WO2008062583A1 - Moteur à combustion interne, procédé de commande de celui-ci et véhicule - Google Patents

Moteur à combustion interne, procédé de commande de celui-ci et véhicule Download PDF

Info

Publication number
WO2008062583A1
WO2008062583A1 PCT/JP2007/064114 JP2007064114W WO2008062583A1 WO 2008062583 A1 WO2008062583 A1 WO 2008062583A1 JP 2007064114 W JP2007064114 W JP 2007064114W WO 2008062583 A1 WO2008062583 A1 WO 2008062583A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
internal combustion
combustion engine
temperature
automatic stop
Prior art date
Application number
PCT/JP2007/064114
Other languages
English (en)
French (fr)
Inventor
Daigo Ando
Kazuhiro Ichimoto
Shinji Yamanaka
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/444,764 priority Critical patent/US8170778B2/en
Priority to CN2007800430900A priority patent/CN101542097B/zh
Priority to EP07790876.2A priority patent/EP2072789B1/en
Publication of WO2008062583A1 publication Critical patent/WO2008062583A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine

Definitions

  • the present invention relates to an internal combustion engine device, a control method therefor, and a vehicle.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-330939
  • An internal combustion engine device, a control method therefor, and a vehicle according to the present invention include an internal combustion engine having a port fuel injection valve that injects fuel into an intake port and an in-cylinder fuel injection valve that directly injects fuel into the cylinder.
  • the objective is to increase learning opportunities in fuel injection with fuel injection valve power for ports.
  • An internal combustion engine device, a control method therefor, and a vehicle according to the present invention achieve the above object. In order to do so, the following measures were taken.
  • An internal combustion engine apparatus is an internal combustion engine apparatus including an internal combustion engine having a port fuel injection valve that injects fuel into an intake port and a cylinder fuel injection valve that directly injects fuel into the cylinder.
  • Learning execution means for performing learning in fuel injection from the port fuel injection valve when the internal combustion engine is in a predetermined operating state; and when the learning is completed, a first temperature is set to the internal combustion engine.
  • Automatic stop permitting water temperature setting means for setting as an automatic stop permitting water temperature for permitting automatic stop, and when the learning is not completed, a second temperature higher than the first temperature is set as the automatic stop permitting water temperature
  • a cooling water temperature detecting means for detecting a temperature of the cooling water of the internal combustion engine, and a condition that the detected cooling water temperature is equal to or higher than the set automatic stop permission water temperature!
  • the first temperature is set to the internal combustion engine.
  • the automatic stop permission water temperature to allow automatic stop, and when this learning is completed! /
  • the second temperature higher than the first temperature is set to the automatic stop permission water temperature.
  • the internal combustion engine is automatically stopped when a predetermined automatic stop condition is satisfied, including that the temperature of the coolant of the internal combustion engine is equal to or higher than the set automatic stop permission water temperature, and the internal combustion engine is The internal combustion engine is automatically started when the specified automatic start conditions are met during the automatic stop!
  • learning in fuel injection with port fuel injection valve power includes learning in fuel injection when injecting fuel only from the port fuel injection valve and in-cylinder fuel injection valve and port fuel injection. Includes learning in fuel injection when injecting fuel from both the valve [0008] In such an internal combustion engine device of the present invention, the learning execution means stops fuel injection from the in-cylinder fuel injection valve force and injects fuel from the port fuel injection valve.
  • V is sometimes higher than the first temperature
  • the second temperature is set as the automatic stop permission water temperature. It is possible to increase learning opportunities in fuel injection when fuel is injected only from the port fuel injection valve.
  • the learning execution means may be means for executing learning related to an air-fuel ratio as learning in fuel injection from the port fuel injection valve. In this way, opportunities for learning about the air-fuel ratio can be further increased.
  • the fuel injection of the in-cylinder fuel injection valve force is stopped and the fuel injection for the port is performed.
  • Engine control means for controlling the internal combustion engine so that fuel is injected only from the valve, and the automatic stop permission water temperature setting means has a temperature higher than the predetermined temperature.
  • a vehicle includes an internal combustion engine having a port fuel injection valve that injects fuel into an intake port and an in-cylinder fuel injection valve that directly injects fuel into the cylinder, and an output shaft of the internal combustion engine.
  • the drive shaft is connected to the drive shaft connected to the axle so as to be independently rotatable with respect to the output shaft, and input / output of electric power and input / output of the drive force of the output shaft and the drive shaft are performed.
  • rotation adjusting means capable of adjusting the rotation speed of the output shaft relative to the drive shaft, an electric motor capable of inputting / outputting power to / from the drive shaft, and the port fuel injection when the internal combustion engine is in a predetermined operation state
  • Learning execution means for executing learning in fuel injection from the valve, and when the learning is completed, the first temperature is set as an automatic stop permission water temperature for permitting automatic stop of the internal combustion engine, and the learning Is not complete
  • the automatic stop permission water temperature setting means for setting the second temperature higher than the first temperature as the automatic stop permission water temperature
  • the cooling water temperature detection means for detecting the temperature of the cooling water of the internal combustion engine, and the detection
  • the internal combustion engine is automatically stopped when a predetermined automatic stop condition is satisfied, including that the temperature of the set cooling water is equal to or higher than the set automatic stop permission water temperature.
  • an automatic stop start control means for automatically starting the internal combustion engine when a predetermined automatic start condition is satisfied during the automatic stop of the internal combustion engine.
  • the first temperature is automatically stopped when learning in the fuel injection from the port fuel injection valve, which is executed when the internal combustion engine is in a predetermined operation state, is completed. If this learning is not completed, the second temperature higher than the first temperature is set as the automatic stop permission water temperature.
  • the internal combustion engine operation is automatically stopped when a predetermined automatic stop condition is satisfied, including that the temperature of the coolant of the internal combustion engine is equal to or higher than the set automatic stop permission water temperature,
  • the internal combustion engine is automatically started when a predetermined automatic start condition is satisfied while the internal combustion engine is automatically stopped.
  • the learning for fuel injection with the fuel injection valve force for the port is completed! /
  • the temperature higher than the first temperature and the second temperature are set as the automatic stop permission water temperature, so the internal combustion engine does not stop automatically. This increases the opportunity to continue operation and increase learning opportunities for fuel injection from the fuel injector for the port.
  • “learning in fuel injection with port fuel injection valve power” includes learning in fuel injection when fuel is injected only from the port fuel injection valve, and in-cylinder fuel injection valve and port fuel. Learning in fuel injection when fuel is injected from both forces with the injection valve is included.
  • the learning execution means learns in fuel injection when stopping fuel injection from the in-cylinder fuel injection valve and injecting fuel only from the port fuel injection valve. It can also be a means for executing. That is, when learning in fuel injection when fuel is injected only from the port fuel injection valve is not completed, the second temperature is set as the automatic stop permission water temperature higher than the first temperature. It is possible to increase learning opportunities in fuel injection when fuel is injected from the valve alone.
  • the learning execution means may be means for executing learning related to an air-fuel ratio as learning in fuel injection from the port fuel injection valve. In this way, it is possible to further increase learning opportunities regarding the air-fuel ratio.
  • the fuel injection from the in-cylinder fuel injection valve is stopped and only the port fuel injection valve is performed.
  • Engine control means for controlling the internal combustion engine so that fuel is injected from the automatic stop permission water temperature setting means, the automatic stop permission water temperature setting means being a means for setting a temperature higher than the predetermined temperature as the second temperature You can also In this way, the fuel injection from the in-cylinder fuel injection valve is stopped and the internal combustion engine is not automatically stopped while fuel is being injected only from the port fuel injection valve. Learning opportunities in fuel injection when fuel is injected from the valve alone can be further increased.
  • a method for controlling an internal combustion engine device includes an internal combustion engine having a port fuel injection valve that injects fuel into an intake port and an in-cylinder fuel injection valve that directly injects fuel into the cylinder.
  • a method for controlling an engine device wherein when learning in the fuel injection of the port fuel injection valve force executed when the internal combustion engine is in a predetermined operating state is completed, the first temperature is set to the first temperature.
  • An automatic stop permission water temperature for permitting automatic stop of the internal combustion engine is set, and when the learning is not completed, a second temperature higher than the first temperature is set as the automatic stop permission water temperature, and The operation of the internal combustion engine is automatically stopped when a predetermined automatic stop condition is satisfied, including that the temperature of the cooling water of the internal combustion engine is equal to or higher than the set automatic stop permission water temperature!
  • the internal combustion engine Stop and! / Automatically starting the internal combustion engine when a predetermined automatic starting condition is met during Ru, it is summarized in that.
  • the first temperature is set to the internal combustion engine. Set this as the automatic stop permission water temperature to allow automatic stop, and when this learning is completed! /, Sometimes set the second temperature higher than the first temperature as the automatic stop permission water temperature, When a predetermined automatic stop condition is satisfied, one of the conditions is that the temperature of the cooling water of the internal combustion engine is equal to or higher than the set automatic stop permission water temperature, the internal combustion engine The operation is automatically stopped and the internal combustion engine is automatically stopped! /, And the internal combustion engine is automatically started when a predetermined automatic start condition is satisfied.
  • “learning in fuel injection valve force fuel injection” includes “learning in fuel injection when fuel is injected only by the port fuel injection valve” and in-cylinder fuel injection valve and port fuel injection valve. And learning about fuel injection when fuel is injected from both sides.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 that is an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a schematic configuration of an engine 22.
  • FIG. 3 is a flowchart showing an example of an engine automatic stop / start processing routine executed by an engine ECU 24.
  • FIG. 4 is a flowchart showing an example of a permitted water temperature setting process routine executed by the engine ECU 24.
  • FIG. 5 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 of a modified example.
  • FIG. 6 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 equipped with an internal combustion engine device according to an embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution and integration mechanism 30 connected via a damper 28 to a crankshaft 26 as an output shaft of the engine 22, and a power A motor MG1 capable of generating electricity connected to the distribution integration mechanism 30; a reduction gear 35 attached to the ring gear shaft 3 2a as a drive shaft connected to the power distribution integration mechanism 30; and a motor connected to the reduction gear 35 MG2 and electronic control unit for hybrid 70 that controls the entire power output device.
  • the engine 22 includes an in-cylinder fuel injection valve 125 that directly injects hydrocarbon-based fuel such as gasoline and light oil into the cylinder, and a port fuel that injects fuel into the intake port.
  • An internal combustion engine including an injection valve 126 is configured.
  • the engine 22 is equipped with these two types of fuel injection valves 125 and 126, so that air cleaned by the air cleaner 122 is sucked through the throttle valve 124 and gasoline is injected from the port fuel injection valve 126.
  • the intake air and gasoline are mixed together, and the mixture is sucked into the combustion chamber via the intake valve 128, and is explosively burned by electric sparks generated by the spark plug 130.
  • the piston is pushed down by the energy.
  • the engine 22 is controlled by an engine electronic control unit (hereinafter referred to as an engine ECU) 24.
  • the engine ECU 24 is configured as a microprocessor centered on the CPU 24a.
  • the ROM 24b that stores processing programs
  • the RAM 24c that temporarily stores data
  • input / output ports and communication ports (not shown) are provided.
  • the engine ECU 24 includes signals from various sensors that detect the state of the engine 22, and a crank position sensor 140 that detects the rotational position of the crankshaft 23.
  • the engine ECU 24 adjusts various control signals for driving the engine 22, for example, the drive signal to the cylinder fuel injection valve 125 and the port fuel injection valve 126, and the position of the throttle valve 124.
  • the drive signal to the throttle motor 136, the control signal to the induction coil 138 integrated with the igniter, the control signal to the variable valve timing mechanism 150 that can change the opening / closing timing of the intake valve 128, etc. are sent via the output port. Is output.
  • the engine ECU 24 communicates with the hybrid electronic control unit 70, controls the operation of the engine 22 by the control signal from the hybrid electronic control unit 70, and outputs data related to the operating state of the engine 22 as necessary. To do.
  • the engine ECU 24 controls the engine 22 so that the engine 22 is operated in each of the port injection drive mode, the in-cylinder injection drive mode, and the common injection drive mode based on the rotational speed Ne of the engine 22 and the load factor. Control. Further, the engine ECU 24 performs learning about the air-fuel ratio used for fuel injection control from the in-cylinder fuel injection valve 125 and the port fuel injection valve 126 (hereinafter referred to as air-fuel ratio learning).
  • air-fuel ratio learning is executed for each drive mode of the port injection drive mode, the in-cylinder injection drive mode, and the common injection drive mode, and the engine 22 is operating stably, for example, a throttle valve
  • the opening of 124 is substantially constant and only one of the in-cylinder fuel injection valve 125 and the port fuel injection valve 126 is capable of fuel injection, or from both the in-cylinder fuel injection valve 125 and the port fuel injection valve 126.
  • the target air-fuel ratio is compared with the actually detected value and the calculated air-fuel ratio while the fuel injection amount is controlled to be approximately constant.
  • An average value of minutes is used as a learning value, and learning is completed when the number of parameters in the calculation of the average value reaches a predetermined number.
  • Such air-fuel ratio learning is performed in each of the port injection drive mode, the in-cylinder injection drive mode, and the common injection drive mode in the idle operation region, the low intake air amount region, the low / medium intake air amount region, and the medium / high intake air.
  • a plurality of different areas such as a volume area and a high intake air volume area may be used as learning areas, and V may be performed for each learning area. Since air-fuel ratio learning does not form the core of the present invention, further detailed description is omitted.
  • the power distribution and integration mechanism 30 includes a sun gear 31 as an external gear, a ring gear 32 as an internal gear arranged concentrically with the sun gear 31, a plurality of gears meshed with the sun gear 31 and meshed with the ring gear 32.
  • a planetary gear mechanism that includes a pinion gear 33 and a carrier 34 that holds a plurality of pinion gears 33 in a rotatable and revolving manner, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. has been.
  • the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG 1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32 a.
  • MG1 functions as a generator
  • the power from engine 22 input from carrier 34 is distributed according to the gear ratio between sun gear 31 and ring gear 32, and when motor MG1 functions as a motor 34
  • the power from the engine 22 input from the engine and the power from the motor MG1 input from the sun gear 31 are combined and output to the ring gear 32 side.
  • the power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.
  • the motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that can be driven as electric generators and can be driven as electric generators. Exchange.
  • the power line 54 connecting the inverters 41 and 42 and the notch 50 is configured as a positive and negative bus shared by the inverters 41 and 42, and other power generated by either the motor MG1 or MG2 is used. It can be consumed by the motor. Therefore, the battery 50 is charged / discharged by electric power generated from one of the motors MG1 and MG2 or insufficient electric power. If the electric power balance is balanced by motors MG1 and MG2, the battery 5 0 is not charged / discharged.
  • the motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as motor ECU) 40.
  • the motor ECU 40 includes signals necessary for driving and controlling the motors M Gl and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown).
  • the phase current applied to the motors MG1 and MG2 detected by the above is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40.
  • the motor ECU 40 communicates with the hybrid electronic control unit 70, and drives and controls the motors MG1 and MG2 according to the control signal from the hybrid electronic control unit 70 and operates the motors MG 1 and MG2 as necessary. Data on the state is output to the electronic control unit 70 for hybrids.
  • the battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52.
  • the notch ECU 52 is connected to a signal necessary for managing the notch 50, for example, a voltage between terminals of a voltage sensor (not shown) installed between the notch 50 terminals, and an output terminal of the notch 50.
  • the charging / discharging current from a current sensor (not shown) attached to the power line 54, the battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. are input, and the state of the battery 50 is Is output to the hybrid electronic control unit 70 by communication.
  • the battery ECU 52 also calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50.
  • SOC remaining capacity
  • the hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, and an input (not shown). An output port and a communication port are provided.
  • the hybrid electronic control unit 70 detects the idling signal from the idling switch 80, the shift position sensor 82 that detects the operating position of the shift lever 81, and the depression amount of the accelerator pedal 83 from the shift position sensor 82. Accelerator pedal position sensor Acc, accelerator pedal position Acc, brake pedal 85 depressing amount brake pedal position sensor 86 brake pedal position BP, vehicle speed sensor 88 vehicle speed V, etc. via the input port Have been entered.
  • control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. Yes.
  • the hybrid vehicle 20 of the embodiment configured as described above is a request to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver.
  • Torque is calculated, and the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a.
  • Operation control of the engine 22 and motor MG1 and motor MG2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is a power distribution integrated mechanism.
  • 30 and motor MG1 and motor MG2 are converted to torque and output to ring gear shaft 32a.
  • Torque conversion operation mode for driving and controlling motor MG1 and motor MG2 and required power and power required for charging / discharging battery 50
  • the engine 22 is operated and controlled so that the power suitable for the sum is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is part of the power distribution and integration mechanism.
  • 30 and motor MG1 and motor MG2 are driven and controlled so that the required power is output to ring gear shaft 32a with torque conversion.
  • Charge-discharge drive mode, there is a motor operation mode to stop the operation of the engine 22 is by the Hare operation control to output to the ring gear shaft 32a power commensurate with the required power from the motor MG2.
  • the engine 22 is automatically stopped when the automatic stop condition based on the accelerator opening Acc, the vehicle speed V, the remaining capacity (SOC) of the battery 50, etc. is satisfied.
  • Drive in the motor operation mode and automatically start the engine 22 that is automatically stopped when the automatic start condition is established based on the accelerator opening Acc, the vehicle speed V, the remaining capacity (SOC) of the notch 50, etc.
  • the operation of the hybrid vehicle 20 of the embodiment thus configured in particular, the operation when the engine 22 is automatically stopped or automatically started, and the automatic used as one of the automatic stop conditions of the engine 22 are used.
  • the setting of the stop permission water temperature Tws is explained. First, the operation when the engine 22 is automatically stopped or automatically started will be described. The setting of the automatic stop permission water temperature Tws used as one of the movement stop conditions will be described below.
  • FIG. 3 is a flowchart showing an example of an engine automatic stop / start processing routine executed by the engine ECU 24. This routine is repeatedly executed every predetermined time (for example, every several msec).
  • the CPU 24a of the engine ECU 24 detects the temperature of the coolant water of the engine 22 and the remaining coolant temperature Tw, accelerator opening Acc, vehicle speed V, battery 50 A process for inputting data necessary for execution of this routine, such as the capacity SOC, is executed (step S100).
  • the accelerator opening Acc and the vehicle speed V are detected by the accelerator pedal position sensor 84 and the vehicle speed sensor 88 and inputted from the hybrid electronic control unit 70.
  • the remaining capacity SOC of the battery 50 is assumed to be input by communication via the hybrid electronic control unit 70 as calculated by the battery ECU 52.
  • step S110 it is determined whether or not the engine 22 is automatically stopped. This determination is made by examining the value of the flag set to the value 1 when the engine 22 is automatically stopped.
  • the cooling water temperature Tw is equal to or higher than the automatic stop permission water temperature Tws as the cooling water temperature threshold for allowing the engine 22 to automatically stop (step S 120) and the accelerator opening Acc
  • step S 130 it is determined whether or not other automatic stop conditions other than the coolant temperature Tw based on the vehicle speed V and the remaining capacity SOC of the battery 50 are satisfied.
  • the setting of the automatic stop permission water temperature Tws will be described later.
  • step S120 and S130 When the cooling water temperature Tw is equal to or higher than the automatic stop permission water temperature Tws and other automatic stop conditions are satisfied (steps S120 and S130), processing for stopping the ignition control and fuel injection control in the engine 22 is executed.
  • the engine 22 is stopped (step S140), and this routine is terminated.
  • step S120, S130 When the cooling water temperature Tw is lower than the automatic stop permission water temperature Tws or other automatic stop conditions are not satisfied (step S120, S130), this routine is terminated without stopping the engine 22. Therefore, the engine 22 is automatically stopped when the cooling water temperature Tw is equal to or higher than the automatic stop permission water temperature Tws and other automatic stop conditions are satisfied.
  • step S150 ignition control and fuel injection control in the engine 22 are started when the automatic start condition is satisfied.
  • step S160 The process is executed to start the engine 22 (step S160), and the routine is terminated.
  • step S160 the routine is terminated without starting the engine 22. Therefore, the engine 22 is started when the automatic verb condition is satisfied while the engine 22 is automatically stopped.
  • FIG. 4 is a flowchart showing an example of a permitted water temperature setting process routine executed by the engine ECU 24. This routine is repeatedly executed every predetermined time (for example, every several milliseconds).
  • the CPU 24a of the engine ECU 24 learns the air-fuel ratio when the engine 22 is operating and controlled in the port injection drive mode, that is, the in-cylinder fuel injection valve 125.
  • the air-fuel ratio learning in the fuel injection (hereinafter referred to as port learning) is completed and Is determined (step S200).
  • the automatic stop permission water temperature Tws is set to a predetermined temperature Twl (for example, 40 ° C) as the lower limit value of the cooling water temperature at which it can be determined that the engine 22 can operate stably. (Step S210), and this routine ends. Therefore, when the port learning is completed, the engine 22 is automatically stopped when the coolant temperature Tw is equal to or higher than the predetermined temperature Twl and other automatic stop conditions are satisfied.
  • the port injection temperature Twp as the upper limit value of the temperature at which the automatic stop permission water temperature Tws is higher than the predetermined temperature T wl and the engine 22 is driven in the port injection drive mode.
  • a higher predetermined temperature Tw2 eg, 60 ° C
  • the engine 22 is automatically stopped when the coolant temperature Tw becomes equal to or higher than the predetermined temperature Tw2 and other automatic stop conditions are satisfied.
  • the automatic stop permitting water temperature Tws is set in this way because the automatic stop permitting water temperature Tws is set higher than the predetermined temperature Twl, thereby increasing the opportunity to continue operation without automatically stopping the engine 22, and further By setting the stop permission water temperature Tws to a temperature higher than the port injection temperature Twp, the port injection temperature Twp This is because, at the following temperatures, the engine 22 continues to operate without being automatically stopped, so the opportunity for port learning is increased as compared with the case where the engine 22 is automatically stopped.
  • the automatic stop permission water temperature Tw is higher than the temperature set when the port learning is completed and By setting the port injection temperature Twp as the upper limit temperature for driving in the port injection drive mode, the opportunity for port learning can be further increased.
  • an engine 22 having a port fuel injection valve 126 for injecting fuel into an intake port and an in-cylinder fuel injection valve 125 for injecting hydrocarbon-based fuel such as gasoline or light oil directly into the cylinder
  • the engine ECU 24 that performs the air-fuel ratio learning in the fuel injection from the port fuel injection valve 126 when the engine 22 is operating stably is equivalent to the “internal combustion engine”, and corresponds to the “learning execution means”
  • the predetermined temperature Twl is set as the automatic stop permission water temperature Tws for permitting the automatic stop of the engine 22.
  • the processing of step S200 and S210 and the port learning are completed.
  • the engine ECU24 that executes the processing of S220 corresponds to the “automatic stop permitting water temperature setting means”.
  • the water temperature sensor 142 that detects the temperature of the 22 cooling water corresponds to the “cooling water temperature detection means”
  • the cooling water temperature Tw is equal to or higher than the automatic stop permission water temperature Tws, and other automatic stop conditions are met.
  • the process of automatically stopping the operation of the engine 22 is executed at the same time. The process from step S 120 to step S 140 and engine 22 are automatically stopped, and the engine 22 is automatically started when the automatic start condition is satisfied.
  • the temperature higher than the port injection temperature Twp is used as the predetermined temperature Tw2, but the predetermined temperature Tw2 is set to a temperature higher than the predetermined temperature Twl and the operation of the engine 22 is continued. From the viewpoint of increasing the number of occasions, the predetermined temperature Tw2 may be equal to or lower than the port injection temperature Twp.
  • the learning is performed in the fuel injection when the engine 22 is driven in the port injection mode! /
  • both the in-cylinder fuel injection valve 125 and the port fuel injection valve 126 may perform learning regarding the air-fuel ratio in fuel injection control when fuel is injected.
  • the automatic stop permission water temperature Tw be higher than the upper limit temperature driven in the common injection drive mode.
  • the engine 22 is automatically stopped when the cooling water temperature Tw is equal to or higher than the automatic stop permission water temperature Tws and other automatic stop conditions are satisfied. If Tw is equal to or higher than the automatic stop permission water temperature Tws and other automatic stop conditions are met!
  • the fuel injection from the in-cylinder fuel injection valve 125 is stopped, and learning about the air-fuel ratio is performed when the fuel is injected only by the port fuel injection valve 126.
  • the learning is not limited to learning about the air-fuel ratio, and any learning may be used as long as the fuel injection from the port fuel injection valve 126 is learned. For example, learning of the opening degree of the throttle valve 124 during idle operation is possible. Alternatively, learning regarding the ignition timing in the spark plug 130 may be executed.
  • the power that the power of the motor MG2 is shifted by the reduction gear 35 and is output to the ring gear shaft 32a, as illustrated in the hybrid vehicle 120 of the modification of FIG. MG2's power is connected to the ring gear shaft 32a axle (drive It may be connected to an axle different from the axle to which the wheels 63a and 63b are connected (the axle connected to the wheels 64a and 64b in FIG. 5).
  • the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30.
  • an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b are provided. It is also possible to provide a counter-rotor motor 230 that transmits a part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power.
  • the internal combustion engine device of the present invention is applied to a hybrid vehicle 20 including an engine and a motor as a driving power source, and a predetermined automatic stop condition is satisfied. If the engine is automatically stopped and the automatically stopped engine is automatically started when a predetermined automatic start condition is satisfied, it may be applied to a vehicle of any configuration.
  • the present invention may be applied to a vehicle that is equipped with an engine and performs idle stop control that performs automatic stop and automatic start of the engine. Also, if the engine is to be automatically stopped and automatically started, it is installed in a car !, N !, the form of the internal combustion engine apparatus, and the form of the control method of the internal combustion engine apparatus It is good.
  • the present invention can be used in the manufacturing industry of internal combustion engine devices, the manufacturing industry of vehicles, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

明 細 書
内燃機関装置およびその制御方法並びに車両
技術分野
[0001] 本発明は、内燃機関装置およびその制御方法並びに車両に関する。
背景技術
[0002] 従来、この種の内燃機関装置としては、吸気ポートに燃料を噴射するポート用燃料 噴射弁と筒内に直接燃料を噴射する筒内用燃料噴射弁とを有するエンジンを備える ものが提案されている(例えば、特許文献 1参照)。この装置では、エンジンの空燃比 に関する学習を実行する際には、ポート用燃料噴射弁および筒内用燃料噴射弁の いずれか一方のみ力 燃料を噴射させて空燃比の学習を実行した後に他方のみか ら燃料を噴射させて空燃比の学習を実行することにより、両噴射弁の空燃比の学習 を適正に実行することができる。
特許文献 1:特開 2005 - 330939号公報
発明の開示
[0003] こうした内燃機関装置では、ポート用燃料噴射弁力もの燃料噴射における空燃比 などの学習は、ポート用燃料噴射弁からの燃料噴射が行なわれるときに実行される。 一方、こうした内燃機関装置において冷却水の温度が所定の自動停止許可水温以 上であることを条件の一つとして含む所定の自動停止条件が成立したときにエンジン を自動停止し、所定の自動始動条件が成立したときに自動停止したエンジンを自動 始動するものがある。このような内燃機関装置では、自動停止許可水温以上であると きにエンジンが自動停止するとポート用燃料噴射弁力 の燃料噴射における学習を 実行できないため、こうした学習を実行する機会が少なくなつてしまう。
[0004] 本発明の内燃機関装置およびその制御方法並びに車両は、吸気ポートに燃料を 噴射するポート用燃料噴射弁と筒内に直接燃料を噴射する筒内用燃料噴射弁とを 有する内燃機関を備えるものにおいて、ポート用燃料噴射弁力もの燃料噴射におけ る学習の機会をより増やすことを目的とする。
[0005] 本発明の内燃機関装置およびその制御方法並びに車両は、上述の目的を達成す るために以下の手段を採った。
[0006] 本発明の内燃機関装置は、吸気ポートに燃料を噴射するポート用燃料噴射弁と筒 内に直接燃料を噴射する筒内用燃料噴射弁とを有する内燃機関を備える内燃機関 装置であって、前記内燃機関が所定の運転状態のときに前記ポート用燃料噴射弁 からの燃料噴射における学習を実行する学習実行手段と、前記学習が完了している ときには第 1の温度を前記内燃機関の自動停止を許可するための自動停止許可水 温として設定し、前記学習が完了していないときには前記第 1の温度より高い第 2の 温度を前記自動停止許可水温として設定する自動停止許可水温設定手段と、前記 内燃機関の冷却水の温度を検出する冷却水温度検出手段と、前記検出された冷却 水の温度が前記設定された自動停止許可水温以上となって!/、ることを条件の一つと して含む所定の自動停止条件が成立したときに前記内燃機関の運転を自動停止し、 前記内燃機関を自動停止して V、る最中に所定の自動始動条件が成立したときに前 記内燃機関を自動始動する自動停止始動制御手段と、を備えることを要旨とする。
[0007] この本発明の内燃機関装置では、内燃機関が所定の運転状態のときに実行される ポート用燃料噴射弁力 の燃料噴射における学習が完了しているときには第 1の温 度を内燃機関の自動停止を許可するための自動停止許可水温として設定し、この学 習が完了して!/、な 、ときには第 1の温度より高 、第 2の温度を自動停止許可水温とし て設定し、内燃機関の冷却水の温度が設定された自動停止許可水温以上となって いることを条件の一つとして含む所定の自動停止条件が成立したときに内燃機関の 運転を自動停止し、内燃機関を自動停止して!/、る最中に所定の自動始動条件が成 立したときに内燃機関を自動始動する。ポート用燃料噴射弁力もの燃料噴射におけ る学習が完了して 、な 、ときには、第 1の温度より高 、第 2の温度を自動停止許可水 温として設定するから、内燃機関を自動停止せずに運転を継続する機会が増え、ポ ート用燃料噴射弁力もの燃料噴射における学習の機会をより増やすことができる。こ こで、「ポート用燃料噴射弁力もの燃料噴射における学習」には、ポート用燃料噴射 弁だけから燃料を噴射する際の燃料噴射における学習や筒内用燃料噴射弁とポー ト用燃料噴射弁との双方から燃料を噴射する際の燃料噴射における学習が含まれる [0008] こうした本発明の内燃機関装置において、前記学習実行手段は、前記筒内用燃料 噴射弁力らの燃料噴射を停止して前記ポート用燃料噴射弁だけ力ら燃料を噴射する 際の燃料噴射における学習を実行する手段であるものとすることもできる。すなわち、 ポート用燃料噴射弁だけ力ら燃料噴射する際の燃料噴射における学習が完了して V、な 、ときに第 1の温度より高 、第 2の温度を自動停止許可水温として設定するから 、ポート用燃料噴射弁だけから燃料を噴射する際の燃料噴射における学習の機会を より増やすことができる。
[0009] また、本発明の内燃機関装置において、前記学習実行手段は、前記ポート用燃料 噴射弁からの燃料噴射における学習として空燃比に関する学習を実行する手段であ るものとすることもできる。こうすれば、空燃比に関する学習の機会をより増やすことが できる。
[0010] さらに、この本発明の内燃機関装置おいて、前記検出された冷却水の温度が所定 温度以下のときに前記筒内用燃料噴射弁力もの燃料噴射を停止して前記ポート用 燃料噴射弁だけから燃料が噴射されるよう前記内燃機関を制御する機関制御手段を 備え、前記自動停止許可水温設定手段は、前記所定の温度より高い温度を前記第
2の温度として設定する手段であるものとすることもできる。こうすれば、筒内用燃料 噴射弁からの燃料噴射を停止してポート用燃料噴射弁だけ力ら燃料を噴射している 最中に内燃機関の自動停止を行なわないから、ポート用燃料噴射弁だけ力 燃料を 噴射する際の燃料噴射における学習の機会をより増やすことができる。
[0011] 本発明の車両は、吸気ポートに燃料を噴射するポート用燃料噴射弁と筒内に直接 燃料を噴射する筒内用燃料噴射弁とを有する内燃機関と、前記内燃機関の出力軸 に接続されると共に車軸に接続された駆動軸に該駆動軸が前記出力軸に対して独 立に回転可能に接続され、電力の入出力と前記出力軸および前記駆動軸 の駆動 力の入出力を伴って前記駆動軸に対する前記出力軸の回転数を調整可能な回転 調整手段と、前記駆動軸に動力を入出力可能な電動機と、前記内燃機関が所定の 運転状態のときに前記ポート用燃料噴射弁からの燃料噴射における学習を実行する 学習実行手段と、前記学習が完了しているときには第 1の温度を前記内燃機関の自 動停止を許可するための自動停止許可水温として設定し、前記学習が完了していな いときには前記第 1の温度より高い第 2の温度を前記自動停止許可水温として設定 する自動停止許可水温設定手段と、前記内燃機関の冷却水の温度を検出する冷却 水温度検出手段と、前記検出された冷却水の温度が前記設定された自動停止許可 水温以上となって 、ることを条件の一つとして含む所定の自動停止条件が成立した ときに前記内燃機関の運転を自動停止し、前記内燃機関を自動停止して!/、る最中に 所定の自動始動条件が成立したときに前記内燃機関を自動始動する自動停止始動 制御手段と、を備えることを要旨とする。
[0012] この本発明の車両では、内燃機関が所定の運転状態のときに実行されるポート用 燃料噴射弁からの燃料噴射における学習が完了しているときには第 1の温度を内燃 機関の自動停止を許可するための自動停止許可水温として設定し、この学習が完了 していないときには第 1の温度より高い第 2の温度を自動停止許可水温として設定し
、内燃機関の冷却水の温度が設定された自動停止許可水温以上となって 、ることを 条件の一つとして含む所定の自動停止条件が成立したときに内燃機関の運転を自 動停止し、内燃機関を自動停止して!/、る最中に所定の自動始動条件が成立したとき に内燃機関を自動始動する。ポート用燃料噴射弁力もの燃料噴射における学習が 完了して!/、な 、ときには、第 1の温度より高 、第 2の温度を自動停止許可水温として 設定するから、内燃機関を自動停止せずに運転を継続する機会が増え、ポート用燃 料噴射弁からの燃料噴射における学習の機会をより増やすことができる。ここで、「ポ ート用燃料噴射弁力もの燃料噴射における学習」には、ポート用燃料噴射弁だけか ら燃料を噴射する際の燃料噴射における学習や筒内用燃料噴射弁とポート用燃料 噴射弁との双方力ら燃料を噴射する際の燃料噴射における学習が含まれる。
[0013] こうした本発明の車両において、前記学習実行手段は、前記筒内用燃料噴射弁か らの燃料噴射を停止して前記ポート用燃料噴射弁だけから燃料を噴射する際の燃料 噴射における学習を実行する手段であるものとすることもできる。すなわち、ポート用 燃料噴射弁だけから燃料噴射する際の燃料噴射における学習が完了していないとき に第 1の温度より高 、第 2の温度を自動停止許可水温として設定するから、ポート用 燃料噴射弁だけから燃料を噴射する際の燃料噴射における学習の機会をより増や すことができる。 [0014] また、本発明の車両において、前記学習実行手段は、前記ポート用燃料噴射弁か らの燃料噴射における学習として空燃比に関する学習を実行する手段であるものと することもできる。こうすれば、空燃比に関する学習の機会をより増やすことができる。
[0015] さらに、この本発明の車両おいて、前記検出された冷却水の温度が所定温度以下 のときに前記筒内用燃料噴射弁からの燃料噴射を停止して前記ポート用燃料噴射 弁だけから燃料が噴射されるよう前記内燃機関を制御する機関制御手段を備え、前 記自動停止許可水温設定手段は、前記所定の温度より高い温度を前記第 2の温度 として設定する手段であるものとすることもできる。こうすれば、筒内用燃料噴射弁か らの燃料噴射を停止してポート用燃料噴射弁だけから燃料を噴射している最中に内 燃機関の自動停止を行なわないから、ポート用燃料噴射弁だけから燃料を噴射する 際の燃料噴射における学習の機会をより増やすことができる。
[0016] 本発明の内燃機関装置の制御方法は、吸気ポートに燃料を噴射するポート用燃料 噴射弁と筒内に直接燃料を噴射する筒内用燃料噴射弁とを有する内燃機関を備え る内燃機関装置の制御方法であって、前記内燃機関が所定の運転状態のときに実 行される前記ポート用燃料噴射弁力もの燃料噴射における学習が完了しているとき には第 1の温度を前記内燃機関の自動停止を許可するための自動停止許可水温と して設定し、前記学習が完了していないときには前記第 1の温度より高い第 2の温度 を前記自動停止許可水温として設定し、前記内燃機関の冷却水の温度が前記設定 された自動停止許可水温以上となって!/、ることを条件の一つとして含む所定の自動 停止条件が成立したときに前記内燃機関の運転を自動停止し、前記内燃機関を自 動停止して!/、る最中に所定の自動始動条件が成立したときに前記内燃機関を自動 始動する、ことを要旨とする。
[0017] この本発明の内燃機関装置では、内燃機関が所定の運転状態のときに実行される ポート用燃料噴射弁力 の燃料噴射における学習が完了しているときには第 1の温 度を内燃機関の自動停止を許可するための自動停止許可水温として設定し、この学 習が完了して!/、な 、ときには第 1の温度より高 、第 2の温度を自動停止許可水温とし て設定し、内燃機関の冷却水の温度が設定された自動停止許可水温以上となって いることを条件の一つとして含む所定の自動停止条件が成立したときに内燃機関の 運転を自動停止し、内燃機関を自動停止して!/、る最中に所定の自動始動条件が成 立したときに内燃機関を自動始動する。内燃機関が所定の運転状態のときに実行さ れるポート用燃料噴射弁力 の燃料噴射における学習が完了していないときには、 第 1の温度より高 、第 2の温度を自動停止許可水温として設定するから、内燃機関を 自動停止せずに運転を継続する機会が増え、ポート用燃料噴射弁からの燃料噴射 における学習の機会をより増やすことができる。ここで、「ポート用燃料噴射弁力もの 燃料噴射における学習」には、ポート用燃料噴射弁だけ力も燃料を噴射する際の燃 料噴射における学習や筒内用燃料噴射弁とポート用燃料噴射弁との双方から燃料 を噴射する際の燃料噴射における学習が含まれる。
図面の簡単な説明
[0018] [図 1]本発明の一実施例であるハイブリッド自動車 20の構成の概略を示す構成図で ある。
[図 2]エンジン 22の構成の概略を示す構成図である。
[図 3]エンジン ECU24により実行されるエンジン自動停止始動処理ルーチンの一例 を示すフローチャートである。
[図 4]エンジン ECU24により実行される許可水温設定処理ルーチンの一例を示すフ ローチャートである。
[図 5]変形例のハイブリッド自動車 120の構成の概略を示す構成図である。
[図 6]変形例のハイブリッド自動車 220の構成の概略を示す構成図である。
発明を実施するための最良の形態
[0019] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。図 1は、本 発明の一実施例である内燃機関装置を搭載したハイブリッド自動車 20の構成の概 略を示す構成図である。実施例のハイブリッド自動車 20は、図示するように、ェンジ ン 22と、エンジン 22の出力軸としてのクランクシャフト 26にダンバ 28を介して接続さ れた 3軸式の動力分配統合機構 30と、動力分配統合機構 30に接続された発電可能 なモータ MG1と、動力分配統合機構 30に接続された駆動軸としてのリングギヤ軸 3 2aに取り付けられた減速ギヤ 35と、この減速ギヤ 35に接続されたモータ MG2と、動 力出力装置全体をコントロールするハイブリッド用電子制御ユニット 70とを備える。 [0020] エンジン 22は、図 2に示すように、筒内に直接ガソリンや軽油などの炭化水素系の 燃料を噴射する筒内用燃料噴射バルブ 125と、吸気ポートに燃料を噴射するポート 用燃料噴射バルブ 126とを備える内燃機関として構成されている。エンジン 22は、こ うした二種類の燃料噴射バルブ 125, 126を備えることにより、エアクリーナ 122によ り清浄された空気をスロットルバルブ 124を介して吸入すると共にポート用燃料噴射 バルブ 126からガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気 を吸気バルブ 128を介して燃焼室に吸入し、点火プラグ 130による電気火花によつ て爆発燃焼させて、そのエネルギにより押し下げられるピストン 132の往復運動をクラ ンクシャフト 26の回転運動に変換するポート噴射駆動モードと、同様にして空気を燃 焼室に吸入し、吸気行程の途中あるいは圧縮行程に至って力 筒内用燃料噴射バ ルブ 125から燃料を噴射し、点火プラグ 130による電気火花によって爆発燃焼させて クランクシャフト 26の回転運動を得る筒内噴射駆動モードと、空気を燃焼室に燃焼す る際にポート用燃料噴射バルブ 126から燃料噴射すると共に吸気行程や圧縮行程 で筒内用燃料噴射ノ レブ 125から燃料噴射してクランクシャフト 26の回転運動を得 る共用噴射駆動モードと、のいずれかの駆動モードにより運転制御される。これらの 駆動モードは、エンジン 22の運転状態やエンジン 22に要求される運転状態などに 基づいて切り替えられ、エンジン 22の冷却水の温度を検出する水温センサ 142から の冷却水温 Twが筒内用燃料噴射バルブ 125から燃料を噴射すると燃料の気化が 不十分となる上限温度としてのポート噴射温度 Twp (例えば、 65°C)以下のときには ポート噴射駆動モードにより運転制御される。なお、エンジン 22からの排気は、一酸 化炭素 (CO)や炭化水素 (HC) ,窒素酸化物 (NOx)の有害成分を浄化する浄化装 置 (三元触媒) 134を介して外気へ排出される。
[0021] エンジン 22は、エンジン用電子制御ユニット(以下、エンジン ECUという) 24により 制御されている。エンジン ECU24は、 CPU24aを中心とするマイクロプロセッサとし て構成されており、 CPU24aの他に処理プログラムを記憶する ROM24bと、データ を一時的に記憶する RAM24cと、図示しない入出力ポートおよび通信ポートとを備 える。エンジン ECU24には、エンジン 22の状態を検出する種々のセンサからの信号 、クランクシャフト 23の回転位置を検出するクランクポジションセンサ 140からのクラン クポジションやエンジン 22の冷却水の温度を検出する水温センサ 142からの冷却水 温 Tw,燃焼室内に取り付けられた圧力センサ 143からの筒内圧力 Pin,燃焼室へ吸 排気を行なう吸気バルブ 128や排気バルブを開閉するカムシャフトの回転位置を検 出するカムポジションセンサ 144からのカムポジション,スロットルバルブ 124のポジシ ヨンを検出するスロットルバルブポジションセンサ 146からのスロットルポジション,吸 気管に取り付けられたエアフローメータ 148からのエアフローメータ信号 AF, 同じく 吸気管に取り付けられた温度センサ 149からの吸気温,空燃比センサ 135aからの空 燃比 AF,酸素センサ 135bからの酸素信号などが入力ポートを介して入力されてい る。また、エンジン ECU24からは、エンジン 22を駆動するための種々の制御信号、 例えば、筒内用燃料噴射ノ レブ 125やポート用燃料噴射バルブ 126への駆動信号 や、スロットルバルブ 124のポジションを調節するスロットルモータ 136への駆動信号 、ィグナイタと一体ィ匕されたイダ-ッシヨンコイル 138への制御信号、吸気ノ レブ 128 の開閉タイミングの変更可能な可変バルブタイミング機構 150への制御信号などが 出力ポートを介して出力されている。なお、エンジン ECU24は、ハイブリッド用電子 制御ユニット 70と通信しており、ハイブリッド用電子制御ユニット 70からの制御信号に よりエンジン 22を運転制御すると共に必要に応じてエンジン 22の運転状態に関する データを出力する。
また、エンジン ECU24は、エンジン 22の回転数 Neや負荷率などに基づいてポー ト噴射駆動モードや筒内噴射駆動モード、共用噴射駆動モードの各モードでェンジ ン 22が運転されるようエンジン 22を制御する。さらに、エンジン ECU24は、筒内用 燃料噴射バルブ 125やポート用燃料噴射バルブ 126からの燃料噴射制御に用いる 空燃比に関する学習(以下、空燃比学習という。)を実行する。空燃比学習は、実施 例では、ポート噴射駆動モードや筒内噴射駆動モード、共用噴射駆動モードの各駆 動モード毎に実行され、エンジン 22が安定して運転されている状態、例えば、スロッ トルバルブ 124の開度が略一定で筒内用燃料噴射バルブ 125およびポート用燃料 噴射バルブ 126の一方のみ力もの燃料噴射量または筒内用燃料噴射ノ レブ 125お よびポート用燃料噴射バルブ 126の双方からの燃料噴射量が略一定に制御されて いる状態で、 目標空燃比と実際に検出した値力 計算した空燃比とを比較し、その差 分の平均値を学習値とし、平均値の計算における母数が所定数に至ったときに学習 を完了するなどにより行なわれる。このような空燃比の学習は、ポート噴射駆動モード や筒内噴射駆動モード、共用噴射駆動モードの各モード毎に、アイドル運転領域、 低吸入空気量領域、低中吸入空気量領域、中高吸入空気量領域、高吸入空気量 領域など複数の異なる領域を学習領域として、各学習領域につ V、て行なってもよ 、。 空燃比学習は、本発明の中核をなさないからこれ以上の詳細な説明は省略する。
[0023] 動力分配統合機構 30は、外歯歯車のサンギヤ 31と、このサンギヤ 31と同心円上 に配置された内歯歯車のリングギヤ 32と、サンギヤ 31に嚙合すると共にリングギヤ 3 2に嚙合する複数のピ-オンギヤ 33と、複数のピ-オンギヤ 33を自転かつ公転自在 に保持するキャリア 34とを備え、サンギヤ 31とリングギヤ 32とキャリア 34とを回転要 素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構 3 0は、キャリア 34にはエンジン 22のクランクシャフト 26が、サンギヤ 31にはモータ MG 1が、リングギヤ 32にはリングギヤ軸 32aを介して減速ギヤ 35がそれぞれ連結されて おり、モータ MG1が発電機として機能するときにはキャリア 34から入力されるェンジ ン 22からの動力をサンギヤ 31側とリングギヤ 32側にそのギヤ比に応じて分配し、モ ータ MG1が電動機として機能するときにはキャリア 34から入力されるエンジン 22から の動力とサンギヤ 31から入力されるモータ MG1からの動力を統合してリングギヤ 32 側に出力する。リングギヤ 32に出力された動力は、リングギヤ軸 32aからギヤ機構 60 およびデフアレンシャルギヤ 62を介して、最終的には車両の駆動輪 63a, 63bに出 力される。
[0024] モータ MG1およびモータ MG2は、いずれも発電機として駆動することができると共 に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ 41, 42を介してノ ッテリ 50と電力のやりとりを行なう。インノータ 41, 42とノ ッテリ 50 とを接続する電力ライン 54は、各インバータ 41, 42が共用する正極母線および負極 母線として構成されており、モータ MG1, MG2のいずれかで発電される電力を他の モータで消費することができるようになつている。したがって、バッテリ 50は、モータ M Gl, MG2のいずれかから生じた電力や不足する電力により充放電されることになる 。なお、モータ MG1, MG2により電力収支のバランスをとるものとすれば、バッテリ 5 0は充放電されない。モータ MG1, MG2は、いずれもモータ用電子制御ユニット(以 下、モータ ECUという) 40により駆動制御されている。モータ ECU40には、モータ M Gl, MG2を駆動制御するために必要な信号、例えばモータ MG1, MG2の回転子 の回転位置を検出する回転位置検出センサ 43, 44からの信号や図示しない電流セ ンサにより検出されるモータ MG1, MG2に印加される相電流などが入力されており 、モータ ECU40からは、インバータ 41, 42へのスイッチング制御信号が出力されて いる。モータ ECU40は、ハイブリッド用電子制御ユニット 70と通信しており、ノヽイブリ ッド用電子制御ユニット 70からの制御信号によってモータ MG1, MG2を駆動制御 すると共に必要に応じてモータ MG 1 , MG2の運転状態に関するデータをノ、イブリッ ド用電子制御ユニット 70に出力する。
[0025] ノ ッテリ 50は、ノ ッテリ用電子制御ユニット(以下、ノ ッテリ ECUという) 52によって 管理されている。ノ ッテリ ECU52には、ノ ッテリ 50を管理するのに必要な信号、例え ば、ノ ッテリ 50の端子間に設置された図示しない電圧センサからの端子間電圧,ノ ッテリ 50の出力端子に接続された電力ライン 54に取り付けられた図示しない電流セ ンサからの充放電電流,ノ ッテリ 50に取り付けられた温度センサ 51からの電池温度 Tbなどが入力されており、必要に応じてノ ッテリ 50の状態に関するデータを通信に よりハイブリッド用電子制御ユニット 70に出力する。なお、ノ ッテリ ECU52では、バッ テリ 50を管理するために電流センサにより検出された充放電電流の積算値に基づい て残容量 (SOC)も演算して 、る。
[0026] ハイブリッド用電子制御ユニット 70は、 CPU72を中心とするマイクロプロセッサとし て構成されており、 CPU72の他に処理プログラムを記憶する ROM74と、データを 一時的に記憶する RAM76と、図示しない入出力ポートおよび通信ポートとを備える 。ハイブリッド用電子制御ユニット 70には、イダ-ッシヨンスィッチ 80からのイダ-ッシ ヨン信号,シフトレバー 81の操作位置を検出するシフトポジションセンサ 82からのシ フトポジション SP,アクセルペダル 83の踏み込み量を検出するアクセルペダルポジ シヨンセンサ 84からのアクセル開度 Acc,ブレーキペダル 85の踏み込み量を検出す るブレーキペダルポジションセンサ 86からのブレーキペダルポジション BP,車速セン サ 88からの車速 Vなどが入力ポートを介して入力されている。ハイブリッド用電子制 御ユニット 70は、前述したように、エンジン ECU24やモータ ECU40,バッテリ ECU 52と通信ポートを介して接続されており、エンジン ECU24ゃモータECU40,バッテ リ ECU52と各種制御信号やデータのやりとりを行なっている。
[0027] こうして構成された実施例のハイブリッド自動車 20は、運転者によるアクセルペダル 83の踏み込み量に対応するアクセル開度 Accと車速 Vとに基づいて駆動軸としての リングギヤ軸 32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求 動力がリングギヤ軸 32aに出力されるように、エンジン 22とモータ MG1とモータ MG2 とが運転制御される。エンジン 22とモータ MG1とモータ MG2の運転制御としては、 要求動力に見合う動力がエンジン 22から出力されるようにエンジン 22を運転制御す ると共にエンジン 22から出力される動力のすべてが動力分配統合機構 30とモータ MG1とモータ MG2とによってトルク変換されてリングギヤ軸 32aに出力されるようモ ータ MG1およびモータ MG2を駆動制御するトルク変換運転モードや要求動力とバ ッテリ 50の充放電に必要な電力との和に見合う動力がエンジン 22から出力されるよう にエンジン 22を運転制御すると共にノ ッテリ 50の充放電を伴ってエンジン 22から出 力される動力の全部またはその一部が動力分配統合機構 30とモータ MG1とモータ MG2とによるトルク変換を伴って要求動力がリングギヤ軸 32aに出力されるようモー タ MG1およびモータ MG2を駆動制御する充放電運転モード、エンジン 22の運転を 停止してモータ MG2からの要求動力に見合う動力をリングギヤ軸 32aに出力するよ う運転制御するモータ運転モードなどがある。また、実施例のハイブリッド自動車 20 では、基本的には、アクセル開度 Accや車速 V, ノ ッテリ 50の残容量 (SOC)などに 基づく自動停止条件が成立したときにエンジン 22を自動停止してモータ運転モード により走行し、アクセル開度 Accや車速 V, ノ ッテリ 50の残容量 (SOC)などに基づく 自動始動条件が成立したときに自動停止したエンジン 22を自動始動してトルク変換 運転モードゃ充放電運転モードにより走行する。
[0028] 次に、こうして構成された実施例のハイブリッド自動車 20の動作、特に、エンジン 22 を自動停止したり自動始動する際の動作と、エンジン 22の自動停止条件の一つとし て用いられる自動停止許可水温 Twsの設定について説明する。最初に、エンジン 2 2を自動停止したり自動始動する際の動作について説明し、次に、エンジン 22の自 動停止条件の一つとして用いられる自動停止許可水温 Twsの設定につ V、て説明す る。
[0029] 図 3は、エンジン ECU24により実行されるエンジン自動停止始動処理ルーチンの 一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数 msec毎) に繰り返し実行される。エンジン自動停止始動処理ルーチンが実行されると、ェンジ ン ECU24の CPU24aは、エンジン 22の冷却水の温度を検出する水温センサ 142 力もの冷却水温 Twやアクセル開度 Acc,車速 V,バッテリ 50の残容量 SOCなど本 ルーチンの実行に必要なデータを入力する処理を実行する (ステップ S 100)。ここで 、アクセル開度 Acc,車速 Vは、アクセルペダルポジションセンサ 84や車速センサ 88 により検出されたものをハイブリッド用電子制御ユニット 70より入力するものとした。ま た、バッテリ 50の残容量 SOCは、バッテリ ECU52で演算されたものをハイブリッド用 電子制御ユニット 70を介して通信により入力するものとした。
[0030] 続いて、エンジン 22が自動停止中であるか否かを判定する(ステップ S 110)。この 判定は、エンジン 22が自動停止中であるときに値 1に設定されるフラグの値を調べる ことで行なう。エンジン 22が自動停止中でないときには、冷却水温 Twがエンジン 22 の自動停止を許可する冷却水の温度の閾値としての自動停止許可水温 Tws以上で あるか否か (ステップ S 120)やアクセル開度 Acc,車速 V,バッテリ 50の残容量 SOC に基づく冷却水温 Twを除く他の自動停止条件が成立して 、るか否か (ステップ S 13 0)を判定する。 自動停止許可水温 Twsの設定にっ 、ては後述する。
[0031] 冷却水温 Twが自動停止許可水温 Tws以上であると共に他の自動停止条件が成 立しているときには (ステップ S120, S130)、エンジン 22における点火制御や燃料 噴射制御を停止する処理を実行してエンジン 22を停止させて (ステップ S 140)、本 ルーチンを終了し、冷却水温 Twが自動停止許可水温 Tws未満であったり、他の自 動停止条件が成立していないときには (ステップ S120, S 130)、エンジン 22を停止 せずに本ルーチンを終了する。したがって、エンジン 22は、冷却水温 Twが自動停 止許可水温 Tws以上であると共に他の自動停止条件が成立しているときには自動 停止されること〖こなる。
[0032] 一方、エンジン 22が自動停止中であるときには、アクセル開度 Acc,車速 V,バッテ リ 50の残容量 SOCに基づく自動始動条件が成立して 、る力否かを判定し (ステップ S150)、自動始動条件が成立しているときにはエンジン 22における点火制御や燃 料噴射制御を開始する処理を実行してエンジン 22を始動して (ステップ S 160)、本 ルーチンを終了し、自動始動条件が成立していないときにはエンジン 22を始動せず に本ルーチンを終了する。したがって、エンジン 22を自動停止している最中に自動 詞同条件が成立したときにはエンジン 22が始動されることになる。
[0033] 次に、自動停止許可水温 Twsの設定について説明する。図 4は、エンジン ECU24 により実行される許可水温設定処理ルーチンの一例を示すフローチャートである。こ のルーチンは、所定時間毎 (例えば数 msec毎)に繰り返し実行される。
[0034] 許可水温設定処理ルーチンが実行されると、エンジン ECU24の CPU24aは、ェン ジン 22をポート噴射駆動モードにより運転制御している際の空燃比学習、すなわち、 筒内用燃料噴射バルブ 125からの燃料噴射を停止してポート用燃料噴射バルブ 12 6だけから燃料を噴射しているときの燃料噴射における空燃比学習(以下、ポート学 習と 、う)が完了して 、る力否かを判定する(ステップ S200)。ポート学習が完了して V、るときには、 自動停止許可水温 Twsをエンジン 22が安定して運転できると判断で きる冷却水の温度の下限値としての所定温度 Twl (例えば、 40°C)に設定し (ステツ プ S210)、本ルーチンを終了する。したがって、ポート学習が完了しているときには、 冷却水温 Twが所定温度 Twl以上になり、且つ、他の自動停止条件が成立したとき にエンジン 22が自動停止されることになる。
[0035] 一方、ポート学習が完了していないときには、自動停止許可水温 Twsを所定温度 T wlより高ぐ且つ、エンジン 22をポート噴射駆動モードで駆動する温度の上限値とし てのポート噴射温度 Twpより高い所定温度 Tw2 (例えば、 60°C)に設定して (ステツ プ S220)、本ルーチンを終了する。したがって、ポート学習が完了していないときに は、冷却水温 Twが所定温度 Tw2以上になり、且つ、他の自動停止条件が成立した ときにエンジン 22が自動停止されることになる。このように自動停止許可水温 Twsを 設定したのは、自動停止許可水温 Twsを所定温度 Twlより高く設定することによりェ ンジン 22を自動停止せずに運転を継続する機会が増加し、さらに、自動停止許可水 温 Twsをポート噴射温度 Twpより高い温度に設定することによりポート噴射温度 Twp 以下の温度ではエンジン 22が自動停止せずに運転を継続することになるため、ェン ジン 22を自動停止する場合に比してポート学習の機会が増加するからである。
[0036] 以上説明した実施例のハイブリッド自動車 20によれば、ポート学習が完了していな いときには、自動停止許可水温 Twをポート学習が完了しているときに設定される温 度より高ぐ且つ、ポート噴射駆動モードで駆動する上限温度としてのポート噴射温 度 Twpより高く設定することにより、ポート学習の機会をより増やすことができる。
[0037] ここで、実施例の主要な要素と発明の開示の欄に記載した発明の主要な要素との 対応関係について説明する。実施例では、吸気ポートに燃料を噴射するポート用燃 料噴射バルブ 126と筒内に直接ガソリンや軽油などの炭化水素系の燃料を噴射する 筒内用燃料噴射バルブ 125とを有するエンジン 22が「内燃機関」に相当し、エンジン 22が安定して運転されている状態のときポート用燃料噴射バルブ 126からの燃料噴 射における空燃比学習を実行するエンジン ECU24が「学習実行手段」に相当し、ポ ート学習が完了しているときには所定温度 Twlをエンジン 22の自動停止を許可する ための自動停止許可水温 Twsとして設定するステップ S200, S210の処理やポート 学習が完了して 、な 、ときには所定温度 Twlより高 、温度 Tw2を自動停止許可水 温 Twsとして設定するステップ S200, S220の処理を実行するエンジン ECU24が「 自動停止許可水温設定手段」に相当し、エンジン 22の冷却水の温度を検出する水 温センサ 142が「冷却水温度検出手段」に相当し、冷却水温 Twが自動停止許可水 温 Tws以上となっていると共に他の自動停止条件が成立したときにエンジン 22の運 転を自動停止する処理を実行するステップ S 120からステップ S 140の処理やェンジ ン 22を自動停止して 、る最中に自動始動条件が成立したときにエンジン 22を自動 始動する処理を実行するステップ S 150, S 160の処理を実行するエンジン ECU 24 力 S「自動停止始動制御手段」に相当する。また、冷却水温 Twがポート噴射温度 Twp 以下のときに筒内用燃料噴射バルブ 125からの燃料噴射を停止してポート用燃料噴 射バルブ 126だけから燃料が噴射されるようエンジン 22を制御するエンジン ECU24 力^機関制御手段」に相当する。なお、実施例の主要な要素と発明の開示の欄に記 載した発明の主要な要素との対応関係は、実施例が発明の開示の欄に記載した発 明を実施するための最良の形態を具体的に説明するための一例であることから、発 明の開示の欄に記載した発明の要素を限定するものではない。即ち、発明の開示の 欄に記載した発明につ 、ての解釈はその欄の記載に基づ 、て行なわれるべきもの であり、実施例は発明の開示の欄に記載した発明の具体的な一例に過ぎないもので ある。
[0038] 実施例のハイブリッド自動車 20では、所定温度 Tw2としてポート噴射温度 Twpより 高い温度を用いるものとしたが、所定温度 Tw2は所定温度 Twlより高い温度に設定 してエンジン 22の運転が継続される機会を増加させればょ 、から、所定温度 Tw2を ポート噴射温度 Twp以下の温度を用いるものであってもよ 、。
[0039] 実施例のハイブリッド自動車 20では、エンジン 22をポート噴射モードで駆動して!/ヽ る際の燃料噴射における学習を実行するものとしたが、共用噴射駆動モードで駆動 している際,すなわち、筒内用燃料噴射バルブ 125およびポート用燃料噴射バルブ 126の双方力も燃料を噴射する際の燃料噴射制御における空燃比に関する学習を 実行するものとしてもよい。この場合、自動停止許可水温 Twは、共用噴射駆動モー ドで駆動する上限温度より高い温度にすることが望ましい。
[0040] 実施例のハイブリッド自動車 20では、冷却水温 Twが自動停止許可水温 Tws以上 であると共に他の自動停止条件が成立して 、るときにエンジン 22を自動停止させる ものとしたが、冷却水温 Twが自動停止許可水温 Tws以上であることと他の自動停止 条件が成立して!/、ることとの 、ずれかが成立したときにエンジン 22を自動停止させる ちのとしてちよい。
[0041] 実施例のハイブリッド自動車 20では、筒内用燃料噴射バルブ 125からの燃料噴射 を停止してポート用燃料噴射バルブ 126だけ力ら燃料を噴射する際の空燃比に関す る学習を実行するものとしたが、空燃比に関する学習に限定したものではなぐポート 用燃料噴射バルブ 126からの燃料噴射における学習であれば如何なるものでもよく 、例えば、アイドル運転の際のスロットルバルブ 124の開度の学習や点火プラグ 130 における点火時期に関する学習を実行するものとしてもよい。
[0042] 実施例のハイブリッド自動車 20では、モータ MG2の動力を減速ギヤ 35により変速 してリングギヤ軸 32aに出力するものとした力 図 5の変形例のハイブリッド自動車 12 0に例示するように、モータ MG2の動力をリングギヤ軸 32aが接続された車軸 (駆動 輪 63a, 63bが接続された車軸)とは異なる車軸(図 5における車輪 64a, 64bに接続 された車軸)に接続するものとしてもよい。
[0043] 実施例のハイブリッド自動車 20では、エンジン 22の動力を動力分配統合機構 30を 介して駆動輪 63a, 63bに接続された駆動軸としてのリングギヤ軸 32aに出力するも のとしたが、図 6の変形例のハイブリッド自動車 220に例示するように、エンジン 22の クランクシャフト 26に接続されたインナーロータ 232と駆動輪 63a, 63bに動力を出力 する駆動軸に接続されたアウターロータ 234とを有し、エンジン 22の動力の一部を駆 動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機 230を備えるも のとしてもよい。
[0044] 実施例では、本発明の内燃機関装置を走行用の動力源としてエンジンとモータとを 備えるハイブリッド自動車 20に適用するものとした力 エンジンを搭載すると共に所 定の自動停止条件が成立したときにエンジンを自動停止して所定の自動始動条件 が成立したときに自動停止したエンジンを自動始動するものであれば、如何なる構成 の車両に適用するものとしてもよぐ例えば、走行用のモータを備えずエンジンを搭 載しエンジンの自動停止と自動始動とを行なうアイドルストップ制御を実行する車両 に適用するものとしていもよい。また、エンジンを自動停止すると共に自動始動するも のであればよ!、から、自動車に搭載されて!、な!/、内燃機関装置の形態としてもょ 、し 、内燃機関装置の制御方法の形態としてもよい。
[0045] 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、 本発明はこうした実施例に何等限定されるものではなぐ種々なる形態で実施し得る ことは勿論である。
産業上の利用可能性
[0046] 本発明は、内燃機関装置の製造業や車両の製造業などに利用可能である。

Claims

請求の範囲
[1] 吸気ポート〖こ燃料を噴射するポート用燃料噴射弁と筒内に直接燃料を噴射する筒 内用燃料噴射弁とを有する内燃機関を備える内燃機関装置であって、
前記内燃機関が所定の運転状態のときに前記ポート用燃料噴射弁からの燃料噴 射における学習を実行する学習実行手段と、
前記学習が完了しているときには第 1の温度を前記内燃機関の自動停止を許可す るための自動停止許可水温として設定し、前記学習が完了していないときには前記 第 1の温度より高 V、第 2の温度を前記自動停止許可水温として設定する自動停止許 可水温設定手段と、
前記内燃機関の冷却水の温度を検出する冷却水温度検出手段と、
前記検出された冷却水の温度が前記設定された自動停止許可水温以上となって いることを条件の一つとして含む所定の自動停止条件が成立したときに前記内燃機 関の運転を自動停止し、前記内燃機関を自動停止して!/、る最中に所定の自動始動 条件が成立したときに前記内燃機関を自動始動する自動停止始動制御手段と、 を備える内燃機関装置。
[2] 請求項 1記載の内燃機関装置であって、
前記学習実行手段は、前記筒内用燃料噴射弁からの燃料噴射を停止して前記ポ ート用燃料噴射弁だけ力ら燃料を噴射する際の燃料噴射における学習を実行する 手段である、
内燃機関装置。
[3] 請求項 1記載の内燃機関装置であって、
前記学習実行手段は、前記ポート用燃料噴射弁からの燃料噴射における学習とし て空燃比に関する学習を実行する手段である、
内燃機関装置。
[4] 請求項 1記載の内燃機関装置であって、
前記検出された冷却水の温度が所定温度以下のときに前記筒内用燃料噴射弁か らの燃料噴射を停止して前記ポート用燃料噴射弁だけから燃料が噴射されるよう前 記内燃機関を制御する機関制御手段を備え、 前記自動停止許可水温設定手段は、前記所定の温度より高い温度を前記第 2の 温度として設定する手段である、
内燃機関装置。
[5] 吸気ポート〖こ燃料を噴射するポート用燃料噴射弁と筒内に直接燃料を噴射する筒 内用燃料噴射弁とを有する内燃機関と、
前記内燃機関の出力軸に接続されると共に車軸に接続された駆動軸に該駆動軸 が前記出力軸に対して独立に回転可能に接続され、電力の入出力と前記出力軸お よび前記駆動軸 の駆動力の入出力を伴って前記駆動軸に対する前記出力軸の 回転数を調整可能な回転調整手段と、
前記駆動軸に動力を入出力可能な電動機と、
前記内燃機関が所定の運転状態のときに前記ポート用燃料噴射弁からの燃料噴 射における学習を実行する学習実行手段と、
前記学習が完了しているときには第 1の温度を前記内燃機関の自動停止を許可す るための自動停止許可水温として設定し、前記学習が完了していないときには前記 第 1の温度より高 V、第 2の温度を前記自動停止許可水温として設定する自動停止許 可水温設定手段と、
前記内燃機関の冷却水の温度を検出する冷却水温度検出手段と、
前記検出された冷却水の温度が前記設定された自動停止許可水温以上となって いることを条件の一つとして含む所定の自動停止条件が成立したときに前記内燃機 関の運転を自動停止し、前記内燃機関を自動停止して!/、る最中に所定の自動始動 条件が成立したときに前記内燃機関を自動始動する自動停止始動制御手段と、 を備 る早両。
[6] 請求項 5記載の車両であって、
前記学習実行手段は、前記筒内用燃料噴射弁からの燃料噴射を停止して前記ポ ート用燃料噴射弁だけ力ら燃料を噴射する際の燃料噴射における学習を実行する 手段である、
单両。
[7] 請求項 5記載の車両であって、 前記学習実行手段は、前記ポート用燃料噴射弁からの燃料噴射における学習とし て空燃比に関する学習を実行する手段である、
单両。
[8] 請求項 5記載の車両であって、
前記検出された冷却水の温度が所定温度以下のときに前記筒内用燃料噴射弁か らの燃料噴射を停止して前記ポート用燃料噴射弁だけから燃料が噴射されるよう前 記内燃機関を制御する機関制御手段を備え、
前記自動停止許可水温設定手段は、前記所定の温度より高い温度を前記第 2の 温度として設定する手段である、
单両。
[9] 吸気ポート〖こ燃料を噴射するポート用燃料噴射弁と筒内に直接燃料を噴射する筒 内用燃料噴射弁とを有する内燃機関を備える内燃機関装置の制御方法であって、 前記内燃機関が所定の運転状態のときに実行される前記ポート用燃料噴射弁から の燃料噴射における学習が完了しているときには第 1の温度を前記内燃機関の自動 停止を許可するための自動停止許可水温として設定し、前記学習が完了していない ときには前記第 1の温度より高い第 2の温度を前記自動停止許可水温として設定し、 前記内燃機関の冷却水の温度が前記設定された自動停止許可水温以上となって いることを条件の一つとして含む所定の自動停止条件が成立したときに前記内燃機 関の運転を自動停止し、前記内燃機関を自動停止して!/、る最中に所定の自動始動 条件が成立したときに前記内燃機関を自動始動する、
内燃機関装置の制御方法。
PCT/JP2007/064114 2006-11-20 2007-07-17 Moteur à combustion interne, procédé de commande de celui-ci et véhicule WO2008062583A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/444,764 US8170778B2 (en) 2006-11-20 2007-07-17 Internal combustion engine system, control method of internal combustion engine system, and vehicle
CN2007800430900A CN101542097B (zh) 2006-11-20 2007-07-17 内燃机装置及其控制方法以及车辆
EP07790876.2A EP2072789B1 (en) 2006-11-20 2007-07-17 Internal combustion engine learning control dependent engine auto stop control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006313271A JP4238910B2 (ja) 2006-11-20 2006-11-20 内燃機関装置およびその制御方法並びに車両
JP2006-313271 2006-11-20

Publications (1)

Publication Number Publication Date
WO2008062583A1 true WO2008062583A1 (fr) 2008-05-29

Family

ID=39429524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064114 WO2008062583A1 (fr) 2006-11-20 2007-07-17 Moteur à combustion interne, procédé de commande de celui-ci et véhicule

Country Status (5)

Country Link
US (1) US8170778B2 (ja)
EP (1) EP2072789B1 (ja)
JP (1) JP4238910B2 (ja)
CN (1) CN101542097B (ja)
WO (1) WO2008062583A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126113B2 (ja) * 2009-02-24 2013-01-23 トヨタ自動車株式会社 空燃比制御装置
JP5381422B2 (ja) 2009-07-03 2014-01-08 トヨタ自動車株式会社 内燃機関の制御装置
JP5310492B2 (ja) * 2009-11-05 2013-10-09 トヨタ自動車株式会社 内燃機関装置およびその制御方法並びに車両
US8510019B2 (en) * 2010-01-20 2013-08-13 Denso Corporation Control device of automatic engine stop and start
JP5181064B2 (ja) * 2011-03-10 2013-04-10 パイオニア株式会社 効率マップ生成装置、効率マップ生成方法、およびプログラム
EP2685623A4 (en) 2011-03-10 2016-02-17 Pioneer Corp YARD CARD GENERATING DEVICE, YIELD CARD GENERATING METHOD, AND PROGRAM
JP5299456B2 (ja) * 2011-03-18 2013-09-25 トヨタ自動車株式会社 内燃機関の制御装置
US8851055B2 (en) * 2011-06-17 2014-10-07 GM Global Technology Operations LLC Method and apparatus for controlling hybrid powertrain system in response to engine temperature
JP5862296B2 (ja) * 2011-12-28 2016-02-16 トヨタ自動車株式会社 ハイブリッド車両
EP2706215B1 (en) * 2012-09-05 2019-10-30 FPT Industrial S.p.A. System for controlling an internal combustion engine
US9567934B2 (en) 2013-06-19 2017-02-14 Enviro Fuel Technology, Lp Controllers and methods for a fuel injected internal combustion engine
JP5867457B2 (ja) * 2013-06-26 2016-02-24 トヨタ自動車株式会社 内燃機関制御装置と車両
CA2987548C (en) 2015-05-29 2023-10-17 Bombardier Recreational Products Inc. Internal combustion engine having two fuel injectors per cylinder and control method therefor
US9647589B2 (en) * 2015-06-22 2017-05-09 Infineon Technologies Ag Alternator with current measurement
JP6390670B2 (ja) * 2016-07-12 2018-09-19 トヨタ自動車株式会社 エンジンの燃料噴射制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266674A (ja) * 2001-03-09 2002-09-18 Denso Corp 内燃機関の自動始動停止装置
JP2005325794A (ja) * 2004-05-17 2005-11-24 Mitsubishi Electric Corp 内燃機関の制御装置
JP2005330939A (ja) 2004-05-21 2005-12-02 Toyota Motor Corp ハイブリッド車両におけるデュアル噴射型内燃機関の空燃比学習制御方法
JP2006046103A (ja) * 2004-08-02 2006-02-16 Denso Corp 内燃機関用制御装置
JP2006266193A (ja) * 2005-03-25 2006-10-05 Toyota Motor Corp 車両およびその制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296084A (ja) * 1992-04-16 1993-11-09 Fuji Heavy Ind Ltd エンジンの燃料噴射量制御方法
JP2767352B2 (ja) * 1993-02-02 1998-06-18 株式会社ユニシアジェックス 内燃機関の始動時空燃比制御装置
JP3718857B2 (ja) 1994-03-10 2005-11-24 日産自動車株式会社 内燃機関の制御装置
JPH0988672A (ja) * 1995-09-29 1997-03-31 Hitachi Ltd 内燃機関の始動制御装置
JP2000205010A (ja) * 1999-01-14 2000-07-25 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP3829035B2 (ja) * 1999-11-30 2006-10-04 株式会社日立製作所 エンジンの燃料圧力制御装置
JP3941441B2 (ja) * 2001-09-11 2007-07-04 トヨタ自動車株式会社 内燃機関の始動時制御装置
JP4357807B2 (ja) * 2002-07-17 2009-11-04 トヨタ自動車株式会社 車載された内燃機関の自動停止始動制御装置
JP2005048730A (ja) 2003-07-31 2005-02-24 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2005307891A (ja) 2004-04-22 2005-11-04 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2006046084A (ja) 2004-07-30 2006-02-16 Toyota Motor Corp 内燃機関の点火時期制御装置
JP4276198B2 (ja) * 2005-03-17 2009-06-10 株式会社日立製作所 筒内噴射式内燃機関の制御装置
JP2006348863A (ja) * 2005-06-16 2006-12-28 Toyota Motor Corp 内燃機関の始動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266674A (ja) * 2001-03-09 2002-09-18 Denso Corp 内燃機関の自動始動停止装置
JP2005325794A (ja) * 2004-05-17 2005-11-24 Mitsubishi Electric Corp 内燃機関の制御装置
JP2005330939A (ja) 2004-05-21 2005-12-02 Toyota Motor Corp ハイブリッド車両におけるデュアル噴射型内燃機関の空燃比学習制御方法
JP2006046103A (ja) * 2004-08-02 2006-02-16 Denso Corp 内燃機関用制御装置
JP2006266193A (ja) * 2005-03-25 2006-10-05 Toyota Motor Corp 車両およびその制御方法

Also Published As

Publication number Publication date
US20100094526A1 (en) 2010-04-15
EP2072789A4 (en) 2017-05-17
EP2072789B1 (en) 2019-04-10
EP2072789A1 (en) 2009-06-24
JP4238910B2 (ja) 2009-03-18
CN101542097B (zh) 2012-08-08
US8170778B2 (en) 2012-05-01
JP2008128074A (ja) 2008-06-05
CN101542097A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
JP4238910B2 (ja) 内燃機関装置およびその制御方法並びに車両
JP5519159B2 (ja) ハイブリッド車およびその制御方法
JP4258557B2 (ja) 内燃機関装置および内燃機関装置の制御方法
JP4850801B2 (ja) 内燃機関装置およびこれを搭載する車両、内燃機関装置の制御方法
JP4306719B2 (ja) 内燃機関装置およびこれを備える動力出力装置並びにこれを搭載する車両、内燃機関装置の制御方法
US8306721B2 (en) Internal combustion engine system, method of controlling internal combustion engine system, and vehicle
JP5251559B2 (ja) 内燃機関装置及び自動車並びに排気再循環装置の故障診断方法
JP4277933B1 (ja) 内燃機関装置およびその制御方法並びに車両
JP2008190495A (ja) 内燃機関装置およびその制御方法並びに車両
JP2009274671A (ja) ハイブリッド自動車およびその制御方法
CN113513431A (zh) 发动机装置及具备该发动机装置的混合动力汽车
JP2010105626A (ja) 車両およびその制御方法
JP3956944B2 (ja) 動力出力装置およびこれを搭載する自動車並びにその制御方法
WO2008062581A1 (fr) Dispositif de sortie de puissance et véhicule équipé de celui-ci et procédé de commande dudit dispositif de sortie de puissance
JP2009046076A (ja) 自動車およびその制御方法
JP2007283899A (ja) 内燃機関装置およびその制御方法並びに車両
JP4910970B2 (ja) 車両およびこれに搭載された内燃機関の制御方法
JP2010203408A (ja) 内燃機関装置及び自動車並びに排気再循環装置の故障診断方法
JP2010144699A (ja) ハイブリッド車およびその制御方法
JP2020132109A (ja) ハイブリッド車両
JP2009274628A (ja) ハイブリッド車およびその制御方法
JP4297174B2 (ja) 異常診断装置および異常診断方法
JP6020276B2 (ja) ハイブリッド車
JP5796440B2 (ja) ハイブリッド車のアイドリング学習装置
JP2018039299A (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043090.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007790876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12444764

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE