WO2011067939A1 - 傾斜角演算装置 - Google Patents

傾斜角演算装置 Download PDF

Info

Publication number
WO2011067939A1
WO2011067939A1 PCT/JP2010/007060 JP2010007060W WO2011067939A1 WO 2011067939 A1 WO2011067939 A1 WO 2011067939A1 JP 2010007060 W JP2010007060 W JP 2010007060W WO 2011067939 A1 WO2011067939 A1 WO 2011067939A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling body
container
frequency
center
inclination angle
Prior art date
Application number
PCT/JP2010/007060
Other languages
English (en)
French (fr)
Inventor
豊 渡邉
Original Assignee
国立大学法人 東京海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京海洋大学 filed Critical 国立大学法人 東京海洋大学
Priority to JP2011544197A priority Critical patent/JP5660634B2/ja
Priority to US13/513,185 priority patent/US9651371B2/en
Priority to EP10834392.2A priority patent/EP2508404A4/en
Publication of WO2011067939A1 publication Critical patent/WO2011067939A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • B60W2030/043Control of vehicle driving stability related to roll-over prevention about the roll axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/14Tractor-trailers, i.e. combinations of a towing vehicle and one or more towed vehicles, e.g. caravans; Road trains
    • B60W2300/145Semi-trailers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/147Trailers, e.g. full trailers or caravans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity

Definitions

  • the present invention relates to an inclination angle calculation device capable of calculating an inclination angle when a traveling body is traveling.
  • the inclination angle (more specifically, the center angle of the rolling of the traveling body in a predetermined section of the traveling body) can be predicted with high accuracy.
  • the inclination angle when the container freight vehicle travels in a cross section perpendicular to the traveling direction of the container freight vehicle is This is valuable data that directly reflects the unbalanced load. Therefore, by accurately predicting the tilt angle, it is possible to predict cargo collapse and falling when the container door is opened and unstable traveling of the container transport vehicle (for example, unstable traveling on a curved road or unstable traveling due to abnormal suspension). Useful.
  • “uneven load” of cargo in the container here (however, in this specification, “uneven load” may be rephrased as “single load” focusing on the loaded state of the cargo). It refers to the load point deviation caused by the center of gravity in the space depending on the installation state of the container cargo, and does not refer to the load point deviation on the plane at the bottom of the container, which is generally understood in the container transportation industry.
  • the tilt angle from the horizontal plane obtained by the rotation angle detector is corrected by the acceleration in the front-rear direction and the left-right direction when the traveling body moves.
  • Patent Document 2 when the randomness of the detection data series of the acceleration sensor is established, it is determined that the traveling body is stopped or traveling at a constant speed, and the inclination angle of the road surface is calculated from the acceleration output value.
  • any angular velocity sensor has variations in output due to temperature characteristics, etc., so if the output data from the angular velocity sensor is simply integrated, the exact angle of the traveling body cannot be calculated. Therefore, in calculating the exact angle of the traveling body, generally, a gyro that can output angular velocity is combined with an acceleration sensor, a geomagnetic sensor, and a GPS that are used to correct the integration error, and advanced error correction such as the Kalman filter. It is necessary to use an algorithm together. However, in this case, the gyro has an exceptionally high price (500,000 yen to several million yen), and this is a serious problem when the tilt angle calculation technology during driving is mounted on a familiar traveling body such as a passenger car. It is an obstacle.
  • the inventor drastically solves social problems caused by container transportation vehicles due to unbalanced loading of container cargo (for example, cargo collapse and falling when container doors are opened and unstable running on curved roads of container transportation vehicles) We are working on technology development.
  • Patent Document 1 and Patent Document 2 are intended only for the calculation of the actual inclination angle of the traveling body that can be visually observed by the inclination of the road surface, and the center angle of rolling of the traveling body in the cross section of the traveling body These techniques 1 and 2 are not worth considering, unlike the technique of the present specification that enables the above calculation.
  • the “inclination angle when the traveling body travels” is an example of a section perpendicular to the traveling direction of the traveling body, and the center of gravity position of the traveling body is a vertical center line (described later). ) Indicates an angle considered in terms of dynamic theory as an angle formed between a vertical center line and a rolling center line (described later).
  • a road surface It does not mean only the inclination angle of the traveling body that can be visually observed by the inclination of.
  • Patent Document 1 and Patent Document 2 since the acceleration of the traveling body is used for calculating the angle, the physical phenomenon (rolling angular velocity) of the original polar coordinate system is forcibly changed to the linear physical system. It is rounded to the phenomenon (acceleration). In this case, the rounding error of the coordinate system often becomes serious. For example, even when the traveling body is subjected to wind pressure in the lateral direction, it is inconvenient because it affects the acceleration of the physical phenomenon of the linear system. Therefore, when it is necessary to calculate the angle of the traveling body with high accuracy from the angular velocity (frequency) of rolling in the polar coordinate system, the methods described in Patent Document 1 and Patent Document 2 are not originally useful.
  • the present invention has been made in view of such circumstances, and provides an inclination angle calculation device that can easily and highly accurately calculate an inclination angle during traveling of a traveling body without performing angular velocity integration. Objective.
  • the present invention provides a swing detector that detects a swing in the two directions when the traveling body travels in a cross section including two directions orthogonal to each other, and one of the two directions.
  • an inclination angle calculating device comprising: an arithmetic unit that calculates an inclination angle of the traveling body in the cross-section when traveling using the vibration frequency of the other and the other rolling frequency in the two directions.
  • the tilt angle calculation device of the present invention can easily and accurately calculate the tilt angle when the traveling body travels without integrating the angular velocity.
  • the tilt angle calculation device of the present invention it is not necessary to add various functions such as angular velocity integration and filtering to the swing detector, and the swing detector can be configured to be orders of magnitude cheaper.
  • the calculated inclination angle corresponds to one frequency on a one-to-one basis, random errors due to integration, filtering, and statistical algorithms can be avoided, and the accuracy is high.
  • the cross section is a cross section perpendicular to the traveling direction of the traveling body, one of the two directions is the own weight direction of the traveling body, and the other of the two directions is The width direction of the traveling body may be sufficient.
  • the above inclination angle is valuable data that directly reflects the degree of uneven load of the traveling body. For this reason, if the inclination angle can be calculated easily and with high accuracy, for example, the load of the traveling body collapses and the traveling body becomes unstable (for example, unstable traveling on a curved road or unstable traveling due to abnormal suspension). Useful in prediction.
  • the traveling body may be a container freight vehicle towed by a tow vehicle.
  • the inventor regards the motion of the traveling body as a problem of the dynamics of the mass system with the center of gravity of the traveling body as the mass point, the incline angle during traveling of the traveling body is appropriately determined without integrating the angular velocity. I realized that I could guide it.
  • the present invention is not necessarily limited to the method of formulating the tilt angle exemplified in the embodiment, and the tilt angle can be expressed by various formulas as long as the following dynamics requirements for the mass system are satisfied. .
  • a second modification described later, a method different from the method of formulating the inclination angle in the embodiment is described.
  • the swing in the own weight direction corresponds to the reciprocating motion in the vertical direction with the center of gravity of the traveling body as the mass point
  • the swing in the width direction is in the width direction of the traveling body.
  • the output data of the swing detector is converted into pitching data representing a correlation between the frequency and amplitude of the reciprocating motion, and the reciprocating motion corresponding to the maximum amplitude of the reciprocating motion is based on the pitching data.
  • the center angle of the simple pendulum motion may be derived as the tilt angle by using a predetermined width dimension of the traveling body, the acquired frequency of the simple pendulum motion, and the acquired frequency of the reciprocating motion.
  • the swing in the two directions may be a motion due to a disturbance applied to the traveling body according to the unevenness of the road surface when the traveling body travels on the road surface.
  • the road surface may be an artificially created traveling state by, for example, rotation of a rotating roll provided with unevenness.
  • the inclination angle calculating device of the present invention can easily calculate the inclination angle during traveling of the traveling body.
  • the swing detector may be provided with an angular velocity sensor arranged on the traveling body and having an angular velocity sensitivity axis adjusted in the two directions.
  • an inclination angle calculation device that can easily and highly accurately calculate an inclination angle when the traveling body travels without integrating angular velocities.
  • FIG. 1 is a schematic diagram showing a configuration example of an inclination angle calculation device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the fluctuation detector and the arithmetic unit in the tilt angle arithmetic device according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method of deriving an inclination angle when the container freight vehicle travels by the inclination angle calculation device according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram for explaining a method of deriving an inclination angle when the container freight vehicle travels by the inclination angle calculation device according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of an inclination angle calculation device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the fluctuation detector and the arithmetic unit in the tilt angle arithmetic device according to the embodiment of the present
  • FIG. 5 is a schematic diagram for explaining a method of deriving an inclination angle when the container freight vehicle travels by the inclination angle calculation device according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing an example of an inclination angle calculation routine when the container freight vehicle travels by the inclination angle calculation device of the embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a rolling frequency / amplitude distribution with the horizontal axis representing frequency (Hz) and the vertical axis representing amplitude (angular velocity).
  • FIG. 8 is a diagram showing an example of pitching frequency / amplitude distribution with the horizontal axis representing frequency (Hz) and the vertical axis representing amplitude (angular velocity).
  • the present invention is not limited to the following embodiment. That is, the following specific description merely illustrates the features of the tilt angle calculation device of the present invention. Therefore, when the following specific examples are described with appropriate reference numerals attached to the terms corresponding to the components that specify the tilt angle calculation apparatus of the present invention, the specific apparatus is the corresponding one of the present invention. It is an example of the component of an inclination angle calculating device.
  • a “container transport vehicle 50 (container cargo vehicle)” described below is merely an example of a “traveling body” that is a component of the present invention.
  • the technology described in this specification can be applied to various transportation means such as a truck, a bus, a passenger car, a railway, a ship, and an aircraft (for example, when taking off and landing) in addition to a container transport vehicle (container cargo vehicle).
  • a container transport vehicle container cargo vehicle
  • an example in which the present technology is applied to a passenger car is described in a first modified example (described later).
  • a container freight vehicle refers to a vehicle comprising a portion of a container transport vehicle other than a tow vehicle, that is, a container on which cargo can be loaded and a container chassis (cart) on which the container is placed.
  • FIG. 1 is a schematic diagram illustrating a configuration example of the tilt angle calculation device of the present embodiment.
  • FIG. 1 (a) is a view of the tilt angle calculation device viewed from the width direction (side surface) of the container cargo vehicle
  • FIG. 1 (b) is an illustration of the tilt angle calculation device on the rear side of the container cargo vehicle. It is the figure seen from.
  • the direction in which the container freight vehicle is subjected to its own weight is indicated by “up and down”
  • the width direction of the container freight vehicle is indicated by “left and right”
  • the traveling direction of the container freight vehicle is indicated by “front and rear”.
  • the “self-weight direction” may be rephrased as “vertical direction”
  • the “width direction” may be rephrased as “left-right direction”
  • the “travel direction” is rephrased as “front-rear direction”.
  • the tilt angle calculation device 100 includes a container transportation vehicle 50, a swing in the vertical direction (self-weight direction) (that is, a vertical swing) during travel of the container freight vehicle, and a lateral direction (width direction) thereof.
  • a swing detector 14 that can detect the swing (that is, the lateral swing) and an arithmetic unit 15.
  • the swing detector 14 has a cross section (here, a cross section in the direction of FIG. 1B) including two directions (here, the own weight direction and the width direction) orthogonal to each other. It is configured to be able to detect shaking in two directions.
  • a typical form of the container transport vehicle 50 described above is a trailer truck using the tractor 10 as a towing vehicle.
  • the configuration and operation of the container transport vehicle 50 will be described by taking an example of trailer truck transport that uses a tractor to pull a container chassis on which a 40-foot marine container having a global standard specification is mounted.
  • the trailer truck 50 is coupled to a rectangular container 11 on which container cargo (not shown) can be mounted, a container chassis 12 as a carriage on which the container 11 is loaded, and the container chassis 12.
  • a tractor 10 (towing vehicle) that pulls or drives the container chassis 12.
  • the tractor 10 includes a disk-shaped coupler 13 (a connecting member) that is connected to the container chassis 12, whereby the container chassis 12 and the tractor 10 are connected to each other so as to be swingable in the left-right direction via the coupler 13. ing.
  • the tilt angle detection technique of the present embodiment is theoretically applicable regardless of whether or not container cargo is loaded on the container 11. Therefore, in the present specification, the above-described container 11 may or may not be loaded with container cargo.
  • the form of the trailer track 50 shown in FIG. 1 is merely an example until it gets tired, and the detection technology of this embodiment can be applied to various types of trailer trucks.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the swing detector and the arithmetic unit in the tilt angle arithmetic device of the present embodiment.
  • the above-described swing detector 14 is fixed to the center of the trailer truck 50 in the left-right direction, and does not interfere with the transportation work on the tractor 10 side (for example, near the coupler 13).
  • the arithmetic unit 15 described above is disposed at an appropriate position in the cab of the tractor 10. Both are connected so that data can be transmitted by wired communication, wireless communication, or the like via an appropriate data input / output port (not shown).
  • the swing detector 14 has two axes (two-dimensional) in which the sensitivity axis of the angular velocity is adjusted so as to detect the vertical and width swings of the container freight vehicle when the trailer truck 50 is traveling. ) And an A / D (analog / digital) converter 14b for converting an analog signal output from the angular speed sensor 14a into a digital signal.
  • the magnitude of the angular velocity signal digitized by the A / D converter 14b is proportional to the angular velocity of the swing of the container cargo vehicle in the vertical direction or the width direction when the trailer truck 50 travels.
  • the biaxial angular velocity sensor 14a for example, a quartz tuning fork type sensor or a vibration type sensor may be used.
  • the A / D converter 14b built-in type fluctuation detector 14 is illustrated in consideration of the convenience when using the fluctuation detector 14, but the A / D converter 14b is illustrated. May be externally attached. Further, the fluctuation detector 14 incorporates various signal processing circuits such as a filter (not shown) and an amplifier (not shown), which are conventional techniques. I'll omit the explanation.
  • the arithmetic unit 15 includes an arithmetic unit 15a made of a microprocessor, a storage unit 15b made of ROM (Read Only Memory), RAM (Random Access Memory), etc., and an operation setting / display unit. 15c.
  • an arithmetic unit 15 there is an information portable terminal such as a notebook type personal computer.
  • the storage unit 15b is connected to the calculation unit 15a, and stores a program for appropriately deriving an inclination angle when the container freight vehicle travels, and various input constants (described later) necessary for the calculation.
  • the calculation unit 15a operates according to a tilt angle calculation program stored in advance in the storage unit 15b. For example, as described later, the calculation unit 15a converts the digital signal output from the swing detector 14 (A / D converter 14b). Based on this, it is possible to derive the inclination angle when the container freight vehicle travels.
  • the operation setting / display unit 15c includes an operation unit (for example, a keyboard; not shown) provided with the above-described input constant setting buttons, and an inclination angle during travel of the container freight vehicle output from the calculation unit 15a.
  • a notification device for example, a liquid crystal panel screen or a speaker; not shown that provides display notification or voice notification so that the operator (driver or passenger) can recognize the output data is provided.
  • 3, 4, and 5 are schematic diagrams for explaining a method for deriving an inclination angle when the container freight vehicle travels by the inclination angle calculation device of the present embodiment, as seen from the front-rear direction in which the trailer truck travels. It is a figure.
  • the configuration of the tilt angle calculation device 100 is illustrated in a simplified or omitted manner so that the method for deriving the tilt angle when the container freight vehicle travels can be easily understood. Yes.
  • the elastic force for buffering the suspension 205 (suspension device; see FIG. 4) disposed on the tractor 10 and the container chassis 12. (E.g., air pressure or spring force) and is neutral at a certain height from the road surface 204.
  • the tire continues to step on the unevenness of the road surface 204, so that a random disturbance is transmitted to the vehicle body (container 11) of the trailer truck 50 through the suspension 205.
  • the trailer truck 50 swings (natural vibration) based on a motion having a specific period (frequency) depending on the elastic force of the suspension 205, the total weight of the container freight vehicle, and the position of its center of gravity.
  • This motion is detected by the swing detector 14 as a reciprocating motion in the vertical direction of the center of gravity W of the container cargo vehicle and a single pendulum motion in the left-right direction of the center of gravity W of the container cargo vehicle.
  • the suspension 205 refers to a member capable of buffering vibration from the road surface 204 of the vehicle body of the trailer truck 50.
  • the suspension 205 is disposed at the end of the axle. Tires filled with air and the like are also included.
  • the former reciprocating motion corresponds to a behavior called pitching of the tractor 10.
  • pitching a behavior called pitching of the tractor 10.
  • the coupler 13 that connects the tractor 10 and the container chassis 12 is pushed up and down. Since the position of the coupler 13 exists behind the tractor 10, when the coupler 13 is pushed up and down, the front part of the tractor 10 is raised and lowered.
  • Such a phenomenon is the pitching of the tractor 10. That is, the vertical reciprocation of the container cargo vehicle is transmitted to the tractor 10 through the coupler 13, whereby the tractor 10 is pitched, and this pitching is detected by the swing detector 14.
  • the latter simple pendulum motion corresponds to a behavior called rolling of the trailer track 50, and this rolling is detected by the swing detector 14.
  • the trailer track 50 is usually provided with suspensions 205 for the front, rear, left and right axles.
  • suspensions 205 for the front, rear, left and right axles.
  • the elastic coefficient of elasticity spring constant. In consideration of this, it is considered appropriate to analyze the behavior on the assumption that there is one elastic body (spring) on each of the left and right sides.
  • the position of the center of gravity W of the container freight vehicle in a cross section perpendicular to the front-rear direction (traveling direction) of the container 11 is related to the inclination angle when the container freight vehicle travels.
  • a cycle “T ′” (a cycle corresponding to the pitching cycle of the tractor 10) of the vertical movement of the center of gravity W of the container freight vehicle is formulated.
  • T ′ is the period of the vertical reciprocation of the center of gravity W of the container cargo vehicle.
  • K is an elastic coefficient (spring constant) of one of the left and right sides of the suspension 205.
  • M is the weight of the container freight vehicle, and “ ⁇ ” is the circumference.
  • the cycle “T” rolling cycle of the trailer truck 50
  • the cycle “T” rolling cycle of the trailer truck 50
  • the center of gravity W of the container cargo vehicle is formulated using the center of gravity W of the container cargo vehicle as a mass point.
  • the rolling of the container freight vehicle is performed in the left-right direction with the center 500 of the axle of the center of gravity W of the container freight vehicle (the intersection of the vertical center line 201 and the axle position line 202 shown in FIG. 4) as a fulcrum. From the balance of rotational moments in the tangential direction of the rolling circle during rolling of the container freight vehicle, the following equation is obtained.
  • “f” is a force applied in the tangential direction of the rolling circle (rotating circle) with respect to the center of gravity W of the container cargo vehicle.
  • “ ⁇ ” is a rolling angle.
  • “L” is the length from the axle center 500 to the center of gravity W of the container cargo vehicle.
  • “B” is the length of the portion supporting the load of the container 11, and is a constant determined for each container 11.
  • “L (Small L)” is the vertical length from the axle to the center of gravity W of the container freight vehicle, and as shown in FIG. 1B, the center of gravity W of the container freight vehicle in a cross section perpendicular to the front-rear direction of the container 11. Is a value representing the position in the vertical direction.
  • this formula (1) can be expanded as shown in formula (2) if the trigonometric functions in parentheses are synthesized.
  • the sine function angle ( ⁇ + ⁇ ) obtained by combining the trigonometric functions is represented as a rolling angle ⁇ ′.
  • the center angle “ ⁇ ” of rolling (single pendulum motion) of the center of gravity W becomes zero.
  • the center angle “ ⁇ ” indicates an angle formed between the vertical center line 201 and the rolling center line 206 as shown in FIG.
  • here corresponds to the inclination angle when the container freight vehicle travels to be guided by the inclination angle calculation device 100 of the present embodiment. Therefore, hereinafter, the rolling center angle “ ⁇ ” of the center of gravity W of the container freight vehicle may be referred to as an inclination angle “ ⁇ ” when the container freight vehicle travels.
  • the angular velocity detected by the fluctuation detector 14 is normally an angular frequency corresponding to angle / time (hereinafter abbreviated as “frequency”), and this frequency is the reciprocal of the period ( 1 / cycle). Therefore, the pitching frequency of the tractor 10 corresponding to the period “T ′” of the vertical reciprocation of the center of gravity W is set to “ ⁇ ′”, and corresponds to the period “T” of the single pendulum movement of the center of gravity W in the horizontal direction.
  • the rolling frequency to be performed is “ ⁇ ”, the above equations are respectively
  • the numerical value “l” and the numerical value “s” representing the position of the center of gravity W of the container freight vehicle with respect to the cross section perpendicular to the front-rear direction (traveling direction) of the container 11 are the inclination angle “ It is formulated as follows in relation to “ ⁇ ”. That is, equations (4) and (5) are expanded into equations (6) and (7), respectively.
  • the inventor of the present invention forms the above virtual curve 400 as a part of an ellipse having the center of gravity position straight line 300 passing through the axle center 500 and the original center of gravity W as a short axis and the virtual straight line 206C as a long axis. I thought. The ellipse was considered to be out of phase by “ ⁇ 0 ”.
  • ⁇ 0 is a state variable representing the sum of “ ⁇ ” and “ ⁇ ” corresponding to the original position of the center of gravity W. That is, the center-of-gravity position straight line 300 is considered to be rotated by the following expression (13) from the vertical axis (vertical center line 201).
  • the tilt angle calculation device 100 of the present embodiment can easily and accurately calculate the tilt angle “ ⁇ ” when the container freight vehicle travels without integrating the angular velocity, based on the dynamic theory of the mass system. Can be obtained.
  • FIG. 6 is a flowchart showing an example of an inclination angle calculation routine when the container freight vehicle travels by the inclination angle calculation device of the embodiment of the present invention.
  • the instruction content that an operator (for example, the driver of the tractor 10 or a passenger) needs to perform is displayed as a message on the display screen of the operation setting / display unit 15c. .
  • the calculation unit 15a of the calculation unit 15 reads the inclination angle calculation program and an appropriate constant stored in advance from the storage unit 15b. The following processing is executed while controlling the calculation unit 15a, the storage unit 15b, and the operation setting / display unit 15c.
  • the constant includes, for example, the length “b” of the portion supporting the load of the container 11, the gravitational acceleration “g”, and the circumferential ratio “ ⁇ ”.
  • the tractor 10 that pulls the container 11 loaded with the cargo together with the container chassis 12 is caused to travel on the road surface 204 (step S601). Then, a random disturbance is transmitted to the vehicle body (container 11) of the trailer truck 50 through the suspension 205 due to moderate unevenness of the road surface 204.
  • the swing detector 14 can detect the swing of the container cargo vehicle in its own weight direction and width direction.
  • the center of gravity is detected by the angular velocity sensor 14 a of the swing detector 14.
  • Pitching angular velocity data corresponding to the vertical reciprocation of W and angular velocity data of rolling of the center of gravity W (horizontal single pendulum motion) are measured as analog signals (step S602).
  • the analog angular velocity data is converted into a digital signal that has passed through the A / D converter 14b of the fluctuation detector 14 at every predetermined sample time stored in advance in the storage unit 15b by the calculation unit 15 (calculation unit 15a).
  • Step S603 the sampled digital angular velocity data is stored in the storage unit 15b together with the time-series data (step S604).
  • the calculation unit 15a determines whether or not the measurement of the angular velocity data by the angular velocity sensor 14a may be terminated (Step S605).
  • the calculation unit 15a determines that the measurement of the angular velocity data may be terminated (in the case of “Yes” in step S605)
  • the calculation unit 15a proceeds to the next processing step (step S606 and subsequent steps), and the measurement of the angular velocity data may be terminated. Is not determined (in the case of “No” in step S6605), the operations in steps S602 to S604 described above are continued.
  • Such a quality determination of the end of measurement may be made on the basis of a predetermined measurement time derived from the required total number of samples stored in advance in the storage unit 15b and the above-described sample time. For example, (because it is analysis for the number of FFT are integer power of 2, wherein the 2 12 illustrated) sufficiently small sample number statistical error of sampling 4096 if, sample time In the case of 0.002S (0.002 seconds), the minimum required measurement time is 4096 ⁇ 0.002S ⁇ 8S. Therefore, in this case, the calculation unit 15a determines that the measurement of the angular velocity data may be terminated when 8S or more has elapsed from the start of the measurement of the angular velocity data by the angular velocity sensor 14a.
  • the calculation unit 15a may determine whether or not the measurement of the angular velocity data has ended based on whether or not the operator has performed a measurement end button operation on the operation setting / display unit 15c. .
  • the measurement of angular velocity data for a short time as described above is based on the precondition that the elastic modulus “k” of the suspension 205 and the weight “m” of the container freight vehicle are unchanged during the measurement period of the angular velocity data.
  • the numerical values “k” and “m” are the grounds that can be removed in the above-mentioned simultaneous equation formulation.
  • the numerical values “k” and “m” may not satisfy the precondition that the angular velocity data is unchanged during the measurement period of the angular velocity data.
  • the tilt angle calculation device 100 has an advantageous effect in comparison with the case of using the conventional gyro with respect to a sudden change in disturbance. That is, when the gyro is used, it takes time to execute the error correction algorithm, and the sample time is limited to, for example, about 0.01 S by such time.
  • the error correction algorithm can be omitted, so that the sample time can be shortened to the minimum sample time (about 0.001 S) level of the sensor element (here, 0. 0). 002S is an example), and as a result, the measurement time of the angular velocity data can be sufficiently shortened, which is convenient.
  • the calculation unit 15a performs fast Fourier transform (FFT) on the time-series angular velocity data stored in the storage unit 15b, and the angular velocity data is converted into amplitude data with respect to frequency. (Step S606).
  • FFT fast Fourier transform
  • the rolling frequency “ ⁇ ” is specified using a distribution indicating the correlation between the rolling frequency and the rolling amplitude (hereinafter, abbreviated as “rolling frequency / amplitude distribution”) (step S607).
  • the pitching frequency “ ⁇ ′” is specified using a distribution indicating the correlation between the pitching frequency and the pitching amplitude (hereinafter, abbreviated as “pitching frequency / amplitude distribution”) (step S607).
  • two frequencies corresponding to the rolling peak amplitude (vertex) can be specified as seen from the lower value of the rolling frequency.
  • Such a peak amplitude includes a peak amplitude “P1” derived from the coupler 13 as a connecting member between the front portion of the container chassis 12 and the tractor 10, and a rear transverse beam (not shown) located at the rear portion of the container chassis 12.
  • P1 peak amplitude
  • P2 peak amplitude
  • any frequency corresponding to these peak amplitudes “P1” and “P2” can be selected as the rolling frequency “ ⁇ ”.
  • the length “b” of the portion supporting the load of the container 11 needs to correspond to the selected rolling frequency “ ⁇ ”.
  • the frequency (1.16 Hz) corresponding to the peak amplitude “P2” is selected as an example of the rolling frequency “ ⁇ ”.
  • a frequency (1.489 Hz) corresponding to the maximum pitching amplitude can be selected as the pitching frequency “ ⁇ ′”.
  • the calculation unit 15a reads the constant “b” stored in advance in the storage unit 15b, and uses the frequencies “ ⁇ ” and “ ⁇ ′” obtained in step S607, according to the following equation (12). , “ ⁇ 0 ” is calculated (step S608).
  • the calculation unit 15a reads the constant “b” stored in advance in the storage unit 15b, and uses the angle “ ⁇ 0 ” obtained in step S608 to calculate the container cargo vehicle according to the following equation (14). An inclination angle “ ⁇ ” during travel is calculated (step S609).
  • the calculation unit 15a outputs (displays) the tilt angle “ ⁇ ” obtained in step S609 on the display screen of the operation setting / display unit 15c (step S610), and ends the calculation routine of the tilt angle “ ⁇ ”. .
  • the tilt angle calculation device 100 detects, in a cross section perpendicular to the traveling direction of the container freight vehicle, swinging in the direction of its own weight when the container freight vehicle travels and swinging in the width direction thereof.
  • the motion detector 14 and the arithmetic unit 15 are provided.
  • the calculation unit 15 corresponds to the frequency of shaking of the container freight vehicle in its own weight direction (in the case of the tilt angle calculation device 100 of the present embodiment, the pitching frequency “ ⁇ ′” of the tractor 10). ) And the rolling frequency “ ⁇ ” in the width direction of the container freight vehicle, the inclination angle “ ⁇ ” at the time of traveling of the container freight vehicle in the above-described vertical section can be calculated without performing angular velocity integration.
  • the tilt angle calculation device 100 of the present embodiment it is not necessary to add various functions such as integration of angular velocity and filtering to the swing detector 14, and the swing detector 14 can be configured to be orders of magnitude cheaper. . Further, since the calculated inclination angle “ ⁇ ” is an angle corresponding to one frequency on a one-to-one basis, random errors due to integration, filtering, and statistical algorithms can be avoided, and the accuracy thereof is high.
  • the inclination angle “ ⁇ ” when the container freight vehicle travels is valuable data that directly reflects the degree of uneven load of the container freight whose loading state is unknown. For this reason, if the inclination angle “ ⁇ ” can be calculated easily and with high accuracy, the cargo collapses when the container door is opened and the trailer truck 50 is unstablely moved (for example, unstable traveling on a curved road or suspension abnormality). This is useful in predicting unstable driving.
  • the inclination angle (hereinafter abbreviated as “inclination angle of the present technology”) when the container freight vehicle travels by the inclination angle calculation device 100 of the present embodiment is as follows in light of the actual situation of the transportation work of the container 11. Very convenient.
  • the tilt angle of the present technology should accurately reflect the tilt angle of the container freight vehicle rather than the tilt angle of the angular velocity integration method. This inference is verified by a verification calculation (see an example) described later. (First modification)
  • the tilt angle calculation device 100 of the present embodiment the example of calculating the tilt angle “ ⁇ ” during travel of the container freight vehicle has been described, but the scope of application of the tilt angle calculation device described in this specification is limited to this. Not.
  • the technology described in the present specification can be applied to various transportation means such as trucks, buses, passenger cars, railways, ships, and aircrafts (for example, during takeoff and landing) in addition to container transport vehicles (container cargo vehicles). .
  • an angular velocity sensor in a polar coordinate system in which the angular velocity sensitivity axis is adjusted in the width direction of the passenger vehicle Combining with a linear coordinate system acceleration sensor whose sensitivity axis is adjusted in the vertical direction of the passenger car is considered to be theoretically consistent for a rectangular passenger car having a short longitudinal length.
  • the fluctuation detector composed of these angular velocity sensor and acceleration sensor is arranged directly on the body of the passenger car, and the passenger car is run on the road for an appropriate time, and the angular velocity data and acceleration data are measured by the fluctuation detector. It is good to do.
  • the computing unit performs fast Fourier transform (FFT) on the time-series angular velocity data and acceleration data stored in the storage unit, and converts the angular velocity data and acceleration data into amplitudes corresponding to the respective frequencies. Convert to data.
  • FFT fast Fourier transform
  • This provides a rolling frequency / amplitude distribution and a vertical acceleration frequency / amplitude distribution for passenger cars.
  • the frequency corresponding to the peak amplitude of the rolling frequency / amplitude distribution is defined as the rolling frequency “ ⁇ ” in the equations (12) and (14), and the vehicle width of the passenger car (substantially constant in the longitudinal direction of the passenger car)
  • the length “b” in the equations (12) and (14) is set, and the frequency corresponding to the maximum amplitude of the acceleration frequency / amplitude distribution is the frequency “ ⁇ ′” in the equations (12) and (14).
  • the inclination angle “ ⁇ ” when the passenger car is traveling can be calculated.
  • the example in which the tilt angle “ ⁇ ” during the traveling of the container freight vehicle is calculated using the following equation (14) has been described.
  • the method of formulating the inclination angle “ ⁇ ” of the arithmetic device is not limited to this equation (14).
  • the inclination angle “ ⁇ ” can be varied by using the frequency “ ⁇ ′” of the swing in the own weight direction and the rolling frequency “ ⁇ ” in the width direction when the container cargo vehicle (an example of the traveling body) is traveling. It can be calculated by a technique.
  • the angle “ ⁇ ” can be assumed to be the following equation (16) from the characteristic of the singular point of the ellipse of the equation (8).
  • tilt angle calculation device 100 of the present embodiment the example in which the tilt angle “ ⁇ ” during travel of the container freight vehicle is calculated in a cross section perpendicular to the travel direction of the container freight vehicle has been described.
  • the application range of the tilt angle calculation device is not limited to this.
  • the cross-section (that is, the cross section in the direction of FIG. 1A) including the front-rear direction and the vertical direction of the container freight vehicle (that is, two directions perpendicular to each other of the container freight vehicle)
  • the inclination angle “ ⁇ ′” when the container freight vehicle travels can be calculated.
  • the above calculation of the inclination angle “ ⁇ ′” is considered to be useful for predicting overloading of a container freight vehicle and preventing the bending phenomenon (jackknife) between the tractor and the container freight vehicle.
  • the following verification calculation was performed for the purpose of verifying the validity of the tilt angle of this technology in comparison with the tilt angle of the angular velocity integration method. Note that the input values used for this verification calculation are based on data obtained from a verification experiment using actual vehicles on the public road of Kobe Port Port Island on February 14, 2007.
  • the position of the center of gravity (specified from the numerical values “l” and “s”) when using the inclination angle of the angular velocity integration method was substantially the center in the left-right direction (width direction) of the container freight vehicle
  • the position of the center of gravity (specified from the numerical values “l” and “s”) when using the tilt angle of the present technology was slightly shifted from the center in the left-right direction (width direction) of the container freight vehicle.
  • the tilt angle calculation device of the present invention can easily and accurately calculate the tilt angle when the traveling body travels without integrating the angular velocity.
  • the present invention can be used for calculating an inclination angle during travel of various moving means such as a container transport vehicle (container cargo vehicle), a truck, a bus, a passenger car, a railway, a ship, and an aircraft (for example, during takeoff and landing).
  • container transport vehicle container cargo vehicle
  • truck truck
  • bus bus
  • passenger car passenger car
  • railway railway
  • ship ship
  • aircraft for example, during takeoff and landing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Vehicle Body Suspensions (AREA)
  • Testing Of Balance (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Navigation (AREA)

Abstract

 本発明の傾斜角演算装置(100)は、走行体の互いに直交する2方向を含む断面において、走行体の走行時の2方向の揺れを検知する揺動検知器(14)と、2方向の一方の揺れの周波数、および、2方向の他方のローリング周波数を用いて、上記断面における走行体の走行時の傾斜角を演算する演算ユニット(15)と、を備える。

Description

傾斜角演算装置
 本発明は、走行体の走行時の傾斜角を演算できる傾斜角演算装置に関する。
 走行体の走行時の傾斜角(より具体的には、走行体の所定の断面における走行体のローリングの中心角度)を高精度に予測できると、走行体の運用に有益である。例えば、国際間の輸出入により商取引されるコンテナ貨物を運ぶコンテナ貨物車両を例にとると、コンテナ貨物車両の走行方向に垂直な断面におけるコンテナ貨物車両の走行時の傾斜角は、コンテナ内の貨物の偏荷重を直接的に反映する貴重なデータである。よって、この傾斜角の正確な予測によって、コンテナの扉開封時の貨物の荷崩れ落下やコンテナ輸送車両の不安定走行(例えば、曲路における不安定走行やサスペンション異常による不安定走行)の予知に役立つ。
 なお、ここでのコンテナ内の貨物の「偏荷重」(但し、本明細書では、「偏荷重」のことを貨物の積載状態に着目して「片荷」と言い換える場合がある)とは、コンテナ貨物の設置状態に依存する空間上の重心によって生じる荷重点の偏倚を指し、コンテナ輸送業界で一般的に理解されているコンテナの底面における平面上の荷重点の偏倚を指すものではない。
 一方、走行体(移動体)が走行している傾斜角(路面の傾斜角や水平面からの傾斜角)の演算に着目した従来技術がある(例えば、特許文献1や特許文献2)。
 特許文献1では、走行体が移動する際の前後方向、および、左右方向の加速度によって、回転角検知器により得られる水平面からの傾斜角の補正がなされている。
 特許文献2では、加速度センサの検出データ系列のランダム性が成り立つとき、走行体は停止もしくは一定速度で走行していると判断し、加速度の出力値から路面の傾斜角を演算している。
特開平9-329437号公報 特開2007-163205号公報
 ところで、角速度の時間積分によって角度を演算する手法が、走行体のリアルタイムな位置情報を得るのに、理論上、最も厳密な方法として良く知られている。
 しかし、どのような角速度センサでも、温度特性などに起因する出力のバラツキが存在するので、角速度センサからの出力データを単純に積分すると、走行体の正確な角度を演算できない。そこで、走行体の正確な角度の演算では、一般的には、角速度を出力できるジャイロに、その積分誤差の修正に用いる加速度センサ、地磁気センサ、更にGPSなどを組合せ、カルマンフィルタなどの高度の誤差補正アルゴリズムを併用する必要がある。ところが、この場合、ジャイロが破格な高値(50万円~数百万円)となり、そして、このことが、乗用車などの身近な走行体に、走行時の傾斜角演算技術を搭載するときの重大な障害になっている。
 本件発明者は、コンテナ貨物の偏荷重により、コンテナ輸送車両が引き起こす社会問題(例えば、コンテナの扉開封時の貨物の荷崩れ落下やコンテナ輸送車両の曲路における不安定走行)を抜本的に解決する技術開発に取り組んでいる。
 そして、このような技術開発の過程において、走行体の所定の断面における重心位置とこの断面での互いに直交する2方向の揺れの周波数(例えば、角速度の周波数)との間の関係式を上手く変換すると、角速度の積分を行わずに、当該周波数から直接にコンテナ貨物車両の走行時の傾斜角を導けることに気がついた。この導出法の詳細は後述する。
 なお、上述の特許文献1および特許文献2は、あくまで、路面の傾斜によって目視しうる走行体の現実の傾き角の演算を意図するものであり、走行体の断面における走行体のローリングの中心角度の演算を可能にする本明細書の技術とは全く異なり、これらの文献1、2は参酌に値しない。
 このように、本明細書において、「走行体の走行時の傾斜角」とは、走行体の走行方向に垂直な断面を例にすると、当該断面において走行体の重心位置が垂直中心ライン(後述)からずれることにより、垂直中心ラインとローリング中心ライン(後述)との間のなす角として力学理論上、観念される角度を指すものであり、例えば、特許文献1および特許文献2の如く、路面の傾斜によって目視しうる走行体の傾き角だけを意味するものではない。
 また、付言するに、特許文献1や特許文献2では、角度の演算に、走行体の加速度を用いているので、本来の極座標系の物理現象(ローリングの角速度)を、無理やりに直線系の物理現象(加速度)に丸め込んでいる。この場合、座標系の丸め誤差が深刻となることが多い。例えば、走行体が横向きに風圧を受けた場合でも、直線系の物理現象の加速度に影響を与えるので不都合である。よって、極座標系のローリングの角速度(周波数)から走行体の角度を高精度に演算する必要がある場合、特許文献1や特許文献2に記載の手法は、本来、使い物にならない。
 本発明は、このような事情に鑑みてなされたものであり、角速度の積分を行わずに、走行体の走行時の傾斜角を簡易かつ高精度に演算できる傾斜角演算装置を提供することを目的とする。
 上記課題を解決するため、本発明は、走行体の互いに直交する2方向を含む断面において、前記走行体の走行時の前記2方向の揺れを検知する揺動検知器と、前記2方向の一方の揺れの周波数、および、前記2方向の他方のローリング周波数を用いて、前記断面における前記走行体の走行時の傾斜角を演算する演算ユニットと、を備えた傾斜角演算装置を提供する。
 以上の構成により、本発明の傾斜角演算装置は、角速度の積分を行わずに、走行体の走行時の傾斜角を簡易かつ高精度に演算できる。
 よって、本発明の傾斜角演算装置では、揺動検知器に、角速度の積分やフィルタリングなどの様々な機能の付加が不要となり、揺動検知器を桁違いに安価に構成できる。また、この演算された傾斜角は、一つの周波数に一対一に対応する角度となるので、積分、フィルタリング、および、統計アルゴリズムに起因するランダムな誤差を回避でき、その精度は高い。
 また、本発明の傾斜角演算装置では、前記断面が、前記走行体の走行方向に垂直な断面であり、前記2方向の一方が、前記走行体の自重方向であり、前記2方向の他方が、前記走行体の幅方向であってもよい。
 この場合、以上の傾斜角は、走行体の、偏荷重の度合いを直接に反映する貴重なデータである。このため、傾斜角を簡易かつ高精度に演算できると、例えば、走行体の荷物の荷崩れ落下や走行体の不安定走行(例えば、曲路における不安定走行やサスペンション異常による不安定走行)の予知において有益である。
 また、本発明の傾斜角演算装置では、走行体が、牽引車両に牽引されるコンテナ貨物車両であってもよい。
 なお、コンテナの輸送業務の実情に照らすと、本発明の傾斜角演算装置による傾斜角の演算は極めて都合がよいが、その理由は後述する。
 ところで、物体の運動の定式化には、一般的に、質点系の力学の問題として捉える方法と、剛体系の力学の問題として捉える方法と、がある。しかし、剛体系の力学では、剛体の質量分布が均一であることを前提とするので、様々な大きさや形を有する物体の集合である走行体の運動を、剛体系の力学の問題として捉えることは適切でないと考えられる。
 そして、本件発明者は、走行体の運動を、走行体の重心を質点とした質点系の力学の問題として捉えると、角速度の積分を行わずに、走行体の走行時の傾斜角を適切に導けることに気がついた。
 但し、本発明は、実施形態において例示する傾斜角の定式化の手法に、必ずしも限定されず、以下の質点系の力学の要件を満足する限り、傾斜角を様々な式で表現することができる。例えば、第2変形例(後述)では、実施形態での傾斜角の定式化の手法とは異なる手法が記載されている。
 つまり、本発明の傾斜角演算装置では、前記自重方向の揺れが、前記走行体の重心を質点とした上下方向の往復運動に対応し、前記幅方向の揺れが、前記走行体の幅方向の車軸の中心を支点とし、前記走行体の重心を質点とした左右方向の単振子運動に対応する場合、
 前記演算ユニットは、前記揺動検知器の出力データを、前記単振子運動の周波数と振幅との間の相関を表すローリングデータに変換して、前記ローリングデータを基にして、前記走行体の所定の幅寸法に由来する前記単振子運動のピーク振幅に対応して前記単振子運動の周波数を取得し、
 前記揺動検知器の出力データを、前記往復運動の周波数と振幅との間の相関を表すピッチングデータに変換して、前記ピッチングデータを基にして、前記往復運動の最大振幅に対応する前記往復運動の周波数を取得し、
 前記走行体の所定の幅寸法、前記取得された単振子運動の周波数、および、前記取得された往復運動の周波数を用いて、前記単振子運動の中心角度を前記傾斜角として導いてもよい。
 また、本発明の傾斜角演算装置では、前記2方向の揺れは、前記走行体の路面上での走行時に、前記路面の凹凸に応じて前記走行体に与えられる外乱による運動であってもよい。
 また、路面は、例えば凹凸が設けられた回転ロールなどの回転により、人工的に走行状態を作るものでもよい。
 これにより、走行体を通常の流れに合わせて任意走行させれば、本発明の傾斜角演算装置は、走行体の走行時の傾斜角を容易に演算できる。
 また、本発明の傾斜角演算装置では、前記揺動検知器は、前記走行体に配置され、角速度の感度軸が前記2方向に調整された角速度センサを備えてもよい。
 これにより、揺動検知器を安価な2軸の角速度センサによって構成できる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、角速度の積分を行わずに、走行体の走行時の傾斜角を簡易かつ高精度に演算できる傾斜角演算装置が得られる。
図1は本発明の実施形態の傾斜角演算装置の構成例を示した概略図である。 図2は本発明の実施形態の傾斜角演算装置中の揺動検知器および演算ユニットの内部構成の一例を示したブロック図である。 図3は本発明の実施形態の傾斜角演算装置によるコンテナ貨物車両の走行時の傾斜角の導出法を説明する模式図である。 図4は本発明の実施形態の傾斜角演算装置によるコンテナ貨物車両の走行時の傾斜角の導出法を説明する模式図である。 図5は本発明の実施形態の傾斜角演算装置によるコンテナ貨物車両の走行時の傾斜角の導出法を説明する模式図である。 図6は本発明の実施形態の傾斜角演算装置によるコンテナ貨物車両の走行時の傾斜角の演算ルーチン例を示したフローチャートである。 図7は横軸に周波数(Hz)をとり、縦軸に振幅(角速度)をとって、ローリング周波数/振幅分布の一例を示した図である。 図8は横軸に周波数(Hz)をとり、縦軸に振幅(角速度)をとって、ピッチング周波数/振幅分布の一例を示した図である。
 以下、本発明の一実施形態について図面を参照しながら説明する。
 なお、全ての図面を通じて、同一ないし相当する構成要素には同じ参照番号を付し、以下、このような構成要素の重複的記載を省略する場合がある。
 また、本発明は、以下の実施形態に限定されない。つまり、以下の具体的な説明は、本発明の傾斜角演算装置の特徴を例示しているに過ぎない。よって、本発明の傾斜角演算装置を特定した構成要素に対応する用語に適宜の参照符号を付して以下の具体例を説明する場合、当該具体的な装置は、これに対応する本発明の傾斜角演算装置の構成要素の一例である。
 例えば、以下に述べる「コンテナ輸送車両50(コンテナ貨物車両)」は、本発明の構成要素である「走行体」の一例に過ぎない。
 よって、本明細書に記載の技術は、コンテナ輸送車両(コンテナ貨物車両)の他、トラック、バス、乗用車、鉄道、船舶、航空機(例えば、離着陸時)などの様々な移動手段に適用できる。例えば、本技術を乗用車に適用した例を、第1変形例(後述)に記載している。
 また、本明細書において、コンテナ貨物車両とは、牽引車両以外のコンテナ輸送車両の部分、つまり、貨物を搭載可能なコンテナと、このコンテナを載せるコンテナシャーシ(台車)とからなる車両を指すものとする。
(実施形態)
 図1は、本実施形態の傾斜角演算装置の構成例を示した概略図である。図1(a)は、この傾斜角演算装置を、コンテナ貨物車両の幅方向(側面)から見た図であり、図1(b)は、この傾斜角演算装置を、コンテナ貨物車両の後側から見た図である。
 なお、適宜の図面において、コンテナ貨物車両の自重のかかる方向を「上下」で図示し、コンテナ貨物車両の幅方向を「左右」で図示し、コンテナ貨物車両の走行方向を「前後」で図示している。そして、以下の説明では、「自重方向」のことを「上下方向」と言い換える場合があり、「幅方向」を「左右方向」と言い換える場合があり、「走行方向」を「前後方向」と言い換える場合がある。
 傾斜角演算装置100は、図1に示す如く、コンテナ輸送車両50と、コンテナ貨物車両の走行時の上下方向(自重方向)の揺れ(つまり、縦揺れ)、および、その左右方向(幅方向)の揺れ(つまり、横揺れ)を検知できる揺動検知器14と、演算ユニット15と、を備える。このように揺動検知器14は、コンテナ貨物車両の互いに直交する2方向(ここでは、自重方向と幅方向)を含む断面(ここでは、図1(b)の向きの断面)において、これらの2方向の揺れを検知できるように構成されている。
 以上のコンテナ輸送車両50の典型的な一形態は、トラクタ10を牽引車両とするトレーラトラックである。
 よって、本実施形態では、世界的な標準仕様の40フィートの海上コンテナを搭載したコンテナシャーシをトラクタにより牽引するトレーラトラック輸送を例にとり、コンテナ輸送車両50の構成および動作の説明を行う。
 トレーラトラック50は、図1(a)に示す如く、コンテナ貨物(図示せず)を搭載可能な直方形のコンテナ11と、コンテナ11を載せる台車としてのコンテナシャーシ12と、コンテナシャーシ12と連結してコンテナシャーシ12を牽引または駆動させるトラクタ10(牽引車両)と、を備える。
 トラクタ10は、コンテナシャーシ12に連結する円盤形のカプラ13(連結部材)を有し、これにより、コンテナシャーシ12およびトラクタ10が互いに、カプラ13を介して左右方向にスイング可能なように連結されている。
 なお、本実施形態の傾斜角の検知技術は、理論上、コンテナ11へのコンテナ貨物の積載の有無に拘わらず適用可能である。よって、本明細書においては、上述のコンテナ11とは、コンテナ貨物積載の有無を問わないものとする。
 また、図1に示されたトレーラトラック50の形態は、飽くまで一例に過ぎず、本実施形態の検知技術は、様々なタイプのトレーラトラックに対して適用できる。
 図2は、本実施形態の傾斜角演算装置中の揺動検知器および演算ユニットの内部構成の一例を示したブロック図である。
 上述の揺動検知器14は、トレーラトラック50の左右方向の中央であって、トラクタ10側の輸送業務に支障の無い場所(例えばカプラ13の近傍)に固着されている。上述の演算ユニット15は、トラクタ10の運転室内の適所に配置されている。そして、両者は、適宜のデータ入出力ポート(図示せず)を介して有線通信や無線通信等によりデータ送信可能なように接続されている。
 揺動検知器14は、図2に示すように、トレーラトラック50の走行時のコンテナ貨物車両の上下方向および幅方向の揺れを検知するよう、角速度の感度軸が調整された2軸(2次元)の角速度センサ14aと、この角速度センサ14aから出力されるアナログ信号をデジタル信号に変換するA/D(アナログ/デジタル)変換器14bと、を備える。
 なお、このA/D変換器14bによりデジタル化された角速度信号の大きさは、トレーラトラック50の走行時のコンテナ貨物車両の上下方向または幅方向の揺れの角速度に比例している。2軸の角速度センサ14aには、例えば水晶音叉式のセンサや振動式のセンサを用いるとよい。
 また、ここでは、揺動検知器14の使用の際の利便性に配慮して、A/D変換器14b内蔵型の揺動検知器14を例示しているが、このA/D変換器14bを外付けにしてもよい。更には、揺動検知器14には、フィルタ(図示せず)やアンプ(図示せず)等の各種の信号処理回路が内蔵されているが、これらは慣用技術であり、ここでは、詳細な説明は省く。
 また、演算ユニット15は、図2に示すように、マイクロプロセッサ等からなる演算部15aと、ROM(リードオンリーメモリ)やRAM(ランダムアクセスメモリ)等からなる記憶部15bと、操作設定/表示部15cと、を備える。このような演算ユニット15としては、ノートブックタイプのパーソナルコンピュータ等の情報携帯端末がある。
 記憶部15bは、演算部15aに接続され、コンテナ貨物車両の走行時の傾斜角を適切に導くためのプログラムや、当該演算に必要な各種の入力用の定数(後述)を記憶している。
 演算部15aは、記憶部15bに予め記憶されている傾斜角演算用のプログラムに従って動作し、例えば、後述のとおり、揺動検知器14(A/D変換器14b)から出力されたデジタル信号に基づいてコンテナ貨物車両の走行時の傾斜角を導くことができる。
 操作設定/表示部15cは、上述の入力用定数の設定ボタンを配設した操作部(例えばキーボード;図示せず)と、演算部15aから出力されたコンテナ貨物車両の走行時の傾斜角についての出力データを、作業者(運転者や同乗者)が認識できるように表示通知や音声通知する通報装置(例えば液晶パネル画面やスピーカ;図示せず)と、を備える。
 次に、コンテナ貨物車両の傾斜角の導出法について図面を参照しながら詳しく説明する。
 図3、図4および図5は何れも、本実施形態の傾斜角演算装置によるコンテナ貨物車両の走行時の傾斜角の導出法を説明する模式図であり、トレーラトラックが走行する前後方向から見た図である。
 なお、図3、図4および図5では、傾斜角演算装置100の構成については、コンテナ貨物車両の走行時の傾斜角の導出法を理解し易くなるように、簡略乃至省略して図示されている。
 まず、図3に示すように、コンテナ11は、コンテナシャーシ12に積載された状態では、トラクタ10とコンテナシャーシ12に配設されたサスペンション205(懸架装置;図4参照)の緩衝用弾性力(例えば空気圧やバネ力)に支えられ、路面204から一定の高さで中立する。この状態で、トレーラトラック50が走行すると、タイヤが路面204の凹凸を踏み続けることにより、ランダムな外乱がサスペンション205を通してトレーラトラック50の車体(コンテナ11)に伝わる。このような外乱によって、トレーラトラック50は、サスペンション205の弾性力、コンテナ貨物車両の総重量およびその重心位置に依存する固有の周期(周波数)を持つ運動に基づいて揺動(固有振動)する。そして、この運動は、コンテナ貨物車両の重心Wの上下方向の往復運動およびコンテナ貨物車両の重心Wの左右方向の単振子運動として揺動検知器14により検知される。
 なお、本明細書において、サスペンション205とは、トレーラトラック50の車体の路面204からの振動を緩衝できる部材を指し、例えば、車軸に連結されたバネ式の緩衝器の他、車軸の端に配されて空気が充填されているタイヤなども含むものとする。
 前者の往復運動は、トラクタ10のピッチングと呼ばれる挙動に対応する。コンテナ貨物車両が上下方向に往復運動すると、トラクタ10とコンテナシャーシ12とを連結するカプラ13が上下に押される。カプラ13の位置は、トラクタ10の後方に存在するので、カプラ13が上下に押されることにより、トラクタ10の前部が逆に、浮き沈みする。このような現象が、トラクタ10のピッチングである。つまり、コンテナ貨物車両の上下方向の往復運動が、カプラ13を通じてトラクタ10に伝わり、これにより、トラクタ10のピッチングが起こり、このピッチングが揺動検知器14によって検知される。
 また、後者の単振子運動は、トレーラトラック50のローリングと呼ばれる挙動に対応し、このローリングが揺動検知器14によって検知される。
 トレーラトラック50には、通常、前後左右の車軸ごとにサスペンション205が取り付けているが、上下方向の往復運動および左右方向の単振子運動の挙動が同時に起きるので、力学上の弾性係数(バネ定数)を考慮するに当たり、簡易的に左右に一つずつ弾性体(バネ)があると仮定して挙動解析することが妥当であると考えられる。
 そこで、コンテナ貨物車両の重心Wを質点とする場合、コンテナ11の前後方向(走行方向)に垂直な断面におけるコンテナ貨物車両の重心Wの位置が、コンテナ貨物車両の走行時の傾斜角との関係で以下の如く定式化できる。
 なお、以下の式(1)~式(9)についての定式化の手法は、本件出願人の先行の特許文献である「WO2008/062867パンフレット」に詳述された方法に倣っている。
 まず、コンテナ貨物車両の重心Wを質点として、コンテナ貨物車両の重心Wの上下方向の往復運動の周期「T’」(トラクタ10のピッチング周期に対応する周期)を定式化する。
 図3に示すように、車両の左右に二つの弾性体の弾性力が存在すると考えると、コンテナ貨物車両の往復運動の固有周期は以下の式により表される。
Figure JPOXMLDOC01-appb-M000001
 この式において、「T’」はコンテナ貨物車両の重心Wの上下方向の往復運動の周期である。「k」はサスペンション205の左右片方の弾性係数(バネ定数)である。「m」はコンテナ貨物車両の重量であり、「π」は円周率である。
 次に、コンテナ貨物車両の重心Wを質点として、コンテナ貨物車両の重心Wの左右方向の単振子運動の周期「T」(トレーラトラック50のローリング周期)を定式化する。
 図4に示すように、コンテナ貨物車両のローリングは、コンテナ貨物車両の重心Wの車軸の中心500(図4に示した垂直中心ライン201と車軸位置ライン202との交点)を支点とした左右方向の単振子運動であることから、コンテナ貨物車両のローリング中のローリング円の接線方向における回転モーメントの釣り合いから、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000002
 この式において、「f」はコンテナ貨物車両の重心Wに対しローリング円(回転円)の接線方向に与えられる力である。「θ」はローリング角である。「L」は車軸の中心500からコンテナ貨物車両の重心Wまでの長さである。「b」はコンテナ11の荷重を支えている部分の長さであり、コンテナ11毎に定められる定数である。「l(スモールエル)」は車軸からコンテナ貨物車両の重心Wまでの上下方向の長さであり、図1(b)に示す如くコンテナ11の前後方向に垂直な断面におけるコンテナ貨物車両の重心Wの垂直方向の位置を表す値である。「s」は車軸の中心500からコンテナ貨物車両の重心Wまでの左右方向の長さであり、図1(b)に示す如くコンテナ11の前後方向に垂直な断面におけるコンテナ貨物車両の重心Wの水平方向の位置を表す値である。「x」は左右のサスペンションの変位量である。「g」は重力加速度である。
 つまり、ここでの「l」および「s」が求まれば、コンテナ11の前後方向(走行方向)に垂直な断面におけるコンテナ貨物車両の重心Wの位置を導ける。
 ここで、x=(b/2)sinθであるから、上述の回転モーメントの釣り合い式は、式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
 また、この式(1)は、括弧内の三角関数を合成すれば、式(2)の如く展開される。なお、上述の式(2)において、三角関数の合成により得られるサイン関数の角度(θ+α)のことを、ローリング角度θ’として表している。
Figure JPOXMLDOC01-appb-M000004
 ところで、コンテナ貨物車両の重心Wの水平方向の位置が垂直中心ライン201上に存在すれば、重心Wのローリング(単振子運動)の中心角度「α」はゼロになる。本明細書において、この中心角度「α」とは、図4に示すように、垂直中心ライン201とローリング中心ライン206との間のなす角を指す。
 上述の位置が左右の何れかに偏倚していれば(つまり、「s」≠0であれば)、このローリングの中心角度「α」はゼロ以外の一定の値を持つようになる。このような状態で、トレーラトラック50が停止すれば、その中心角度「α」を保ったまま傾斜して中立する。そこで、式(1)のθを、重心Wのローリングの中心角度「α」に置き換えることにより、重心Wがローリングの中心を通る場合またはトレーラトラック50が停止する場合を想定して、式(3)が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 以上のとおり、ここでの「α」が、本実施形態の傾斜角演算装置100によって導くためのコンテナ貨物車両の走行時の傾斜角に相当する。よって、以下、コンテナ貨物車両の重心Wのローリングの中心角度「α」のことを、コンテナ貨物車両の走行時の傾斜角「α」と言い換える場合がある。
 次いで、式(3)を、式(2)に代入して整理すれば、以下の式になる。
Figure JPOXMLDOC01-appb-M000006
 ところで、上述のローリング角度θ’は、高々、数度程度の微小な値であると想定される。よって、「θ’」が充分に微小値である場合の三角関数の特性(つまり、sinθ’≒θ’の関係)から上述の式の「f」を、以下の式のように記述できる。
Figure JPOXMLDOC01-appb-M000007
この式形は、Lを半径とした振子の円運動の方程式と同値であることから、
Figure JPOXMLDOC01-appb-M000008
と書き直せる。
 ここで、「θ’」の角振動数を「ω」とおくと、
Figure JPOXMLDOC01-appb-M000009
となる。
 また、トレーラトラック50のローリング周期をTとおくと、T=2π/ωであることから、
Figure JPOXMLDOC01-appb-M000010
と書き直せる。
 そして、L=√(l+s)であることから、最終的には、リーリング周期「T」について、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000011
 このようにして、コンテナ貨物車両の重心Wの上下方向の往復運動の周期「T’」およびコンテナ貨物車両の重心Wの左右方向の単振子運動の周期「T」が導かれる。
 ところで、揺動検知器14(角速度センサ14a)により検知される角速度は、通常は、角度/時間に相当する角周波数(以下、「周波数」と略す)であり、この周波数は、周期の逆数(1/周期)で表される。そこで、重心Wの上下方向の往復運動の周期「T’」に対応する、トラクタ10のピッチングの周波数を「ν’」とおき、重心Wの左右方向の単振子運動の周期「T」に対応するローリングの周波数を「ν」とおくと、上述の式は各々、
Figure JPOXMLDOC01-appb-M000012
と整理できる。
 ここで、式(3)、(4)および(5)の比較から理解できるとおり、周波数「ν」および周波数「ν’」が既知である場合(つまり、演算ユニット15が、揺動検知器14を用いてこれらの値「ν」および「ν’」を導ける場合)、未知数は「l」、「s」および「α」の3個である。
 これにより、コンテナ11の前後方向(走行方向)に垂直な断面についての、コンテナ貨物車両の重心Wの位置を表す数値「l」と数値「s」が、コンテナ貨物車両の走行時の傾斜角「α」との関係で、以下のように定式化される。つまり、式(4)および(5)は各々、式(6)および(7)に展開される。
Figure JPOXMLDOC01-appb-M000013
 次いで、式(7)に、式(6)を代入すれば、式(8)が得られる。
Figure JPOXMLDOC01-appb-M000014
 同様に、式(3)に、式(6)を代入すれば、式(9)が得られる。
Figure JPOXMLDOC01-appb-M000015
 次に、本実施形態の特徴部であるコンテナ貨物車両の走行時の傾斜角「α」の導出法について図面を参照しながら詳しく述べる。
 図4のコンテナ貨物車両の揺れの概念図において、コンテナ貨物車両の走行時の傾斜角「α」の特定に重要な角度として、重心Wの位置を表す2つの数値「l」と「s」とによって作り出される角度「φ」がある。つまり、
Figure JPOXMLDOC01-appb-M000016
となる。
 この角度「φ」は、重心Wが垂直中心ライン201上に存在する場合、つまり、「s」=0のとき、ゼロとなる。このとき、「α」も、当然ゼロとなる。
 そこで、ローリング周波数「ν」、ピッチング周波数「ν’」が一定であると仮定して、「s」の値を適宜に設定することにより、式(8)の関係から「l」が演算でき、これにより、中立状態の仮想の重心W’は、図5(a)の太い想像線(二点鎖線)で表した仮想曲線400の軌跡を描いて変化することがわかる。
 図5(a)に示すように、「s」が増大するに連れて、「φ」も増大する。また、「s」が増大するに連れて、「l」が減少する。最終的には、「s」の最大値である「s」=「s」において、「φ」は90°に、「l」はゼロに、それぞれ収束する。このとき、仮想の重心W’と車軸の中心500(重心Wの固有振動の原点)とを通る仮想直線206Cが特定され、仮想直線206Cと車軸位置ライン202との間のなす角を「α」とする。
 逆に、「s」が減少するに連れて、「φ」も減少する。また、「s」が減少するに連れて、「l」が増大する。最終的には、「l」の最大値である「l」=「l」において、「φ」は0°に、「α」は0°に、「s」はゼロに、それぞれ収束する。
 そこで、本件発明者は、以上の仮想曲線400が、車軸の中心500と本来の重心Wとを通る重心位置直線300を短軸とし、仮想直線206Cを長軸とする楕円の一部となっていると考えた。また、この楕円は、位相が「α」だけずれていると考えた。
 ところで、現実には、「ν」および「ν’」が揺動検知器14によって既知になると、コンテナ貨物車両の「l」、「s」および「α」は唯一に定まり、これらの「l」、「s」および「α」は変動しない。しかし、以上の「s」、「α」および「l」は、式(8)および式(9)に基づいて、「ν」および「ν’」の組合せによって唯一に特定される。
 そこで、まず、これらの数値「s」、「α」、「l」の導出法を述べる。
 式(8)において、「s」=0とすると、「α」は0°となり、「l」は「l」となる。また、「b」は定数である(コンテナ11の荷重を支えている部分の長さ)。
 よって、式(8)において、「s」=0の場合、「ν」および「ν’」が揺動検知器14によって既知になると、以下の式(11)を用いて「l」を特定できる。
Figure JPOXMLDOC01-appb-M000017
 また、式(8)および式(9)において、「l」=0とすると、「α」を「α」、「s」を「s」と置いた連立方程式が得られる。「l」=0において、この連立方程式を解くと、以下の式(12)が得られ、この式(12)を用いて「α」を特定できる。
 なお、式(12)において、「b」は、コンテナ11の荷重を支えている部分の長さであり、「π」は円周率であり、「g」は重力加速度であり、何れも定数である。
Figure JPOXMLDOC01-appb-M000018
 また、式(12)から導かれた「α」を、「l」=0とした場合の式(8)または式(9)に代入すれば、「s」も特定できる
 このようにして、「s」、「α」および「l」は、「b」、「ν」および「ν’」の具体的な数値の入力によって演算できることがわかる。
 次に、仮想直線206Cと車軸位置ライン202との間のなす角「α」の技術的な意味を吟味する。
 図5(a)の仮想曲線400を、車軸の中心500(重心Wの固有振動の原点)を中心にして、仮想直線206Cが水平方向を向くように回転すると(図5(b)参照)、「α」の技術的な意味が理解できる。
 上述のとおり、仮想曲線400は、重心位置直線300を短軸とし、仮想直線206Cを長軸とする楕円の一部であると仮定すると、図5(b)では、重心位置直線300が、垂直方向を向く。これにより、「α」は、本来の重心Wの位置に対応する「φ」と「α」との和を表す状態変数であることがわかる。つまり、重心位置直線300は、垂直な軸(垂直中心ライン201)から以下の式(13)だけ回転していると考えられる。
Figure JPOXMLDOC01-appb-M000019
 以上の仮説のもと、コンテナ貨物車両の走行時の傾斜角「α」を表す式は、以下のとおり、変換できる。
 まず、式(8)および式(9)の両辺を「l」で整理すると、両式は、「φ」を取り入れた形式で、以下の式(8’)および式(9’)のように整理できる。
Figure JPOXMLDOC01-appb-M000020
 次いで、式(13)を「φ」=「α-α」と変形して、この「φ」を式(8’)および式(9’)に代入して、両者の両辺から「l」を消去すると(但し、詳細な式の展開は省略)、傾斜角「α」を表す以下の式(14)が最終的に得られる。
Figure JPOXMLDOC01-appb-M000021
 式(14)において、「b」は、コンテナ11の荷重を支えている部分の長さであり、「π」は円周率であり、「g」は重力加速度であり、何れも定数である。また、「ν」は、トラクタ10のローリング周波数であり、「ν’」は、トラクタ10のピッチング周波数であり、何れも揺動検知器14からの出力データに基づいて得ることができる。更に、「α」は、「b」、「ν」および「ν’」の具体的な数値の入力によって、式(12)を用いて演算できる。
 以上により、上述の式(14)の未知数は、「α」だけとなるので、式(14)を用いて「α」を理論的に演算できる。
 このようにして、本実施形態の傾斜角演算装置100は、角速度の積分を行わずに、コンテナ貨物車両の走行時の傾斜角「α」を簡易かつ高精度に、質点系の力学理論に基づいて取得できる。
 次に、本実施形態の傾斜角演算装置100によるコンテナ貨物車両の走行時の傾斜角「α」の演算動作の一例について図面を参照しながら説明する。
 図6は、本発明の実施形態の傾斜角演算装置によるコンテナ貨物車両の走行時の傾斜角の演算ルーチン例を示したフローチャートである。
 演算ユニット15の操作設定/表示部15cの電源スイッチが押されると、操作設定/表示部15cの表示画面(図示せず)には複数のメニューが表示される。そして、操作設定/表示部15cの適宜のボタン操作により、トレーラトラック50の走行中の適時に、以下の傾斜角「α」の演算動作を開始することができる。
 なお、本演算動作を以下のように実行するにあたり、作業者(例えばトラクタ10の運転者や同乗者)が行う必要がある指示内容は、操作設定/表示部15cの表示画面にメッセージ表示される。そして、傾斜角「α」の演算動作が選択されると、演算ユニット15の演算部15aは、記憶部15bから傾斜角演算用のプログラムおよび予め記憶された適宜の定数を読み出し、このプログラムが、以下の処理を演算部15a、記憶部15bおよび操作設定/表示部15cを制御しながら実行する。
 なお、この定数には、例えば、コンテナ11の荷重を支えている部分の長さ「b」と、重力加速度「g」と、円周率「π」と、がある。
 なお、標準仕様の40フィートの海上コンテナでは、コンテナ11の荷重を支えている部分の長さ「b」が標準値になっている場合が多く、当該定数「b」を記憶部15bに予め記憶させる方が、上述の定数の確認作業や入力作業が省略でき都合がよいが、傾斜角「α」の演算を実行する度に、作業者が、演算ユニット15の操作設定/表示部15cを用いて定数「b」を入力してもよい。
 まず、コンテナ貨物車両の傾斜角「α」の演算の準備動作として、貨物を搭載したコンテナ11をコンテナシャーシ12とともに牽引するトラクタ10を、路面204上を走行させる(ステップS601)。すると、路面204の適度の凹凸により、ランダムな外乱がサスペンション205を通してトレーラトラック50の車体(コンテナ11)に伝わる。
 これにより、揺動検知器14が、コンテナ貨物車両の自重方向および幅方向の揺れを検知できる。
 作業者(例えばトラクタ10の運転者や同乗者)の操作設定/表示部15cのボタン操作により、傾斜角「α」の演算動作が開始すれば、揺動検知器14の角速度センサ14aにより、重心Wの上下方向の往復運動に対応するピッチングの角速度データおよび重心Wのローリング(左右方向の単振子運動)の角速度データが、アナログ信号として計測される(ステップS602)。そして、このアナログの角速度データは、演算ユニット15(演算部15a)により、記憶部15bに予め記憶された一定のサンプル時間毎に、揺動検知器14のA/D変換器14bを経たデジタル信号としてサンプリングされ(ステップS603)、サンプリングされたデジタルの角速度データは、時系列データとともに記憶部15bに記憶される(ステップS604)。
 次いで、演算部15aは、角速度センサ14aによる角速度データの計測を終了してよいか否かを判定する(ステップS605)。演算部15aが、角速度データの計測を終了してよいと判定した場合(ステップS605において「Yes」の場合)、次の処理ステップ(ステップS606以降)に進み、角速度データの計測を終了してよいと判定しなかった場合(ステップS6605において「No」の場合)、上述のステップS602~604の動作が継続される。
 このような計測終了の良否判定は、記憶部15bに予め記憶された必要なトータルサンプル個数と上述のサンプル時間とから導かれる、所定の計測時間を基準にしてなされてもよい。例えば、サンプリングの統計誤差が充分に小さくなるサンプル個数が4096個(FFTが2の整数乗の個数を対象とした分析であるので、ここでは、212個を例示)であれば、サンプル時間が0.002S(0.002秒)の場合、最低限必要な計測時間は、4096×0.002S≒8Sとなる。よって、この場合、演算部15aは、角速度センサ14aによる角速度データの計測開始時から8S以上、経過したら、角速度データの計測を終了してよいと判定する。
 また、このような判定動作に代えて、作業者による操作設定/表示部15cの計測終了用ボタン操作の有無に基づいて、演算部15aが、角速度データの計測終了の良否を判定してもよい。
 なお、以上のような短時間の角速度データの測定は、角速度データの測定期間中、サスペンション205の弾性係数「k」およびコンテナ貨物車両の重量「m」が不変であるという前提条件の下、これらの数値「k」、「m」を、上述の連立方程式の定式化において除ける根拠になる。
 つまり、仮に従来の誤差補正アルゴリズム(カルマンフィルタなど)含むジャイロを用いることによって、角速度データの測定時間が長くなれば、路面の凹凸状態や気象条件(例えば風速)等の外乱の大幅な変化に起因して、上述の数値「k」、「m」が、角速度データの測定期間中、不変であるという前提条件を満たさなくなる場合がある。
 このように、本実施形態の傾斜角演算装置100は、外乱の急激な変化に対して、従来のジャイロを用いる場合との比較において有利な効果を奏する。つまり、ジャイロを用いる場合、誤差補正アルゴリズムの実行に時間がかかり、このような時間によって、サンプル時間が、例えば、0.01S程度に制約されている。これに対し、本実施形態の傾斜角演算装置100では、誤差補正アルゴリズムを省略できるので、サンプル時間を、センサ素子の最小サンプル時間(0.001S程度)レベルにまで短くでき(ここでは、0.002Sを例示)、ひいては、角速度データの測定時間を充分に短縮できるので都合がよい。
 角速度センサ14aによる角速度データの計測が終了したら、演算部15aは、記憶部15bに記憶された時系列の角速度データに対し高速フーリエ変換(FFT)をかけて、この角速度データを周波数に対する振幅のデータに変換する(ステップS606)。
 これにより、ローリングの周波数と、ローリングの振幅との相関関係を示した分布(以下、「ローリング周波数/振幅分布」と略す)を用いて、ローリング周波数「ν」が特定される(ステップS607)。また、ピッチングの周波数と、ピッチングの振幅との相関関係を示した分布(以下、「ピッチング周波数/振幅分布」と略す)を用いて、ピッチング周波数「ν’」が特定される(ステップS607)。
 詳しくは、ローリング周波数/振幅分布では、例えば、図7に例示するように、ローリングの周波数の低い方の値から見て、ローリングのピーク振幅(頂点)に対応する2つの周波数を特定できる。
 このようなピーク振幅には、コンテナシャーシ12の前部とトラクタ10との連結部材としてのカプラ13に由来するピーク振幅「P1」と、コンテナシャーシ12の後部に位置する後横梁(図示せず)に由来するピーク振幅「P2」と、がある。
 なお、以上のピーク振幅「P1」、「P2」」と、これらに対応する周波数との相関関係については、式(5)の参酌により理解できる。よって、ここでは、この関係の詳細な説明は省略する。
 本実施形態の傾斜角演算装置100では、これらのピーク振幅「P1」、「P2」に対応する何れの周波数でも、ローリング周波数「ν」として選ぶことができる。但し、コンテナ11の荷重を支えている部分の長さ「b」が、選ばれたローリング周波数「ν」に対応する必要がある。
 ここでは、図7に示すように、ピーク振幅「P2」に対応する周波数(1.16Hz)をローリング周波数「ν」の一例として選択している。この場合、コンテナシャーシ12の後部に位置する後横梁におけるコンテナ11の荷重を支えている部分の幅寸法を、以下の式(12)および式(14)での長さ「b」に用いる必要がある。
 換言すると、コンテナ貨物車両の所定の幅寸法に由来するローリングのピーク振幅に対応して所定の周波数を取得する場合、これらの幅寸法および周波数を、式(12)および式(14)での長さ「b」およびローリング周波数「ν」に用いる必要がある。
 また、ピッチング周波数/振幅分布では、図8に例示するように、ピッチングの最大振幅に対応する周波数(1.489Hz)を、ピッチング周波数「ν’」として選ぶことができる。
 次に、演算部15aは、記憶部15bに予め記憶されている定数「b」を読み出し、ステップS607により得られた周波数「ν」および「ν’」を用いて、以下の式(12)により、「α」を演算する(ステップS608)。
Figure JPOXMLDOC01-appb-M000022
 次いで、演算部15aは、記憶部15bに予め記憶されている定数「b」を読み出し、ステップS608により得られた角度「α」を用いて、以下の式(14)により、コンテナ貨物車両の走行時の傾斜角「α」を演算する(ステップS609)。
Figure JPOXMLDOC01-appb-M000023
 その後、演算部15aは、ステップS609により得られた傾斜角「α」を、操作設定/表示部15cの表示画面に出力(表示)し(ステップS610)、傾斜角「α」の演算ルーチンを終える。
 以上のとおり、本実施形態の傾斜角演算装置100は、コンテナ貨物車両の走行方向に垂直な断面において、コンテナ貨物車両の走行時の自重方向の揺れ、および、その幅方向の揺れを検知する揺動検知器14と、演算ユニット15と、を備える。
 そして、この傾斜角演算装置100では、演算ユニット15が、コンテナ貨物車両の自重方向の揺れの周波数(本実施形態の傾斜角演算装置100の場合、トラクタ10のピッチングの周波数「ν’」に相当)、および、コンテナ貨物車両の幅方向のローリング周波数「ν」を用いて、角速度の積分を行わずに、上述の垂直断面におけるコンテナ貨物車両の走行時の傾斜角「α」を演算できる。
 これにより、本実施形態の傾斜角演算装置100では、揺動検知器14に、角速度の積分やフィルタリングなどの様々な機能の付加が不要となり、揺動検知器14を桁違いに安価に構成できる。また、この演算された傾斜角「α」は、一つの周波数に一対一に対応する角度となるので、積分、フィルタリング、および、統計アルゴリズムに起因するランダムな誤差を回避でき、その精度は高い。
 そして、以上のコンテナ貨物車両の走行時の傾斜角「α」は、積載状態が不明なコンテナ貨物の、偏荷重の度合いを直接に反映する貴重なデータである。このため、傾斜角「α」を簡易かつ高精度に演算できると、コンテナの扉開封時の貨物の荷崩れ落下やトレーラトラック50の不安定走行(例えば、曲路における不安定走行やサスペンション異常による不安定走行)の予知において有益である。
 特に、本実施形態の傾斜角演算装置100によるコンテナ貨物車両の走行時の傾斜角(以下、「本技術の傾斜角」と略す)は、以下のとおり、コンテナ11の輸送業務の実情に照らすと極めて都合がよい。
 コンテナ輸送業務に取り扱われる大量のコンテナシャーシの数に鑑みれば容易に想像できるとおり、傾斜角演算装置100の実用化においては、揺動検知器14をトラクタ10側に設置することが必須となると考えられる。しかし、この場合、高性能ジャイロ(カルマンフィルタアルゴリズム搭載)からの角速度積分による傾斜角(以下、「角速度積分法の傾斜角」と略す)を演算しても、この角速度積分法の傾斜角には誤差が含まれる可能性が高い。つまり、コンテナ貨物車両の傾斜を相殺する方向に、トラクタ10のエアサスペンションが作用するので、トラクタ10の傾斜は、コンテナ貨物車両の傾斜よりも小さくなることが多い。
 これに対し、本技術では、コンテナ貨物車両の特定の角速度の周波数に基づいて傾斜角を演算しているので、以上の不都合を解決できる。
 よって、本技術の傾斜角は、角速度積分法の傾斜角よりも、コンテナ貨物車両の傾斜角を正確に反映できるはずである。なお、この推論は、後述の検証計算(実施例参照)によって検証されている。
(第1変形例)
 本実施形態の傾斜角演算装置100では、コンテナ貨物車両の走行時の傾斜角「α」を演算する例を述べたが、本明細書に記載の傾斜角演算装置の適用範囲は、これに限定されない。
 上述のとおり、本明細書に記載の技術は、コンテナ輸送車両(コンテナ貨物車両)の他、トラック、バス、乗用車、鉄道、船舶、航空機(例えば、離着陸時)などの様々な移動手段に適用できる。
 よって、本変形例では、乗用車の走行時の傾斜角を演算する場合の傾斜角演算装置の構成例について概説する(図示は省略する)。
 矩形状の乗用車の走行時の傾斜角を演算する場合、トレーラトラック50の揺動検知器14とは異なり、角速度の感度軸が乗用車の幅方向に調整された極座標系の角速度センサと、加速度の感度軸が乗用車の上下方向に調整された直線座標系の加速度センサとを組み合わせる方が、前後方向の長さが短い矩形状の乗用車にとっては理論的に整合すると考えられる。そして、これらの角速度センサおよび加速度センサからなる揺動検知器を、乗用車の車体に直接に配し、乗用車を適宜の時間、路面上を走らせて、揺動検知器による角速度データおよび加速度データの計測を行うとよい。
 このとき、演算部(演算ユニット)は、記憶部に記憶された時系列の角速度データおよび加速度データに対し高速フーリエ変換(FFT)をかけて、角速度データおよび加速度データを、それぞれの周波数に対する振幅のデータに変換する。
 これにより、乗用車に関するローリング周波数/振幅分布および上下方向の加速度周波数/振幅分布が得られる。
 但し、この場合のローリング周波数/振幅分布では、乗用車の車幅が一定なので、FFTの分布は、図7のような2つのピーク振幅を示さず、ピーク振幅が一つとなる。なお、車幅が前後方向においてほぼ一定となる乗用車において、FFTの分布が一つのピーク振幅を示す理由については、式(5)の参酌により理解できるので、詳細な説明は省略する。
 以上により、ローリング周波数/振幅分布のピーク振幅に対応する周波数を、式(12)および式(14)でのローリング周波数「ν」とし、乗用車の車幅(乗用車の前後方向においてほぼ一定)を、式(12)および式(14)での長さ「b」とし、加速度周波数/振幅分布の最大振幅の対応する周波数を、式(12)および式(14)での周波数「ν’」とすれば、乗用車の走行時の傾斜角「α」を演算できる。
(第2変形例)
 本実施形態の傾斜角演算装置100では、以下の式(14)を用いて、コンテナ貨物車両の走行時の傾斜角「α」を演算する例を述べたが、本明細書に記載の傾斜角演算装置の傾斜角「α」の定式化の手法は、この式(14)には限定されない。
Figure JPOXMLDOC01-appb-M000024
 つまり、傾斜角「α」は、コンテナ貨物車両(走行体の一例)の走行時の自重方向の揺れの周波数「ν’」、および、その幅方向のローリング周波数「ν」を用いて、様々な手法により演算できる。
 ここでは、詳細な式の展開を省略するが、傾斜角「α」が、現実のコンテナ貨物車両によって一般的に生じる小角度の範囲内であれば(つまり、tan「α」≒「α」であれば)、式(14)以外の傾斜角「α」の定式化が可能である。
 本変形例では、その具体例を述べる。
 まず、以下の式(8’)および式(9’)の連立方程式から「α」を消去して、「l」だけの式にする。
Figure JPOXMLDOC01-appb-M000025
 すると、以下の式(15)が得られる。
Figure JPOXMLDOC01-appb-M000026
 ここで、傾斜角「α」が小角度の範囲内にあれば、角度「φ」は、式(8)の楕円の特異点の特性から以下の式(16)と仮定することができる。
Figure JPOXMLDOC01-appb-M000027
 この式(16)において、「s」、「α」および「l」は、上述のとおり、「b」、「ν」および「ν’」の具体的な数値を入力することによって演算できる。よって、式(16)を用いて角度「φ」を演算することができる。
 その結果、上述の式(15)に「φ」を代入すれば、「l」が演算でき、この「l」を更に式(9’)に代入すれば、傾斜角「α」を演算できる。
(第3変形例)
 本実施形態の傾斜角演算装置100では、コンテナ貨物車両の走行方向に垂直な断面において、コンテナ貨物車両の走行時の傾斜角「α」を演算する例を述べたが、本明細書に記載の傾斜角演算装置の適用範囲は、これに限定されない。
 例えば、コンテナ貨物車両の前後方向および上下方向(つまり、コンテナ貨物車両の互いに直交する2方向)を含む断面(つまり、図1(a)の向きの断面)においても、実施形態で述べた内容と同じ類の手法を用いて、コンテナ貨物車両の走行時の傾斜角「α’」を演算できる。
 なお、この傾斜角「α’」の導出法は、上述の実施形態で述べた手法の参酌により容易に理解できる。よって、ここでは、その詳細な説明は省略する。
 以上の傾斜角「α’」の演算によって、コンテナ貨物車両の過積載の予知やトラクタとコンテナ貨物車両との間の折れ曲がり現象(ジャックナイフ)の未然防止に役立つと考えられる。
 例えば、コンテナの奥深くに貨物を押し込み、これにより、貨物がコンテナの前方に偏在すると、ジャックナイフを誘発し易いことが知られている。このため、このような貨物の偏在を傾斜角「α’」によって予測できると、ジャックナイフの未然防止において有益である。
 本技術の傾斜角の妥当性を、角速度積分法の傾斜角との比較において検証する目的で、以下の検証計算が行われた。なお、本検証計算に用いる入力値は、2007年2月14日に神戸港ポートアイランドの公道で、実車による検証実験で得られたデータを基にしている。
 このとき、海上コンテナに、約10トンの貨物が、わずかに片荷の状態で積載されていた。そして、本検証計算では、角速度積分法の傾斜角と、本技術の傾斜角と、を上述の式(8)および式(9)に代入することにより、コンテナ貨物車両の走行方向に垂直な断面についての、重心の位置を表す数値「l」と数値「s」をそれぞれ、試算した。
 その結果、角速度積分法の傾斜角を用いた場合の重心位置(数値「l」、「s」から特定)は、コンテナ貨物車両の左右方向(幅方向)のほぼ中心であったのに対し、本技術の傾斜角を用いた場合の重心位置(数値「l」、「s」から特定)は、コンテナ貨物車両の左右方向(幅方向)の中心から僅かにずれていた。
 以上により、角速度積分法の傾斜角を用いた場合の重心位置の検知では、トラクタ10のエアサスペンションの作用により、貨物の片荷検知において支障が生じたと考えられる。これに対し、本技術の傾斜角を用いた場合の重心位置の検知では、貨物のわずかな片荷を適切に再現できたと考えられる。
 よって、本技術の傾斜角の妥当性が、以上の検証計算により検証できたと理解している。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の傾斜角演算装置は、角速度の積分を行わずに、走行体の走行時の傾斜角を簡易かつ高精度に演算できる。
 よって、本発明は、コンテナ輸送車両(コンテナ貨物車両)、トラック、バス、乗用車、鉄道、船舶、航空機(例えば、離着陸時)など様々な移動手段の走行時の傾斜角演算に利用できる。
10 トラクタ
11 コンテナ
12 コンテナシャーシ
13 カプラ
14 揺動検知器
14a 角速度センサ
14b A/D変換器
15  演算ユニット
15a 演算部
15b 記憶部
15c 操作設定/表示部
50 トレーラトラック(コンテナ輸送車両)
100 傾斜角演算装置
201 垂直中心ライン
202 車軸位置ライン
204 路面
205 サスペンション
206 ローリング中心ライン
206C 仮想直線
300 重心位置直線
400 仮想曲線
500 車軸の中心
  

Claims (6)

  1.  走行体の互いに直交する2方向を含む断面において、前記走行体の走行時の前記2方向の揺れを検知する揺動検知器と、
     前記2方向の一方の揺れの周波数、および、前記2方向の他方のローリング周波数を用いて、前記断面における前記走行体の走行時の傾斜角を演算する演算ユニットと、を備えた傾斜角演算装置。
  2.  前記断面が、前記走行体の走行方向に垂直な断面であり、前記2方向の一方が、前記走行体の自重方向であり、前記2方向の他方が、前記走行体の幅方向である請求項1に記載の傾斜角演算装置。
  3.  前記走行体が、牽引車両に牽引されるコンテナ貨物車両である請求項1または2に記載の傾斜角演算装置。
  4.  前記自重方向の揺れが、前記走行体の重心を質点とした上下方向の往復運動に対応し、前記幅方向の揺れが、前記走行体の幅方向の車軸の中心を支点とし、前記走行体の重心を質点とした左右方向の単振子運動に対応する場合、
     前記演算ユニットは、前記揺動検知器の出力データを、前記単振子運動の周波数と振幅との間の相関を表すローリングデータに変換して、前記ローリングデータを基にして、前記走行体の所定の幅寸法に由来する前記単振子運動のピーク振幅に対応して前記単振子運動の周波数を取得し、
     前記揺動検知器の出力データを、前記往復運動の周波数と振幅との間の相関を表すピッチングデータに変換して、前記ピッチングデータを基にして、前記往復運動の最大振幅に対応する前記往復運動の周波数を取得し、
     前記走行体の所定の幅寸法、前記取得された単振子運動の周波数、および、前記取得された往復運動の周波数を用いて、前記単振子運動の中心角度を前記傾斜角として導いている請求項2に記載の傾斜角演算装置。
  5.  前記2方向の揺れは、前記走行体の路面上での走行時に、前記路面の凹凸に応じて前記走行体に与えられる外乱による運動である請求項1乃至4のいずれかに記載の傾斜角演算装置。
  6.  前記揺動検知器は、前記走行体に配置され、角速度の感度軸が前記2方向に調整された角速度センサを備える請求項1乃至4のいずれかに記載の傾斜角演算装置。
     
PCT/JP2010/007060 2009-12-04 2010-12-03 傾斜角演算装置 WO2011067939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011544197A JP5660634B2 (ja) 2009-12-04 2010-12-03 傾斜角演算装置および重心位置検出装置
US13/513,185 US9651371B2 (en) 2009-12-04 2010-12-03 Inclination angle calculation device
EP10834392.2A EP2508404A4 (en) 2009-12-04 2010-12-03 TILT CALCULATING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009276613 2009-12-04
JP2009-276613 2009-12-04

Publications (1)

Publication Number Publication Date
WO2011067939A1 true WO2011067939A1 (ja) 2011-06-09

Family

ID=44114801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007060 WO2011067939A1 (ja) 2009-12-04 2010-12-03 傾斜角演算装置

Country Status (4)

Country Link
US (1) US9651371B2 (ja)
EP (1) EP2508404A4 (ja)
JP (1) JP5660634B2 (ja)
WO (1) WO2011067939A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254667A (ja) * 2011-06-07 2012-12-27 Hino Motors Ltd 表示装置、車両、および表示方法、並びにプログラム
JPWO2013061989A1 (ja) * 2011-10-26 2015-04-02 国立大学法人東京海洋大学 重心検出システム

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447672B (en) 2007-03-21 2011-12-14 Ford Global Tech Llc Vehicle manoeuvring aids
US9783230B2 (en) 2011-04-19 2017-10-10 Ford Global Technologies, Llc Trailer backup assist system with off-shoot correction
US9937953B2 (en) 2011-04-19 2018-04-10 Ford Global Technologies, Llc Trailer backup offset determination
US9434414B2 (en) 2011-04-19 2016-09-06 Ford Global Technologies, Llc System and method for determining a hitch angle offset
US9683848B2 (en) 2011-04-19 2017-06-20 Ford Global Technologies, Llc System for determining hitch angle
US8909426B2 (en) 2011-04-19 2014-12-09 Ford Global Technologies Trailer path curvature control for trailer backup assist
US9555832B2 (en) 2011-04-19 2017-01-31 Ford Global Technologies, Llc Display system utilizing vehicle and trailer dynamics
US9969428B2 (en) 2011-04-19 2018-05-15 Ford Global Technologies, Llc Trailer backup assist system with waypoint selection
US10196088B2 (en) 2011-04-19 2019-02-05 Ford Global Technologies, Llc Target monitoring system and method
US9499200B2 (en) 2011-04-19 2016-11-22 Ford Global Technologies, Llc Trailer backup assist system with object detection
US9513103B2 (en) 2011-04-19 2016-12-06 Ford Global Technologies, Llc Hitch angle sensor assembly
US9708000B2 (en) 2011-04-19 2017-07-18 Ford Global Technologies, Llc Trajectory planner for a trailer backup assist system
US9493187B2 (en) 2011-04-19 2016-11-15 Ford Global Technologies, Llc Control for trailer backup assist system
US9623904B2 (en) 2014-06-03 2017-04-18 Ford Global Technologies, Llc Trailer curvature control with adaptive trailer length estimation
US9963004B2 (en) 2014-07-28 2018-05-08 Ford Global Technologies, Llc Trailer sway warning system and method
US9517668B2 (en) 2014-07-28 2016-12-13 Ford Global Technologies, Llc Hitch angle warning system and method
US9540043B2 (en) 2014-07-30 2017-01-10 Ford Global Technologies, Llc Trailer backup assist system with active trailer braking for curvature control
US9533683B2 (en) 2014-12-05 2017-01-03 Ford Global Technologies, Llc Sensor failure mitigation system and mode management
US9607242B2 (en) 2015-01-16 2017-03-28 Ford Global Technologies, Llc Target monitoring system with lens cleaning device
US9522699B2 (en) 2015-02-05 2016-12-20 Ford Global Technologies, Llc Trailer backup assist system with adaptive steering angle limits
US10286950B2 (en) 2015-02-10 2019-05-14 Ford Global Technologies, Llc Speed optimized trajectory control for motor vehicles
US9616923B2 (en) * 2015-03-03 2017-04-11 Ford Global Technologies, Llc Topographical integration for trailer backup assist system
US9804022B2 (en) 2015-03-24 2017-10-31 Ford Global Technologies, Llc System and method for hitch angle detection
US9623859B2 (en) 2015-04-03 2017-04-18 Ford Global Technologies, Llc Trailer curvature control and mode management with powertrain and brake support
US9840240B2 (en) 2015-04-09 2017-12-12 Ford Global Technologies, Llc Trailer backup aid speed limiting via braking
US9744972B2 (en) 2015-04-09 2017-08-29 Ford Global Technologies, Llc Trailer backup aid speed limiting via braking
US9676377B2 (en) 2015-06-17 2017-06-13 Ford Global Technologies, Llc Speed limiting comfort enhancement
US9896126B2 (en) 2015-07-08 2018-02-20 Ford Global Technologies, Llc Jackknife detection for vehicle reversing a trailer
US9981662B2 (en) 2015-10-15 2018-05-29 Ford Global Technologies, Llc Speed limiting comfort enhancement
US10384607B2 (en) 2015-10-19 2019-08-20 Ford Global Technologies, Llc Trailer backup assist system with hitch angle offset estimation
US10611407B2 (en) 2015-10-19 2020-04-07 Ford Global Technologies, Llc Speed control for motor vehicles
US9836060B2 (en) 2015-10-28 2017-12-05 Ford Global Technologies, Llc Trailer backup assist system with target management
US10017115B2 (en) 2015-11-11 2018-07-10 Ford Global Technologies, Llc Trailer monitoring system and method
US9827818B2 (en) 2015-12-17 2017-11-28 Ford Global Technologies, Llc Multi-stage solution for trailer hitch angle initialization
US10155478B2 (en) 2015-12-17 2018-12-18 Ford Global Technologies, Llc Centerline method for trailer hitch angle detection
US9934572B2 (en) 2015-12-17 2018-04-03 Ford Global Technologies, Llc Drawbar scan solution for locating trailer hitch point
US9610975B1 (en) 2015-12-17 2017-04-04 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system
US9798953B2 (en) 2015-12-17 2017-10-24 Ford Global Technologies, Llc Template matching solution for locating trailer hitch point
US10011228B2 (en) 2015-12-17 2018-07-03 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system using multiple imaging devices
US9796228B2 (en) 2015-12-17 2017-10-24 Ford Global Technologies, Llc Hitch angle detection for trailer backup assist system
US10005492B2 (en) 2016-02-18 2018-06-26 Ford Global Technologies, Llc Trailer length and hitch angle bias estimation
US10106193B2 (en) 2016-07-01 2018-10-23 Ford Global Technologies, Llc Enhanced yaw rate trailer angle detection initialization
US10046800B2 (en) 2016-08-10 2018-08-14 Ford Global Technologies, Llc Trailer wheel targetless trailer angle detection
US10222804B2 (en) 2016-10-21 2019-03-05 Ford Global Technologies, Llc Inertial reference for TBA speed limiting
US10773721B2 (en) 2016-10-21 2020-09-15 Ford Global Technologies, Llc Control method using trailer yaw rate measurements for trailer backup assist
US10970943B2 (en) * 2017-06-09 2021-04-06 II Timothy Robert Hay Method and apparatus for a vehicle force indicator
US10604184B2 (en) 2017-08-31 2020-03-31 Ford Global Technologies, Llc Adaptive steering control for robustness to errors in estimated or user-supplied trailer parameters
US10710585B2 (en) 2017-09-01 2020-07-14 Ford Global Technologies, Llc Trailer backup assist system with predictive hitch angle functionality
US10730553B2 (en) 2017-09-27 2020-08-04 Ford Global Technologies, Llc Adaptive steering control for robustness to errors in estimated or user-supplied trailer parameters
KR102418030B1 (ko) * 2017-12-27 2022-07-07 현대자동차주식회사 차량 및 그 제어 방법
US11077795B2 (en) 2018-11-26 2021-08-03 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning
US10814912B2 (en) 2018-11-28 2020-10-27 Ford Global Technologies, Llc Trailer backup assist system having advanced user mode with selectable hitch angle limits
US10829046B2 (en) 2019-03-06 2020-11-10 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning
CN111366298A (zh) * 2020-03-23 2020-07-03 湖南机电职业技术学院 一种汽车起重机工作状态中稳定重心的测算方法
CN113257073B (zh) * 2021-06-24 2021-09-21 成都运达科技股份有限公司 列车模拟驾驶平稳性分析方法、系统、终端及介质
CN115016038B (zh) * 2022-05-31 2023-09-01 北京爱尔达电子设备有限公司 一种对高空风场数据进行高精度处理的测风方法
CN115790536B (zh) * 2023-02-13 2023-04-11 河北地质大学 一种地质勘探坡地角度精确计量装置
CN117694841B (zh) * 2024-02-06 2024-04-30 成都中医药大学 一种重心轨迹数据获取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329437A (ja) 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd 傾斜角検出装置
JP2007163205A (ja) 2005-12-12 2007-06-28 Matsushita Electric Ind Co Ltd 移動体のセンサ補正装置、停止判定装置およびその方法
WO2008062867A1 (fr) 2006-11-22 2008-05-29 National University Corporation Tokyo University Of Marine Science And Technology Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649047A (en) * 1987-06-29 1989-01-12 Tokico Ltd Excessively high gravitational center loading warning device for vehicle
JPH05124543A (ja) * 1991-10-31 1993-05-21 Isuzu Motors Ltd トラツク横転防止装置
DE19751935A1 (de) * 1997-11-22 1999-05-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung einer die Schwerpunktshöhe eines Fahrzeuges beschreibenden Größe
DE19823093C2 (de) * 1998-05-22 2000-06-08 Daimler Chrysler Ag Vorrichtung zur Bestimmung von fahrzeugspezifischen Größen eines Fahrzeuges während der Fahrt
JP3818140B2 (ja) * 2001-12-04 2006-09-06 株式会社デンソー 乗員保護用の車両傾斜角検出装置
US7017701B2 (en) * 2002-11-20 2006-03-28 Dura Global Technologies, Inc. Inclination-measuring device
KR20090036325A (ko) * 2007-10-09 2009-04-14 삼성전자주식회사 네비게이션 장치에서의 이동체의 이동 속도를 측정하는장치 및 방법
JP5172764B2 (ja) * 2009-03-30 2013-03-27 本田技研工業株式会社 路面摩擦係数推定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329437A (ja) 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd 傾斜角検出装置
JP2007163205A (ja) 2005-12-12 2007-06-28 Matsushita Electric Ind Co Ltd 移動体のセンサ補正装置、停止判定装置およびその方法
WO2008062867A1 (fr) 2006-11-22 2008-05-29 National University Corporation Tokyo University Of Marine Science And Technology Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508404A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254667A (ja) * 2011-06-07 2012-12-27 Hino Motors Ltd 表示装置、車両、および表示方法、並びにプログラム
JPWO2013061989A1 (ja) * 2011-10-26 2015-04-02 国立大学法人東京海洋大学 重心検出システム

Also Published As

Publication number Publication date
EP2508404A1 (en) 2012-10-10
US9651371B2 (en) 2017-05-16
JPWO2011067939A1 (ja) 2013-04-18
EP2508404A4 (en) 2015-10-14
US20120310594A1 (en) 2012-12-06
JP5660634B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5660634B2 (ja) 傾斜角演算装置および重心位置検出装置
JP5733533B2 (ja) 重心検知装置
JP4517107B2 (ja) 重心検知装置および横転限界速度予測装置並びに貨物重量予測装置並びに演算プログラム
CN103959033B (zh) 横滚极限检测系统
US10132674B2 (en) Loading weight detection device for weighing cargo of a mobile body
US8150613B2 (en) Technique for detecting shifted cargo
US10539451B2 (en) Load weighing method and system for wheel loader
CN101844559B (zh) 用于保持材料搬运车辆的动态稳定性的系统和方法
CN102519692B (zh) 一种汽车动力总成和悬架刚体模态集成测试方法
CN105910692B (zh) 基于加速度传感器的车辆载重测量方法
JP2015169453A (ja) 横転危険警告装置
JP5762703B2 (ja) 車両計量システム
JP7359549B2 (ja) 安全監視装置および安全監視方法
JP5795499B2 (ja) 安全運転補助情報提供装置
Bottiglione et al. Field tests and validation of dynamical models of tank vehicles Part I: mathematical model and experimental apparatus
JP2014126508A (ja) 車両固有振動数検出装置および重心位置測定装置
JP2023125357A (ja) 情報処理装置
Dang et al. Three-Dimensional Center of Gravity Detection for Trucks Hauling Marine Containers
JP2006151102A (ja) ホイールアライメント測定装置
Gardulski et al. Determination of the stochastic kinematic excitation of the car by the real profile of the road surface
JP2012002575A (ja) 重心位置情報受け渡しシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834392

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011544197

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010834392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13513185

Country of ref document: US