WO2008053734A1 - Method for compression molding electric component and compression molding apparatus for use in the method - Google Patents

Method for compression molding electric component and compression molding apparatus for use in the method Download PDF

Info

Publication number
WO2008053734A1
WO2008053734A1 PCT/JP2007/070542 JP2007070542W WO2008053734A1 WO 2008053734 A1 WO2008053734 A1 WO 2008053734A1 JP 2007070542 W JP2007070542 W JP 2007070542W WO 2008053734 A1 WO2008053734 A1 WO 2008053734A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid resin
resin
cavity
compression molding
mold
Prior art date
Application number
PCT/JP2007/070542
Other languages
English (en)
French (fr)
Inventor
Tetsuya Yamada
Tomoyuki Gotoh
Original Assignee
Towa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Corporation filed Critical Towa Corporation
Priority to CN2007800243923A priority Critical patent/CN101479087B/zh
Priority to KR1020087030098A priority patent/KR101088572B1/ko
Priority to US12/303,504 priority patent/US8105524B2/en
Priority to EP07830276A priority patent/EP2087983A1/en
Publication of WO2008053734A1 publication Critical patent/WO2008053734A1/ja
Priority to US13/335,460 priority patent/US8684718B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/044Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds
    • B29C31/045Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds moving along predetermined circuits or distributing the material according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C2043/3438Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds moving during dispensing over the moulds, e.g. laying up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12033Gunn diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to compression molding of electronic components.
  • an electronic component has been sealed with a resin material using a compression molding technique.
  • a liquid resin having translucency such as a silicone resin is used.
  • an optical element made of an LED (Light Emitting Diode) chip is sealed by compression molding.
  • a compression molding apparatus as shown in FIG. 18 is used.
  • the apparatus comprises a mold assembly 82 having an upper mold 83, a middle mold 84, and a lower mold 85.
  • a liquid resin 87 having translucency such as silicone resin is supplied from the vertical dispenser 81 to the cavity 86 of the mold assembly 82.
  • a plurality of (for example, eight) LED chips 89 mounted on a substrate 88 such as a lead frame are physically sealed by resin molding.
  • a vertical dispenser 81 is inserted between an upper mold 83 and a lower mold 85 of a conventional mold assembly 82 for compression molding. At this time, the release film 90 is already covered with the lower mold 85. In this state, the liquid resin 87 is dropped from the vertical nozzle 91 of the vertical dispenser 81 to the center position of the cavity 86 of the lower mold 85.
  • the lower mold 85 and the middle mold 84 move toward the upper mold 83.
  • the substrate 88 is already set in the upper mold 83. Therefore, the mold assembly 82 is closed with the LED chip 89 mounted on the substrate 88 facing downward. As a result, the LED chip 89 is immersed in the liquid resin 87 of the cavity 86.
  • the mold assembly 82 is opened.
  • the plurality of LED chips 89 are sealed in a resin molded body corresponding to the shape of the cavity 86.
  • a molded product is completed.
  • the part is then cut along the cutting line. It is.
  • individual chip-type LEDs are completed.
  • the above-described mold assembly 82 has a three-sheet structure composed of an upper mold 83, a middle mold 84, and a lower mold 85! /, But has a two-sheet structure composed of an upper mold and a lower mold. The mold assembly you have can also be used! /.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-165133 (see FIG. 2)
  • the liquid resin 87 is dropped from the vertical dispenser 81 to the center position of the cavity 86. Therefore, before all the predetermined amount of the liquid resin 87 is supplied into the cavity 86, the liquid resin 87 in the cavity 86 is gelled or cured by heating. In other words, the fluidity of the resin resin 87 is not impaired. As a result, the liquid resin 87 cannot be uniformly supplied to the entire cavity 86.
  • the liquid resin 87 is formed in a convex shape on the cavity 86. In this case, defects such as unfilled parts occur in the LED molded product.
  • the liquid resin 87 in the cavity 86 may be partially cured to form the cured resin 93 in the liquid resin 87. In this case, the cured resin 93 may move in the liquid resin 87. Therefore, the cured resin 93 force S wire is deformed or cut. As a result, the product yield is reduced.
  • the present invention has been made in view of the above-described problems, and an object thereof is to downsize an electronic component compression molding apparatus.
  • another object of the present invention is to provide a liquid resin It is to improve the yield of the molded product by supplying it uniformly in the mold.
  • an upper mold and a lower mold provided with a cavity are prepared.
  • the liquid resin is discharged in the horizontal direction so that the liquid resin falls to the cavity.
  • the electronic components mounted on the substrate mounted on the upper mold are immersed in the liquid resin.
  • the upper mold and the lower mold are opened.
  • a compression molding apparatus includes a lower mold provided with a cavity, and an upper mold facing the lower mold and on which a substrate on which electronic components are mounted can be mounted.
  • the apparatus includes a resin supply unit that can supply liquid resin to the cavity, and a nozzle that is detachably attached to the resin supply unit and that can discharge the liquid resin to the cavity.
  • a compression molding apparatus includes a lower mold provided with a cavity, and an upper mold facing the lower mold and on which a substrate on which electronic components are mounted can be mounted.
  • the apparatus also includes a resin supply mechanism that can supply liquid resin to the cavity and a moving mechanism that can move the resin supply mechanism so that liquid resin can be supplied to the cavity.
  • the apparatus includes a loading unit that can be loaded so that the liquid resin is guided to the resin supply mechanism, and a weighing unit that measures the liquid resin when the liquid resin is guided from the loading unit to the resin supply mechanism. Yes.
  • FIG. 1 is a cross-sectional view schematically showing a compression molding apparatus of an embodiment, showing a state before a resin supply mechanism is inserted between mold surfaces of a mold assembly.
  • FIG. 2 is a cross-sectional view schematically showing a compression molding apparatus according to an embodiment, in which a liquid resin is supplied to the cavity after the resin supply mechanism is inserted between the mold surfaces of the mold assembly. Is shown.
  • FIG. 3 is a cross-sectional view of a horizontal nozzle in the resin supply mechanism of the compression molding apparatus of the example.
  • FIG. 4 is an enlarged cross-sectional view of the main part of the compression molding apparatus of the embodiment, showing the cartridge loading part. is doing.
  • FIG. 5 is an enlarged cross-sectional view of a main part of the compression molding apparatus according to the embodiment, and shows a cartridge loading unit;
  • FIG. 6 is an enlarged plan view of a main part of the compression molding apparatus of the example, and is a diagram for explaining a method of supplying liquid resin to the cavity surface, that is, a method of spreading.
  • FIG. 7 is an enlarged plan view of the main part of the compression molding apparatus of the example, and is a view for explaining another method for supplying liquid resin to the cavity surface, that is, another method for sowing.
  • FIG. 8 is a cross-sectional view schematically showing the compression molding apparatus of the embodiment, in which the molding material supply mechanism inserts both the liquid resin and the substrate simultaneously between the mold surfaces of the mold assembly! /, This shows the state.
  • FIG. 9 is a cross-sectional view schematically showing a compression molding apparatus of another embodiment, showing a die assembly and a resin supply mechanism.
  • FIG. 10 is an enlarged schematic cross-sectional view of a main part of a measuring unit of a resin supply unit in a compression molding apparatus according to another embodiment.
  • FIG. 11 is a cross-sectional view showing a state before the liquid resin is supplied in the cartridge loading section of another embodiment.
  • FIG. 12 is a cross-sectional view showing a state after the liquid resin is supplied in the cartridge loading section of another embodiment.
  • FIG. 13 is a cross-sectional view showing a cartridge loaded in a cartridge loading unit of another embodiment.
  • FIG. 14 is a cross-sectional view showing another cartridge loading unit.
  • FIG. 15 is a cross-sectional view showing another cartridge loading unit.
  • FIG. 16 is a cross-sectional view showing another cartridge loading section.
  • FIG. 17 is a sectional view showing still another cartridge loading unit.
  • FIG. 18 is a cross-sectional view schematically showing a conventional compression molding apparatus for electronic components.
  • Substrate supply section 10 Cavity, 10a Cavity surface (bottom surface of the cavity), 11 Separate cavities (LED cavity), 12 Release film, 13 Resin supply section (main body of resin supply mechanism), 14 Cartridge loading section ( Liquid resin loading section), 14a A cartridge loading section, 14b B cartridge loading section, 15 transfer path, 15a A transfer path, 15b B transfer path, 16 control section, 17 cartridge, 17a A cartridge, 17b B Cartridge, 18 Cartridge loading body, 18a A Cartridge loading body, 18b B Cartridge loading body, 19 Pressing mechanism, 19a A Pressing mechanism, 19b B Pressing mechanism, 20 Cartridge body, 20a A Cartridge body, 20b B cartridge body, 21 plunger, 21a A plunger, 2 lb B plunger, 22 Sealing material (plunger) to
  • Example 1 [0020]
  • the compression molding method of the optical element of Example 1 and the compression molding apparatus used therefor will be described with reference to Figs.
  • reference symbol A indicates a main agent in a two-component liquid resin having translucency
  • reference symbol B indicates a curing agent thereof.
  • an optical element 2 such as an LED chip as an example of an electronic component is mounted on a substrate 1 such as a lead frame used in the present embodiment.
  • an optical element 2 such as an LED chip as an example of an electronic component is mounted on a substrate 1 such as a lead frame used in the present embodiment.
  • a plurality of, for example, eight LED chips 2 are mounted on the substrate 1.
  • Example 1 Eight LED chips 2 are collectively sealed with resin by compression molding. Thereby, a molded product is formed. The molded product is divided along the cutting line. As a result, eight chip LEDs are formed. This chip-type LED is a part of light-emitting diode related products.
  • the optical element compression molding apparatus of this embodiment includes a mold assembly 3, a resin supply mechanism 5, a substrate supply mechanism (not shown), and a molded product take-out mechanism (not shown).
  • Mold assembly 3 is for compression molding of optical elements.
  • the resin supply mechanism 5 is for supplying the liquid resin 4 to the mold assembly 3.
  • the substrate supply mechanism is for supplying the substrate 1 mounted with the optical element 2 such as an LED chip to the mold assembly 3.
  • the molded product take-out mechanism is for taking out a molded product molded by the mold assembly 3 from the mold assembly 3.
  • the substrate 1 on which the LED chip 2 is mounted is supplied to the mold assembly 3 by the substrate supply mechanism. Further, the liquid resin 4 is supplied to the mold assembly 3. Next, the mold assembly 3 is closed. Thereby, the LED chip 2 is compression-molded by the liquid resin 4 in the mold assembly 3. As a result, a LED molded product is formed. Thereafter, the molded product is taken out from the mold assembly 3 by the molded product take-out mechanism.
  • the compression molding apparatus of the present embodiment is not a transfer molding apparatus using a resin material supply pot and a resin pressurizing plunger.
  • the mold assembly 3 of the present embodiment includes an upper mold 6, a lower mold 7 disposed so as to face the upper mold 6, and a middle mold 8 provided between the upper mold 6 and the lower mold 7. ing.
  • the intermediate mold 8 is for holding the release film 12 in cooperation with the lower mold 7 and has a frame shape having a through-hole into which the lower mold 7 is inserted.
  • the upper mold 6 includes a substrate supply unit 9. The substrate 1 is set in the substrate supply unit 9 with the LED chip 2 facing downward.
  • the lower mold 7 is provided with an overall cavity 10.
  • the overall cavity 10 includes individual cavities 11 corresponding to the positions and numbers of the plurality of LED chips 2 mounted on the board 1 set in the board supply unit 9.
  • the overall cavity 10 has a cavity opening in the same plane as the mold surface of the lower mold 7. The liquid resin 4 is supplied to the entire cavity 10 through the cavity opening.
  • the substrate supply unit 9 of the upper mold 6 has a mechanism (not shown) for holding a substrate such as a fixture, and the mechanism is such that the LED chip 2 is directed downward. Fix substrate 1 in the state where
  • the mold assembly 3 of Example 1 has a mechanism (not shown) for supplying a release mold 12 that is tensioned between the middle mold 8 and the lower mold 7.
  • the release film 12 covers the mold surface of the lower mold 7 so as to correspond to the shape of the entire cavity 10 including the individual cavities 11.
  • the release film 12 is sandwiched between the middle mold 8 and the lower mold 7 by closing the middle mold 8 and the lower mold 7.
  • the plurality of LED chips 2 are inserted into the entire cavity 10 of the lower mold 7 covered with the release film 12. Further, as described above, the plurality of LED chips 2 are arranged so as to correspond to the positions of the plurality of individual cavities 11, respectively.
  • the mold assembly 3 shown in the first embodiment includes a heater.
  • the heater within the entire cavity 10 has a force S for once melting the liquid resin 4 and finally the liquid resin 4 is thermally cured.
  • the LED chip 2 mounted on the substrate 1 is immersed in the liquid resin 4 supplied to the entire cavity 10. As a result, the LED chip 2 is compression-molded with the liquid resin 4.
  • the mold assembly 3 of the present embodiment is not shown, but the side surface of the overall cavity 10 is formed. It has a member that constitutes the bottom surface of the entire cavity 10 that can move with respect to the member to be formed.
  • the members constituting the bottom surface of the overall cavity 10 can move in the vertical direction. Therefore, the member constituting the bottom surface of the overall cavity 10 can press the liquid resin 4 in the overall cavity 10 with the release film 12 interposed therebetween.
  • the mold assembly 3 of the present embodiment can apply pressure to the liquid resin 4 melted by heating in the overall cavity 10.
  • the resin sealing molding apparatus of this embodiment is for covering the entire mold cavity 10 on the release film 12 corresponding to the shape of the inner surface of the mold assembly cavity 10 including the individual cavities 11 described above.
  • a coating mechanism is provided.
  • the covering mechanism includes, for example, a suction hole provided so as to communicate with the mold assembly cavity 10 and a vacuum bow mechanism (pump) for forcibly discharging air through the suction hole.
  • the vacuuming mechanism forcibly exhausts air from the mold assembly cavity 10 through the suction hole.
  • the release film 12 adheres to the overall cavity 10 along the surface of the overall cavity 10.
  • the liquid resin 4 for example, a translucent silicone resin or the like is used.
  • the liquid main agent A and the liquid curing agent B are mixed at a predetermined ratio, for example, a volume ratio of 10: 1.
  • a predetermined ratio for example, a volume ratio of 10: 1.
  • the liquid resin 4 In the production of the liquid resin 4, first, in the resin supply mechanism 5, each of the main component A and the curing agent B of the silicone resin is weighed. Main agent A and curing agent B are mixed. Next, the liquid resin 4 is supplied into the entire cavity 10. The liquid resin 4 is a mixed silicone resin.
  • the resin supply mechanism 5 of this embodiment includes a resin supply unit 13 constituting the main body, a cartridge loading unit 14 that is a liquid resin loading unit, a moving mechanism 100 that moves the resin supply unit 13, and a liquid resin 4 A flowing transfer path 15 (flexible hose) and a control unit 16 for controlling the moving mechanism 100 and the like are provided.
  • the cartridge loading unit 14 supplies the liquid resin 4 to the resin supply unit 13.
  • the main agent A and the curing agent B are separately supplied to the resin supply unit 13.
  • the moving mechanism 100 moves the resin supply unit 13 in the X direction (direction perpendicular to the paper surface), the Y direction, and the Z direction shown in FIG. 1, ie, from the resin supply unit 13 to the die assembly 3. With reference to the vertical direction, it can be moved along the left-right direction, the height direction, and the front-rear direction.
  • Each of the main agent A and the curing agent B is transferred between the cartridge loading unit 14 and the resin supply unit 13 in the transfer path 15.
  • the control unit 16 controls each of the cartridge loading unit 14 and the moving mechanism 100 of the resin supply unit 13.
  • the control unit 16 can adjust the position in the z direction after adjusting the position of the resin supply unit 13 in the Y direction by controlling the moving mechanism 100. That is, the control unit 16 controls the moving mechanism 100 of the resin supply unit 13 so that the entire resin supply unit 13 or a part of the resin supply unit 13 is placed between the mold surfaces of the mold assembly 3, that is, the upper mold 6 And move between and lower mold 7 (medium mold 8).
  • liquid resin 4 is supplied from the cartridge loading unit 14 to the resin supply unit 13 through the transfer path 15. Thereafter, the liquid resin 4 is supplied to the entire cavity 10 covered with the release film 12.
  • the cartridge loading unit 14 includes an A cartridge loading unit 14a corresponding to the main agent A and a B cartridge loading unit 14b corresponding to the curing agent B.
  • the A cartridge loading unit 14a and the B cartridge loading unit 14b basically have the same configuration.
  • the A cartridge loading section 14a includes an A force cartridge 17a filled with the main agent A, and an A force cartridge loading section main body 18a loaded with the A cartridge 17a. And an A pressing mechanism 19a such as an air cylinder that discharges the main agent A in the A cartridge 17a by pressing. Further, the supply pipe attaching / detaching portion 108 of the A cartridge loading portion 14a can be mounted with the tip portion of the A cartridge 17a.
  • the A cartridge 17a includes a hollow cylindrical A cartridge main body 20a, an A plunger 21a that applies pressure to the resin by pressing the main agent A in the A cartridge main body 20a, and air mixed into the resin.
  • a seal material 22a such as an O-ring provided.
  • the main component A of the liquid resin 4 in the A cartridge main body 20a is transferred from the A cartridge 17a to the A cartridge loading section main body. It can be transferred to the resin supply section 13 through the supply pipe 18a and the A transfer path 15a.
  • the B plunger 21b is pressed by the B pressing mechanism 19b, whereby the curing agent B in the B cartridge main body 20b is removed from the B cartridge 17b. It can be transferred to the resin supply section 13 through the supply pipe of the B cartridge loading section main body 18b and the B transfer path 15b.
  • the main agent A and the curing agent B can be transferred from the cartridge loading sections 14a and 14b to the resin supply section 13 through the transfer path 15, respectively.
  • the main agent A and the curing agent B are adjusted to a predetermined ratio when they are transferred from the cartridge loading parts 14a and 14b to the resin supply part 13.
  • the cartridge 17 can be attached to or removed from the cartridge loading body 18. Therefore, the cartridge 17 can be replaced as appropriate. Therefore, in the optical element compression molding apparatus, it is necessary to interrupt compression molding due to the absence of the main agent A and the curing agent B to be supplied from the cartridge loading unit 14 to the resin supply unit 13. Absent. As a result, power S can be used to improve the productivity of molded products.
  • the cartridge loading unit 14 has a plunger 21, and a sealing material 22 is provided on the peripheral surface of the plunger 21 to prevent air from being mixed into the resin. Therefore, the gap between the inner diameter of the cartridge main body 20 that swells and expands with the liquid resin 4 and the outer diameter of the plunger 21 is sealed by the sealing material 22.
  • the sealing material 22 closes the gap between the cartridge body 20 and the plunger 21, it is possible to prevent bubbles from entering the liquid resin 4 supplied to the entire cavity 10. And force S. Therefore, it is possible to prevent air bubbles from remaining in the transparent resin part of the LED molded product. As a result, the yield of LED molded products can be improved and the optical quality (characteristics) of the LED molded products can be improved.
  • the main body of the resin supply mechanism 5, that is, the resin supply unit 13 includes a horizontal nozzle 23, a liquid resin 4, a metering unit 24, a coupling pipe 25, and a rotation drive unit 26.
  • the liquid resin 4 contains a main agent A and a curing agent B.
  • the rotary drive unit 26 includes a rod 30.
  • the horizontal nozzle 23 is a liquid resin 4 in which the main agent A and the curing agent B are mixed.
  • the measuring unit 24 measures each of the main agent A and the curing agent B transferred from the cartridge loading unit 14 through the transfer path 15.
  • the liquid resin 4 is transferred from the measuring unit 24 to the horizontal nozzle 23 through the coupling pipe 25.
  • the rotation drive unit 26 is for transferring the liquid resin 4 from the coupling pipe 25 to the horizontal nozzle 23.
  • the main agent A and the curing agent B force are respectively transferred from the cartridge loading unit 14 to the measuring unit 24 through the transfer path 15 and measured by the measuring unit 24. Thereafter, the main agent A and the curing agent B are transferred to the horizontal nozzle 23 through the coupling pipe 25. Further, the main agent A and the curing agent B are mixed in the horizontal nozzle 23 by the action of the rotary drive unit 26. As a result, the liquid resin 4 is formed. The liquid resin 4 is finally supplied to the entire cavity 10.
  • the measuring section 24 has an A measuring section 24a that measures the main agent A, that is, an A measuring cylinder, and a B measuring section 24b that measures the hardener B, that is, a B measuring cylinder.
  • each of the A measuring unit 24a and the B measuring unit 24b has a measuring cylinder body, a pressing piston, and a mechanism for driving the pressing piston.
  • the base agent A is supplied from the A cartridge loading unit 14a to the A measuring unit 24a through the A transfer path 15a.
  • the main agent A is sucked into the main body of the measuring cylinder A and filled into the main body of the measuring cylinder A.
  • the main agent A in the main body of the A measuring cylinder is continuously pressed by the pressing A piston within a predetermined time.
  • a predetermined amount of the main agent A is continuously transferred to the connecting pipe 25. This is called the servo cylinder method.
  • the curing agent B is supplied from the B cartridge loading unit 14b to the B measuring unit 24b through the B transfer path 15b. Thereafter, the curing agent B in the B measuring cylinder body is intermittently pressed by the pressing B piston for a predetermined time corresponding to a predetermined time during which a predetermined amount of the main agent A is transferred in the A measuring section 24a. At this time, a Nors wave is applied to the curing agent B. Thereby, the curing agent B is intermittently transferred to the connecting pipe 25. This is called the Digimeta cylinder method.
  • the volume mixing ratio of the main agent A and the curing agent B in the liquid resin 4 can be set to 10: 1.
  • the connecting pipe 25 is provided with a T-shaped pipe, and the T-shaped pipe has two inlets 25a and 25b and one outlet 25c. More specifically, the connecting pipe 25 includes an A inlet (A pipe) 25a that receives the main agent A from the A measuring section 24a, and a B inlet (B self-tube) 25b that receives the hardener B from the B measuring section 24b. And an AB outlet (AB pipe) 25c for guiding the main agent A and the curing agent B to the nozzle 23. Further, the AB outlet 25c has a nozzle mounting portion 25d to which the horizontal nozzle 23 can be mounted. In addition, the AB pipe 25c merges the flow of the A pipe 25a and the flow of the B pipe 25b.
  • the main agent A is supplied from the A measuring section 24a to the A inlet 25a (A pipe) and supplied from the curing agent B force 3 ⁇ 4 measuring section 24b to the B inlet 25b (B pipe 25b).
  • the mixed liquid of the curing agent B is also transferred to the horizontal nozzle 23 with the AB pipe 25c (AB outlet 25c) force.
  • the horizontal nozzle 23 includes, for example, a hollow cylindrical nozzle body 27 and a screw supply member 28.
  • the spiral supply member 28 is rotatably provided in the nozzle body 27 and has a spiral structure for mixing the main agent A and the curing agent B! /.
  • the spiral supply member 28 rotates in the nozzle body 27. Thereby, the main agent A and the curing agent B are mixed. Further, the liquid mixture of the main agent A and the curing agent B is transferred from the coupling pipe 25 to the nozzle tip 27a through the nozzle body 27. Thereafter, the liquid resin 4 is discharged from the discharge port 29 provided in the tip portion 27a.
  • the base end portion 27b of the horizontal nozzle 23 can be attached to the nozzle mounting portion 25d of the coupling pipe 25, and can be detached from the nozzle mounting portion 25d. Therefore, the old horizontal nozzle 23 can be easily replaced with a new horizontal nozzle 23. As a result, the horizontal nozzle 23 can be used as a disposable part. Further, it is possible to easily clean each of the space in the horizontal nozzle 23 and the space in the nozzle mounting portion 25d of the coupling pipe 25.
  • the rotation drive unit 26 includes a motor M that rotates the spiral supply member 28 in the forward and reverse directions, and a rod 30 that connects the motor M and the spiral supply member 28. And have.
  • the rod 30 penetrates the space in the AB pipe 25c and is inserted into the space in the nozzle mounting portion 25d. Furthermore, the rod 30 and the spiral supply member 28 are locked to each other by the locking portion 30a! /.
  • the liquid resin 4 can be discharged at a predetermined pressure in the horizontal direction from the discharge port 29 of the nozzle tip portion 27a. As a result, the liquid resin 4 can be supplied into the entire cavity 10.
  • the liquid resin 4a discharged from the discharge port 29 of the nozzle tip 27a is horizontally aligned.
  • the dropping position of the liquid resin 4 on the bottom surface of the overall cavity 10 is in the vicinity of the position immediately below the discharge port 29.
  • the spiral supply member 28 is rotated in the reverse direction by rotating the motor M (rod 30) in the reverse direction, the mixed liquid resin 4 is transferred from the nozzle tip 27a to the nozzle base 27b. That power S. That is, the liquid resin 4 can be drawn toward the nozzle body 27 from the discharge port 29 of the nozzle tip 27a. Therefore, the liquid resin 4 force S is prevented from dripping from the discharge port 29 with the force S.
  • the resin supply unit 13 is moved along the X direction, the Y direction, and the Z direction by the moving mechanism 100.
  • the horizontal nozzle 23, which is the whole or a part of the resin supply unit 13, isotropic force.
  • the position in the Y direction is fixed, and along the Z direction, the upper mold 6, the lower mold 7, and the intermediate mold 8 Inserted into or taken out of.
  • the horizontal nozzle 23 is inserted into the mold assembly 3 in a state of extending horizontally. Therefore, the distance 31 can be reduced as compared with the case where a conventional vertical dispenser is inserted between mold surfaces of a mold assembly. Therefore, the force S can be used to reduce the size of the compression molding apparatus.
  • an outside air blocking member 32 such as an O-ring is provided so as to surround the substrate supply unit 9. As shown in FIGS. 1 and 2, the outside air blocking member 32 is provided at a position facing the mold surface on the upper mold 6 side of the middle mold 8.
  • the mold surface of the upper mold 6 has a suction port, and the suction port is connected to a vacuum pumping mechanism such as a vacuum pump for forcibly discharging air by suction.
  • the compression molding apparatus when the outside air blocking member 32 of the upper mold 6 is brought into contact with the mold surface of the upper mold 6 on the middle mold 8, the mold surface of the upper mold 6 and the upper mold 6 of the middle mold 8 are The space inside the mold assembly 3 is shielded from the outside air while being separated from the mold surface by a predetermined distance.
  • the vacuum evacuation mechanism forcibly sucks air from the space that is blocked from the outside air, thereby blocking it from the outside air.
  • the space thus set is set to a predetermined vacuum state. This prevents bubbles from entering the liquid resin 4. Therefore, voids (bubbles) are prevented from forming in the transparent resin part of the molded product molded in the mold assembly cavity 10.
  • the substrate 1 on which a predetermined number of LED chips 2 are mounted is supplied to the substrate supply unit 9 of the upper mold 6 of the opened mold assembly 3 by the substrate supply mechanism. At this time, the surface of the substrate 1 on which the LED chip is mounted is directed downward.
  • the release film 12 is sandwiched between the middle mold 8 and the lower mold 7 in a state where the entire inner surface of the cavity 10 and the mold surface of the lower mold 7 are covered.
  • the resin supply unit 13 is moved by the moving mechanism 100. Accordingly, the horizontal nozzle 23 provided in the resin supply unit 13 is inserted between the mold surfaces of the upper mold 6 and the lower mold 7 (medium mold 8) in a state of extending in a horizontal state. Thereafter, the horizontal nozzle 23 discharges the liquid resin 4 in the horizontal direction at a predetermined pressure from the discharge port 29 at the tip 27a. Thereby, the liquid resin 4 is supplied into the entire cavity 10 covered with the release film 12. Thereafter, the liquid resin 4 is heated and melted in the entire cavity 10.
  • the mold assembly 3 is closed.
  • the LED chip 2 mounted on the substrate 1 is immersed in the liquid resin 4 in the lower mold cavity 10. That is, compression molding is performed.
  • the upper mold 6 and the lower mold 7 are opened.
  • the LED molded product is taken out by the molded product take-out mechanism.
  • the liquid resin 4 in the entire cavity 10 may be pressed by a member constituting the bottom surface of the entire cavity 10 through the release film 12 as the cavity bottom member moves upward. According to this, the adhesion between the substrate 1 and the liquid resin 4 can be improved.
  • the liquid resin 4 has the entire cavity by moving the discharge port 29 of the horizontal nozzle 23 along each of the X direction and the Z direction while maintaining the position in the Y direction. 10 is supplied.
  • the horizontal nozzle 23 is maintained in a horizontally extending state and at a predetermined height position. In this state, it is inserted between the mold surfaces of the mold assembly 3. At this time, the tip 27a of the horizontal nozzle 23 is gradually inserted between the mold surfaces of the 1S mold assembly 3.
  • the horizontal nozzle 3 drops the liquid resin 4 on the inner surface of the entire cavity 10, that is, on the cavity surface 10 a.
  • the discharge port 29 of the nozzle tip 27a is arranged so that the dropping position of the liquid resin 4 is the center position I of the cavity surface 10a.
  • the central position I on the cavity surface 10a and the opening on the cavity surface are related to the supply position of the liquid resin 4 on the lower mold cavity surface 10a.
  • Four corner positions II III IV V are specified as positions near the periphery.
  • the liquid resin 4 has a drop position between the central position I and the corner position II, between the central position I and the corner position III, and between the central position I and the corner position IV.
  • the capacity 10 is supplied so as to reciprocate between the central position I and the corner position V separately in the order of parentheses.
  • the locus of the liquid resin 4 on the cavity surface 10a As shown, the liquid resin 4 is supplied to the entire cavity 10.
  • the liquid resin 4 is evenly distributed on the lower mold cavity surface 10a. That is, the surface of the liquid resin 4 is not a convex surface but a horizontal surface. This prevents the unfilled portion from remaining in the molded product compressed in the lower mold cavity 10. As a result, it is possible to prevent the quality of the molded product from varying.
  • the liquid resin 4 when the liquid resin 4 is supplied to the cavity surface 10a in an X shape, the liquid resin 4 is quickly supplied to positions near the four corners of the cavity surface 10a. Therefore, partial hardening of the liquid resin 4 at positions near the four corners of the cavity surface 10a can be prevented. For this reason, the occurrence of a problem that the lump of the hardened resin is mixed into the molded product is prevented. In addition, it is possible to prevent the occurrence of a problem that the lump of cured resin deforms or cuts the LED wire. Therefore, the yield of molded products can be improved.
  • the horizontal nozzle 23 extends between the mold surfaces of the mold assembly 3 in a state of extending horizontally at a predetermined height position. Inserted. At this time, the horizontal nozzle 23 is gradually inserted from the distal end portion 27a toward the proximal end portion 27b. As a result, the first drop position force of the liquid resin 4 on the cavity surface 10a, the discharge port 29 of the nozzle tip 27a is arranged above the cavity 10a so as to be a position I near the corner on the cavity surface 10a. .
  • the horizontal nozzle 23 is moved so as to move in the Z direction after moving in the X direction in the dropping position force X of the liquid resin 4 on the cavity surface 10a. This also distributes the liquid resin 4 evenly within the cavity 10.
  • the falling position of the liquid resin 4 on the cavity surface 10a moves in the order of the required positions I, II, III, IV, V, and VI.
  • the discharge port 29 of the horizontal nozzle 23 moves.
  • the locus of the dropping position of the liquid resin 4 draws an S shape on the cavity surface 10a.
  • the supply method shown in FIG. 7 can provide the same effect as that obtained by the supply method shown in FIG.
  • Example 2 Next, with reference to FIG. 8, the resin sealing molding method of Example 2 and the resin sealing molding apparatus used therefor will be described.
  • the mold assembly 3 of the optical element compression molding apparatus of the present embodiment is the same as that of the first embodiment. Do not repeat.
  • the compression molding apparatus includes a simultaneous conveyance mechanism 51 that supplies the substrate 1 and the liquid resin 4 to the mold assembly 3 between the mold surfaces at the same time.
  • the simultaneous transport mechanism 51 includes a main body 52 and a substrate supply mechanism 53 that is provided on the upper side of the simultaneous transport mechanism 51 and supplies the substrate 1.
  • the resin supply unit 13 of the resin supply mechanism 5 is fixed to the lower part of the main body 52 or provided so as to be movable along the X direction and the Z direction with respect to the main body 52. .
  • the substrate supply mechanism 53 and the resin supply unit 13 are integrally provided in the main body 52. Therefore, the simultaneous transport mechanism 51 can supply the substrate 1 to the substrate supply unit 9 of the upper mold 6 and simultaneously supply the liquid resin 4 into the entire cavity 10 of the lower mold 7.
  • the substrate supply mechanism 53 includes a substrate platform 54 and a substrate lifting / lowering unit (lift) 55.
  • the substrate 1 is placed on the substrate platform 54 with the LED chip 2 facing downward by the substrate elevating unit 55. By being lifted, it is set in the substrate supply section 9.
  • liquid resin supply unit 13 shown in the second embodiment is the same as the configuration of resin supply unit 13 shown in the first embodiment, and therefore the description thereof will not be repeated.
  • the liquid resin 4 is horizontally discharged from the discharge port 29 of the horizontal nozzle 23 at a predetermined pressure. It is discharged in the direction and supplied into the entire cavity 10.
  • a tray portion 56 that receives the liquid resin 4 that hangs down from the discharge port 29 of the nozzle tip portion 27a is provided on the lower side of the main body 52 of the simultaneous transport mechanism 51.
  • the tray 56 is configured to discharge the nozzle 29 at the nozzle tip 27a. Move to the lower position.
  • the tray 56 is separated from the position below the discharge port 29 of the nozzle 23 when the discharge port 29 force of the nozzle 23 and the cavity 10 are falling.
  • the tray 56 moves again to a position below the discharge port 29 of the nozzle tip 27a and receives the liquid resin 4 dripping from the discharge port 29.
  • the liquid resin 4 dripping from the discharge port 29 is prevented from adhering to the mold surface other than the inner surface of the mold assembly cavity 10 as a resin beam. Therefore, when the mold assembly 3 is closed, if there is a gap between the mold surfaces due to the resin flash adhering between the mold surfaces! Is done.
  • the simultaneous transport mechanism 51 is inserted between the mold surfaces of the mold assembly 3, the substrate 1 and the liquid resin 4 are simultaneously supplied to the mold assembly 3.
  • the substrate 1 is mounted on the substrate supply unit 9 of the upper mold 6 and the liquid resin 4 falls to the entire cavity 10 covered with the release film 12.
  • the tray 56 is positioned away from the position below the discharge port 29 of the horizontal nozzle 23! /.
  • the LED chip 2 mounted on the substrate 1 is immersed in the liquid resin 4 in the entire cavity 10 and resin-sealed by compression molding. Thereafter, after the time necessary for curing the liquid resin 4 has elapsed, the upper mold 6 and the lower mold 7 (medium mold 8) are opened, and the molded product is taken out by the take-out mechanism.
  • the simultaneous transport mechanism 51 between the mold surfaces of the mold assembly 3 provided in the compression molding apparatus for the optical element 51 At the same time, the horizontal nozzle 23 is inserted in a state of extending horizontally. Therefore, compared with the distance 92 between the mold surfaces of the mold assembly 82 of the compression molding apparatus provided with the conventional vertical dispenser 81, the distance between the mold surfaces of the mold assembly 3 of this embodiment is Distance 57 is small. As a result, the compression molding apparatus for the optical element (electronic component) can be miniaturized.
  • the mechanism that forms a vacuum bow I inside the entire cavity 10 and the parts that constitute the bottom surface of the entire cavity 10 are entirely contained. If a structure that can be separated from the members constituting the side surface of the cavity 10 is employed, the same effect as that obtained by the resin sealing molding method of Example 1 can be obtained.
  • the method of supplying the liquid resin 4 to the mold assembly cavity 10 shown in Figs. 6 and 7 can be used. Therefore, in this embodiment, the force S to obtain the same effect as that obtained by the supply method shown in FIGS. 6 and 7 is used.
  • the spiral supply member 28 is provided in the horizontal nozzle 23, and the structure is illustrated as a mechanism for mixing the liquid resin 4.
  • a uniaxial eccentric screw pump (Mono pump), which will be described later, may be used as a mechanism for mixing the liquid resin 4 and supplying it to the overall cavity 10.
  • a mechanism for promoting mixing of the main agent A and the curing agent B is not provided, and only the hollow cylindrical nozzle body 27 may be attached to the resin supply unit 13.
  • the main agent A flowing through the A pipe 25a and the curing agent B flowing through the B pipe 25b merge in the AB pipe 25c.
  • a horizontal nozzle is inserted between the mold surfaces of the mold assembly 3, but the discharge port 29 of the horizontal nozzle 23 is disposed outside the mold assembly 3.
  • the liquid resin 4 may be discharged in the horizontal direction at a predetermined pressure that reaches the entire cavity 10 from the discharge port 29 of the horizontal nozzle 23.
  • the motor M is rotated in the reverse direction to draw the liquid resin 4 into the horizontal nozzle 23, or the discharge of the liquid resin 4
  • Example 3 [0112] Next, the compression molding method of Example 3 and the compression molding apparatus used therefor will be described with reference to FIGS. Further, the compression molding apparatus of the third embodiment is used in the above-described embodiments, and is used in the configuration described below.
  • the configuration of the electronic component compression molding apparatus in the present embodiment is basically the same as that in each of the above-described embodiments. Since the parts denoted by the same reference numerals have the same structure, the description thereof will not be repeated unless particularly necessary.
  • the electronic component compression molding apparatus shown in Figs. 9 and 10 includes a compression molding mold assembly 3, a resin supply mechanism 61, and the like.
  • the resin supply mechanism 61 includes a cartridge loading unit 14 as a loading unit for the liquid resin 4 and a resin supply unit 62.
  • the resin supply unit 62 includes a measuring unit 63 that measures the liquid resin 4 supplied from the cartridge loading unit 14, and a horizontal nozzle that horizontally discharges the liquid resin 4 into the cavity 10 of the mold assembly 3. And a connecting pipe 25 having a T-shaped pipe for communicating the measuring portion 63 and the horizontal nozzle 64.
  • 9 and 10 are basically the same as the cartridge loading section 14 shown in FIG. 4 and the coupling pipe 25 shown in FIG. 3 of the first embodiment. It has a structure.
  • the liquid resin 4 is supplied from the cartridge loading unit 14 to the measuring unit 63.
  • the liquid resin 4 is measured by the measuring unit 63 and then supplied to the joint pipe 25.
  • the liquid resin 4, that is, the main agent A and the curing agent B are mixed, and reaches the horizontal nozzle 64 via the coupling pipe 25.
  • the liquid resin 4 is discharged from the discharge port 64a of the horizontal nozzle 64 at a predetermined pressure in the horizontal direction, and is supplied to the entire cavity 10 covered with the release film 12.
  • the metering unit 63 includes a metering nozzle unit 65 for metering the liquid resin 4 using a uniaxial eccentric screw pump (Mono pump), and a motor 66 for driving the metering nozzle unit 65.
  • a metering nozzle unit 65 for metering the liquid resin 4 using a uniaxial eccentric screw pump (Mono pump)
  • a motor 66 for driving the metering nozzle unit 65.
  • the metering nozzle portion 65 includes a rotor 67 connected to the motor 33. (A configuration corresponding to a male screw) and a stator 68 (a configuration corresponding to a female screw) provided on the pipe inner wall of the metering nozzle portion 65. Further, when the motor 66 rotates the rotor 67, a predetermined amount of the liquid resin 4 can be supplied into the coupling pipe 25.
  • the horizontal nozzle 64 has a mixing member (for example, a spiral mixing member) having a shape suitable for mixing, for example, a two-component liquid resin in the nozzle body. Member). Therefore, the main agent A and the curing agent B become turbulent in the horizontal nozzle 64 and are mixed uniformly.
  • the horizontal nozzle 64 is provided so as to be attachable to and detachable from the joint pipe 25 in the same manner as the horizontal nozzle 23 of the first embodiment. Therefore, the horizontal nozzle 64 can be used as a disposable product (see nozzle mounting part 25d shown in Fig. 3).
  • the two measuring parts 63, the coupling pipe 25, and the horizontal nozzle 64 respectively corresponding to the main agent A and the curing agent B are arranged as the resin supply part 62 along the same horizontal plane.
  • the main agent A and the curing agent B are separately supplied from the cartridge loading unit 14 to the corresponding measuring units 63 (measuring nozzle units 65).
  • one predetermined amount of the main agent A and another predetermined amount of the curing agent B are individually weighed by the measuring nozzle unit 65.
  • the main agent A and the curing agent B are respectively supplied from the measuring nozzle section 65 to the horizontal nozzle 64 through the coupling pipe 25 and mixed there (see A pipe 25a B pipe 25b AB pipe 25c shown in Fig. 3). ).
  • the liquid resin 4 is discharged in the horizontal direction at a predetermined pressure from the discharge port 64a of the horizontal nozzle 64. As a result, the liquid resin 4 is supplied into the lower mold cavity 10.
  • the horizontal nozzle 64 extends horizontally between the upper mold 6 and the lower mold 7 (medium mold 8), as in the above-described embodiments. It is purchased in the state and it is pulled out. Therefore, it is possible to reduce the distance 69 between the mold surfaces of the mold assembly 3 as compared with the mold assembly 82 of the compression molding apparatus provided with the conventional vertical dispenser 81. As a result, the compression molding apparatus can be reduced in size.
  • the liquid resin 4 can be sucked into the nozzle 64 from the discharge port 64a by rotating the rotor 67 of the measuring nozzle portion 65 in the reverse direction. As a result, the liquid resin 4 is discharged from the outlet 64a. Use force S to prevent drooping.
  • the horizontal nozzle 23 described in the first embodiment can be used instead of the horizontal nozzle 64.
  • the resin supply unit 62 may be incorporated in the simultaneous transport mechanism 51 described in the above-described embodiment.
  • FIG. 11 and 12 Another cartridge loading unit using the air cylinder will be described with reference to FIGS. 11 and 12.
  • FIG. The cartridge loading unit can be used in place of the cartridge loading unit 14 described with reference to FIGS. 4 and 5.
  • the liquid resin loading unit 71 is an ashi that presses the cartridge 17, the main body 72, and the liquid resin 4 (main agent A or curing agent B) in the cartridge 17.
  • Linda 73 pressing mechanism
  • the cartridge 17 includes a cartridge body 20 and a plunger 21 that presses the liquid resin 4 in the cartridge body 20.
  • the air cylinder 73 includes a piston 73a (mouth), a pressing member 74 provided at the tip of the piston 73a, and a drive unit 73b (cylinder unit) that drives the piston 73a provided with the pressing member 74. have. Further, on the peripheral surface of the pressing member 74, a sealing material 74a, for example, an O-ring, for preventing air from being mixed into the resin is provided.
  • the liquid resin loading portion 71 described above has two independent structures corresponding to the main agent A and the curing agent B in the liquid resin 4, respectively.
  • the cartridge 17 is mounted on the cartridge body 20 in the liquid resin loading section 71 described above.
  • the drive unit 73b drives the piston 73a and the pressing member 74
  • the plunger 21 moves and the liquid resin 4 in the cartridge 17 is pressed.
  • the main agent A or the curing agent B respectively flows from the supply pipe 75 at the tip of the cartridge 17 through the transfer path 15 to each of the two metering parts 63 (24) provided in the resin supply part 62 (13). Supplied to.
  • a sealing material 74a is provided around the pressing member 74 to prevent air from being mixed into the resin. Therefore, bubbles may be mixed into the liquid resin 4 supplied to the resin supply mechanism 61 (5). Is prevented.
  • FIGS. 13 to 17 another liquid resin loading unit using a pressure-resistant pneumatic tank (for example, steel) as a pressing mechanism will be described.
  • the pneumatic tank is made of steel, for example.
  • the liquid resin loading section can be used in place of the cartridge loading section 14 shown in FIGS. 4 and 5 described above.
  • the liquid resin 4 loading section 101 shown in FIGS. 13 to 15 includes a cartridge 17 shown in FIG. 13, a pressing member 102 that presses the liquid resin 4 in the cartridge 17, and a periphery of the pressing member 102. And a sealing material 102a (for example, an O-ring) for preventing air from entering the resin.
  • the loading unit 101 presses the pressing member 102 to press the liquid resin 4 in the cartridge 17 to apply pressure to the liquid resin 4, and in the pneumatic tank 103
  • a pressurizing mechanism 104 such as an air compressor for pressurizing the air 110 and a pressurizing path 105 such as a pressurizing tube for communicating the pneumatic tank 103 and the pressurizing mechanism 104 are provided.
  • the cartridge 17 includes a cartridge main body 20, a plunger 21, and a supply pipe 75 (connected to the transfer path 15) provided on the tip end side of the cartridge main body 20.
  • the pneumatic tank 103 includes a tank body 106, a lid 107, and a supply pipe attaching / detaching portion 108 provided on the lid 107.
  • the supply pipe 75 is attached to the supply pipe attaching / detaching portion 108. Further, by attaching the lid 107 to the tank body 106, the space in the pneumatic tank 103 can be sealed. However, the space in the pneumatic tank 103 is in communication with the pressurizing path 105 and the supply pipe attaching / detaching portion 108.
  • the supply pipe 75 shown in FIG. 13 is attached to the supply pipe attaching / detaching portion 10 of the lid 107 with the pressing member 102 attached to the plunger 21 side of the cartridge body 20.
  • the lid 107 is attached to the tank body 106, and the cartridge 17 is inserted into the tank body 106 together with the pressing member 102.
  • the air 110 as the gas in the pneumatic tank 103 is pressurized by the pressurizing mechanism 104 through the pressurizing path 105.
  • the air 110 is pressed into the pressing member 102 and the plunger 2. Press 1 together.
  • the liquid resin 4 in the cartridge body 20 is pressed by the plunger 21.
  • the liquid resin 4 is supplied from the supply pipe 75 of the cartridge 17 to each of the two measuring parts 63 (24) of the resin supply mechanism 61 (5) through the transfer path 15.
  • a small cartridge 109 smaller than the cartridge 17 may be installed in the pneumatic tank 103.
  • the small cartridge 109 includes a small cartridge main body, a small plunger, a small pressing member, and a supply pipe 75.
  • a container 111 in which the liquid resin 4 is placed is installed in the pneumatic tank 103.
  • the container 111 has an opening at the top.
  • the liquid resin 4 in the container 111 and the space in the supply pipe attaching / detaching part 108 of the lid 107, that is, the space in the transfer path 15 outside the pneumatic tank 103 communicate with each other by the supply pipe 112. Connected to
  • the liquid resin 4 in the container 111 is pressed by pressurizing the air 110 in the pneumatic tank 103 by the pressurizing mechanism 104, the liquid resin 4 is supplied to the supply pipe 112 and It is supplied to each of the two measuring parts 63 (24) of the resin supply mechanism 61 (5) through the transfer path 15.
  • a structure in which the liquid resin 4 is directly placed in the tank body 106 may be used.
  • the liquid resin 4 in the tank body 106 and the supply pipe attaching / detaching portion 108, i.e., the space in the transfer path 15 outside the pneumatic tank 103 are connected to each other by the supply pipe 112. /! Therefore, if the surface of the liquid resin 4 in the tank body 106 is pressed by applying pressure to the air 110 in the pneumatic tank 103 by the pressurizing mechanism 104, the liquid resin 4 is supplied to the supply pipe 112. It is supplied to each of the two measuring parts 63 (24) of the resin supply mechanism 61 (5) through the transfer path 15.
  • two pneumatic tanks 103 may be provided as liquid resin mounting portions 101.
  • each of the two cartridges 17 and 109, each of the two containers 111, and each of the two tank bodies 106 may be provided so as to correspond to the main agent A and the curing agent B of the liquid resin 4.
  • the two cartridges 17 and 109, the two containers 111, and the two tank bodies 106 may be provided in one pneumatic tank 103 so as to correspond to the main agent A and the curing agent B, respectively.
  • a plurality of supply pipe attaching / detaching portions 108 may be provided in one pneumatic tank 103.
  • gases such as nitrogen gas and carbon dioxide gas may be used! /.
  • the mold assembly 3 having the upper mold 6, the middle mold 8, and the lower mold 7 is used. However, even if the mold assembly having the upper mold and the lower mold is used. Good.
  • the liquid resin 4 is supplied to the entire cavity 10 covered by the release film 12 and supplied to the entire cavity 10 not covered by the release film 12. May be.
  • a one-component liquid resin may be used.
  • a transparent liquid resin 4 is used.
  • a translucent liquid resin or an opaque liquid resin may be used.
  • the force at which the silicone resin 4 is used may be used as another thermosetting resin, for example, an epoxy resin.
  • a thermoplastic resin may be used instead of the thermosetting resin.
  • the power of resin sealing of an optical element such as an LED chip, etc.
  • the electronic parts other than the optical element may be sealed with resin. ! /

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

明 細 書
電子部品の圧縮成形方法およびそれに用いられる圧縮成形装置 技術分野
[0001] 本発明は、電子部品の圧縮成形に関するものである。
背景技術
[0002] 従来から、電子部品が圧縮成形技術を用いて樹脂材料によって封止されている。
圧縮成形においては、たとえば、シリコーン樹脂等の透光性を有する液状樹脂が用 いられる。それにより、たとえば、 LED (Light Emitting Diode)チップからなる光素子 等が圧縮成形によって封止される。
[0003] 圧縮成形においては、図 18に示されるような圧縮成形装置が用いられる。この装置 は、上型 83、中型 84、および下型 85を有する型組品 82を備えている。この装置を 用いる圧縮成形においては、縦型ディスペンサー 81から型組品 82のキヤビティ 86 へシリコーン樹脂等の透光性を有する液状樹脂 87が供給される。それにより、リード フレーム等の基板 88に装着された複数 (たとえば、 8個)の LEDチップ 89がー体的 に圧縮成形によって樹脂封止される。
[0004] 以下、前述の圧縮成形方法がより具体的に説明される。
まず、従来の圧縮成形用の型組品 82の上型 83と下型 85との間に縦型デイスペン サー 81が揷入される。このとき、既に、離型フィルム 90が下型 85に被覆されている。 この状態で、液状樹脂 87が縦型ディスペンサー 81の縦型ノズル 91から下型 85のキ ャビティ 86の中央位置へ滴下される。
[0005] 次に、下型 85および中型 84が上型 83へ向かって移動する。このとき、基板 88は 既に上型 83にセットされている。したがって、基板 88に装着された LEDチップ 89が 下方に向いた状態で、型組品 82が閉じられる。それにより、 LEDチップ 89がキヤビ ティ 86の液状樹脂 87に浸漬される。
[0006] 液状樹脂 87の硬化のために必要な時間が経過した後、型組品 82が開かれる。そ れにより、複数の LEDチップ 89がキヤビティ 86の形状に対応した樹脂成形体内に封 止される。その結果、成形品が完成する。その後、成形品が切断線に沿って切断さ れる。それにより、個々のチップ型 LEDが完成する。
[0007] 前述の型組品 82は、上型 83、中型 84、および下型 85からなる三枚型構造を有し て!/、るが、上型および下型からなる二枚型構造を有する型組品も用いられてもよ!/、。
[0008] ただし、たとえば、特開 2003— 165133号公報に開示されているような、上記従来 の圧縮成形方法によれば、以下のような問題が生じてしまう。
特許文献 1 :特開 2003— 165133号公報(図 2を参照)
発明の開示
発明が解決しょうとする課題
[0009] 近年、型組品 82等が設けられた圧縮成形装置を設置するための工場内のスぺー スを小さくすることが求められている。つまり、圧縮成形装置の小型化が要求されてい
[0010] しかしな力 、図 18に示されるように、型組品 82の型面同士の間に縦型デイスペン サー 81を揷入するために、型組品 82の型面同士の間の距離 92をある程度大きくす ることが必要である。そのため、圧縮成形装置が大型化してしまう。言い換えれば、圧 縮成形装置を小型化することができなレ、。
[0011] また、前述したように、液状樹脂 87は縦型ディスペンサー 81からキヤビティ 86の中 央位置へ滴下される。そのため、所定量の液状樹脂 87の全てがキヤビティ 86内に供 給される前に、キヤビティ 86内の液状樹脂 87は、加熱によってゲル化または硬化し てしまう。言い換えれば、樹脂樹脂 87の流動性が損なわれてしなう。その結果、液状 樹脂 87をキヤビティ 86の全体に均一に供給することができない。例えば、液状樹脂 8 7は、キヤビティ 86上で凸形状に形成されてしまう。この場合、 LED成形品に未充填 部分が発生する等の不具合が生じる。また、キヤビティ 86内の液状樹脂 87が部分的 に硬化することによって、硬化樹脂 93が液状樹脂 87内に形成されることがある。この 場合、硬化樹脂 93は、液状樹脂 87内を移動することがある。そのため、硬化樹脂 93 力 Sワイヤを変形させたり切断してしまったりする。その結果、製品の歩留まりが低下し てしまう。
[0012] 本発明は、上述の問題に鑑みてなされたものであり、その目的は、電子部品の圧縮 成形装置を小型化することである。また、本発明の他の目的は、液状樹脂をキヤビテ ィ内に均一に供給することにより、成形品の歩留まりを向上させることである。
課題を解決するための手段
[0013] 本発明の電子部品の圧縮成形方法においては、まず、上型と、キヤビティが設けら れた下型とが準備される。次に、液状樹脂がキヤビティへ落下するように水平方向に 液状樹脂が吐出される。その後、上型と下型とを閉じることにより、上型に装着された 基板に搭載された電子部品が液状樹脂に浸漬される。さらに、上型と下型とが開か れる。
[0014] 本発明の一の局面の圧縮成形装置は、キヤビティが設けられた下型と、下型に対 向し、電子部品が搭載された基板が装着され得る上型とを備えている。また、その装 置は、キヤビティへ液状樹脂を供給し得る樹脂供給部と、樹脂供給部に取外し可能 な態様で取付けられ、キヤビティへ液状樹脂を吐出し得るノズルとを備えて!/、る。
[0015] 本発明の他の局面の圧縮成形装置は、キヤビティが設けられた下型と、下型に対 向し、電子部品が搭載された基板が装着され得る上型とを備えている。また、その装 置は、キヤビティへ液状樹脂を供給し得る樹脂供給機構と、キヤビティへ液状樹脂を 供給し得るように樹脂供給機構を移動させ得る移動機構とを備えている。さらに、そ の装置は、液状樹脂が樹脂供給機構へ導かれるように装填され得る装填部と、液状 樹脂が装填部から樹脂供給機構に導かれるときに液状樹脂を計量する計量部とを 備えている。
[0016] この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連し て理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
図面の簡単な説明
[0017] [図 1]実施例の圧縮成形装置を概略的に示す断面図であって、樹脂供給機構が型 組品の型面同士の間に挿入される前の状態を示している。
[図 2]実施例の圧縮成形装置を概略的に示す断面図であって、樹脂供給機構が型 組品の型面同士の間に挿入された後、キヤビティへ液状樹脂を供給している状態を 示している。
[図 3]実施例の圧縮成形装置の樹脂供給機構における横型ノズルの断面図である。
[図 4]実施例の圧縮成形装置の要部の拡大断面図であって、カートリッジ装填部を示 している。
[図 5]実施例の圧縮成形装置の要部の拡大断面図であって、カートリッジ装填部のプ
[図 6]実施例の圧縮成形装置の要部の拡大平面図であって、キヤビティ面に液状樹 脂を供給する方法、すなわち撒き方を説明するための図である。
[図 7]実施例の圧縮成形装置の要部の拡大平面図であって、キヤビティ面に液状樹 脂を供給する他の方法、すなわち他の撒き方を説明するための図である。
[図 8]実施例の圧縮成形装置を概略的に示す断面図であって、成形材料供給機構 が液状樹脂および基板の双方を型組品の型面同士の間に同時に挿入して!/、る状態 を示している。
[図 9]他の実施例の圧縮成形装置を概略的に示す断面図であって、型組品と樹脂供 給機構とを示している。
[図 10]他の実施例の圧縮成形装置における樹脂供給部の計量部の要部の拡大概 略断面図である。
[図 11]他の実施例のカートリッジ装填部における液状樹脂の供給前の状態を示す断 面図である。
[図 12]他の実施例のカートリッジ装填部における液状樹脂の供給後の状態を示す断 面図である。
[図 13]他の実施例のカートリッジ装填部に装填されるカートリッジを示す断面図である
[図 14]他のカートリッジ装填部を示す断面図である。
[図 15]別のカートリッジ装填部を示す断面図である。
[図 16ほた別のカートリッジ装填部を示す断面図である。
[図 17]さらに別のカートリッジ装填部を示す断面図である。
[図 18]従来の電子部品の圧縮成形装置の概略的に示す断面図である。
符号の説明
1 基板、 2 LEDチップ(光素子)、 3 型組品、 4 液状樹脂、 4a 液状樹脂(水平 方向)、 4b 液状樹脂 (落下放物線)、 5 樹脂供給機構、 6 上型、 7 下型、 8 中 型、 9 基板供給部、 10 キヤビティ、 10a キヤビティ面(キヤビティの底面)、 11 個 別キヤビティ (LEDキヤビティ)、 12 離型フィルム、 13 樹脂供給部 (樹脂供給機構 の本体)、 14 カートリッジ装填部(液状樹脂の装填部)、 14a Aカートリッジ装填部 、 14b Bカートリッジ装填部、 15 移送経路、 15a A移送経路、 15b B移送経路、 16 制御部、 17 カー卜リッジ、 17a Aカー卜リッジ、 17b Bカー卜リッジ、 18 カー卜 リッジ装填部本体、 18a Aカートリッジ装填部本体、 18b Bカートリッジ装填部本体 、 19 押圧機構、 19a A押圧機構、 19b B押圧機構、 20 カートリッジ本体、 20a Aカートリッジ本体、 20b Bカートリッジ本体、 21 プランジャ、 21a Aプランジャ、 2 lb Bプランジャ、 22 空気混入防止用のシール材(プランジャ)、 22a Aシール材( プランジャ)、 22b Bシール材(プランジャ)、 23 横型ノズル、 24 計量部、 24a A 計量部、 24b B計量部、 25 結合配管、 25a A配管(A入口)、 25b B配管(B入 口)、 25c AB配管(AB出口)、 25d ノズル装着部、 25e 収容部、 26 回転駆動 部、 27 ノズル本体、 27a ノズル先端部、 27b ノズル基端部、 28 螺旋供給部材、 29 吐出口、 30 ロッド、 30a (螺旋供給部材の)係止部、 31 距離、 32 外気遮断 部材、 51 同時搬送機構、 52 同時搬送機構の本体、 53 基板供給機構、 54 基 板載置部、 55 基板昇降部、 56 受皿部、 57 距離、 61 樹脂供給機構、 62 樹脂 供給部、 63 (定量)計量部、 64 横型ノズル、 64a B土出口、 65 計量ノズル部、 66 駆動部、 67 ロータ、 68 ステータ、 69 距離、 71 液状樹脂の装填部(カートリツ ジ装填部)、 72 液状樹脂の装填部本体、 73 ェアーシリンダ (押圧機構)、 73a ピ ストン(ロッド)、 73b 駆動部(シリンダ部)、 74 押圧部材、 74a 空気混入防止用の シール材、 75 供給管、 101 液状樹脂の装填部、 102 押圧部材、 102a 空気混 入防止用のシール材、 103 空圧タンク (液状樹脂の装填部本体)、 104 加圧機構 、 105 加圧経路、 106 タンク本体、 107 蓋部、 108 供給管着脱部、 109 小力 ートリッジ、 110 空気、 111 液状樹脂の容器、 112 供給管。
発明を実施するための最良の形態
以下、本発明の実施例の圧縮成形方法およびそれに用いられる圧縮成形装置が 説明される。
実施例 1 [0020] 以下、実施例 1の光素子の圧縮成形方法およびそれに用いられる圧縮成形装置が 、図 1〜図 7に基づいて説明される。
[0021] なお、図 1〜図 7において、参照符号 Aは透光性を有する二液性の液状樹脂にお ける主剤を示し、参照符号 Bはその硬化剤を示して!/、る。
[0022] (基板の構成等)
本実施例に用いられるリードフレーム等の基板 1には、電子部品の一例としての LE Dチップ等の光素子 2が装着されている。図 1および図 2においては、複数、たとえば 、 8個の LEDチップ 2が基板 1に装着されている。
[0023] なお、実施例 1においては、 8個の LEDチップ 2がー括して圧縮成形によって樹脂 封止される。それによつて、成形品が形成される。また、成形品は、その切断線に沿 つて分割される。その結果、 8個のチップ型 LEDが形成される。このチップ型 LEDは 、発光ダイオード関連製品のパーツとなるものである。
[0024] (光素子の圧縮成形装置全体の構成)
本実施例の光素子の圧縮成形装置は、型組品 3、樹脂供給機構 5、基板供給機構 (図示なし)、および成形品取出機構(図示なし)を備えている。型組品 3は、光素子 の圧縮成形のためのものである。樹脂供給機構 5は、型組品 3に液状樹脂 4を供給 するためのものである。基板供給機構は、 LEDチップ等の光素子 2が装着された基 板 1を型組品 3に供給するためのものである。成形品取出機構は、型組品 3によって 成形された成形品を型組品 3から取り出すためのものである。
[0025] 以下、本実施例の圧縮成形装置を用いた樹脂封止成形方法においては、まず、 L EDチップ 2が装着された基板 1が基板供給機構によって型組品 3に供給される。また 、液状樹脂 4が型組品 3に供給される。次に、型組品 3が閉じられる。それにより、 LE Dチップ 2が型組品 3内において液状樹脂 4によって圧縮成形される。その結果、 LE D成形品が形成される。その後、成形品が成形品取出機構によって型組品 3から取り 出される。
[0026] なお、本実施例の圧縮成形装置は、樹脂材料供給用ポットと樹脂加圧用プランジ ャとを用いるトランスファ成形装置ではなレ、。
[0027] (光素子の圧縮成形用型組品および離型フィルムの構成) 本実施例の型組品 3は、上型 6と、上型 6に対向するように配置された下型 7と、上 型 6と下型 7との間に設けられた中型 8とを備えている。中間型 8は、下型 7と協働して 、離型フィルム 12を挟持するためのものであって、下型 7が揷入される貫通孔を有す るフレーム形状を有している。また、上型 6は、基板供給部 9を備えている。基板 1は、 LEDチップ 2が下側に向けられた状態で、基板供給部 9にセットされる。
[0028] また、下型 7は全体キヤビティ 10を備えている。全体キヤビティ 10は、基板供給部 9 にセットされた基板 1に装着された複数の LEDチップ 2の位置および数に対応する個 別キヤビティ 11を備えている。なお、全体キヤビティ 10は、下型 7の型面と同一平面 内にキヤビティ開口を有する。液状樹脂 4は、キヤビティ開口を通じて全体キヤビティ 1 0へ供給される。
[0029] また、上型 6の基板供給部 9は、固定金具等の基板を保持するための機構(図示な し)を有しており、その機構が、 LEDチップ 2が下側に向けられた状態で基板 1を固定 する。
[0030] また、実施例 1の型組品 3は、中型 8と下型 7との間に張力がかけられた離型フィノレ ム 12を供給する機構(図示なし)を有している。また、離型フィルム 12は、個別キヤビ ティ 11を含めて全体キヤビティ 10の形状に対応するように、下型 7の型面を被覆する 。また、離型フィルム 12は、中型 8と下型 7とが閉じられることにより、中型 8と下型 7と によって挟持される。
[0031] なお、複数の LEDチップ 2は、離型フィルム 12が被覆された下型 7の全体キヤビテ ィ 10内に挿入される。また、前述のように、複数の LEDチップ 2は、それぞれ、複数の 個別キヤビティ 11の位置に対応するように配置されて!/、る。
[0032] また、実施例 1に示される型組品 3は、図示されていないが、ヒータを有する。ヒータ は、全体キヤビティ 10内で、液状樹脂 4を一旦溶融させる力 S、最終的には液状樹脂 4 を熱硬化させる。
[0033] また、型組品 3を閉じることにより、全体キヤビティ 10に供給された液状樹脂 4内に 基板 1に装着された LEDチップ 2が浸漬される。その結果、 LEDチップ 2が液状樹脂 4によって圧縮成形される。
[0034] また、本実施例の型組品 3は、図示されていないが、全体キヤビティ 10の側面を構 成する部材に対して移動し得る全体キヤビティ 10の底面を構成する部材を有してい る。全体キヤビティ 10の底面を構成する部材は、鉛直な方向に移動し得る。したがつ て、全体キヤビティ 10の底面を構成する部材は、全体キヤビティ 10内の液状樹脂 4を 互いの間に離型フィルム 12が介在する状態で押圧することができる。言い換えれば 、本実施例の型組品 3は、全体キヤビティ 10内で加熱によって溶融している液状樹 脂 4に圧力を加えることができる。
[0035] また、本実施例の樹脂封止成形装置は、前述された個別キヤビティ 11を含む型組 品キヤビティ 10の内面の形状に対応して離型フィルム 12に全体キヤビティ 10を被覆 させるための被覆機構を備えている。被覆機構は、例えば、型組品キヤビティ 10に連 通するように設けられた吸引孔と、吸引孔を通じて空気を強制的に排出する真空弓 I き機構 (ポンプ)等とを有している。真空引き機構は、型組品キヤビティ 10から吸引孔 を通じて空気を強制的に排出する。それにより、離型フィルム 12が全体キヤビティ 10 の表面に沿って全体キヤビティ 10に密着する。
[0036] (二液性の液状樹脂の構成)
また、本実施例においては、液状樹脂 4として、例えば、透光性を有するシリコーン 樹脂等が用いられる。また、液状樹脂 4においては、液状の主剤 Aと液状の硬化剤 B とが、所定の割合、例えば、容量比 10 : 1で混合されている。最終的には、液状樹脂 4は、全体キヤビティ 10内で熱硬化する。
[0037] この液状樹脂 4の製造においては、まず、樹脂供給機構 5において、シリコーン樹 脂の主剤 Aおよび硬化剤 Bのそれぞれが計量される。主剤 Aと硬化剤 Bとが混合され る。次に、液状樹脂 4が全体キヤビティ 10内に供給される。なお、液状樹脂 4は混合 シリコーン樹脂である。
[0038] (樹脂供給機構の構成)
本実施例の樹脂供給機構 5は、その本体を構成する樹脂供給部 13と、液状樹脂の 装填部であるカートリッジ装填部 14と、樹脂供給部 13を移動させる移動機構 100と、 液状樹脂 4が流れる移送経路 15 (フレキシブルホース)と、移動機構 100等を制御す る制御部 16とを備えている。
[0039] カートリッジ装填部 14は、樹脂供給部 13へ液状樹脂 4を供給する。このとき、主剤 Aと硬化剤 Bとは、別個に樹脂供給部 13へ供給される。移動機構 100は、樹脂供給 部 13を図 1に示される X方向(紙面に垂直な方向)、 Y方向、および Z方向のそれぞ れ、すなわち、樹脂供給部 13から型組品 3へ向力、う方向を基準として、左右方向、高 さ方向、および前後方向のそれぞれに沿って移動させることができる。主剤 Aおよび 硬化剤 Bのそれぞれが、移送経路 15においてカートリッジ装填部 14と樹脂供給部 1 3との間に移送される。制御部 16は、カートリッジ装填部 14、および樹脂供給部 13の 移動機構 100のそれぞれを制御する。
[0040] 制御部 16は、移動機構 100を制御することによって、樹脂供給部 13の Y方向にお ける位置を調整した後、 z方向における位置を調整することができる。つまり、制御部 16は、樹脂供給部 13の移動機構 100を制御することによって、樹脂供給部 13の全 体またはその一部を、型組品 3の型面同士の間、すなわち、上型 6と下型 7 (中型 8)と の間に進入させたり、そこから後退させたりする。
[0041] さらに、液状樹脂 4は、カートリッジ装填部 14から移送経路 15を通じて樹脂供給部 13へ供給される。その後、液状樹脂 4は、離型フィルム 12が被覆された全体キヤビテ ィ 10へ供給される。
[0042] (カートリッジ装填部、すなわち、液状樹脂の装填部の構成)
カートリッジ装填部 14は、図 1および図 2に示されるように、主剤 Aに対応した Aカー トリッジ装填部 14aと、硬化剤 Bに対応した Bカートリッジ装填部 14bとを備えている。 Aカートリッジ装填部 14aと Bカートリッジ装填部 14bとは基本的に同じ構成を有して いる。
[0043] また、 Aカートリッジ装填部 14aは、図 4および図 5に示されるように、主剤 Aが充填 された A力ートリッジ 17aと、 Aカートリッジ 17aが装填された A力ートリッジ装填部本体 18aと、 Aカートリッジ 17a内の主剤 Aを押圧によって吐出させるェアーシリンダ等の A 押圧機構 19aとを備えている。また、 Aカートリッジ装填部 14aの供給管着脱部 108 は、 Aカートリッジ 17aの先端部が装着され得る。
[0044] また、 Aカートリッジ 17aは、中空円筒状の Aカートリッジ本体 20aと、 Aカートリッジ 本体 20a内の主剤 Aを押圧することによって樹脂に圧力を加える Aプランジャ 21aと、 樹脂に空気が混入することを防止するために Aプランジャ 21aの外周面に沿うように 設けられた Oリング等の Aシール材 22aとを備えている。
[0045] また、 Aカートリッジ本体 20a内の空間と液状樹脂の A移送経路 15aとは、 Aカートリ ッジ装填部本体 18a内の空間を通じて、すなわち、 Aカートリッジ供給管を通じて連 通している。
[0046] したがって、 Aカートリッジ装填部 14aにおいて、 A押圧機構 19aによって Aプランジ ャ 21aを押圧することにより、 Aカートリッジ本体 20a内の液状樹脂 4の主剤 Aを Aカー トリッジ 17aから Aカートリッジ装填部本体 18aの供給管および A移送経路 15aを通じ て樹脂供給部 13へ移送することができる。
[0047] また、 Bカートリッジ装填部 14bにおいて、 Aカートリッジ装填部 14aと同様に、 B押 圧機構 19bによって Bプランジャ 21bを押圧することにより、 Bカートリッジ本体 20b内 の硬化剤 Bを Bカートリッジ 17bから Bカートリッジ装填部本体 18bの供給管および B 移送経路 15bを通じて樹脂供給部 13へ移送することができる。
[0048] なお、主剤 Aおよび硬化剤 Bは、それぞれ、カートリッジ装填部 14aおよび 14bから 移送経路 15を通じて樹脂供給部 13へ移送することができる。主剤 Aおよび硬化剤 B は、カートリッジ装填部 14aおよび 14bから樹脂供給部 13へ移送されるときに、所定 の割合に調整されている。
[0049] また、カートリッジ 17は、カートリッジ装填部本体 18に取り付けたり、カートリッジ装 填本体 18から取り外したりすることができる。したがって、カートリッジ 17は適宜交換 され得る。そのため、光素子の圧縮成形装置において、カートリッジ装填部 14から樹 脂供給部 13へ供給されるべき主剤 Aおよび硬化剤 Bがなくなってしまうことに起因し て圧縮成形を中断する必要が生じることはない。その結果、成形品の生産性を向上 させること力 Sでさる。
[0050] また、カートリッジ装填部 14は、プランジャ 21を有しており、プランジャ 21の周面に は樹脂に空気が混入することを防止するためのシール材 22が設けられている。その ため、液状樹脂 4によって膨潤拡大するカートリッジ本体 20の内径とプランジャ 21の 外径との間の隙間がそのシール材 22によって封止される。
[0051] すなわち、シール材 22が、カートリッジ本体 20とプランジャ 21との隙間を閉塞する ため、気泡が全体キヤビティ 10に供給される液状樹脂 4に混入することを防止するこ と力 Sできる。したがって、 LED成形品の透明な樹脂部分に気泡が残存することを防止 すること力 Sできる。その結果、 LED成形品の歩留まりを向上させることができるととも に、 LED成形品の光学的な品質(特性)を向上させることができる。
[0052] (樹脂供給機構の本体、すなわち、樹脂供給部の構成)
樹脂供給機構 5の本体、すなわち、樹脂供給部 13は、横型ノズル 23、液状樹脂 4 、計量部 24、結合配管 25、および回転駆動部 26を備えている。液状樹脂 4は、主剤 Aと硬化剤 Bとを含んでいる。回転駆動部 26はロッド 30を含んでいる。
[0053] 横型ノズル 23は、主剤 Aおよび硬化剤 Bが混合された液状樹脂 4を全体キヤビティ
10へ吐出する。計量部 24は、カートリッジ装填部 14から移送経路 15を通じて移送さ れる主剤 Aおよび硬化剤 Bのそれぞれを計量する。液状樹脂 4は、計量部 24から結 合配管 25を通じて横型ノズル 23へ移送される。回転駆動部 26は、結合配管 25から 横型ノズル 23へ液状樹脂 4を移送するためのものである。
[0054] 樹脂供給部 13の使用時には、まず、主剤 Aおよび硬化剤 B力 それぞれ、カートリ ッジ装填部 14から移送経路 15を通じて計量部 24へ移送され、計量部 24において 計量される。その後、主剤 Aおよび硬化剤 Bは、結合配管 25を通じて横型ノズル 23 へ移送される。さらに、主剤 Aおよび硬化剤 Bは、横型ノズル 23内で回転駆動部 26 の作用によって混合される。その結果、液状樹脂 4が形成される。液状樹脂 4は、最 終的には、全体キヤビティ 10へ供給される。
[0055] なお、樹脂供給部 13、すなわち、横型ノズル 23、結合配管 25、および計量部 24の 一体構造は、移動機構 100によって、型組品 3の型面同士の間に挿入されたり、そこ 力 取り出されたりする。
[0056] (計量部の構成)
計量部 24は、主剤 Aを計量する A計量部 24aすなわち A計量シリンダーと、硬化剤 Bを計量する B計量部 24bすなわち B計量シリンダーとを有している。また、図示され ていないが、 A計量部 24aおよび B計量部 24bは、それぞれ、計量シリンダー本体、 押圧用ピストン、および押圧用ピストンを駆動する機構を有している。
[0057] したがって、 A計量部 24aおよび B計量部 24bのそれぞれにお!/、て、ピストンを駆動 する機構がピストンを駆動させると、計量シリンダー本体内の液状樹脂 4がピストンに よって押圧される。それによつて、液状樹脂 4を計量することができる。
[0058] 圧縮成形装置が使用されるときには、まず、主剤 Aは、 Aカートリッジ装填部 14aか ら A移送経路 15aを通じて A計量部 24aへ供給される。次に、主剤 Aは、 A計量シリン ダ一本体内に吸い込まれ、 A計量シリンダー本体に充填される。その後、 A計量シリ ンダ一本体内の主剤 Aが、所定時間内に、押圧用 Aピストンによって連続的に押圧さ れる。それにより、所定量の主剤 Aが、結合配管 25へ連続的に移送される。これは、 サーボシリンダー方式と呼ばれる。
[0059] また、硬化剤 Bは、 Bカートリッジ装填部 14bから B移送経路 15bを通じて B計量部 2 4bへ供給される。その後、 A計量部 24aにおいて所定量の主剤 Aが移送される所定 時間に対応して、 B計量シリンダー本体内の硬化剤 Bが、所定時間、押圧用 Bピスト ンによって間欠的に押圧される。このとき、ノ ルス波が硬化剤 Bに与えられる。それに より、硬化剤 Bは間欠的に結合配管 25へ移送される。これは、デジメタシリンダー方 式と呼ばれる。
[0060] 本実施の形態においては、 100容量単位の主剤 Aが結合配管 25へ一定量ずつ連 続的に移送される間に、 10容量単位の硬化剤 Bが結合配管 25へ 1容量単位ずつ間 欠的に移送される。したがって、液状樹脂 4における主剤 Aと硬化剤 Bとの容量混合 比を 10対 1に設定することができる。
[0061] (結合配管の構成)
結合配管 25には T字型の配管が設けられているとともに、 T字型配管は二つの入 口 25aおよび 25bと一つの出口 25cとを有している。より具体的には、結合配管 25は 、 A計量部 24aから主剤 Aを受け入れる A入口(A配管) 25aと、 B計量部 24bから硬 化剤 Bを受け入れる B入口(B酉己管) 25bと、主剤 Aと硬化剤 Bとをノズル 23へ案内す る AB出口(AB配管) 25cとを備えている。また、 AB出口 25cは横型ノズル 23が装着 され得るノズル装着部 25dを有している。また、なお、 AB配管 25cは、 A配管 25aの 流れと B配管 25bの流れとを合流させる。
[0062] したがって、主剤 Aが A計量部 24aから A入口 25a (A配管)へ供給され、硬化剤 B 力 ¾計量部 24bから B入口 25b (B配管 25b)へ供給され、その後、主剤 Aおよび硬化 剤 Bの混合液が、 AB配管 25c (AB出口 25c)力も横型ノズノレ 23へ移送される。 [0063] (横型ノズルの構成と回転駆動部の構成)
横型ノズル 23は、図 3に示されるように、例えば、中空円筒状のノズル本体 27と、螺 旋供給部材 28と含んでいる。螺旋供給部材 28は、ノズル本体 27の内に回転可能に 設けられ、主剤 Aと硬化剤 Bとを混合させるための螺旋構造を有して!/、る。
[0064] したがって、横型ノズル 23においては、まず、螺旋供給部材 28がノズル本体 27内 で回転する。それにより、主剤 Aと硬化剤 Bとが混合される。また、主剤 Aおよび硬化 剤 Bの混合液力、結合配管 25からノズル本体 27を通じてノズル先端部 27aへ移送さ れる。その後、液状樹脂 4は、先端部 27aに設けられた吐出口 29から吐出される。
[0065] また、横型ノズル 23の基端部 27bは、結合配管 25のノズル装着部 25dに取り付け 可能であり、かつ、ノズル装着部 25dから取り外し可能である。したがって、古い横型 ノズル 23を新たな横型ノズル 23へ容易に交換することができる。その結果、横型ノズ ル 23を使い捨て部品として利用することができる。また、横型ノズル 23内の空間およ び結合配管 25のノズル装着部 25d内の空間のそれぞれを容易にクリーニングするこ と力 Sできる。
[0066] また、図 2および図 3に示されるように、回転駆動部 26は、螺旋供給部材 28を正逆 方向に回転させるモータ Mと、モータ Mと螺旋供給部材 28とを接続するロッド 30とを 有している。また、ロッド 30は、 AB配管 25c内の空間を貫通し、ノズル装着部 25d内 の空間へ揷入されている。さらに、ロッド 30と螺旋供給部材 28とは、係止部 30aによ つて互いに係止されて!/、る。
[0067] (樹脂供給機構による液状樹脂の吐出方法)
上記の構成によれば、モータ Mを正方向に回転させることにより、ロッド 30力 S回転 する。それにより、螺旋供給部材 28が回転する。その結果、主剤 Aと硬化剤 Bとは、ノ ズノレ本体 27内で混合されながら、ノズル基端部 27bからノズル先端部 27aまで移送 される。
[0068] したがって、螺旋供給部材 28を正方向に回転させることにより、ノズル先端部 27a の吐出口 29から液状樹脂 4を水平方向に所定圧力で吐出させることができる。これ により、全体キヤビティ 10内に液状樹脂 4を供給することができる。
[0069] また、ノズル先端部 27aの吐出口 29から吐出される液状樹脂 4aは、水平方向にお ける圧力と垂直方向における重力とに対応した落下放物線 4bを描いて全体キヤビテ ィ 10上に落下する。このとき、全体キヤビティ 10の底面における液状樹脂 4の落下位 置は、吐出口 29の直下の位置の近傍である。
[0070] なお、モータ M (ロッド 30)を逆方向に回転させることによって螺旋供給部材 28を逆 方向に回転させれば、混合液状樹脂 4をノズル先端部 27aからノズル基端部 27bへ 移送すること力 Sできる。すなわち、液状樹脂 4をノズル先端部 27aの吐出口 29からノ ズル本体 27へ向かって引き込むことができる。そのため、吐出口 29から液状樹脂 4 力 S垂れることを防止すること力 Sでさる。
[0071] (樹脂供給部の移動機構)
また、前述されたように、樹脂供給部 13は、移動機構 100によって、 X方向、 Y方向 、および Z方向のそれぞれに沿って移動される。それにより、樹脂供給部 13の全体ま たはその一部である横型ノズル 23等力 Y方向における位置が固定された状態で、 Z方向に沿って、上型 6と下型 7および中間型 8との間に挿入されたり、そこから取り出 されたりする。
[0072] また、前述されたように、横型ノズル 23が水平に延びる状態で、型組品 3内に揷入 される。そのため、従来の縦型ディスペンサーを型組品の型面同士の間に揷入する 場合に比較して、距離 31を低減させることができる。したがって、圧縮成形装置を小 型ィ匕すること力 Sでさる。
[0073] (型組品内の空間の真空引き機構)
本実施例に示される上型 6の型面には、 Oリング等の外気遮断部材 32が、基板供 給部 9を取り囲むように設けられている。また、図 1および図 2に示されるように、外気 遮断部材 32は、中型 8の上型 6側の型面に対向する位置に設けられている。また、 図示されていないが、上型 6の型面は吸引口を有しているとともに、吸引口は空気を 強制的に吸引によって排出する真空ポンプ等の真空引き機構に接続されている。
[0074] 圧縮成形装置の使用時には、上型 6の外気遮断部材 32を中型 8の上型 6側の型 面に当接させると、上型 6の型面と中型 8の上型 6側の型面とが所定の距離だけ離れ た状態で、型組品 3内の空間が外気から遮断された状態になる。さらに、真空引き機 構が外気から遮断された空間から空気を強制的に吸引することにより、外気から遮断 された空間は、所定の真空状態に設定される。これによれば、液状樹脂 4内に気泡 が混入することが防止される。そのため、型組品キヤビティ 10内で成形される成形品 の透明な樹脂部にボイド(気泡)が形成されてしまうことが防止される。
[0075] なお、液体樹脂 4が外気から遮断された空間に供給される前に、上型 6の型面と下 型 7 (中型 8)の型面とが閉じ合わせられる。
[0076] (光素子の圧縮成形方法)
次に、前述された光素子の圧縮成形装置 (型組品 3)を用いて、基板 1に装着され た LEDチップ 2を圧縮成形する方法が説明される。
[0077] まず、所定数の LEDチップ 2が装着された基板 1が、開かれた型組品 3の上型 6の 基板供給部 9に基板供給機構によって供給される。このとき、基板 1の LEDチップが 装着されている面が下側に向けられている。また、離型フィルム 12が、全体キヤビティ 10の内面および下型 7の型面に被覆された状態で、中型 8と下型 7とによって挟持さ れる。
[0078] 次に、樹脂供給部 13が移動機構 100によって移動させられる。それにより、樹脂供 給部 13に設けられた横型ノズル 23は、水平状態に延びる状態で、上型 6と下型 7 ( 中型 8)との型面同士の間に挿入される。その後、横型ノズル 23は、その先端部 27a の吐出口 29から液状樹脂 4を水平方向に所定圧力で吐出する。それにより、液状樹 脂 4は、離型フィルム 12が被覆された全体キヤビティ 10内に供給される。その後、液 状樹脂 4は、全体キヤビティ 10内で加熱され、溶融している。
[0079] 次に、型組品 3が閉じられる。それにより、基板 1に装着した LEDチップ 2が、下型 キヤビティ 10内の液状樹脂 4に浸漬される。つまり、圧縮成形が実行される。液状樹 脂 4の硬化に必要な時間が経過した後、上型 6と下型 7 (中型 8)とが開かれる。次に、 LED成形品が成形品取出機構によって取り出される。
[0080] なお、キヤビティ底面部材が上方へ移動することにより、全体キヤビティ 10内の液状 樹脂 4が離型フィルム 12を媒介として全体キヤビティ 10の底面を構成する部材によつ て押圧されてもよい。これによれば、基板 1と液状樹脂 4との密着性を向上させること ができる。
[0081] (液状樹脂の型組品キヤビティへの供給方法、または、キヤビティ面における液状樹 脂の軌跡)
図 6および図 7を用いて、下型キヤビティ面への液状樹脂の供給方法、または、液 状樹脂の撒き方およびその軌跡が説明される。
[0082] 本実施例においては、液状樹脂 4は、 Y方向における位置が維持された状態で、 横型ノズル 23の吐出口 29を X方向および Z方向のそれぞれに沿って移動させること によって、全体キヤビティ 10内へ供給される。
[0083] 次に、図 6を用いて、下型キヤビティ 10内への液状樹脂 4の供給方法が説明される まず、横型ノズル 23は、水平に延びる状態でかつ所定の高さ位置に維持された状 態で、型組品 3の型面同士の間に挿入される。このとき、横型ノズル 23の先端部 27a 1S 型組品 3の型面同士の間に徐々に揷入される。
[0084] また、横型ノズル 3は、全体キヤビティ 10の内面、すなわち、キヤビティ面 10a上に 液状樹脂 4を落下させる。液状樹脂 4の供給が開始されるときには、液状樹脂 4の落 下位置が、キヤビティ面 10aの中央位置 Iになるように、ノズル先端部 27aの吐出口 2 9が配置されている。
[0085] 次に、液状樹脂 4が横型ノズル先端部 27aの吐出口 29から落下している状態で、 キヤビティ面 10a上の液状樹脂 4の落下位置力 キヤビティ面 10aにおける中央位置 と、キヤビティ面 10aにおける開口周縁の近傍の位置 II III IV、および Vのそれぞ れとの間を往復するように、ノズル先端部 27aの吐出口 29の位置が移動する。これに よれば、液状樹脂 4がキヤビティ 10内に均等に供給される。
[0086] なお、本実施例においては、図 6に示されるように、下型キヤビティ面 10a上の液状 樹脂 4の供給位置に関連して、キヤビティ面 10aにおける中央位置 Iと、キヤビティ面 における開口周縁近傍の位置としての 4個の角部位置 II III IV Vとが規定されて いる。
[0087] これによれば、液状樹脂 4は、その落下位置が中央位置 Iと角部位置 IIとの間、中央 位置 Iと角部位置 IIIとの間、中央位置 Iと角部位置 IVとの間、中央位置 Iと角部位置 V との間のそれぞれを別個にかっこの順番で往復するように、キヤビティ 10 供給され る。この場合、キヤビティ面 10aにおける液状樹脂 4の軌跡がアルファベットの X字を 描くように、液状樹脂 4が全体キヤビティ 10へ供給される。これによれば、液状樹脂 4 は、下型キヤビティ面 10aに均等に配分される。すなわち、液状樹脂 4の表面が凸面 ではなく水平面になる。そのため、下型キヤビティ 10内で圧縮される成形品に未充填 部が残存するが防止される。その結果、成形品の品質がばらつくことを防止すること ができる。
[0088] また、液状樹脂 4は、 X字状にキヤビティ面 10aに供給される場合には、キヤビティ 面 10aの四隅の近傍の位置に早期に供給される。そのため、キヤビティ面 10aの四隅 の近傍の位置での液状樹脂 4の部分的な硬化を防止することができる。そのため、硬 化樹脂の塊が、成形品に混入するという不具合の発生が防止される。また、硬化樹 脂の塊が、 LEDのワイヤを変形または切断してしまうという不具合の発生が防止され る。そのため、成形品の歩留まりを向上させることができる。
[0089] 次に、図 7を用いて、下型キヤビティ内への液状樹脂の供給方法の他の例が説明さ れる。
[0090] この他の例の供給方法にお!/、ては、まず、横型ノズル 23は、所定の高さ位置にお いて水平に延びる状態で、型組品 3の型面同士の間に挿入される。このとき、横型ノ ズル 23においては、先端部 27aから基端部 27bへ向かって徐々に揷入される。それ により、キヤビティ面 10aにおける液状樹脂 4の最初の落下位置力 キヤビティ面 10a における角部の近傍の位置 Iになるように、ノズル先端部 27aの吐出口 29がキヤビテ ィ 10aの上方に配置される。
[0091] 次に、キヤビティ面 10aにおける液状樹脂 4の落下位置力 X方向に移動した後、 Z 方向に移動するように、横型ノズル 23が移動される。これによつても、液状樹脂 4が、 キヤビティ 10内に均等に配分される。
[0092] より具体的に言えば、図 7に示されるように、キヤビティ面 10aにおける液状樹脂 4の 落下位置が、所要位置 I、 II、 III、 IV、 V、および VIの順で移動するように、横型ノズ ル 23の吐出口 29が移動する。その結果、キヤビティ面 10a上において、液状樹脂 4 の落下位置の軌跡が S字を描く。図 7に示される供給方法によっても、図 6に示される 供給方法によって得られる効果と同様の効果を得ることができる。
実施例 2 [0093] 次に、図 8を用いて、実施例 2の樹脂封止成形方法およびそれに用いられる樹脂 封止成形装置が説明される。
[0094] なお、図 8に示されるように、本実施例の光素子の圧縮成形装置の型組品 3は、実 施例 1のそれと同一であるため、特に必要がなければ、その説明は繰り返さない。
[0095] (同時搬送機構の構成)
また、図 8に示されるように、圧縮成形装置は、型組品 3に基板 1と液状樹脂 4とを同 時に型面同士の間に供給する同時搬送機構 51を備えて!/、る。同時搬送機構 51は、 その本体 52と、その上部側に設けられ、基板 1を供給する基板供給機構 53とを含ん でいる。また、樹脂供給機構 5の樹脂供給部 13が、本体 52の下部に固定されされて いるか、または、本体 52に対して X方向および Z方向のそれぞれに沿って移動し得る ように設けられている。
[0096] 前述の事項から分かるように、基板供給機構 53と樹脂供給部 13とは、本体 52に一 体的に設けられている。そのため、同時搬送機構 51は、上型 6の基板供給部 9に基 板 1を供給するのと同時に、下型 7の全体キヤビティ 10内に液状樹脂 4を供給するこ と力 Sできる。また、基板供給機構 53は、基板載置部 54および基板昇降部(リフト) 55 を備えている。
[0097] 同時搬送機構 51が用いられる場合には、基板 1は、 LEDチップ 2が下側に向けら れた状態で基板載置部 54上に載置された状態で、基板昇降部 55によって持ち上げ られることによって、基板供給部 9にセットされる。
[0098] また、実施例 2に示される液状樹脂供給部 13の構成は、実施例 1に示される樹脂 供給部 13の構成と同一であるため、その説明は繰り返さない。
[0099] したがって、本実施例の樹脂封止成形装置によれば、実施例 1の樹脂封止成形装 置と同様に、液状樹脂 4は、横型ノズル 23の吐出口 29から所定の圧力で水平方向 に吐出され、全体キヤビティ 10内に供給される。
[0100] (液状樹脂の受皿の構成)
また、同時搬送機構 51の本体 52の下部側にはノズル先端部 27aの吐出口 29から 垂れる液状樹脂 4を受ける受皿部 56が設けられている。受皿部 56は、横型ノズル 23 が型組品 3へ液状樹脂 4を供給していないときには、ノズル先端部 27aの吐出口 29 の下方位置へ移動する。一方、受皿部 56は、ノズノレ 23の吐出口 29力、らキヤビティ 1 0は液状樹脂 4が落下しているときには、ノズル 23の吐出口 29の下方の位置から離 れる。また、受皿部 56は、横型ノズル 23が型組品 3から離れた後には、再び、ノズル 先端部 27aの吐出口 29の下方位置へ移動して、吐出口 29から垂れる液状樹脂 4を 受ける。
[0101] これによれば、吐出口 29から垂れた液状樹脂 4が、型組品キヤビティ 10の内面以 外の型面に樹脂ばりとして付着することが防止される。したがって、型組品 3が閉じら れたときに、型面同士の間に付着した樹脂ばりに起因して、型面同士の間に隙間が 生じてしまうと!/、う不具合の発生が防止される。
[0102] (光素子の圧縮成形方法)
次に、光素子の圧縮成形装置と同時搬送機構とを用いて基板に装着された LED チップを圧縮成形する方法が説明される。なお、本実施例の光素子の圧縮成形方法 は、基本的には、実施例 1のそれと同様である。
[0103] まず、型組品 3の型面同士の間に同時搬送機構 51が揷入れるときに、基板 1と液 状樹脂 4とが同時に型組品 3に供給される。このとき、実施例 1と同様に、基板 1が上 型 6の基板供給部 9に装着され、かつ、液状樹脂 4が離型フィルム 12によって覆われ た全体キヤビティ 10へ落下する。このとき、受皿部 56は横型ノズル 23の吐出口 29の 下方位置から離れて位置付けられて!/、る。
[0104] 次に、型組品 3が閉じられることにより、基板 1に装着され LEDチップ 2が、全体キヤ ビティ 10内の液状樹脂 4に浸漬され、圧縮成形によって樹脂封止される。その後、液 状樹脂 4の硬化に必要な時間が経過した後、上型 6と下型 7 (中型 8)とが開かれ、成 形品が取出機構によって取り出される。
[0105] 上記の本実施例の樹脂成形方法によれば、実施例 1のそれと同様に、光素子の圧 縮成形装置に設けられた型組品 3の型面同士の間に同時搬送機構 51とともに横型 ノズル 23が水平に延びる状態で揷入される。そのため、従来の縦型ディスペンサー 8 1が設けられた圧縮成形装置の型組品 82の型面同士の間の距離 92に比較して、本 実施例の型組品 3の型面同士の間の距離 57は小さい。その結果、光素子(電子部 品)の圧縮成形装置を小型化することができる。 [0106] なお、本実施例の樹脂成形方法において、実施例 1の樹脂成形方法と同様に、全 体キヤビティ 10内を真空弓 Iきする機構および全体キヤビティ 10の底面を構成する部 材が全体キヤビティ 10の側面を構成する部材から分離され得る構造が採用されれば 、実施例 1の樹脂封止成形方法によって得られる効果と同様の効果を得ることができ
[0107] また、本実施例の樹脂成形方法においても、図 6および図 7に示される型組品キヤ ビティ 10への液状樹脂 4を供給する方法を用いることができる。したがって、本実施 例においても、図 6および図 7を示される供給方法によって得られる効果と同様の効 果を得ること力 Sでさる。
[0108] また、前述の各実施例においては、横型ノズル 23内に螺旋供給部材 28が設けら れてレ、る構成が例示されて!/、る力 液状樹脂 4を混合させる機構としてレ、かなるもの が採用されてもよい。たとえば、液状樹脂 4を混合して全体キヤビティ 10へ供給する 機構として、後述される一軸偏心ねじポンプ (モーノポンプ)が用いられてもよい。な お、各実施例において、主剤 Aと硬化剤 Bとの混合を促進する機構が設けられておら ず、中空円筒状のノズル本体 27のみが樹脂供給部 13に装着されていてもよい。
[0109] また、各実施例においては、 A配管 25aを流れる主剤 Aと B配管 25bを流れる硬化 剤 Bとは AB配管 25cにおいて合流する。し力もながら、 A配管 25aを通過した主剤 A と B配管 25bを通過した硬化剤 Bとを収容した状態で AB配管 25cに移送し得る収容 部 25eが設けられて!/、てもよ!/、。
[0110] また、各実施例においては、型組品 3の型面同士の間に横型ノズルが揷入されて いるが、型組品 3の外部に横型ノズル 23の吐出口 29が配置された状態で、液状樹 脂 4が、横型ノズル 23の吐出口 29から全体キヤビティ 10まで届く程度の所定圧力で 、水平方向に吐出されてもよい。
[0111] この場合、液状樹脂 4の吐出が終了したのと同時に、モータ Mを逆方向に回転させ ることによって、横型ノズル 23内に液状樹脂 4を引き込む方法、または、液状樹脂 4 の吐出の終了と同時に、前述された受皿部 56が横型ノズル 23の吐出口 29における 下方位置へ移動させる方法が用いられることが望ましレ、。
実施例 3 [0112] 次に、実施例 3の圧縮成形方法およびそれに用いられる圧縮成形装置が、図 9〜 図 17を用いて説明される。また、実施例 3の圧縮成形装置は、前述の各実施例にお V、て用いられてレ、る構成にぉレ、て、次に説明される構成を用いてレ、る。
[0113] なお、本実施例における電子部品の圧縮成形装置の構成は、前述された各実施 例におけるそれと基本的には同一であり、本実施例と前述の各実施例との対比にお V、て、同一の参照符号が付されて!/、る部位は互いに同一の構成を有して!/、るため、 それらの説明は特に必要がなければ繰り返さない。
[0114] (樹脂供給機構における他の計量部)
まず、図 9および図 10を用いて、樹脂供給機構における他の計量部が説明される。
[0115] 図 9および図 10に示される電子部品の圧縮成形装置は、圧縮成形用の型組品 3と 、樹脂供給機構 61等とを備えている。また、樹脂供給機構 61は、液状樹脂 4の装填 部としてのカートリッジ装填部 14と、樹脂供給部 62と含んでいる。
[0116] また、樹脂供給部 62は、カートリッジ装填部 14から供給される液状樹脂 4を計量す る計量部 63と、液状樹脂 4を型組品 3のキヤビティ 10内へ水平に吐出する横型ノズ ル 64と、計量部 63と横型ノズル 64とを連通させる T字状の配管を有する結合配管 2 5とを含んでいる。
[0117] なお、図 9および図 10のカートリッジ装填部 14および結合配管 25は、実施例 1の 図 4に示されるカートリッジ装填部 14および図 3に示される結合配管 25と基本的には 同一の構造を有している。
[0118] 本実施例においては、まず、液状樹脂 4がカートリッジ装填部 14から計量部 63へ 供給される。次に、液状樹脂 4が計量部 63で計量され、その後、結合配管 25に供給 される。次に、液状樹脂 4は、すなわち、主剤 Aと硬化剤 Bとが混合され、結合配管 2 5を経由して横型ノズル 64へ到る。その後、液状樹脂 4は、横型ノズル 64の吐出口 6 4aから水平方向に所定圧力で吐出され、離型フィルム 12が被覆された全体キヤビテ ィ 10へ供給される。
[0119] また、計量部 63は、一軸偏芯ねじポンプ (モーノポンプ)を用いて液状樹脂 4を計 量する計量ノズル部 65と、計量ノズル部 65を駆動するモータ 66とを有している。
[0120] また、図 10に示されるように、計量ノズル部 65は、モータ 33に接続されたロータ 67 (雄ねじに相当する構成)と、計量ノズル部 65の管内壁上に設けられたステータ 68 ( 雌ねじに相当する構成)とを有している。また、モータ 66がロータ 67を回転させること により、結合配管 25内に所定量の液状樹脂 4を供給することができる。
[0121] また、図示されていないが、横型ノズル 64は、そのノズル本体内に、例えば、二液 性の液状樹脂を混合することに適している形状を有する混合部材 (例えば、螺旋状 の混合部材)を含んでいる。そのため、主剤 Aと硬化剤 Bとは、横型ノズル 64内で乱 流となり、均一に混合される。横型ノズル 64は、実施例 1の横型ノズル 23と同様に、 結合配管 25に取り付けおよび取り外し可能に設けられている。したがって、横型ノズ ル 64を使い捨て用品として利用することができる(図 3に示すノズル装着部 25dを参 昭)
[0122] なお、主剤 Aおよび硬化剤 Bにそれぞれ対応する 2つの計量部 63と、結合配管 25 と、横型ノズル 64とは、樹脂供給部 62として、同一水平面の沿って配置されている。
[0123] まず、主剤 Aおよび硬化剤 Bは、それぞれ、カートリッジ装填部 14から、それぞれに 対応する計量部 63 (計量ノズル部 65)に、別個に供給される。また、一の所定量の主 剤 Aおよび他の所定量の硬化剤 Bとが、それぞれ、計量ノズル部 65において個別に 計量される。次に、主剤 Aおよび硬化剤 Bが、それぞれ、計量ノズル部 65から結合配 管 25を通じて横型ノズル 64へ供給され、そこで混合される(図 3に示す A配管 25a B配管 25b AB配管 25cを参照)。
[0124] 次に、各実施例と同様に、液状樹脂 4は、横型ノズル 64の吐出口 64aから所定の 圧力で水平方向に吐出される。それにより、液状樹脂 4が下型キヤビティ 10内に供給 される。
[0125] 本実施例の光素子の圧縮成形装置によれば、横型ノズル 64が、前述の各実施例 のそれと同様に、上型 6と下型 7 (中型 8)との間に水平に延びる状態で揷入され、か つ、そこ力、ら引き出される。したがって、従来の縦型ディスペンサー 81が設けられた 圧縮成形装置の型組品 82に比較して、型組品 3の型面同士の間の距離 69を小さく すること力 Sできる。その結果、圧縮成形装置を小型化することができる。
[0126] なお、計量ノズル部 65のロータ 67を逆回転させることにより、吐出口 64aから液状 樹脂 4をノズル 64内に吸い込むことができる。その結果、液状樹脂 4が吐出口 64aか ら垂れることを防止すること力 Sでさる。
[0127] また、図 9および図 10に示される構造において、横型ノズル 64の代わりに、実施例 1において説明された横型ノズル 23を用いることができる。また、樹脂供給部 62が前 述の実施例において説明された同時搬送機構 51に組み込まれていてもよい。
[0128] (押圧機構としてエアーシリンダを用いる他のカートリッジ装填部)
次に、図 11および図 12を用いて、ェアーシリンダを用いる他のカートリッジ装填部 が説明される。なお、このカートリッジ装填部は、図 4および図 5を用いて説明された カートリッジ装填部 14の代わりに使用され得るものである。
[0129] 図 11および図 12に示されるように、液状樹脂の装填部 71は、カートリッジ 17と、本 体 72と、カートリッジ 17内の液状樹脂 4 (主剤 Aまたは硬化剤 B)を押圧するェアーシ リンダ 73 (押圧機構)とを備えている。
[0130] また、カートリッジ 17は、カートリッジ本体 20と、カートリッジ本体 20内の液状樹脂 4 を押圧するプランジャ 21とを備えている。また、ェアーシリンダ 73は、ピストン 73a (口 ッド)と、ピストン 73aの先端部に設けられた押圧部材 74と、押圧部材 74が設けられ たピストン 73aを駆動する駆動部 73b (シリンダー部)とを有している。また、押圧部材 74の周面には、樹脂に空気が混入することを防止するためのシール材 74a、例えば 、 Oリングが設けられている。
[0131] なお、前述された液状樹脂の装填部 71は、液状樹脂 4における主剤 Aおよび硬化 剤 Bのそれぞれに対応する 2つの独立した構造を有している。
[0132] まず、前述された液状樹脂の装填部 71において、カートリッジ 17がカートリッジ本 体 20に装着される。次に、駆動部 73bがピストン 73aおよび押圧部材 74を駆動する ことにより、プランジャ 21が動き、カートリッジ 17内の液状樹脂 4が押圧される。それに より、主剤 Aまたは硬化剤 Bが、それぞれ、カートリッジ 17の先端部の供給管 75から 移送経路 15を通じて樹脂供給部 62 (13)に設けられた 2つの計量部 63 (24)のそれ ぞれへ供給される。
[0133] したがって、図 9および図 10に示される液状樹脂の装填部 71において、押圧部材 74の周囲に樹脂に空気が混入することを防止するためシール材 74aが設けられてい る。そのため、気泡が樹脂供給機構 61 (5)に供給される液状樹脂 4に混入することが 防止される。
[0134] (押圧機構として空圧タンクを用いる他の液状樹脂の装填部)
次に、図 13〜図 17を用いて、押圧機構として耐圧性を有する空圧タンク (例えば、 鋼製)を用いる他の液状樹脂の装填部が説明される。空圧タンクは、たとえば、鋼製 である。なお、この液状樹脂の装填部は、前述された図 4および図 5に示されるカート リッジ装填部 14の代わりに用いることができるものである。
[0135] 図 13〜図 15に示される液状樹脂 4の装填部 101は、図 13に示されるカートリッジ 1 7と、カートリッジ 17内の液状樹脂 4を押圧する押圧部材 102と、押圧部材 102の周 囲に設けられ、樹脂に空気が混入することを防止するためのシール材 102a (例えば 、 Oリング)とを備えている。また、装填部 101は、押圧部材 102を押圧することによつ て、カートリッジ 17内の液状樹脂 4を押圧して液状樹脂 4に圧力を加える空圧タンク 1 03と、空圧タンク 103内の空気 110を加圧するエアーコンプレッサ等の加圧機構 10 4と、空圧タンク 103と加圧機構 104とを連通させる加圧チューブ等の加圧経路 105 とを備えている。
[0136] また、カートリッジ 17は、カートリッジ本体 20と、プランジャ 21と、カートリッジ本体 20 の先端部側に設けられた供給管 75 (移送経路 15に連通接続)とを備えている。また 、空圧タンク 103は、タンク本体 106と、蓋部 107と、蓋部 107に設けられた供給管着 脱部 108とを備えている。
[0137] また、供給管 75は供給管着脱部 108に装着される。また、タンク本体 106に蓋部 1 07を装着することによって、空圧タンク 103内の空間を密閉することができる。たたし 、空圧タンク 103内の空間は、加圧経路 105および供給管着脱部 108とは連通して いる。
[0138] 図 14に示されるように、まず、図 13に示される供給管 75が、カートリッジ本体 20の プランジャ 21側に押圧部材 102が装着された状態で、蓋部 107の供給管着脱部 10 8に装着される。次に、蓋部 107がタンク本体 106に装着され、カートリッジ 17が、押 圧部材 102とともに、タンク本体 106内に挿入される。
[0139] 次に、空圧タンク 103内の気体としての空気 110が加圧機構 104によって加圧経 路 105を通じて加圧される。それにより、空気 110が押圧部材 102およびプランジャ 2 1を一体的となって押圧する。このとき、カートリッジ本体 20内の液状樹脂 4がプラン ジャ 21によって押圧される。それにより、液状樹脂 4は、カートリッジ 17の供給管 75か ら移送経路 15を通じて樹脂供給機構 61 (5)の 2つの計量部 63 (24)のそれぞれへ 供給される。
[0140] また、図 15に示されるように、図 13および図 14に示されるカートリッジ 17の代わり に、カートリッジ 17よりも小さな小カートリッジ 109が空圧タンク 103内に設置されてい てもよい。なお、小カートリッジ 109は、小カートリッジ本体、小プランジャ、小押圧部 材、および供給管 75を有している。
図 13〜図 15から分かるように、空圧タンク 103が液状樹脂の装填部 101として用 いられれば、サイズの異なるカートリッジ、および、液状樹脂 4の容量または重量の異 なるカートリッジを臨機応変に用いることができる。
[0141] 次に、図 16および図 17に示される液状樹脂の装着部 101が説明される。
この実施例に用いられる液状樹脂の装着部 101の基本的な構成は、図 13〜図 15 に示される構成と同一であるため、それらの同一の構成は同一の参照符号が付され ている。
[0142] 図 16に示されるように、液状樹脂 4が入れられた容器 111が空圧タンク 103内に設 置されている。容器 111は、上部に開口部を有している。また、容器 111内の液状樹 脂 4と蓋部 107の供給管着脱部 108内の空間、すなわち、空圧タンク 103の外部とな る移送経路 15内の空間とが、供給管 112によって互いに連通するように接続されて いる。
[0143] したがって、加圧機構 104によって空圧タンク 103内の空気 110を加圧することに より、容器 111内の液状樹脂 4の表面が押圧されると、液状樹脂 4が供給管 112およ び移送経路 15を通じて樹脂供給機構 61 (5)の 2つの計量部 63 (24)のそれぞれへ 供給される。
[0144] また、図 17に示されるように、液状樹脂 4がタンク本体 106内に直接入れられた構 造が用いられてもよい。この場合、タンク本体 106内の液状樹脂 4と供給管着脱部 10 8、すなわち、空圧タンク 103の外部となる移送経路 15内の空間とが、供給管 112に よって互いに連通するように接続されて!/、る。 [0145] したがって、加圧機構 104によって空圧タンク 103内の空気 110に圧力を加えるこ とにより、タンク本体 106内の液状樹脂 4の表面が押圧されれば、液状樹脂 4が供給 管 112と移送経路 15とを通じて樹脂供給機構 61 (5)の 2つの計量部 63 (24)のそれ ぞれへ供給される。
[0146] なお、 2つの空圧タンク 103が液状樹脂の装着部 101として設けられていてもよい。
すなわち、 2つのカートリッジ 17および 109のそれぞれ、 2つの容器 111のそれぞれ、 および 2つのタンク本体 106のそれぞれ力 液状樹脂 4の主剤 Aおよび硬化剤 Bに対 応するように設けられていてもよい。しかしながら、 2つのカートリッジ 17および 109、 2 つの容器 111、および 2つのタンク本体 106が、主剤 Aおよび硬化剤 Bのそれぞれに 対応するように、一個の空圧タンク 103に設けられてもよい。また、複数の供給管着 脱部 108が、一個の空圧タンク 103に設けられてもよい。また、空気 110の代わりに、 窒素ガスおよび二酸化炭素ガス等の気体が用いられてもよ!/、。
[0147] また、各実施例においては、上型 6、中型 8、および下型 7を有する型組品 3が用い られているが、上型および下型を有する型組品が用いられてもよい。
[0148] また、各実施例においては、液状樹脂 4は、離型フィルム 12によって被覆された全 体キヤビティ 10へ供給されている力 S、離型フィルム 12によって被覆されていない全体 キヤビティ 10へ供給されてもよい。
[0149] また、各実施例においては、二液性の液状樹脂 4が用いられている力 本発明にお いては、一液性の液状樹脂が用いられてもよい。さらに、各実施例においては、透明 な液状樹脂 4が用いられているが、本発明においては、半透明な液状樹脂または不 透明な液状樹脂が用いられてもよい。
[0150] 加えて、各実施例においては、シリコーン樹脂 4が用いられている力 他の熱硬化 性樹脂、例えば、エポキシ樹脂が用いられてもよい。また、各実施例において、熱硬 化性樹脂の代わりに、熱可塑性樹脂が用いられてもよレ、。
[0151] 各実施例においては、 LEDチップ等の光素子の樹脂封止がなされている力 本発 明にお!/、ては、光素子以外の電子部品の樹脂封止がなされてもよ!/、。
[0152] この発明を詳細に説明し示してきたが、これは例示のためのみであって、限定ととつ てはならず、発明の範囲は添付の請求の範囲によってのみ限定されることが明らか に理解されるであろう。

Claims

請求の範囲
[1] 上型 (6)と、キヤビティ(10)が設けられた下型 (7)とを準備するステップと、
液状樹脂 (4)が前記キヤビティ (10)へ落下するように水平方向に前記液状樹脂(4) を吐出するステップと、
前記上型 (6)と前記下型(7)とを閉じることにより、前記上型 (6)に装着された基板 (
1)に搭載された電子部品(2)を前記液状樹脂 (4)に浸漬させるステップと、
前記上型(6)と前記下型(7)とを開くステップとを備えた、電子部品の圧縮成形方 法。
[2] 請求の範囲第 1項に記載の電子部品の圧縮成形方法であって、
前記吐出するステップは、
前記上型(6)と前記下型(7)との間に水平方向に延びるノズル(23, 64)を揷入 前記ノズル(23, 64)から前記キヤビティ (10)へ水平方向に前記液状樹脂(4)を 吐出するステップとを含む。
[3] 請求の範囲第 2項に記載の電子部品の圧縮成形方法であって、
前記吐出するステップにおいては、前記ノズル(23, 64)の吐出口(29, 64a)が、 前記キヤビティ(10)の底面(10a)の中央位置(I)の上方と、前記キヤビティ(10)の 底面(10a)の外周部の近傍における複数位置(II, III, IV, V)のそれぞれの上方と の間を順次往復する。
[4] 請求の範囲第 2項に記載の電子部品の圧縮成形方法であって、
前記吐出するステップにおいては、前記ノズル(23, 64)の吐出口(29, 64a)が、 前記キヤビティ(10)の底面(10a)の上方において、平面的に見て、 S字状の軌跡(I , II, III, IV, V, VI)を描くように移動する。
[5] 請求の範囲第 1項に記載の電子部品の圧縮成形方法であって、
前記液状樹脂 (4)が、透光性を有する二液性のシリコーン樹脂を含む。
[6] 請求の範囲第 1項に記載の電子部品の圧縮成形方法であって、
前記吐出するステップにおいて、前記キヤビティ(10)が離型フィルム(12)によって 覆われた状態で、前記液状樹脂(4)が前記キヤビティ(10)へ供給される。 請求の範囲第 1項に記載の電子部品の圧縮成形方法であって、
前記準備するステップにおレ、て、前記基板(1)および前記液状樹脂(4)が前記上 型(6)と前記下型(7)との間に同時に揷入される。 前記下型(7)に対向し、電子部品(2)が搭載された基板(1)が装着され得る上型( 6)と、
前記キヤビティ(10)へ液状樹脂 (4)を供給し得る樹脂供給部(13, 62)と、 前記樹脂供給部(13, 64)に取外し可能な態様で取付けられ、前記キヤビティ(10 )へ前記液状樹脂(4)を吐出し得るノズル(23, 64)とを備えた、電子部品の圧縮成 形装置。 前記下型(7)に対向し、電子部品(2)が搭載された基板(1)が装着され得る上型( 6)と、
前記キヤビティ(10)へ液状樹脂 (4)を供給し得る樹脂供給機構(5, 61)と、 前記キヤビティ(10)へ前記液状樹脂 (4)を供給し得るように前記樹脂供給機構(5 , 61)を移動させ得る移動機構(100)と、
前記液状樹脂 (4)が前記樹脂供給機構(5, 61)へ導かれるように装填され得る装 填部(14, 71 , 101)と、
前記液状樹脂 (4)が前記装填部(14, 71 , 101)から前記樹脂供給機構(5, 61) に導かれるときに前記液状樹脂 (4)を計量する計量部(24, 63)とを備えた、電子部 品の圧縮成形装置。
請求の範囲第 9項に記載の電子部品の圧縮成形装置であって、
前記装填部(14, 71 , 101)は、
前記液状樹脂 (4)が装填され得るカートリッジ本体 (20)と、
前記力一トリッジ本体( 20 )内に設けられたプランジャ( 21 )と、
前記プランジャ(21)を押圧し得る押圧機構( 19, 73)と、
前記プランジャ(21)の外周面または前記押圧部材(102)の外周面と前記カート リッジ本体(20)の内周面との間に設けられたシール材(22, 102a)とを含む。 請求の範囲第 9項に記載の電子部品の圧縮成形装置であって、
前記上型(7)に前記基板(1)を装着し得る基板供給機構(53)と、
前記基板供給機構(53)と前記樹脂供給機構(5)とを同時に前記上型 (6)と前記 下型(7)との間に同時に揷入し得る同時搬送機構(51)とをさらに備えている。
PCT/JP2007/070542 2006-11-02 2007-10-22 Method for compression molding electric component and compression molding apparatus for use in the method WO2008053734A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800243923A CN101479087B (zh) 2006-11-02 2007-10-22 电子器件的压缩成形方法及其使用的压缩成形装置
KR1020087030098A KR101088572B1 (ko) 2006-11-02 2007-10-22 전자 부품의 압축 성형 방법 및 그것에 이용되는 압축 성형장치
US12/303,504 US8105524B2 (en) 2006-11-02 2007-10-22 Compression molding method for electronic component and compression molding apparatus employed therefor
EP07830276A EP2087983A1 (en) 2006-11-02 2007-10-22 Method for compression molding electric component and compression molding apparatus for use in the method
US13/335,460 US8684718B2 (en) 2006-11-02 2011-12-22 Compression molding method for electronic component and compression molding apparatus employed therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006298330A JP4858966B2 (ja) 2006-11-02 2006-11-02 電子部品の圧縮成形方法及び成形装置
JP2006-298330 2006-11-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/303,504 A-371-Of-International US8105524B2 (en) 2006-11-02 2007-10-22 Compression molding method for electronic component and compression molding apparatus employed therefor
US13/335,460 Division US8684718B2 (en) 2006-11-02 2011-12-22 Compression molding method for electronic component and compression molding apparatus employed therefor

Publications (1)

Publication Number Publication Date
WO2008053734A1 true WO2008053734A1 (en) 2008-05-08

Family

ID=39344077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070542 WO2008053734A1 (en) 2006-11-02 2007-10-22 Method for compression molding electric component and compression molding apparatus for use in the method

Country Status (8)

Country Link
US (2) US8105524B2 (ja)
EP (1) EP2087983A1 (ja)
JP (1) JP4858966B2 (ja)
KR (1) KR101088572B1 (ja)
CN (1) CN101479087B (ja)
MY (2) MY148344A (ja)
TW (1) TWI337929B (ja)
WO (1) WO2008053734A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144910A1 (ja) * 2008-05-27 2009-12-03 Towa株式会社 樹脂封止装置及び樹脂封止方法
JP2010082888A (ja) * 2008-09-30 2010-04-15 Towa Corp 圧縮樹脂封止成形に用いられる液状樹脂材料の供給方法及び装置
WO2024150475A1 (ja) * 2023-01-13 2024-07-18 Towa株式会社 吐出装置、樹脂成形品の製造装置および樹脂成形品の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212809B2 (ja) * 2008-09-24 2013-06-19 株式会社多加良製作所 樹脂成形装置
KR20100099554A (ko) 2009-03-03 2010-09-13 현대모비스 주식회사 고가공성을 갖는 Al―SⅰMg계 알루미늄 합금 및 그의 제조방법
WO2010146860A1 (ja) * 2009-06-17 2010-12-23 パナソニック株式会社 樹脂モールド型電子部品の製造方法
JP2011018704A (ja) * 2009-07-07 2011-01-27 Toyoda Gosei Co Ltd Ledチップを囲繞する封止部材の表面に微細凹凸を形成する方法、及びこの方法を含むledランプの製造方法
WO2011037034A1 (ja) 2009-09-24 2011-03-31 旭硝子株式会社 離型フィルムおよび発光ダイオードの製造方法
KR101112140B1 (ko) * 2010-01-28 2012-02-22 주식회사 휘닉스 디지탈테크 전자 부품 몰딩 장치
JP5576197B2 (ja) * 2010-07-08 2014-08-20 Towa株式会社 電子部品の圧縮成形方法及び成形装置
JP5541797B2 (ja) * 2010-11-12 2014-07-09 アピックヤマダ株式会社 樹脂成形装置
KR101350589B1 (ko) * 2011-04-13 2014-01-10 세메스 주식회사 기판 이송 유닛 및 이를 포함하는 기판 성형 장치
US8746923B2 (en) 2011-12-05 2014-06-10 Cooledge Lighting Inc. Control of luminous intensity distribution from an array of point light sources
JP6049597B2 (ja) * 2013-11-28 2016-12-21 Towa株式会社 圧縮成形装置の樹脂材料供給方法及び供給機構、並びに圧縮成形方法及び圧縮成形装置
JP6104787B2 (ja) * 2013-12-18 2017-03-29 Towa株式会社 樹脂成形装置及び樹脂成形方法
JP6071869B2 (ja) * 2013-12-27 2017-02-01 Towa株式会社 樹脂成形装置及び樹脂成形方法
JP6270532B2 (ja) * 2014-02-24 2018-01-31 Towa株式会社 樹脂成形装置及び樹脂成形方法
JP6218666B2 (ja) * 2014-04-25 2017-10-25 Towa株式会社 樹脂成形装置及び樹脂成形方法
DE102015200219A1 (de) * 2015-01-09 2016-07-14 Robert Bosch Gmbh Verfahren zum Herstellen eines Elektronikmoduls insbesondere eines Getriebesteuermoduls
JP6549478B2 (ja) * 2015-11-30 2019-07-24 Towa株式会社 吐出装置、樹脂成形装置、吐出方法及び樹脂成型品の製造方法
NL2016011B1 (en) 2015-12-23 2017-07-03 Besi Netherlands Bv Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators.
EP3634168B1 (de) * 2017-06-06 2020-10-14 Puma Se Verfahren zum herstellen eines schuhs, insbesondere eines sportschuhs
KR102580650B1 (ko) 2018-01-22 2023-09-20 삼성전자주식회사 디스펜서용 언더필 용액 공급 장치, 이를 갖는 디스펜서 및 이를 이용한 반도체 모듈의 제조 방법
CN110459481A (zh) * 2018-05-07 2019-11-15 昱鑫制造股份有限公司 半导体元件的封装方法及其对位模具
JP7417495B2 (ja) * 2020-08-28 2024-01-18 Towa株式会社 樹脂成形装置及び樹脂成形品の製造方法
JP7394732B2 (ja) * 2020-10-19 2023-12-08 Towa株式会社 樹脂供給方法、樹脂成形品の製造方法及び樹脂成形装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305439A (ja) * 1997-05-01 1998-11-17 Apic Yamada Kk 樹脂モールド方法及び樹脂モールド装置
JP2003165133A (ja) 2001-11-30 2003-06-10 Apic Yamada Corp 液材吐出装置及び樹脂封止装置
JP2005225133A (ja) * 2004-02-13 2005-08-25 Towa Corp 半導体チップの樹脂封止成形方法および樹脂封止成形用金型
JP2006131849A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 二液型硬化性組成物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924837A (en) * 1974-12-23 1975-12-09 Upjohn Co Agitator insert for reactive liquid polymer mixer
JPS6211533A (ja) 1985-07-08 1987-01-20 Noritake Co Ltd 樹脂混合装置
JPH05154428A (ja) 1991-12-11 1993-06-22 Toshiba Corp ディスペンサ装置
JPH05237363A (ja) 1992-02-26 1993-09-17 Furukawa Electric Co Ltd:The 2液混合ディスペンサー
JP2994219B2 (ja) * 1994-05-24 1999-12-27 シャープ株式会社 半導体デバイスの製造方法
KR100385285B1 (ko) 1995-10-21 2003-08-25 명진산업 주식회사 2액 혼합 경화성 수지의 주입기 및 주입 믹서 노즐
EP0985513B1 (en) * 1996-01-31 2003-01-02 Sumitomo Bakelite Company Limited Method of producing epoxy resin-encapsulated semiconductor device
JPH10214853A (ja) 1997-01-28 1998-08-11 Sumitomo Bakelite Co Ltd 半導体封止方法
US6508970B2 (en) * 1999-07-15 2003-01-21 Infineon Technologies North America Corp. Liquid transfer molding system for encapsulating semiconductor integrated circuits
US6105822A (en) * 1999-09-08 2000-08-22 Liquid Control Corporation Device and method for mixing and dispensing two flowable materials
JP4268389B2 (ja) * 2002-09-06 2009-05-27 Towa株式会社 電子部品の樹脂封止成形方法及び装置
US7160178B2 (en) * 2003-08-07 2007-01-09 3M Innovative Properties Company In situ activation of a three-dimensional fixed abrasive article
JP4397227B2 (ja) * 2003-12-22 2010-01-13 アピックヤマダ株式会社 ディスペンサのエア除去方法
JP5004410B2 (ja) * 2004-04-26 2012-08-22 Towa株式会社 光素子の樹脂封止成形方法および樹脂封止成形装置
WO2005106942A1 (ja) * 2004-04-30 2005-11-10 Sumitomo Bakelite Co., Ltd. 樹脂封止型半導体パッケージ並びにその製造方法及び製造装置
JP4473096B2 (ja) 2004-10-29 2010-06-02 藤倉ゴム工業株式会社 液状樹脂射出成形装置
US7452737B2 (en) * 2004-11-15 2008-11-18 Philips Lumileds Lighting Company, Llc Molded lens over LED die
US7858408B2 (en) * 2004-11-15 2010-12-28 Koninklijke Philips Electronics N.V. LED with phosphor tile and overmolded phosphor in lens
JP4623282B2 (ja) * 2005-03-10 2011-02-02 信越化学工業株式会社 半導体装置の製造方法
WO2007073745A1 (de) 2005-12-16 2007-07-05 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Isolator für eine sensoranordnung einer laserbearbeitungsmaschine
JP2009124012A (ja) * 2007-11-16 2009-06-04 Towa Corp 電子部品の圧縮成形方法及び金型
JP5010693B2 (ja) * 2010-01-29 2012-08-29 株式会社東芝 Ledパッケージ
JP2012028651A (ja) * 2010-07-26 2012-02-09 Toshiba Corp 樹脂供給装置および半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305439A (ja) * 1997-05-01 1998-11-17 Apic Yamada Kk 樹脂モールド方法及び樹脂モールド装置
JP2003165133A (ja) 2001-11-30 2003-06-10 Apic Yamada Corp 液材吐出装置及び樹脂封止装置
JP2005225133A (ja) * 2004-02-13 2005-08-25 Towa Corp 半導体チップの樹脂封止成形方法および樹脂封止成形用金型
JP2006131849A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 二液型硬化性組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144910A1 (ja) * 2008-05-27 2009-12-03 Towa株式会社 樹脂封止装置及び樹脂封止方法
JP2009285858A (ja) * 2008-05-27 2009-12-10 Towa Corp 樹脂封止装置及び樹脂封止方法
JP2010082888A (ja) * 2008-09-30 2010-04-15 Towa Corp 圧縮樹脂封止成形に用いられる液状樹脂材料の供給方法及び装置
WO2024150475A1 (ja) * 2023-01-13 2024-07-18 Towa株式会社 吐出装置、樹脂成形品の製造装置および樹脂成形品の製造方法

Also Published As

Publication number Publication date
KR101088572B1 (ko) 2011-12-07
US8105524B2 (en) 2012-01-31
US20120093954A1 (en) 2012-04-19
MY166646A (en) 2018-07-17
US20090200704A1 (en) 2009-08-13
US8684718B2 (en) 2014-04-01
CN101479087A (zh) 2009-07-08
JP2008114428A (ja) 2008-05-22
JP4858966B2 (ja) 2012-01-18
MY148344A (en) 2013-03-29
KR20090018109A (ko) 2009-02-19
EP2087983A1 (en) 2009-08-12
CN101479087B (zh) 2012-05-30
TWI337929B (en) 2011-03-01
TW200827131A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
WO2008053734A1 (en) Method for compression molding electric component and compression molding apparatus for use in the method
JP5576197B2 (ja) 電子部品の圧縮成形方法及び成形装置
TWI584933B (zh) Resin forming apparatus and resin forming method
CN103921384B (zh) 电子部件的压缩成形方法及模具装置
JP4855329B2 (ja) 電子部品の圧縮成形方法及び装置
WO2010038660A1 (ja) 電子部品の圧縮樹脂封止成形方法及びそのための装置
JP5192749B2 (ja) 光素子の樹脂封止成形方法及び装置
TWI599468B (zh) 樹脂成形裝置及樹脂成形方法
TWI585912B (zh) Resin forming apparatus and resin forming method
JP5261261B2 (ja) 圧縮樹脂封止成形に用いられる液状樹脂材料供給方法及び装置
JP2008221622A (ja) 電子部品の圧縮成形方法
JP5055257B2 (ja) 圧縮樹脂封止成形に用いられる液状樹脂材料の計量供給方法及び装置
JP6310724B2 (ja) 樹脂成形装置及び樹脂成形方法
TW202323004A (zh) 樹脂封裝裝置
JP2010082886A (ja) 圧縮樹脂封止成形に用いられる離型フイルム装着方法及び装置
JP2010082888A (ja) 圧縮樹脂封止成形に用いられる液状樹脂材料の供給方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024392.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12303504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 2007830276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE