介装され、 それぞれ対応する蓄電部 10, 2 0の充放電に係る電流値 I b 1 , I b 2を検出し、 その検出結果を電池 E CU 3 2およびコンバータ ECU 30へ出力する。
システムリレー S MR 1は、 蓄電部 10とコンバータ 18とを電気的に接続す る正線 P L 1およぴ負線 N L 1に介挿され、 後述する電池 E C U 32からのシス テムオン指令 SON 1に応答して、 蓄電部 10とコンバータ 18との間を電気的 に接続もしくは遮断する。 なお、 以下の説明では、 電気的な接続状態を 「オン」 状態とも称し、 電気的な遮断状態を 「オフ」 状態とも称す。
さらに、 低圧正線 LP Lおよび低圧負線 LNLは、 システムリレー SMR 1と コンバータ 18との間の位置において、 それぞれ正線 P L 1および負線 NL 1に 接続される。 これにより、 正線 P L 1および負線 NL 1を流れる電力の一部を車 両用の補機群に供給可能である。 そして、 システムリレー SMR 1が遮断状態に あれば、 蓄電部 10は、 駆動力発生部および補機群から電気的に切離される。 同様に、 システムリ レー SMR 2は、 蓄電部 20とコンバータ 28とを電気的 に接続する正線 P L 2および負線 N L 2に介揷され、 後述する電池 E C U 32か らのシステムオン指令 SON 2に応答して、 蓄電部 20とコンバータ 28との間 を電気的に接続もしくは遮断する。
このように、 本実施の形態 1では、 システムリ レー S MR 1, SMR 2力 「複 数の切離部」 に相当する。
電池 E C U 32は、 蓄電部 10, 20を監視制御する装置であり、 制御線 L N K1を介して接続されたコンバータ ECU 30と連係して、 蓄電部 10, 20の 充電状態 ( S O C : State Of Charge;以下、 「 S〇 C」 とも称す) を所定範囲 に維持する。 具体的には、 電池 ECU32は、 温度検出部 12, 22からの温度 T b 1, T b 2と、 電圧検出部 14, 24からの電圧値 V b 1, V b 2と、 電流 検出部 16, 26からの電流値 l b 1, I b 2に基づいて、 蓄電部 10, 20の SOCをそれぞれ算出する。 そして、 電池 ECU32は、 算出したそれぞれの S OC、 および当該 SO Cに依存して決定される許容電力 (充電許容電力および放 電許容電力) をコンバータ ECU 30へ送出する。
さらに、 電池 ECU 32は、 蓄電部: L 0, 20の温度 Tb l, T b 2、 電圧値 Vb 1 , Vb 2、 電流値 I b 1, l b 2および内部抵抗値などに基づいて、 蓄電 部 10, 20の各々についての異常状態を検出する。 そして、 蓄電部 10, 20 がいずれも正常であれば、 電池 ECU 32は運転者の操作によるイダニッシヨン オン指令 (図示しない) に応答して、 それぞれシステムオン指令 SON 1, SO N 2を活性化し、 システムリレー SMR 1, SMR 2をオン状態に駆動する。 一 方、 蓄電部 10および 20のいずれかで異常が発生していれば、 電池 ECU 32 は電気的な切離しが必要であると判断し、 対応するシステムオン指令 SON 1, SON 2を非活性化し、 対応する蓄電部 10, 20を電源システム 100から電 気的に切離す。
コンバータ ECU 30は、 制御線 LNK1を介して接続された電池 ECU 32 および制御線 L N K 2を介して接続された駆動 ECU50と連係して、 駆動力発 生部が要求する電力値を蓄電部 10および 20が所定の比率で分担できるように、 それぞれコンバータ 18, 28における電力変換動作を制御する。 具体的には、 コンバータ ECU 30は、 コンバータ 18, 28のそれぞれについて、 後述する 複数の制御モードのうち予め選択される制御モードに従うスィツチング指令 PW C 1 , PWC 2を実現する。
特に、 本実施の形態 1に従う電源システム 100においては、 蓄電部 10, 2 0のいずれも正常であるときには、 コンバータ 18および 28のうちいずれか一 方が 「マスター」 として作動するとともに、 他方が 「スレーブ」 として作動する。
「マスター」 として作動するコンバータは、 電¾§システム 1 0 0から駆動力発生 部へ供給される電力の電圧値 (主正母線 M P Lと主負母線 MN Lとの間の母線電 圧値 V c ) を所定の電圧目標値とするための 「電圧制御モード (昇圧) 」 に従つ て制御される。 一方、 「スレーブ」 として作動するコンバータは、 電源システム 1 0 0から駆動力発生部へ供給される電力のうち、 対応の蓄電部が分担する電力 (当該蓄電部と主正母線 M P L , 主負母線 MN Lとの間で授受される電力) を所 定の電力目標値とするための 「電力制御モード」 に従って制御される。 この際、 蓄電部 1 0から放電された電力の一部が補機群へ供給される。
ここで、 蓄電部 1 0に異常が発生して電源システム 1 0 0から電気的に切離さ れたときには、 コンバータ 2 8は、 蓄電部 2 0から駆動力発生部への電力供給が 継続されるように電圧変換動作を継続する一方、 コンバータ 1 8は、 主正母線 M P L , 主負母線 MN Lに流れる電力の一部が補機群へ供給されるように電圧変換 動作を行なう。 この場合には、 蓄電部 2 0に対応するコンバータ 2 8が 「マスタ 一」 として作動する必要がある。 そのため、 蓄電部 1 0が電気的に切離される直 前において、 コンバータ 2 8が 「スレーブ」 として作動していれば、 蓄電部 1 0 が電気的に切離されるのと同時にコンバータ 2 8は 「マスター」 として作動する ようにモード切替えが行なわれる。
これに対して、 蓄電部 2 0に異常が発生して電源システム 1 0 0から電気的に 切離されたときには、 コンバータ 1 8は、 蓄電部 1 0から駆動力発生部および補 機群への電力供給が継続されるように電圧変換動作を行なう一方、 コンバータ 2 8は、 電圧変換動作を停止する。 この場合には、 蓄電部 1 0に対応するコンパ一 タ 1 8が 「マスター」 として作動する必要がある。 そのため、 蓄電部 2 0が電気 的に切離される直前において、 コンバータ 1 8力 S 「スレーブ」 として作動してい れば、 蓄電部 2 0が電気的に切離されるのと同時にコンバータ 1 8は 「マスタ 一」 として作動するようにモード切替えが行なわれる。
以上のように、 本実施の形態では、 蓄電部 1◦および 2 0のいずれか一方に異 常が発生した場合であっても、 駆動力発生部および補機群への電力供給の継続が 可能である。 本実施の形態においては、 コンバータ ECU30が 「制御部」 に対応し、 電池 ECU32が 「異常検出部」 に対応する。
(コンバータの構成)
図 2を参照して、 本発明の実施の形態 1に従うコンバータ 18は、 コンバ一タ ECU 30 (図 1) からのスイッチング指令 PWC 1に応じて、 蓄電部 10の放 電時には蓄電部 10から供給される直流電力を昇圧する一方、 蓄電部 10に対す る充電時には主正母線 MP L, 主負母線 MNLから供給される直流電力を降圧す る。 そして、 コンバータ 18は、 スイッチング素子であるトランジスタ Q 1A, Q 1 Bと、 ィンダクタ L 1と、 配線 L N C 1と、 ダイオード D 1 A, D 1 Bと、 平滑コンデンサ C 1とからなる。
トランジスタ Q1 Bは、 インダクタ L 1と直列接続されて、 正線 PL 1 (蓄電 部 10の正極側) と主正母線 MP Lとの間に配置される。 なお、 トランジスタ Q 1 Bのコレクタは正母線 MP Lに接続される。 そして、 トランジスタ Q 1 Bは、 スィツチング指令 PWC 1に含まれる第 2スィツチング指令 PWC 1 Bに応答し て、 正線 P L 1と主正母線 MP Lとの間を電気的に接続もしくは遮断する。 配線 L N C 1は、 負線 N L 1 (蓄電部 10の負極側) と主負母線 MN Lとを電気的に 接続する。 トランジスタ Q 1 Bとインダクタ L 1との接続点と、 配線 L N C 1と の間に、 トランジスタ Q 1 Aがさらに接続される。 なお、 トランジスタ Q 1Aの ェミッタが配線 LNC 1に接続される。 そして、 トランジスタ Q l Aは、 スイツ チング指令 PWC 1に含まれる第 1スィツチング指令 PWC 1 Aに応答して、 正 線 P L 1と負線 NL 1との間を電気的に接続もしくは遮断する。
さらに、 トランジスタ Q 1A, Q 1 Bのコレクタ一ェミッタ間には、 それぞれ のェミッタ側からコレクタ側への電流を許容するダイォード D 1 A, D 1 Bが接 続されている。 また、 平滑コンデンサ C 1は、 正線 PL 1と負線 NL 1 (もしく は、 配線 L N C 1 ) との間に接続され、 蓄電部 10とコンバータ 18との間で授 受される電力に含まれる交流成分を低減する。 さらに、 システムリレー SMR 1
(図 1) がオフ状態からオン状態に遷移して、 蓄電部 10とコンバータ 18との 間が電気的に接続されると、 平滑コンデンサ C 1が蓄電部 10の電圧値と略一致 するまで充電される。 これにより、 平滑コンデンサ C 1は、 システムリレー SM R 1 (図 1) がオン状態に遷移した瞬間に生じる突入電流によるトランジスタ Q 1 A, Q 1 Bやダイオード D 1 A, D 1 Bなどの破損を防止する効果も奏する。 以下、 コンバータ 18の電圧変換動作 (昇圧動作および降圧動作) について説 明する。
昇圧動作時において、 コンバータ ECU 30 (図 1) は、 トランジスタ Q 1 B をオン状態に維持 (デューティー比 = 100%) し、 かつ、 トランジスタ Q1A を 100%より低い所定のデューティー比でオン/オフさせる。 以下では、 デュ 一ティー比を 「Du t y」 とも記す。
トランジスタ Q 1 Aがオン状態 (導通状態) では、 蓄電部 10の正極側から主 正母線 M P Lへの第 1電流経路と、 蓄電部 10の正極側からインダクタ L 1を介 して負極側へ戻る第 2電流経路が形成される。 このとき、 第 2電流経路を流れる ポンプ電流は、 ィンダクタ L 1に電磁エネルギーとして蓄積される。 続いて、 ト ランジスタ Q 1 Aがオン状態からオフ状態 (非導通状態) に遷移すると、 第 2電 流経路が開放されるため、 ポンプ電流が遮断される。 このとき、 インダクタ L 1 は、 自身を流れる電流値を維持しょうとするため、 蓄積した電磁エネルギーを放 出する。 この放出された電磁エネルギーは、 コンバータ 18から主正母線 MP L へ出力される電流に重畳される。 その結果、 蓄電部 10から供給される電力は、 ィンダクタ L 1で蓄積される電磁エネルギーに相当する電圧値だけ昇圧されて出 力される。
一方、 降圧動作時において、 コンバータ ECU 30 (図 1) は、 トランジスタ Q 1 Bを所定のデューティー比でオン/オフさせ、 かつ、 トランジスタ Q l Aを オフ状態に維持 (Du t y = 0 %) する。
トランジスタ Q 1 Bがオン状態では、 主正母線 MP Lから蓄電部 10の正極側 への電流経路が形成される。 一方、 トランジスタ Q 1 Bがオン状態からオフ状態 (非導通状態) に遷移すると、 その電流経路が開放されるため、 電流は遮断され る。 すなわち、 主正母線 MP Lから蓄電部 10に電力が供給される期間は、 トラ ンジスタ Q 1 Bがオン状態となる期間だけであるので、 コンバータ 18から蓄電 部 10へ供給される直流電力の平均電圧は、 主正母線 MP Lと主負母線 MNしと の間の電圧値 (母線電圧値 Vc) にデューティー比を乗じた値となる。 コンバータ 2 8についても上述したコンバータ 1 8と同様の構成および動作で あるため、 詳細な説明は繰返さない。
(電力管理の概要)
以下、 図 3 A〜図 6 Bを参照して、 本実施の形態 1に従う駆動力発生部および 補機群への電力供給について説明する。 上述したように、 本実施の形態 1におい ては、 「マスター」 として作動するコンバータを自由に選択できる上に、 蓄電部 1 0および 2 0のいずれかが電源システム 1 0 0から切離されたとしても駆動力 発生部および補機群に電力供給を継続する必要がある。
そこで、 以下の説明では、 「マスター」 として作動するコンバータの別、 およ び電源システム 1 0 0から切離される蓄電部の別に、 以下の 4つのケースに分け て説明する。
( 1 ) コンバータ 1 8が 「マスター」 として作動中に蓄電部 1 0が切離される 口
( 2 ) コンバータ 2 8力 S 「マスター」 として作動中に蓄電部 1 0が切離される α
( 3 ) コンバータ 1 8カ 「マスター」 として作動中に蓄電部 2 0が切離される 口
( 4 ) コンバータ 2 8カ 「マスター」 として作動中に蓄電部 2 0が切離される くケース 1 >
図 3 Α, 図 3 Βは、 本発明の実施の形態 1に従う駆動力発生部および補機群へ の電力供給の概要 (ケース 1 ) を示す図である。 図 3 Αは蓄電部 1 0および 2 0 が正常である場合を示し、 図 3 Bは蓄電部 1 0に異常が発生した場合を示す。 図 3 Aを参照して、 蓄電部 1 0および 2 0がいずれも正常であれば、 システム リ レー S MR 1および S MR 2がオン状態に維持される。 これにより、 蓄電部 1 0からは放電電力 P b 1が放電され、 その一部は補機群へ供給されるとともに、 残部は駆動力発生部へ供給される。 また、 蓄電部 2 0からの放電電力 P b 2は、 すべて駆動力発生部へ供給される。 したがって、 駆動力発生部および補機群へそ れぞれ供給される供給電力 P cおよび P sと、 蓄電部 1 0および 2 0カゝら放電さ れる放電電力 P b 1および P b 2との間には、
放電電力 P b 1 +放電電力 P b 2 =供給電力 P c +供給電力 P s
放電電力 P b 1 >供給電力 P s
の関係が成立する。
ここで、 駆動力発生部へ供給される供給電力 P cの電圧値、 すなわち主正母線 M P Lと主負母線 MN Lとの間の電圧値 (母線電圧値 V c ) を安定化するために、 「マスター」 として作動するコンバータ 1 8は、 電圧制御モード (昇圧) に従つ て電圧変換動作を行なう。 すなわち、 コンバータ 1 8は、 母線電圧値 V cが所定 の電圧目標値 V c *となるように制御される。 一方、 「スレーブ」 として作動す るコンバータ 2 8は、 蓄電部 1 0および 2 0での電力配分 (電力マネジメント) を実現するために、 電力制御モードに従って昇圧動作を行なう。 すなわち、 コン バータ 2 8は、 対応の蓄電部 2 0と主正母線 M P L , 主負母線 MN Lとの間で授 受される電力値を所定の電力目標値 P b 2 *とするように制御される。 これによ り、 蓄電部 2 0からの放電電力 P b 2が任意に調整できるため、 間接的に蓄電部 1 0からの放電電力 P b 1についても制御できる。
なお、 低圧正線 L P Lおよび低圧負線 L N Lを介して補機群へ供給される供給 電力 P sの電圧値は、 蓄電部 1 0の S O Cなどに応じて変動することになるが、 エアコン装置 7 0に含まれるインバータ 7 2 (図 1 ) や、 降圧コンバータ 8 0は、 電圧調整機能を有しているため、 蓄電部 1 0で所定の電圧変動があっても補機群 を正常に作動させることができる。
ここで、 蓄電部 1 0に何らかの異常が発生すると、 図 3 Bに示すようにシステ ムリ レー S MR 1がオフ状態に駆動され、 蓄電部 1 0が電源システム 1 0 0から 電気的に切離される。 蓄電部 1 0が電気的に切離されると、 蓄電部 1 0から補機 群への電力供給ができなくなるので、 蓄電部 2 0から補機群への電力供給が可能 となるようにコンバータ 1 8および 2 8における制御モードを切替える必要があ る。
本実施の形態 1では、 一例として、 コンバータ 1 8および 2 8を導通モードに 切替える構成について説明する。 すなわち、 蓄電部 1 0が電源システム 1 0 0か ら切離されると、 コンバータ 1 8および 2 8は、 電圧変換動作を停止するととも に、 それぞれ蓄電部 1 0および 2 0と主正母 f泉 M P L, 主負母線 MN Lとの間を 電気的な導通状態に維持する。
すると、 蓄電部 2 0からの放電電力 P b 2は、 対応のコンバータ 2 8を介して 主正母線 M P L , 主負母線 MN Lへ供給される。 そして、 放電電力 P b 2の一部 は、 駆動力発生部へ供給されるとともに、 その残部は、 コンバータ 1 8および低 圧正線 L P L , 低圧負線 L N Lを介して補機群へ供給される。 これにより、 蓄電 部 1 0が電源システム 1 0 0から電気的に切離された後も、 駆動力発生部および 補機群への電力供給が継続される。 なお、 蓄電部 2 0から放電される放電電力 P b 2と、 駆動力発生部および補機群へそれぞれ供給される供給電力 P cおよび P sとの間には、
放電電力 P b 2 =供給電力 P c +供給電力 P s
の関係が成立する。
<ケース 2 >
図 4 A, 図 4 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群へ の電力供給の概要 (ケース 2 ) を示す図である。 図 4 Aは蓄電部 1 0および 2 0 が正常である場合を示し、 図 4 Bは蓄電部 1 0に異常が発生した場合を示す。 図 4 Aを参照して、 上述の図 3 Aと同様に、 蓄電部 1 0および 2 0がいずれも 正常であれば、 システムリレー S MR 1および S MR 2がオン状態に維持される。 これにより、 蓄電部 1 0からは放電電力 P b 1が放電され、 その一部は補機群へ 供給されるとともに、 残部は駆動力発生部へ供給される。 また、 蓄電部 2 0から の放電電力 P b 2は、 すべて駆動力発生部へ供給される。
図 4 Aに示す場合には、 コンバータ 2 8力 S 「マスター」 として作動し、 コンパ ータ 1 8が 「スレーブ」 として作動する。 すなわち、 「マスター」 として作動す るコンバータ 2 8は、 母線電圧値 V cが所定の電圧目標値 V c *となるように制 御される。 一方、 「スレーブ」 として作動するコンバータ 1 8は、 対応の蓄電部 1 0と主正母線 M P L , 主負母線 MN Lとの間で授受される電力値を所定の電力 目標値 P b 1 *とするように制御される。
ここで、 蓄電部 1 0に何らかの異常が発生すると、 図 4 Bに示すようにシステ ムリ レー S MR 1がオフ状態に駆動され、 蓄電部 1 0が電¾?、システム 1 0 0から 電気的に切離される。 この場合には、 図 3Bと同様に、 コンバータ 18および 2 8が電圧変換動作を停止するとともに、 それぞれ蓄電部 10および 20と主正母 糸泉 MP L, 主負母線 MNLとの間を電気的な導通状態に維持する。
すると、 蓄電部 20からの放電電力 P b 2は、 コンバータ 28を介して主正母 線 MP L, 主負母線 MNLへ供給される。 そして、 放電電力 P b 2の一部は、 駆 動力発生部へ供給されるとともに、 その残部は、 コンバータ 1 8および低圧正線 LP L, 低圧負線 LNLを介して補機群へ供給される。 これにより、 蓄電部 10 が電源システム 100から電気的に切離された後も、 駆動力発生部および補機群 への電力供給が継続される。
<ケース 3 >
図 5 A, 図 5 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群へ の電力供給の概要 (ケース 3) を示す図である。 図 5 Aは蓄電部 10および 20 が正常である場合を示し、 図 5 Bは蓄電部 20に異常が発生した場合を示す。 図 5 Aを参照して、 上述の図 3Aと同様に、 蓄電部 10および 20がいずれも 正常であれば、 システムリレー SMR 1および SMR 2がオン状態に維持される。 これにより、 蓄電部 10からは放電電力 P b 1が放電され、 その一部は補機群へ 供給されるとともに、 残部は駆動力発生部へ供給される。 また、 蓄電部 20から の放電電力 P b 2は、 すべて駆動力発生部へ供給される。
図 5 Aに示す場合には、 図 3 Aと同様に、 コンバータ 18力 S 「マスター」 とし て作動し、 コンバータ 28が 「スレーブ」 として作動する。 すなわち、 「マスタ -J として作動するコンバータ 18は、 母線電圧値 V cが所定の電圧目標値 V c *となるように制御される。 一方、 「スレーブ」 として作動するコンバータ 28 は、 対応の蓄電部 20と主正母線 MP L, 主負母線 MN Lとの間で授受される電 力値を所定の電力目標値 Pb 2*とするように制御される。
ここで、 蓄電部 20に何らかの異常が発生すると、 図 5 Bに示すようにシステ ムリレー SMR 2がオフ状態に駆動され、 蓄電部 20が電源システム 100から 電気的に切離される。 この場合には、 コンバータ 28が電圧変換動作を停止する とともに、 システムリレー SMR 2と主正母線 MP L, 主負母線 MNLとの間を 電気的に開放状態にする。 すなわち、 コンバータ 28の制御モードは、 電圧制御 モード (昇圧) から開放モードに切替わる。
一方、 「マスター」 として作動中のコンバータ 1 8は、 電圧制御モード (昇 圧) に従って電圧変換動作を行なっているので、 蓄電部 2 0の電源システム 1 0 0からの切離しやコンバータ 2 8の制御モードの切替えに影響されることなく、 主正母線 M P Lと主負母線 MN Lとの間の母線電圧値 V cを継続して安定化でき る。 そのため、 蓄電部 2 0が電源システム 1 0 0から電気的に切離された後も、 蓄電部 1 0からの電力によって駆動力発生部および補機群への電力供給が継続さ れる。
<ケース 4 >
図 6 A, 図 6 Bは、 本発明の実施の形態 1に従う駆動力発生部および補機群へ の電力供給の概要 (ケース 4 ) を示す図である。 図 6 Aは蓄電部 1 0および 2 0 が正常である場合を示し、 図 6 Bは蓄電部 2 0に異常が発生した場合を示す。 図 6 Aを参照して、 上述の図 3 Aと同様に、 蓄電部 1 0および 2 0がいずれも 正常であれば、 システムリレー S MR 1および S MR 2がオン状態に維持される。 これにより、 蓄電部 1 0からは放電電力 P b 1が放電され、 その一部は補機群へ 供給されるとともに、 残部は駆動力発生部へ供給される。 また、 蓄電部 2 0から の放電電力 P b 2は、 すべて駆動力発生部へ供給される。
図 6 Aに示す場合には、 図 4 Aと同様に、 コンバータ 2 8カ 「マスター」 とし て作動し、 コンバータ 1 8が 「スレーブ」 として作動する。 すなわち、 「マスタ 一」 として作動するコンバ一タ 2 8は、 母線電圧値 V cが所定の電圧目標値 V c *となるように制御される。 一方、 「スレーブ」 として作動するコンバータ 1 8 は、 対応の蓄電部 1 0と主正母線 M P L , 主負母線 MN Lとの間で授受される電 力値を所定の電力目標値 P b 1 *とするように制御される。
ここで、 蓄電部 2 0に何らかの異常が発生すると、 図 6 Bに示すようにシステ ムリ レー S MR 2がオフ状態に駆動され、 蓄電部 2 0が電源システム 1 0 0から 電気的に切離される。 この場合には、 コンバータ 2 8が電圧変換動作を停止する とともに、 システムリレー S MR 2と主正母線 M P L, 主負母線 MN Lとの間を 電気的に開放状態にする。 すなわち、 コンバータ 2 8の制御モードは、 電圧制御 モード (昇圧) から開放モードに切替わる。 このコンバータ 2 8の制御モード切替えに伴って、 主正母線 M P Lと主負母泉 MN Lとの間の母線電圧値 V cを安定化できなくなるので、 「スレープ」 として 作動するコンバータ 1 8は、 「マスター」 として作動するように切替えられる。 すなわち、 コンバータ 1 8の制御モードは、 電力制御モードから電圧制御モード (昇圧) に切替わる。 これにより、 蓄電部 2 0が電¾1システム 1 0 0から電気的 に切離された後も、 主正母線 M P Lと主負母線 MN Lとの間の母線電圧値 V cを 安定化しつつ、 蓄電部 1 0からの電力によって駆動力発生部および補機群への電 力供給が継続される。
(導通モードにおけるコンバータの作動状態)
図 7は、 図 3 Bおよび図 4 Bに示す導通モードにおけるコンバータ 1 8 , 2 8 の作動状態図である。
図 7を参照して、 コンバータ 1 8および 2 8においてそれぞれ主正母線 M P L に接続されたトランジスタ Q 1 Bおよび Q 2 Bは、 いずれもオン状態に維持され る。 すなわち、 トランジスタ Q 1 Bおよび Q 2 Bには、 デューティー比が 1 0 0 %のスイッチング指令がコンバータ E C U 3 0 (図 1 ) から与えられる。 一方. コンバータ 1 8および 2 8においてそれぞれ主負母線 MN Lに接続されたトラン ジスタ Q 1 Aおよび Q 2 Aは、 いずれもオフ状態に維持される。 すなわち、 トラ ンジスタ Q 1 Aおよび Q 2 Aには、 デューティー比が 0 %のスィツチング指令が コンバータ E C U 3 0 (図 1 ) から与えられる。
この結果、 正線 P L 1は、 インダクタ L 1およびトランジスタ Q 1 Bを介して 主正母線 M P Lと電気的に接続され、 負線 N L 1は、 直接的に主負母線 MN Lと 接続される。 また、 正線 P L 2は、 インダクタ L 2およびトランジスタ Q 2 Bを 介して主正母線 M P Lと電気的に接続され、 負線 N L 2は、 直接的に主負母線 M N Lと接続される。
そのため、 蓄電部 2 0 (図 1 ) から見れば、 コンバータ 2 8を介して駆動力発 生部へ流入する電流経路、 およびコンバータ 2 8およびコンバータ 1 8を介して 捕機群へ流入する電流経路の 2つが形成されることになる。
上述のように、 コンバータ 1 8および 2 8は、 チヨッパ型の回路で構成されて いるため、 トランス型の回路とは異なり 「導通モード」 を実現可能である。 すな わち、 コンバータ l 8および 28は非絶縁型の電圧変換回路であり、 電流経路上 のトランジスタをオン状態に維持することで容易に入力側と出力側との間を電気 的な導通状態にすることができる。 一方、 降圧コンバータ 80 (図 1) のように トランス型の回路で構成される電圧変換部では、 卷線変圧器によつて入力側と出 力側との間が絶縁されるため、 本実施の形態のような 「導通モード」 を実現する ことは困難である。
(電池 E C Uにおける制御構造)
上述のような制御モードの切替えを実現するための制御構造について以下に詳 述する。
図 8は、 蓄電部 10の異常状態を検出するための電池 E CU 32における制御 構造を示すプロック図である。 図 9は、 蓄電部 20の異常状態を検出するための 電池 ECU 32における制御構造を示すブロック図である。
図 8を参照して、 電池 E CU 32は、 温度 T b 1、 電圧値 V b 1、 電流値 I b 1および内部抵抗値に基づいて、 蓄電部 10の異常状態を検出する。 なお、 温度 T b 1、 電圧値 V b 1、 電流値 I b 1および内部抵抗値からなる 4つの判断要素 のうち、 すべての判断要素を用いる必然性はない。 すなわち、 これらの判断要素 のうち少なくとも 1つの判断要素を含んでいればよく、 さらに別の判断要素を加 えてもよい。
電池 E C U 32の制御構造は、 論理和部 320と、 遮断部 328と、 比較部 3 21, 322, 323, 325, 326, 327と、 除算部 324とを含む。 論理和部 320は、 後述する各半 lj断要素での判断結果の論理和をとつて、 蓄電 部 10での異常状態を通知するための異常検出信号 FAL 1を発する。 すなわち、 論理和部 320は、 後述する比較部 321, 322, 323, 325, 326, 327のいずれかからの出力が活性化されると、 異常検出信号 FAL 1を外部出 力するとともに、 当該信号を遮断部 328へ出力する。
遮断部 328は、 異常検出信号 FAL 1に応答して、 システムオン指令 SON 1を非活性 (OFF) に設定する。 すると、 システムリレー SMR1 (図 1) が オフ状態に駆動され、 蓄電部 10が電源システム 100から電気的に切離される。 比較部 321および 322は、 蓄電部 10の電圧値 V b 1を監視するための部 P T/JP2007/073900 位であり、 電圧値 V b 1が所定の電圧値範囲 (しきい電圧値 a 2<Vb 1くしき い電圧値ひ 1) であるか否かを判断する。 具体的には、 比較部 321は、 電圧値 Vb 1がしきい電圧値 α 1を超過すると、 出力を活性化する。 また、 比較部 32 2は、 電圧値 Vb 1がしきい電圧値ひ 2を下回ると、 出力を活性化する。
比較部 323は、 蓄電部 10の電流値 I b 1を監視するための部位であり、 蓄 電部 10に過大な電流が流れているか否かを判断する。 具体的には、 比較部 32 3は、 電流値 I b 1がしきい電流値ひ 3を超過すると、 出力を活性化する。
除算部 324および比較部 325は、 蓄電部 10の内部抵抗値を監視するため の部位であり、 劣化によってその内部抵抗値が過大に増加しているか否かを判断 する。 具体的には、 除算部 324が蓄電部 10の電圧 #:V b 1をその電流値 I b 1で割り算して内部抵抗値 Rb 1を算出し、 比較部 325が算出された内部抵抗 値 Rb 1がしきい抵抗値ひ 4を超過しているか否かを判断する。 そして、 比較部 325は、 内部抵抗値がしきい抵抗値 α 4を超過すると、 出力を活性化する。 比較部 326および 327は、 蓄電部 10の温度 T b 1を監視するための部位 であり、 温度 T b 1が所定の温度範囲 (しきい温度ひ 6く T b 1くしきい温度 a 5) であるか否かを判断する。 具体的には、 比較部 326は、 温度 Tb lがしき い温度 α 5を超過すると、 出力を活性化し、 比較部 327は、 温度 T b 1がしき い温度 α 6を下回ると、 出力を活性化する。
図 9を参照して、 電池 ECU 32はさらに、 温度 Tb 2、 電圧値 Vb 2、 電流 値 I b 2および内部抵抗値に基づいて、 蓄電部 20の異常状態を検出する。 なお、 温度 T b 2、 電圧値 V b 2、 電流値 I b 2および内部抵抗値からなる 4つの判断 要素のうち、 すべての判断要素を用いる必然性はない。 すなわち、 これらの判断 要素のうち少なくとも 1つの判断要素を含んでいればよく、 さらに別の判断要素 を加えてもよい。
電池 E C U 32の制御構造は、 論理和部 330と、 遮断部 338と、 比較部 3 31, 332, 333, 335, 336, 337と、 除算部 334とをさらに含 む。 これらの各部の機能は、 上述した論理和部 320と、 遮断部 328と、 比較 部 321, 322, 323, 325, 326, 327と、 除算部 324と同様で あるので、 詳細な説明は繰返さない。 なお、 図 8および図 9に示すしきい値 α 1〜α 6は、 予め実験的に求めること が可能であり、 あるいは蓄電部 10, 20の設計値に基づいて設定してもよい。' なお、 蓄電部 10と蓄電部 20との特性が異なる場合には、 図 8および図 9に示 す各しきい値 α 1〜α 6は、 互いに異なる値となり得る。
(コンバータ ECUにおける制御構造)
図 10は、 コンバータ ECU 30におけるスイッチング指令 PWC 1, PWC 2の生成に係る制御構造を示すブロック図である。
図 10を参照して、 コンバータ E CU 30の制御構造は、 スィツチング指令生 成部 300と、 配分部 302とを含む。
スイッチング指令生成部 300は、 電力目標値 P b 1 *, Pb 2*および電圧 目標値 Vh*などに応じて、 コンバータ 1 8, 28の電圧変換動作を制御するた めのスイッチング指令 PWC 1 , PWC 2をそれぞれ生成する。 さらに、 スイツ チング指令生成部 300は、 制御系 (通常時) 304と制御系 (異常時) 306 とを含み、 電池 ECU 32からの異常検出信号 FAL 1 (図 8) , FAL 2 (図 9) に応答して、 いずれか一方を有効化する。 制御系 (通常時) 304および制 御系 (異常時) 306の各々は、 電流値 I b 1 , I b 2および電圧値 V b 1 , V b 2などに基づいて、 予め定められた制御モードに従って、 スイッチング指令 P WC 1, PWC 2を生成する。
配分部 302は、 駆動 ECU 50 (図 1) からの要求電力 P s *を蓄電部 10 20がそれぞれ分担すべき電力目標値 P b 1 P b 2*に分配し、 スィッチン グ指令生成部 300へ与える。 なお、 配分部 302は、 電池 ECU 32 (図 1 ) から与えられる蓄電部 10, 20の SOC (図示しない) などに基づいて、 分配 率を決定する。
図 1 1は、 図 3 Aおよび図 5 Aに対応する制御系 (通常時) 304の制御構造 を示すブロック図である。
図 3 Aおよび図 5 Aに示す作動状態においては、 蓄電部 10および 20がいず れも正常であれば、 コンバータ 18は 「電圧制御モード (昇圧) 」 に従って制御 されるとともに、 コンバータ 28は 「電力制御モード」 に従って制御される。 図 2および図 1 1を参照して、 制御系 (通常時) 304の制御構造は、 コンバ ータ 18を 「電圧制御モード (昇圧) 」 に従って制御するための構成として、 変 調部 (MOD) 402, 404と、 除算部 410と、 減算部 412, 416と、 P I制御部 414とを含む。
変調部 402は、 与えられるデューティー比指令に応じて、 コンバータ 18の トランジスタ Q I B (図 2) を駆動するための第 2スイッチング指令 PWC 1 B を生成する。 具体的には、 変調部 402は、 デューティー比指令と図示しない発 振部が発生する搬送波 (キャリア波) とを比較して、 第 2スイッチング指令 PW C 1 Bを生成する。 コンバータ 18が 「電圧制御モード (昇圧) 」 に従って電圧 変換動作する場合には、 トランジスタ Q1 B (図 2) は、 オン状態に維持される ので、 変調部 402には、 「1」 (100°/。) が入力される。
変調部 404は、 後述するように減算部 416から与えられるデューティー比 指令に応じて、 コンバータ 18のトランジスタ Q 1 A (図 2) を駆動するための 第 1スィツチング指令 PWC 1 Aを生成する。
減算部 416は、 除算部 410からの理論デューティー比に対して、 P I制御 部 414からの P I出力を減じて、 デューティー比指令として変調部 404へ与 える。
除算部 410は、 蓄電部 10の電圧値 V b 1を電圧目標値 V c *で割り算して、 コンバータ 18での昇圧比に相当する理論デューティー比 (=Vb 1/Vc*) を算出し、 減算部 416へ出力する。 すなわち、 除算部 410は、 「電圧制御モ ード (昇圧) J を実現するためのフィードフォワード成分を生成する。
減算部 4 12は、 電圧目標値 Vc*に対する母線電圧値 Vcの電圧偏差 AVc を算出し、 P I制御部 414へ与える。 P I制御部 414は、 所定の比例ゲイン および積分ゲインに従って、 電圧偏差 AVcに応じた P I出力を生成し、 減算部 416へ出力する。 '
具体的には、 P I制御部 414は、 比例要素 (P : proportional element) 4 18と、 積分要素 ( I : integral element) 420と、 加算部 422とを含む。 比例要素 418は、 電圧偏差 Δ V cに所定の比例ゲイン K p 1を乗じて加算部 422へ出力し、 積分要素 420は、 所定の積分ゲイン K 1 1 (積分時間: 1/ K i 1) で電圧偏差 AVcを積分して加算部 422へ出力する。 そして、 加算 部 4 2 2は、 比例要素 4 1 8および積分要素 4 2 0からの出力を加算して P I出 力を生成する。 この P I出力は、 「電圧制御モード (昇圧) j を実現するための フィードバック成分に相当する。
さらに、 制御系 (通常時) 3 0 4の制御構造は、 コンバータ 2 8を 「電力制御 モード」 に従って制御するための構成として、 変調部 (MO D ) 4 0 6, 4 0 8 と、 除算部 4 3 0と、 乗算部 4 3 4と、 減算部 4 3 2, 4 3 8と、 P I制御部 4 3 6とを含む。
変調部 4 0 6は、 コンバータ 2 8のトランジスタ Q 2 B (図 2 ) を駆動するた めの第 2スイッチング指令 P W C 2 Bを生成する。 その他については、 上述の変 調部 4 0 2と同様であるので、 詳細な説明は繰返さない。
変調部 4 0 8は、 後述するように減算部 4 3 8から与えられるデューティー比 指令に応じて、 コンバータ 2 8のトランジスタ Q 2 A (図 2 ) を,駆動するための 第 1スイッチング指令 P WC 2 Aを生成する。 減算部 4 3 8は、 除算部 4 3 0か らの理論デューティー比に対して、 P I制御部 4 3 6からの P I出力を減じて、 デューティー比指令として変調部 4 0 8へ与える。
除算部 4 3 0は、 上述の除算部 4 1 0と同様に、 蓄電部 2 0の電圧値 V b 2を 電圧目標値 V c *で割り算して、 コンバータ 2 8での昇圧比に相当する理論デュ 一ティー比 (= V b 2 ZV c *) を算出し、 減算部 4 3 8へ出力する。
乗算部 4 3 4は、 電流ィ直 I b 2と電圧値 V b 2とを乗じて蓄電部 2 0力ゝらの放 電電力 P b 2を算出する。 そして、 減算部 4 3 2は、 電力目標値 P b 2 *に対す る乗算部 4 3 4で算出された放電電力 P b 2の電力偏差 Δ P b 2を算出し、 P I 制御部 4 3 6へ与える。 すなわち、 上述した 「電圧制御モード (昇圧) 」 では、 電圧偏差が P I制御部へ与えられるように構成されるが、 「電力制御モード」 で は、 電力偏差が P I制御部へ与えられるように構成される。
P I制御部 4 3 6は、 所定の比例ゲイン K p 2および積分ゲイン K i 2に従つ て、 電力偏差 Δ P b 1に応じた P I出力を生成し、 減算部 4 3 8へ出力する。 ま た、 P I制御部 4 3 6は、 比例要素 4 4 0と、 積分要素 4 4 2と、 加算部 4 4 4 とを含む。 これらの部位の機能は、 上述した P I制御部 4 1 4と同様であるので 詳細な説明は繰返さない。 PC漏 00細 00 図 12は、 図 4 Aおよび図 6 Aに対応する制御系 (通常時) 304の制御構造 を示すブロック図である。
図 4 Aおよび図 6 Aに示す作動状態においては、 蓄電部 10および 20がいず れも正常であれば、 コンバータ 18は 「電力制御モード」 に従って制御されると ともに、 コンバータ 28は 「電圧制御モード (昇圧) j に従って制御される。 図 12を参照して、 制御系 (通常時) 304の制御構造は、 コンバータ 18を 「電力制御モード」 に従って制御するための構成として、 変調部 (MOD) 40 2, 404と、 除算部 410と、 乗算部 474と、 減算部 472, 416と、 P I制御部 414とをさらに含む。 これらの各部の機能は、 上述した図 1 1におけ る変調部 (MOD) 406, 408と、 除算部 430と、 乗算部 434と、 減算 部 432, 438と、 P I制御部 436と同様であるので、 詳細な説明は繰返さ なレ、。
また、 制御系 (通常時) 304の制御構造は、 コンバータ 28を 「電圧制御モ ード (昇圧) 」 に従って制御するための構成として、 変調部 (MOD) 406, 408と、 除算部 430と、 減算部 482, 438と、 P I制御部 436とをさ らに含む。 これらの各部の機能は、 上述した図 1 1における変調部 (MOD) 4 02, 404と、 除算部 410と、 減算部 412, 416と、 P I制御部 414 と同様であるので、 詳細な説明は繰返さない。
図 13は、 図 3 Bおよび図 4 Bに対応する制御系 (異常時) 306の制御構造 を示すブロック図である。
図 8および図 10を参照して、 蓄電部 10に異常が発生し、 蓄電部 10が電源 システム 1◦ 0から電気的に切離されると、 制御系 (異常時) 306が有効化さ れる。 図 7および図 13を参照して、 制御系 (異常時) 306では、 変調部 40 2および 406へいずれも 「1」 (Du t y= 100%) が与えられるとともに、 変調部 404および 408へいずれも 「0」 (Du t y = 0%) が与えられる。 この結果、 コンバータ 1 8および 28では、 トランジスタ Q 1 Bおよび Q 2 Bが オン状態に維持され、 トランジスタ Q 1 Aおよび Q 2 Aがオフ状態に維持される。 図 14は、 図 5 Bおよび図 6 Bに対応する制御系 (異常時) 306の制御構造 を示すブロック図である。 図 9および図 1 0に示すように、 蓄電部 20に異常が発生し、 蓄電部 20が電 源システム 1 00から電気的に切離されると、 制御系 (異常時) 306が有効化 される。 制御系 (異常時) 306では、 図 1 1に示す制御系 (通常時) 304と 同様の制御構造に従って、 コンバータ 1 8を制御する。 すなわち、 図 14を参照 して、 制御系 (異常時) 3 06の制御構造は、 コンバータ 1 8を 「電圧制御モー ド (昇圧) 」 に従って制御するための構成として、 変調部 (MOD) 40 2, 4 04と、 除算部 4 1 0と、 減算部 4 1 2, 4 1 6と、 P I制御部 4 14とを含む。 これらの各部の機能は、 上述したので詳細な説明は繰返さない。
これに対して、 コンバータ 28は 「開放モード」 となるように制御される。 具 体的には、 制御系 (異常時) 30 6では、 変調部 406および 408には 「0」
(D u t y = 0 %) が与えられる。 そのため、 コンバータ 28のトランジスタ Q
2 Aおよび Q 2 Bがオフ状態に維持される。 この結果、 コンバータ 28は、 シス テムリレー S MR 2と主正母線 MP L, 主負母線 MNLとの間を電気的に開放状 態にする。
(処理フロー)
図 1 5は、 本発明の実施の形態 1に従う電源システム 1 00の制御方法に係る フローチャートである。 なお、 図 1 5に示すフローチャートは、 コンバータ EC U 3 0および電池 ECU 3 2において予め格納したプログラムを実行することで 実現できる。
図 1 5を参照して、 電池 E CU 3 2は、 蓄電部 1 0の温度 T b 1、 電圧値 V b 1および電流値 I b 1を取得する (ステップ S 1 00) 。 そして、 電池 ECU 3 2は、 電圧値 V b 1と電流値 I b 1とから蓄電部 1 0の内部抵抗値 R b 1を算出 した上で、 蓄電部 1 0の温度 T b 1、 電圧値 V b 1、 電流値 I b 1および内部抵 抗値 Rb 1などに基づいて、 蓄電部 1 0に異常が発生しているか否かを判断する
(ステップ S 1 0 2) 。 すなわち、 蓄電部 1 0を電気的に切離す必要があるか否 かが判断される。
蓄電部 1 0に異常が発生している場合 (ステップ S 1 0 2において YESの場 合) 、 すなわち蓄電部 1 0を電気的に切離す必要がある場合には、 電池 ECU 3 2は、 システムリレー SMR 1をオフ状態に駆 ¾し、 蓄電部 1 0を電源システム 100から電気的に切離す (ステップ S 104) 。 同時に、 電池 ECU 32は、 異常検出信号 FAL 1をコンバータ ECU 30へ送出する (ステップ S 106) 。 コンバータ ECU30は、 電池 ECU32からの異常検出信号 FAL 1に応答 して、 コンバータ 18および 28における電圧変換動作を停止する (ステップ S 108) とともに、 コンバータ 18および 28を導通モードに切替える (ステツ プ S 1 10) 。 そして、 処理は終了される。
これに対して、 蓄電部 10に異常が発生していない場合 (ステップ S 102に おいて NOの場合) には、 電池 ECU32は、 蓄電部 20の温度 Tb 2、 電圧値 Vb 2および電流値 I b 2を取得する (ステップ S 112) 。 そして、 電池 EC U32は、 電圧値 Vb 2と電流値 I b 2とから蓄電部 20の内部抵抗値 Rb 2を 算出した上で、 蓄電部 20の温度 Tb 2、 電圧値 Vb 2、 電流値 I b 2および内 部抵抗値 Rb 2などに基づいて、 蓄電部 20に異常が発生しているか否かを判断 する (ステップ S 1 14) 。 すなわち、 蓄電部 20を電気的に切離す必要がある か否かが判断される。
蓄電部 20に異常が発生している場合 (ステップ S 1 14において YESの場 合) 、 すなわち蓄電部 20を電気的に切離す必要がある場合には、 電池 ECU3 2は、 システムリレー SMR 2をオフ状態に駆動し、 蓄電部 20を電源システム 100から電気的に切離す (ステップ S 1 16) 。 同時に、 電池 ECU 32は、 異常検出信号 F A L 2をコンバータ ECU 30へ送出する (ステップ S 1 18) c コンバータ ECU 30は、 電池 ECU 32からの異常検出信号 FAL 2に応答 して、 コンバータ i s力 S 「マスター」 として作動中であるか否かを判断する (ス テツプ S 1 20) 。 コンバータ 18カ 「マスター」 として作動中でない場合 (ス テツプ S 1 20において NOの場合) には、 コンバータ 18を 「マスター」 とし て作動させるために、 コンバータ 18を電圧制御モード (昇圧) に切替える (ス テツプ S 122 ) 。
さらに、 コンバータ 18を電圧制御モード (昇圧) に切替えた後 (ステップ S 1 22の実行後) 、 またはコンバータ 18が 「マスター」 として作動中である場 合 (ステップ S 120において YE Sの場合) には、 コンバータ ECU 30は、 コンバータ 28を開放モードに切替える (ステップ S 1 24) 。 そして、 処理は 終了される。
これに対して、 蓄電部 2 0に異常が発生していない場合 (ステップ S 1 1 4に おいて N Oの場合) 、 すなわち蓄電部 2 0を電気的に切離す必要がない場合には、 処理は最初に戻される。
本発明の実施の形態 1によれば、 蓄電部 1 0に異常が発生し、 蓄電部 1 0が電 源システム 1 0 0から電気的に切離されると、 コンバータ 1 8および 2 8はいず れも導通モードに設定される。 これにより、 蓄電部 2 0から主正母線 M P L , 主 負母線 MN Lを介して駆動力発生部へ電力が供給されるとともに、 主正母線 M P L , 主負母線 MN Lへ供給される電力の一部が補機群へ供給される。
また、 蓄電部 2 0に異常が発生し、 蓄電部 2 0が電源システム 1 0 0から電気 的に切離されると、 コンバータ 1 8が電圧制御モード (昇圧) に設定されるとと もに、 コンバータ 2 8が開放モードに設定される。 これにより、 蓄電部 1 0から 主正母線 M P L, 主負母線 MN Lを介して駆動力発生部へ電力が供給されるとと もに、 低圧正線 L P Lおよび低圧負線 L N Lを介して補機群へ電力が供給される。 このように、 蓄電部 1 0および 2 0のいずれか一方が電源システム 1 0 0から 電気的に切離されたとしても、 駆動力発生部および補機群への電力供給を継続で さる。
また、 本発明の実施の形態 1によれば、 蓄電部 1 0および 2 0のいずれか一方 が電源システム 1 0 0から電気的に切離されると、 コンバータ 1 8および 2 8は いずれも電力変換動作を停止するので、 対応の蓄電部から主正母線 M P L , 主負 母線 MN Lへの電力供給に係るスイッチング損失を低減できる。 したがって、 蓄 電部 2 0のみからの電力供給に伴って、 コンバータ 2 8を流れる電流値が比較的 大きくなつたとしても、 不要な損失発生を抑制できる。
[実施の形態 1の変形例]
本実施の形態 1においては、 2つの蓄電部を備える電源システムについて説明 したが、 3つ以上の蓄電部を備える電源システムについても同様に拡張すること が可能である。
図 1 6は、 本発明の実施の形態 1の変形例に従う駆動力発生部および補機群へ の電力供給の概要を示す図である。 ' 図 1 6を参照して、 本実施の形態 1の変形例に従う電源システムは、 代表的に 「マスター」 として作動するコンバータ 1 8と、 「スレーブ」 として作動するコ ンバータ 2 8—1〜2 8一 Nとを含む。 そして、 コンバータ 2 8一 1〜2 8— N に対応して、 蓄電部 2 0— 1〜2 0— Nおよびシステムリレー S MR 2—1〜S MR 2 __Nが設けられる。 蓄電部 1 0および蓄電部 2 0 _ 1 ~ 2 0— Nのすベて が正常であれば、 コンバータ 1 8は電圧制御モード (昇圧) に従って昇圧動作を 行なうとともに、 コンバータ 2 8 __ 1〜2 8— Nは電力制御モードに従って昇圧 動作を行なう。
ここで、 蓄電部 1 0に異常が発生し電源システムから切離されると、 すべての コンバータ、 すなわちコンバータ 1 8およびコンバータ 2 8— 1〜2 8— Nは、 導通モードに切替えられる。 この結果、 上述の実施の形態 1と同様に、 駆動力発 生部および補機群への電力供給が継続される。
その他については、 実施の形態 1に従う電源システム 1 0 0と同様であるので、 詳細な説明は繰返さなレ、。
本発明の実施の形態 1の変形例によれば、 電源システムを構成する蓄電部の数 が制限されないので、 駆動力発生部および補機群の電力容量の大きさに応じて、 適切な数の蓄電部を備えることができる。 よって、 上述した本発明の実施の形態 1における効果に加えて、 電源容量を柔軟に変化できる電源システムを実現でき る。
[実施の形態 2 ]
上述した実施の形態 1では、 蓄電部 1 0が電源システム 1 0 0から切離された 場合において、 蓄電部 2 0の電圧値 V b 2とほぼ等しい電圧をもつ電力が駆動力 発生部へ供給されるが、 より高い電圧をもつ電力を供給できるように、 コンパ一 タ 1 8および 2 8での電圧変換動作を積極的に実行してもよい。
本発明の実施の形態 2に従う電源システムの概略構成は、 図 1に示す本実施の 形態 1に従う電源システム 1 0 0と同様であるので、 詳細な説明は繰返さない。 再度、 図 3 Bおよび図 4 Bを参照して、 本実施の形態 2においては、 蓄電部 1 0に何らかの異常が発生して、 蓄電部 1 0が電源システム 1 0 0から電気的に切 離されると、 コンバータ 2 8は 「電圧制御モード (昇圧) 」 に切替えられるとと もに、 コンバータ 18は 「電圧制御モード (降圧) 」 に切替えられる。
(電圧制御モード (昇圧/降圧) におけるコンバータの作動状態)
図 1 7は、 図 3 Bおよび図 4 Bに示す電圧制御モード (昇圧/降圧) における コンバータ 18, 28の作動状態図である。
図 1 7を参照して、 コンバータ 28は、 対応の蓄電部 20からの放電電力をそ の電圧値が所定の電圧目標値 V c *となるような昇圧動作を伴って、 主正母線 M PL, 主負母線 MNLへ供給する。 一方、 コンバータ 18は、 主正母線 MP L, 主負母線 MN Lを流れる電力の一部をその電圧値が所定の電圧目標値 V b *とな るような降圧動作を伴って、 正線 PL 1, 負線 NL 1を介して補機群へ供給する。 このような動作により、 駆動力発生部には、 蓄電部 10の切離し前と略同一の 電圧値をもつ電力を供給できるとともに、 補機群には、 蓄電部 10の電圧値 Vb 1に近接した電圧目標値 Vb*の電力を供給できる。 そのため、 駆動力発生部お よび補機群から見れば、 蓄電部 10の電気的な切離しにかかわらず、 ほぼ同一の 動作を継続できる。
より詳細には、 昇圧動作を行なうコンバータ 28では、 トランジスタ Q 2 Aが 昇圧比 (=Vb 2/V c *) に応じたデューティー比でスィツチング動作を行な レ、、 トランジスタ Q 2 Bがオン状態に維持 (デューティー比 = 100%) される。 また、 降圧動作を行なうコンバータ 18では、 トランジスタ Q 1 Aがオフ状態 に維持 (デューティー比 =0。/o) され、 トランジスタ Q 2 Bが降圧比 (=Vb*. /V c) に応じたデューティー比でスィツチング動作を行なう。
(コンバータ E C Uにおける制御構造)
本実施の形態 2に従うコンバータ ECU 3 OAにおける制御構造は、 図 10に 示す本実施の形態 1に従うコンバータ E CU 30において、 制御系 (異常時) 3 06に代えて、 制御系 (異常時) 308を設けたものである。 その他については、 上述の実施の形態 1と同様であるので、 詳細な説明は繰返さない。
図 18は、 図 3 Bおよび図 4 Bに対応する制御系 (異常時) 308の制御構造 を示すブロック図である。 なお、 制御系 (異常時) 308は、 蓄電部 10に異常 が発生し、 蓄電部 10が電源システムから電気的に切離されると有効化される。 図 17および図 18を参照して、 制御系 (異常時) 308の制御構造は、 コン バータ 18を 「電圧制御モード (降圧) 」 に従って制御するための構成として、 変調部 (MOD) 402, 404と、 除算部 450とを含む。
除算部 450は、 電圧目標値 V b *を母線電圧値 V cで割り算して、 コンバー タ 1 8での降圧比に相当する理論デューティー比 (=Vb*ZVc) を算出し、 変調部 402へ出力する。 すなわち、 除算部 450は、 「電圧制御モード (降 圧) 」 に従う電圧変換動作を実現するためのフィードフォワード成分を生成する。 変調部 402は、 除算部 450からの信号出力に従って、 コンバータ 18のトラ ンジスタ Q 1 B (図 1 1) を駆動するための第 2スイッチング指令 PWC 1 Bを 生成する。
また、 変調部 404には 「0」 が与えられるため、 第 1スイッチング指令 PW C 1 Aのデューティー比は 0%に固定され、 コンバータ 18のトランジスタ Q 1 A (図 1 1) はオフ状態に維持される。
さらに、 制御系 (異常時) 308の制御構造は、 コンバータ 28を 「電圧制御 モード (昇圧) 」 に従って制御するための構成として、 変調部 (MOD) 406, 408と、 除算部 452と、 減算部 454, 458と、 P I制御部 456とを含 む。
除算部 452は、 蓄電部 20の電圧値 V b 2を電圧目標値 V c *で割り算して、 コンバータ 28での昇圧比に相当する理論デューティー比 ( = Vb 2/V c *) を算出し、 減算部 458へ出力する。 すなわち、 除算部 452は、 「電圧制御モ ード (昇圧) 」 に従う昇圧動作を実現するためのフィードフォワード成分を生成 する。
P I制御部 456は、 減算部 454で算出された電圧目標値 Vc*に対する母 線電圧値 V cの電圧偏差 Δ V cに応じた P I出力を、 所定の比例ゲイン K p 3お よび積分ゲイン K i 3に従って生成し、 減算部 458へ出力する。 この P I出力 は、 「電圧制御モード (昇圧) 」 を実現するためのフィードバック成分に相当す る。 また、 P I制御部 456は、 比例要素 460と、 積分要素 462と、 加算部 464とを含む。 これらの部位は、 上述した P I制御部 414と同様であるので、 詳細な説明は繰返さない。
減算部 458は、 除算部 452からの理論デューティー比に対して、 P I制御 部 4 5 6からの P I出力を減じた値をデューティー比指令として変調部 4 0 8へ 与える。 変調部 4 0 8は、 減算部 4 5 8からの出力値に従って、 コンバータ 2 8 のトランジスタ Q 2 A (図 1 7 ) を駆動するための第 1スイッチング指令 PWC 2 Aを生成する。
また、 変調部 4 0 6には 「1」 が与えられるため、 第 2スイッチング指令 P W C 2 Bのデューティー比は 1 0 0 %に固定され、 コンバータ 2 8のトランジスタ Q 2 B (図 1 7 ) はオン状態に維持される。
以上のように、 蓄電部 1 0の異常発生に応答して、 制御系 (通常時) 3 0 4力、 ら制御系 (異常時) 3 0 8へ切替えることで、 蓄電部 1 0が電源システムから電 気的に切離された後でも、 駆動力発生部および補機群を継続的に作動させること ができる。
その他については、 上述の実施の形態 1に従う電源システム 1 0 0と同様であ るので、 詳細な説明は繰返さない。
本発明の実施の形態 2によれば、 蓄電部 1 0が電源システムから電気的に切離 された後に、 コンバータ 2 8が昇圧動作を行なうとともに、 コンバータ 1 8が降 圧動作を行なう。 そのため、 蓄電部 2 0から放電された電力は、 コンバータ 2 8 で昇圧された後に駆動力発生部へ供給されるとともに、 コンバータ 2 8で昇圧さ れた後の電力の一部は、 コンバータ 1 8で降圧された後に補機群へ供給される。 これにより、 駆動力発生部および補機群へそれぞれ供給される電力の電圧範囲は、 蓄電部 1 0が電気的に切離される前と同様の範囲に維持される。 そのため、 蓄電 部 1 0の電気的な切離し後であっても、 駆動力発生部を構成するモータジエネレ ータ MG 1および MG 2の作動範囲 (回転数範囲) を確保できるので、 車両の走 行性能などを維持することができる。
[実施の形態 2の変形例]
本実施の形態 2においては、 2つの蓄電部を備える電源システムについて説明 したが、 3つ以上の蓄電部を備える電源システムについても同様に拡張すること が可能である。
図 1 9は、 本発明の実施の形態 2の変形例に従う駆動力発生部および補機群へ の電力供給の概要を示す図である π 図 1 9を参照して、 本実施の形態 2の変形例に従う電源システムは、 図 1 6に 示す本実施の形態 1の変形例に従う電源システムと同様に、 「マスター」 として 作動するコンバータ 1 8と、 「スレーブ」 として作動するコンバータ 2 8—1〜 2 8— Nとを含む。 そして、 コンバータ 2 8— 1〜2 8— Nに対応して、 蓄電部 2 0— 1〜2 0— Nおよびシステムリレー S MR 2— 1〜S MR 2— Nが設けら れる。
蓄電部 1 0および蓄電部 2 0—1〜2 0—Nのいずれも正常であれば、 コンパ ータ 1 8は電圧制御モード (昇圧) に従って電圧変換動作を行なうとともに、 コ ンバータ 2 8— 1〜2 8— Nは電力制御モードに従って電圧変換動作を行なう。 ここで、 蓄電部 1 0に異常が発生し電源システムから切離されると、 コンパ一 タ 1 8は、 「電圧制御モード (降圧) 」 に切替えられるとともに、 コンバータ 2 8— 1〜2 8— Nのうち少なくとも 1つが 「電圧制御モード (昇圧) 」 に切替え られる。 これは、 駆動力発生部へ供給される母線電圧値 V cを制御可能にするた めであり、 いずれか 1つのコンバータが 「電圧制御モード (昇圧) 」 に従って電 力変換動作を行なうことで、 母線電圧値 V cは安定化される。 なお、 コンバータ 2 8— 1〜2 8— Nのすベてを 「電圧制御モード (昇圧) 」 に設定することも可 能であるが、 電源システム全体の電力管理の観点から、 「電力制御モード」 に維 持されるコンバータの数を多くすることが望ましい。
その他については、 実施の形態 2に従う電源システムと同様であるので、 詳細 な説明は繰返さない。
本発明の実施の形態 2の変形例によれば、 電源システムを構成する蓄電部の数 が制限されないので、 駆動力発生部および補機群の電力容量の大きさに応じて、 適切な数の蓄電部を備えることができる。 よって、 上述した本発明の実施の形態 2における効果に加えて、 電源容量を柔軟に変化できる電源システムを実現でき る。
なお、 本発明の実施の形態 1および 2、 ならびにそれらの変形例においては、 蓄電部 1 0または 2 0が異常状態となった場合に、 当該異常状態になった蓄電部 を電源システムから電気的に切離す必要があると判断する構成について例示した 力 これに限られない。 たとえば、 本発明に係る電源システムを備える車両を E V走行モードで使用する場合において、 複数の蓄電部のうち蓄電部を 1個ずつ順 次選択していき、 選択された各蓄電部に対してその限界まで放電させるような使 用態様では、 限界まで放電し終えた蓄電部を電源システムから切離す必要が生じ る。 このような使用態様に対しても、 本願発明に係る電源システムは適用できる。 また、 本発明の実施の形態 1および 2、 ならびにそれらの変形例においては、 第 1および第 2の負荷装置の一例として、 それぞれ駆動力発生部および捕機群を 用いる構成について説明したが、 これに限られることはない。 さらに、 本発明に 係る電源システムは、 車両に搭載される以外にも、 電力消費を行なう 2種類の負 荷装置を有する装置に対して適用可能である。
なお、 本願発明では、 「第 1の電力線対」 を 「第 1の負荷装置の入力側に設け られた平滑コンデンサ」 と読替えたとしても、 その技術的思想は本質的に同一で める。
今回開示された実施の形態はすべての点で例示であつて制限的なものではな V、 と考えられるべきである。 本発明の範囲は、 上記した説明ではなく、 請求の範囲 によって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含ま れることが意図される。

Claims

請求の範囲
1 . 第 1および第 2の負荷装置へ電力を供給するための電源システムであって、 前記第 1の負荷装置と電気的に接続された第 1の電力線対と、
充放電可能な複数の蓄電部と、
前記複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部とを備え、 前記複数の電圧変換部は、 前記第 1の電力線対に対して並列接続され、 かつ 各々が前記第 1の電力線対と対応の前記蓄電部との間で電圧変換動作を行なうよ うに構成され、
前記電源システムは、 さらに
前記複数の蓄電部にそれぞれ対応付けられ、 かつ各々が対応の前記蓄電部と対 応の前記電圧変換部との間を電気的に切離すための複数の切離部と、
一端が前記複数の電圧変換部のうちの 1つである第 1の電圧変換部と対応の前 記切離部との間に電気的に接続され、 他端が前記第 2の負荷装置に電気的に接続 された第 2の電力線対と、
前記複数の切離部のいずれか 1つの切離部によって対応の前記蓄電部と対応の 前記電圧変換部との間が電気的に切離された場合に、 残余の前記蓄電部からの電 力を用いて、 前記第 1の電力線対を介して前記第 1の負荷装置への電力供給を継 続するとともに、 前記第 2の電力線対を介して前記第 2の負荷装置への電力供給 を継続するように、 前記複数の電圧変換部を制御する制御部とを備える、 電源シ ステム。
2 . 前記複数の蓄電部の各々についての異常状態を検出する異常検出部をさらに 備え、
前記複数の切離部の各々は、 前記異常検出部による対応の前記蓄電部における 異常状態の検出に応答して、 対応の前記蓄電部と対応の前記電圧変換部との間を 電気的に切離すように構成される、 請求の範囲第 1項に記載の電源システム。
3 . 前記異常検出部は、 対応の前記蓄電部の温度、 電圧値、 電流値および内部抵 抗値の少なくとも 1つに基づいて、 前記複数の蓄電部の各々についての異常状態 を検出する、 請求の範囲第 1項に記載の電源システム。
4 . 前記制御部は、 前記第 1の電圧変換部と対応の前記蓄電部との間が対応の前 記切離部によつて電気的に切離されたときに、 残余の前記蓄電部からの電力が前 記第 1の電力線対を介して前記第 1の負荷装置へ供給されるように前記残余の蓄 電部にそれぞれ対応する前記電圧変換部を制御するとともに、 前記第 1の電力線 対から前記第 2の電力線対を介して前記第 2の負荷装置へ電力が供給されるよう に前記第 1の電圧変換部を制御する、 請求の範囲第 1項に記載の電源システム。
5 . 前記制御部は、 前記複数の電圧変換部の各々について、 前記第 1の電力線対 と対応の前記蓄電部との間での電力変換動作を停止した上で両者を電気的に導通 状態にする、 請求の範囲第 4項に記載の電源システム。
6 . 前記複数の電圧変換部の各々は、 .
ィンダクタと直列接続された上で、 前記第 1の電力線対の一方の電力線と対応 の前記蓄電部の一方極との間に配置され、 両者を電気的に断続可能なスィッチン グ素子と、
前記第 1の電力線対の他方の電力線と対応の前記蓄電部の他方極とを電気的に 接続するための配線とを含み、
前記制御部は、 前記複数の電圧変換部の各々について、 前記スイッチング素子 をオン状態にすることで前記導通状態に維持する、 請求の範囲第 5項に記載の電 源システム。
7 . 前記制御部は、 対応の前記蓄電部からの電力が昇圧動作を伴って前記第 1の 電力線対へ供給されるように前記第 1の電圧変換部を除く残余の前記電圧変換部 を制御するとともに、 前記第 1の電力線対からの電力が降圧動作を伴って前記第 2の負荷装置へ供給されるように前記第 1の電圧変換部を制御する、 請求の範囲 第 4項に記載の電源システム。
8 . 前記制御部は、 前記第 2の負荷装置へ供給される降圧後の電圧値を所定の目 標値とするための第 1の制御モードに従って、 前記第 1の電圧変換部を制御する、 請求の範囲第 7項に記載の電源システム。
9 . 前記制御部は、 前記第 1の電力線対へ供給される昇圧後の電圧値を所定の目 標値とするための第 2の制御モードに従って、 前記残余の電圧変換部の少なくと も 1つを制御する、 請求の範囲第 7項に記載の電源システム。
1 0 . 前記第 1の電圧変換部と対応の前記蓄電部との間が電気的に接続された状 態において、 前記第 1の電圧変換部は、 前記第 2の制御モードに設定されて電圧 変換動作を実行するとともに、 前記残余の電圧変換部の各々は、 前記第 1の電力 線対と対応の前記蓄電部との間で授受される電力値を所定の目標値とするための 第 3の制御モードに設定されて電圧変換動作を実行し、
前記制御部は、 対応の前記切離部による前記第 1の電圧変換部と対応の前記蓄 電部との間の電気的な切離しに応答して、 前記残余の電圧変換部の少なくとも 1 つおよび前記第 1の電圧変換部についての制御モードを切替える、 請求の範囲第 9項に記載の電¾1システム。
1 1 . 第 1および第 2の負荷装置へ電力を供給するための電源システムと、 前記第 1の負荷装置として走行用の駆動力を発生するための駆動力発生部とを 備え、
前記電源システムは、
前記第 1の負荷装置と電気的に接続された第 1の電力線対と、
充放電可能な複数の蓄電部と、
前記複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部とを含み、 前記複数の電圧変換部は、 前記第 1の電力線対に対して並列接続され、 かつ 各々が前記第 1の電力線対と対応の前記蓄電部との間で電圧変換動作を行なうよ うに構成され、
前記電源システムは、 さらに
前記複数の蓄電部にそれぞれ対応付けられ、 かつ各々が対応の前記蓄電部と対 応の前記電圧変換部との間を電気的に切離すための複数の切離部と、
一端が前記複数の電圧変換部のうちの 1つである第 1の電圧変換部と対応の前 記切離部との間に電気的に接続され、 他端が前記第 2の負荷装置に電気的に接続 された第 2の電力線対と、
前記複数の切離部のいずれか 1つの切離部によつて対応の前記蓄電部と対応の 前記電圧変換部との間が電気的に切離された場合に、 残余の前記蓄電部からの電 力を用いて、 前記第 1の電力線対を介して前記第 1の負荷装置への電力供給を継 続するとともに、 前記第 2の電力線対を介して前記第 2の負荷装置への電力供給 を継続するように、 前記複数の電圧変換部を制御する制御部とを含む、 車両。
1 2 . 前記車両は、 前記第 2の負荷装置として車両用の補機群をさらに備える、 請求の範囲第 1 1項に記載の車両。
1 3 . 第 1および第 2の負荷装置へ電力を供給するための電源システムの制御方 法であって、
前記電源システムは、
前記第 1の負荷装置と電気的に接続された第 1の電力線対と、
充放電可能な複数の蓄電部と、
前記複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部とを備え、 前記複数の電圧変換部は、 前記第 1の電力線対に対して並列接続され、 かつ 各々が対応の前記蓄電部と前記第 1の電力線対との間で電圧変換動作を行なうよ うに構成され、
前記電源システムは、 さらに
前記複数の蓄電部にそれぞれ対応付けられ、 かつ各々が対応の前記蓄電部と対 応の前記電圧変換部との間を電気的に切離すための複数の切離部と、
一端が前記複数の電圧変換部のうちの 1つである第 1の電圧変換部と対応の前 記切離部との間に電気的に接続され、 他端が前記第 2の負荷装置に電気的に接続 された第 2の電力線対とを備え、
前記制御方法は、
前記複数の蓄電部の各々についての異常状態の有無を検出するステップと、 前記複数の蓄電部のいずれか 1つの蓄電部について異常状態を検出した場合に、 当該異常状態が検出された蓄電部と対応の前記電圧変換部との間を対応の前記切 離部によって電気的に切離すステップと、
切離された前記蓄電部を除く残余の蓄電部からの電力を用いて、 前記第 1の電 力線対を介して前記第 1の負荷装置への電力供給を継続するとともに、 前記第 2 の電力線対を介して前記第 2の負荷装置への電力供給を継続するように前記複数 の電圧変換部を制御するステップとを含む、 制御方法。
PCT/JP2007/073900 2007-01-04 2007-12-05 電源システムおよびそれを備える車両、ならびにその制御方法 WO2008081691A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07850451.1A EP2117106B1 (en) 2007-01-04 2007-12-05 Power supply system and vehicle including the same, and method of controlling the same
US12/312,745 US7923866B2 (en) 2007-01-04 2007-12-05 Power supply system and vehicle including the same, and method of controlling the same
CN2007800492269A CN101573860B (zh) 2007-01-04 2007-12-05 电源系统、具备其的车辆以及该电源系统的控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007000140 2007-01-04
JP2007-000140 2007-01-04
JP2007-161492 2007-06-19
JP2007161492A JP4569603B2 (ja) 2007-01-04 2007-06-19 電源システムおよびそれを備える車両、ならびにその制御方法

Publications (1)

Publication Number Publication Date
WO2008081691A1 true WO2008081691A1 (ja) 2008-07-10

Family

ID=39588375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073900 WO2008081691A1 (ja) 2007-01-04 2007-12-05 電源システムおよびそれを備える車両、ならびにその制御方法

Country Status (7)

Country Link
US (1) US7923866B2 (ja)
EP (1) EP2117106B1 (ja)
JP (1) JP4569603B2 (ja)
KR (1) KR101036267B1 (ja)
CN (1) CN101573860B (ja)
RU (1) RU2408128C1 (ja)
WO (1) WO2008081691A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096922A1 (en) * 2008-10-22 2010-04-22 Sanyo Electric Co., Ltd. Power Supply System, Power Supply-Side Control Unit, And Electric Vehicle Incorporating Said System
JP2010254038A (ja) * 2009-04-22 2010-11-11 Toyota Motor Corp ハイブリッド自動車および異常判定方法
JP2010254102A (ja) * 2009-04-23 2010-11-11 Toyota Motor Corp 動力出力装置およびその制御方法並びにハイブリッド車
EP2548777A1 (en) * 2010-03-15 2013-01-23 Toyota Jidosha Kabushiki Kaisha Vehicle
US20150214777A1 (en) * 2010-10-15 2015-07-30 Nextek Power Systems Inc. Arrangement for and method of dynamically managing electrical power between an electrical power source and an electrical load
EP2418504A4 (en) * 2009-04-01 2017-04-19 Sumitomo Heavy Industries, LTD. Hybrid operating machinery
JP2017216830A (ja) * 2016-06-01 2017-12-07 三菱自動車工業株式会社 車両用電源装置
EP2351676A4 (en) * 2008-10-14 2018-01-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control device and control method

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034882A1 (ja) * 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha 車両の制御装置および制御方法
JP4462366B2 (ja) * 2008-04-01 2010-05-12 トヨタ自動車株式会社 動力出力装置およびこれを備える車両並びに動力出力装置の制御方法
JP4469000B2 (ja) * 2008-04-18 2010-05-26 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
JP4811446B2 (ja) 2008-10-21 2011-11-09 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
WO2010050046A1 (ja) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 電動車両および電動車両の制御方法
JP5187152B2 (ja) * 2008-11-17 2013-04-24 トヨタ自動車株式会社 車両の電源システムおよび車両
US8683244B2 (en) 2008-11-21 2014-03-25 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for vehicle
US8274173B2 (en) * 2008-12-02 2012-09-25 General Electric Company Auxiliary drive apparatus and method of manufacturing same
JP5267092B2 (ja) * 2008-12-08 2013-08-21 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
US8648565B2 (en) 2008-12-09 2014-02-11 Toyota Jidosha Kabushiki Kaisha Power supply system of vehicle
JP5109958B2 (ja) * 2008-12-16 2012-12-26 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
JP5245846B2 (ja) * 2009-01-15 2013-07-24 トヨタ自動車株式会社 動力出力装置およびその制御方法並びにハイブリッド車
US8604751B2 (en) 2009-02-03 2013-12-10 Toyota Jidosha Kabushiki Kaisha Charging system for vehicle and method for controlling charging system
JP5333573B2 (ja) * 2009-02-25 2013-11-06 トヨタ自動車株式会社 車両の制御装置および制御方法
JP5187263B2 (ja) * 2009-04-09 2013-04-24 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP5449840B2 (ja) * 2009-04-17 2014-03-19 パナソニック株式会社 充放電制御回路、及び電源装置
WO2010122648A1 (ja) 2009-04-23 2010-10-28 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP5206873B2 (ja) * 2009-06-05 2013-06-12 トヨタ自動車株式会社 電気自動車および電気自動車における全体許容放電電力量設定方法
JP5371580B2 (ja) * 2009-06-29 2013-12-18 ヤンマー株式会社 発電システム
JP5326905B2 (ja) * 2009-07-24 2013-10-30 トヨタ自動車株式会社 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法
JP5381467B2 (ja) * 2009-07-30 2014-01-08 トヨタ自動車株式会社 駆動装置およびその絶縁抵抗低下箇所判定方法並びに車両
WO2011016135A1 (ja) * 2009-08-07 2011-02-10 トヨタ自動車株式会社 電動車両の電源システム
US8478469B2 (en) 2009-08-07 2013-07-02 Toyota Jidosha Kabushiki Kaisha Power source system for electric powered vehicle and control method therefor
JP5604856B2 (ja) * 2009-11-18 2014-10-15 富士通株式会社 制御装置、制御方法および制御プログラム
JP5359837B2 (ja) * 2009-12-10 2013-12-04 トヨタ自動車株式会社 電源装置
US9140761B2 (en) * 2009-12-25 2015-09-22 Toyota Jidosha Kabushiki Kaisha Battery pack failure detection device
IT1399313B1 (it) * 2010-04-07 2013-04-16 Ferrari Spa Impianto elettrico di un veicolo stradale con propulsione elettrica e relativo metodo di controllo
US9246337B2 (en) * 2010-04-23 2016-01-26 Hitachi, Ltd. Battery pack and battery pack controller
WO2012014324A1 (ja) * 2010-07-30 2012-02-02 三菱電機株式会社 電気車の推進制御装置、および鉄道車両システム
JP5183709B2 (ja) * 2010-09-27 2013-04-17 三菱電機株式会社 車両用電源装置
JP5307847B2 (ja) * 2011-04-19 2013-10-02 三菱電機株式会社 車両用電源システム
BR112013028840A2 (pt) * 2011-05-10 2017-01-31 Nissan Motor unidade de corte de energia
DE102011079359A1 (de) * 2011-07-18 2013-01-24 Bayerische Motoren Werke Aktiengesellschaft Ladevorrichtung mit Hilfsnetzteil
JP5772355B2 (ja) * 2011-08-01 2015-09-02 トヨタ自動車株式会社 燃料電池システム
US20140132002A1 (en) * 2011-08-24 2014-05-15 Panasonic Corporation Vehicle power source device
WO2013046314A1 (ja) * 2011-09-27 2013-04-04 トヨタ自動車株式会社 電源システムおよびその制御方法
US9103317B2 (en) * 2011-11-18 2015-08-11 Rafael Garcia Wind operated electricity generating system
US9231409B2 (en) * 2012-01-24 2016-01-05 Texas Instruments Incorporated Sourcing and securing dual supply rails of tamper protected battery backed domain
MX2014009378A (es) * 2012-02-01 2014-10-24 Toyota Motor Co Ltd Dispositivo de conduccion para vehiculo hibrido.
WO2013122703A1 (en) * 2012-02-14 2013-08-22 Ut-Battelle, Llc Wireless power charging using point of load controlled high frequency power converters
DE102012207379A1 (de) * 2012-05-03 2013-11-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur Versorgung eines elektrischen Antriebes mit elektrischem Strom
CN104303392A (zh) * 2012-05-22 2015-01-21 索尼公司 控制系统
FR2995263B1 (fr) * 2012-09-10 2015-08-21 Batscap Sa Procede et dispositif de gestion d'ensembles de stockage d'energie electrique pour l'alimentation electrique d'un vehicule a moteur electrique
CN103847530B (zh) * 2012-12-03 2017-04-12 通用电气公司 电驱动系统及其能量管理方法
RU2539323C2 (ru) * 2013-02-13 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Способ фазового управления тиристорными преобразователями, одновременно работающими на индивидуальные нагрузки
JP5683627B2 (ja) * 2013-03-22 2015-03-11 トヨタ自動車株式会社 電源制御装置
JP2014212645A (ja) * 2013-04-19 2014-11-13 株式会社東芝 蓄電システム
JP5838998B2 (ja) * 2013-05-24 2016-01-06 株式会社デンソー 異常診断システム
AU2013393444B2 (en) * 2013-07-02 2017-01-05 Mitsubishi Electric Corporation Hybrid drive system
US9969253B2 (en) 2013-08-06 2018-05-15 Volvo Truck Corporation Hybrid vehicle
KR101491933B1 (ko) * 2013-11-19 2015-02-09 엘에스산전 주식회사 병렬 인버터 제어 장치
US9550421B2 (en) * 2014-03-17 2017-01-24 Denso International America, Inc. DC-to-DC converter with variable set-point control
EP2965935B1 (en) 2014-06-17 2017-10-04 FERRARI S.p.A. Electric power system of a vehicle with electric propulsion
KR101643864B1 (ko) * 2014-08-26 2016-07-29 엘지전자 주식회사 차량용 구동모듈
CN106143170B (zh) * 2015-03-31 2020-11-17 通用电气公司 具有增程器的能量存储系统及能量管理控制方法
DE102015224067A1 (de) * 2015-12-02 2017-06-08 Borgward Trademark Holdings Gmbh Batteriemanagementsystem, Fahrzeug damit und Verfahren zur Batterierelais-Steuerung
JP6492001B2 (ja) * 2015-12-22 2019-03-27 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
DE102016005960A1 (de) * 2016-05-13 2017-11-16 Man Truck & Bus Ag Energiespeichersystem eines Kraftfahrzeugs und Betriebsverfahren hierfür
CN107696863B (zh) * 2016-08-08 2020-03-31 比亚迪股份有限公司 电动汽车的能量管理系统及其控制方法、电动汽车
JP6642393B2 (ja) * 2016-11-28 2020-02-05 株式会社オートネットワーク技術研究所 車載更新システム
JP6654594B2 (ja) * 2017-03-16 2020-02-26 ヤンマー株式会社 エンジンシステム
JP2019054677A (ja) * 2017-09-19 2019-04-04 トヨタ自動車株式会社 電源装置
US10727680B2 (en) 2017-09-22 2020-07-28 Nio Usa, Inc. Power systems and methods for electric vehicles
US10688882B2 (en) * 2017-09-29 2020-06-23 Nio Usa, Inc. Power systems and methods for electric vehicles
JP6888512B2 (ja) * 2017-10-16 2021-06-16 トヨタ自動車株式会社 ハイブリッド自動車
JP6671402B2 (ja) * 2018-02-22 2020-03-25 本田技研工業株式会社 車両用電源装置
JP7081959B2 (ja) * 2018-03-30 2022-06-07 本田技研工業株式会社 車両電源システム
JP7176852B2 (ja) * 2018-03-30 2022-11-22 本田技研工業株式会社 車両電源システム
KR102530940B1 (ko) * 2018-04-23 2023-05-11 현대자동차주식회사 차량용 에너지저장장치 시스템
JP7189693B2 (ja) * 2018-07-13 2022-12-14 株式会社Subaru 電源システム
US10922203B1 (en) * 2018-09-21 2021-02-16 Nvidia Corporation Fault injection architecture for resilient GPU computing
JP2020058161A (ja) * 2018-10-03 2020-04-09 株式会社日立パワーソリューションズ 電力需給システム
DE102018218824B3 (de) * 2018-11-05 2020-02-27 Volkswagen Aktiengesellschaft Stromrichteranordnung für ein Fahrzeug und Fahrzeug mit einer solchen Stromrichteranordnung
WO2020119917A1 (en) * 2018-12-14 2020-06-18 Volvo Truck Corporation An electric power transmission system for a vehicle
JP6902061B2 (ja) 2019-02-19 2021-07-14 矢崎総業株式会社 電力分配システム
CN112389176B (zh) * 2019-08-13 2021-11-26 纬湃科技投资(中国)有限公司 集成式电驱动系统与包括该系统的电动车辆
JP7013500B2 (ja) * 2020-01-30 2022-01-31 矢崎総業株式会社 車両電源システム
IT202000002566A1 (it) * 2020-02-10 2021-08-10 Hitachi Rail S P A Veicolo a trazione elettrica includente un sistema di gestione di energia, e metodo di gestione di energia in tale veicolo a trazione elettrica
KR20220090168A (ko) * 2020-12-22 2022-06-29 현대자동차주식회사 차량의 전력 제어 방법 및 전력 제어 장치
CN112994106B (zh) * 2021-03-30 2022-05-10 西南交通大学 一种用于高铁的再生制动能量管理方法
JP2022156736A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 車両、車両制御装置、車両制御プログラム及び車両制御方法
EP4106127A1 (en) * 2021-06-14 2022-12-21 Aptiv Technologies Limited Electrical architecture
EP4286203A1 (en) * 2022-05-31 2023-12-06 Ningbo Geely Automobile Research & Development Co. Ltd. A power supply and distribution system for an electric vehicle and a method for controlling the system
WO2023238250A1 (ja) * 2022-06-07 2023-12-14 株式会社Nittan 電気自動車用蓄電装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274378A (ja) * 1994-03-31 1995-10-20 Nissan Motor Co Ltd 車両用電源制御装置
US6608396B2 (en) 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP2006158173A (ja) * 2004-10-29 2006-06-15 Toyota Motor Corp モータ駆動装置
JP2006288129A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 複数の電源を備えた電源システム及びそれを備えた車両
JP2006333552A (ja) * 2005-05-23 2006-12-07 Toyota Motor Corp 電源システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) * 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
DE19846319C1 (de) * 1998-10-08 2000-02-17 Daimler Chrysler Ag Energieversorgungsschaltung für ein Kraftfahrzeugbordnetz mit zwei Spannungsversorgungszweigen
JP3702749B2 (ja) * 2000-05-24 2005-10-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP4125855B2 (ja) 2000-06-16 2008-07-30 株式会社三社電機製作所 蓄電池用充放電装置
KR100387483B1 (ko) * 2000-12-30 2003-06-18 현대자동차주식회사 전기 자동차용 배터리의 충전상태 제어방법
JP3661630B2 (ja) 2001-10-25 2005-06-15 トヨタ自動車株式会社 ハイブリッド車の駆動装置及びその制御方法
JP3893291B2 (ja) 2002-01-10 2007-03-14 パナソニック・イーブイ・エナジー株式会社 ハイブリッド車用電池電源装置
JP3969165B2 (ja) * 2002-04-16 2007-09-05 トヨタ自動車株式会社 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004006138A (ja) 2002-05-31 2004-01-08 Fuji Heavy Ind Ltd 組電池システムおよび組電池システムのフェールセーフ方法
CN1306675C (zh) * 2002-12-26 2007-03-21 北京机电研究所 用于电动汽车动力蓄电池组的管理装置
US7352154B2 (en) * 2004-01-14 2008-04-01 Vanner, Inc. Electrical system control for a vehicle
JP4140552B2 (ja) 2004-04-28 2008-08-27 トヨタ自動車株式会社 自動車用電源装置およびそれを備える自動車
JP4701821B2 (ja) * 2005-05-02 2011-06-15 トヨタ自動車株式会社 負荷駆動装置およびそれを搭載した車両
JP4379430B2 (ja) * 2006-04-24 2009-12-09 トヨタ自動車株式会社 電源システムおよび車両
JP4501893B2 (ja) * 2006-04-24 2010-07-14 トヨタ自動車株式会社 電源システムおよび車両
JP4337848B2 (ja) * 2006-07-10 2009-09-30 トヨタ自動車株式会社 電源システムおよびそれを備える車両、ならびに温度管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274378A (ja) * 1994-03-31 1995-10-20 Nissan Motor Co Ltd 車両用電源制御装置
US6608396B2 (en) 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP2006158173A (ja) * 2004-10-29 2006-06-15 Toyota Motor Corp モータ駆動装置
JP2006288129A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 複数の電源を備えた電源システム及びそれを備えた車両
JP2006333552A (ja) * 2005-05-23 2006-12-07 Toyota Motor Corp 電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2117106A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351676A4 (en) * 2008-10-14 2018-01-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control device and control method
US20100096922A1 (en) * 2008-10-22 2010-04-22 Sanyo Electric Co., Ltd. Power Supply System, Power Supply-Side Control Unit, And Electric Vehicle Incorporating Said System
CN101741115A (zh) * 2008-10-22 2010-06-16 三洋电机株式会社 电源系统、电源侧控制部和电动车辆
EP2418504A4 (en) * 2009-04-01 2017-04-19 Sumitomo Heavy Industries, LTD. Hybrid operating machinery
JP2010254038A (ja) * 2009-04-22 2010-11-11 Toyota Motor Corp ハイブリッド自動車および異常判定方法
JP2010254102A (ja) * 2009-04-23 2010-11-11 Toyota Motor Corp 動力出力装置およびその制御方法並びにハイブリッド車
EP2548777A1 (en) * 2010-03-15 2013-01-23 Toyota Jidosha Kabushiki Kaisha Vehicle
EP2548777A4 (en) * 2010-03-15 2014-12-03 Toyota Motor Co Ltd VEHICLE
US20150214777A1 (en) * 2010-10-15 2015-07-30 Nextek Power Systems Inc. Arrangement for and method of dynamically managing electrical power between an electrical power source and an electrical load
US10050442B2 (en) * 2010-10-15 2018-08-14 Nextek Power Systems, Inc. Arrangement for and method of dynamically managing electrical power between an electrical power source and an electrical load
JP2017216830A (ja) * 2016-06-01 2017-12-07 三菱自動車工業株式会社 車両用電源装置

Also Published As

Publication number Publication date
US7923866B2 (en) 2011-04-12
KR101036267B1 (ko) 2011-05-23
CN101573860B (zh) 2012-05-09
EP2117106B1 (en) 2018-11-07
CN101573860A (zh) 2009-11-04
EP2117106A1 (en) 2009-11-11
EP2117106A4 (en) 2017-10-04
US20100065349A1 (en) 2010-03-18
KR20090098913A (ko) 2009-09-17
JP2008187884A (ja) 2008-08-14
RU2408128C1 (ru) 2010-12-27
JP4569603B2 (ja) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2008081691A1 (ja) 電源システムおよびそれを備える車両、ならびにその制御方法
US11697352B2 (en) Method and apparatus for charging multiple energy storage devices
JP6188090B2 (ja) 電気自動車を充電する装置および方法
JP6130634B2 (ja) 電気車両を充電するための装置および方法
CN103192729B (zh) 电动车辆
KR101997347B1 (ko) 자동차
JP5109958B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780049226.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12312745

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007850451

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097016114

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009129688

Country of ref document: RU

Kind code of ref document: A