WO2008062867A1 - Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison - Google Patents

Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison Download PDF

Info

Publication number
WO2008062867A1
WO2008062867A1 PCT/JP2007/072659 JP2007072659W WO2008062867A1 WO 2008062867 A1 WO2008062867 A1 WO 2008062867A1 JP 2007072659 W JP2007072659 W JP 2007072659W WO 2008062867 A1 WO2008062867 A1 WO 2008062867A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
vehicle
center
gravity
cargo
Prior art date
Application number
PCT/JP2007/072659
Other languages
English (en)
French (fr)
Inventor
Yutaka Watanabe
Original Assignee
National University Corporation Tokyo University Of Marine Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tokyo University Of Marine Science And Technology filed Critical National University Corporation Tokyo University Of Marine Science And Technology
Priority to US12/516,111 priority Critical patent/US8483942B2/en
Priority to EP07832388.8A priority patent/EP2090874B1/en
Priority to JP2008545450A priority patent/JP4517107B2/ja
Publication of WO2008062867A1 publication Critical patent/WO2008062867A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/086Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles wherein the vehicle mass is dynamically estimated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting
    • G01G23/3728Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting with wireless means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity

Definitions

  • the present invention relates to a center of gravity detection device, a rollover limit speed prediction device, and a cargo weight prediction device of a vehicle towed by a towing vehicle that can carry cargo, and more specifically, towed and transported to a towing vehicle.
  • the present invention relates to a technology for determining the center of gravity position of a container cargo vehicle in a three-dimensional space, and a technology for determining the vehicle's rollover limit speed and cargo weight on a curved road using the center of gravity position in the three-dimensional space.
  • Container cargo that is traded by international import and export is placed on a cart called a container chassis together with the container in the domestic distribution network, and tractors, locomotives, etc. that can pull this container chassis. It is transported by towing vehicle.
  • Patent Document 1 JP-A-2005-313879
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-28427
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-302063
  • Patent Document 4 JP-A-5-213108
  • Patent Document 5 Japanese Patent Laid-Open No. 5-124543
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-97072
  • the rollover limit speed of the container freight vehicle can be appropriately predicted and calculated according to the radius of curvature of the path along which the container freight vehicle runs. Become.
  • the weight of the container freight can be predicted and calculated, and overload of the container freight can be predicted.
  • a container freight vehicle refers to a vehicle comprising a portion of a container transport vehicle other than a tow vehicle, that is, a container on which cargo can be loaded and a container chassis (cart) on which this container is placed. To do.
  • a vehicle towed by a towing vehicle (for example, the container described above) that can be loaded with cargo based on a logical dynamic theory without introducing data that lacks a theoretical basis such as a correction coefficient.
  • a method for deriving the weight of the cargo using the 3D center position of the vehicle towed by the towing vehicle for example, the container cargo vehicle mentioned above.
  • the first aspect of the present invention has been made in view of such circumstances, and provides a center-of-gravity detecting device capable of appropriately guiding the three-dimensional center-of-gravity position of a vehicle towed by a towed vehicle that can carry cargo. Purpose (first issue).
  • the second aspect of the present invention uses the three-dimensional center position of a vehicle towed by a towed vehicle on which cargo can be loaded, and the rollover limit of the vehicle according to the curvature radius of the curved path on which the vehicle runs.
  • the purpose is to provide a rollover limit speed prediction device that can guide the speed appropriately (second problem).
  • the third aspect of the present invention provides a cargo weight predicting apparatus that can appropriately guide the weight of the cargo using the three-dimensional center position of the vehicle towed by the towing vehicle on which the cargo can be mounted. (Third issue).
  • a first aspect of the present invention provides a vehicle towed by a tow vehicle capable of carrying a cargo, and a self-weight direction and a width direction of the transport vehicle when the vehicle travels.
  • a rocking detector that detects the shaking of the machine, and an arithmetic unit,
  • the arithmetic unit provides a center-of-gravity detection device that guides the position of the center of gravity of the vehicle in a three-dimensional space based on a physical quantity that correlates with the shaking.
  • An example of such a vehicle is a container cargo vehicle including a container on which the cargo can be mounted and a container chassis on which the container is placed.
  • the three-dimensional center of gravity position of such a container freight vehicle is valuable data that directly reflects the degree of unbalanced load of the cargo whose loading state is unknown.For example, this allows the cargo freight when the container door is opened. This can contribute to the prevention of unloading and falling and unstable running on the curved road of container transport vehicles.
  • the three-dimensional center of gravity position of the vehicle is derived based on a logical dynamic theory that does not introduce data that lacks a theoretical basis such as a correction coefficient. Is extremely high.
  • the present inventor considered the movement of a vehicle (in this example, a container freight vehicle as an example) as a problem of dynamics of a mass system with the center of gravity of the container freight vehicle as a mass point. And I realized that the equation of motion governing the movement of the center of gravity of the container freight vehicle can be organized into a very convenient formula in light of the actual situation of container transportation.
  • the first aspect of the present invention has been devised based on such knowledge, and one example of the center of gravity detection device of the first aspect of the present invention is that the swing in the direction of its own weight is the center of gravity of the container freight vehicle.
  • the swing in the width direction corresponds to a single pendulum motion in the left-right direction with the center of the container freight vehicle as the fulcrum and the center of gravity of the container freight vehicle as the mass.
  • the physical quantity includes the frequency of the reciprocating motion, the frequency of the simple pendulum motion and the center angle of the simple pendulum motion, and the computing unit is based on the frequency of the simple pendulum motion.
  • the center of gravity position of the container freight vehicle with respect to the traveling direction of the container is guided, and the traveling direction is determined based on the frequency of the reciprocating motion, the frequency of the simple pendulum motion, and the central angle of the simple pendulum motion.
  • the above physical quantities do not include the elastic modulus of container transport vehicles and the weight of container freight vehicles. This makes it possible to save a great deal of effort spent on measuring the elastic modulus and weight, as well as discretionary factors related to uncertain factors such as the manufacturer, age and age of the container transport vehicle.
  • the universal application of this technology to any container transport vehicle ie any combination of unspecified number of towing vehicles, unspecified number of container chassis and unspecified number of containers.
  • the container chassis includes a disk-shaped connecting member that connects the vicinity of the front portion of the container chassis in the traveling direction and the towed vehicle so as to be swingable in the width direction, and the container chassis includes the container chassis.
  • a horizontal beam that extends in the width direction of the container and supports the vicinity of the rear of the container in the traveling direction, and the arithmetic unit uses the output data of the swing detector to correlate the frequency and amplitude of the simple pendulum motion.
  • a frequency of the third simple pendulum motion corresponding to the peak amplitude of the simple pendulum motion derived from, and based on the frequency of the first, second and third simple pendulum motion It may be a device that guides the position of the center of gravity of the container freight vehicle.
  • the arithmetic unit converts the output data of the swing detector into rolling data representing a correlation between the frequency and amplitude of the simple pendulum motion, and based on the rolling data, the container
  • the frequency of the simple pendulum motion corresponding to the peak amplitude of the simple pendulum motion derived from the center of gravity of the freight vehicle is obtained, and the output data of the swing detector is correlated with the frequency and amplitude of the reciprocating motion.
  • the frequency of the reciprocating motion corresponding to the maximum amplitude of the reciprocating motion is acquired based on the pitching data, and the single pendulum motion is obtained from the output data of the swing detector.
  • the time-dependent data of the amplitude may be a device for guiding the center of gravity of the container cargo vehicle for a cross section perpendicular to the traveling direction.
  • the vertical movement (self-weight direction) and the width direction of the container freight vehicle are movements caused by disturbances applied to the container freight vehicle according to the unevenness of the road surface when the container freight vehicle travels straight on the road surface. May be.
  • the center of gravity detection device can calculate the three-dimensional center of gravity position of the container freight vehicle. Therefore, the calculation data acquisition operation can be easily performed, and it is preferable that the data at the time of running on the curved road need not be collected.
  • the swing detector may include an angular velocity sensor which is disposed on the towing vehicle and whose angular velocity sensitivity axis is adjusted in the self-weight direction and the width direction.
  • an angular velocity sensor is placed at an appropriate position on the towing vehicle, and a simple means (adhesive bonding or bolting; not shown) is used to arrange one piece. It is enough if you put it. In other words, it is preferable that no measures need be taken for a large number of containers and container chassis handled in the container transportation business.
  • the second aspect of the present invention includes a vehicle towed by a towing vehicle and capable of carrying cargo, and an arithmetic unit.
  • the arithmetic unit obtains the position of the center of gravity of the vehicle in the three-dimensional space and the radius of curvature of the curved path on which the vehicle runs, and uses the position of the center of gravity in the three-dimensional space to determine the vehicle's position according to the radius of curvature.
  • a rollover limit speed prediction device for deriving a rollover limit speed on the curved road is provided.
  • the above-described center of gravity detecting device may be used, but is not limited thereto.
  • the worker when the worker himself loads cargo on the vehicle, the worker can measure the position of the center of gravity in the three-dimensional space of the vehicle.
  • the arithmetic unit can acquire the center-of-gravity position of the vehicle in the three-dimensional space by inputting the center-of-gravity position by the operator.
  • Such a rollover limit speed is a reference speed for determining whether or not the vehicle rolls over, and this can contribute to prevention of unstable traveling on the vehicle's curved road.
  • the arithmetic unit uses the vehicle's center of gravity position with respect to a cross section perpendicular to the traveling direction of the vehicle, and the vehicle speed when the vehicle rotates around the turning outer wheel of the vehicle and the vehicle.
  • the vehicle is rotated about a connection point between the towing vehicle and the vehicle, using the first equation representing the relationship with the radius of curvature and the position of the center of gravity of the vehicle in the traveling direction of the vehicle.
  • the rollover limit speed may be derived on the basis of the second equation representing the relationship between the speed of the vehicle and the curvature radius.
  • the vehicle's rollover limit speed can be derived based on a logical dynamic theory without introducing data that lacks a theoretical basis such as correction factors, and the reliability of the calculation results is extremely high.
  • An example of the vehicle is a container cargo vehicle including a container on which the cargo can be loaded and a container chassis on which the container is placed.
  • a swing detector for detecting the swing of the vehicle in its own weight direction and width direction when the vehicle is running
  • the arithmetic unit may derive the position of the center of gravity in the three-dimensional space based on a physical quantity that correlates with the shaking.
  • a radio receiver may be provided that receives radio information of the radius of curvature and provides the radio information to the arithmetic unit.
  • the arithmetic unit can use the receiver to automatically obtain radio information of the radius of curvature of the road on which the vehicle is scheduled to run, for example, from the local ITS, and obtain the radius of curvature of the road. Can save you time and effort.
  • the third aspect of the present invention includes a vehicle towed by a towing vehicle and capable of carrying cargo, and an arithmetic unit.
  • the arithmetic unit obtains the position of the center of gravity in the three-dimensional space of the vehicle on which the cargo is mounted and the position of the center of gravity in the three-dimensional space of the vehicle on which the cargo is not mounted.
  • a freight weight prediction device that derives the weight of the freight using a position is provided.
  • a specific method for acquiring the position of the center of gravity of a vehicle in a three-dimensional space by a calculation unit is the first book described above.
  • the center-of-gravity detecting device of the invention may be used, it is not limited to this. For example, when the worker himself loads cargo on the vehicle, the worker The position of the center of gravity can be measured. In this case, the arithmetic unit can acquire the center-of-gravity position of the vehicle in the three-dimensional space by the operator's center-of-gravity position input operation.
  • An example of the vehicle is a container cargo vehicle including a container on which the cargo can be loaded and a container chassis on which the container is placed.
  • the calculation unit is configured to determine only the traveling direction based on the two center of gravity positions, the length of the container in the traveling direction of the container cargo vehicle, and the weight of the container cargo vehicle on which the cargo is not mounted.
  • the apparent weight of the cargo may be derived in consideration of
  • the arithmetic unit is based on the two gravity center positions, the length of the container in the width direction of the container freight vehicle, and the weight of the container freight vehicle on which the freight is not mounted.
  • the apparent weight of the cargo may be derived considering only the width direction.
  • the arithmetic unit is based on the two center of gravity positions, the length of the container in the direction of its own weight of the container cargo vehicle, and the weight of the container cargo vehicle on which the cargo is not mounted.
  • the apparent weight of the cargo may be derived considering only the direction of its own weight.
  • the arithmetic unit derives the net weight of the cargo based on the apparent weight of the cargo in the three directions!
  • a swing detector for detecting the swing of the vehicle in its own weight direction and width direction when the vehicle is running
  • the arithmetic unit derives a center of gravity position in a three-dimensional space of the vehicle on which the cargo is mounted based on a physical quantity that correlates with the shake of the vehicle on which the cargo is mounted. Also,
  • the cargo is loaded! /, N! /, Based on the physical quantity that correlates with the shaking of the vehicle, the cargo is loaded! /, N! /, The center of gravity of the vehicle in the three-dimensional space Guide the position!
  • a center-of-gravity detecting device capable of appropriately guiding the three-dimensional center-of-gravity position of a vehicle towed by a towed vehicle that can carry cargo.
  • the rollover limit speed of the vehicle according to the radius of curvature of the path along which the vehicle runs can be appropriately derived using the three-dimensional center of gravity position of the vehicle towed by the towing vehicle.
  • a critical speed prediction device is also obtained.
  • a cargo weight predicting apparatus capable of appropriately guiding the weight of the cargo using the three-dimensional center of gravity position of the vehicle towed by the towing vehicle on which the cargo can be mounted. can get.
  • FIG. 1 is a schematic view showing a configuration example of a center-of-gravity detection device according to a first embodiment.
  • FIG. 2 is a block diagram showing an example of an internal configuration of a swing detector and an arithmetic unit in the center of gravity detector of the first embodiment.
  • FIG. 3 is a schematic diagram for explaining a method for deriving the three-dimensional center of gravity position of the container freight vehicle by the center of gravity detection device according to the first embodiment.
  • FIG. 4 is a schematic diagram for explaining a method for deriving the three-dimensional center of gravity position of the container freight vehicle by the center of gravity detection device of the first embodiment.
  • FIG. 5 is a schematic diagram for explaining a method for deriving the three-dimensional center of gravity position of the container freight vehicle by the center of gravity detection device of the first embodiment.
  • FIG. 6 is a flowchart showing a routine for detecting a three-dimensional center of gravity position by the center of gravity detector of the first embodiment.
  • FIG. 7 is a diagram showing an example of a rolling frequency / amplitude distribution with the horizontal axis representing frequency (Hz) and the vertical axis representing amplitude (angular velocity).
  • FIG. 8 is a diagram showing an example of a pitching frequency / amplitude distribution, with the horizontal axis representing frequency (Hz) and the vertical axis representing amplitude (angular velocity).
  • FIG. 9 is a diagram showing an example of a temporal change in rolling amplitude, with time (seconds) on the horizontal axis and the rolling angle on the vertical axis.
  • FIG. 10 is a schematic diagram showing a configuration example of a rollover limit speed prediction device according to a second embodiment.
  • FIG. 11 is a block diagram showing an example of the internal configuration of the data detection unit and the arithmetic unit in the rollover limit speed prediction device according to the second embodiment.
  • FIG. 12 is a schematic diagram for explaining a method for deriving the rollover limit speed of the container cargo vehicle by the rollover limit speed prediction device of the second embodiment.
  • FIG. 13 is a schematic diagram for explaining a method for deriving the rollover limit speed of the container cargo vehicle by the rollover limit speed prediction device of the second embodiment.
  • FIG. 14 is a flowchart showing an operation for predicting the rollover limit speed of the container cargo vehicle by the rollover limit speed prediction device of the second embodiment.
  • FIG. 15 is a view showing a photograph of a recording screen of a tachometer of a trailer truck for a verification experiment in the second verification experiment.
  • Fig. 16 shows the relationship between the radius of curvature on the horizontal axis and the rollover limit speed of the container freight vehicle for verification experiments on the vertical axis.
  • FIG. 17 is a schematic view showing a configuration example of a cargo weight prediction apparatus according to a third embodiment.
  • FIG. 18 is a schematic diagram for explaining a method for deriving an apparent weight of a container cargo considering only the longitudinal direction of the container cargo vehicle by the cargo weight prediction device of the third embodiment.
  • FIG. 19 is a schematic diagram for explaining a method for deriving an apparent weight of a container cargo in consideration of only the lateral direction of the container cargo vehicle by the cargo weight prediction device of the third embodiment.
  • FIG. 20 is a schematic diagram for explaining a method for deriving an apparent weight of a container cargo considering only the vertical direction of the container cargo vehicle by the cargo weight prediction device of the third embodiment.
  • FIG. 21 is a flowchart showing the operation of predicting the weight of container cargo by the cargo weight prediction device of the third embodiment.
  • FIG. 1 is a schematic diagram illustrating a configuration example of the center-of-gravity detection device according to the first embodiment.
  • Fig. 1 (a) is a view of the center of gravity detection device as seen from the width direction (side) of the container cargo vehicle
  • Fig. L (b) is a view of the center of gravity detection device from the rear side of the container cargo vehicle. It is a figure.
  • the direction in which the container freight vehicle is subjected to its own weight is “vertical direction”
  • the width direction of the container freight vehicle is “left-right direction”
  • the traveling direction of the container freight vehicle is Let it be the “front-rear direction”.
  • the center-of-gravity detection device 100 includes a container transport vehicle 50 as shown in FIG. 1 (a), a swing detector 14 that detects the vertical and horizontal swings of the container cargo vehicle, and an arithmetic unit. 15 and.
  • a typical form of such a container transport vehicle 50 is a trailer truck having a tractor as a towing vehicle. Therefore, in this embodiment (the same applies to the second and third embodiments described later), a container truck equipped with a 40-foot marine container with a global standard specification is used as an example for trailer truck transportation. The configuration and operation of the transport vehicle 50 will be described. However, the technology described below can be applied not only to the container transport vehicle 50 but also to other transport modes such as a railway freight car.
  • the trailer truck 50 is a type that can carry container cargo (not shown) as shown in Fig. 1 (a).
  • a rectangular container 11, a container chassis 12 as a cart on which the container 11 is placed, and a tractor 10 (towing vehicle) that is connected to the container chassis 12 to pull or drive the container chassis 12 are provided.
  • This tractor 10 has a disk-shaped force bra 13 (connecting member; to be described later) connected to the container chassis 12, so that both can be connected so as to be able to swing left and right via the force bra 13! /
  • the form of the trailer track 50 shown in FIG. 1 is merely an example, and the detection technology of this embodiment (the same applies to the second and third embodiments described later) is based on various types of trailers. Applicable to firewood racks.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the swing detector and the arithmetic unit in the center-of-gravity detector of the present embodiment.
  • the above-described swing detector 14 is fixed at the center of the trailer truck 50 in the left-right direction, and does not interfere with transportation work on the tractor 10 side (for example, in the vicinity of the force bra 13).
  • the arithmetic unit 15 described above is disposed at a proper position in the cab of the tractor 10. The two are connected to each other through an appropriate data input / output port (not shown) so that data can be transmitted by wired communication or wireless communication.
  • the swing detector 14 has an angular velocity sensitivity axis adjusted to detect the vertical and width swings of the container freight vehicle when the trailer truck 50 is running.
  • An axial (two-dimensional) angular velocity sensor 14a and an A / D (analog / digital) converter 14b that converts an analog signal output from the angular velocity sensor 14a into a digital signal are provided.
  • the magnitude of the angular velocity signal digitized by the A / D converter 14b is proportional to the angular velocity of the container cargo vehicle swinging in the vertical direction or the width direction when the trailer truck 50 is traveling.
  • Examples of the biaxial angular velocity sensor 14a include, but are not limited to, a crystal tuning fork type sensor and a vibration type sensor.
  • this angular velocity sensor 14a a three-axis (three-dimensional) angular velocity sensor or a better velocity sensor may be used.
  • the swing detector with built-in A / D converter 14b 1 The force S illustrated as 4 and the A / D converter 14b may be externally attached.
  • the oscillation detector 14 incorporates various signal processing circuits such as a filter (not shown) and an amplifier (not shown). These are conventional techniques, and are described in detail here. Will be omitted.
  • the arithmetic unit 15 includes an arithmetic unit 15a composed of a microprocessor, a storage unit 15b composed of ROM (read only memory), RAM (random access memory), etc., and operation setting / display. Part 15c.
  • an arithmetic unit 15 there is a portable information terminal such as a notebook type personal computer.
  • the storage unit 15b is connected to the calculation unit 15a, and stores a calculation program for appropriately deriving the three-dimensional center of gravity position of the container freight vehicle and various input constants (described later) necessary for the calculation. And les.
  • the calculation unit 15a operates in accordance with a calculation program stored in advance in the storage unit 15b. For example, as described later, the calculation unit 15a is based on the digital signal output from the fluctuation detector 14 (A / D converter 14b). The 3D center of gravity of the container freight vehicle can be derived.
  • the operation setting / display unit 15c includes an operation unit (for example, a keyboard; not shown) provided with the above-described input constant setting buttons, and an output about the 3D center of gravity position of the container freight vehicle output from the calculation unit 15a. It is equipped with a notification device (for example, a liquid crystal panel screen or a speaker; not shown) for notifying and displaying data so that the operator (driver or passenger) can recognize the data.
  • an operation unit for example, a keyboard; not shown
  • a notification device for example, a liquid crystal panel screen or a speaker; not shown
  • FIG. 4 and FIG. 5 are all schematic diagrams for explaining a method for deriving the three-dimensional center of gravity position of the container freight vehicle by the center of gravity detection device of the present embodiment.
  • 3 and 4 are views seen from the front-rear direction in which the trailer truck is traveling, and FIG.
  • FIGS. 3, 4 and 5 the configuration of the center of gravity detection device 100 is illustrated in a simplified or omitted manner so that the method of deriving the three-dimensional center position can be easily understood.
  • the suspension 205 refers to a member that can absorb vibration from the road surface 204 of the vehicle body of the trailer track 50.
  • a panel-type shock absorber connected to the axle, an end of the axle. And tires that are filled with air and filled with air!
  • the former motion corresponds to a behavior called pitching of the tractor 10.
  • pitching of the tractor 10 When the container cargo vehicle reciprocates in the vertical direction, the force plastic 13 connecting the tractor 10 and the container chassis 12 is pushed up and down. Since the position of the coupler 13 exists behind the tractor 10, when the force bra 13 is pushed up and down, the front portion of the tractor 10 is raised and lowered. Such a phenomenon is the pitching of the tractor 10. In other words, vertical round-trip motion of the container freight vehicle, transmitted to the tractor 10 through the force bra 13, thereby, it occurs pitching forces s of the tractor 10.
  • the latter movement corresponds to a behavior called trailer track 50 rolling.
  • the trailer truck 50 is usually equipped with suspensions 205 for the front, rear, left and right axles.
  • suspensions 205 for the front, rear, left and right axles.
  • the vertical reciprocating motion and the left and right simple pendulum motion are simultaneously generated.
  • the elastic modulus panel constant
  • the elastic modulus of the suspension 205 varies depending on the manufacturer, vehicle type, age, and age of the tractor 10 and container chassis 12, while the identification of these manufacturer, vehicle type, age, and age is practically the container 11 Considering the actual situation of transportation business, it is almost impossible.
  • the container 11 transportation business the container 11 is transported daily by a trailer truck 50 consisting of an arbitrary union (a virtually unlimited number of unions) between an unspecified number of tractors 10 and an unspecified number of container chassis 12. Has been. For this reason, there is no effective way to specify both manufacturers, vehicle types, and model years in advance, and it is impossible to specify the degree of aging of both vehicles.
  • the elastic modulus of the suspension 205 installed on each axle is determined by the load of the container 11 on the container chassis 12 to be pulled. It may vary from time to time depending on conditions, road surface 204 conditions, and driving conditions.
  • Patent Document 1 there is a technique (for example, Patent Document 1) on the premise that a large number of detectors are arranged in a container-side chassis (corresponding to the container chassis in this specification). As can be easily imagined in view of the large number of container chassis handled in the container transportation business, such measures are not cost effective.
  • the cycle of the simple pendulum motion “Ding” (the rolling cycle of the trailer truck 50) in the left-right direction of the center of gravity W of the container freight vehicle is formulated in FIG.
  • the rolling of the container freight vehicle is a simple pendulum motion in the left-right direction with the center of the axle of the center of gravity W of the container freight vehicle (the intersection of the vertical center line 201 and the axle position line 202 shown in FIG. 4) as a fulcrum. Therefore, the following formula is obtained from the balance of rotational moments in the tangential direction of the mouth ring during rolling of the container freight vehicle.
  • f is a force applied in the tangential direction of the rolling circle (rotating circle) with respect to the center of gravity W of the container cargo vehicle.
  • is a rolling angle.
  • L is the length from the center of the axle to the center of gravity W of the container freight vehicle.
  • B is the length of the portion supporting the load of container 11 and is a constant determined for each container 11.
  • 1 (Small L)” is the length in the vertical direction from the axle to the center of gravity W of the container freight vehicle.
  • Fig. 1 (b) the container freight vehicle in the cross section perpendicular to the front-rear direction of the container 1 1 This is a value that represents the position of the center of gravity W in the vertical direction.
  • S is the length in the left-right direction from the center of the axle to the center of gravity W of the container freight vehicle. As shown in Fig. 1 (b), the center of gravity W of the container freight vehicle in the cross section perpendicular to the front-rear direction of the container 11 This is a value representing the horizontal position of. “X” is the displacement of the left and right suspensions. “G” is the gravitational acceleration.
  • the position of the center of gravity W of the container freight vehicle in the cross section perpendicular to the front-rear direction (traveling direction) of the container 11 can be derived.
  • the formula (1) is expanded as the formula (2) by combining the trigonometric functions in parentheses.
  • the angle ( ⁇ + ⁇ ) of the sine function obtained by combining the trigonometric functions is expressed as the rolling angle ⁇ ′.
  • the center angle “ ⁇ ” of rolling (single pendulum motion) of the center of gravity W becomes zero.
  • the center angle “ ⁇ ” indicates an angle formed between the vertical center line 201 and the mouth ring center line 206 as shown in FIG.
  • the cycle “choking” of the vertical reciprocation of the center of gravity W of the container cargo vehicle and the cycle “choking” of the simple pendulum motion of the center of gravity W of the container cargo vehicle in the left-right direction are derived.
  • the angular velocity detected by the fluctuation detector 14 angular velocity sensor 14a
  • frequency an angular frequency corresponding to an angle / time
  • the pitching frequency of the tractor 10 corresponding to the vertical reciprocating period “Ding '” of the center of gravity w is set to “”, and the rolling corresponding to the period “Ding” of the single pendulum movement of the center of gravity W in the horizontal direction is set. If the frequency of V is set to “V”, the above equation becomes 1 ⁇ 1
  • equations (4) and (5) are expanded into equations (6) and (7), respectively.
  • equation (8) is obtained.
  • equation (9) is substituted into equation (8): .2 to form a quadratic equation of "1”, it is rewritten as equation (10).
  • the position of the center of gravity W in the front-rear direction of this container freight vehicle can be derived as follows.
  • the trailer truck 50 supports the container 11 placed on the container chassis 12 by the rear cross beam 21 and the front cross beam 20 of the container chassis 12.
  • These front and rear horizontal beams 20 and 21 extend in the left-right direction (width direction) of the container 11 and are fixed to vertical beams (not shown) running in the front-rear direction.
  • the load of the container 11 is applied to the tractor 10 connected to the front portion of the container chassis 12 through the rear horizontal beam 21, the front horizontal beam 20, and the vertical beam, and to the suspension 205 at the rear portion of the container chassis 12. Is distributed.
  • the position of the center of gravity W in the front-rear direction can be considered to be between the front and rear cross beams 20, 21, the center of action of the disturbance in which the rolling phenomenon appears noticeably in the direction in which the rolling amplitude increases is It is considered to be the position of the front and rear transverse beams 20 and 21 of the container chassis 12 corresponding to the front and rear parts.
  • the front part of the container chassis 12 and the tractor 10 are connected by a disk-shaped connecting member called a force bra 13 shorter than the front transverse beam 20 of the container chassis 12.
  • the diameter of the force bra 13 is usually less than half the length of the front cross beam 20 of the container chassis. For this reason, the length in the left-right direction of the connecting portion support with the tractor 10 with respect to the container chassis 12 on which the container 11 is loaded is actually not the length of the front cross beam 20 of the container chassis 12.
  • the diameter of the coupler 13 is “b”.
  • the diameter “b” of the coupler 13 to which the container chassis 12 is coupled is represented by the three-dimensional c
  • connection points (see “E”) are important. That is, the member constituting the above-mentioned diameter “b” and the member constituting the above-mentioned connecting point “E” are both the force that is the force bra 13 and their technical significance is different. The technical significance of connection point “E” will be described in detail later.
  • Equation (5) if “k / m” is a constant value, the rolling frequency “V” is a value “1” indicating the position of the center of gravity W of the container freight vehicle. ”And“ s ”and support the container 11! /, Depending on the length of the part“ b ”. As described above, since this length “b” is different between the front and rear portions of the container chassis 12, the maximum peak amplitude (the peak of the convex peak) at which the rolling phenomenon appears noticeably in the direction in which the rolling amplitude increases is Two are considered to exist.
  • the maximum peak amplitude is derived from the maximum peak amplitude derived from the coupler 13 as a connecting member between the front portion of the container chassis 12 and the tractor 10 and the rear cross beam 21 located at the rear portion of the container chassis 12.
  • This minimal peak amplitude force is a peak derived from the longitudinal center of gravity W of the container freight vehicle.
  • the rolling frequency “v” and the length “b” in the horizontal direction are constant terms, and c and c
  • Equation (11) can be
  • “b” is the substantial length in the left-right direction of the member supporting the container 11 at the rear position of the container 11, and is a value determined as a constant. “B” is the actual length in the left-right direction of the member that supports the container 11 at the front position of the container 11, and is geometric from the diameter “b” of the force bra 13 of the tractor 10. It is a value that is scientifically determined as a constant. “V” is a rolling frequency generated when a disturbance acts in the vertical direction from the road surface 204 at the front of the container 11. “V” is a rolling frequency generated when a disturbance acts in the vertical direction from the road surface 204 at the rear of the container 11.
  • the length “k” from the front of the container 11 to the position of the center of gravity W can be derived.
  • the container in a cross section perpendicular to the front-rear direction of the container 11 corresponding to the length "k" is used.
  • the center-of-gravity detection device 100 of the present embodiment has three numerical values “1”, “s”, and “k” that represent the position of the center of gravity W in the three-dimensional space of the container freight vehicle. ”
  • FIG. 6 is a flowchart showing a routine for detecting a three-dimensional center of gravity position by the center of gravity detection device of the present embodiment.
  • the calculation unit 15a of the calculation unit 15 reads out the calculation program for detecting the 3D centroid position and an appropriate constant stored in advance from the storage unit 15b. However, the following processing is executed while controlling the calculation unit 15a, the storage unit 15b, and the operation setting / display unit 15c.
  • the constant includes, for example, the length “p” of the container 11 in the front-rear direction, the diameter “b” of the force plastic 13 of the tractor 10, and the length from the front of the container 11 to the center of the coupler 13.
  • ⁇ K '' the substantial length ⁇ b '' in the left-right direction of the member supporting the container 11 at the rear position of the container 11, the gravitational acceleration ⁇ g '', the circularity ratio ⁇ ⁇ '', There is.
  • the constants ⁇ b '', ⁇ k '' and ⁇ b '' are often standard values, and the constants ⁇ b '', ⁇ k '' and ⁇ b '' Is preferably stored in the storage unit 15b in advance, since the above-described constant confirmation and input operations can be omitted.
  • the operator sets these constants ⁇ b '', ⁇ k '' and ⁇ b '' via the operation setting / display unit 15c of the arithmetic unit 15.
  • the tractor 10 that pulls the container 11 carrying the cargo together with the container chassis 12 travels on the road surface 204 (step S601).
  • the trailer truck 50 preferably travels straight in accordance with the flow of a normal vehicle. Due to moderate unevenness of the road surface 204, random disturbance is transmitted to the vehicle body (container 11) of the trailer truck 50 through the suspension 205, so that the swing detector 14 can move in the direction and width of the container cargo vehicle. Can detect direction fluctuations.
  • the angular velocity sensor 14a of the swing detector 14 Angular velocity data of pitching corresponding to the vertical reciprocating motion of the center of gravity W and rolling (single pendulum motion in the left-right direction) of the center of gravity W are measured as analog signals (step S602). Then, the analog angular velocity data is obtained by the calculation unit 15 (calculation unit 15a) at a certain sampling period (for example, every 0.01 S (second)) stored in advance in the storage unit 15b.
  • the sampled digital angular velocity data is sampled as a digital signal that has passed through the A / D converter 14b (step S603), and stored in the storage unit 15b together with the time series data (step S604).
  • speed data may be detected by a speed sensor.
  • the computing unit 15a determines whether or not the measurement of the angular velocity data by the angular velocity sensor 14a can be terminated (step S605). If the calculation unit 15a determines that the measurement of the angular velocity data has been completed and is determined to be good (if YES in step S605), it proceeds to the next processing step (after step S606), and the angular velocity If it is not determined that the data measurement can be terminated (“No” in step S6605), the operations in steps S602 to S604 described above are continued.
  • Such a quality determination for the end of the measurement may be made on the basis of a predetermined measurement time derived from the required total number of samples stored in advance in the storage unit 15b and the above-described sample time.
  • a predetermined measurement time derived from the required total number of samples stored in advance in the storage unit 15b and the above-described sample time.
  • the number of samples that sufficiently reduces the statistical error of sampling is 4096 (in this case, 2F 12 is an analysis targeting the number of integer powers of 2; If the sample time is 0.01S, the minimum required measurement time is 4096 X 0.01S 40S. Therefore, in this case, the calculation unit 15a determines that the measurement of the angular velocity data may be terminated when 40S or more has elapsed from the start of the measurement of the angular velocity data by the angular velocity sensor 14a.
  • the 3D center of gravity of the container 11 is updated in real time while the trailer truck 50 is running.
  • the measurement time is preferably as short as possible, but if it is too short, the number of samples is small and the statistical error increases. According to the results of the first verification experiment described later, stable data with reduced statistical errors was obtained by measuring data using 2 minutes as a guide.
  • the calculation unit 15a determines whether or not the measurement of the angular velocity data has been completed based on whether or not the measurement setting button on the operation setting / display unit 15c is operated by the operator. Also good.
  • the calculation unit 15a performs fast Fourier transform (FFT) on the time-series angular velocity data stored in the storage unit 15b, and the angular velocity data is converted into amplitude data with respect to frequency. (Step S606).
  • FFT fast Fourier transform
  • the frequencies “V”, “v” and Is identified (step S607). Also, the pitching frequency and
  • the frequency “” is specified based on the dynamic theory described above (step S607).
  • the corresponding frequency can be selected as the frequency “V ′”. Since many mathematical extraction methods for the frequency described above have already been proposed, the detailed description is omitted here.
  • the three-dimensional center of gravity of the container freight vehicle is updated in real time while the trailer truck 50 is running. Assuming such usage patterns, a method that can perform frequency extraction in a short time is preferable.
  • the calculation unit 15a reads the constants “b” and “b” stored in advance in the storage unit 15b c 2, and the frequencies “v”, “v”, and “” obtained in step S607. Using the formula (1
  • the substantial length “b” in the left-right direction of the member supporting the container 11 at the position of the center of gravity W is calculated (step S608).
  • V is the value when the disturbance acts in the vertical direction from the road surface 204 at the position of the center of gravity W g
  • the calculation unit 15a reads the constants “,” “k”, and “b” stored in advance in the storage unit 15b, and uses the length “b” obtained in step S608 according to the equation (14). Conte g
  • the length “k” from the front part of the center 11 to the position of the center of gravity W is calculated (step S609).
  • the calculation unit 15a reads time-series angular velocity data stored in the storage unit 15b.
  • the center of gravity of the container freight vehicle corresponding to the time average value of the time-dependent change in the rolling amplitude is derived from the distribution (hereinafter abbreviated as “time-dependent change in the rolling amplitude”) of the time-dependent change in the amplitude (angle) of the rolling.
  • the center angle “ ⁇ ” of W rolling is specified (step S610).
  • the calculation unit 15a reads the constants “g” and “ ⁇ ” stored in advance in the storage unit 15b, the frequencies “V” and “V ′” obtained in step S607, and step S610.
  • Equation (10') "g” is the gravitational acceleration. “ ⁇ ” is the circumference ratio. “ ⁇ ” is the rolling center angle of the center of gravity W of the container freight vehicle. “V ′” is the pitching frequency. “ ⁇ ” is the g when a disturbance acts vertically from the road surface 204 at the position of the center of gravity W.
  • the calculation unit 15a reads the constants “g” and “ ⁇ ” stored in advance in the storage unit 15b, the frequency “” obtained in step S607, and the center angle “ ⁇ ” obtained in step S610. ”And the length“ b ”obtained in step S608 and the length“ 1 ”obtained in step S611, according to equation (9 ′) corresponding to equation (9) above (that is, equation (9 “B” in equation (9 ') is “b”), and the length in the left-right direction from the center of the axle to the center of gravity W of the container freight vehicle in the vertical section at the position “k” described above. s ”is calculated (step S612).
  • Equation (9 ′) “g” is gravitational acceleration. “ ⁇ ” is the circumference ratio. “ ⁇ ” is the rolling center angle of the center of gravity W of the container freight vehicle. “” Is the pitching frequency. “B” is a substantial length in the left-right direction of the member supporting the container 11. “1” is the vertical length from the axle to the center of gravity W of the container freight vehicle in the vertical cross section at the position of “k”.
  • the center-of-gravity detection device 100 includes the container 11 on which the cargo can be mounted, the container 11 and the container. 11, a trailer truck 50 having a container chassis 12 for loading the container chassis 12 and a tractor 10 for pulling the container chassis 12, and detecting the swing of the container cargo vehicle in its own weight direction and width direction when the trailer truck 50 travels straight 2
  • An axis angular velocity sensor 14a and a calculation unit 15 are provided.
  • the calculation unit 15 is based on the physical quantity correlated to the above-described shaking (more precisely, the shaking frequency and the center angle). It is configured to guide the position of the center of gravity in the 3D space of the object vehicle.
  • the three-dimensional center of gravity of this container freight vehicle is This is valuable data that directly reflects the degree of unbalanced load, and this can help prevent the cargo from collapsing and dropping when the container door is opened and the unstable travel of the container transport vehicle.
  • the center-of-gravity detection device 100 derives the three-dimensional center of gravity of a container freight vehicle based on a logical dynamic theory that does not introduce data that lacks a theoretical basis such as a correction coefficient, and its reliability is Extremely high. This is supported by the first verification result from the actual vehicle experiment described later!
  • the center-of-gravity detection device 100 also has the following various effects.
  • the calculation of the 3D center of gravity position of the container cargo vehicle of the center of gravity detection device 100 does not require consideration of the elastic coefficient “k” of the suspension 205 and the weight “m” of the container cargo vehicle. This makes it possible to save the enormous amount of time spent measuring the elastic modulus “k” and weight “m”, and is related to the uncertain factors such as the manufacturer, year and age of the trailer truck 50. Universal application of this technology to any trailer truck 50 (that is, any combination between an unspecified number of tractors 10, an unspecified number of container chassis 12 and an unspecified number of containers 11). make it easier.
  • the center-of-gravity detecting device 100 can calculate the three-dimensional center-of-gravity position of the container cargo vehicle. Therefore, the calculation data acquisition operation can be easily performed, and it is preferable that data for traveling on a curved road is not required as in the above-described prior art (for example, Patent Documents 1, 5, and 6).
  • the calculation of the 3D center of gravity position of the container freight vehicle by the center of gravity detection device 100 uses a two-axis angular velocity sensor 14a at an appropriate position of the tractor 10 by simple means (adhesive bonding or bolting; not shown). It is enough to arrange one. In other words, the large quantity of containers 11 and container chassis 12 that are handled in the container transportation business are suitable because no measures need to be taken.
  • the length “ s ” in the left-right direction from the center of the axle to the center of gravity of the container freight vehicle and the force S are adjusted as follows.
  • almost all ordinary roads are slightly inclined from the center to the road edge. For this reason, even if a freight freight is loaded at the left and right center of the container, the center of gravity of the container freight vehicle traveling on the general road should deviate slightly from the left and right center of the container due to this inclination. If such a slight inclination is detected in this verification experiment, the superior calculation accuracy of the three-dimensional centroid position by the centroid detection apparatus 100 is indirectly proved.
  • Figure 7 shows an example of the rolling frequency / amplitude distribution with the horizontal axis representing frequency (Hz) and the vertical axis representing amplitude (angular velocity).
  • Fig. 8 shows an example of the pitching frequency / amplitude distribution with the horizontal axis representing frequency (Hz) and the vertical axis representing amplitude (angular velocity).
  • Figure 9 shows an example of changes in rolling amplitude over time, with the horizontal axis representing time (seconds) and the vertical axis representing rolling amplitude.
  • the personal computer generates a disturbance in the vertical direction from the road surface at the front of the container as a frequency corresponding to the peak amplitude by an appropriate mathematical extraction method.
  • Rolling frequency ⁇ v '' and rolling frequency ⁇ v '' generated when a disturbance is applied in the vertical direction from the road surface at the rear of the container
  • the personal computer calculates the center angle “ ⁇ ” of the center of gravity rolling as follows.
  • the personal computer uses the constants specific to the container, tractor, and container chassis to calculate the length “k” from the front of the container to the position of the center of gravity according to the theoretical formula stored in the internal memory.
  • the above-mentioned constants include the length “P” in the longitudinal direction of the container, the diameter “b” of the force bra of the tractor, the length “k” from the front of the container to the center of the force bra, There is a substantial left and right length “b” of the member supporting the container at the rear position.
  • the measurement error of the actual measurement value includes, for example, a reading error when measuring the dummy cargo dimensions and the loading position in the container with the measure. If this is the case, the estimated calculation value of the present embodiment based on pure dynamic theory is considered to be less likely to contain errors than the actual measurement value. Is also estimated to represent the true center of gravity position.
  • FIG. 10 is a schematic diagram showing a configuration example of the rollover limit speed prediction device according to the second embodiment.
  • Fig. 10 (a) is a view of this prediction device as seen from the width direction (side) of the container cargo vehicle
  • Fig. 10 (b) is a view of this prediction device from the rear side of the container cargo vehicle. It is.
  • the direction in which the container freight vehicle is subjected to its own weight is “vertical direction”
  • the width direction of the container freight vehicle is “left-right direction”
  • the traveling direction of the container freight vehicle is “front-rear direction”.
  • the rollover limit speed prediction device 110 includes a trailer track 50 and a data detection unit 114 as shown in FIG. And an arithmetic unit 115.
  • FIG. 11 is a block diagram showing an example of the internal configuration of the data detection unit and the arithmetic unit in the rollover limit speed prediction apparatus according to the present embodiment.
  • the data detection unit 114 is fixed to the center of the trailer truck 50 in the left-right direction and does not interfere with the transportation work on the tractor 10 side (for example, in the vicinity of the force bra 13 shown in FIG. 10).
  • the arithmetic unit 115 is disposed at an appropriate position in the cab of the tractor 10. The two are connected so as to be able to transmit data via wired communication or wireless communication via an appropriate data input / output port (not shown).
  • the data detection unit 114 contains the same equipment as the constituent elements of the fluctuation detector 14 described in the first embodiment.
  • the data detection unit 114 has two axes (2 Dimension) angular velocity sensor 14a and an A / D (analog / digital) converter 14b for converting an analog signal output from the angular velocity sensor 14a into a digital signal.
  • the data detection unit 114 also receives various types of traffic radio information from the local ITS (Intelligent Transport Systems) via the antenna 114c.
  • a receiver 114d for providing information to the arithmetic unit 115 is also provided.
  • the traffic radio information of this embodiment there is radio information on the state of the road surface 204 on which the trailer truck 50 is scheduled to run, for example, the radius of curvature of the curved road 204c.
  • the arithmetic unit 115 includes an arithmetic unit 115a composed of a microprocessor and the like, a storage unit 115b composed of ROM (read only memory), RAM (random access memory), and the like, A display unit 115c.
  • Such an arithmetic unit 115 includes a portable information terminal such as a notebook computer.
  • the storage unit 115b includes a calculation program for appropriately deriving the three-dimensional center of gravity position of the container freight vehicle described in the first embodiment and various input constants necessary for the calculation, as well as the container freight vehicle described later. It stores a calculation program for appropriately deriving the rollover limit speed and various input constants (described later) necessary for the calculation.
  • the calculation unit 115a operates according to the calculation program for detecting the three-dimensional center of gravity position stored in the storage unit 115b in advance, and the angular velocity sensor 14a (A / The force capable of deriving the 3D center of gravity position of the container freight vehicle based on the digital signal output from the D converter 14b).
  • the calculation unit 115a operates in accordance with a rollover limit speed prediction calculation program stored in advance in the storage unit 115b.
  • the calculation unit 115a uses the above-described three-dimensional center of gravity position to run the container freight vehicle.
  • the rollover limit speed of the container freight vehicle according to the radius of curvature of the road 204c can be derived.
  • the calculation unit 115a can sequentially acquire the radio information of the curvature radius of the curved path 204c on which the trailer track 50 is to run from the receiver 114d.
  • the operation setting / display unit 115c is an operation unit provided with the above-described input constant setting buttons.
  • the calculation unit 115a is configured to notify the operator (driver or passenger) in advance of the above-mentioned rollover limit speed using the operation setting / display unit 115c.
  • FIG. 12 and FIG. 13 are schematic diagrams for explaining a method for deriving the rollover limit speed of the container freight vehicle by the rollover limit speed prediction device of the present embodiment.
  • Fig. 12 shows the trailer truck (container cargo vehicle) viewed from the rear when the trailer truck turns right along a curved road.
  • the left wheel of the trailer truck 50 corresponds to the turning outer wheel
  • the right wheel of the trailer truck 50 corresponds to the turning inner wheel!
  • Fig. 13 (a) is a view of the trailer truck turning from the top to the right when the trailer truck turns to the right
  • Fig. 13 (b) shows the trailer truck. It is the figure seen from the left-right direction equivalent to the width direction.
  • FIG. 12 and FIG. 13 the configuration of the rollover limit speed prediction device 110 is illustrated in a simplified or omitted manner so that the method of deriving the rollover limit speed is easy to understand.
  • the speed conditions when the container freight vehicle tilts (rolls over in the worst case) in a cross section perpendicular to the front-rear direction (traveling direction) of the container freight vehicle will be described using FIG.
  • the force F centrifugal force F
  • the track 50 tilts around a circle whose center is the outer end 300 in the width direction of the turning outer ring of the trailer track 50 and whose radius “R” from the outer end 300 to the center of gravity W is a radius.
  • the trailer truck 50 moves circularly around the outer end 300 described above and with the radius “R” as the radius ( The following inequality (1) when starting to rotate) is obtained.
  • “m” is the weight of the container freight vehicle, and “g” is the gravitational acceleration. is there.
  • B is the width dimension of the container freight vehicle, and is equivalent to the length of the portion supporting the load of the container 11 described in the first embodiment.
  • the width dimension “b” is a unique value of the container freight vehicle (a unique value specified for each container freight vehicle; hereinafter the same).
  • V is the traveling speed of trailer truck 50 (container freight vehicle)
  • r is the radius of curvature of curve 204c
  • a is the height from road surface 204 to center of gravity W of curve 204c
  • S is the horizontal length from the vertical center line 201 to the center of gravity W of the container freight vehicle.
  • the container cargo vehicle has a cross section perpendicular to the traveling direction of the container cargo vehicle when the container cargo vehicle rotates around the outer end 300 of the outer ring 300 of the container cargo vehicle. Using the position of the center of gravity of the vehicle, it is obtained in relation to the curvature radius “r” of the curved path 204c.
  • the vertical length from the axle position line 202 to the center of gravity W of the container freight vehicle is “1”, and the length from the vertical center line 201 to the center of gravity of the container freight vehicle is “s”. If it is known based on the method for deriving the three-dimensional center of gravity position of the container freight vehicle described in the first embodiment, the height “a” from the road surface 204 to the center of gravity W corresponding to the vertical component of the distance “R” is It can be easily derived geometrically based on the freight vehicle's eigenvalues (wheel width and axle height).
  • the present inventor has found that in such a traveling motion, in addition to inducing bending (jackknife) of the tractor 10 and the container freight vehicle (container chassis 12), in the running direction of the container freight vehicle described above. Independent of the rotational movement of the container freight vehicle in a vertical section, the rotational movement in the horizontal plane acts simultaneously, and these movement forces coincide with the direction in which the container freight vehicle tilts accidentally and instantaneously. Found that there is. The formulation of the rotational motion in the horizontal plane will be described step by step with reference to FIG.
  • “W” is the center of gravity of the container freight vehicle.
  • “1 (large eye)” is a contact point of the front wheel of the tractor 10 to the road surface 204. That is, the ground contact point “I” is located on the road surface 204 immediately below the center of the axle of the front wheel of the tractor 10.
  • C (large size) is a contact point of the rear wheel of the tractor 10 to the road surface 204.
  • this contact point “C” is located on the road surface 204 immediately below the center of the axle of the rear wheel of the tractor 10.
  • the ground contact point “D” is a contact point to the road surface 204 at the center in the front-rear direction of the wheel of the container chassis 12. That is, the ground contact point “D” is located on the road surface 204 immediately below the center in the front-rear direction of the wheels arranged in two rows in the front-rear direction.
  • the force S illustrating the configuration in which the wheel force of the container chassis 12 is arranged in two rows in the front-rear direction is not limited to this.
  • the wheels of the container chassis 12 may be arranged in one row in the front-rear direction or in three or more rows in the front-rear direction. Even in such a case, the ground contact point “D” may be determined based on the front-rear center of the wheels arranged in the front-rear direction (in the case of one row, the center of the axle).
  • “E” is a connection point between the tractor 10 and the container chassis 12 (container freight vehicle), and corresponds to the dotted connection position of the coupler 13 shown in FIGS. 1 and 10 as described above. is there.
  • “A” is the height from the road surface 204 to the center of gravity W of the curved road 204c.
  • “S” is the horizontal length from the horizontal center line 207 (vertical center line 201 in FIG. 12) to the center of gravity W in the horizontal plane of the container freight vehicle.
  • “B” is the width dimension of the container freight vehicle.
  • “c (small size)” is the length in the front-rear direction from the ground contact point “C” to the center of gravity W. .
  • “D” is the length in the front-rear direction from the contact point “D” to the center of gravity W.
  • E is the length in the front-rear direction from the connection point “E” to the contact point “C”.
  • F is the length in the front-rear direction from the contact point “I” to the connection point “E”.
  • L is the length in the front-rear direction from the contact point “C” to the contact point “D” (in other words, the distance between the contact point “C” and the center of gravity W and the center of gravity W and the contact point “D”. The distance between and the length; “c” + length “d”).
  • the length “e”, the length “f”, and the length “L” are eigenvalues of the container freight vehicle.
  • the length “kg” from the front of the container 11 to the position of the center of gravity W is assumed to be known based on the method for deriving the three-dimensional center of gravity position of the container freight vehicle described in the first embodiment!
  • the longitudinal length “c” from the ground contact point “C” to the center of gravity W and the longitudinal length “d” from the ground contact point “D” to the center of gravity W are eigenvalues (wheels It can be easily derived geometrically based on the position of
  • the centrifugal force “F” applied to the center of gravity W of the container freight vehicle is applied to the component of the centrifugal force “Fi” applied to the contact point “I” and the contact point “C”. It is shown to be divided into the component of centrifugal force “Fc”, the component of centrifugal force “Fd” applied to the ground contact point “DJ”, and the component of centrifugal force “Fe” applied to the connection point “E”. Yes.
  • the anti-force from the coupler 204 (not shown in FIG.
  • centrifugal force “Fi” is expressed as follows.
  • centrifugal force "Fc" is expressed as c
  • centrifugal force “Fd”, the centrifugal force “Fe”, the centrifugal force “Fi”, the centrifugal force “Fc”, and the centrifugal force “F” are components of the centrifugal force “F” acting on the center of gravity W of the container cargo vehicle. "And the position of the center of gravity W in the direction of travel of the container freight vehicle.
  • the container freight vehicle is most likely to roll over on the curved road 204c when the container freight vehicle rotates in the section perpendicular to the traveling direction of the container freight vehicle (inequality (1)) and the container freight in the horizontal plane.
  • the rotational movement of the vehicle (inequality (2)) and the simultaneous action This is the case.
  • the speed of the container freight vehicle in such a case can be obtained by solving the following simultaneous inequality consisting of inequality (1) and inequality (2) with the traveling speed “V” of the container freight vehicle.
  • “g” is the gravitational acceleration.
  • “B” is the width of the container freight vehicle.
  • “R” is the radius of curvature of the curve 204c.
  • “A” is the height from the road surface 204 to the center W of the curved road 204c.
  • “S” is the horizontal center line 207 (vertical center line 201) force in the horizontal direction to the center of gravity W of the container freight vehicle.
  • “C” is the length in the front-rear direction from the contact point “C” to the center of gravity W.
  • “D” is the length in the front-rear direction from the contact point “D” to the center of gravity W.
  • “E” is the length in the front-rear direction from the connection point “E” to the contact point “C”.
  • “F” is the length in the front-rear direction from the contact point “I” to the connection point “E”.
  • “L” is the length in the front-rear direction from the contact point “C” to the contact point “D”.
  • This inequality (3) is a formula for determining the range of the rollover speed of a container freight vehicle that is predicted to result in the rollover of the container freight vehicle. Therefore, the 3D center of gravity of the container freight vehicle If known, it is possible to appropriately predict the range of speeds in which the inequality (3) of the traveling speed “V” of the container freight vehicle holds, that is, the range of the rollover speed of the container freight vehicle S .
  • the rollover limit speed “VI” of a container freight vehicle is given by the following equation (4), in which the right side and the left side of the inequality (3) are connected by an equal sign.
  • the rollover limit speed “VI” is a reference speed for determining whether or not the container freight vehicle will roll over, and is valuable for appropriately determining the abnormal speed on the curved road 204c of the container freight vehicle. It is data.
  • FIG. 14 is a flowchart showing a prediction operation of the rollover limit speed of the container cargo vehicle by the rollover limit speed prediction apparatus of the present embodiment.
  • the calculation unit 115a of the calculation unit 115 reads the calculation program for the rollover limit speed prediction from the storage unit 115b and an appropriate constant stored in advance. This calculation program executes the following processing while controlling the calculation unit 115a, the storage unit 115b, and the operation setting / display unit 115c.
  • this constant includes the gravitational acceleration “g”, the width dimension “b” of the container freight vehicle, the length “e” in the front-rear direction from the connection point “E” to the contact point “C”, and the contact point.
  • the constants are input to the storage unit 115b for each model of the trailer track 50 as described below. And Further, the constants input to the storage unit 115b can be used as they are without being input again unless the model of the trailer truck 50 is subsequently changed.
  • workers use the above-mentioned constants “e”, “f”, “b”, “L” using appropriate materials such as vehicle verification of the trailer truck 50 and manufacturer specifications. Is identified.
  • the constants “e”, “f”, “b”, and “L” are input to the storage unit 115b of the arithmetic unit 115 by the operation of the operation setting / display unit 115c by the operator (step S 1401 ). Since the gravitational acceleration “g” as a constant is a universal value, it is stored in advance in the storage unit 115b. As a result, the calculation unit 115a can acquire these constants “e”, “f”, “b”, “shi”, “g”. Next, the calculation unit 115a uses any of the methods described below. Obtain data related to container cargo vehicles.
  • the calculation unit 115a calculates the height “a” from the road surface 204 to the center of gravity W of the curved path 204c and the horizontal center line 207 (vertical center line 201) force in the horizontal direction to the center of gravity W of the container freight vehicle. Acquire “s”, the longitudinal length “c” from the ground contact point “C” to the center of gravity W, and the longitudinal length “d” from the ground contact point “D” to the center of gravity W (steps). S1402).
  • the calculation unit 115a operates according to the calculation program for detecting the three-dimensional center-of-gravity position stored in advance in the storage unit 115b, and outputs from the angular velocity sensor 14a (A / D converter 14b) described in the first embodiment.
  • the 3D center of gravity of the container freight vehicle may be acquired based on the digital signal.
  • the calculation unit 115a performs the above-described centroid-related data “a”, “s”, “c”, and “d” by simple geometric calculation based on the data of the three-dimensional centroid position. I can calculate.
  • the calculation unit 115a can automatically acquire high-precision data from the three-dimensional center of gravity position of the container freight vehicle derived based on the logical dynamic theory. Note that the method for deriving the three-dimensional center of gravity position of the container freight vehicle has been described in detail in the first embodiment, and is omitted here.
  • the calculation unit 115a acquires the curvature radius “rj” of the curved path 204c by any of the methods described below (step S1403).
  • the arithmetic unit 115a automatically obtains radio information of the curvature radius “r” of the curved path 204c to which the trailer truck 50 is to approach from the local ITS using the receiver 114d. May be.
  • the curvature radius of the curved path 204c where the trailer truck 50 is scheduled to travel may be investigated in advance. Then, the calculation unit 115a can acquire this value “r” by inputting the radius of curvature “r” using the operation setting / display unit 115c by the operator.
  • the calculation unit 115a calculates a numerical range assumed as the curvature radius of the curved path 204c (for example, a range from the number of bending curves at the intersection to the number of gentle curves on the expressway). It is possible to chop up each numerical value and obtain this continuously.
  • the calculation unit 115a reads the constants “e”, “f”, “b”, “shi”, and “g” stored in the storage unit 115b, and the three-dimensional container freight vehicle obtained in step S1402.
  • step S 1404 the rolling limit speed “VI” (predicted value) of the container freight vehicle according to the curvature radius “r” is calculated (step S 1404).
  • E is the length in the front-rear direction from the connection point “E” to the contact point “C”.
  • F is the length in the front-rear direction from the contact point “I” to the connection point “E”.
  • L is the length in the front-rear direction from contact point “C” to contact point “D”.
  • the calculation unit 115a displays the rollover limit speed “VI” obtained in step S 1404 on the display screen of the operation setting / display unit 15c of the calculation unit 115 so as to notify the operator, and / or Voice is transmitted through the speaker of the operation setting / display section 15c (step S 1405).
  • the calculation unit 115a obtains the radio information of the curvature radius “r” of the curved path 204c to which the trailer track 50 is about to reach from the local ITS through the receiver 114b, while sequentially obtaining the operation setting / display unit 15c. Use this to send notifications to the operator such as ⁇ If you turn left at the next intersection, turn below ⁇ VI '''' or ⁇ Keep the next curve on this expressway below ⁇ VI '''' Yes.
  • the calculation unit 115a determines whether or not to change the curvature radius “r” of the curved path 204c (step S1406).
  • Step S1403 to Step S1405 the processing of Step S1403 to Step S1405 described above is repeated.
  • the process proceeds to the next determination step, and the calculation unit 115a performs the above-described center-of-gravity related data “a”, “s ”,“ C ”, or“ d ”is determined (step S 1407).
  • the above-mentioned step S The processing from 1402 to step S 1406 is repeated.
  • step S 1407 determines whether or not to change the above-described constants “e”, “f”, “b”, and “L” that are eigenvalues of the trailer track 50 (step S1408).
  • step S1408 determines whether or not to change the above-described constants “e”, “f”, “b”, and “L” that are eigenvalues of the trailer track 50.
  • the rollover limit speed prediction device 110 is a series of container cargos. Finish the prediction routine of the rolling limit speed “VI” of the vehicle.
  • the rollover limit speed prediction device 110 of the present embodiment includes the container 11 on which the cargo can be loaded, the container chassis 12 on which the container 11 is loaded, and the trailer truck 50 having the tractor 10 towing the container chassis 12. And an arithmetic unit 115.
  • the arithmetic unit 115 acquires the center of gravity position of the container cargo vehicle in the three-dimensional space and the curvature radius “r” of the curved path 204c on which the container cargo vehicle is scheduled to run. Using the center of gravity position in the dimensional space, the rollover limit speed “VI” on the curved path 204c of the container freight vehicle according to the curvature radius “r” of the curved path 204c is appropriately derived.
  • Such a rollover limit speed “VI” is a reference speed for determining whether or not a container freight vehicle rolls over, thereby preventing unstable running on the curved track 204c of the trailer truck 50. It can help to stop.
  • the arithmetic unit 115 rotates the container freight vehicle around the outer end 300 in the width direction of the turning outer ring of the container freight vehicle using the position of the center of gravity of the cross section perpendicular to the traveling direction of the container freight vehicle.
  • the connection between the tractor 10 and the container cargo vehicle using the inequality (1) representing the relationship between the vehicle speed “V” and the radius of curvature “r” and the position of the center of gravity in the traveling direction of the container cargo vehicle.
  • the inequality (2) that expresses the relationship between the vehicle speed “V” and the radius of curvature “r” when the container freight vehicle rotates around the point “E”! Can lead "VI"
  • the rollover limit speed “VI” of a container freight vehicle can be derived based on a logical dynamic theory without introducing data that lacks a theoretical basis such as a correction coefficient, and the reliability of the calculation results is extremely high. high. This is supported by the second verification result from an actual vehicle experiment described later.
  • “D” can also be derived using the three-dimensional center of gravity position of the container freight vehicle by the center of gravity detection device 100 of the first embodiment.
  • the labor of measuring the center-of-gravity related data ⁇ a '', ⁇ s '', ⁇ c '', and ⁇ d '' can be saved, and as demonstrated in the first embodiment, high-precision center-of-gravity related data ⁇ a '', ⁇ s ”,“ c ”,“ d ”are obtained.
  • the calculation unit 115a uses the receiver 114d to obtain the radio information of the curvature radius “r” of the curved path 204c on which the trailer truck 50 is scheduled to run in the region. Can be obtained automatically from ITS. This saves time and effort for obtaining the curvature radius “r” of the curved path 204c.
  • the eigenvalues include the width “b” of the container freight vehicle, the length “e” in the front-rear direction from the connection point “E” to the contact point “C”, and the connection point “E” from the contact point “I”. And a longitudinal length “L” from the ground contact point “C” to the ground contact point “D”.
  • the center-of-gravity-related data includes the height ⁇ a '' from the road surface 204 to the center of gravity of the curved road 204c, and the horizontal center line 207 (vertical center line 201) force as well as the lateral length ⁇ s '' to the center of gravity of the container freight vehicle. And a longitudinal length “c” from the contact point “C” to the center of gravity, and a longitudinal length “d” from the contact point “D” to the center of gravity.
  • this trailer truck was run in a curved line and turned over.
  • this verification experiment attracted the attention of relevant parties as an epoch-making effort to overturn an actual trailer truck (actual vehicle) by driving a real driver.
  • FIG. 15 is a view showing a photograph of the recording screen of the tachometer of the trailer truck for verification experiment of this verification experiment.
  • FIG. 16 is a diagram showing the relationship between the radius of curvature on the horizontal axis and the rollover limit speed of the container freight vehicle on the vertical axis.
  • the solid line in FIG. 16 showing the relationship between the curvature radius “r” and the rolling limit speed “VI” of the container freight vehicle is referred to as the “correlation line of the curvature radius rollover limit speed”.
  • the value of the vertical axis of the curve of curvature radius-rolling limit speed corresponding to the case where the radius of curvature “r” on the horizontal axis is 35 m can be read as approximately 37 Km / h.
  • the validity of the method for deriving the rollover limit speed “VI” of the container freight vehicle by the rollover limit speed prediction device 110 of the second embodiment was supported by this verification experiment.
  • the range of the rollover speed on the trail of the trailer truck (container freight vehicle) corresponding to the radius of curvature "r" can be appropriately estimated from the correlation line of the radius of curvature rollover limit speed.
  • the correlation line of the radius of curvature limit rollover speed when traveling on a road with a radius of curvature “r” for verification experiment of 35 m (such a road is very common on ordinary roads).
  • the traveling speed of the verification trailer truck exceeds 37 km / h (this speed is within the normal speed limit), the verification trailer truck may roll over. Can be judged to be high.
  • the rollover limit speed “VI” of the container freight vehicle may be exceeded depending on how the container cargo is loaded on the container. is there. And this is the fact that the container cargo mentioned above It clearly demonstrates the importance and usefulness of detecting the 3D center of gravity of a vehicle.
  • FIG. 17 is a schematic diagram illustrating a configuration example of the cargo weight prediction apparatus according to the third embodiment.
  • Fig. 17 (a) shows the cargo weight device as seen from the width direction (side) of the container cargo vehicle.
  • Fig. 17 (b) shows this cargo weight device from the rear side of the container cargo vehicle.
  • FIG. In the drawings the direction in which the container freight vehicle is subjected to its own weight is “vertical direction”, the width direction of the container freight vehicle is “left-right direction”, and the traveling direction of the container freight vehicle is “front-rear direction”.
  • the hardware configuration of the cargo weight prediction device 100A is the same as the hardware configuration of the gravity center detection device 100 of the first embodiment. Therefore, in FIG. 17, the components of the cargo weight prediction device 100A are denoted by the same reference numerals as the corresponding components of the gravity center detection device 100, and a detailed description of the configuration of the cargo weight prediction device 100A is given. Is omitted.
  • the force S is distinguished from the gravity center position device 100 of the first embodiment in which such a calculation program is not stored in the storage unit 15b. Can be used as is.
  • this derivation method uses the three-dimensional center of gravity of the container freight vehicle as an input value, and considers only the container freight vehicle's three directions (front and rear, left and right, and up and down). It is characterized in that the apparent weight is geometrically derived based on the rationale. This derivation method is also characterized in that the net weight of container cargo is theoretically derived by geometric mean using these apparent weights, as will be described later.
  • Such input values include the container in the traveling direction (front-rear direction) of the container freight vehicle. 11 length “p” (see FIG. 18), container cargo vehicle length (b) in the width direction (left-right direction) (see FIG. 19), and container cargo is loaded in container 11.
  • No container freight vehicle weight “m” hereinafter abbreviated as “m” if necessary) and axle position line
  • Length z from the container 202 to the upper end of the container 11 (see FIG. 20).
  • the above-mentioned input value includes the position of the center of gravity “W” in the three-dimensional space of the container freight vehicle loaded with container cargo (hereinafter abbreviated as the position of the center of gravity “W” if necessary). ), And the position of the center of gravity “W” in the three-dimensional space of a container freight vehicle in which container cargo is not loaded in the container 11 (hereinafter referred to as the position of the center of gravity “W” if necessary).
  • the position of the center of gravity “W” can be accurately derived by the method for deriving the three-dimensional center position of the container freight vehicle described in the first embodiment.
  • the type of container 11 or container chassis 12 is special.
  • the method for deriving the three-dimensional center of gravity position of the container freight vehicle described in the first embodiment can be applied regardless of whether or not the container freight is loaded on the container 11. Therefore, when the container chassis 11 loaded with various empty dummy containers with different container types (for example, 40-foot containers, refrigerated containers, etc.) is pulled by the standard tractor 10, various methods can be used according to the above derivation method. The position of the center of gravity “W” of the container of the correct type is obtained.
  • the position of the center of gravity “w” of the container for each container type is stored in a database in advance.
  • the arithmetic unit 15 appropriately reads out the data of the position of the center of gravity “W” of the container of the same type as the container loaded with the container cargo from the storage part 15b.
  • FIG. 18 shows the apparent weight “m u ” of the container cargo considering only the longitudinal direction of the container cargo vehicle by the cargo weight prediction apparatus of the present embodiment (hereinafter, abbreviated as “m u ” if necessary).
  • FIG. 6 is a schematic diagram for explaining the derivation method, and is a diagram schematically showing the state of each center of gravity when the container freight vehicle is viewed from the vertical direction (more precisely, the upward direction).
  • the width direction of the container freight vehicle is “left-right direction” and the traveling direction of the container freight vehicle is “front-rear direction”.
  • the center of gravity “w” exists between 0 and the center of gravity “w”, and these three are arranged on the same straight line. At this time, the center of gravity “w” is before and after the center of gravity “w” across the center of gravity “w” and to the left
  • the weight distribution in the front-rear direction loaded on the entire bottom surface of the container 11 is expressed as the weight “m” and the weight “m”.
  • the weight ⁇ m '' is geometrically determined as follows:
  • this “k” takes a positive or negative value depending on how the coordinate system is taken. become.
  • FIG. 19 shows the apparent weight “m” (hereinafter abbreviated as “m” if necessary) of the container cargo in consideration of only the left-right direction of the container cargo vehicle by the cargo weight prediction apparatus of the present embodiment. It is a schematic diagram explaining the derivation method, and is a diagram schematically showing the state of each center of gravity viewed from the vertical direction (more precisely, the upward direction) of the container freight vehicle. Similarly in FIG. 19, the position of the center of gravity “W” in addition to the position of the center of gravity “W” and the position of the center of gravity “W”.
  • the weight distribution in the left-right direction loaded on the entire bottom surface of the container 11 is expressed as the weight “m” and the weight.
  • the weight “m” can be determined geometrically as follows:
  • Equation (3) and Equation (4) “b” is the length in the left-right direction of the part (horizontal beam) that supports the container 11, and “m” is the container cargo loaded in the container 11. Not container coins
  • s is a value that describes the position of the center of gravity “W” with respect to the horizontal center line 207 as the length in the left-right direction using the coordinate system described later, and “s” is the horizontal
  • the above-mentioned “s” is treated as a simple length (positive value) in the left-right direction from the center of the axle (horizontal center line 207) to the center of gravity “W” of the container freight vehicle.
  • “s” takes a positive value or a negative value depending on how to take the coordinate system.
  • the coordinate system shown in FIG. 19 as in the coordinate system of FIG. 18, by placing the origin (0, 0) of the coordinate axis at the center in the left-right direction of the front transverse beam 20, Y-axis parallel to the left and right direction can be drawn so that they are orthogonal to each other at the origin. Using such a coordinate system, the positional relationship between the center of gravity “W”, the center of gravity “W”, and the center of gravity “W” is not affected.
  • the method of taking the coordinate system is merely an example until it gets tired, and can be arbitrarily determined.
  • Equation (3) Based on the concept of weight distribution in the right direction, it can be formulated as Equation (3) and Equation (4) above.
  • Equation (3) a method for geometrically deriving the apparent weight of container cargo taking into account only the vertical direction (self-weight direction) of the container cargo vehicle will be described with reference to FIG.
  • FIG. 20 shows the apparent weight “m” of container cargo considering only the vertical direction of the container cargo vehicle by the cargo weight prediction apparatus of the present embodiment (hereinafter abbreviated as “m” if necessary). It is a schematic diagram explaining the derivation method, and is a diagram schematically showing the state of each center of gravity viewed from the front-rear direction (more precisely, the rear direction) of the container freight vehicle.
  • the direction in which the container freight vehicle is subjected to its own weight is the “vertical direction”
  • the width direction of the container freight vehicle is the “left-right direction”.
  • the weight distribution in the vertical direction loaded on the entire bottom surface of the container 11 is represented by the weight “m” and z.
  • the weight “m” is geometrically defined as follows:
  • the weight of the freight vehicle, and “m” is a container that takes into account only the vertical direction of the container freight vehicle.
  • “1” is a value that describes the position of the center of gravity “W” with reference to the axle position line 202 in the vertical length using the coordinate system described later, and “1” is the axle.
  • the above-mentioned “1” is treated as a simple vertical length (positive value) from the axle (axle position line 202) to the center of gravity “W” of the container cargo vehicle! /
  • this “1” takes a positive value or a negative value depending on how the coordinate system is taken.
  • M Describes how to derive the taste weight “M” (hereinafter abbreviated as “M” if necessary)
  • weight “m”, weight “m”, and weight “m” can be described by adding an error dependent on each direction to the net weight “M” of the container cargo.
  • FIG. 21 is a flowchart showing the container cargo weight predicting operation by the cargo weight predicting apparatus of the present embodiment.
  • the calculation unit 15a of the calculation unit 15 reads the calculation program for cargo weight prediction and an appropriate constant stored in advance from the storage unit 15b.
  • Calculation Program Power The following processing is executed while controlling the calculation unit 15a, the storage unit 15b, and the operation setting / display unit 15c.
  • This constant includes the length “p” of the container 11 in the traveling direction (front-rear direction) of the container cargo vehicle, the length “b” of the container 11 in the width direction (left-right direction) of the container cargo vehicle, There is a length “z” from the axle position line 202 to the upper end of the container 11 and a weight “m” of a container freight vehicle in which the container cargo is not loaded on the container 11.
  • the constant is input to the storage unit 15b for each model of the trailer truck 50 (model of the container 11) such as the operation described below. To do. Further, the constants input to the storage unit 15b can be used as they are without being input again unless the model of the trailer track 50 is subsequently changed.
  • the operator (driver or passenger) identifies the above constants ⁇ b '', ⁇ z '', ⁇ m '' using appropriate materials such as vehicle verification of the trailer truck 50 and manufacturer specifications. To do. And work
  • calculation unit 15a uses one of the methods described below to relate the data related to the center of gravity “W”.
  • the calculation unit 15a uses the value “k” described by the length in the front-rear direction using the above-described coordinate system to determine the position of the center of gravity “W” with respect to the front part (front cross beam 20) of the container 11. "When , The position of the center of gravity “W” with respect to the horizontal center line 207 is
  • the center-of-gravity related data “k”, “s”, and “1” as described above may be stored in advance in a database for each type of gO 0 0 container and stored in the storage unit 15b.
  • the arithmetic unit 15a reads the data gO 0 0 of “k”, “s”, and “1” corresponding to the container of the same type as the container 11 from the database of the storage unit 15b, thereby calculating these numbers.
  • Direct “k”, “s”, “1” gO oo can be acquired as the gravity center related data.
  • the center-of-gravity related data “k”, “s”, “1” can be acquired.
  • Container freight car g0 0 0 compared to the first method due to measurement error of related data “k”, “s”, “i”
  • the accuracy of both 3D centroid positions may be inferior.
  • the calculation unit 15a acquires related data of the center of gravity “W” by any of the methods described below. Specifically, the calculation unit 15a uses a value “k” that describes the position of the center of gravity “W” with respect to the front portion (front cross beam 20) of the container 11 as a length in the front-rear direction using the coordinate system described above. ”And the value“ s ”in which the position of the center of gravity“ W ”with respect to the horizontal center line 207 as a reference is described in terms of the length in the left-right direction using the coordinate system described above, and the axle position line 202 as a reference. A value “1” in which the position of the center of gravity “W” is described by the length in the vertical direction using the coordinate system described above is acquired (step 2103).
  • the calculation unit 15a operates according to a calculation program for detecting the three-dimensional center of gravity position stored in the storage unit 15b in advance.
  • the angular velocity sensor 14a (A / D converter 14b) described in the first embodiment is related to the data “k”, “1”, “s” of the center of gravity “W” of the container freight vehicle based on the output digital signal. May be obtained.
  • the arithmetic unit 15a Highly accurate data can be automatically obtained from the 3D center of gravity of the container freight vehicle derived from the theory. Note that the method for deriving the three-dimensional center of gravity position of the container freight vehicle has been described in detail in the first embodiment, and is omitted here.
  • the accuracy of the original center of gravity position may be inferior.
  • the calculation unit 15a reads out g g0 of the center-of-gravity related data “k” and “k” stored in the storage unit 15b, and determines whether or not the center-of-gravity related data “k” is greater than or equal to the center of gravity related data “k”.
  • G0 g the center-of-gravity related data “k” and “k” stored in the storage unit 15b.
  • center-of-gravity related data “k” is greater than or equal to the center-of-gravity related data “k” (g0 g in step S2104)
  • the calculation unit 15a reads the constants “m” stored in the storage unit 15b in advance, and uses the center-of-gravity related data “k” and the constants “m”.
  • the apparent weight “m” of the container cargo considering only the longitudinal direction of the container cargo vehicle is calculated (step S2105).
  • the calculation unit 15a reads the constants “P” and “m” stored in advance in the storage unit 15b, and uses the center-of-gravity related data “k” and the constants “and“ m ”. , Formula (2)
  • the apparent weight “m” of the container cargo considering only the longitudinal direction of the container cargo vehicle is calculated (step S 2106).
  • the calculation unit 215a reads the center-of-gravity related data “s” and “s” stored in the storage unit 15b.
  • the calculation unit 15a reads the constants “b” and “m” stored in advance in the storage unit 15b, and uses the center-of-gravity related data “s” and the constants “b” and “m”. From equation (3),
  • the apparent weight “m” of the container cargo considering only the left-right direction of the container cargo vehicle is calculated by b (step S2108).
  • the calculation unit 15a reads the constants “b” and “m” stored in advance in the storage unit 15b, and uses the gravity center related data “s” and the constants “b” and “m”. According to equation (4)
  • the apparent weight “m” b of the container cargo considering only the left-right direction of the container cargo vehicle is calculated (step S2109).
  • the calculation unit 15a reads the center-of-gravity related data “1” and “1” stored in the storage unit 15b.
  • the calculation unit 15a uses the constants “z” and “m” stored in advance in the storage unit 15b.
  • the calculation unit 15a calculates the constants“ z ”and“ m ”stored in advance in the storage unit 15b.
  • the computing unit 15a obtains the weight “m” obtained in step S2105 or step S2106.
  • the calculation unit 15a displays this weight “M” on the display screen of the operation setting / display unit 15c (step S2113). In this way, the calculation unit 15a performs a routine for predicting the net weight “M” of a series of container cargoes. Finish.
  • the cargo weight prediction apparatus 100A of the present embodiment includes the container 11 on which the cargo can be loaded, the container chassis 12 on which the container 11 is loaded, and the trailer truck 50 having the tractor 10 that pulls the container chassis 12. And an arithmetic unit 15.
  • the cargo weight prediction apparatus 100A is configured so that the calculation unit 15 has the position of the center of gravity “W” in the 3D space of the container cargo vehicle on which the container cargo is mounted and the 3D of the container cargo vehicle on which the container cargo is not mounted. Get the position of the center of gravity "W” in space and these
  • the arithmetic unit 15 has two centroids “W” and “W” positions, a container freight vehicle.
  • Only the traveling direction of the container cargo vehicle is determined based on the length “p” of the container 11 in the traveling direction and the weight “ m ” of the container cargo vehicle not loaded with the container cargo.
  • the apparent weight “m” of the container cargo considered can be derived from the concept of geometric weight distribution in the direction of travel.
  • the arithmetic unit 15 has two center of gravity "W", "W" position, width of container freight vehicle
  • the apparent weight “m” of tena cargo is derived from the concept of geometric weight distribution in the width direction.
  • the arithmetic unit 15 has two gravity centers "W” and "W", and the position of the container cargo vehicle.
  • the container length in the heavy direction is “z” and the container is not loaded with container cargo. Based on the weight “m” of the tenor freight vehicle, only the weight direction of the container freight vehicle is considered.
  • the apparent weight "m" of a container cargo was considered for the geometric weight distribution in the direction of its own weight.
  • the calculation unit 15 calculates the net weight of the container cargo based on the geometric mean concept based on the apparent weights “m”, “m”, and “m” of the container cargo in each of these three directions.
  • the weight “M” can be led.
  • the net weight “M” of container cargo can be derived based on the theoretical theory of the dynamic mass system without introducing data that lacks the rationale such as correction factors, and the reliability of the weight calculation Is extremely expensive. This is supported by the results of the third verification by actual vehicle tests described later.
  • the calculation of the container cargo weight was executed using the calculation program.
  • the calculated value of the net weight “M” of container cargo by geometric average is about 8.6 tons, which is almost the same as the weight of dummy cargo (about 9.5 tons). Therefore, the validity of the method for deriving the weight of container cargo using the cargo weight prediction device 100A of the third embodiment was supported by this verification.
  • the center-of-gravity detection device of the present invention is a tertiary vehicle that can be loaded with cargo and towed by a towed vehicle.
  • the original center of gravity can be derived appropriately.
  • the rollover limit speed prediction device of the present invention can appropriately guide the rollover limit speed of the vehicle towed by the towing vehicle.
  • the cargo weight prediction device of the present invention can appropriately guide the weight of the cargo mounted on the vehicle towed by the towing vehicle. Therefore, these inventions can be used, for example, for transporting a trailer truck that pulls a container chassis loaded with a container by a tractor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Testing Of Balance (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

明 細 書
重心検知装置および横転限界速度予測装置並びに貨物重量予測装置 技術分野
[0001] 本発明は、貨物を搭載可能な、牽引車両により牽引される車両の重心検知装置お よび横転限界速度予測装置並びに貨物重量予測装置に係り、更に詳しくは、牽引 車両に牽引輸送されるコンテナ貨物車両の 3次元空間上の重心位置を求める技術、 および 3次元空間上の重心位置を用いて曲路における車両の横転限界速度、貨物 の重量を求める技術に関する。
背景技術
[0002] 国際間の輸出入により商取引されるコンテナ貨物は、国内流通網においては、コン テナごとコンテナシャーシと称される台車に載せられ、このコンテナシャーシを牽引可 能なトラクタや機関車等の牽引車両により牽引輸送されている。
ところで、上述のコンテナ貨物は、通常は、コンテナ内の積載状態を未確認のまま 輸送されることから、従来からコンテナ輸送車両による様々な不都合が社会的に問題 視されている。例えば、コンテナ内の貨物の偏荷重に依拠した、コンテナの扉開封時 の貨物の荷崩れ落下やコンテナ輸送車両の曲路における走行不安定といった事態 が社会問題に発展するに至っている。
その一方で、四輪トラック等の車両の貨物積載の状態を計測する技術や貨物の積 載異常への対処法が既に種々提案されて!、る。
例えば、電子制御の制動装置 (ブレーキ制御装置)を有するトレーラ (上記コンテナ シャーシに相当)の制動方法に関する従来技術がある (特許文献 1参照)。本従来技 術により、狭い曲線車道又は高速自動車道路出口の車両転倒が防止される。
また、トラックのローリング周波数を測定することにより、車両の前後の長手方向 (走 行方向)の慣性モーメント、質量および傾斜を導く従来技術がある(特許文献 2参照) 。本従来技術によれば、車両の慣性モーメント、質量および傾斜が一義的に計算で き、例えば車両の転倒可能性を事前に予知している。
また、アーティキュレート式ダンプトラック力 停止時に積載している土砂等を排出 するためにダンプボディを上げた際に、偏荷重による傾斜が原因となって生じる転倒 を防ぐことを意図した従来技術がある (特許文献 3参照)。
また、トラックの荷台に積載される貨物の重量を荷台の表面に敷き詰められた感圧 センサによって、トラックの荷台の静的な荷重分布を 2次元平面的に求める従来技術 がある(特許文献 4参照)。本従来技術によれば、トラックの部分的積載重量超過や 積載重量不均衡などの積載異常を計数的、客観的に検知することになり、貨物の荷 崩れや車両転倒が未然に防止される。
また、トラックの荷台下部に姿勢制御装置を設けることにより、トラックが曲路を曲が つた際の遠心力をセンサにより感知して、荷台の姿勢制御装置を操作させて、その 遠心力に打ち勝てるよう荷台を自動的に傾斜させる従来技術がある(特許文献 5参 昭)
また、荷台の前後左右の水平面上の荷重分布および傾斜または曲路走行時の横 加速度を計測することにより、トラックの荷台に積載された貨物の上下方向の重心の 位置を導く従来技術がある(特許文献 6参照)。本従来技術によれば、予め特定の車 両により特定の積載状態で貨物を荷台に積み、直線路と曲路など異なるいくつかの 路面を試験走行させ、そこで得られた傾斜値や横加速度値を計測して貨物の積載 状態と路面の状況の相違による上下方向の重心の位置の行列データベースを作る こと力 Sできる。このため、そのデータベースを実際の車両の運行時に携行し、貨物の 積載状態ごとに荷重分布と傾斜の値を行列データベースに入力することにより、上下 方向の重心の位置が推定できる。
特許文献 1 :特開 2005— 313879号公報
特許文献 2:特開 2000— 28427号公報
特許文献 3:特開 2000— 302063号公報
特許文献 4:特開平 5— 213108号公報
特許文献 5:特開平 5— 124543号公報
特許文献 6:特開 2001— 97072号公報
発明の開示
発明が解決しょうとする課題 本件発明者は、積載状態が不明なコンテナ貨物の偏荷重により、コンテナ輸送車 両が引き起こす社会問題 (例えば車の横転)を抜本的に解決する技術開発に取り組 んでいる。この技術開発の過程において、コンテナ貨物車両についての 3次元空間 上の重心位置(以下、必要に応じて「3次元重心位置」と略す)の重要性および有益 性に着目した。つまり、このようなコンテナ貨物車両の 3次元重心位置は、コンテナ貨 物の偏荷重の度合いを直接に反映する貴重なデータであり、これが正確に求まれば 、コンテナの扉開封時の貨物の荷崩れ落下やコンテナ輸送車両の曲路における不 安定走行の未然防止に資することができる。
例えば、このようなコンテナ貨物車両の 3次元重心位置が正確に求まれば、コンテ ナ貨物車両が走る曲路の曲率半径に応じたコンテナ貨物車両の横転限界速度を適 切に予測演算できるようになる。また、コンテナ貨物車両の 3次元重心位置が正確に 求まれば、コンテナ貨物の重量を適切に予測演算でき、ひいては、コンテナ貨物の 過積載を予測できるようになる。
なお、本明細書において、コンテナ貨物車両とは、牽引車両以外のコンテナ輸送 車両の部分、つまり、貨物を搭載可能なコンテナと、このコンテナを載せるコンテナシ ヤーシ(台車)とからなる車両を指すものとする。
そして、鋭意研究の結果、補正係数等の理論的根拠を欠くデータを導入することな ぐ論理的な力学理論に基づいた、貨物を搭載可能な、牽引車両に牽引される車両 (例えば上述のコンテナ貨物車両)の 3次元重心位置の導出法を見出すことに成功し た。また、牽引車両に牽引される車両 (例えば上述のコンテナ貨物車両)の 3次元重 心位置を用いた、上述の車両の横転限界速度の導出法を見出すことにも成功した。 更には、牽引車両に牽引される車両 (例えば上述のコンテナ貨物車両)の 3次元重 心位置を用いた、貨物の重量の導出法を見出すことにも成功した。これらの導出法 は、後程詳しく解説する。
また、後述の定式化の内容から容易に理解されるとおり、これらの導出法の理論は 、互いに独立して完結している。よって、車両の 3次元重心位置の導出法としての独 自の利用価値があり、車両の横転限界速度の導出法としての独自の利用価値があり 、貨物の重量の導出法としての独自の利用価値がある。 なお、以上に述べた各従来技術は、貨物を搭載可能な、牽引車両に牽引される車 両の 3次元重心位置の重要性すら、認識してなぐ何れの従来技術も参酌に値しな い。
第 1の本発明は、このような事情に鑑みてなされたものであり、貨物を搭載可能な、 牽引車両に牽引される車両の 3次元重心位置を適切に導ける重心検知装置を提供 することを目的とする(第 1の課題)。
[0004] また、第 2の本発明は、貨物を搭載可能な、牽引車両に牽引される車両の 3次元重 心位置を用いて、車両が走る曲路の曲率半径に応じた車両の横転限界速度を適切 に導ける、横転限界速度予測装置を提供することを目的とする(第 2の課題)。
[0005] また、第 3の本発明は、貨物を搭載可能な、牽引車両に牽引される車両の 3次元重 心位置を用いて、当該貨物の重量を適切に導ける、貨物重量予測装置を提供するこ とを目的とする(第 3の課題)。
課題を解決するための手段
[0006] 上記第 1の課題を解決するため、第 1の本発明は、貨物を搭載可能な、牽引車両 に牽引される車両と、前記車両の走行時の前記輸送車両の自重方向および幅方向 の揺れを検知する揺動検知器と、演算ユニットと、を備え、
前記演算ユニットは、前記揺れに相関する物理量に基づいて、前記車両の 3次元 空間上の重心位置を導ぐ重心検知装置を提供する。
[0007] このような車両の一例は、前記貨物を搭載可能なコンテナと、前記コンテナを載せ るコンテナシャーシとからなるコンテナ貨物車両である。
このようなコンテナ貨物車両の 3次元重心位置は、積載状態が不明な貨物の、偏荷 重の度合いを直接に反映する貴重なデータであり、例えば、これにより、コンテナの 扉開封時の貨物の荷崩れ落下やコンテナ輸送車両の曲路における不安定走行の 未然防止に資することができる。
特に第 1の本発明によれば、補正係数等の理論的根拠を欠くデータを導入すること なぐ論理的な力学理論に基づき車両の 3次元重心位置が導かれており、その演算 結果の信頼性は極めて高レ、。
ところで、物体の重心運動の定式化には、一般的に、質点系の力学の問題として捉 える方法と、剛体系の力学の問題として捉える方法と、がある。
本件発明者は、車両 (ここでは、コンテナ貨物車両を例にとる)の運動を、コンテナ 貨物車両の重心を質点とした質点系の力学の問題として捉えた。そして、これにより 、コンテナ貨物車両の重心の運動を規律する運動方程式が、コンテナ輸送業務の実 情に照らして極めて好都合な式に整理できることに気がついた。
よって、第 1の本発明は、このような知見に基づいて案出されたものであり、第 1の本 発明の重心検知装置の一例は、前記自重方向の揺れが、前記コンテナ貨物車両の 重心を質点とした上下方向の往復運動に対応し、前記幅方向の揺れが、前記コンテ ナ貨物車両の車軸中心を支点とし、前記コンテナ貨物車両の重心を質点とした左右 方向の単振子運動に対応する場合、前記物理量は、前記往復運動の周波数と、前 記単振子運動の周波数および前記単振子運動の中心角度と、を含み、前記演算ュ ニットは、前記単振子運動の周波数に基づいて前記コンテナの走行方向についての 前記コンテナ貨物車両の重心位置を導くとともに、前記往復運動の周波数、前記単 振子運動の周波数および前記単振子運動の中心角度に基づいて、前記走行方向 に垂直な断面についての前記コンテナ貨物車両の重心位置を導くよう、構成された 装置である。
つまり、上述の物理量には、コンテナ輸送車両の弾性係数およびコンテナ貨物車 両の重量が含まれない。そして、このことは、弾性係数および重量の計測に費やされ る膨大な手間を省くことを可能にするとともに、コンテナ輸送車両のメーカ、年式およ び老朽度等不確定要因に関係なぐ任意のコンテナ輸送車両 (つまり、不特定多数 の牽引車両と、不特定多数のコンテナシャーシと、不特定多数のコンテナとの間の任 意の組合せ)への本技術の普遍的な適用を容易にする。
より詳しくは、前記コンテナシャーシの走行方向の前部近傍と前記牽引車両との間 で、両者を幅方向にスイング移動可能に連結する円盤形の連結部材を備え、前記コ ンテナシャーシは、前記コンテナの幅方向に延びて、前記コンテナの走行方向の後 部近傍を支える横梁を含み、前記演算ユニットは、前記揺動検知器の出力データを 、前記単振子運動の周波数と振幅との間の相関を表すローリングデータに変換して 、前記ローリングデータを基にして、前記横梁に由来する前記単振子運動のピーク 振幅に対応する第 1の前記単振子運動の周波数と、前記連結部材に由来する前記 単振子運動のピーク振幅に対応する第 2の前記単振子運動の周波数と、前記コンテ ナ貨物車両の重心に由来する前記単振子運動のピーク振幅に対応する第 3の前記 単振子運動の周波数と、を取得し、前記第 1、第 2および第 3の単振子運動の周波数 に基づいて前記走行方向についての前記コンテナ貨物車両の重心位置を導く装置 であっても良い。
また、前記演算ユニットは、前記揺動検知器の出力データを、前記単振子運動の 周波数と振幅との間の相関を表すローリングデータに変換して、前記ローリングデー タを基にして、前記コンテナ貨物車両の重心に由来する前記単振子運動のピーク振 幅に対応する前記単振子運動の周波数を取得し、前記揺動検知器の出力データを 、前記往復運動の周波数と振幅との間の相関を表すピッチングデータに変換して、 前記ピッチングデータを基にして、前記往復運動の最大振幅に対応する前記往復運 動の周波数を取得し、前記揺動検知器の出力データから前記単振子運動の振幅の 経時データをサンプリングして、前記経時データの平均値を前記単振子運動の中心 角度として取得し、前記単振子運動の周波数、前記往復運動の周波数および前記 単振子運動の中心角度に基づいて、前記走行方向に垂直な断面についての前記コ ンテナ貨物車両の重心位置を導く装置であっても良い。
また、前記コンテナ貨物車両の上下方向(自重方向)および幅方向の揺れは、前記 コンテナ貨物車両の路面の直進走行時に、前記路面の凹凸に応じて前記コンテナ 貨物車両に与えられる外乱による運動であっても良い。
これにより、コンテナ貨物車両を通常の車の流れに合わせて任意走行 (好ましくは 直進走行)させれば、重心検知装置は、コンテナ貨物車両の 3次元重心位置の演算 できる。よって、演算用データ取得作業が簡易に行え、曲路走行時のデータを取る 必要もなく好適である。
更に、前記揺動検知器は、前記牽引車両に配置されてなり、角速度の感度軸が前 記自重方向および前記幅方向に調整された角速度センサを備えても良い。
これにより、コンテナ貨物車両の 3次元重心位置の演算には、牽引車両の適所に 角速度センサを、簡易な手段 (接着剤接合やボルト止め;不図示)により僅力、 1個、配 置すれば足りる。言い換えれば、コンテナ輸送業務に取り扱われる多量のコンテナお よびコンテナシャーシには、何等の措置も施す必要がなく好適である。
また、上記第 2の課題を解決するため、第 2の本発明は、貨物を搭載可能な、牽引 車両に牽引される車両と、演算ユニットと、を備え、
前記演算ユニットは、前記車両の 3次元空間上の重心位置および前記車両が走る 曲路の曲率半径を取得し、前記 3次元空間上の重心位置を用いて、前記曲率半径 に応じた前記車両の前記曲路における横転限界速度を導ぐ横転限界速度予測装 置を提供する。
なお、演算ユニットによる車両の 3次元空間上の重心位置の取得の具体的な方法と しては、上述の第 1の本発明の重心検知装置を利用しても良いが、これに限らない。 例えば、作業者自身が、車両に貨物を搭載する場合には、作業者は、車両の 3次元 空間上の重心位置を測定できる。この場合、演算ユニットは、作業者による重心位置 入力操作により、当該車両の 3次元空間上の重心位置を取得できる。
このような横転限界速度は、車両が横転に至るか否かの基準速度であり、これによ り、車両の曲路における不安定走行の未然防止に資することができる。
ところで、本件発明者は、車両が曲路を走行する場合、この車両の走行方向に垂 直な断面おける車両の回転運動とは独立して、車両の自重がかかる方向の面内の 回転運動が同時に作用して、これらの運動力が偶然かつ瞬間的に車両を傾かせる 方向に一致してしまう場合があることを見出した。このため、車両の曲路走行時の異 常走行状態の適切な定式化には、車両の走行方向に垂直な断面についての車両の 重心位置および車両の走行方向についての車両の重心位置の取得、つまり、上述 のとおり、車両の 3次元空間上の重心位置の特定が必須であると考えられる。
よって、前記演算ユニットは、前記車両の走行方向に垂直な断面についての前記 車両の重心位置を用いた、前記車両の旋回外輪を中心として前記車両が回転に至 る場合の前記車両の速度と前記曲率半径との関係を表す第 1の式と、前記車両の走 行方向についての前記車両の重心位置を用いた、前記牽引車両と前記車両との間 の連結点を中心として前記車両が回転に至る場合の前記車両の速度と前記曲率半 径との関係を表す第 2の式と、に基づいて、前記横転限界速度を導いても良い。 これにより、補正係数等の理論的根拠を欠くデータを導入することなぐ論理的な力 学理論に基づき車両の横転限界速度を導くことができ、演算結果の信頼性は極めて 高い。
前記車両の一例は、前記貨物を搭載可能なコンテナと、前記コンテナを載せるコン テナシャーシとからなるコンテナ貨物車両である。
また、前記車両の走行時の前記車両の自重方向および幅方向の揺れを検知する 揺動検知器を備え、
前記演算ユニットは、前記揺れに相関する物理量に基づいて、前記 3次元空間上 の重心位置を導いてもよい。
これにより、この 3次元空間上の重心位置をもとにして、横転限界速度の導出に必 要な各種の重心関連データ(詳細は後述)を演算でき、これらの重心関連データの 測定の手間が省けるとともに、高精度なデータが得られる。更に、車両内の積載状態 を未確認のまま輸送される場合 (例えば、国際間の輸出入により商取引されるコンテ ナ貨物の場合)であっても、当該重心関連データを得ることができる。
また、前記曲率半径の無線情報を受信して、前記無線情報を前記演算ユニットに 与える受信機を備えてもょレヽ。
これにより、演算部ユニットは、受信機を用いて、車両が走る予定の曲路の曲率半 径の無線情報を、例えば、地域の ITSから自動的に取得でき、曲路の曲率半径の取 得に費やされる手間を省ける。
また、上記第 3の課題を解決するため、第 3の本発明は、貨物を搭載可能な、牽引 車両に牽引される車両と、演算ユニットと、を備え、
前記演算ユニットは、前記貨物が搭載された車両の 3次元空間上の重心位置、お よび、前記貨物が搭載されていない車両の 3次元空間上の重心位置を取得し、これ らの 2つの重心位置を用いて前記貨物の重量を導ぐ貨物重量予測装置を提供する なお、演算ユニットによる車両の 3次元空間上の重心位置の取得の具体的な方法と しては、上述の第 1の本発明の重心検知装置を利用しても良いが、これに限らない。 例えば、作業者自身が、車両に貨物を搭載する場合には、作業者は、上述の 2つの 重心位置を測定できる。この場合、演算ユニットは、作業者による重心位置入力操作 により、当該車両の 3次元空間上の重心位置を取得できる。
このような貨物の重量の取得により、車両への貨物の過搭載状態を適切に知ること ができ、これにより、車両の不安定走行や貨物荷崩れ落下の未然防止に資すること ができる。
なお、前記車両の一例は、前記貨物を搭載可能なコンテナと、前記コンテナを載せ るコンテナシャーシとからなるコンテナ貨物車両である。
また、前記演算ユニットが、前記 2つの重心位置、前記コンテナ貨物車両の走行方 向における前記コンテナの長さ、および、前記貨物が搭載されていないコンテナ貨物 車両の重量に基づいて、前記走行方向のみを考慮した前記貨物の見かけの重量を 導いてもよい。
[0010] また、前記演算ユニットが、前記 2つの重心位置、前記コンテナ貨物車両の幅方向 における前記コンテナの長さ、および、前記貨物が搭載されていないコンテナ貨物車 両の重量に基づいて、前記幅方向のみを考慮した前記貨物の見かけの重量を導い てもよい。
[0011] また、前記演算ユニットが、前記 2つの重心位置、前記コンテナ貨物車両の自重方 向における前記コンテナの長さ、および、前記貨物が搭載されていないコンテナ貨物 車両の重量に基づいて、前記自重方向のみを考慮した前記貨物の見かけの重量を 導いてもよい。
そして、前記演算ユニットが、前記 3方向の貨物の見かけの重量に基づいて、前記 貨物の正味の重量を導!/、てもよ!/、。
これにより、補正係数等の理論的根拠を欠くデータを導入することなぐ論理的な質 点系の力学理論に基づきコンテナ貨物の見かけの重量や正味の重量を導くことがで き、重量演算の信頼性は極めて高い。
また、前記車両の走行時の前記車両の自重方向および幅方向の揺れを検知する 揺動検知器を備え、
また、前記演算ユニットは、前記貨物が搭載された車両の前記揺れに相関する物 理量に基づいて、前記貨物が搭載された車両の 3次元空間上の重心位置を導くとと もに、
前記貨物が搭載されて!/、な!/、車両の前記揺れに相関する物理量に基づレ、て、前 記貨物が搭載されて!/、な!/、車両の 3次元空間上の重心位置を導!/、てもよ!/、。
これにより、これらの重心位置の測定の手間が省けるとともに、高精度なデータが得 られる。更に、車両内の積載状態を未確認のまま輸送される場合 (例えば、国際間の 輸出入により商取引されるコンテナ貨物の場合)であっても、当該重心位置を得るこ と力 Sできる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0012] 第 1の本発明によれば、貨物を搭載可能な、牽引車両に牽引される車両の 3次元 重心位置を適切に導ける重心検知装置が得られる。
また、第 2の本発明によれば、牽引車両に牽引される車両の 3次元重心位置を用い て、車両が走る曲路の曲率半径に応じた車両の横転限界速度を適切に導ける、横 転限界速度予測装置も得られる。
[0013] また、第 3の本発明によれば、貨物を搭載可能な、牽引車両に牽引される車両の 3 次元重心位置を用いて、当該貨物の重量を適切に導ける、貨物重量予測装置も得 られる。
図面の簡単な説明
[0014] [図 1]図 1は、第 1実施形態の重心検知装置の構成例を示した概略図である。
[図 2]図 2は、第 1実施形態の重心検知装置中の揺動検知器および演算ユニットの内 部構成の一例を示したブロック図である。
[図 3]図 3は、第 1実施形態の重心検知装置によるコンテナ貨物車両の 3次元重心位 置の導出法を説明する模式図である。
[図 4]図 4は、第 1実施形態の重心検知装置によるコンテナ貨物車両の 3次元重心位 置の導出法を説明する模式図である。
[図 5]図 5は、第 1実施形態の重心検知装置によるコンテナ貨物車両の 3次元重心位 置の導出法を説明する模式図である。 [図 6]図 6は、第 1実施形態の重心検知装置による 3次元重心位置の検知ルーチンを 示したフローチャートである。
[図 7]図 7は、横軸に周波数 (Hz)をとり、縦軸に振幅(角速度)をとつて、ローリング周 波数/振幅分布の一例を示した図である。
[図 8]図 8は、横軸に周波数 (Hz)をとり、縦軸に振幅(角速度)をとつて、ピッチング周 波数/振幅分布の一例を示した図である。
[図 9]図 9は、横軸に時間(秒)をとり、縦軸にローリング角度をとつて、ローリング振幅 の経時変化の一例を示した図である。
[図 10]図 10は、第 2実施形態による横転限界速度予測装置の構成例を示した概略 図である。
園 11]図 11は、第 2実施形態による横転限界速度予測装置中のデータ検出部およ び演算ユニットの内部構成の一例を示したブロック図である。
[図 12]図 12は、第 2実施形態の横転限界速度予測装置によるコンテナ貨物車両の 横転限界速度の導出法を説明する模式図である。
[図 13]図 13は、第 2実施形態の横転限界速度予測装置によるコンテナ貨物車両の 横転限界速度の導出法を説明する模式図である。
[図 14]図 14は、第 2実施形態の横転限界速度予測装置によるコンテナ貨物車両の 横転限界速度の予測動作を示したフローチャートである。
[図 15]図 15は、第 2検証実験の検証実験用トレーラトラックのタコメータの記録画面 の写真を示した図である。
[図 16]図 16は、横軸に曲率半径をとり、縦軸に検証実験用コンテナ貨物車両の横転 限界速度をとつて、両者の関係を示した図である。
[図 17]図 17は、第 3実施形態の貨物重量予測装置の構成例を示した概略図である。
[図 18]図 18は、第 3実施形態の貨物重量予測装置によるコンテナ貨物車両の前後 方向のみを考慮したコンテナ貨物の見かけの重量の導出法を説明する模式図であ
[図 19]図 19は、第 3実施形態の貨物重量予測装置によるコンテナ貨物車両の左右 方向のみを考慮したコンテナ貨物の見かけの重量の導出法を説明する模式図であ [図 20]図 20は、第 3実施形態の貨物重量予測装置によるコンテナ貨物車両の上下 方向のみを考慮したコンテナ貨物の見かけの重量の導出法を説明する模式図であ
[図 21]図 21は、第 3実施形態の貨物重量予測装置によるコンテナ貨物の重量の予 測動作を示したフローチャートである。
符号の説明
10 トラクタ
1 1 コンテナ
12 コンテナシャーシ
13 カプラ
14 揺動検知器
14a 角速度センサ
14b A/D変換器
1 14 データ検出部
1 14c アンテナ
1 14d 受信機
15、 115 演算ユニット
15a, 1 15a 演算部
15b, 115b 記憶部
15c, 115c 操作設定/表示部
20 前横梁
21 後横梁
50 トレーラトラック(コンテナ輸送車両)
100 重心検知装置
100A 貨物重量予測装置
1 10 横転限界速度予測装置
01 垂直中心ライン 202 車軸位置ライン
207 水平中心ライン
204 路面
204c 曲路
205 サスペンション
206 ローリング中心ライン
300 旋回外輪の外端
E 連結点
発明を実施するための最良の形態
[0016] 以下、本発明の好ましい第 1、第 2および第 3実施形態を、図面を参照しながら説明 する。
(第 1実施形態)
図 1は、第 1実施形態の重心検知装置の構成例を示した概略図である。図 1 (a)は 、この重心検知装置を、コンテナ貨物車両の幅方向(側面)から見た図であり、図 l (b )は、この重心検知装置を、コンテナ貨物車両の後側から見た図である。
[0017] なお、以下に述べる説明の便宜上、図面において、コンテナ貨物車両の自重のか かる方向を「上下方向」とし、コンテナ貨物車両の幅方向を「左右方向」とし、コンテナ 貨物車両の走行方向を「前後方向」とする。
[0018] 重心検知装置 100は、図 1 (a)に示す如ぐコンテナ輸送車両 50と、コンテナ貨物 車両の走行時の上下方向および左右方向の揺れを検知する揺動検知器 14と、演算 ユニット 15と、を備える。
このようなコンテナ輸送車両 50の典型的な一形態は、トラクタを牽引車両とするトレ 一ラトラックである。よって、本実施形態(後述の第 2および第 3実施形態も同じ)では 、世界的な標準仕様の 40フィートの海上コンテナを搭載したコンテナシャーシをトラク タにより牽引するトレーラトラック輸送を例にとり、コンテナ輸送車両 50の構成および 動作の説明を行う。但し、以下に述べる技術は、このコンテナ輸送車両 50に限らず、 鉄道貨車等、他の輸送形態の車両にも適用可能である。
[0019] トレーラトラック 50は、図 1 (a)に示す如ぐコンテナ貨物(不図示)を搭載可能な直 方形のコンテナ 11と、コンテナ 11を載せる台車としてのコンテナシャーシ 12と、コン テナシャーシ 12と連結してコンテナシャーシ 12を牽引または駆動させるトラクタ 10 ( 牽引車両)と、を備える。このトラクタ 10は、コンテナシャーシ 12に連結する円盤形の 力ブラ 13 (連結部材;後述)を有し、これにより、両者が力ブラ 13を介して左右方向に スイング可能なように連結されて!/、る。
なお、本実施形態(後述の第 2実施形態も同じ)の検知技術は、理論上、コンテナ 1 1へのコンテナ貨物の積載の有無に拘わらず適用可能であることから、本明細書に おいては、上述のコンテナ 11とは、コンテナ貨物積載の有無を問わないものとする。
[0020] また、図 1に示されたトレーラトラック 50の形態は、飽くまで一例に過ぎず、本実施 形態(後述の第 2および第 3実施形態も同じ)の検知技術は、様々なタイプのトレーラ 卜ラックに対して適用できる。
図 2は、本実施形態の重心検知装置中の揺動検知器および演算ユニットの内部構 成の一例を示したブロック図である。
上述の揺動検知器 14は、トレーラトラック 50の左右方向の中央であって、トラクタ 1 0側の輸送業務に支障の無い場所 (例えば力ブラ 13の近傍)に固着されている。上 述の演算ユニット 15は、トラクタ 10の運転室内の適所に配置されている。そして、両 者は、適宜のデータ入出力ポート(不図示)を介して有線通信や無線通信等によりデ ータ送信可能なように接続されてレ、る。
[0021] 揺動検知器 14は、図 2に示すように、トレーラトラック 50の走行時のコンテナ貨物車 両の上下方向および幅方向の揺れを検知するよう、角速度の感度軸が調整された 2 軸(2次元)の角速度センサ 14aと、この角速度センサ 14aから出力されるアナログ信 号をデジタル信号に変換する A/D (アナログ/デジタル)変換器 14bと、を備える。 なお、この A/D変換器 14bによりデジタル化された角速度信号の大きさは、トレー ラトラック 50の走行時のコンテナ貨物車両の上下方向または幅方向の揺れの角速度 に比例している。 2軸の角速度センサ 14aには、例えば水晶音叉式のセンサや振動 式のセンサがあるが、これに限らない。この角速度センサ 14aに替えて、 3軸(3次元) の角速度センサを用いても良ぐ速度センサを用いても良い。また、ここでは、揺動検 知器 14の使用の際の利便性に配慮して、 A/D変換器 14b内蔵型の揺動検知器 1 4を例示している力 S、この A/D変換器 14bを外付けにしても良い。更には、揺動検 知器 14には、フィルタ(不図示)やアンプ (不図示)等の各種の信号処理回路が内蔵 されているが、これらは慣用技術であり、ここでは、詳細な説明は省く。
また、演算ユニット 15は、図 2に示すように、マイクロプロセッサ等からなる演算部 15 aと、 ROM (リードオンリ一メモリ)や RAM (ランダムアクセスメモリ)等からなる記憶部 15bと、操作設定/表示部 15cと、を備える。このような演算ユニット 15としては、ノー トブックタイプのパーソナルコンピュータ等の情報携帯端末がある。
記憶部 15bは、演算部 15aに接続され、コンテナ貨物車両の 3次元重心位置を適 切に導くための演算プログラムや、当該演算に必要な各種の入力用の定数 (後述)を 記' fe、してレ、る。
[0022] 演算部 15aは、記憶部 15bに予め記憶されている演算プログラムに従って動作し、 例えば、後述のとおり、揺動検知器 14 (A/D変換器 14b)から出力されたデジタノレ 信号に基づいてコンテナ貨物車両の 3次元重心位置を導くことができる。
操作設定/表示部 15cは、上述の入力用定数の設定ボタンを配設した操作部(例 えばキーボード;不図示)と、演算部 15aから出力されたコンテナ貨物車両の 3次元 重心位置についての出力データを、作業者 (運転者や同乗者)が認識できるように表 示通知や音声通知する通報装置 (例えば液晶パネル画面やスピーカ;不図示)と、を 備える。
次に、コンテナ貨物車両の 3次元重心位置の導出法について図面を参照しながら 詳しく説明する。
図 3、図 4および図 5は何れも、本実施形態の重心検知装置によるコンテナ貨物車 両の 3次元重心位置の導出法を説明する模式図である。図 3および図 4は、トレーラト ラックが走行する前後方向から見た図であり、図 5は、トレーラトラックの自重のかかる 上下方向から見た図である。
なお、図 3、図 4および図 5では、重心検知装置 100の構成については、 3次元重 心位置の導出法を理解し易くなるように、簡略乃至省略して図示している。
[0023] まず、図 3および図 4を用いて、コンテナ 11の前後方向(走行方向)に垂直な断面 におけるコンテナ貨物車両の重心 Wの位置を導く方法について説明する。 図 3に示すように、コンテナ 11は、コンテナシャーシ 12に積載された状態では、トラ クタ 10とコンテナシャーシ 12に配設されたサスペンション 205 (懸架装置;図 4参照) の緩衝用弾性力(例えば空気圧やパネ力)に支えられ、路面 204から一定の高さで 中立する。この状態で、トレーラトラック 50が走行すると、タイヤが路面 204の凹凸を 踏み続けることにより、ランダムな外乱がサスペンション 205を通してトレーラトラック 5 0の車体(コンテナ 11)に伝わる。このような外乱によって、トレーラトラック 50は、サス ペンション 205の弾性力、コンテナ貨物車両の総重量およびその重心位置に依存す る固有の周期 (周波数)を持つ運動に基づいて揺動する。そして、この運動は、コンテ ナ貨物車両の重心 Wの上下方向の往復運動(正確には後述のトラクタ 10のピッチン グ)およびコンテナ貨物車両の重心 Wの左右方向の単振子運動として揺動検知器 1 4により検知される。なお、本明細書において、サスペンション 205とは、トレーラトラッ ク 50の車体の路面 204からの振動を緩衝できる部材を指し、例えば、車軸に連結さ れたパネ式の緩衝器の他、車軸の端に配されて空気が充填されて!/、るタイヤなども 含むものとする。
前者の運動は、トラクタ 10のピッチングと呼ばれる挙動に対応する。コンテナ貨物 車両が上下方向に往復運動すると、トラクタ 10とコンテナシャーシ 12とを連結する力 プラ 13が上下に押される。カプラ 13の位置は、トラクタ 10の後方に存在するので、力 ブラ 13が上下に押されることにより、トラクタ 10の前部が逆に、浮き沈みする。このよう な現象が、トラクタ 10のピッチングである。つまり、コンテナ貨物車両の上下方向の往 復運動が、力ブラ 13を通じてトラクタ 10に伝わり、これにより、トラクタ 10のピッチング 力 s起こる。
また、後者の運動は、トレーラトラック 50のローリングと呼ばれる挙動に対応する。 トレーラトラック 50には、通常、前後左右の車軸ごとにサスペンション 205が取り付 けているが、上下方向の往復運動および左右方向の単振子運動の挙動が同時に起 きること力、ら、力学上の弾性係数 (パネ定数)を考慮するに当たり、簡易的に左右に 一つずつ弾性体 (パネ)があると仮定して挙動解析することが妥当であると考えられる 。この仮定の妥当性は、後述の実車による第 1検証実験により確認されている。
なお、付言するに、上述の従来技術の中には、サスペンションの弾性係数の測定を 前提として車両の慣性モーメント等固有量を判定する例(特許文献 2)や試験走行時 のサスペンションの強度を予めデータベース化する例(特許文献 6)が提案されて!/ヽ る力 これらの技術は、トレーラトラック 50については、コンテナ輸送業務の実情から 見て役に立たない。
つまり、サスペンション 205の弾性係数は、トラクタ 10とコンテナシャーシ 12のメーカ 、車種、年代および老朽度により変化する一方で、これらのメーカ、車種、年代およ び老朽度の特定は事実上、コンテナ 11の輸送業務の実情に鑑みると不可能に近い 。コンテナ 11の輸送業務では、不特定多数のトラクタ 10と不特定多数のコンテナシャ ーシ 12との間の任意の組合(事実上、無数の組合)からなるトレーラトラック 50により 、コンテナ 11が日々輸送されている。このため、両者のメーカ、車種および年式を予 め特定する有効な方策はなぐまして、双方の車両の老朽度などは特定不可能であ る。更に、トラクタ 10にはエアサスペンションが導入されているものがほとんどであるこ と力、ら、個々の車軸に配設されるサスペンション 205の弾性係数は、牽引されるコン テナシャーシ 12上のコンテナ 11の積載状態、路面 204の状況、および走行状況に よって随時可変する場合もある。
また、上述の従来技術の中には、多数の検知器をコンテナ側シャーシ (本明細書の コンテナシャーシに相当)に配設することを前提とした技術 (例えば特許文献 1)もある 力 S、コンテナ輸送業務に取り扱われる多量のコンテナシャーシの数量に鑑みれば容 易に想像できるとおり、このような方策は、コスト面で成り立たない。
まず、コンテナ貨物車両の重心 Wを質点として、コンテナ貨物車両の重心 Wの上下 方向の往復運動の周期「丁'」(トラクタ 10のピッチング周期に対応する周期)を定式化 する。
図 3に示すように、車両の左右に二つの弾性体の弾性力が存在すると考えると、コ ンテナ貨物車両の往復運動の固有周期は以下の式により表される。
[0025] [数 1]
Figure imgf000019_0001
[0026] この式において、「丁'」はコンテナ貨物車両の重心 Wの上下方向の往復運動の周 期である。「k」はサスペンション 205の左右片方の弾性係数 (バネ定数)である。「m」 はコンテナ貨物車両の重量であり、「π」は円周率である。
[0027] 次に、コンテナ貨物車両の重心 Wを質点として、コンテナ貨物車両の重心 Wの左 右方向の単振子運動の周期「丁」(トレーラトラック 50のローリング周期)を定式化する 図 4に示すように、コンテナ貨物車両のローリングは、コンテナ貨物車両の重心 Wの 車軸の中心(図 4に示した垂直中心ライン 201と車軸位置ライン 202との交点)を支点 とした左右方向の単振子運動であることから、コンテナ貨物車両のローリング中の口 一リング円の接線方向における回転モーメントの釣り合いから、以下の式が得られる
[0028] [数 2]
Lf = - kx 一 + mgl sin Θ + mgs cos θ - kx —- 2 2
kxb + mgl sin θ· + mgs cos θ
[0029] この式において、「f」はコンテナ貨物車両の重心 Wに対しローリング円(回転円)の 接線方向に与えられる力である。「θ」はローリング角である。「L」は車軸の中心から コンテナ貨物車両の重心 Wまでの長さである。「b」はコンテナ 1 1の荷重を支えている 部分の長さであり、コンテナ 1 1毎に定められる定数である。「1 (スモールエル)」は車 軸からコンテナ貨物車両の重心 Wまでの上下方向の長さであり、図 1 (b)に示す如く コンテナ 1 1の前後方向に垂直な断面におけるコンテナ貨物車両の重心 Wの垂直方 向の位置を表す値である。 「s」は車軸の中心からコンテナ貨物車両の重心 Wまでの 左右方向の長さであり、図 1 (b)に示す如くコンテナ 1 1の前後方向に垂直な断面に おけるコンテナ貨物車両の重心 Wの水平方向の位置を表す値である。「x」は左右の サスペンションの変位量である。「g」は重力加速度である。
つまり、ここでの「1」および「s」が求まれば、コンテナ 1 1の前後方向(走行方向)に垂 直な断面におけるコンテナ貨物車両の重心 Wの位置を導ける。
[0030] ここで、 x = (b/2) sin Sであるから、上述の回転モーメントの釣り合い式は、式(1 ) のように表すことができる。 [0031] [数 3] k—sm Θ + mgl sin Θ + mgs cos θ
kb 2 . \
-sin Θ ~ I sin d - s cos d
Figure imgf000021_0001
[0032] また、この式(1)は、括弧内の三角関数を合成すれば、式(2)の如く展開される。な お、上述の式(2)において、三角関数の合成により得られるサイン関数の角度(Θ + Φ )のことを、ローリング角度 Θ 'として表している。
[0033] [数 4]
, . (2)
Figure imgf000021_0002
[0034] ところで、コンテナ貨物車両の重心 Wの水平方向の位置が垂直中心ライン 201上 に存在すれば、重心 Wのローリング(単振子運動)の中心角度「α」はゼロになる。本 明細書において、この中心角度「α」とは、図 4に示すように、垂直中心ライン 201と口 一リング中心ライン 206との間のなす角を指す。
一方、上述の位置が左右の何れかに偏倚していれば(つまり、「s」≠0であれば)、 このローリングの中心角度「《」はゼロ以外の一定の値を持つようになる。このような状 態で、トレーラトラック 50が停止すれば、その中心角度「α」を保ったまま傾斜して中 立する。そこで、式(1)の Θを、重心 Wのローリングの中心角度「α」(言い換えれば、 重心 Wの静止時の傾斜角度)に置き換えることにより、重心 Wがローリングの中心を 通る場合またはトレーラトラック 50が停止する場合を想定して、式(3)が成り立つ。
[0035] [数 5] Lf = 0 o (
Figure imgf000022_0001
この式において、「α」は、上述のとおり、コンテナ貨物車両の重心 Wのローリングの 中心角度であり、垂直中心ライン 201とローリング中心ライン 206とのなす角度である そこで、式(3)を、式(2)に代入して整理すれば、以下のような式になる c [0037] [数 6]
Figure imgf000022_0002
1 ( kb
一 mgl sin Θ
L cos a
[0038] ところで、上述のローリング角度 Θ 'は、高々、数度程度の微小な値であると想定さ れる。よって、「 Θ '」が充分に微小値である場合の三角関数の特性(つまり、 sin Θ ' = Θ 'の関係)から上述の式の「f」を、以下の式のように記述できる。
[0039] [数 7]
1
L Cos a〖 2
[0040] この式形は、 Lを半径とした振子の円運動の方程式と同値であることから、
[0041] [数 8] τ ά2θ' 1 (kb2 ,
mL ~ = —— mgl
" L cose I 2
Figure imgf000023_0001
[0042] と書き直せる。
[0043] ここで、「 θ '」の位相を「ω」とおくと、
[0044] [数 9コ
d ( ,
-ω 'θ
dt
Figure imgf000023_0002
[0045] となる。
また、トレーラトラック 50のローリング周期を Τとおくと、 Τ = 2 π / ωであることから、
[0046] [数 10]
Figure imgf000023_0003
L cos & 2 m
[0047] と書き直せる。
そして、 L = (l2 + s2)であることから、最終的には、リーリング周期「丁」について、 以下の式が得られる。
[0048] [数 1 1]
T —
Figure imgf000023_0004
[0049] このようにして、コンテナ貨物車両の重心 Wの上下方向の往復運動の周期「丁'」お よびコンテナ貨物車両の重心 Wの左右方向の単振子運動の周期「丁」が導かれる。 ところで、揺動検知器 14 (角速度センサ 14a)により検知される角速度は、通常は、 角度/時間に相当する角周波数(以下、「周波数」と略す)であり、この周波数は、周 期の逆数(1/周期)で表される。そこで、重心 wの上下方向の往復運動の周期「丁'」 に対応する、トラクタ 10のピッチングの周波数を「 」とおき、重心 Wの左右方向の 単振子運動の周期「丁」に対応するローリングの周波数を「 V」とおくと、上述の式は 一 Γ 1
各々、
[0050] [数 12]
Figure imgf000024_0001
T
Figure imgf000024_0002
2π^ \1 + jcos a
[0051] と整理できる。
ここで、式(3)、(4)および(5)の比較から理解されるとおり、中心角度「α」、周波数 「 」および周波数「 」が既知である場合 (つまり、演算ユニット 15が、揺動検知器 14を用いてこれらの値「α」、「 V」および「 V '」を特定できた場合)、未知数は「1」、「s 」および「k/m」の 3個であり、解析的に解ける。
まず、式 (4)および(5)は各々、式(6)および(7)に展開される。
[0052] [数 13] k ^ ?
m
Figure imgf000024_0003
[0053] :で、式(7)に、式(6)を代入すれば、式(8)が得られる。
[0054] [数 14] 4π2ν22 + s2 )c。s« = b2jr:
Figure imgf000025_0001
[0055] 同様に、式(3)に、式(6)を代入すれば、式(9)が得られる
[0056] [数 15]
Figure imgf000025_0002
[0057] なおここで、式(9)を式(8) : .代入して「1」による二次方程式化すれば、式(10)のよ うに書き直される。
[0058] [数 16]
(l+tan2 a () , ..(10)
Figure imgf000025_0003
[0059] ここで、 「1」の二次係数、一次係数および定数項を特定すれば、「1」が求まり、それ を式(9)に代入すれば「s」も求まる。
このようにして、これらの式(8)、(9)および(10)によれば、コンテナ 1 1の前後方向 に垂直な断面におけるコンテナ貨物車両の重心 Wの位置を表す値「1」および「s」の みを未知数とする単純な連立方程式の問題に帰着できることが分かる。この連立方 程式では、サスペンション 205の弾性係数「k」およびコンテナ貨物車両の重量「m」を 入力値としないように内在化させている。つまり、サスペンション 205の弾性係数「k」 およびコンテナ貨物車両の重量「m」 1S 上述の連立方程式の定式化の過程でこれ らの式から除かれている。そして、このことは、弾性係数「k」および重量「m」の計測に 費やされる膨大な手間を省くことを可能にし、不特定多数のトラクタ 10と不特定多数 のコンテナシャーシ 12との間の任意の組合からなるトレーラトラック 50により、コンテ ナ 1 1が日々輸送されている状況を直視すれば、その意義は極めて大きい。
次に、図 1 (a)および図 5を用いて、コンテナ貨物車両の前後方向(走行方向)の重 心 Wの位置を導く方法につ!/、て説明する。 以上に述べたように、コンテナ 11の前後方向に垂直な断面におけるコンテナ貨物 車両の重心 Wの位置は、式(9)および(10)の連立方程式を「1」および「s」につ!/、て 解くことにより導ける力 S、これだけでは、コンテナ貨物車両の 3次元重心位置は未だ 特定できていない。つまり、これらの「1」および「s」に加えて、コンテナ貨物車両の前 後方向(走行方向)の重心 Wの位置を求める必要がある。
このコンテナ貨物車両の前後方向の重心 Wの位置は、以下のようにして導くことが できる。
トレーラトラック 50は、図 5に示すように、コンテナシャーシ 12上に載ったコンテナ 1 1を、コンテナシャーシ 12の後横梁 21および前横梁 20によって支える。これらの前 後横梁 20、 21は、コンテナ 11の左右方向(幅方向)に延びており、前後方向に走る 縦梁(不図示)に固定されている。これにより、コンテナ 11の荷重は、後横梁 21およ び前横梁 20並びに縦梁を介してコンテナシャーシ 12の前部に連結されているトラク タ 10と、コンテナシャーシ 12の後部のサスペンション 205とに分散されている。
ところで、コンテナ 11を積載して走行中のトレーラトラック 50では、図 1 (a)に示すよ うに、路面 204の凹凸による外乱の前後方向の作用中心において、このような外乱に 応じて発生するローリングの強弱(振幅)が異なる。例えば、図 1 (a)に示すように、外 乱の作用中心が重心位置から離れると、外乱に対抗するトレーラトラック 50の荷重は 小さくなることから、ローリングの振幅は大きくなる。逆に、外乱の作用中心が重心位 置に近づくと、トレーラトラック 50の大きな荷重が抗カとして機能して、ローリングの振 幅は小さくなる。よって、前後方向の重心 Wの位置は前後横梁 20、 21の間にあると 見做せることから、ローリングの振幅が増加する方向にローリング現象が顕著に現れ る外乱の作用中心は、コンテナ 11の前後部に対応するコンテナシャーシ 12の前後 横梁 20、 21の位置であると考えられる。
ここで、コンテナシャーシ 12の前部とトラクタ 10との間は、コンテナシャーシ 12の前 横梁 20より短い力ブラ 13と呼ばれる円盤形の連結部材により連結されている。力ブラ 13の直径は、通常は、コンテナシャーシの前横梁 20の長さの半分にも満たない。こ のため、コンテナ 11を積載するコンテナシャーシ 12に対するトラクタ 10との連結部支 えの左右方向の長さは、実際上、コンテナシャーシ 12の前横梁 20の長さではなぐ カプラ 13の直径「b」である。
c
なお、ここでは、コンテナシャーシ 12が連結されるカプラ 13の直径「b」が、 3次元 c
重心位置の導出に欠くことができない必須事項であるが、第 2実施形態のコンテナ貨 物車両の横転限界速度では、力ブラ 13による、トラクタ 10とコンテナシャーシ 12との 間の一点連結状態(図 13の連結点「E」参照)が重要な意味をなしている。つまり、上 述の直径「b」を構成する部材および上述の連結点「E」を構成する部材は何れも、力 ブラ 13である力 これらの技術的な意義は異なっている。なお、連結点「E」の技術的 な意義については、後程詳しく説明する。
このような状況下において、式(5)を参酌すれば、「k/m」が一定値であれば、ロー リングの周波数「 V」は、コンテナ貨物車両の重心 Wの位置を表す値「1」および「s」と コンテナ 11を支えて!/、る部分の長さ「b」に依存する。上述のとおり、この長さ「b」は、 コンテナシャーシ 12の前後部で相違することから、ローリングの振幅が増加する方向 にローリング現象が顕著に現れる極大ピーク振幅(凸状ピークの頂点)は、 2つ存在 すると考えられる。
つまり、このような極大ピーク振幅には、コンテナシャーシ 12の前部とトラクタ 10との 連結部材としてのカプラ 13に由来する極大ピーク振幅と、コンテナシャーシ 12の後 部に位置する後横梁 21に由来する極大ピーク振幅と、がある。そして、式(5)の参酌 から、後者の極大ピーク振幅に対応する周波数の方が、前者のそれより大きくなる。 また、これらの周波数の間に、ローリングの振幅が減少する方向にローリング現象が 現われ難い極小ピーク振幅(凹状ピークの谷間)がある。この極小ピーク振幅力 コン テナ貨物車両の前後方向の重心 Wに由来するピークである。
次に、以上のような原理に基づいて、コンテナ貨物車両の前後方向の重心 Wの位 置を導くための定式化を図る。
[0060] ローリングの周波数「 V」とコンテナ 11を支えて!/、る部分の左右方向の長さ「b」との 間の関係は、式(5)によれば、
[0061] [数 17] 2π ~ lcos a
Figure imgf000028_0001
2
kb
= v22 (l2 + s2 )cos
2m
2
Figure imgf000028_0002
[0062] と表される。
ここで、ローリングの周波数「v」と左右方向の長さ「b」以下は定数項として、 cと c
C
としてまとめてしまうと、式(11)のように略して表される。
[0063] [数 18]
【数 18】
.:b = ^Cv +CQ 〜 (11)
[0064] よって、コンテナ 11の前後部に外乱が作用した場合の双方のローリングの周波数「
V」と、両者の位置においてコンテナ 11を支えている部分の左右方向の実質的な長 さが得られれば、 Cおよび Cを求めることができ、式(11)は、任意のローリングの周
0
波数「 V」に対して、左右方向の長さ「b」を導ける方程式になる。
ここで、コンテナ 11の前後部のそれぞれに対応する、左右方向の長さ「b」とローリン グの周波数「v」との組合せを、それぞれ (b 、 V )、(b 、 V )とおけば、
1 1 2 2
[0065] [数 19] b ! = "し V ! + し β
■b ― ^ " + し 。
[0066] と組める。そして、この連立方程式を解くと、式(12)が得られる。
[0067] [数 20]
Figure imgf000029_0001
[0068] この式(12)において、「b」はコンテナ 11の後部の位置における、コンテナ 11を支 えている部材の左右方向の実質的な長さであり、定数として決まる値である。「b」は コンテナ 11の前部の位置における、コンテナ 11を支えて!/、る部材の左右方向の実 質的な長さであり、トラクタ 10の力ブラ 13の直径「b」とから幾何学的に定数として決 まる値である。「v 」は、コンテナ 11の前部において路面 204から垂直方向に外乱が 作用した場合に発生するローリングの周波数である。「v 」は、コンテナ 11の後部に おいて路面 204から垂直方向に外乱が作用した場合に発生するローリングの周波数 である。
次に、コンテナ貨物車両の前後方向の重心 Wの位置における、コンテナ 11を支え て!/、る部材の左右方向の実質的な長さ「b」を特定する。
この長さ「b」は、周波数「v 」、 「v 」および 」が何れも既知である場合(つまり
、演算ユニット 15が、揺動検知器 14を用いて、周波数「v 」、「v 」および 」を特 定できた場合)、式(13)により求まる。なお、「v 」は、重心 Wの位置において路面 2
04から垂直方向に外乱が作用した場合のローリングの周波数である。
[0069] [数 21]
Figure imgf000029_0002
[0070] ここで、図 5から理解されるとおり、コンテナ 11の前部の位置における、コンテナ 11 を支えている部材の左右方向の実質的な長さ「b」と、トラクタ 10カプラ 13の直径「b 」と、重心 Wの位置における、コンテナ 11を支えている部材の左右方向の実質的な 長さ「b」と、コンテナ 11の前部からカプラ 13の中心までの長さ「k」と、コンテナ 11の g c 前部から重心 Wの位置までの長さ「k」と、コンテナ 11の前後方向の長さ「p」との間
g
の幾何学的な関係は、線形比として表現することができる。そこで、この関係を定式 化すると、式(14)が得られる。
[0071] [数 22]
kg = ^ (bbc、 + kc -0 )
[0072] 式(14)において、式(13)により求めた、コンテナ貨物車両の前後方向の重心 Wの 位置における、コンテナ 11を支えている部材の左右方向の実質的な長さ「b」を代入
g すれば、このコンテナ 11の前部から重心 Wの位置までの長さ「k」が導ける。
g
[0073] 更に、この長さ「k」に対応する、コンテナ 11の前後方向に垂直な断面におけるコン
g
テナ貨物車両の重心 Wの位置を表す値「1」および「s」は、上述の長さ「b」を、式(10
g
)中の「b」に用いて、式(9)と併せて導ける。
[0074] 以上のような力学理論により、本実施形態の重心検知装置 100は、コンテナ貨物車 両の 3次元空間上の重心 Wの位置を表す 3つの数値「1」、「s」および「k」を全て取得
g
できる。
次に、本実施形態の重心検知装置 100によるコンテナ貨物車両の 3次元重心位置 の検知動作の一例について図面を参照しながら説明する。
図 6は、本実施形態の重心検知装置による 3次元重心位置の検知ルーチンを示し たフローチャートである。演算ユニット 15の操作設定/表示部 15cの電源スィッチが 押されると、操作設定/表示部 15cの表示画面(不図示)には複数のメニューが表示 される。そして、操作設定/表示部 15cの適宜のボタン操作により、トレーラトラック 5 0の走行中に、以下の 3次元重心位置の検知動作を開始することができる。なお、本 検知動作を以下のように実行するにあたり、作業者 (例えばトラクタ 10の運転者や同 乗者)が行う必要がある指示内容は、操作設定/表示部 15cの表示画面にメッセ一 ジ表示される。 3次元重心位置の検知動作が選択されると、演算ユニット 15の演算部 15aは、記憶部 15bから 3次元重心位置検知用の演算プログラムおよび予め記憶さ れた適宜の定数を読み出し、この演算プログラムが、以下の処理を演算部 15a、記憶 部 15bおよび操作設定/表示部 15cを制御しながら実行する。
なお、この定数には、例えば、コンテナ 11の前後方向の長さ「p」と、トラクタ 10の力 プラ 13の直径「b」と、コンテナ 1 1の前部からカプラ 13の中心までの長さ「k」と、コン テナ 11の後部の位置における、コンテナ 11を支えている部材の左右方向の実質的 な長さ「b」と、重力加速度「g」と、円周率「π」と、がある。
標準仕様の 40フィートの海上コンテナでは、定数 」、「b」、「k」および「b」は、 標準値になっている場合が多く、当該定数 」、「b」、「k」および「b」を記憶部 15b に予め記憶させる方が、上述の定数の確認作業や入力作業が省けて好適である。 なお、 3次元重心位置の検知動作を実行する度に、作業者が、演算ユニット 15の 操作設定/表示部 15cを介して、これらの定数 」、「b」、「k」および「b」を記憶部
15bに入力すると!/、う制御法を採用しても良!/、。
まず、コンテナ貨物車両の 3次元重心位置検知の準備段階動作として、貨物を搭 載したコンテナ 11をコンテナシャーシ 12とともに牽引するトラクタ 10が、路面 204を 走行する(ステップ S601)。揺動検知器 14による角速度データ測定中に、トレーラト ラック 50が偶に交差点の曲路を通過してもデータの精度にさしたる支障はないが、コ ンテナ貨物車両の重心 Wのローリングの中心角度「 α」を適切に推定する観点から、 トレーラトラック 50は、通常の車の流れに合わせて直進走行する方が好ましい。 そして、路面 204の適度の凹凸により、ランダムな外乱がサスペンション 205を通し てトレーラトラック 50の車体(コンテナ 11)に伝わり、これにより、揺動検知器 14が、コ ンテナ貨物車両の自重方向および幅方向の揺れを検知できる。
なお、付言するに、上述の従来技術の中には、トラックの曲路走行中のデータ(例 えば遠心力や横加速度)を意図的に検知しょうとする例 (例えば特許文献 1、 5およ び 6)があるが、このような手法は、却って、トラックの曲路走行中(データ取得時)にト ラックの走行不安定 (最悪の場合、トラックの横転)を招く可能性があり、本当に実用 可能か疑問である。
作業者 (例えばトラクタ 10の運転者や同乗者)の操作設定/表示部 15cのボタン操 作により、 3次元重心位置の検知動作が開始すれば、揺動検知器 14の角速度セン サ 14aにより、重心 Wの上下方向の往復運動に対応するピッチングおよび重心 Wの ローリング (左右方向の単振子運動)の角速度データがアナログ信号として計測され る(ステップ S602)。そして、このアナログの角速度データは、演算ユニット 15 (演算 部 15a)により、記憶部 15bに予め記憶された一定のサンプリング期間毎(例えば 0. 01 S (秒)毎)に、揺動検知器 14の A/D変換器 14bを経たデジタル信号としてサン プリングされ (ステップ S603)、サンプリングされたデジタルの角速度データは、時系 列データとともに記憶部 15bに記憶される(ステップ S604)。なおここでは、角速度セ ンサ 14aによる角速度データの検知例を述べた力 車の流れに乗って車両が直進し ている状況では、ローリングの状態は、 sin θ = Θと仮定できるので、角速度センサに 代えて、速度センサにより速度データを検知しても良い。
次に、演算部 15aは、角速度センサ 14aによる角速度データの計測を終了して良い か否かを判定する (ステップ S605)。演算部 15aが、角速度データの計測を終了して 良レ、と判定した場合(ステップ S605にお!/、て「Yes」の場合)、次の処理ステップ(ス テツプ S606以降)に進み、角速度データの計測を終了して良いと判定しなかった場 合(ステップ S6605において「No」の場合)、上述のステップ S602〜604の動作が 継続される。
このような計測終了の良否判定は、記憶部 15bに予め記憶された必要なトータルサ ンプル個数と上述のサンプル時間とから導かれる、所定の計測時間を基準にしてな されても良い。例えば、後述の第 1検証実験の結果からサンプリングの統計誤差が充 分に小さくなるサンプル個数が 4096個(FFTが 2の整数乗の個数を対象とした分析 であることから、ここでは、 212個を例示)であり、サンプル時間が 0. 01Sである場合、 最低限必要な計測時間は、 4096 X 0. 01S 40Sとなる。よってこの場合、演算部 1 5aは、角速度センサ 14aによる角速度データの計測開始時から 40S以上、経過した ら、角速度データの計測を終了して良いと判定する。なお、トレーラトラック 50の走行 中、リアルタイムにコンテナ 11の 3次元重心位置を更新するような使用形態を想定す れば、この計測時間はなるべく短い方が好ましい一方、短過ぎると、サンプル個数が 少なく統計誤差が増える。後述の第 1検証実験の結果によれば、 2分間を目安として データ計測すれば統計誤差を抑えた安定なデータが得られた。
また、このような判定動作に代えて、作業者による操作設定/表示部 15cの計測終 了用ボタン操作の有無に基づいて、演算部 15aが、角速度データの計測終了の良 否を判定しても良い。
なお、以上のような短時間の角速度データの測定は、角速度データの測定期間中 、サスペンション 205の弾性係数「k」およびコンテナ貨物車両の重量「m」が不変であ るという前提条件の下、これらの数値「k」、「m」を、上述の連立方程式の定式化にお いて除ける根拠になる。
つまり、仮に角速度データの測定時間が長いとすれば、路面の凹凸状態や気象条 件 (例えば風速)等の外乱の大幅な変化に起因して、上述の数直 」、「m」が、角速 度データの測定期間中、不変であるという前提条件を満たさなくなる場合がある。 角速度センサ 14aによる角速度データの計測が終了したら、演算部 15aは、記憶部 15bに記憶された時系列の角速度データに対し高速フーリエ変換 (FFT)をかけて、 この角速度データを周波数に対する振幅のデータに変換する (ステップ S606)。 これにより、ローリングの周波数と、ローリングの振幅との相関関係を示した分布(以 下、「ローリング周波数/振幅分布」と略す)から、上述の力学理論に基づき周波数「 V 」、「v 」および 」が特定される(ステップ S607)。また、ピッチングの周波数と
1 8 2
、ピッチングの振幅との相関関係を示した分布(以下、「ピッチング周波数/振幅分 布」と略す)から、上述の力学理論に基づき周波数「 」が特定される(ステップ S60 7)。
つまり、ローリングの周波数の低い方の値から見て、ローリングの極大ピーク振幅( 頂点)に対応する周波数を 2つ選ぶとともに、これらの極大ピーク振幅の間(本実施 形態では、ほぼ中間)に位置する極小ピーク振幅 (谷間)に対応する周波数を選べば 良い。そうすれば、これらの選択された 3つの周波数は、低い方から順番に、周波数「 V 」、周波数「 V 」および周波数「 V 」に相当する。一方、ピッチングの最大振幅に
1 8 2
対応する周波数を、周波数「 V '」として選べば良い。 なお、上述の周波数の数学的な抽出法は、既に多数提案されていることから、ここ では詳細な説明を省略する力 トレーラトラック 50の走行中、リアルタイムにコンテナ 貨物車両の 3次元重心位置を更新するような使用形態を想定すれば、周波数抽出を 短時間で行える方法が好ましレ、。
[0077] 次に、演算部 15aは、記憶部 15bに予め記憶されている定数「b」および「b」を読 c 2 み出し、ステップ S607により得られた周波数「v 」「v 」および 」を用いて、式(1
1 8 2
3)により、重心 Wの位置における、コンテナ 11を支えている部材の左右方向の実質 的な長さ「b」を演算する(ステップ S608)。
g
[0078] [数 23]
Figure imgf000034_0001
[0079] 式(13)において「b」はコンテナ 11の後部の位置における、コンテナ 11を支えて
2
いる部材の左右方向の実質的な長さであり、定数として決まる値である。 「b」はコン テナ 11の前部の位置における、コンテナ 11を支えている部材の左右方向の実質的 な長さであり、トラクタ 10の力ブラ 13の直径「b」とから幾何学的に定数として決まる値 である。「v 」は、コンテナ 11の前部において路面 204から垂直方向に外乱が作用 した場合に発生するローリングの周波数である。「v 」は、コンテナ 11の後部におい
2
て路面 204から垂直方向に外乱が作用した場合に発生するローリングの周波数であ る。「v 」は、重心 Wの位置において路面 204から垂直方向に外乱が作用した場合 g
のローリングの周波数である。
次に、演算部 15aは、記憶部 15bに予め記憶されている定数 」、「k」および「b」 を読み出し、ステップ S608により得られた長さ「b」を用いて、式(14)により、コンテ g
ナ 11の前部から重心 Wの位置までの長さ「k」を演算する(ステップ S609)
g
[0080] [数 24]
Figure imgf000035_0001
[0081] 式(14)において、「p」はコンテナ 11の前後方向の長さである。「 」はコンテナ 11 の前部力もカプラ 13の中心までの長さである。 「b」はトラクタ 10のカプラ 13の直径で ある。
次に、演算部 15aは、記憶部 15bに記憶された時系列の角速度データを読み出す 。これにより、ローリングの振幅(角度)の時間変化を表した分布(以下、「ローリング振 幅の経時変化」と略す)から、ローリング振幅の経時変化の時間平均値に相当するコ ンテナ貨物車両の重心 Wのローリングの中心角度「 α」が特定される(ステップ S610 )。
そして、演算部 15aは、記憶部 15bに予め記憶されている定数「g」および「 π」を読 み出し、ステップ S607により得られた周波数「 V 」および「 V '」並びにステップ S610
g
により得られた中心角度「 α」並びにステップ S608により得られた長さ「b」を用いて
g
、上述の式(10)に対応する式(10')により(つまり、式(10)の「v」を式(10')では「 V 」とし、式(10)の「b」を式(10')では「b」としている)、上述の「k」の位置の垂直な g g g
断面における車軸からコンテナ貨物車両の重心 Wまでの上下方向の長さ「1」を演算
[0082] [数 25]
Figure imgf000035_0002
...no') 式(10')において、「g」は重力加速度である。 「π」は円周率である。「α」はコンテ ナ貨物車両の重心 Wのローリングの中心角度である。「 V '」はピッチング周波数であ る。「ν 」は重心 Wの位置において路面 204から垂直方向に外乱が作用した場合の g
ローリングの周波数である。「b」はコンテナ 11を支えている部材の左右方向の実質
g
的な長さである。 次に、演算部 15aは、記憶部 15bに予め記憶されている定数「g」および「 π」を読 み出し、ステップ S607により得られた周波数「 」並びにステップ S610により得られ た中心角度「α」並びにステップ S608により得られた長さ「b」並びにステップ S611 により得られた長さ「1」を用いて、上述の式(9)に対応する式(9')により(つまり、式(9 )の「b」を式(9')では「b」としている)、上述の「k」の位置の垂直な断面における車 軸の中心からコンテナ貨物車両の重心 Wまでの左右方向の長さ「s」を演算する(ステ ップ S 612)。
[0084] [数 26]
Figure imgf000036_0001
[0085] 式(9')において、「g」は重力加速度である。 「π」は円周率である。「α」はコンテナ 貨物車両の重心 Wのローリングの中心角度である。「 」はピッチング周波数である 。 「b」はコンテナ 1 1を支えている部材の左右方向の実質的な長さである。「1」は「k」 の位置の垂直な断面における車軸からコンテナ貨物車両の重心 Wまでの上下方向 の長さである。
その後、演算部 15aは、ステップ S609により得られた長さ「k」、ステップ S611によ り得られた長さ「1」およびステップ S612により得られた長さ「s」を、操作設定/表示部 15cの表示画面に表示させ(ステップ S613)、一連の 3次元重心位置の検知ルーチ 以上に述べたように、本実施形態の重心検知装置 100は、貨物を搭載可能なコン テナ 11と、コンテナ 11を載せるコンテナシャーシ 12と、コンテナシャーシ 12を牽引す るトラクタ 10と、を有するトレーラトラック 50と、このトレーラトラック 50の直進走行時の コンテナ貨物車両の自重方向および幅方向の揺れを検知する 2軸の角速度センサ 1 4aと、演算ユニット 15と、を備えてなり、この演算ユニット 15が、上述の揺れに相関す る物理量(正確には揺れの周波数や中心角度)に基づいて、コンテナ貨物車両の 3 次元空間上の重心位置を導けるよう、構成されている。
このコンテナ貨物車両の 3次元重心位置は、積載状態が不明なコンテナ貨物の、 偏荷重の度合いを直接に反映する貴重なデータであり、これにより、コンテナの扉開 封時の貨物の荷崩れ落下やコンテナ輸送車両の曲路における不安定走行の未然 防止に資することができる。
特に重心検知装置 100によれば、補正係数等の理論的根拠を欠くデータを導入す ることなぐ論理的な力学理論に基づきコンテナ貨物車両の 3次元重心位置が導か れており、その信頼性は極めて高い。そして、このことは、後述の実車実験による第 1 検証結果により裏付けられて!/、る。
更に、本実施形態の重心検知装置 100は、以下のような様々な効果をも奏する。 重心検知装置 100のコンテナ貨物車両の 3次元重心位置の演算には、サスペンシ ヨン 205の弾性係数「k」およびコンテナ貨物車両の重量「m」を考慮する必要がない 。このことは、弾性係数「k」および重量「m」の計測に費やされる膨大な手間を省くこ とを可能にするとともに、トレーラトラック 50のメーカ、年式および老朽度等不確定要 因に関係なぐ任意のトレーラトラック 50 (つまり、不特定多数のトラクタ 10と、不特定 多数のコンテナシャーシ 12と、不特定多数のコンテナ 11との間の任意の組合せ)へ の本技術の普遍的な適用を容易にする。
また、トレーラトラック 50を通常の車の流れに合わせて任意走行 (好ましくは直進走 行)させれば、重心検知装置 100は、コンテナ貨物車両の 3次元重心位置の演算で きる。よって、演算用データ取得作業が簡易に行え、上述の従来技術 (例えば特許 文献 1、 5および 6)の如く曲路走行時のデータを取る必要もなく好適である。
また、重心検知装置 100によるコンテナ貨物車両の 3次元重心位置の演算には、ト ラクタ 10の適所に 2軸の角速度センサ 14aを、簡易な手段 (接着剤接合やボルト止め ;不図示)により僅か 1個、配置すれば足りる。言い換えれば、コンテナ輸送業務に取 り扱われる多量のコンテナ 11およびコンテナシャーシ 12には、何等の措置も施す必 要がなく好適である。
実施例 1
第 1実施形態の重心検知装置 100によるコンテナ貨物車両の 3次元重心位置の導 出法の妥当性を裏付ける目的で、 2006年 4月 12日に神戸港ポートアイランドの公道 で、実車による第 1検証実験(重心位置測定)を行った。なお、本検証実験では、本 技術が公知にならないよう、本技術の理論式をパーソナルコンピュータの内部メモリ にプログラムとして記憶させブラックボックス化してなされている。
本検証実験の手順は次のとおりである。
まず、標準的な 40フィートコンテナ中に、実験用のダミー貨物を約 9· 5トン (約 9· 5 X 103キログラム)積載する。ダミー貨物の積載状態については、コンテナの前部から 重心の位置までの長さ「k」と、この「k」の位置の垂直な断面における車軸からコン
g
テナ貨物車両の重心までの上下方向の長さ「1」と、この「k」の位置の垂直な断面に
g
おける車軸の中心からコンテナ貨物車両の重心までの左右方向の長さ「s」と、力 S、以 下のように調整されている。
「k」 = 6. 10m
「1」 = 1. 91m
「s」 = 0
本重心検知装置 100による 3次元重心位置の演算精度や理論的妥当性を見極め る一手段として、ここでは、「s」 = 0としている。つまり、ほぼ全ての一般道は、センター から路端にかけて僅かに傾斜している。このため、コンテナの左右の中心位置にダミ 一貨物を積載したとしても、一般路を走行中のコンテナ貨物車両の重心位置は、この 傾斜によりコンテナの左右中心から少しだけ逸れるはずである。このような僅かな傾 斜が、本検証実験において検知されれば、本重心検知装置 100による 3次元重心位 置の優れた演算精度を間接的に証明することになる。
なおここでは、詳細な説明は省略するが、ダミー貨物の積載状態を順次変えて実 験を繰り返し、ダミー貨物の重心位置を左右にずらしている場合(つまり、「s」≠0の 場合)であっても、信頼性の高レ、3次元重心位置を検知可能であることを確認して!/、 次に、このダミー貨物をコンテナとともにコンテナシャーシに載せ、これをトラクタによ り牽引させる。なお、トラクタは、神戸港ポートアイランド内のコンテナ輸送車両が行き 来する一般道の直線路を、車の流れに合わせて数分間走った。そして、この走行中 、パーソナルコンピュータにより、トラクタに配置された角速度センサから出力される角 速度のデジタル信号がサンプリングされ、このデジタル信号はこのパーソナルコンピ ユータの内部メモリに、時系列データとともに順次記憶される。なお、サンプリングは、 0. 01秒間隔でなされた。
次に、パーソナルコンピュータにより、高速フーリエ変換(FFT)をかけた後の角速 度のデジタル信号を用いて、ローリング周波数/振幅分布、ピッチング周波数/振 幅分布およびローリング振幅の経時変化がコンピュータ画面に表示される。
図 7は、横軸に周波数 (Hz)をとり、縦軸に振幅(角速度)をとつて、ローリング周波 数/振幅分布の一例を示した図である。図 8は、横軸に周波数 (Hz)をとり、縦軸に 振幅(角速度)をとつて、ピッチング周波数/振幅分布の一例を示した図である。図 9 は、横軸に時間(秒)をとり、縦軸にローリング振幅とつて、ローリング振幅の経時変化 の一例を示した図である。
図 7および図 8に示すように、パーソナルコンピュータは、適宜の数学的な抽出法に より、ピーク振幅に対応する周波数として、コンテナの前部において路面から垂直方 向に外乱が作用した場合に発生するローリングの周波数「v 」と、コンテナの後部に おいて路面から垂直方向に外乱が作用した場合に発生するローリングの周波数「v
2
」と、重心の位置において路面から垂直方向に外乱が作用した場合のローリングの周 波数「 V 」と、ピッチングの最大振幅に対応する周波数「 V '」と、以下のように抽出し g
ている。また、図 9に示すように、パーソナルコンピュータは、重心のローリングの中心 角度「 α」を、以下のように算出している。
「 V 」 = 0. 195Hz
「 V 」 = 0. 550Hz
g
「 v 」 = 1. 160Hz
2
「 v '」 = 1. 489Hz
「α」 = 1. 030deg
次に、パーソナルコンピュータは、コンテナ、トラクタおよびコンテナシャーシに固有 の定数を用いて、内部メモリに記憶された理論式により、コンテナの前部から重心の 位置までの長さ「k」と、この「k」の位置の垂直な断面における車軸からコンテナ貨 g
物車両の重心までの上下方向の長さ「1」と、この「k」の位置の垂直な断面における g
車軸の中心からコンテナ貨物車両の重心までの左右方向の長さ「s」と、を推定演算 する。この推定演算の結果は、ダミー貨物の実測値と比較可能なように、下記の表 1 にまとめられている。
なお、上述の定数には、コンテナの前後方向の長さ「P」と、トラクタの力ブラの直径「 b」と、コンテナの前部から力ブラの中心までの長さ「k」と、コンテナの後部の位置に おける、コンテナを支えている部材の左右方向の実質的な長さ「b」と、がある。各々
2
の具体的な数 は以下のとおりである。
「p」 = 12. 192m
「b」 = 0. 915m
「b」= 2. 438m
2
「k」 = 0. 076m
[0087] [表 1] 表 1 実測値と本実施例の推定演算値との比較
Figure imgf000040_0001
[0088] 表 1に示した推定演算値と実測値との比較から理解されるとおり、本実施例の推定 演算値は、実測値の測定誤差範囲内で実測値とほぼ完全に一致してレ、る。よって、 第 1実施形態の重心検知装置 100によるコンテナ貨物車両の 3次元重心位置導出 法の妥当性が、本検証実験により裏付けられた。
[0089] 実測値の測定誤差には、例えば、ダミー貨物寸法やコンテナ内の積載位置をメジ ヤーで測った際の読み取り誤差がある。そうであれば、寧ろ、純粋な力学理論に基づ く本実施例の推定演算値の方が、実測値に比べて誤差混在の可能性が少なレ、と考 えられることから、実測値よりも真の重心位置を表しているようにも推定される。
[0090] また、車軸の中心からコンテナ貨物車両の重心までの左右方向の長さ「s」が、 7セ ンチと演算された理由のひとつとして、上述の一般道の僅かな傾斜が想定される。こ れにより、本重心検知装置 100の高い演算精度が間接的に証明され、仮に路面が 傾斜しても、そのまま、何等補正を行う必要なぐ本技術を適用できると期待される。 (第 2実施形態)
図 10は、第 2実施形態による横転限界速度予測装置の構成例を示した概略図で ある。図 10 (a)は、この予測装置を、コンテナ貨物車両の幅方向(側面)から見た図 であり、図 10 (b)は、この予測装置を、コンテナ貨物車両の後側から見た図である。 なお、以下に述べる説明の便宜上、図面において、コンテナ貨物車両の自重のか かる方向を「上下方向」とし、コンテナ貨物車両の幅方向を「左右方向」とし、コンテナ 貨物車両の走行方向を「前後方向」とする。
[0091] また、本実施形態による横転限界速度予測装置 110については、第 1実施形態の 重心検知装置 100と同じ構成要素には、同一の符号を付している。よって、第 1実施 形態で述べた重心検知装置 100の内容と重複する記載については、適宜省略する 横転限界速度予測装置 110は、図 10に示す如ぐトレーラトラック 50と、データ検 出部 114と、演算ユニット 115と、を備える。
[0092] 図 11は、本実施形態による横転限界速度予測装置中のデータ検出部および演算 ユニットの内部構成の一例を示したブロック図である。
データ検出部 114は、トレーラトラック 50の左右方向の中央であって、トラクタ 10側 の輸送業務に支障の無い場所 (例えば、図 10に示した力ブラ 13の近傍)に固着され ている。演算ユニット 115は、トラクタ 10の運転室内の適所に配置されている。そして 、両者は、適宜のデータ入出力ポート(不図示)を介して有線通信や無線通信等によ りデータ送信可能なように接続されている。
データ検出部 114には、第 1実施形態で述べた揺動検知器 14の構成要素と同じ 機器が内蔵されている。つまり、データ検出部 114は、図 11に示すように、トレーラト ラック 50の走行時のコンテナ貨物車両の上下方向および幅方向の揺れを検知する よう、角速度の感度軸が調整された 2軸(2次元)の角速度センサ 14aと、この角速度 センサ 14aから出力されるアナログ信号をデジタル信号に変換する A/D (アナログ /デジタル)変換器 14bと、を備える。
また、データ検出部 114は、地域の ITS (Intelligent Transport Systems ;高度道路 交通システム)から、アンテナ 114cを介して各種の交通無線情報を受信し、この無線 情報を演算ユニット 115に与える受信機 114dも備える。本実施形態の交通無線情 報として、トレーラトラック 50が走る予定の路面 204の状態、例えば、曲路 204cの曲 率半径の無線情報がある。
[0093] 演算ユニット 115は、図 11に示すように、マイクロプロセッサ等からなる演算部 115a と、 ROM (リードオンリ一メモリ)や RAM (ランダムアクセスメモリ)等からなる記憶部 1 15bと、操作設定/表示部 115cと、を備える。このような演算ユニット 115としては、ノ ートブックタイプのパーソナルコンピュータ等の情報携帯端末がある。
記憶部 115bは、第 1実施形態で述べたコンテナ貨物車両の 3次元重心位置を適 切に導くための演算プログラムや当該演算に必要な各種の入力用の定数の他、後 述のコンテナ貨物車両の横転限界速度を適切に導くための演算プログラムや当該演 算に必要な各種の入力用の定数 (後述)を記憶している。
[0094] 演算部 115aは、第 1実施形態で述べた内容と同様に、記憶部 115bに予め記憶さ れている 3次元重心位置検知用の演算プログラムに従って動作し、角速度センサ 14 a (A/D変換器 14b)から出力されたデジタル信号に基づいてコンテナ貨物車両の 3 次元重心位置を導くことができる力 ここでは、その詳細な説明は省略する。
また、演算部 115aは、後述のとおり、記憶部 115bに予め記憶されている横転限界 速度予測用の演算プログラムに従って動作し、例えば、上述の 3次元重心位置を用 いて、コンテナ貨物車両が走る曲路 204cの曲率半径に応じたコンテナ貨物車両の 横転限界速度を導くことができる。更に、演算部 115aは、トレーラトラック 50が走る予 定の曲路 204cの曲率半径の無線情報を、逐次、受信機 114dから取得することがで きる。
[0095] 操作設定/表示部 115cは、上述の入力用の定数の設定ボタンを配設した操作部
(例えばキーボード;不図示)と、演算部 115aから出力されたコンテナ貨物車両の横 転限界速度についての出力データを、作業者が認識できるように表示通知や音声通 知する通報装置 (例えば液晶パネル画面やスピーカ;不図示)と、を備える。つまり、 演算部 115aは、上述の横転限界速度を、操作設定/表示部 115cを用いて作業者 (運転者や同乗者)に予め通報するように構成されて!/、る。
次に、コンテナ貨物車両の横転限界速度の導出法について図面を参照しながら詳 しく説明する。
図 12および図 13は何れも、本実施形態の横転限界速度予測装置によるコンテナ 貨物車両の横転限界速度の導出法を説明する模式図である。図 12は、トレーラトラ ックが曲路を右旋回する場合について、トレーラトラック(コンテナ貨物車両)を後から 見た図である。つまり、トレーラトラック 50の左側の車輪が旋回外輪に相当し、トレー ラトラック 50の右側の車輪が旋回内輪に相当して!/、る。
また、図 13 (a)は、トレーラトラックが曲路を右旋回する場合について、トレーラトラッ クの自重の力、かる上下方向から見た図であり、同図(b)は、トレーラトラックの幅方向 に相当する左右方向から見た図である。
なお、図 12および図 13では、横転限界速度予測装置 110の構成については、横 転限界速度の導出法が理解し易くなるように、簡略乃至省略して図示している。 まず、図 12を用いて、コンテナ貨物車両の前後方向(走行方向)に垂直な断面に おいて、コンテナ貨物車両が傾く(最悪の場合、横転する)場合の速度条件について 説明する。
トレーラトラック 50が、曲路 204cを曲がる際に、コンテナ貨物車両の重心 Wに横向 きにかかる力 F (遠心力 F)力 コンテナ貨物車両の重力との関係で一定の値を超え れば、トレーラトラック 50が、トレーラトラック 50の旋回外輪の幅方向の外端 300を中 心とし、外端 300から重心 Wまでの距離「R」を半径とした円の周囲に沿って傾くと考 x_られる。
コンテナ貨物車両に力、かる遠心力 Fとコンテナ貨物車両の重力との間のモーメント の釣り合いから、トレーラトラック 50が、上述の外端 300を中心とし、距離「R」を半径と した円運動(回転)し始める場合の以下の不等式(1)が得られる。
[0096] [数 27]
) > 0 … )
Figure imgf000043_0001
[0097] 不等式(1)において、「m」はコンテナ貨物車両の重量であり、「g」は重力加速度で ある。また、「b」はコンテナ貨物車両の幅寸法であり、第 1実施形態で述べた、コンテ ナ 11の荷重を支えている部分の長さと等価な値である。なお、この幅寸法「b」は、コ ンテナ貨物車両の固有値 (コンテナ貨物車両毎に特定される固有の数値;以下、同 し)でめ ·ο。
また、「V」はトレーラトラック 50 (コンテナ貨物車両)の走行速度であり、「r」は曲路 2 04cの曲率半径であり、「a」は曲路 204cの路面 204から重心 Wまでの高さであり、「s 」は垂直中心ライン 201からコンテナ貨物車両の重心 Wまでの左右方向の長さである
上述の不等式(1)によれば、コンテナ貨物車両の旋回外輪の外端 300を中心とし てコンテナ貨物車両が回転に至る場合の速度が、コンテナ貨物車両の走行方向に 垂直な断面についてのコンテナ貨物車両の重心位置を用いて、曲路 204cの曲率半 径「r」との関係で求まることになる。
なお、車軸位置ライン 202からコンテナ貨物車両の重心 Wまでの上下方向の長さ「1 」と、垂直中心ライン 201からコンテナ貨物車両の重心 Wまでの左右方向の長さ「s」と 、力 第 1実施形態で述べたコンテナ貨物車両の 3次元重心位置の導出法に基づい て既知とすれば、距離「R」の垂直成分に相当する路面 204から重心 Wまでの高さ「a 」は、コンテナ貨物車両の固有値(車輪の幅や車軸の高さ)を基にして幾何学的に容 易に導出できる。
次に、図 13を用いて、コンテナ貨物車両の自重方向に垂直な断面(この面を、以下 、便宜上、「水平面」という)において、コンテナ貨物車両が回転に至る速度条件につ いて説明する。
トレーラトラック 50が、曲路 204cを曲がる際に、トレーラトラック 50の水平中心ライン 207に沿って、トレーラトラック 50に遠心力「F」が均等に与えられれば、仮に曲路 20 4cの路面 204が滑り易い状態であっても、トレーラトラック 50は、曲路 204cの水平面 内を横滑りするに過ぎない。この場合、最終的には、トレーラトラック 50の曲路 204c 力、らのコースアウトの問題に帰結すると考えられる。
ところ力 トレーラトラック 50の水平中心ライン 207に沿って、トレーラトラック 50に与 えられる遠心力「F」のバランス力 S、何等かの要因(例えば、前後のブレーキのかかり 具合の違いや前後のタイヤの状態の違い)により崩れた場合、水平面内のトレーラト ラック 50の走行運動形態は複雑になる。
本件発明者は、鋭意研究の結果、このような走行運動の場合、トラクタ 10とコンテナ 貨物車両(コンテナシャーシ 12)の折れ曲がり (ジャックナイフ)の誘発の他、上述のコ ンテナ貨物車両の走行方向に垂直な断面おけるコンテナ貨物車両の回転運動とは 独立して、水平面内の回転運動が同時に作用して、これらの運動力が偶然かつ瞬間 的にコンテナ貨物車両を傾かせる方向に一致してしまう場合があることを見出した。 このような水平面内の回転運動の定式化について、図 13を参照しながら順を追つ て述べる。
まず、図 13に記載した各符号の意味合いについて説明する。
図 13において、「W」は、コンテナ貨物車両の重心である。また、「1 (ラージアイ)」は 、トラクタ 10の前輪の路面 204への接地点である。つまり、この接地点「I」は、トラクタ 10の前輪の車軸中心部直下の路面 204上に位置している。
「C (ラージシ一)」は、トラクタ 10の後輪の路面 204への接地点である。つまり、この 接地点「C」は、トラクタ 10の後輪の車軸中心部直下の路面 204上に位置している。
「D」は、コンテナシャーシ 12の車輪の前後方向中央部の、路面 204への接地点で ある。つまり、接地点「D」は、前後方向に 2列に並んだ車輪の前後方向中央部直下 の路面 204上に位置している。なお、ここでは、コンテナシャーシ 12の車輪力 前後 方向に 2列に並んだ構成を例示している力 S、これに限らない。コンテナシャーシ 12の 車輪が、前後方向に 1列であってもよぐ前後方向に 3列以上並んでもよい。このよう な場合にも、接地点「D」を、前後方向に並んだ車輪の前後方向中心部(1列の場合 は、車軸中心部)を基準にして定めればよい。
「E」は、トラクタ 10とコンテナシャーシ 12 (コンテナ貨物車両)との間の連結点であり 、上述のとおり、図 1および図 10に図示したカプラ 13の点状の連結位置に対応する ものである。 「a」は曲路 204cの路面 204から重心 Wまでの高さである。「s」はコンテ ナ貨物車両の水平面における水平中心ライン 207 (図 12の垂直中心ライン 201)か ら重心 Wまでの左右方向の長さである。「b」はコンテナ貨物車両の幅寸法である。 また、「c (スモールシ一)」は、接地点「C」から重心 Wまでの前後方向の長さである 。 「d」は接地点「D」から重心 Wまでの前後方向の長さである。「e」は連結点「E」から 接地点「C」までの前後方向の長さである。「f」は接地点「I」から連結点「E」までの前 後方向の長さである。「L」は接地点「C」から接地点「D」までの前後方向の長さ(言!/、 換えれば、接地点「C」および重心 W間の距離と、重心 Wおよび接地点「D」間の距離 と、の和;長さ「c」+長さ「d」)である。これらの前後方向の長さのうちの長さ「e」、長さ 「f」および長さ「L」は、コンテナ貨物車両の固有値である。
なお、コンテナ 11の前部から重心 Wの位置までの長さ「kg」が、第 1実施形態で述 ベたコンテナ貨物車両の 3次元重心位置の導出法に基づ!/、て既知とすれば、接地 点「C」から重心 Wまでの前後方向の長さ「c」、および、接地点「D」から重心 Wまでの 前後方向の長さ「d」は、コンテナ貨物車両の固有値 (車輪の位置など)を基にして幾 何学的に容易に導出できる。
また、図 13 (a)には、コンテナ貨物車両の重心 Wに力、かる遠心力「F」が、接地点「I 」にかかる遠心力「Fi」の成分と、接地点「C」にかかる遠心力「Fc」の成分と、接地点「 DJにかかる遠心力「Fd」の成分と、連結点「E」にかかる遠心力「Fe」の成分と、に分 けられるようにして示されている。また、これらの遠心力「Fi」、遠心力「Fc」、遠心力「 Fdjおよび遠心力「Fe」に対する路面 204や連結点「E」のカプラ 13 (図 13では図示 せず)からの抗カ(反力)も点線矢印により示されて!/、る。
上述の遠心力「F」は、 F = mV2/r(m :コンテナ貨物車両の重量、 r :曲路 204cの 曲率半径、 V:コンテナ貨物車両の走行速度)であり、この遠心力「F」が、コンテナシ ヤーシ 12における接地点「D」での反力、および、連結点「E」を通してトラクタ 10に伝 わる接地点「I」および接地点「C」での反力の和に釣り合って!/、る場合、トレーラトラッ ク 50を水平面内にお!/、て回転させるモーメントは何等生じな!/、。
ところ力 逆に、この釣り合いのバランスが崩れると、トレーラトラック 50の可動部で ある連結点「E」を中心として、コンテナ貨物車両が水平面内を円運動するような回転 要素が生まれる。これにより、コンテナ貨物車両の重心 Wにおけるその円運動軌跡の 接線方向が、上述のコンテナ貨物車両の走行方向に垂直な断面における、コンテナ 貨物車両を傾かせる力の方向に瞬間かつ偶発的に一致する場合がある。つまり、水 平面内のコンテナ貨物車両の回転運動と、コンテナ貨物車両の走行方向に垂直な 断面におけるコンテナ貨物車両の回転運動と、力 コンテナ貨物車両を傾かせる方 向に重畳的に作用する場合があると考えられる。このため、コンテナ貨物車両の横転 の適切な予測には、水平面内のコンテナ貨物車両の回転運動を考慮に入れることが 不可欠であるとの結論に至った。
換言すれば、コンテナ貨物車両の横転現象を適切に定式化するには、コンテナ貨 物車両の走行方向に垂直な断面についての重心 wの位置を用いた、コンテナ貨物 車両の回転運動の定式化(不等式(1)参照)の他、後述のとおり、コンテナ貨物車両 の走行方向についての重心 wの位置を用いた、コンテナ貨物車両の回転運動の定 式化が必要であると考えられる。そして、このこと力 コンテナ貨物車両の 3次元重心 位置検知の重要性を何等認識できていない上述の従来技術に対し、本実施形態に よる横転限界速度予測装置 110の課題解決原理を特徴づける決定的な相違点であ ると ¾える。
図 13において、トレーラトラック 50に与えられる力とモーメントのバランスを考慮する と、トレーラトラック 50のうちのコンテナシャーシ 12 (コンテナ貨物車量)にかかる遠心 力とその反力とが釣り合つている場合には、以下の関係が成り立つ。
[0100] [数 28]
F = Fd + Fe
Fd : = (c + e ) : d
[0101] よって、これらの式を展開すると、遠心力「Fd」は以下のように表される。
[0102] [数 29]
F, - F — F
Figure imgf000048_0001
c + e
L + e
[0103] また、遠心力「Fe」は、以下のように表される c
[0104] [数 30] = F— F
Figure imgf000048_0002
[0105] 次に、トレー :カ、かる遠心力とその反力とが釣り合つ ている場合には、以下の関係が成り立つ。
[0106] [数 31]
[0107] よって、遠心力「Fi」は、以下のように表される。
[0108] [数 32]
Figure imgf000049_0001
Fc F f
e
Figure imgf000049_0002
[0109] また、遠心力「Fc」は、以下のように表される c
[0110] [数 33]
F = -F
Figure imgf000049_0003
以上により、コンテナ貨物車両の重心 Wに力かる遠心力「F」の各成分である遠心 力「Fd」、遠心力「Fe」、遠心力「Fi」および遠心力「Fc」 、遠心力「F」およびコンテ ナ貨物車両の走行方向についての重心 Wの位置により定式化された。
次に、トレーラトラック 50を水平面内で回転させようとするモーメントが生じる場合に ついて検討する。 以上に述べた定式化の段階にお!/、ては、トレーラトラック 50のモーメントのバランス により、上述の遠心力「Fd」、遠心力「Fe」、遠心力「Fi」および遠心力「Fc」を割り出 している。つまり、トレーラトラック 50が水平面内で回転しない段階では、トレーラトラッ ク 50のモーメントの釣り合いが成立していると仮定しており、この場合、各遠心力「Fd 」、「Fe」、「Fi」、「Fc」とそれらの抗カも当然釣り合つている。
次に、トレーラトラック 50が水平面内で回転し始める段階では、トレーラトラック 50の モーメントの釣り合!/、が崩れることになる力 S、このモーメントを崩す要因を正確に見極 める必要がある。仮にトレーラトラック 50の長さが伸縮するとすれば、理論的には、各 遠心力「Fd」、「Fe」、「Fi」、「Fc」の大きさが変化しなくても、トレーラトラック 50のモー メントのバランスが崩れる力、もしれない。し力もながら、常識的に、トレーラトラック 50の 各部の長さは不変であるので、トレーラトラック 50のモーメントのバランスを崩す唯一 の要因として、各遠心力「Fd」、「Fe」、「Fi」、「Fc」の大きさ力 モーメントの釣り合い の状態のそれから変化した場合が残るだけになる。
このようなモーメントの発生要因としての力のバランスが崩れた場合には、トレーラト ラック 50の可動部である連結点「E」が、トレーラトラック 50の水平面内の回転軸にな る。よって、以下の不等式が成り立つと、トレーラトラック 50を水平面内で回転させる 要素が生まれることになる。
[0112] [数 34]
Fc + Fd ~ Ft > 0
[0113] または
[0114] [数 35]
[0115] つまり、 Fc + Fd— Fi〉0の場合には、コンテナ貨物車両の横転を誘発させる方向 にコンテナ貨物車両が水平面内を回転すると考えられる。これに対し、 Fc + Fd-Fi く 0の場合には、トラクタ 10とコンテナ貨物車両(コンテナシャーシ 12)との間のジャッ クナイフ的な動きを誘発させる方向にコンテナ貨物車両が水平面内を回転すると考 えられる。よって、絶対値をとつた以下の不等式を満足すれば、コンテナ貨物車両は 、水平面内を回転することになる。
[数 36]
Fc + Fd - ^ > 0
[0117] この絶対値をとつた不等式に、遠心力「Fc」、遠心力「Fd」、および遠心力「Fi」の成 分を代入すると、以下の不等式(2)が得られる。
[0118] [数 37]
Figure imgf000051_0001
[0119] この不等式(2)にお!/、て、「m」はコンテナ貨物車両の重量である。「V」はコンテナ 貨物車両の走行速度である。「r」は曲路 204cの曲率半径である。
上述の不等式(2)によれば、トラクタ 10とコンテナ貨物車両との間の連結点を中心 としてコンテナ貨物車両が回転に至る場合の速度力 コンテナ貨物車両の水平方向 についての重心位置を用いて、曲路 204cの曲率半径「r」との関係で求まることにな 次に、コンテナ貨物車両の横転に至ると予測されるコンテナ貨物車両の走行速度 の導出法について説明する。
コンテナ貨物車両が、曲路 204cを走行中に最も横転し易くなる状態は、コンテナ 貨物車両の走行方向に垂直な断面におけるコンテナ貨物車両の回転運動(不等式 ( 1) )と、水平面内のコンテナ貨物車両の回転運動(不等式 (2) )と、が同時に作用す る場合である。
このような場合のコンテナ貨物車両の速度は、不等式(1)および不等式(2)からな る以下の連立不等式をコンテナ貨物車両の走行速度「V」で解くことにより得られる。
[0120] [数 38]
Figure imgf000052_0001
[0121] 上述の両式の和を取り移行すると、次のように展開される c
[0122] [数 39]
Figure imgf000052_0002
[0123] この不等式(3)におレ、て、「g」は重力加速度である。「b」はコンテナ貨物車両の幅 寸法である。「r」は曲路 204cの曲率半径である。 「a」は曲路 204cの路面 204から重 心 Wまでの高さである。 「s」は水平中心ライン 207 (垂直中心ライン 201)力もコンテナ 貨物車両の重心 Wまでの左右方向の長さである。「c」は、接地点「C」から重心 Wま での前後方向の長さである。「d」は接地点「D」から重心 Wまでの前後方向の長さで ある。「e」は連結点「E」から接地点「C」までの前後方向の長さである。「f」は接地点「I 」から連結点「E」までの前後方向の長さである。 「L」は接地点「C」から接地点「D」ま での前後方向の長さである。
この不等式(3)が、コンテナ貨物車両の横転に至ると予測されるコンテナ貨物車両 の横転速度の範囲を求める式である。よって、コンテナ貨物車両の 3次元重心位置さ え既知であれば、コンテナ貨物車両の走行速度「V」のうちの不等式(3)が成り立つ ような速度の範囲、つまり、コンテナ貨物車両の横転速度の範囲を適切に予測するこ と力 Sできる。
[0124] ところで、本明細書において、不等式(3)の左辺のコンテナ貨物車両の走行速度「 V」がこれ以上速度を増せば、コンテナ貨物車両が傾き始めると予測される限界(臨 界)速度のことを、横転限界速度「VI」というものとする。つまり、コンテナ貨物車両の 横転限界速度「VI」は、不等式(3)の右辺と左辺を等号で結んだ、以下の等式 (4) で与えられる。
[0125] [数 40]
Figure imgf000053_0001
[0126] コンテナ貨物車両が、この横転限界速度「VI」で曲率半径「r」の曲路 204cに差し 掛かると、僅かの外乱により、コンテナ貨物車両が傾き始め、最悪の場合、コンテナ 貨物車両の横転に至ることが懸念される。このため、この横転限界速度「VI」は、コン テナ貨物車両が横転に至るか否かの基準速度であり、コンテナ貨物車両の曲路 204 cにおける異常な速度を適切に判定するための貴重なデータである。
次に、本実施形態の横転限界速度予測装置 1 10によるコンテナ貨物車両の横転 限界速度の予測動作例について図面を参照しながら説明する。
図 14は、本実施形態の横転限界速度予測装置によるコンテナ貨物車両の横転限 界速度の予測動作を示したフローチャートである。
演算ユニット 1 15の操作設定/表示部 1 15cの電源スィッチが押されると、操作設 定/表示部 1 1 5cの表示画面(不図示)には複数のメニューが表示される。そして、 操作設定/表示部 1 1 5cの適宜のボタン操作により、トレーラトラック 50の走行中に、 以下のコンテナ貨物車両の横転限界速度「VI」の予測動作を開始することができる 。なお、本予測動作を以下のように実行するにあたり、作業者 (例えばトラクタ 10の運 転者や同乗者)が行う必要がある指示内容は、操作設定/表示部 115cの表示画面 にメッセージ表示される。コンテナ貨物車両の横転限界速度「VI」の演算動作が選 択されると、演算ユニット 115の演算部 115aは、記憶部 115bから横転限界速度予 測用の演算プログラムおよび予め記憶された適宜の定数を読み出し、この演算プロ グラムが、以下の処理を演算部 115a、記憶部 115bおよび操作設定/表示部 115c を制御しながら実行する。
なお、この定数には、重力加速度「g」と、コンテナ貨物車両の幅寸法「b」と、連結点 「E」から接地点「C」までの前後方向の長さ「e」と、接地点「I」から連結点「E」までの 前後方向の長さ「f」と、接地点「C」から接地点「D」までの前後方向の長さ「L」と、が ある。
重力加速度「g」以外の上述の定数は、何れもトレーラトラック 50の固有値であること から、以下に述べる動作の如ぐトレーラトラック 50の機種毎に当該定数が記憶部 11 5bに入力されるものとする。また、記憶部 115bに入力された定数は、その後、トレー ラトラック 50の機種が変更されない限りは、再入力することなぐそのまま使用できる。 まず、作業者 (運転者や同乗者)が、トレーラトラック 50の車検証やメーカ仕様書な どの適宜の資料を用いて、上述の定数「e」、「f」、「b」、「L」を特定する。そして、作業 者による操作設定/表示部 115cの操作により、演算ユニット 115の記憶部 115bに、 これらの定数「e」、「f」、「b」、「L」が入力される(ステップ S 1401)。定数としての重力 加速度「g」については、普遍的な値であることから、予め記憶部 115bに記憶されて いる。これにより、演算部 115aは、これらの定数「e」、「f」、「b」、 「し」、 「g」を取得でき 次に、演算部 115aは、以下に述べる何れかの方法により、コンテナ貨物車両の重 心関連データを取得する。つまり、演算部 115aは、曲路 204cの路面 204から重心 Wまでの高さ「a」と、水平中心ライン 207 (垂直中心ライン 201)力もコンテナ貨物車 両の重心 Wまでの左右方向の長さ「s」と、接地点「C」から重心 Wまでの前後方向の 長さ「c」と、接地点「D」から重心 Wまでの前後方向の長さ「d」と、を取得する(ステツ プ S1402)。
第 1の方法として、例えば、コンテナ 11内の積載状態を未確認のまま輸送される場 合、演算部 115aは、記憶部 115bに予め記憶されている 3次元重心位置検知用の 演算プログラムに従って動作し、第 1実施形態で述べた角速度センサ 14a (A/D変 換器 14b)から出力されたデジタル信号に基づいてコンテナ貨物車両の 3次元重心 位置を取得してもよい。そうすれば、演算部 115aは、この 3次元重心位置のデータを もとに、簡易な幾何学的計算により上述の重心関連データ「a」、「s」、「c」、「d」を演 算できる。これにより、演算部 115aは、論理的な力学理論に基づいて導かれたコン テナ貨物車両の 3次元重心位置から高精度のデータを自動的に取得でき好適であ る。なお、コンテナ貨物車両の 3次元重心位置の導出法は、第 1実施形態で詳しく述 ベたので、ここでは、省略する。
第 2の方法として、国内流通の一般貨物輸送の如ぐトレーラトラック 50の作業者が コンテナ 11へのコンテナ貨物の積載を行う場合には、作業者が、上述の重心関連デ 一タ「&」、「s」、「c」、「d」を実測してもよい。そうすれば、演算部 115aは、作業者によ る操作設定/表示部 115cを用いた重心関連データ「a」、「s」、「c」、「d」の入力によ り、これらの重心関連データ「a」、「s」、「c」、「d」を取得できる。但し、この第 2の方法 では、重心関連データ「a」、「s」、「c」、「d」の測定誤差により、第 1の方法に比べてコ ンテナ貨物車両の 3次元重心位置の精度が劣る場合がある。
次に、演算部 115aは、以下に述べる何れかの方法により、曲路 204cの曲率半径「 rjを取得する(ステップ S 1403)。
第 1の方法として、演算部 115aは、受信機 114dを用いて、トレーラトラック 50が差 し掛かる予定の曲路 204cの曲率半径「r」の無線情報を地域の ITSから自動的に取 得してもよい。
第 2の方法として、トレーラトラック 50の運行計画をもとにして、トレーラトラック 50の 走行が予定されている曲路 204cの曲率半径を事前調査してもよい。そうすれば、演 算部 115aは、作業者による操作設定/表示部 115cを用いた曲率半径「r」の入力 により、この値「r」を取得できる。
第 3の方法として、演算部 115aが、曲路 204cの曲率半径として想定される数値範 囲(例えば、交差点の屈曲カーブの数 から高速道路のなだらかなカーブの数 ま での範囲)を所定の数値毎に刻み、これを連続的に取得してもよい。 次に、演算部 115aは、記憶部 115bに記憶された定数「e」、「f」、「b」、 「し」、 「g」を 読み出し、ステップ S1402により得られたコンテナ貨物車両の 3次元重心位置に関 係する重心関連データ「a」、「s」、「c」、「d」およびステップ S 1403により得られた曲 率半径「r」を用いて、以下の等式 (4)により、曲率半径「r」に応じたコンテナ貨物車 両の横転限界速度「VI」(予測値)を演算する(ステップ S 1404)。
[0127] [数 41]
Figure imgf000056_0001
[0128] この等式 (4)にお!/、て、「g」は重力加速度である。「b」はコンテナ貨物車両の幅寸 法である。「r」は曲路 204cの曲率半径である。 「a」は曲路 204cの路面 204から重心 Wまでの高さである。 「s」は水平中心ライン 207 (垂直中心ライン 201)力もコンテナ貨 物車両の重心 Wまでの左右方向の長さである。「c」は、接地点「C」から重心 Wまでの 前後方向の長さである。「d」は接地点「D」から重心 Wまでの前後方向の長さである。 「e」は連結点「E」から接地点「C」までの前後方向の長さである。「f」は接地点「I」から 連結点「E」までの前後方向の長さである。「L」は接地点「C」から接地点「D」までの 前後方向の長さである。
そして、演算部 115aは、ステップ S 1404により得られた横転限界速度「VI」を、作 業者に通知するよう、演算ユニット 115の操作設定/表示部 15cの表示画面に表示 させ、および/または、操作設定/表示部 15cのスピーカにより音声発信させる(ス テツプ S 1405)。
例えば、演算部 115aは、トレーラトラック 50が差し掛かる予定の曲路 204cの曲率 半径「r」の無線情報を地域の ITSから受信機 114bを介して逐次取得しつつ、操作 設定/表示部 15cを用いて『次の交差点を左折するなら、「VI」以下で曲がれ』や『こ の高速道路の次のカーブは、「VI」以下に保て』などの通知を作業者に発信してもよ い。 ここで、演算部 115aは、曲路 204cの曲率半径「r」を変更するか否かを判定する( ステップ S 1406)。曲路 204cの曲率半径「r」を変更する場合(ステップ S 1406にお いて「Yes」の場合)、上述のステップ S 1403〜ステップ S 1405の処理が反復される。 一方、曲路 204cの曲率半径「r」を変更しない場合(ステップ S 1406において「No」 の場合)、次の判定ステップに進み、演算部 115aは、上述の重心関連データ「a」、「 s」、「c」、「d」の何れかを変更するか否かを判定する(ステップ S 1407)。これらの重 心関連データ「a」、「s」、「c」、「d」のうちの少なくとも何れか一つを変更する場合 (ス テツプ S 1407において「Yes」の場合)、上述のステップ S 1402〜ステップ S 1406の 処理が反復される。
一方、これらの重心関連データ「a」、「s」、「c」、「d」の何れも変更しない場合 (ステツ プ S 1407において「No」の場合)、次の判定ステップに進み、演算部 115aは、トレー ラトラック 50の固有値である上述の定数「e」、「f」、「b」、「L」を変更するか否かを判定 する(ステップ S 1408)。これらの定数「e」、「f」、「b」、「L」のうちの少なくとも何れか 一つを変更する場合(ステップ S 1408において「Yes」の場合)、上述のステップ S 14 01〜ステップ S 1407の処理が反復される。
一方、これらの定数「e」、「f」、「b」、「L」の何れも変更しない場合(ステップ S 1408 において「No」の場合)、横転限界速度予測装置 110は、一連のコンテナ貨物車両 の横転限界速度「VI」の予測ルーチンを終える。
以上に述べたように、本実施形態の横転限界速度予測装置 110は、貨物を搭載可 能なコンテナ 11、コンテナ 11を載せるコンテナシャーシ 12およびコンテナシャーシ 1 2を牽引するトラクタ 10を有するトレーラトラック 50と、演算ユニット 115と、を備える。 そして、横転限界速度予測装置 110は、演算ユニット 115が、コンテナ貨物車両の 3次元空間上の重心位置およびコンテナ貨物車両が走る予定の曲路 204cの曲率半 径「r」を取得し、この 3次元空間上の重心位置を用いて、曲路 204cの曲率半径「r」 に応じたコンテナ貨物車両の曲路 204cにおける横転限界速度「VI」を適切に導け るよう、構成されている。
このような横転限界速度「VI」は、コンテナ貨物車両が横転に至るか否かの基準速 度であり、これにより、トレーラトラック 50の曲路 204cにおける不安定走行の未然防 止に資することができる。
より詳しくは、演算ユニット 115は、コンテナ貨物車両の走行方向に垂直な断面に ついての重心位置を用いた、コンテナ貨物車両の旋回外輪の幅方向の外端 300を 中心としてコンテナ貨物車両が回転に至る場合の車両速度「V」と曲率半径「r」との 関係を表す不等式(1)と、コンテナ貨物車両の走行方向についての重心位置を用い た、トラクタ 10とコンテナ貨物車両との間の連結点「E」を中心としてコンテナ貨物車 両が回転に至る場合の車両速度「V」と曲率半径「r」との関係を表す不等式(2)と、 に基づ!/、て、横転限界速度「VI」を導くことができる
これにより、補正係数等の理論的根拠を欠くデータを導入することなぐ論理的な力 学理論に基づきコンテナ貨物車両の横転限界速度「VI」を導くことができ、その演算 結果の信頼性は極めて高い。そして、このことは、後述の実車実験による第 2検証結 果により裏付けられている。
また、本実施形態の横転限界速度予測装置 110によれば、上述の不等式(1 )およ び不等式(2)の入力値としての各種の重心関連データ「a」、「s」、「c」、「d」を、第 1実 施形態の重心検知装置 100によるコンテナ貨物車両の 3次元重心位置を用いて導く こともできる。この場合、重心関連データ「a」、「s」、「c」、「d」の測定の手間が省けると ともに、第 1実施形態で実証したとおり、高精度な重心関連データ「a」、「s」、「c」、「d 」が得られる。更に、コンテナ 11内の積載状態を未確認のまま輸送される場合 (例え ば、国際間の輸出入により商取引されるコンテナ貨物の場合)であっても、重心関連 データ「a」、「s」、「c」、「d」を得ること力 Sできる。
また、本実施形態の横転限界速度予測装置 110によれば、演算部 115aは、受信 機 114dを用いて、トレーラトラック 50が走る予定の曲路 204cの曲率半径「r」の無線 情報を地域の ITSから自動的に取得できる。これにより、曲路 204cの曲率半径「r」の 取得に費やされる手間を省ける。
実施例 2
第 2実施形態の横転限界速度予測装置 110によるコンテナ貨物車両の横転限界 速度「VI」の導出法の妥当性を裏付ける目的で、 2005年 4月 13日に神戸港摩耶埠 頭にて実車による第 2検証実験 (横転実験)を行った。なお、本検証実験では、本技 術が公知にならないよう、本技術の理論式をパーソナルコンピュータの内部メモリに プログラムとして記憶させブラックボックス化してなされている。
本検証実験の手順は次のとおりである。
まず、検証実験用トレーラトラックの固有値が取得された。この固有値には、コンテ ナ貨物車両の幅寸法「b」と、連結点「E」から接地点「C」までの前後方向の長さ「e」と 、接地点「I」から連結点「E」までの前後方向の長さ「f」と、接地点「C」から接地点「D」 までの前後方向の長さ「L」と、がある。
次に、適宜のダミー貨物を積載させた検証実験用コンテナ貨物車両の重心関連デ ータが取得された。この重心関連データには、曲路 204cの路面 204から重心までの 高さ「a」と、水平中心ライン 207 (垂直中心ライン 201)力もコンテナ貨物車両の重心 までの左右方向の長さ「s」と、接地点「C」から重心までの前後方向の長さ「c」と、接 地点「D」から重心までの前後方向の長さ「d」と、がある。
次に、検証実験用トレーラトラックの走行速度を制御しながら、このトレーラトラックを 曲線状に走らせ、横転させた。なお、本検証実験は、生身のドライバーの運転により 、現実のトレーラトラック(実車)を横転させるという画期的な取り組みとして、関係者の 注目を集めた。
[0130] 次に、本検証実験の現場のトレーラトラック横転前の事前計測と横転後の事後検査 とにより、検証実験用トレーラトラックが、その横転時に通った道筋 (横転側の旋回外 輪の道筋)の曲率半径が見積もられた。その結果、この曲率半径は、約 35mであつ た。
次に、本検証実験の検証実験用トレーラトラック内のタコメータの記録から、検証実 験用トレーラトラックの横転時の車両速度が見積もられた。
[0131] 図 15は、本検証実験の検証実験用トレーラトラックのタコメータの記録画面の写真 を示した図である。
図 15から容易に認識できるとおり、検証実験用トレーラトラックが横転に至ったと考 えられる速度力 S、約 37Km/h (時速約 37キロメートル)であったと判断できる。
次に、検証実験用トレーラトラックの固有値としての、定数「b」、「e」、「f」、「L」、およ び、検証実験用コンテナ貨物車両の重心関連データ「a」、「s」、「c」、「d」を用いて、 以下の等式 (4)に基づいて、曲率半径「r」に対応した検証実験用コンテナ貨物車両 の横転限界速度「VI」を求めた。
[0132] [数 42]
Figure imgf000060_0001
[0133] 図 16は、横軸に曲率半径をとり、縦軸にコンテナ貨物車両の横転限界速度をとつ て、両者の関係を示した図である。なお、ここでは、便宜上、曲率半径「r」とコンテナ 貨物車両の横転限界速度「VI」の関係を表した図 16の実線のことを、「曲率半径 横転限界速度の相関線」と称する。
図 16によると、横軸の曲率半径「r」が 35mである場合に対応する曲率半径-横転 限界速度の相関線の縦軸の値は、約 37Km/hと読み取れる。これにより、横転限界 速度予測装置 110により得られた検証実験用コンテナ貨物車両の横転限界速度「V 1」の値と、上述のタコメータにより得られた検証実験用トレーラトラックが横転したと考 えられる値と、力 ほぼ完全に一致した。その結果、第 2実施形態の横転限界速度予 測装置 110によるコンテナ貨物車両の横転限界速度「VI」の導出法の妥当性力 本 検証実験により裏付けられた。
[0134] このような曲率半径 横転限界速度の相関線により、曲率半径「r」に応じたトレーラ トラック(コンテナ貨物車両)の曲路における横転速度の範囲が適切に見積もれる。 例えば、当該曲率半径 横転限界速度の相関線によれば、検証実験用トレーラトラ ックカ 曲率半径「r」が 35mである曲路を走行する場合 (このような曲路は、一般道で はごく普通に遭遇する)において、検証実験用トレーラトラックの走行速度が 37Km /hを超えると(この速度は、ごく普通の制限速度内の値である)、この検証実験用ト レーラトラックが横転に至る可能性が高いと判断できる。
つまり、トレーラトラックが、車の流れに合わせて制限速度以下で走行していても、コ ンテナへのコンテナ貨物の積載状態の如何により、コンテナ貨物車両の横転限界速 度「VI」を超える場合がある。そして、このような事実が、以上に述べたコンテナ貨物 車両の 3次元重心位置検知の重要性および有益性を如実に物語っている。
(第 3実施形態)
図 17は、第 3実施形態の貨物重量予測装置の構成例を示した概略図である。図 1 7 (a)は、この貨物重量装置を、コンテナ貨物車両の幅方向(側面)から見た図であり 、図 17 (b)は、この貨物重量装置を、コンテナ貨物車両の後側から見た図である。な お、図面において、コンテナ貨物車両の自重のかかる方向を「上下方向」とし、コンテ ナ貨物車両の幅方向を「左右方向」とし、コンテナ貨物車両の走行方向を「前後方向 」とする。
また、この貨物重量予測装置 100Aのハードウェア構成は、第 1実施形態の重心検 知装置 100のハードウェア構成と同じである。よって、図 17では、貨物重量予測装置 100Aの構成要素には、これに対応する重心検知装置 100の構成要素と同一の符 号を付しており、貨物重量予測装置 100Aの構成の詳細な説明は省略する。つまり、 本実施形態の貨物重量予測装置 100Aについては、演算ユニット 15の記憶部 15b ( 図 2参照)に、コンテナ 11に積載されたコンテナ貨物の重量を適切に導くための演算 プログラム(詳細は後述)が記憶されて!/、る点で、このような演算プログラムが記憶部 15bに記憶されていない第 1実施形態の重心位置装置 100と区別される力 S、ハード ウェア上、重心位置装置 100をそのまま使用することができる。
次に、コンテナ 11に積載されたコンテナ貨物の重量の導出法につ!/、て図面を参照 しながら詳しく説明する。
本導出法は、後述のとおり、コンテナ貨物車両の 3次元重心位置を入力値として用 い、コンテナ貨物車両の 3方向(前後方向、左右方向および上下方向)のそれぞれの 方向のみを考慮したコンテナ貨物の見かけの重量を理論的根拠に基づいて幾何学 的に導くことに特徴がある。また、本導出法は、後述のとおり、これらの見かけの重量 を用いて、コンテナ貨物の正味の重量を幾何平均により理論的に導くことにも特徴が ある。
まず、コンテナ貨物の重量を導く場合に必要となる入力値 (初期情報)の取得方法 について述べる。
このような入力値には、コンテナ貨物車両の走行方向(前後方向)におけるコンテナ 11の長さ「p」(図 18参照)と、コンテナ貨物車両の幅方向(左右方向)におけるコンテ ナ 11の長さ「b」(図 19参照)と、コンテナ貨物がコンテナ 11に積載されていないコン テナ貨物車両の重量「m」(以下、必要に応じて、重量「m」と略す)と、車軸位置ライ
0 0
ン 202からコンテナ 11の上端部までの長さ「z」(図 20参照)と、がある。
これらのコンテナ 11の長さ 」、「b」、「z」や重量「「m」については、トレーラトラック
0
50の車検証やメーカ仕様書などの適宜の資料を用いて容易に知ることができる。 また、上述の入力値には、コンテナ貨物がコンテナ 11に積載されたコンテナ貨物車 両の 3次元空間上の重心「W」の位置(以下、必要に応じて、重心「W」の位置と略す )、および、コンテナ貨物がコンテナ 11に積載されていないコンテナ貨物車両の 3次 元空間上の重心「W」の位置(以下、必要に応じて、重心「W」の位置と略す)もある
0 0 重心「W」の位置については、第 1実施形態に述べたコンテナ貨物車両の 3次元重 心位置の導出法により精度良く導くことができる。
また、重心「W」の位置については、コンテナ 11やコンテナシャーシ 12の型式を特
0
定できれば、適宜の解析技術や計測技術を駆使して車検場などにお!/、て求めること も可能である。し力もながら、ここでは、第 1実施形態のコンテナ貨物車両の 3次元重 心位置の導出法を用いて、簡便かつ高精度に重心「W」の位置を導ける方法を述べ
0
d * o
上述のとおり、第 1実施形態で述べたコンテナ貨物車両の 3次元重心位置の導出 法は、コンテナ 11へのコンテナ貨物の積載の有無に拘わらず適用できる。そこで、コ ンテナ型式 (例えば、 40フィートコンテナや冷凍コンテナなど)が異なる各種の空のダ ミーコンテナを載せたコンテナシャーシ 11を、標準的なトラクタ 10により牽引させると 、上述の導出法により、様々な型式のコンテナの重心「W」の位置が得られる。この
0
ため、コンテナ型式毎のコンテナの重心「w」の位置をデータベース化して予め記憶
0
部 15bに記憶すれば、演算ユニット 15は、コンテナ貨物が積載されたコンテナと同一 型式のコンテナの重心「W」の位置のデータを適宜、記憶部 15bから読み出して、こ
0
のデータを入力値として使用できる。
次に、コンテナ貨物車両の前後方向(走行方向)のみを考慮したコンテナ貨物の見 かけの重量を幾何学的に導く方法について図 18を参照しながら説明する。
図 18は、本実施形態の貨物重量予測装置によるコンテナ貨物車両の前後方向の みを考慮したコンテナ貨物の見かけの重量「mu」(以下、必要に応じて、重量「mu」と 略す)の導出法を説明する模式図であり、コンテナ貨物車両を上下方向(正確には 上方向)から見た各重心位置の状態を模式的に示した図である。
なお、図 18 (図 19も同じ)において、コンテナ貨物車両の幅方向を「左右方向」とし 、コンテナ貨物車両の走行方向を「前後方向」としている。
図 18では、重心「W」の位置および重心「W」の位置の他、コンテナ 11の内部に積
0
載された貨物の 3次元空間上の重心「W」の位置(以下、必要に応じて、重心「W」 の位置と略す)も描かれて!/、る。
ところで、質点系の力学からの当然の結果として、図 18に示すように、重心「W」お
0 よび重心「w」の間に重心「w」が存在することになり、これらの三者は同一直線上に 配されている。このとき、重心「w」は、重心「w」を挟んで重心「w」の前後および左
0
右どちらも反対側になるように位置している。そして、このような重心「w」、「w」、「
0 w
」の位置関係力 S、既知の重量「m」を用いて未知の重量「m」を幾何学的に導く際に
0
好都合であることに、本件発明者は気がついた。
つまり、コンテナ 1 1の内部の個々のコンテナ貨物の積載状態が不明であったとして も、コンテナ 11の底面全体に荷重されている前後方向の重量配分を重量「m」およ び重量「m」を用いて把握でき、その結果、重量「m」は、幾何学的に以下の如く定
0 u
式化される。
[0135] [数 43] 一 —
+ — gG) 丄
Mu ~ m° _ k ¾ >kgo) . , , ( 2 )
[0136] 式(1)および式(2)において、「p」はコンテナ 11の前後方向の長さであり、「m」は
0 コンテナ貨物がコンテナ 11に積載されて!/、な!/、コンテナ貨物車両の重量であり、「m Jはコンテナ貨物車両の前後方向のみを考慮したコンテナ貨物の見かけの重量であ る。また、「k」はコンテナ 11の前部(前横梁 20)を基準とした重心「W」の位置を、後 g
述の座標系を用いた前後方向の長さで記述した値であり、「k 」はコンテナ 11の前
Figure imgf000064_0001
部(前横梁 20)を基準とした重心「W」の位置を、後述の座標系を用いた前後方向の
0
長さで記述した値である。
なお、第 1実施形態では、上述の「k」をコンテナ 11の前部から重心「w」の位置ま g
での単純な長さ(正の値)として取り扱つていた力 本実施形態では、この「k」は、座 g 標系の取り方に依存して正の値や負の値をとることになる。
図 18に示した座標系によれば、座標軸の原点(0、 0)を前横梁 20の左右方向の中 央に置くことにより、前後方向に平行な X軸と左右方向に平行な Y軸とを、互いに原 点において直交するように引くことができる。このような座標系を用いると、重心「W」と 重心「W」と重心「W」との間の前後方向の位置関係が如何様に変わろうとも、重量「
0
m」を最小限の数式により扱えるので都合がよい。なお、この座標系の取り方は、飽 くまで一例に過ぎず、任意に定めることができる。
このように座標系を取ると、重心「W 」は負の値と
Figure imgf000064_0002
なる。また、重心「W」は第 3象限に位置するので、「k」も負の値となる。この場合、コ g
ンテナ 11の前部と重心「W」との間の長さは、図 18に示すように、「― k」として記述さ g
れ、コンテナ 11の後部(後梁部 21)と重心「W」との間の長さは、「p + k」として記述さ g
れる。よって、コンテナ貨物がコンテナ 11の底面を均一に荷重していると仮定すると、 コンテナ貨物車両の前後方向のみを考慮したコンテナ貨物の見かけの重量「m」を 、重心「W」の位置、重心「W」の位置、長さ「p」、および、重量「m」に基づいて、前
0 0
後方向の重量配分の考え方により上述の式(1)および式(2)の如く定式化できる。 次に、コンテナ貨物車両の左右方向(幅方向)のみを考慮したコンテナ貨物の見か けの重量を幾何学的に導く方法について図 19を参照しながら説明する。
図 19は、本実施形態の貨物重量予測装置によるコンテナ貨物車両の左右方向の みを考慮したコンテナ貨物の見かけの重量「m」(以下、必要に応じて、重量「m」と b b 略す)の導出法を説明する模式図であり、コンテナ貨物車両の上下方向(正確には 上方向)から見た各重心位置の状態を模式的に示した図である。 [0137] 図 19でも同様に、重心「W」の位置および重心「W」の位置の他、重心「W」の位
0
置が描かれている。そして、これらの重心「w」、「w」、「w」の位置関係が、既知の
0
重量「m」を用いて未知の重量「m」を幾何学的に導く際に好都合であることは、上
0 b
述の重量「m」を幾何学的に導く場合と同じである。
一0 2一 212
[0138] つまり、コンテナ 11の内部の個々のコンテナ貨物の積載状態が不明であったとして も、コンテナ 11の底面全体に荷重されている左右方向の重量配分を重量「m」およ b び重量「m」を用いて把握でき、その結果、重量「m」は、幾何学的に以下の如く定
0 b
式化される。
[0139] [数 44]
Figure imgf000065_0001
( 3 )
S
mb = m
( 4 )
[0140] 式(3)および式(4)において、「b」はコンテナ 11を支えている部分(横梁)の左右方 向の長さであり、「m」はコンテナ貨物がコンテナ 11に積載されていないコンテナ貨
0
物車両の重量であり、「m」はコンテナ貨物車両の左右方向のみを考慮したコンテナ b
貨物の見かけの重量である。また、「s」は水平中心ライン 207を基準とした重心「W」 の位置を、後述の座標系を用いて左右方向の長さで記述した値であり、「s」は水平
0 中心ライン 207を基準とした重心「W」の位置を、後述の座標系を用いて左右方向の
0
長さで記述した値である。
なお、第 1実施形態では、上述の「s」を車軸の中心(水平中心ライン 207)からコン テナ貨物車両の重心「W」までの左右方向の単純な長さ(正の値)として扱ってレ、た 力 本実施形態では、この「s」は、座標系の取り方に依存して正の値や負の値をとる ことになる。 図 19に示した座標系によれば、図 18の座標系と同様に、座標軸の原点(0、 0)を 前横梁 20の左右方向の中央に置くことにより、前後方向に平行な X軸と左右方向に 平行な Y軸とを、互いに原点において直交するように引くことができる。このような座 標系を用いると、重心「W」と重心「W」と重心「W」との間の左右の位置関係が如何
0
様に変わろうとも、重量「m」を最小限の数式により扱えるので都合がよい。なお、こ
b
の座標系の取り方は、飽くまで一例に過ぎず、任意に定めることができる。
このように座標系を取ると、重心「W」は第 2象限に位置するので、「s」は正の値と
0 0
なる。また、重心「W」は第 3象限に位置するので、「s」は負の値となる。この場合、コ ンテナ 11の左端部と重心「W」との間の長さは、図 19に示すように、「b/2— s」として 記述され、コンテナ 11の右端部と重心「W」との間の長さは、「b/2 + s」として記述さ れる。よって、コンテナ貨物がコンテナ 11の底面を均一に荷重していると仮定すると、 コンテナ貨物車両の左右方向のみを考慮したコンテナ貨物の見かけの重量「m」を
b
、重心「W」の位置、重心「W」の位置、長さ「b」、および、重量「m」に基づいて、左
0 0
右方向の重量配分の考え方により上述の式(3)および式 (4)の如く定式化できる。 次に、コンテナ貨物車両の上下方向(自重方向)のみを考慮したコンテナ貨物の見 かけの重量を幾何学的に導く方法について図 20を参照しながら説明する。
図 20は、本実施形態の貨物重量予測装置によるコンテナ貨物車両の上下方向の みを考慮したコンテナ貨物の見かけの重量「m」(以下、必要に応じて、重量「m」と z z 略す)の導出法を説明する模式図であり、コンテナ貨物車両の前後方向(正確には 後方向)から見た各重心位置の状態を模式的に示した図である。
なお、図 20において、コンテナ貨物車両の自重のかかる方向を「上下方向」とし、コ ンテナ貨物車両の幅方向を「左右方向」としている。
図 20でも同様に、重心「W」の位置および重心「W」の位置の他、重心「W」の位
0
置が描かれている。そして、これらの重心「w」、「w」、「w」の位置関係が、既知の
0
重量「m」を用いて未知の重量「m」を幾何学的に導く際に好都合であることは、上
0 z
述の重量「m」、「m」を幾何学的に導く場合と同じである。
u b
つまり、コンテナ 11の内部の個々のコンテナ貨物の積載状態が不明であったとして も、コンテナ 11の底面全体に荷重されている上下方向の重量配分を重量「m」およ z び重量「m」を用いて把握でき、その結果、重量「m」は、幾何学的に以下の如く定
0 z
式化される。
[0142] [数 45]
• ― , I _
mz =m°^ j ( ) …(5 ) 一 z—l
mz = Μο ~γ- ( く/。) . · ' ( 6〉
[0143] 式(5)および式(6)において、「z」は車軸位置ライン 202からコンテナ 11の上端部 までの長さであり、「m」はコンテナ貨物がコンテナ 11に積載されていないコンテナ
0
貨物車両の重量であり、「m」はコンテナ貨物車両の上下方向のみを考慮したコンテ z
ナ貨物の見かけの重量である。また、「1」は車軸位置ライン 202を基準とした重心「W 」の位置を、後述の座標系を用いて上下方向の長さで記述した値であり、「1」は車軸
0 位置ライン 202を基準とした重心「W」の位置を、後述の座標系を用いて上下方向の
0
長さで記述した値である。
なお、第 1実施形態では、上述の「1」を車軸(車軸位置ライン 202)からコンテナ貨 物車両の重心「W」までの上下方向の単純な長さ(正の値)として扱って!/、たが、本実 施形態では、この「1」は、座標系の取り方に依存して正の値や負の値をとることになる
図 20に示した座標系によれば、座標軸の原点(0、 0)を車軸位置ライン 202および 垂直中心ライン 201の交点に置くことにより、左右方向に平行な X軸(車軸位置ライン 202に一致)と上下方向に平行な Y軸(垂直中心ライン 201に一致)とを、互いに原 点において直交するように引くことができる。このような座標系を用いると、重心「W」と 重心「W」と重心「W」との間の左右の位置関係が如何様に変わろうとも、重量「m」
O x z を最小限の数式により扱えるので、都合がよい。なお、この座標系の取り方は、飽くま で一例に過ぎず、任意に定めることができる。
このように座標系を取ると、重心「W」は第 2象限に位置するので、「1」は正の値と
0 0
なる。また、重心「w」は第 1象限に位置するので、「1」も正の値となる。この場合、車 軸位置ライン 202と重心「W」との間の長さは、図 20に示すように、「1」として記述され 、コンテナ 1 1の上端部と重心「W」との間の長さは、「z— 1」として記述される。よって、 コンテナ貨物がコンテナ 1 1の底面を均一に荷重していると仮定すると、コンテナ貨物 車両の上下方向のみを考慮したコンテナ貨物の見かけの重量「m」を、重心「W」の z 0 位置、重心「W」の位置、長さ「z」、および、重量「m」に基づいて、上下方向の重量
0
配分の考え方により上述の式(5)および式(6)の如く定式化できる。
次に、上述の重量「m」、重量「m」および重量「m」を用いて、コンテナ貨物の正 z
味の重量「M」(以下、必要に応じて、重量「M」と略す)を導く方法について説明する
上述の重量「m」重量「m」および重量「m」はそれぞれ、コンテナ貨物の正味の重 量「M」に各方向相互に依存する誤差を足すことにより記述できると考えられる。
[0144] よって、重量「m」、重量「m」および重量「m」はそれぞれ、以下の式により表され z
[0145] [数 46] m ,' = M + a
m b = M + β
m z = M + Y
[0146] これらの 3つの式において、「《」は重量「111」に介在する誤差であり、「/3」は重量「 m」に介在する誤差であり、「 γ」重量「m」に介在する誤差である。これらは誤差「 a
z
」、「 /3」、「 γ」は何れも未知数である力 それぞれ相互に影響し合う性質を持ってい ると考えられる(つまり、正負の符号を持つ)
ここで、上記の 3つの式の両辺を掛け合わせて展開すると、以下の式が得られる。
[0147] [数 47] mumbmz + γ)
Figure imgf000068_0001
= Μ^ + (α + β + γ)Μ 2 + (αβ + γ + βγ)Μ + αβγ
[0148] 更に、上記の式の両辺を「m m m」で割ると、以下の式となる。
z
[0149] [数 48]
Figure imgf000069_0001
νψ νψιζ mumbmz mumbmz
[0150] ここで、誤差「 α」、「 /3」、「 γ」は、「m m m」に対して充分に微小な値であると考 u b z
えられるので、以下の式のように近似しても差し支えない。
[0151] [数 49]
mumbmz β+ γ+βγ
~―— '― U
mumbmz
mumbm2
[0152] このようにして、コンテナ貨物の正味の重量「M」を、以下の式(7)の如ぐ 3方向の それぞれのみを考慮した見かけの重量「m」、重量「m」および重量「m」の幾何平 u b z 均の考え方によって定式化できる。
[0153] [数 50]
Figure imgf000069_0002
^^… ( 7 ) 以上のようにして、本実施形態では、重心「w」の位置および重心「w」の位置を入
0 力値 (初期情報)として用いて、幾何学的な重量配分のアプローチおよび幾何平均 のアプローチによりコンテナ貨物の正味の重量「M」を理論的に導くことができる。 次に、本実施形態の貨物重量予測装置 100Aによるコンテナ貨物の重量の予測動 作例について図面を参照しながら説明する。 図 21は、本実施形態の貨物重量予測装置によるコンテナ貨物の重量の予測動作 を示したフローチャートである。
演算ユニット 15の操作設定/表示部 15cの電源スィッチが押されると、操作設定/ 表示部 15cの表示画面(不図示)には複数のメニューが表示される。そして、操作設 定/表示部 15cの適宜のボタン操作により、トレーラトラック 50の走行中に、以下のコ ンテナ貨物の正味の重量「M」の予測動作を開始することができる。なお、本予測動 作を以下のように実行するにあたり、作業者 (例えばトラクタ 10の運転者や同乗者)が 行う必要がある指示内容は、操作設定/表示部 15cの表示画面にメッセージ表示さ れる。コンテナ貨物の正味の重量「M」の演算動作が選択されると、演算ユニット 15 の演算部 15aは、記憶部 15bから貨物重量予測用の演算プログラムおよび予め記憶 された適宜の定数を読み出し、この演算プログラム力 以下の処理を演算部 15a、記 憶部 15bおよび操作設定/表示部 15cを制御しながら実行する。
なお、この定数には、コンテナ貨物車両の走行方向(前後方向)におけるコンテナ 1 1の長さ「p」と、コンテナ貨物車両の幅方向(左右方向)におけるコンテナ 11の長さ「b 」と、車軸位置ライン 202からコンテナ 11の上端部までの長さ「z」と、コンテナ貨物が コンテナ 11に積載されていないコンテナ貨物車両の重量「m」と、がある。
0
上述の定数は、何れもトレーラトラック 50の固有値であることから、以下に述べる動 作の如ぐトレーラトラック 50の機種(コンテナ 11の型式)毎に当該定数が記憶部 15b に入力されるものとする。また、記憶部 15bに入力された定数は、その後、トレーラトラ ック 50の機種が変更されない限りは、再入力することなぐそのまま使用できる。 まず、作業者 (運転者や同乗者)が、トレーラトラック 50の車検証やメーカ仕様書な どの適宜の資料を用いて、上述の定数 」、「b」、「z」、「m」を特定する。そして、作
0
業者による操作設定/表示部 15cの操作により、演算ユニット 15の記憶部 15bに、こ れらの定数 」、「b」、「z」、「m」が入力される。これにより、演算ユニット 15は、これ
0
らの定数「p」、「b」、「z」、「m」を取得できる(ステップ S2101)。
0
次に、演算部 15aは、以下に述べる何れかの方法により、重心「W」の関連データ
0
を取得する。具体的には、演算部 15aは、コンテナ 11の前部(前横梁 20)を基準とし た重心「W」の位置を、上述の座標系を用いて前後方向の長さで記述した値「k 」と 、水平中心ライン 207を基準とした重心「W」の位置を、上述の座標系を用いて左右
0
方向の長さで記述した値「s」と、車軸位置ライン 202を基準とした重心「W」の位置
0 0 を、上述の座標系を用いて上下方向の長さで記述した値「i」と、を取得する(ステツ
0
プ S2102)。
第 1の方法として、上述の如ぐこれらの重心関連データ「k 」、「s」、「1」を、予め gO 0 0 コンテナの型式毎にデータベース化し、記憶部 15bに記憶してもよい。この場合、演 算部 15aは、コンテナ 11と同一型式のコンテナに対応する「k 」、「s」、「1」のデータ gO 0 0 を記憶部 15bのデータベースから読み出すことにより、これらの数ィ直「k 」、「s」、「1」 gO o o を、重心関連データとして取得できる。
第 2の方法として、国内流通の一般貨物輸送の如ぐトレーラトラック 50の作業者が コンテナ 11へのコンテナ貨物の積載を行う場合には、作業者が、上述の重心関連デ 一タ 」、「s」、「1」を実測してもよい。これにより、演算部 15aは、作業者による操 gO 0 0
作設定/表示部 15cを用いた重心関連データ「k 」、「s」、 Γΐ」の入力により、これら gO 0 0
の重心関連データ「k 」、「s」、「1」を取得できる。但し、この第 2の方法では、重心 gO 0 0
関連データ「k 」、「s」、「i」の測定誤差により、第 1の方法に比べてコンテナ貨物車 g0 0 0
両の 3次元重心位置の精度が劣る場合がある。
次に、演算部 15aは、以下に述べる何れかの方法により、重心「W」の関連データを 取得する。具体的には、演算部 15aは、コンテナ 11の前部(前横梁 20)を基準とした 重心「W」の位置を、上述の座標系を用いて前後方向の長さで記述した値「k」と、水 g 平中心ライン 207を基準とした重心「W」の位置を、上述の座標系を用いて左右方向 の長さで記述した値「s」と、車軸位置ライン 202を基準とした重心「W」の位置を、上 述の座標系を用いて上下方向の長さで記述した値「1」と、を取得する(ステップ 2103 )。
第 1の方法として、例えば、コンテナ 11内の積載状態を未確認のまま輸送される場 合、演算部 15aは、記憶部 15bに予め記憶されている 3次元重心位置検知用の演算 プログラムに従って動作し、第 1実施形態で述べた角速度センサ 14a (A/D変換器 14b)力も出力されたデジタル信号に基づいてコンテナ貨物車両の重心「W」の関連 データ「k」、「1」、「s」を取得してもよい。これにより、演算部 15aは、論理的な力学理 論に基づいて導かれたコンテナ貨物車両の 3次元重心位置から高精度のデータを 自動的に取得でき好適である。なお、コンテナ貨物車両の 3次元重心位置の導出法 は、第 1実施形態で詳しく述べたので、ここでは、省略する。
第 2の方法として、国内流通の一般貨物輸送の如ぐトレーラトラック 50の作業者が コンテナ 11へのコンテナ貨物の積載を行う場合には、作業者が、上述の重心関連デ 一タ 」、「1」、「s」を実測してもよい。これにより、演算部 15aは、作業者による操作 g
設定/表示部 15cを用いた重心関連データ「k」、「1」、「s」の入力により、これらの重 g
心関連データ「k」、「1」、「s」を取得できる。但し、この第 2の方法では、重心関連デ g
一タ 」、「1」、「s」の測定誤差により、第 1の方法に比べてコンテナ貨物車両の 3次 g
元重心位置の精度が劣る場合がある。
次に、演算部 15aは、記憶部 15bに記憶されている重心関連データ「k」、「k 」を g g0 読み出し、重心関連データ「k 」が重心関連データ「k」以上であるか否かを判定す g0 g
る(ステップ S 2104)。
重心関連データ「k 」が重心関連データ「k」以上である場合 (ステップ S 2104に g0 g
おいて「YES」の場合)、演算部 15aは、記憶部 15bに予め記憶されている定数 」、 「m」を読み出し、重心関連データ「k」および定数 」、「m」を用いて、式(1)により
0 g 0
、コンテナ貨物車両の前後方向のみを考慮したコンテナ貨物の見かけの重量「m」 を演算する(ステップ S2105)。
[0156] [数 51]
Figure imgf000072_0001
[0157] 一方、重心関連データ「k 」が重心関連データ「k」未満である場合 (ステップ S21 g0 g
04において「NO」の場合)、演算部 15aは、記憶部 15bに予め記憶されている定数「 P」、「m」を読み出し、重心関連データ「k」および定数 」、「m」を用いて、式(2)
0 g 0
により、コンテナ貨物車両の前後方向のみを考慮したコンテナ貨物の見かけの重量「 m」を演算する(ステップ S 2106)。
[0158] [数 52]
Figure imgf000073_0001
[0159] 次に、演算部 215aは、記憶部 15bに記憶されている重心関連データ「s」、「s」を読
0 み出し、重心関連データ「s」が重心関連データ「s」以上であるか否かを判定する(ス
0
テツプ S2107)。
重心関連データ「s」が重心関連データ「s」以上である場合 (ステップ S2107にお
0
いて「YES」の場合)、演算部 15aは、記憶部 15bに予め記憶されている定数「b」、「 m」を読み出し、重心関連データ「s」および定数「b」、「m」を用いて、式(3)により、
0 0
コンテナ貨物車両の左右方向のみを考慮したコンテナ貨物の見かけの重量「m」を b 演算する(ステップ S2108)。
[0160] [数 53] b
一 iS
2
b 。 b ( s≤ s 0) …(3 )
— + s
2
[0161] 一方、重心関連データ「s」が重心関連データ「s」未満である場合 (ステップ S2107
0
において「NO」の場合)、演算部 15aは、記憶部 15bに予め記憶されている定数「b」 、「m」を読み出し、重心関連データ「s」および定数「b」、「m」を用いて、式 (4)によ
0 0
り、コンテナ貨物車両の左右方向のみを考慮したコンテナ貨物の見かけの重量「m」 b を演算する(ステップ S2109)。
[0162] [数 54]
( s > s 0) ' ' · ( 4 )
S [0163] 次に、演算部 15aは、記憶部 15bに記憶されている重心関連データ「1」、「1」を読
0 み出し、重心関連データ「i」が重心関連データ「1」以下であるか否かを判定する (ス
0
テツプ S2110)。
重心関連データ「1」が重心関連データ「1」以下である場合 (ステップ S2110にお!/、
0
て「YES」の場合)、演算部 15aは、記憶部 15bに予め記憶されている定数「z」、「m
0
」を読み出し、重心関連データ「1」および定数「z」、「m」を用いて、式(5)により、コン
0
テナ貨物車両の上下方向のみを考慮したコンテナ貨物の見かけの重量「m」を演算 z する(ステップ S2111)。
[0164] [数 55] 一 1
mz - m 0 7 (ί≥Q ' , . ( 5 )
Z— ί
[0165] 重心関連データ「1」が重心関連データ「1」超える場合 (ステップ S2110において「
0
ΝΟ」の場合)、演算部 15aは、記憶部 15bに予め記憶されている定数「z」、「m」を
0 読み出し、重心関連データ「1」および定数「z」、「m」を用いて、式(6)により、コンテ
0
ナ貨物車両の上下方向のみを考慮したコンテナ貨物の見かけの重量「m」を演算す z る(ステップ S2112)。
[0166] [数 56]
Μζ = 丁 ,( く Q ' ' ' ( 6 )
[0167] 次に、演算部 15aは、ステップ S2105またはステップ S2106により得られた重量「m
」、ステップ S2108またはステップ S2109により得られた重量「m」、および、ステツ u b
プ S2111またはステップ S2112により得られた重量「m」を用いて、式(7)により、コ z
ンテナ貨物の正味の重量「M」を演算して取得する。そして、演算部 15aは、この重 量「M」を操作設定/表示部 15cの表示画面に表示させる(ステップ S2113)。このよ うにして、演算部 15aは、一連のコンテナ貨物の正味の重量「M」の予測ルーチンを 終える。
[0168] [数 57]
M = jmumbm^ ...ズ 7 )
[0169] 以上に述べたように、本実施形態の貨物重量予測装置 100Aは、貨物を搭載可能 なコンテナ 11、コンテナ 11を載せるコンテナシャーシ 12およびコンテナシャーシ 12 を牽引するトラクタ 10を有するトレーラトラック 50と、演算ユニット 15と、を備える。 そして、貨物重量予測装置 100Aは、演算ユニット 15が、コンテナ貨物が搭載され たコンテナ貨物車両の 3次元空間上の重心「W」の位置およびコンテナ貨物が搭載さ れていないコンテナ貨物車両の 3次元空間上の重心「W」の位置を取得し、これらの
0
2つの重心「W」、「W」の位置を用いて、コンテナ貨物の見かけの重量「m」、「m」、
0 u b
「m」や正味の重量「M」を導けるよう、構成されている。
このようなコンテナ貨物の重量を取得することにより、コンテナ貨物の過積載を適切 に知ることができ、これにより、トレーラトラック 50の不安定走行やコンテナ 11の扉開 封時の貨物荷崩れ落下の未然防止に資することができる。
より詳しくは、演算ユニット 15は、 2つの重心「W」、「W」の位置、コンテナ貨物車両
0
の走行方向におけるコンテナ 11の長さ「p」、および、コンテナ貨物が搭載されていな いコンテナ貨物車両の重量「m」に基づいて、コンテナ貨物車両の走行方向のみを
0
考慮したコンテナ貨物の見かけの重量「m」を、走行方向の幾何学的な重量配分の 考え方により導くことができる。
[0170] また、演算ユニット 15は、 2つの重心「W」、「W」の位置、コンテナ貨物車両の幅方
0
向におけるコンテナの長さ「b」、および、コンテナ貨物が搭載されていないコンテナ 貨物車両の重量「m」に基づいて、コンテナ貨物車両の幅方向のみを考慮したコン
0
テナ貨物の見かけの重量「m」を、幅方向の幾何学的な重量配分の考え方により導 b
くことあでさる。
[0171] 更に、演算ユニット 15は、 2つの重心「W」、「W」の位置、コンテナ貨物車両の自
0
重方向におけるコンテナの長さ「z」、および、コンテナ貨物が搭載されていないコン テナ貨物車両の重量「m」に基づいて、コンテナ貨物車両の自重方向のみを考慮し
0
たコンテナ貨物の見かけの重量「m」を、自重方向の幾何学的な重量配分の考えた
z
力 こより導くことあでさる。
その結果、演算ユニット 15は、これらの 3方向のそれぞれのコンテナ貨物の見かけ の重量「m」「m」「m」に基づいて、幾何平均の考え方により、コンテナ貨物の正味
u b z
の重量「M」を導くことができる。
これにより、補正係数等の理論的根拠を欠くデータを導入することなぐ論理的な質 点系の力学理論に基づきコンテナ貨物の正味の重量「M」を導くことができ、重量演 算の信頼性は極めて高い。そして、このことは、後述の実車実験による第 3検証の結 果により裏付けられている。
また、本実施形態の貨物重量予測装置 100Aによれば、各種の重心関連データ「k 」、「s」、「1」、「k」、「1」、「s」を、第 1実施形態の重心検知装置 100によるコンテナ gO 0 0 g
貨物車両の 3次元重心位置を用いて導くことができる。この場合、重心関連データ「k 」、「s」、「1」、「k」、「1」、「s」の測定の手間が省けるとともに、第 1実施形態で実証 gO 0 0 g
したとおり、高精度な重心関連データ「k 」、「1」、「s」が得られる。
Figure imgf000076_0001
更に、コンテナ 11内の積載状態を未確認のまま輸送される場合 (例えば、国際間の 輸出入により商取引されるコンテナ貨物の場合)であっても、重心関連データ「k 」、 gO
「s」、「1」、「k」、「1」、「s」を得ること力 Sできる。
0 0 g
実施例 3
第 3実施形態の貨物重量予測装置 100Aによるコンテナ貨物の重量の導出法の妥 当性を実車実験により検証した (第 3検証実験)。
ここでは、上述の第 1検証実験において、重心関連データ「k 」、「s」、「1」、「k」、 g0 0 0 g
「1」、「s」の数値および定数 」、「b」、「z」、「m」の数値並びに実車実験に用いたダ
0
ミー貨物(防災用の砂袋)の重量の数値が記録されているので、この第 1検証実験の 際に記録されたデータを用いて、この重量「M」の導出法の妥当性の検証がなされた
なお、重量関連データ「k 」、「s」、「1」、「k」、「1」、「s」および定数「p」、「b」、「z」 g0 0 0 g
、「m」の具体的な記録 は以下のとおりであった。 「k 」 =— 6· 09m (コンテナ貨物車両の実測による)
「s」= 0m (コンテナ貨物車両の仕様書による)
0
「1」= 1 · 28m (コンテナ貨物車両の仕様書による)
0
「k」= 6. 17m (第 1検証実験での 3次元重心位置の演算結果による)
g
「1」 = 1. 90m (第 1検証実験での 3次元重心位置の演算結果による)
「s」 =一 0. 07m (第 1検証実験での 3次元重心位置の演算結果による)
「ρ」= 12· 19m (コンテナ貨物車両の仕様書による)
「b」= 2. 44m (コンテナ貨物車両の仕様書による)
「ζ」= 3· 34m (コンテナ貨物車両の仕様書による)
「m」= 7. 5トン (コンテナ貨物車両の仕様書による)
0
上記各記録値を、貨物重量予測用の演算プログラムを内蔵するパーソナルコンビ ユータに入力することにより、当該演算プログラムによるコンテナ貨物の重量の計算が 実行された。その結果、幾何平均によるコンテナ貨物の正味の重量「M」の計算値は 、約 8. 6トンとなり、この値は、ダミー貨物の重量 (約 9. 5トン)とほぼ一致している。よ つて、第 3実施形態の貨物重量予測装置 100Aによるコンテナ貨物の重量の導出法 の妥当性が、本検証により裏付けられた。
[0173] ところで、詳細な検討結果の記載は省略するが、本実施形態でのコンテナ貨物の 重量の演算では、飽くまで、初期情報 (入力値)としての重心「W」、「W」の位置が正
0
確であることが前提となる。そうでなければ、上述の誤差「 α」、「 /3」、「 γ」が極端な 数値となる可能性があり、この場合、コンテナ貨物の適切な重量を求めることができな い。これにより、以上に述べたコンテナ貨物車両の 3次元重心位置の高精度検知の 重要性および有益性を容易に理解することができる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び/又は機能の詳細を実質的に変更できる。
産業上の利用可能性
[0174] 本発明の重心検知装置は、貨物を搭載可能な、牽引車両に牽引される車両の 3次 元重心位置を適切に導ける。また、本発明の横転限界速度予測装置は、牽引車両 に牽引される車両の横転限界速度を適切に導ける。また、本発明の貨物重量予測装 置は、牽引車両に牽引される車両に搭載された貨物の重量を適切に導ける。よって 、これらの発明は、例えば、コンテナを搭載したコンテナシャーシをトラクタにより牽引 するトレーラトラックの輸送に利用できる。

Claims

請求の範囲
[1] 貨物を搭載可能な、牽引車両に牽引される車両と、
前記車両の走行時の前記車両の自重方向および幅方向の揺れを検知する揺動検 知器と、
演算ュュットと、を備え、
前記演算ユニットは、前記揺れに相関する物理量に基づいて、前記車両の 3次元 空間上の重心位置を導ぐ重心検知装置。
[2] 前記車両は、前記貨物を搭載可能なコンテナと、前記コンテナを載せるコンテナシ ヤーシとからなるコンテナ貨物車両である請求項 1記載の重心検知装置。
[3] 前記自重方向の揺れが、前記コンテナ貨物車両の重心を質点とした上下方向の往 復運動に対応し、前記幅方向の揺れが、前記コンテナ貨物車両の車軸中心を支点 とし、前記コンテナ貨物車両の重心を質点とした左右方向の単振子運動に対応する ロゝ
前記物理量は、前記往復運動の周波数と、前記単振子運動の周波数および前記 単振子運動の中心角度と、を含み、
前記演算ユニットは、前記単振子運動の周波数に基づ!/、て前記コンテナの走行方 向についての前記コンテナ貨物車両の重心位置を導くとともに、前記往復運動の周 波数、前記単振子運動の周波数および前記単振子運動の中心角度に基づいて、前 記走行方向に垂直な断面についての前記コンテナ貨物車両の重心位置を導く請求 項 2記載の重心検知装置。
[4] 前記コンテナシャーシの走行方向の前部近傍と前記牽引車両との間で、両者を幅 方向にスイング移動可能に連結する円盤形の連結部材を備え、
前記コンテナシャーシは、前記コンテナの幅方向に延びて、前記コンテナの走行方 向の後部近傍を支える横梁を含み、
前記演算ユニットは、前記揺動検知器の出力データを、前記単振子運動の周波数 と振幅との間の相関を表すローリングデータに変換して、前記ローリングデータを基 にして、前記横梁に由来する前記単振子運動のピーク振幅に対応する第 1の前記単 振子運動の周波数と、前記連結部材に由来する前記単振子運動のピーク振幅に対 応する第 2の前記単振子運動の周波数と、前記コンテナ貨物車両の重心に由来する 前記単振子運動のピーク振幅に対応する第 3の前記単振子運動の周波数と、を取 得し、
前記第 1、第 2および第 3の単振子運動の周波数に基づいて前記走行方向につい ての前記コンテナ貨物車両の重心位置を導く請求項 3記載の重心検知装置。
[5] 前記演算ユニットは、前記揺動検知器の出力データを、前記単振子運動の周波数 と振幅との間の相関を表すローリングデータに変換して、前記ローリングデータを基 にして、前記コンテナ貨物車両の重心に由来する前記単振子運動のピーク振幅に 対応する前記単振子運動の周波数を取得し、
前記揺動検知器の出力データを、前記往復運動の周波数と振幅との間の相関を 表すピッチングデータに変換して、前記ピッチングデータを基にして、前記往復運動 の最大振幅に対応する前記往復運動の周波数を取得し、
前記揺動検知器の出力データから前記単振子運動の振幅の経時データをサンプ リングし、前記経時データの平均値を前記単振子運動の中心角度として取得し、 前記単振子運動の周波数、前記往復運動の周波数および前記単振子運動の中心 角度に基づいて、前記走行方向に垂直な断面についての前記コンテナ貨物車両の 重心位置を導く請求項 3記載の重心検知装置。
[6] 前記コンテナ貨物車両の自重方向および幅方向の揺れは、前記コンテナ貨物車 両の路面の直進走行時に、前記路面の凹凸に応じて前記コンテナ貨物車両に与え られる外乱による運動である請求項 2乃至 5の何れかに記載の重心検知装置。
[7] 前記揺動検知器は、前記牽引車両に配置されてなり、角速度の感度軸が前記自 重方向および前記幅方向に調整された角速度センサを備える請求項 2乃至 5の何れ かに記載の重心検知装置。
[8] 貨物を搭載可能な、牽引車両に牽引される車両と、
演算ュュットと、を備え、
前記演算ユニットは、前記車両の 3次元空間上の重心位置および前記車両が走る 曲路の曲率半径を取得し、前記 3次元空間上の重心位置を用いて、前記曲率半径 に応じた前記車両の前記曲路における横転限界速度を導ぐ横転限界速度予測装 置。
[9] 前記演算ユニットは、前記車両の走行方向に垂直な断面についての前記車両の 重心位置を用いた、前記車両の旋回外輪を中心として前記車両が回転に至る場合 の前記車両の速度と前記曲率半径との関係を表す第 1の式と、前記車両の走行方 向についての前記車両の重心位置を用いた、前記牽引車両と前記車両との間の連 結点を中心として前記車両が回転に至る場合の前記車両の速度と前記曲率半径と の関係を表す第 2の式と、に基づいて、前記横転限界速度を導ぐ請求項 8記載の横 転限界速度予測装置。
[10] 前記車両は、前記貨物を搭載可能なコンテナと、前記コンテナを載せるコンテナシ ヤーシとからなるコンテナ貨物車両である請求項 8または 9記載の横転限界速度予測 装置。
[11] 前記車両の走行時の前記車両の自重方向および幅方向の揺れを検知する揺動検 知器を備え、
前記演算ユニットは、前記揺れに相関する物理量に基づいて、前記 3次元空間上 の重心位置を導ぐ前記請求項 8乃至 10の何れかに記載の横転限界速度予測装置
[12] 前記曲率半径の無線情報を受信して、前記無線情報を前記演算ユニットに与える 受信機を備える請求項 8乃至 11の何れかに記載の横転限界速度予測装置。
[13] 貨物を搭載可能な、牽引車両に牽引される車両と、
演算ュュットと、を備え、
前記演算ユニットは、前記貨物が搭載された車両の 3次元空間上の重心位置およ び前記貨物が搭載されてレ、な!/、車両の 3次元空間上の重心位置を取得し、前記 2つ の重心位置を用いて前記貨物の重量を導ぐ貨物重量予測装置。
[14] 前記車両は、前記貨物を搭載可能なコンテナと、前記コンテナを載せるコンテナシ ヤーシとからなるコンテナ貨物車両である請求項 13記載の貨物重量予測装置。
[15] 前記演算ユニットが、前記 2つの重心位置、前記コンテナ貨物車両の走行方向に おける前記コンテナの長さ、および、前記貨物が搭載されていないコンテナ貨物車 両の重量に基づいて、前記走行方向のみを考慮した前記貨物の見かけの重量を導 さ、
前記 2つの重心位置、前記コンテナ貨物車両の幅方向における前記コンテナの長 さ、および、前記貨物が搭載されていないコンテナ貨物車両の重量に基づいて、前 記幅方向のみを考慮した前記貨物の見かけの重量を導き、
前記 2つの重心位置、前記コンテナ貨物車両の自重方向における前記コンテナの 長さ、および、前記貨物が搭載されていないコンテナ貨物車両の重量に基づいて、 前記自重方向のみを考慮した前記貨物の見かけの重量を導き、
前記 3方向の貨物の見かけの重量に基づいて、前記貨物の正味の重量を導ぐ請 求項 14記載の貨物重量予測装置。
前記車両の走行時の前記車両の自重方向および幅方向の揺れを検知する揺動検 知器を備え、
前記演算ユニットは、前記貨物が搭載された車両の前記揺れに相関する物理量に 基づいて、前記貨物が搭載された車両の 3次元空間上の重心位置を導くとともに、 前記貨物が搭載されて!/、な!/、車両の前記揺れに相関する物理量に基づレ、て、前 記貨物が搭載されていない車両の 3次元空間上の重心位置を導ぐ請求項 13乃至 1 5の何れかに記載の貨物重量予測装置。
PCT/JP2007/072659 2006-11-22 2007-11-22 Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison WO2008062867A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/516,111 US8483942B2 (en) 2006-11-22 2007-11-22 System for detecting or estimating center-of-gravity, lateral rollover limit or cargo weight
EP07832388.8A EP2090874B1 (en) 2006-11-22 2007-11-22 Device for detecting gravity center, device for predicting critical speed for lateral overturn, and device for predicting cargo weight
JP2008545450A JP4517107B2 (ja) 2006-11-22 2007-11-22 重心検知装置および横転限界速度予測装置並びに貨物重量予測装置並びに演算プログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-315042 2006-11-22
JP2006315042 2006-11-22
JP2007-058702 2007-03-08
JP2007058702 2007-03-08

Publications (1)

Publication Number Publication Date
WO2008062867A1 true WO2008062867A1 (fr) 2008-05-29

Family

ID=39429796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072659 WO2008062867A1 (fr) 2006-11-22 2007-11-22 Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison

Country Status (4)

Country Link
US (1) US8483942B2 (ja)
EP (1) EP2090874B1 (ja)
JP (1) JP4517107B2 (ja)
WO (1) WO2008062867A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030412A1 (ja) * 2009-09-09 2011-03-17 社団法人全日本検数協会 コンテナ応力検知装置及びこれを備えたトレーラー
WO2011067939A1 (ja) 2009-12-04 2011-06-09 国立大学法人 東京海洋大学 傾斜角演算装置
JP2011189867A (ja) * 2010-03-16 2011-09-29 Hino Motors Ltd 左右重心位置推定装置、左右重心位置推定方法、および牽引車
JP2011195054A (ja) * 2010-03-19 2011-10-06 Hino Motors Ltd 重心位置表示装置、重心位置表示方法、および車両
WO2011145332A1 (ja) 2010-05-21 2011-11-24 国立大学法人 東京海洋大学 重心検知装置
JP2012002558A (ja) * 2010-06-15 2012-01-05 Yamato Scale Co Ltd 重心位置測定方法およびその装置
JP2012002575A (ja) * 2010-06-15 2012-01-05 Yamato Scale Co Ltd 重心位置情報受け渡しシステム
JP2012002555A (ja) * 2010-06-15 2012-01-05 Yamato Scale Co Ltd 重心位置測定装置
JP2012020726A (ja) * 2010-06-15 2012-02-02 Yamato Scale Co Ltd 安全運転補助情報提供装置
JP2012052942A (ja) * 2010-09-02 2012-03-15 Yamato Scale Co Ltd 重心位置測定装置
WO2013084857A1 (ja) * 2011-12-06 2013-06-13 国立大学法人東京海洋大学 横転限界検出システム
WO2014122786A1 (ja) * 2013-02-08 2014-08-14 トヨタ自動車株式会社 車両重心状態判定装置および車両挙動制御システム
JP2015014519A (ja) * 2013-07-05 2015-01-22 いすゞ自動車株式会社 車両の重心位置推定装置
WO2015133339A1 (ja) * 2014-03-05 2015-09-11 豊 渡邉 横転危険警告装置
JP2015166746A (ja) * 2015-05-28 2015-09-24 大和製衡株式会社 重心位置測定装置
JP2016194534A (ja) * 2016-08-24 2016-11-17 大和製衡株式会社 重心位置測定装置
US10132674B2 (en) 2013-10-23 2018-11-20 National University Corporation Tokyo University Of Marine Science And Technology Loading weight detection device for weighing cargo of a mobile body
WO2020003597A1 (ja) * 2018-06-26 2020-01-02 日立オートモティブシステムズ株式会社 車両制御装置、および、特性推定方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006026926C5 (de) * 2006-06-09 2010-05-20 Continental Automotive Gmbh Verfahren zum Erkennen einer Verklemmung eines Sitzes
FR2922370B1 (fr) 2007-10-15 2009-11-20 Eldre Borne de connexion electrique.
US8275516B2 (en) * 2009-07-21 2012-09-25 Trimble Navigation Limited Agricultural vehicle autopilot rollover risk assessment system
DE102010015571A1 (de) * 2010-04-19 2011-10-20 Schenck Process Gmbh System und Verfahren zur Ermittlung des Masseschwerpunktes bei Schienenfahrzeugen
US8583354B2 (en) * 2011-04-06 2013-11-12 Robert Bosch Gmbh Continuous computation of center of gravity of a vehicle
EP2772743B1 (en) 2011-10-26 2020-07-01 National University Corporation Tokyo University of Marine Science And Technology Center-of-gravity detection system
EP2964561B1 (en) * 2013-03-08 2018-10-03 Cargotec Finland Oy A method, an apparatus, and a computer program for controlling a container carrier
US9187259B2 (en) * 2013-03-15 2015-11-17 Unverferth Manufacturing Company, Inc. Method for controlling an unload operation on a mobile farm implement
US8990000B2 (en) * 2013-04-23 2015-03-24 Ford Global Technologies, Llc Active suspension with load detection and adaptation
ITMI20130802A1 (it) * 2013-05-16 2014-11-17 Novia S R L E Sistema per la stima di uno o più parametri relativi al carico di un veicolo, in particolare del suo valore assoluto e della sua distribuzione
US9550561B1 (en) 2014-08-11 2017-01-24 Amazon Technologies, Inc. Determining center of gravity of an automated aerial vehicle and a payload
JP6265549B2 (ja) * 2014-10-15 2018-01-24 三菱重工業株式会社 ポイント算出装置、ポイント算出方法及びプログラム
JP6238301B2 (ja) * 2014-10-15 2017-11-29 三菱重工業株式会社 ポイント算出装置、船、ポイント算出方法及びプログラム
JP6485295B2 (ja) * 2015-09-09 2019-03-20 いすゞ自動車株式会社 車両重心高さ推定装置
SE539917C2 (en) * 2016-05-12 2018-01-16 Scania Cv Ab System and method for monitoring a cargo space of a vehicle
CN107290105A (zh) * 2016-07-09 2017-10-24 天津华北衡器有限公司 集装箱静态偏载检测方法
JP6500852B2 (ja) * 2016-07-11 2019-04-17 株式会社安川電機 ロボットシステム、ロボットの制御方法、ロボットコントローラ
US10272917B2 (en) * 2017-01-03 2019-04-30 Ford Global Technologies, Llc Flat tow assistance
EP3379222B1 (en) 2017-03-22 2020-12-30 Methode Electronics Malta Ltd. Magnetoelastic based sensor assembly
US11491832B2 (en) 2018-02-27 2022-11-08 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
WO2019168565A1 (en) 2018-02-27 2019-09-06 Methode Electronics,Inc. Towing systems and methods using magnetic field sensing
US11221262B2 (en) 2018-02-27 2022-01-11 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11135882B2 (en) 2018-02-27 2021-10-05 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11084342B2 (en) 2018-02-27 2021-08-10 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11014417B2 (en) 2018-02-27 2021-05-25 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US10859533B2 (en) 2018-03-16 2020-12-08 Kabushiki Kaisha Toshiba Parameter estimation method and parameter estimation device
CN109116362A (zh) * 2018-07-03 2019-01-01 四川驹马科技有限公司 一种基于超声波的货车自适应载重检测系统及其方法
CN116061941A (zh) 2018-09-13 2023-05-05 克朗设备公司 基于计算负载的工业车辆最大车辆速度控制系统和方法
CN108827535B (zh) * 2018-09-26 2021-01-01 长春理工大学 一种质心试验台
CN110296792A (zh) * 2019-05-17 2019-10-01 中国铁路成都局集团有限公司计量所 一种货运集装箱偏载校准的方法
SE543407C2 (en) * 2019-05-27 2021-01-05 Scania Cv Ab Method and control unit for performing at least one action based on a classification of lateral movability of a cargo
US11333547B2 (en) 2019-10-25 2022-05-17 Blackberry Limited Method and system for shipping container loading and unloading estimation
CN114980809A (zh) 2020-02-06 2022-08-30 株式会社竹中土木 判定装置及姿势控制装置
CN112373460B (zh) * 2020-11-17 2021-10-26 东风汽车集团有限公司 基于场景变化动态调整阈值的车辆侧翻预警方法及系统
DE102022117856A1 (de) * 2022-07-18 2024-01-18 Zf Cv Systems Global Gmbh Verfahren zur Prädiktion eines querdynamischen Stabilitätsverhaltens einer gegenwärtigen Fahrzeugkonfiguration eines Fahrzeugs
CN115752897B (zh) * 2022-11-25 2023-08-08 哈尔滨工业大学 姿态控制发动机的动态质心测量方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649047A (en) * 1987-06-29 1989-01-12 Tokico Ltd Excessively high gravitational center loading warning device for vehicle
JPH05124543A (ja) 1991-10-31 1993-05-21 Isuzu Motors Ltd トラツク横転防止装置
JPH05213108A (ja) 1992-02-03 1993-08-24 Fuji Electric Co Ltd トラックの積載異状検知装置
JPH06265433A (ja) * 1993-03-11 1994-09-22 Suzuki Motor Corp 車体の重心位置等測定方法
JPH10100773A (ja) * 1996-09-30 1998-04-21 Hino Motors Ltd 荷崩れ警報装置
JPH1183534A (ja) 1997-09-09 1999-03-26 Mitsubishi Motors Corp 車両の重心高推定装置および横転防止装置
JPH11271045A (ja) * 1997-11-22 1999-10-05 Robert Bosch Gmbh 車両の重心高さを表わす値の決定方法及び装置
JP2000028427A (ja) 1998-05-22 2000-01-28 Daimlerchrysler Ag 走行中の車両の振動及び車両に固有の量を判定する方法及び装置及びその利用
JP2000302063A (ja) 1999-04-19 2000-10-31 Komatsu Ltd アーティキュレート式ダンプトラックの後部車体転倒防止装置
JP2001097072A (ja) 1999-09-29 2001-04-10 Toshiba Corp トラック安全走行システム
JP2001260782A (ja) * 2000-03-17 2001-09-26 Honda Motor Co Ltd 車両の横転判定方法
JP2002116080A (ja) * 2000-10-10 2002-04-19 Hino Motors Ltd 車両質量の推定演算装置
JP2004345401A (ja) * 2003-05-20 2004-12-09 Nissan Motor Co Ltd 制動制御装置
JP2005313879A (ja) 2004-03-03 2005-11-10 Wabco Gmbh & Co Ohg 車両の制動方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ180850A (en) * 1975-05-27 1979-04-26 Container Cargo Carriers Corp Container ship loaded through ramped entrance at bow
JPS649947A (en) * 1987-07-01 1989-01-13 Mitsui Toatsu Chemicals Production of 2-chloropropionaldehyde
JPH07505708A (ja) * 1992-02-07 1995-06-22 ナンス,シー.カーク 航空機の重量および重心表示器
US5825284A (en) 1996-12-10 1998-10-20 Rollover Operations, Llc System and method for the detection of vehicle rollover conditions
JP3647584B2 (ja) * 1996-12-26 2005-05-11 富士通株式会社 学習型自己定位装置
US6002974A (en) * 1998-02-06 1999-12-14 Delco Electronics Corporation Vehicle rollover sensing using extended kalman filter
US6575194B2 (en) * 2001-02-10 2003-06-10 Dynetek Industries Ltd. Electrical signal pass through arrangement
US20030085562A1 (en) * 2001-11-02 2003-05-08 Sparling James Douglas Modular passenger semi-trailer with pneumatic unipoint suspension
US20050156806A1 (en) * 2002-02-22 2005-07-21 Tomozo Ohta Radio communication system
AU2003220396A1 (en) * 2002-03-19 2003-10-08 Automotive Systems Laboratory, Inc. Vehicle rollover detection system
DE102004029129B4 (de) * 2004-06-17 2008-08-28 Daimler Ag Verfahren und Vorrichtung zur Ankupplung eines Anhängers an ein Kraftfahrzeug
JP2006171528A (ja) * 2004-12-17 2006-06-29 Konica Minolta Photo Imaging Inc 駆動機構、駆動装置、振れ補正ユニット及び撮像装置
US8173970B2 (en) * 2005-02-04 2012-05-08 Dan Inbar Detection of nuclear materials

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649047A (en) * 1987-06-29 1989-01-12 Tokico Ltd Excessively high gravitational center loading warning device for vehicle
JPH05124543A (ja) 1991-10-31 1993-05-21 Isuzu Motors Ltd トラツク横転防止装置
JPH05213108A (ja) 1992-02-03 1993-08-24 Fuji Electric Co Ltd トラックの積載異状検知装置
JPH06265433A (ja) * 1993-03-11 1994-09-22 Suzuki Motor Corp 車体の重心位置等測定方法
JPH10100773A (ja) * 1996-09-30 1998-04-21 Hino Motors Ltd 荷崩れ警報装置
JPH1183534A (ja) 1997-09-09 1999-03-26 Mitsubishi Motors Corp 車両の重心高推定装置および横転防止装置
JPH11271045A (ja) * 1997-11-22 1999-10-05 Robert Bosch Gmbh 車両の重心高さを表わす値の決定方法及び装置
JP2000028427A (ja) 1998-05-22 2000-01-28 Daimlerchrysler Ag 走行中の車両の振動及び車両に固有の量を判定する方法及び装置及びその利用
JP2000302063A (ja) 1999-04-19 2000-10-31 Komatsu Ltd アーティキュレート式ダンプトラックの後部車体転倒防止装置
JP2001097072A (ja) 1999-09-29 2001-04-10 Toshiba Corp トラック安全走行システム
JP2001260782A (ja) * 2000-03-17 2001-09-26 Honda Motor Co Ltd 車両の横転判定方法
JP2002116080A (ja) * 2000-10-10 2002-04-19 Hino Motors Ltd 車両質量の推定演算装置
JP2004345401A (ja) * 2003-05-20 2004-12-09 Nissan Motor Co Ltd 制動制御装置
JP2005313879A (ja) 2004-03-03 2005-11-10 Wabco Gmbh & Co Ohg 車両の制動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKANO S. ET AL.: "Dynamics control of large vehicles for rollover prevention", VEHICLE ELECTRONICS CONFERENCE, 2001. IVEC 2001. PROCEEDINGS OF THE IEEE INTERNATIONAL, 2001, pages 85 - 89, XP010565597 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030412A1 (ja) * 2009-09-09 2011-03-17 社団法人全日本検数協会 コンテナ応力検知装置及びこれを備えたトレーラー
US9651371B2 (en) 2009-12-04 2017-05-16 National University Corporation Tokyo University Of Marine Science And Technology Inclination angle calculation device
WO2011067939A1 (ja) 2009-12-04 2011-06-09 国立大学法人 東京海洋大学 傾斜角演算装置
JP5660634B2 (ja) * 2009-12-04 2015-01-28 国立大学法人東京海洋大学 傾斜角演算装置および重心位置検出装置
JP2011189867A (ja) * 2010-03-16 2011-09-29 Hino Motors Ltd 左右重心位置推定装置、左右重心位置推定方法、および牽引車
JP2011195054A (ja) * 2010-03-19 2011-10-06 Hino Motors Ltd 重心位置表示装置、重心位置表示方法、および車両
WO2011145332A1 (ja) 2010-05-21 2011-11-24 国立大学法人 東京海洋大学 重心検知装置
US9541389B2 (en) 2010-05-21 2017-01-10 National University Corporation Tokyo University Of Marine Science And Technology Center-of-gravity detecting system
JP2012002575A (ja) * 2010-06-15 2012-01-05 Yamato Scale Co Ltd 重心位置情報受け渡しシステム
JP2012020726A (ja) * 2010-06-15 2012-02-02 Yamato Scale Co Ltd 安全運転補助情報提供装置
JP2012002555A (ja) * 2010-06-15 2012-01-05 Yamato Scale Co Ltd 重心位置測定装置
JP2012002558A (ja) * 2010-06-15 2012-01-05 Yamato Scale Co Ltd 重心位置測定方法およびその装置
JP2012052942A (ja) * 2010-09-02 2012-03-15 Yamato Scale Co Ltd 重心位置測定装置
JPWO2013084857A1 (ja) * 2011-12-06 2015-04-27 国立大学法人東京海洋大学 横転限界検出システム
US9523622B2 (en) 2011-12-06 2016-12-20 National University Corporation Tokyo University Of Marine Science And Technology Lateral rollover limit detection system
WO2013084857A1 (ja) * 2011-12-06 2013-06-13 国立大学法人東京海洋大学 横転限界検出システム
WO2014122786A1 (ja) * 2013-02-08 2014-08-14 トヨタ自動車株式会社 車両重心状態判定装置および車両挙動制御システム
CN104955689A (zh) * 2013-02-08 2015-09-30 丰田自动车株式会社 车辆重心状态判定装置及车辆运行情况控制系统
JP5850186B2 (ja) * 2013-02-08 2016-02-03 トヨタ自動車株式会社 車両重心状態判定装置および車両挙動制御システム
CN104955689B (zh) * 2013-02-08 2017-05-10 丰田自动车株式会社 车辆重心状态判定装置及车辆运行情况控制系统
JP2015014519A (ja) * 2013-07-05 2015-01-22 いすゞ自動車株式会社 車両の重心位置推定装置
US10132674B2 (en) 2013-10-23 2018-11-20 National University Corporation Tokyo University Of Marine Science And Technology Loading weight detection device for weighing cargo of a mobile body
US10377330B2 (en) 2014-03-05 2019-08-13 National University Corporation Tokyo University Of Marine Science And Technology Lateral rollover risk warning device
WO2015133339A1 (ja) * 2014-03-05 2015-09-11 豊 渡邉 横転危険警告装置
JP2015169453A (ja) * 2014-03-05 2015-09-28 国立大学法人東京海洋大学 横転危険警告装置
JP2015166746A (ja) * 2015-05-28 2015-09-24 大和製衡株式会社 重心位置測定装置
JP2016194534A (ja) * 2016-08-24 2016-11-17 大和製衡株式会社 重心位置測定装置
WO2020003597A1 (ja) * 2018-06-26 2020-01-02 日立オートモティブシステムズ株式会社 車両制御装置、および、特性推定方法
JP2020001473A (ja) * 2018-06-26 2020-01-09 日立オートモティブシステムズ株式会社 車両制御装置、および、特性推定方法
JP7106369B2 (ja) 2018-06-26 2022-07-26 日立Astemo株式会社 車両制御装置、および、特性推定方法

Also Published As

Publication number Publication date
EP2090874B1 (en) 2018-02-28
US8483942B2 (en) 2013-07-09
EP2090874A4 (en) 2011-08-31
JPWO2008062867A1 (ja) 2010-03-04
EP2090874A1 (en) 2009-08-19
US20100198492A1 (en) 2010-08-05
JP4517107B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
WO2008062867A1 (fr) Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison
JPWO2011067939A1 (ja) 傾斜角演算装置および重心位置検出装置
JP5733533B2 (ja) 重心検知装置
CN103959033B (zh) 横滚极限检测系统
US20160265960A1 (en) Loading weight detection device
US8150613B2 (en) Technique for detecting shifted cargo
US20130253814A1 (en) System and Method for Gauging Safe Towing Parameters
JP2686843B2 (ja) 車両の積載重量の計測装置
CN205607509U (zh) 车辆动态实时监控系统
KR20140038573A (ko) 트럭스케일에 있어서의 피계량차량의 무게중심위치계측장치 및 트럭스케일
JP5729863B2 (ja) 走行型車両重心計測システム
CN106679782A (zh) 基于悬架压缩量的车辆重量测定方法与装置
US10035647B1 (en) Waste receptacle and system having visual indicator
JP5650459B2 (ja) 車両走行危険度評価システム
JP2017044706A (ja) 車両運転支援装置
JP2006003291A (ja) トラックスケール
JP2005114425A (ja) 車載計量装置
JP6026076B2 (ja) 重心位置測定方法およびその装置
CN102788635A (zh) 一种矿车称重系统及其方法
CN209320801U (zh) 一种货物装载状况监测装置
WO2007043163A1 (ja) 車載計量装置
JP4361847B2 (ja) タイヤ故障原因の定量解析方法
JP6072139B2 (ja) 重心位置測定装置
JP2017007444A (ja) 情報提供装置、車両、および情報提供方法
WO2024111004A1 (en) Dynamic vehicle attitude measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832388

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008545450

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007832388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12516111

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)