WO2008032613A1 - Procédé servant à produire un copolymère du tétrafluoroéthylène pouvant être moulé en phase fondue - Google Patents

Procédé servant à produire un copolymère du tétrafluoroéthylène pouvant être moulé en phase fondue Download PDF

Info

Publication number
WO2008032613A1
WO2008032613A1 PCT/JP2007/067236 JP2007067236W WO2008032613A1 WO 2008032613 A1 WO2008032613 A1 WO 2008032613A1 JP 2007067236 W JP2007067236 W JP 2007067236W WO 2008032613 A1 WO2008032613 A1 WO 2008032613A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
polymerization
producing
fluorine
tfe
Prior art date
Application number
PCT/JP2007/067236
Other languages
English (en)
French (fr)
Inventor
Atsushi Funaki
Shigeki Kobayashi
Hiroki Nagai
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2008534298A priority Critical patent/JP5298851B2/ja
Priority to EP07806691A priority patent/EP2058341B1/en
Priority to CN2007800334725A priority patent/CN101511887B/zh
Publication of WO2008032613A1 publication Critical patent/WO2008032613A1/ja
Priority to US12/402,108 priority patent/US8470942B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene

Definitions

  • the present invention relates to a method for producing a melt-formable tetrafluoroethylene copolymer.
  • PTFE Polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • Commercially available PTFE has a high melt viscosity even when melted, so normal melt molding cannot be performed.
  • PTFE molding paste extrusion molding using a processing aid, compression molding, ram extrusion molding, etc. The molding method is adopted.
  • a copolymer of tetrafluoroethylene hereinafter referred to as TFE
  • PAVE perfluoro (alkyl vinyl ether)
  • PFA perfluoro (alkyl vinyl ether)
  • PAVE force In the case of perfluoro (propyl butyl ether) (hereinafter referred to as PPVE), the content of repeating units based on TFE is 94% of the total mass of repeating units based on TFE and PPVE in PFA. The content of repeating units based on PPVE is about 3 to 6% by mass. Because of the high manufacturing cost of PAVE, the manufacturing cost of PFA is also high.
  • the melting point of PFA obtained by copolymerizing PPVE is generally 310 ° C or less, and its heat resistance is lower than that of PTFE.
  • Patent Documents 1 and 2 Recently, the development of PTFE that can be melt-formed has been reported (for example, see Patent Documents 1 and 2).
  • This PTFE is presumed to be a copolymer of TFE and a small amount of other fluorine-containing monomers.
  • This PTFE is expected to be usable under higher temperature conditions where the melting point is higher than that of PFA.
  • the content of repeating units based on other fluorine-containing monomers is smaller than the content of repeating units based on PAVE in PFA, the production cost of PTFE is low compared to the production cost of PFA. Presumed.
  • Patent Documents 1 and 2 do not provide details on the method for producing melt-moldable PTFE.
  • a radical polymerization method is used, and in particular, a suspension polymerization method without using a solvent and an emulsion polymerization method using a fluorine-based emulsifier are employed.
  • a suspension polymerization method using a fluorine-based solvent or an emulsion polymerization method using a fluorine-based emulsifier is employed.
  • the suspension polymerization method using a fluorine-based solvent and the emulsion polymerization method using a fluorine-based emulsifier can be applied as in the PFA production method. It is believed that there is. However, from the viewpoint of environmental conservation in recent years, there has been a movement to regulate the use of fluorinated solvents and fluorinated emulsifiers. It is considered preferable to apply.
  • Patent Document 1 Japanese Translation of Special Publication 2003—523436
  • Patent Document 2 Special Table 2003-520863 Publication
  • An object of the present invention is to produce a melt-moldable tetrafluoroethylene copolymer (hereinafter referred to as TFE copolymer) having excellent mechanical properties and no coloring at a good polymerization rate.
  • TFE copolymer melt-moldable tetrafluoroethylene copolymer
  • the present invention provides a method for producing a melt-moldable TFE copolymer having the following constitution.
  • (l) One or more selected from the group consisting of radical polymerization initiators and methane, ethane, hydrated fluorocarbon, hydrated fluorocarbon, and hydrated fluorocarbon in an aqueous medium with TFE and other fluorine-containing monomers.
  • the polymer is subjected to radical suspension polymerization to contain a repeating unit (a) based on TFE and a repeating unit (b) based on another fluorine-containing monomer, and the repeating unit (a) and the repeating unit.
  • a TFE copolymer having a repeating unit (a) of 97.3-99.5 mass% and a capacity flow rate of 0.1-1000 mm 3 / sec with respect to the total mass of (b) is to be produced.
  • a process for producing a melt-moldable TFE copolymer is to be produced.
  • TFE and other fluorine-containing monomers are added in the presence of 3 to 80 ppm of a fluorine-containing emulsifier with respect to the mass of the aqueous medium. 10.
  • the fluorine-containing emulsifier is perfluorooctanoic acid ammonium, perfluorohexanoic acid ammonium or F (CF) OCF CF OCF COONH (11)
  • the amount of the other fluorine-containing monomer to be present in the polymerization system at the start of polymerization is from! To 6% by mass based on the mass of the TFE copolymer to be produced.
  • a method for producing a melt-moldable TFE copolymer is from! To 6% by mass based on the mass of the TFE copolymer to be produced.
  • the production method of the present invention can provide a melt-moldable TFE copolymer having a good polymerization rate, a high melting point, excellent mechanical properties such as tensile strength, and no coloration.
  • the suspension polymerization rate is increased and the reaction rate of other fluorine-containing monomers is improved.
  • the raw material monomers are TFE and other fluorine-containing monomers.
  • Perfluoroalkyl group Perfluoro (alkyl bur ether)
  • CH CX 3 (CF) X 4 (where X 3 and X 4 are independently of each other a hydrogen atom or
  • a fluorine atom, and q is an integer of 2 to 10.
  • Other fluorine-containing monomers may be used alone or in combination of two or more.
  • CF CFOR fl as perfluoro (alkyl bur ether) is CF
  • perfluoro alkyl butyl ether
  • perfluoro propyl butyl ether
  • the amount of the raw material monomer TFE and other fluorine-containing monomers used may be appropriately selected so that the obtained TFE copolymer has a composition that can be melt-molded.
  • the amount of other monomers used in the polymerization system is based on the mass of the TFE copolymer produced; % By weight is preferred;! To 5% by weight is more preferred;! To 4% by weight is most preferred.
  • TFE and other TFE copolymers are produced by radical suspension polymerization in the presence of a radical polymerization initiator and a chain transfer agent in an aqueous medium. Copolymerize with fluorine-containing monomer to obtain TFE copolymer.
  • the radical suspension polymerization method is a method of radical polymerization while suspending in an aqueous medium, and examples of the aqueous medium include demineralized water and ultrapure water. An appropriate organic solvent may be added to the aqueous medium as necessary.
  • suitable organic solvents include perfluorocarbons such as perfluorohexane, perfluorocyclobutane, and hydrocarbons such as CHF CF CF CF CF CF, C
  • Examples include hydrated fluoroethers such as CF CF CF and CF CH OCF CF H.
  • the ratio of the organic solvent / aqueous medium is expressed by mass ratio.
  • suspension polymerization using only an aqueous medium without using an organic solvent is particularly preferable from the viewpoint of environmental conservation.
  • a radical polymerization initiator having a temperature at a half-life of 10 hours (hereinafter referred to as a 10-hour half-life temperature) of 0 ° C. to 100 ° C. is preferable.
  • the 10-hour half-life temperature is more preferably 20 to 90 ° C.
  • the radical polymerization initiator may be an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator, but a water-soluble radical polymerization initiator is preferred. When a water-soluble radical polymerization initiator is used, only an aqueous medium can be used for radical suspension polymerization.
  • oil-soluble radical polymerization initiator examples include azo compounds such as azobisisobutyronitrile, isobutyryl peroxide, otatanyl peroxide, and benzoyl peroxide.
  • Non-fluorinated diacyl peroxides such as lauroyl peroxide, disuccinic acid peroxide, etc. t ert-butylperoxyisobutyrate, tert-butylperoxyacetate, etc. Luoxyester, (Z (CF) COO) (where Z is a hydrogen atom, a fluorine atom or a chlorine atom)
  • the water-soluble radical polymerization initiator include carboxylic acid peroxides such as disuccinic acid peroxide, inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate. .
  • carboxylic acid peroxides such as disuccinic acid peroxide
  • inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate.
  • the amount of radical polymerization initiator to be charged is preferably 10 to 2000 ppm by mass with respect to the charged aqueous medium ⁇ , 20 to;! OOOppm more preferred ⁇ , 50 to 500 ppm particularly preferred.
  • the polymerization conditions are not particularly limited and may be appropriately selected.
  • 1S polymerization temperature is 0 to; 100 ° C is preferred 20 to 90 ° C is more preferred 50 to 80 ° C is preferred. Most preferred.
  • the polymerization pressure is preferably from 0.;! To 5 MPa, more preferably from 0.5 to 2 MPa.
  • a chain transfer agent is used to control the volume flow rate of the melt-moldable TFE copolymer.
  • the chain transfer agent is one or more chain transfer agents selected from the group consisting of methane, ethane, hydrogen, id mouth chlorocarbon, hyde mouth fluorocarbon, and hide mouth fluorocarbon.
  • the hide mouth carbon include dichloromethane and trichloromethane.
  • the hydrated fluorocarbon include fluoromethane, difluoromethane, 1,1-difluoroethane, 1,1,1 trifluoroethane, and the like.
  • Examples of the hydrated fluorocarbons include chlorodifluoromethane, dichlorofluoromethane, 1,1-dichloro-1-fluoroethane, 1-chlorofluorocarbon 1,2,2,2-tetrafluoroethane, and the like.
  • the chain transfer agent is preferably a compound represented by the following general formula (1).
  • n is more preferably 1 to 2
  • m is more preferably 2 to 6.
  • the chain transfer agent is charged in a molar ratio with respect to the total amount of monomers charged at the start of the polymerization, from 0.0001 to; more preferred ⁇ , 0.0005—0.5 more preferred ⁇ , 0.01—0.1 especially Preferred
  • tetrafluoroethylene and tetrafluoroethylene in addition to the radical polymerization initiator and the chain transfer agent in an aqueous medium, tetrafluoroethylene and tetrafluoroethylene in the presence of 3 to 80 ppm of a fluorine-containing emulsifier with respect to the mass of the aqueous medium. It is preferable to carry out radical suspension polymerization of other fluorine-containing monomers.
  • fluorine-containing emulsifier examples include fluorine-containing alkyl carboxylates such as perfluorooctanoic acid ammonium, perfluorooctanoic acid sodium, perfluoro oral ammonium hexanoate, perfluoro oral sodium hexanoate, and the general formula F (CF) 0 ( CF (X) CF O)
  • A is a hydrogen atom, alkali metal, NH, n is an integer of 1 to 10, m is 0 or an integer of 1 to 3.
  • Fluorine-containing emulsifiers include perfluorooctanoic acid ammonium, perfluomorphic ammonium ammonium, F (CF) OCF CF OCF COONH, F (CF) OCF CF ⁇ C
  • F COONH, F (CF) OCF CF OCF COONH is more preferred perfluoro
  • the content of the fluorine-containing emulsifier is more preferably from 5 ppm to 50 ppm, most preferably from 10 to less than 30 ppm, based on the mass of the aqueous medium.
  • the content of the fluorine-containing emulsifier is remarkably small compared to 1000 to 5000 ppm used for the production of PTFE and PFA by emulsion polymerization.
  • the concentration of the TFE copolymer in the suspension polymerization liquid obtained by the production method of the present invention may be selected as appropriate, but usually 3 to 40% by mass is preferred, and 5 to 35% by mass is more preferred. 7-30% by weight is particularly preferred.
  • the above-mentioned other fluorine-containing monomers are charged together at the start of polymerization, and TFE and other fluorine-containing monomers are added. It is preferable to carry out radical suspension polymerization.
  • the production method of the present invention includes the above-mentioned other fluorine-containing monomers in the presence of 3 to 80 ppm of a fluorine-containing emulsifier in addition to the radical polymerization initiator, the chain transfer agent, and the aqueous medium. It is more preferable to batch charge the polymer at the start of polymerization and to carry out radical suspension polymerization of TFE and other fluorine-containing monomers!
  • the melt moldable TFE copolymer obtained by the production method of the present invention contains a repeating unit (a) based on TFE and a repeating unit (b) based on another fluorine-containing monomer.
  • the repeating unit ⁇ is 9 with respect to the total mass of the repeating unit ⁇ and the repeating unit (b).
  • a repeating unit (b) is from 0.5 to 2, 7% by weight based on other fluorine-containing monomer, preferably 0.5 to 2.4 mass 0/0 There, more preferably an from 0.5 to 2.0 mass 0/0, and most preferably, 0.7 a to 2% by weight.
  • TFE copolymer It can be melt-formed, has excellent mechanical properties, has a high melting point, and has excellent heat resistance.
  • the melt-moldable TFE copolymer obtained by the production method of the present invention has a volume flow rate (hereinafter referred to as Qi straight) of 0.;! To 1000 mm 3 / sec, preferably 0. It is 2 to 100 mm 3 / sec, more preferably 0.5 to 50 mm 3 / sec.
  • the Q value is an index showing the melt flowability of the TFE copolymer and is a measure of the molecular weight. Large Q value indicates low molecular weight and low molecular weight indicates high molecular weight.
  • the Q value is extruded into an orifice with a diameter of 2.lm m and a length of 8mm under a load of 7kg at a temperature 50 ° C higher than the melting point of the TFE copolymer using a flow tester manufactured by Shimadzu Corporation. Is the extrusion rate of the TFE copolymer. Q value Force S If it is too small, extrusion molding becomes difficult. If it is too large, the mechanical strength of the TFE copolymer decreases. When the Q value is within the above range, the TFE copolymer can be melt-molded and has excellent mechanical properties.
  • the melting point of the melt-moldable TFE copolymer obtained by the production method of the present invention is preferably 320 ° C to 335 ° C, more preferably 323 ° C to 330 ° C, and 325 ° C to 330 ° C. C is most preferred. Within this range, a melt-moldable TFE copolymer has excellent heat resistance and applicability to applications that are used at high temperatures.
  • TFE copolymers obtained by batch charging other fluorine-containing monomers at the start of polymerization and radical suspension polymerization of TFE and other fluorine-containing monomers can be melt-molded. Therefore, it is preferable because it exhibits a high melting point of 325 ° C to 330 ° C and is excellent in heat resistance.
  • TFE copolymer force S obtained by radically suspension-polymerizing TFE and other fluorine-containing monomers by batch charging other fluorine-containing monomers at the start of polymerization, melt molding possible, 325 ° C to 330 ° C
  • the reason for the high melting point of ° C is not necessarily clear, but is thought to be as follows.
  • a small amount of other monomer for example, PPVE
  • PPVE polymer
  • the concentration of other monomers present in the system is lowered at the end of the polymerization, the content of repeating units based on other monomers in the TFE copolymer to be produced is also reduced. That is, at the end of the polymerization, a TFE copolymer having a high content of repeating units based on TFE and having high heat resistance is formed in the outer shell of the suspended particles of the TFE copolymer.
  • polymerization Presumed to be a body.
  • PFA which is a copolymer of TFE and PPVE
  • a suspension polymerization method using a fluorine-based solvent and an emulsion polymerization method using a fluorine-based emulsifier are employed.
  • the melt-moldable TFE copolymer obtained by the production method of the present invention is also preferably formed into a pellet using an extruder.
  • an extruder a single or twin screw extruder is usually used.
  • the temperature of the extruder is preferably 340 to 400 ° C in the metering zone and die part.
  • the screw rotation speed is preferably about 5 to about OOrpm.
  • melt-moldable TFE copolymer contains unstable terminal groups
  • post-treatment such as heat treatment, melt shearing, and fluorination treatment can be performed to stabilize the unstable terminal groups. It is.
  • the melt-moldable TFE copolymer is preferably molded as a composition containing various compounding agents in addition to the TFE copolymer alone.
  • the compounding agent include carbon black for imparting conductivity, carbon fiber for imparting mechanical strength, and other pigments.
  • a melt-moldable TFE copolymer can be molded by various molding methods such as injection molding, compression molding, extrusion molding, transfer molding, and blow molding. More preferably, it is an injection molding method.
  • the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
  • the copolymer composition of the TFE copolymer was determined by 19 F-NMR measurement in the hot melt state according to the description of Asahi Glass Research Report, 1990, 40 (1), 75.
  • the mass of copolymerized CF CFO (CF) F calculated from It calculated
  • Tensile strength and tensile elongation were measured in accordance with ASTM D3307. A tensile test was performed at a speed of 50 mm / min on a test piece obtained by punching a lmm thick sheet obtained by press-molding a TFE copolymer with a micro dumbbell. The strength and elongation at break were measured and calculated.
  • Melting point was 10 ° C / min in an air atmosphere with about 10mg of TFE copolymer obtained by drying after polymerization using a differential thermal analyzer (SESC / 5200—TG / DTA220 U manufactured by Seiko Instruments Inc.). The endothermic peak top was taken as the melting point.
  • the Q value was calculated using a Shimadzu flow tester at a temperature 50 ° C higher than the melting point of the TFE copolymer, and the TFE copolymer weight when extruded into an orifice of 2. lmm in diameter and 8mm in length under a load of 7kg. The extrusion speed of coalescence.
  • the polymerization tank with a stirrer with an internal volume of 1.3 L was deaerated and charged with 780 g of demineralized water, 4. lg of PPVE, 0.65 g of ammonium carbonate, and 0.8 g of dichloromethane. Subsequently, the temperature inside the polymerization tank was raised to 70 ° C, and TFE was charged so that the pressure became 1. OMPa / G.
  • TFE As a polymerization initiator solution, 16 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization.
  • TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 5.0 hours after the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 1 had a tensile strength of 23.7 MPa and a tensile elongation of 319%.
  • the polymerization tank used in Example 1 was degassed, charged with 780 g of demineralized water, 4. lg of PPVE, and 0.65 g of ammonium carbonate, and the temperature inside the polymerization tank was raised to 70 ° C. Ethane was charged until the pressure reached 0.03 MPa / G, and then TFE was charged to 1. OMPa / G.
  • As a polymerization initiator solution 16 cm 3 of a 1% by weight aqueous solution of ammonium persulfate was charged to initiate polymerization. I let you. During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 4. After 8 hours from the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 2 was dried to obtain 120.4 g of TFE copolymer 2.
  • TFE copolymer 2 had a tensile strength of 28.6 MPa and a tensile elongation of 324%.
  • the polymerization tank used in Example 1 was degassed, charged with 780 g of demineralized water, 4. lg of PPVE, and 0.65 g of ammonium carbonate, and the temperature inside the polymerization tank was raised to 70 ° C. Chlorodifluoromethane was charged until the pressure reached 0.18 MPa / G, and then TFE was charged to 1. OMPa / G.
  • As a polymerization initiator solution 24 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization. During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 5. After 6 hours from the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 3 was dried to obtain 120.7 g of TFE copolymer 3.
  • TFE copolymer 3 had a tensile strength of 24.0 MPa and a tensile elongation of 321%.
  • the polymerization tank used in Example 1 was degassed and charged with 780 g of demineralized water, 4. lg of PPVE, 0.65 g of ammonium carbonate, and 0.2 of methanol.
  • the temperature inside the polymerization tank was raised to 70 ° C, and TFE was charged so that the pressure became 1. OMPa / G.
  • As a polymerization initiator solution 16 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization. During polymerization, the pressure was 1.
  • TFE was continuously charged so as to maintain OMP a / G. The polymerization rate is slow. 5.0 hours later, when 33 g of TFE is charged, the temperature inside the polymerization tank is lowered to room temperature and normal pressure is reached. Purged until.
  • TFE copolymer 4 had a tensile strength of 8 MPa and a tensile elongation of 45%.
  • the polymerization tank used in Example 1 was degassed, charged with 780 g of demineralized water, 4. lg of PPVE, and 0.65 g of ammonium carbonate, and the temperature inside the polymerization tank was raised to 70 ° C. Propane was charged until the pressure reached 0.03 MPa / G, and then TFE was charged to 1. OMPa / G.
  • As a polymerization initiator solution 16 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization. During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 8. 7 hours after the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • the melting point was 324 ° C.
  • the Q value was 177 mm 3 / sec.
  • a sheet having a thickness of 1 mm was obtained by press molding at 340 ° C. When the sheet was punched with a very fragile micro dumbbell, the sheet cracked, and it was impossible to obtain a tensile test specimen.
  • the polymerization tank used in Example 1 was degassed and charged with 780 g of demineralized water, 4. lg of PPVE, 0.65 g of ammonium carbonate, and 0.08 g of n-hexane, and the temperature inside the polymerization tank was 70. The temperature was raised to ° C and TFE was charged so that the pressure was 1. OMPa / G. As a polymerization initiator solution, 16 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization. During the polymerization, TFE was continuously charged so that the pressure was maintained at 1. OM Pa / G. 7. 4 hours after the start of polymerization, when 12 Og of TFE was charged, the polymerization tank was cooled to room temperature and purged to normal pressure.
  • the obtained powder was dried to obtain 121.4 g of TFE copolymer 6.
  • the melting point was 325 ° C.
  • the Q value was 1 ⁇ Omm 3 / sec.
  • the force S which gave a sheet of lmm thickness by press molding at 340 ° C, was brown.
  • TFE copolymer 6 had a tensile strength of 4 MPa and a tensile elongation of 26%.
  • the polymerization tank used in Example 1 was degassed, charged with 780 g of demineralized water, 4. lg of PPVE, and 0.65 g of ammonium carbonate, and the temperature inside the polymerization tank was raised to 70 ° C. After that, 1. TFE was charged to become OMPa / G. As a polymerization initiator solution, 16 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization. During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 3. After 5 hours from the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • the obtained powder was dried to obtain 125. Og of TFE copolymer 7.
  • the polymerization tank used in Example 1 was degassed and charged with 780 g of demineralized water, 4.3 g of PPVE, 0.65 g of ammonium carbonate, and 1.9 g of dichloromethane. Subsequently, the temperature inside the polymerization tank was raised to 70 ° C, and TFE was charged so that the pressure became 1. OMPa / G. Persulfuric acid as polymerization initiator solution Polymerization was initiated by charging 20 cm 3 of a 1% by weight aqueous solution of ammonium. During the polymerization, the pressure was 1. TFE was continuously charged so as to maintain OMPa / G. 5. 17 hours after the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 8 was dried to obtain 126.3 g of TFE copolymer 8.
  • the melting point was 328 ° C, and Q was 4.1 mm 3 / sec.
  • a white sheet having a thickness of 1 mm was obtained by press molding at 340 ° C.
  • TFE copolymer 8 had a tensile strength of 18.9 MPa and a tensile elongation of 277%.
  • F (CF) OCF CF OCF COONH (hereinafter referred to as APDO) 0 ⁇ 01
  • TFE copolymer 9 was obtained in the same manner as in Example 4 except that g (12.8 ppm relative to the mass of demineralized water) was initially charged. APDO addition amount (ppm), polymerization time, PPV E reaction rate at the end of polymerization, yield of TFE copolymer 10, repeat unit content based on TFE, repeat unit content based on PPVE, melting point, volume flow rate ( Table 2 shows the Q value), tensile strength, and tensile elongation.
  • TFE copolymers 10 to 15 were obtained in the same manner as in Example 5 except that the amount of APDO used was changed.
  • APDO addition ppm
  • PPVE reaction rate at the end of polymerization PPVE reaction rate at the end of polymerization
  • yield of TFE copolymer content of repeating units based on TFE
  • content of repeating units based on PPVE melting point
  • volumetric flow rate Q value
  • tensile Table 2 shows the strength and tensile elongation.
  • TFE copolymers 16 to 19 were obtained in the same manner as in Example 5 except that the amount of perfluorooctanoic acid ammonium (hereinafter referred to as APFO! /) was used instead of APDO.
  • Example 16 The polymerization tank used in Example 1 was degassed and initially charged with 780 g of demineralized water and 0.025 25 g of APDO (28 ⁇ 8 ppm relative to the mass of demineralized water) as an emulsifier, 5. lg of PPVE, carbonic acid Charge ethane until 0.665 g of ammonia and pressure reaches 0.02 MPa / G, then raise the polymerization tank temperature to 70 ° C and charge TFE so that the pressure becomes 1. OMPa / G. It is. As a polymerization initiator solution, 25 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization.
  • TFE During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 3. Three hours after the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 20 The obtained powder was dried to obtain 126.7 g of TFE copolymer 20.
  • the melting point was 326 ° C, and the Q value was 19.6 mm 3 / sec.
  • a white sheet having a thickness of 1 mm was obtained by press molding at 340 ° C.
  • TFE copolymer 20 had a tensile strength of 19.9 MPa and a tensile elongation of 320%.
  • the polymerization tank used in Example 1 was degassed and initially charged with 780 g of demineralized water and 0.025 25 g of APDO as an emulsifier (28.8 ppm relative to the mass of demineralized water), 6.6 g of PPVE, carbonic acid Charge ethane until 0.665 g of ammonia and pressure reaches 0.01 MPa / G, then raise the polymerization tank temperature to 70 ° C and charge TFE so that the pressure becomes 1. OMPa / G. It is.
  • As a polymerization initiator solution 29 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate the polymerization.
  • TFE During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 3. After 47 hours from the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 21 The obtained powder was dried to obtain 126.4 g of TFE copolymer 21.
  • the melting point was 327 ° C, and the Q value was 12. lmm 3 / sec.
  • a white sheet having a thickness of 1 mm was obtained by press molding at 340 ° C.
  • TFE copolymer 21 had a tensile strength of 18.6 MPa and a tensile elongation of 257%.
  • Example 5 The polymerization tank used in Example 1 was degassed and initially charged with 780 g of demineralized water and 0.025 25 g of APDO as an emulsifier (28.8 ppm relative to the mass of demineralized water), 10.6 g of PPVE, carbonic acid An amount of 0.77 g of ammonia was charged, and ethane was charged until the pressure reached 0.01 MPa / G, and then the temperature in the polymerization tank was raised to 70 ° C. After that, 1. TFE was charged to become OMPa / G. As a polymerization initiator solution, 53 cm 3 of a 1% by mass aqueous solution of ammonium persulfate was charged to initiate polymerization.
  • TFE During polymerization, TFE was continuously charged so that the pressure was maintained at 1. OMPa / G. 3. After 9 hours from the start of polymerization, when 120 g of TFE was charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure.
  • TFE copolymer 22 was obtained by press molding at 340 ° C. to obtain a sheet having a thickness of 1 mm, a tensile strength of 19. lMPa, and a tensile elongation of 353%.
  • the TFE copolymer of the present invention is excellent in heat resistance, chemical resistance, corrosion resistance, oil resistance, weather resistance, etc., and can be melt-molded, so it can be used for automobile parts, wire coating materials, industrial injection molding parts, Chemical containers for semiconductor manufacturing processes, joints, tubes, etc., industrial hoses, food hoses, OA equipment, photocopiers, precision parts such as mobile phones, powder coatings for lining, etc. Suitable for any use.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2006-246041 filed on September 11, 2006 are cited here as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

明 細 書
溶融成形可能なテトラフルォロエチレン共重合体の製造方法
技術分野
[0001] 本発明は、溶融成形可能なテトラフルォロエチレン共重合体の製造方法に関する。
背景技術
[0002] ポリテトラフルォロエチレン(以下、 PTFEという)は、耐熱性、耐薬品性、耐候性、ガ スバリア性等に優れ、半導体産業や自動車産業等の種々の分野で使用されている。 市販の PTFEは、溶融しても溶融粘度が高ぐ通常の溶融成形を実施できないことか ら、 PTFEの成形には、加工助剤を用いてのペースト押出成形や圧縮成形、ラム押 出成形等の成形方法が採用されている。溶融成形可能なテトラフルォロエチレン共 重合体として、テトラフルォロエチレン(以下、 TFEという)とパーフルォロ(アルキルビ ニルエーテル)(以下、 PAVEという)との共重合体(以下、 PFAという)が知られてい る。 PAVE力 パーフルォロ(プロピルビュルエーテル)(以下、 PPVEという)である 場合、 PFA中の TFEに基づく繰り返し単位と PPVEに基づく繰り返し単位の合計質 量に対して、 TFEに基づく繰り返し単位の含有量は 94〜97質量%で、 PPVEに基 づく繰り返し単位の含有量は、 3〜6質量%程度である。 PAVEの製造コストが高いこ とから、 PFAも製造コストが高くなる。また、 PPVEを共重合して得た PFAの融点は、 一般に 310°C以下であり、 PTFEに比べて、耐熱性が低下する。
[0003] 最近、溶融成形できる PTFEの開発が報告された (例えば、特許文献 1、 2参照。 ) 。この PTFEは、 TFEと微量のその他の含フッ素モノマーとの共重合体であると推定 される。この PTFEは、融点が PFAに比べて高ぐより高温の条件下にも利用可能で あると期待される。また、その他の含フッ素モノマーに基づく繰り返し単位の含有量が 、 PFAにおける PAVEに基づく繰り返し単位の含有量に比べて少ないため、この PT FEの製造コストは、 PFAの製造コストに比較して低いと推定される。しかし、特許文 献 1及び 2には、溶融成形可能な PTFEの製造方法の詳細についての記載がない。
[0004] 一般に、 PTFEの製造方法としては、ラジカル重合方法が用いられ、特に、溶媒を 用いない懸濁重合法や、フッ素系乳化剤を用いた乳化重合法が採用される。一方、 PFAの製造方法としては、フッ素系溶媒を用いた懸濁重合法や、フッ素系乳化剤を 用レ、た乳化重合法が採用される。
上記溶融成形可能な PTFEの製造方法にお!/、ても、 PFAの製造方法と同様にフッ 素系溶媒を用いた懸濁重合法や、フッ素系乳化剤を用いた乳化重合法が適用可能 であると考えられる。しかし、近年の環境保全の観点から、フッ素系溶媒やフッ素系 乳化剤の使用を規制する動きがあり、溶融成形可能な PTFEの製造においても、フ ッ素系溶媒を用いなレ、懸濁重合法を適用することが好ましレ、と考えられる。
[0005] しかし、溶融成形可能な PTFEを、フッ素系溶媒を用いな!/、懸濁重合法で製造す ると、分子量が高くなりすぎて、溶融成形性が失われることがわかった。そのため、溶 融成形可能な PTFEの製造時に、連鎖移動剤を添加し、溶融成形可能な PTFEの 分子量を制御することが考えられる。しかし、連鎖移動剤として、 PFAで用いられて いるメタノール等のアルコールや、へキサンを用いると、重合速度が低下し、溶融成 形可能な PTFEの引張強度等の機械物性が低下したり、着色が生ずることがわかつ た。
[0006] 特許文献 1 :特表 2003— 523436号公報
特許文献 2:特表 2003— 520863号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、機械物性に優れ、着色がなぐ溶融成形可能なテトラフルォロェ チレン共重合体 (以下、 TFE共重合体という)を、良好な重合速度で製造することで ある。
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決するために鋭意検討した結果、 TFE及びその他の 含フッ素モノマーを、水性媒体中でラジカル重合開始剤によりラジカル懸濁重合する にあたり、特定の連鎖移動剤を用いることにより、溶融成形可能な TFE共重合体を 製造できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の構成を有する溶融成形可能な TFE共重合体の製造 方法を提供する。 (l)TFE及びその他の含フッ素モノマーを、水性媒体中でラジカル重合開始剤及 びメタン、ェタン、ハイド口クロ口カーボン、ハイド口フルォロカーボン及びハイド口クロ 口フルォロカーボンからなる群から選ばれる 1種以上の連鎖移動剤の存在下に、ラジ カル懸濁重合して、 TFEに基づく繰り返し単位(a)及びその他の含フッ素モノマーに 基づく繰り返し単位 (b)を含有し、繰り返し単位(a)及び繰り返し単位 (b)の合計質量 に対して、繰り返し単位(a)が 97. 3-99. 5質量%であり、容量流速が 0. 1-1000 mm3/秒である TFE共重合体を製造することを特徴とする溶融成形可能な TFE共 重合体の製造方法。
[0009] (2)前記繰り返し単位(a)が、繰り返し単位(a)及び繰り返し単位 (b)の合計質量に 対して、 98〜99. 5質量%である前記(1)に記載の溶融成形可能な TFE共重合体 の製造方法。
(3)前記 TFE共重合体の融点が 320〜335°Cである前記(1)または(2)に記載の 溶融成形可能な TFE共重合体の製造方法。
(4)前記その他の含フッ素モノマーがパーフルォロ(アルキルビュルエーテル)であ る前記(1)〜(3)のいずれかに記載の溶融成形可能な TFE共重合体の製造方法。
(5)前記その他の含フッ素モノマーがパーフルォロ(プロピルビュルエーテル)であ る(1)〜(4)のいずれかに記載の溶融成形可能な TFE共重合体の製造方法。
(6)前記連鎖移動剤が、下記一般式(1)で表される化合物である(1)〜(5)の!/、ず れかに記載の溶融成形可能な TFE共重合体の製造方法。
C H CI F (1)
n m p 2n + 2— m— p
(ここで、 n= l〜3の整数、 m= l〜6の整数、 p = 0又は;!〜 7の整数であり、 m≤2n + 2、 p≤2n + 2— mである。 )
[0010] (7)前記連鎖移動剤がジクロロメタン、クロロジフルォロメタンまたはェタンである前 記(1)〜(5)に記載の溶融成形可能な TFE共重合体の製造方法。
(8)前記連鎖移動剤の仕込み量が、重合開始時に仕込んだ全モノマーに対してモ ル比で 0· 000;!〜 1である前記(1)〜(7)のいずれかに記載の溶融成形可能な TFE 共重合体の製造方法。
(9)前記ラジカル重合開始剤が、水溶性ラジカル重合開始剤である前記(1)〜(8) のいずれかに記載の溶融成形可能な TFE共重合体の製造方法。
(10)前記水溶性ラジカル重合開始剤が過硫酸アンモユウムである前記(9)に記載 の溶融成形可能な TFE共重合体の製造方法。
(11) TFE及びその他の含フッ素モノマーを、水性媒体中で前記ラジカル重合開 始剤、前記連鎖移動剤に加えて、水性媒体の質量に対して 3〜80ppmの含フッ素 乳化剤の存在下に、ラジカル懸濁重合する前記(1)〜(; 10)のいずれかに記載の溶 融成形可能な TFE共重合体の製造方法。
(12)前記含フッ素乳化剤が、パーフルォロオクタン酸アンモニゥム、パーフルォロ へキサン酸アンモニゥムまたは F (CF ) OCF CF OCF COONHである前記(11)
2 2 2 2 2 4
に記載の溶融成形可能な TFE共重合体の製造方法。
(13)前記その他の含フッ素モノマーを重合開始時に一括して仕込み、 TFEとその 他の含フッ素モノマーとをラジカル懸濁重合させる(1)〜(; 12)の!/、ずれかに記載の 溶融成形可能な TFE共重合体の製造方法。
(14)重合開始時に重合系中に存在させる、前記その他の含フッ素モノマーの使用 量が、生成する TFE共重合体の質量に対して、;!〜 6質量%である(13)に記載の溶 融成形可能な TFE共重合体の製造方法。
発明の効果
[0011] 本発明の製造方法は、重合速度が良好であり、高融点であり、引張強度等の機械 物性に優れ、着色が生じない溶融成形可能な TFE共重合体を得ることができる。ま た、本発明の製造方法において、極微量の含フッ素乳化剤を使用すると懸濁重合速 度が増加するうえ、その他の含フッ素モノマーの反応率が向上する。
発明を実施するための最良の形態
[0012] 本発明の製造方法において、原料モノマーは、 TFEとその他の含フッ素モノマー である。その他の含フッ素モノマーとしては、フッ化ビュル、フッ化ビニリデン(以下、 VdFという)、トリフルォロエチレン、へキサフルォロプロピレン(以下、 HFPという)、 C F =CFORfl (ここで、 Rflは炭素数 1〜; 10で炭素原子間に酸素原子を含んでもよい
2
パーフルォロアルキル基である。 )で表されるパーフルォロ(アルキルビュルエーテル
)、 CF =CFORf2SO ここで、 Rf2は炭素数;!〜 10で炭素原子間に酸素原子を 含んでもよいパーフルォロアルキレン基であり、 X1はハロゲン原子又は水酸基である 。)、 CF =CFORf2CO X2(ここで、 Rf2は前記と同じであり、 X2は水素原子又は炭素
2 2
数 1〜3のアルキル基である。)、 CF =CF(CF ) OCF = CF (ここで、 pは 1又は 2
2 2 p 2
である。)、 CH =CX3(CF ) X4(ここで、 X3及び X4は、互いに独立に水素原子又は
2 2 ¾
フッ素原子であり、 qは 2〜10の整数である。)、パーフルォロ(2 メチレンー4ーメチ ノレ 1, 3—ジォキソラン)、パーフルォロ(2, 2—ジメチルー 1, 3—ジォキソール)、 パーフルォロ(4ーメチルー 1, 3—ジォキソール)、パーフルォロ(4ーメトキシ 1, 3 ージォキソール)等が挙げられる。その他の含フッ素モノマーは 1種単独で用いても よぐ 2種以上を併用してもよい。
[0013] その他の含フッ素モノマーとしては、 HFP、 CF =CF(CF ) OCF = CF、 CF =
2 2 p 2 2
CFORfl及び CH =CX3(CF ) X4からなる群から選ばれる 1種以上であることがより
2 2 q
好ましい。
CF =CF(CF ) OCF = CFとしては、 CF =CFCF OCF = CF、 CF =CF(C
2 2 p 2 2 2 2 2
F ) OCF = CF等が挙げられる。
2 2 2
CF =CFORflで表されるパーフルォロ(アルキルビュルエーテル)としては、 CF
2 2
= CFOCF、 CF =CFOCF CF、 CF =CFOCF CF CF、 CF =CFOCF CF
3 2 2 3 2 2 2 3 2 2
CF CF、 CF =CFO(CF ) F、 CF =CFOCF CF(CF )OCF CF CF、 CF
2 2 3 2 2 8 2 2 3 2 2 3 2
= CFOCF OCF CF、 CF =CFOCF OCF CF CF等力《挙げられる。好ましくは
2 2 3 2 2 2 2 3
、 CF =CFOCF CFまたは CF =CFOCF CF CFであり、より好ましくは、 CF =
2 2 3 2 2 2 3 2
CFOCF CF CFである。
2 2 3
[0014] CH =CX3(CF ) X4としては、 CH =CH(CF ) F、 CH =CH(CF ) F、 CH
2 2 ¾ 2 2 2 2 2 3 2
= CH(CF ) F、 CH =CF(CF ) H、 CH =CF(CF ) H等が挙げられる。好まし
2 4 2 2 3 2 2 4
くは、 CH =CH(CF ) F又は CH =CH(CF ) Fである。
2 2 4 2 2 2
その他の含フッ素モノマーとしては、パーフルォロ(アルキルビュルエーテル)が好 ましぐパーフルォロ(プロピルビュルエーテル)がより好ましい。
原料モノマーの TFEとその他の含フッ素モノマーの使用量は、得られる TFE共重 合体が溶融成形可能な組成になるように、適宜選定すればよい。重合系中に存在さ せる、その他のモノマーの使用量は、生成する TFE共重合体の質量に対して、;!〜 6 質量%が好ましぐ;!〜 5質量%がより好ましぐ;!〜 4質量%が最も好ましい。
[0015] 本発明の溶融成形可能な TFE共重合体の製造方法においては、水性媒体中でラ ジカル重合開始剤及び連鎖移動剤の存在下に、ラジカル懸濁重合方法によって、 T FEとその他の含フッ素モノマーとを共重合して、 TFE共重合体を得る。
ラジカル懸濁重合方法は、水性媒体中で懸濁させながらラジカル重合する方法で あり、水性媒体としては、脱塩水、超純水などが挙げられる。水性媒体には、必要に 応じて適当な有機溶媒を添加してもよい。
適当な有機溶媒としては、パーフルォ口へキサン、パーフルォロシクロブタン等のパ 一フルォロカーボン、 CHF CF CF CF CF CF等のハイド口フルォロカーボン、 C
2 2 2 2 2 3
FHC1CF CF C1等のハイド口クロ口フルォロカーボン、 CH OCF CF F
2 2 3 2 3、 CH OC
3 2
CF CF CF、 CF CH OCF CF H等のハイド口フルォロエーテル等が挙げられる。
2 2 3 3 2 2 2
[0016] 有機溶媒を水性媒体に添加する場合、有機溶媒/水性媒体の比率は、質量比で
5/95〜90/10であり、好まし <は 10/90〜70/30であり、最も好まし <は 20/8 0〜50/50である。
本発明の製造方法としては、特に、有機溶媒を用いないで、水媒体のみを用いる 懸濁重合が、環境保全の観点から好ましい。
ラジカル重合開始剤としては、半減期が 10時間である温度(以下、 10時間半減期 温度という)が 0°C〜; 100°Cであるラジカル重合開始剤が好ましい。 10時間半減期温 度は、 20〜90°Cがより好ましい。ラジカル重合開始剤は、油溶性ラジカル重合開始 剤であってもよ!/、し、水溶性ラジカル重合開始剤であってもよ!/、が、水溶性ラジカル 重合開始剤が好ましい。水溶性ラジカル重合開始剤を用いると、水性媒体のみを用 V、てラジカル懸濁重合することができる。
[0017] 油溶性ラジカル重合開始剤の具体例としては、ァゾビスイソブチロニトリル等のァゾ 化合物、イソブチリルペルォキシド、オタタノィルペルォキシド、ベンゾィルペルォキ シド、ラウロイルペルォキシド、ジコハク酸ペルォキシド等の非フッ素系ジァシルペル ォキシド、ジイソプロピルペルォキシジカーボネート、ジー n—プロピルペルォキシジ カーボネート等のぺノレ才キシジカーボネート、 tert—ブチノレぺノレ才キシピバレート、 t ert—ブチルペルォキシイソブチレート、 tert—ブチルペルォキシアセテート等のぺ ルォキシエステル、 (Z (CF ) COO) (ここで、 Zは水素原子、フッ素原子又は塩素原
2 r 2
子であり、 rは;!〜 10の整数である。)で表される化合物等の含フッ素ジァシルペルォ キシド等が挙げられる。
[0018] また、水溶性ラジカル重合開始剤の具体例としては、ジコハク酸ペルォキシド等の カルボン酸過酸化物、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモユウム等の無 機過酸化物等が挙げられる。有機溶媒を用いない水系媒体のみの懸濁重合には過 硫酸カリウム、過硫酸ナトリウム、過硫酸アンモユウム等の無機過酸化物が好ましい。 ラジカル重合開始剤の仕込み量は、仕込んだ水性媒体に対して質量で 10〜2000 ppmカ好まし <、 20〜; !OOOppmカより好まし <、 50〜500ppmカ特に好ましレヽ。 本発明の製造方法において、重合条件は特に限定されず、適宜選定すればよい 1S 重合温度は 0〜; 100°Cが好ましぐ 20〜90°Cがより好ましぐ 50〜80°Cが最も好 ましい。重合圧力は 0.;!〜 5MPaが好ましぐ 0. 5〜2MPaがより好ましい。
[0019] 本発明の製造方法において、溶融成形可能な TFE共重合体の容量流速を制御す るために、連鎖移動剤を使用する。連鎖移動剤は、メタン、ェタン、ノ、イド口クロロカ一 ボン、ハイド口フルォロカーボン及びハイド口クロ口フルォロカーボンからなる群から選 ばれる 1種以上の連鎖移動剤である。ハイド口クロ口カーボンとしては、ジクロロメタン 、トリクロロメタン等が挙げられる。ハイド口フルォロカーボンとしては、フルォロメタン、 ジフルォロメタン、 1 , 1ージフルォロェタン、 1 , 1 , 1 トリフルォロェタン等が挙げら れる。ハイド口クロ口フルォロカーボンとしては、クロロジフルォロメタン、ジクロロフノレ ォロメタン、 1 , 1—ジクロロ一 1—フルォロェタン、 1—クロ口一 1 , 2, 2, 2—テトラフル ォロェタン等が挙げられる。
[0020] 連鎖移動剤としては、下記一般式(1)で表される化合物が好ましい。
C H CI F (1)
n m p 2n + 2— m— p
(ここで、 n= l〜3の整数、 m= l〜6の整数、 p = 0又は;!〜 7の整数であり、 m≤2n + 2、 p≤2n + 2— mである。 )
上記一般式(1)において、 nはより好ましくは 1〜2であり、 mはより好ましくは 2〜6 である。最も好ましくはェタン(n = 2、 m = 6、 p = 0)、ジクロロメタン(n= 1、 m = 2、 p これらの連鎖移動剤を用いると、 TFEとその他の含フッ素モノマーの重合速度が良 好で、得られる溶融成形可能な TFE共重合体は、引張強度等の機械物性が優れ、 着色しない。
連鎖移動剤の仕込み量は、重合開始時に仕込んだ全モノマーに対してモル比で 0 . 0001〜;!カ好まし <、 0.0005—0. 5カより好まし <、 0.01—0. 1カ特に好ましレヽ
本発明の製造方法において、水性媒体中で前記ラジカル重合開始剤、前記連鎖 移動剤に加えて、水性媒体の質量に対して 3〜80ppmの含フッ素乳化剤の存在下 に、テトラフルォロエチレン及びその他の含フッ素モノマーをラジカル懸濁重合するこ とが好ましい。
前記含フッ素乳化剤としては、パーフルォロオクタン酸アンモニゥム、パーフルォロ オクタン酸ナトリウム、パーフルォ口へキサン酸アンモニゥム、パーフルォ口へキサン 酸ナトリウム等の含フッ素アルキルカルボン酸塩、一般式 F(CF ) 0(CF(X)CF O)
2 n 2
CF(X)C〇〇A (式中、 Xはフッ素原子又は炭素原子数 1〜3のパーフルォロアルキ m
ル基、 Aは水素原子、アルカリ金属、 NH、 nは 1〜10の整数、 mは 0又は 1〜3の整
4
数である。 )で表される含フッ素乳化剤等が好ましレ、。
F(CF ) 0(CF(X)CF O) CF (X) COOAで表される含フッ素乳化剤としては、 F
2 n 2 m
(CF ) OCF CF OCF COONH、 F(CF ) 〇CF(CF )CF〇CF(CF )C〇〇N
2 2 2 2 2 4 2 3 3 2 3
H 、 F(CF ) 0(CF(CF )CF〇) CF(CF ) COONH、 F(CF ) OCF CF OCF
4 2 3 3 2 2 3 4 2 3 2 2
COONH、 F(CF ) 〇(CF CF O) CF COONH、 F(CF ) OCF CF OCF C
2 4 2 3 2 2 2 2 4 2 4 2 2 2
OONH、 F(CF ) 〇(CF CF O) CF COONH 、 F(CF ) OCF CF OCF CO
4 2 4 2 2 2 2 4 2 2 2 2 2
〇Na、 F(CF ) OCF CF OCF COONa, F(CF ) 〇(CF CF O) CF COONa
2 3 2 2 2 2 3 2 2 2 2
、 F(CF ) OCF CF OCF COONa, F(CF ) 〇(CF CF O) CF COONa, F(C
2 4 2 2 2 2 4 2 2 2 2
F ) 〇CF(CF )CF〇CF(CF )C〇〇Na、 F(CF ) 〇(CF(CF )CF〇) CF(CF
2 3 3 2 3 2 3 3 2 2
) C〇〇Na等が挙げられる。
3
含フッ素乳化剤としては、パーフルォロオクタン酸アンモニゥム、パーフルォ口へキ サン酸アンモニゥム、 F(CF ) OCF CF OCF COONH 、 F(CF ) OCF CF〇C
2 2 2 2 2 4 2 3 2 2
F COONH、 F(CF ) OCF CF OCF COONHがより好ましぐパーフルォロォ
2 4 2 4 2 2 2 4 クタン酸アンモニゥム、パーフルォ口へキサン酸アンモニゥム、 F (CF ) OCF CF O
2 2 2 2
CF COONHが最も好ましい。
2 4
含フッ素乳化剤の含有量は、水性媒体の質量に対して、 5ppm〜50ppmがより好 ましぐ 10〜30ppm未満が最も好ましい。該含フッ素乳化剤の含有量は、乳化重合 による PTFEや PFAの製造に使用される 1000〜5000ppmに比較して著しく少ない
含フッ素乳化剤が上記範囲あるように極微量使用すると、懸濁重合速度が増加し、 また、その他の含フッ素モノマーの反応率が向上する。これは TFEと含フッ素モノマ 一の親和性が増大するためであると推定される。
本発明の製造方法により、得られる懸濁重合液中の TFE共重合体の濃度は、適宜 選定すればよいが、通常 3〜40質量%が好ましぐ 5〜35質量%がより好ましぐ 7〜 30質量%が特に好ましい。
特に、本発明の製造方法としては、ラジカル重合開始剤、連鎖移動剤、水系媒体 の存在下に、上記その他の含フッ素モノマーを重合開始時に一括して仕込み、 TFE とその他の含フッ素モノマーとをラジカル懸濁重合させることが好ましい。本発明の製 造方法としては、ラジカル重合開始剤、連鎖移動剤、水系媒体に加えて、水性媒体 の質量に対して 3〜80ppmの含フッ素乳化剤の存在下に、上記その他の含フッ素モ ノマーを重合開始時に一括して仕込み、 TFEとその他の含フッ素モノマーとをラジカ ル懸濁重合させることがより好まし!/、。
本発明の製造方法により、得られる溶融成形可能な TFE共重合体は、 TFEに基づ く繰り返し単位(a)及びその他の含フッ素モノマーに基づく繰り返し単位 (b)を含有し
、繰り返し単位 ω及び繰り返し単位 (b)の合計質量に対して、繰り返し単位 ωが 9
7. 3—99. 5質量0 /0であり、好ましく (ま 97. 6—99. 5質量0 /0であり、より好ましく (ま 98 〜99. 5質量%であり、最も好ましくは、 98-99. 3質量%である。また、その他の含 フッ素モノマーに基づく繰り返し単位(b)が 0. 5〜2· 7質量%であり、好ましくは 0. 5 〜2. 4質量0 /0であり、より好ましくは 0. 5〜2. 0質量0 /0であり、最も好ましくは、 0. 7 〜2質量%である。繰り返し単位(a)がこの範囲にあると、 TFE共重合体は、溶融成 形が可能であり、機械的特性に優れ、融点が高ぐ耐熱性に優れる。 また、本発明の製造方法により、得られる溶融成形可能な TFE共重合体は、容量 流速(以下、 Qィ直という。)が、 0.;!〜 1000mm3/秒であり、好ましくは 0. 2~100m m3/秒、より好ましくは 0. 5〜50mm3/秒である。 Q値は、 TFE共重合体の溶融流 動性を表す指標であり、分子量の目安となる。 Q値が大きいと分子量が低ぐ小さいと 分子量が高いことを示す。本発明において、 Q値は、島津製作所製フローテスタを用 いて、 TFE共重合体の融点より 50°C高い温度において、荷重 7kg下に直径 2. lm m、長さ 8mmのオリフィス中に押出すときの TFE共重合体の押出し速度である。 Q値 力 S小さすぎると押出し成形が困難となり、大きすぎると TFE共重合体の機械的強度が 低下する。 Q値が上記範囲にあると、 TFE共重合体は、溶融成形が可能であり、機 械的特性に優れる。
本発明の製造方法により、得られる溶融成形可能な TFE共重合体の融点は、 320 °C〜335°Cが好ましぐ 323°C〜330°Cがより好ましぐ 325°C〜330°Cが最も好まし い。この範囲にあると溶融成形可能な TFE共重合体が耐熱性に優れ、高温で使用さ れる用途への適用性に優れる。
特に、上記のように、その他の含フッ素モノマーを重合開始時に一括して仕込みし て、 TFEとその他の含フッ素モノマーとをラジカル懸濁重合させて得られた TFE共重 合体は、溶融成形可能で、 325°C〜330°Cの高い融点を示し、耐熱性に優れること から、好ましい。
その他の含フッ素モノマーを重合開始時に一括して仕込みして、 TFEとその他の 含フッ素モノマーとをラジカル懸濁重合させて得られた TFE共重合体力 S、溶融成形 可能で、 325°C〜330°Cの高い融点を示す理由は必ずしも明らかではないが、以下 のように考えられる。本ラジカル懸濁重合では、生成するポリマー量の;!〜 6質量%と いう少量のその他のモノマー(たとえば、 PPVE)を初期に一括して仕込み、 TFEとそ の他のモノマーを共重合させることを特徴とする。この方法によれば、重合終期に、 系中に存在するその他のモノマーの濃度が低くなることから、生成する TFE共重合 体中のその他のモノマーに基づく繰り返し単位の含有量も少なくなる。すなわち、重 合終期に、 TFEに基づく繰り返し単位の含有量が高ぐ耐熱性の高い TFE共重合 体が、 TFE共重合体の懸濁粒子の外殻部に生成するため、融点の高い TFE共重合 体となるものと推定される。なお、 TFEと PPVEとの共重合体である PFAの製造にお いては、フッ素系溶媒を用いた懸濁重合法や、フッ素系乳化剤を用いた乳化重合法 が採用されている。そして、 PPVEの組成が一定になるように、重合中に PPVEを逐 次添加させる方法、及び、 PFAの収量の 10質量%程度の多量の PPVEを重合開始 時に一括に仕込む方法が知られている。これらの PFAの製造方法では、重合終期ま で PPVEの濃度が高い。したがって、 PFAの製造方法は、重合方法及び PPVEの濃 度の点で、本願発明の TFE共重合体の製造方法とは明確に相違する。
[0024] 本発明の製造方法により、得られる溶融成形可能な TFE共重合体は、押出機を用 いてペレット状にすることも好ましい。押出機は一軸または二軸の押出機が通常用い られる。押出機の温度はメータリングゾーンやダイ部分で 340〜400°Cが好ましい。 また、スクリュー回転数は、 5〜; !OOrpm程度が好ましい。
溶融成形可能な TFE共重合体に不安定末端基が含まれる場合には、不安定末端 基を安定化させるために、熱処理、溶融せん断処理、フッ素化処理等の後処理を行 うことも可能である。
溶融成形可能な TFE共重合体は、 TFE共重合体単独で成形される他に、種々の 配合剤を配合した組成物として成形されることも好ましい。配合剤としては、導電性付 与のためのカーボンブラック、機械強度付与のためのカーボン繊維、その他顔料な どが挙げられる。
溶融成形可能な TFE共重合体は、射出成形、圧縮成形、押出し成形、トランスファ 一成形、ブロー成形などの各種成形法で成形できる。より好ましくは射出成形法であ 実施例
[0025] 以下に実施例を挙げて具体的に本発明を説明するが、本発明はこれらに限定され ない。なお、 TFE共重合体の共重合組成は、旭硝子研究報告, 1990, 40 (1) , 75 の記載に準じて、 TFE共重合体を熱溶融状態で19 F— NMR測定する方法によって 求めた。
CF =CFO (CF ) F (PPVE)反応率は、得られた TFE共重合体の共重合組成か
2 2 3
ら算出した、共重合した CF =CFO (CF ) Fの質量の、仕込み PPVEの質量に対 する割合 (質量%)として求めた。
引張強度及び引張伸度は、 ASTM D3307に準拠して、 TFE共重合体をプレス 成形して得た厚さ lmmのシートをミクロダンベルで打ち抜いて得た試験片を 50mm /minの速度で引張試験して、破断時の強度及び伸度を測定し算出した。
融点は、示差熱分析装置(セイコーインスツル社製 SSC/5200— TG/DTA220 U)で、重合後乾燥して得られた TFE共重合体の約 10mgを空気雰囲気中で、 10°C /分で昇温し、吸熱ピークトップを融点とした。
Q値は、島津製作所製フローテスタを用いて、 TFE共重合体の融点より 50°C高い 温度において、荷重 7kg下に直径 2. lmm、長さ 8mmのオリフィス中に押出すときの TFE共重合体の押出し速度である。
[0026] [実施例 1]
内容積が 1. 3Lの撹拌機付き重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、 炭酸アンモニゥムの 0. 65g、ジクロロメタンの 0. 8gを仕込んだ。続いて重合槽内温 を 70°Cに昇温し、圧力が 1. OMPa/Gになるように TFEを仕込んだ。重合開始剤溶 液として過硫酸アンモニゥムの 1質量%水溶液の 16cm3を仕込み、重合を開始させ た。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的に仕込んだ。重合開 始 5. 0時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室温まで降温すると ともに常圧までパージした。
得られた粉状物を乾燥して 127. 3gの TFE共重合体 1が得られた。共重合組成は 、TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 98. 8/1. 2 (質量0 /0 )であった。融点は 327°C、 Q直は 2. 8mm3/秒であった。 340°Cのプレス成形にて 厚さ lmmの白色のシートが得られた。 TFE共重合体 1は、引張強度が 23. 7MPa、 引張伸度が 319%であった。
[0027] [実施例 2]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、炭酸アンモニ ゥムの 0. 65gを仕込み、重合槽内温を 70°Cに昇温した。圧力が 0. 03MPa/Gにな るまでエタンを仕込み、その後 1. OMPa/Gになるように TFEを仕込んだ。重合開始 剤溶液として過硫酸アンモニゥムの 1質量%水溶液の 16cm3を仕込み、重合を開始 させた。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的に仕込んだ。重 合開始 4. 8時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室温まで降温 するとともに常圧までパージした。
得られた粉状物を乾燥して 120. 4gの TFE共重合体 2が得られた。共重合組成は 、TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 98. 6/1. 4 (質量0 /0 )であった。融点は 324°C、 Q値は 2· 4mm3/秒であった。 340°Cのプレス成形にて 厚さ lmmの白色のシートが得られた。 TFE共重合体 2は、引張強度が 28. 6MPa、 引張伸度が 324%であった。
[実施例 3]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、炭酸アンモニ ゥムの 0. 65gを仕込み、重合槽内温を 70°Cに昇温した。圧力が 0. 18MPa/Gにな るまでクロロジフルォロメタンを仕込み、その後 1. OMPa/Gになるように TFEを仕込 んだ。重合開始剤溶液として過硫酸アンモニゥムの 1質量%水溶液の 24cm3を仕込 み、重合を開始させた。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的 に仕込んだ。重合開始 5. 6時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を 室温まで降温するとともに常圧までパージした。
得られた粉状物を乾燥して 120. 7gの TFE共重合体 3が得られた。共重合組成は 、TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 98. 9/1. 1 (質量0 /0 )であった。融点は 329°C、 Q値は 1 · 3mm3/秒であった。 340°Cのプレス成形にて 厚さ lmmの白色のシートが得られた。 TFE共重合体 3は、引張強度が 24. 0MPa、 引張伸度が 321 %であった。
[比較例 1]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、炭酸アンモニ ゥムの 0. 65g、メタノールの 0. 2を仕込んだ。重合槽内温を 70°Cに昇温し、圧力が 1 . OMPa/Gになるように TFEを仕込んだ。重合開始剤溶液として過硫酸アンモニゥ ムの 1質量%水溶液の 16cm3を仕込み、重合を開始させた。重合中圧力が 1. OMP a/Gを保持するように TFEを連続的に仕込んだ。重合速度が遅ぐ重合開始 5. 0時 間後、 TFEの 33gを仕込んだ時点で、重合槽内温を室温まで降温するとともに常圧 までパージした。
得られた粉状物を乾燥して 30gの TFE共重合体 4が得られた。共重合組成は、 TF Eに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 99. 2/0. 8 (質量0 /0)であ つた。融点は 329°C、 Qィ直は 0. 59mm3/秒であった。 340°Cのプレス成形にて厚さ lmmのシートが得られた力 S、褐色を呈していた。 TFE共重合体 4は、引張強度が 8 MPa、引張伸度が 45%であった。
[0029] [比較例 2]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、炭酸アンモニ ゥムの 0. 65gを仕込み、重合槽内温を 70°Cに昇温した。圧力が 0. 03MPa/Gにな るまでプロパンを仕込み、その後 1. OMPa/Gになるように TFEを仕込んだ。重合開 始剤溶液として過硫酸アンモニゥムの 1質量%水溶液の 16cm3を仕込み、重合を開 始させた。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的に仕込んだ。 重合開始 8. 7時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室温まで降 温するとともに常圧までパージした。
得られた粉状物を乾燥して 128. 2gの TFE共重合体 5が得られた。共重合組成は 、 TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 99. 0/1. 0 (質量0 /0 )であった。融点は 324°Cであった。 Q値は 177mm3/秒であった。 340°Cのプレス 成形にて厚さ lmmのシートを得た。該シートは、非常に脆ぐミクロダンベルで打ち抜 く際にシートが割れて、引張試験用試験片を得ることができな力 た。
[0030] [比較例 3]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、炭酸アンモニ ゥムの 0. 65g、 n—へキサンの 0. 08gを仕込み、重合槽内温を 70°Cに昇温し、圧力 が 1. OMPa/Gになるように TFEを仕込んだ。重合開始剤溶液として過硫酸アンモニ ゥムの 1質量%水溶液の 16cm3を仕込み、重合を開始させた。重合中圧力が 1. OM Pa/Gを保持するように TFEを連続的に仕込んだ。重合開始 7. 4時間後、 TFEの 12 Ogを仕込んだ時点で、重合槽内温を室温まで降温するとともに常圧までパージした
得られた粉状物を乾燥して 121. 4gの TFE共重合体 6が得られた。共重合組成は 、 TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 99. 0/1. 0 (質量0 /0 )であった。融点は 325°Cであった。 Q値は 1 · Omm3/秒であった。 340°Cのプレス 成形にて厚さ lmmのシートが得られた力 S、褐色を呈していた。 TFE共重合体 6は、 引張強度が 4MPa、引張伸度が 26%であった。
[0031] [比較例 4]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. lg、炭酸アンモニ ゥムの 0. 65gを仕込み、重合槽内温を 70°Cに昇温した。その後 1. OMPa/Gになる ように TFEを仕込んだ。重合開始剤溶液として過硫酸アンモニゥムの 1質量%水溶 液の 16cm3を仕込み、重合を開始させた。重合中圧力が 1. OMPa/Gを保持するよ うに TFEを連続的に仕込んだ。重合開始 3. 5時間後、 TFEの 120gを仕込んだ時点 で、重合槽内温を室温まで降温するとともに常圧までパージした。
得られた粉状物を乾燥して 125. Ogの TFE共重合体 7が得られた。共重合組成は 、TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 98. 7/1. 3 (質量0 /0 )であった。融点は 326°Cであった。この TFE共重合体 7は溶融せず、 Q値は Omm3 /秒であった。 340°Cでプレス成形してもシートは得られなかった。
[0032] [表 1]
Figure imgf000016_0001
[実施例 4]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、 PPVEの 4. 3g、炭酸アンモニ ゥムの 0. 65g、ジクロロメタンの 1. 9gを仕込んだ。続いて重合槽内温を 70°Cに昇温 し、圧力が 1. OMPa/Gになるように TFEを仕込んだ。重合開始剤溶液として過硫酸 アンモニゥムの 1質量%水溶液の 20cm3を仕込み、重合を開始させた。重合中圧力 が 1. OMPa/Gを保持するように TFEを連続的に仕込んだ。重合開始 5. 17時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室温まで降温するとともに常圧まで パージした。
得られた粉状物を乾燥して 126. 3gの TFE共重合体 8が得られた。共重合組成は 、 TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 99. 0/1. 0 (質量0 /0 )であった。融点は 328°C、 Q直は 4. 1mm3/秒であった。 340°Cのプレス成形にて 厚さ lmmの白色のシートが得られた。 TFE共重合体 8は、引張強度が 18. 9MPa、 引張伸度が 277%であった。
[実施例 5]
乳化剤として F (CF ) OCF CF OCF COONH (以下、 APDOという。)の 0· 01
2 2 2 2 2 4
g (脱塩水の質量に対して 12. 8ppm)を初期仕込みした以外は実施例 4と同様にし て TFE共重合体 9を得た。 APDO添加量 (ppm)、重合時間、重合終了時点の PPV E反応率、 TFE共重合体 10の収量、 TFEに基づく繰り返し単位の含有量、 PPVEに 基づく繰り返し単位の含有量、融点、容量流速 (Q値)、引張強度、引張伸度を表 2に 示す。
[実施例 6〜; 11]
APDOの使用量を変化させる以外は、実施例 5と同様にして、 TFE共重合体 10〜 15を得た。 APDO添加量(ppm)、重合終了時点の PPVE反応率、 TFE共重合体 の収量、 TFEに基づく繰り返し単位の含有量、 PPVEに基づく繰り返し単位の含有 量、融点、容量流速 (Q値)、引張強度、引張伸度を表 2に示す。
[表 2] 実 施 実 施 実 施 実 施 実 施 実 施 実 施 実 施 例' 1 例 5 例 6 例 7 例 8 例 9 例 10 例 11 連鎖移動剤 :/ク口口 '/ ■' ク CID シ'ク DD シ クロ口 シ クロ π Vクロ α シ'ク シ'クロ口 タン メタン メタン
APDO(ppm) 0 12.8 16.0 19. 2 22.4 25. 6 28.8 Ώ. 1 重合時間 (hr) 5. 17 4. 28 3. 89 3.95 3. 51 3. 39 3.37 3.48
PPVE反応率 (%) 29.4 32.3 35. 1 46. 6 39.8 38.0 40.3 28.6
TFE共重合体 No. 8 9 10 11 12 13 14 15 収量 (g) 126.3 126.4 125.6 125. 3 122. 1 125.6 123.8 123. 1
TFE繰り返し単位
含有量(質量 99.0 98. 9 98. 8 98.4 98. 6 98.7 98.6 99.0
PPVE繰り返し単位
1.0 1. 1 1. 2 1. 6 1. 1.3 1.4 1.0 含有量(質量
融点 (*C) 328 328 328 329 330 327 328 329 容量流速(誦 V秒) 2. 6 4. 1 5. 8 4.4 4.0 5. 2 4. 1 4. 3 引張強度 ( Pa) 18.9 17.9 17.2 18. 1 20. 1 18. 6 19. 3 16.9 引張伸度 (¾) 287 278 262 248 314 255 307 243
[実施例 12〜; 15]
APDOに替えてパーフルォロオクタン酸アンモニゥム(以下、 APFOと!/、う。 )の所 定量を用いる以外は、実施例 5と同様にして TFE共重合体 16〜; 19を得た。脱塩水 に対する APFO添加量(ppm)、重合終了時点の PPVE反応率、 TFE共重合体の収 量、 TFEに基づく繰り返し単位の含有量、 PPVEに基づく繰り返し単位の含有量、融 点、容量流速 (Q値)、引張強度、引張伸度を表 3に示す。
[表 3]
Figure imgf000018_0001
[実施例 16] 実施例 1で用いた重合槽を脱気し、脱塩水の 780g、乳化剤として APDOの 0. 02 25g (脱塩水の質量に対して 28· 8ppm)を初期仕込みし、 PPVEの 5. lg、炭酸アン モニゥムの 0. 65g、圧力が 0. 02MPa/Gになるまでエタンを仕込み、続いて重合 槽内温を 70°Cに昇温し、圧力が 1. OMPa/Gになるように TFEを仕込んだ。重合開 始剤溶液として過硫酸アンモニゥムの 1質量%水溶液の 25cm3を仕込み、重合を開 始させた。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的に仕込んだ。 重合開始 3. 3時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室温まで降 温するとともに常圧までパージした。
得られた粉状物を乾燥して 126. 7gの TFE共重合体 20が得られた。共重合組成 は、 TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 97. 9/2. 1 (質量 %)であった。融点は 326°C、 Q値は 19. 6mm3/秒であった。 340°Cのプレス成形 にて厚さ lmmの白色のシートが得られた。 TFE共重合体 20は、引張強度が 19. 9 MPa、引張伸度が 320%であった。
[実施例 17]
実施例 1で用いた重合槽を脱気し、脱塩水の 780g、乳化剤として APDOの 0. 02 25g (脱塩水の質量に対して 28· 8ppm)を初期仕込みし、 PPVEの 6. 6g、炭酸アン モニゥムの 0. 65g、圧力が 0. 01MPa/Gになるまでエタンを仕込み、続いて重合 槽内温を 70°Cに昇温し、圧力が 1. OMPa/Gになるように TFEを仕込んだ。重合開 始剤溶液として過硫酸アンモニゥムの 1質量%水溶液の 29cm3を仕込み、重合を開 始させた。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的に仕込んだ。 重合開始 3. 47時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室温まで降 温するとともに常圧までパージした。
得られた粉状物を乾燥して 126. 4gの TFE共重合体 21が得られた。共重合組成 は、 TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 97. 4/2. 6 (質量 %)であった。融点は 327°C、 Q値は 12. lmm3/秒であった。 340°Cのプレス成形 にて厚さ lmmの白色のシートが得られた。 TFE共重合体 21は、引張強度が 18. 6 MPa、引張伸度が 257%であった。
[比較例 5] 実施例 1で用いた重合槽を脱気し、脱塩水の 780g、乳化剤として APDOの 0. 02 25g (脱塩水の質量に対して 28· 8ppm)を初期仕込みし、 PPVEの 10· 6g、炭酸ァ ンモニゥムの 0· 7gを仕込み、圧力が 0· 01MPa/Gになるまでエタンを仕込み、続 いて重合槽内温を 70°Cに昇温した。その後 1. OMPa/Gになるように TFEを仕込ん だ。重合開始剤溶液として過硫酸アンモニゥムの 1質量%水溶液の 53cm3を仕込み 、重合を開始させた。重合中圧力が 1. OMPa/Gを保持するように TFEを連続的に 仕込んだ。重合開始 3. 9時間後、 TFEの 120gを仕込んだ時点で、重合槽内温を室 温まで降温するとともに常圧までパージした。
得られた粉状物を乾燥して 125. Ogの TFE共重合体 22が得られた。共重合組成 は、 TFEに基づく繰り返し単位/ PPVEに基づく繰り返し単位 = 97. 1/2. 9 (質量 %)であった。 Q値は 16. 3mm3/秒で、融点は 316°Cであった。 TFE共重合体 22 は、 340°Cのプレス成形にて厚さ lmmのシートが得られ、引張強度が 19. lMPa、 引張伸度が 353%であった。
[表 4]
Figure imgf000020_0001
産業上の利用可能性
本発明の TFE共重合体は、耐熱性、耐薬品性、耐食性、耐油性、耐候性等に優れ 、溶融成形が可能であることから、自動車部品、電線被覆材料、産業用射出成形部 品、半導体製造プロセス用の薬液容器、継ぎ手、チューブ等、産業用ホース、食品 用ホース、 OA機器、コピー機、携帯電話等の精密部品等、ライニング用粉体塗料等 の用途に適する。 なお、 2006年 9月 11曰に出願された曰本特許出願 2006— 246041号の明細書 、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示とし て、取り入れるものである。

Claims

請求の範囲
[1] テトラフノレォロエチレン及びその他の含フッ素モノマーを、水性媒体中でラジカル 重合開始剤及びメタン、ェタン、ハイド口クロ口カーボン、ハイド口フルォロカーボン及 びハイド口クロ口フルォロカーボンからなる群から選ばれる 1種以上の連鎖移動剤の 存在下に、ラジカル懸濁重合して、テトラフルォロエチレンに基づく繰り返し単位(a) 及びその他の含フッ素モノマーに基づく繰り返し単位 (b)を含有し、繰り返し単位(a) 及び繰り返し単位 (b)の合計質量に対して、繰り返し単位(a)が 97. 3-99. 5質量 %であり、容量流速が 0. ;!〜 1000mm3/秒であるテトラフルォロエチレン共重合体 を製造することを特徴とする溶融成形可能なテトラフルォロエチレン共重合体の製造 方法。
[2] 前記繰り返し単位(a)力 繰り返し単位(a)及び繰り返し単位 (b)の合計質量に対し て、 98〜99. 5質量%である請求項 1に記載の溶融成形可能なテトラフルォロェチレ ン共重合体の製造方法。
[3] 前記テトラフノレォロエチレン共重合体の融点が 320〜335°Cである請求項 1または
2に記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
[4] 前記その他の含フッ素モノマーがパーフルォロ(アルキルビュルエーテル)である 請求項;!〜 3のいずれかに記載の溶融成形可能なテトラフルォロエチレン共重合体 の製造方法。
[5] 前記その他の含フッ素モノマーがパーフルォロ(プロピルビュルエーテル)である請 求項 1〜4のいずれかに記載の溶融成形可能なテトラフルォロエチレン共重合体の 製造方法。
[6] 前記連鎖移動剤が、下記一般式(1)で表される化合物である請求項;!〜 5のいず れかに記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
C H CI F (1)
n m p 2n + 2— m— p
(ここで、 n= l〜3の整数、 m= l〜6の整数、 p = 0又は;!〜 7の整数であり、 m≤2n + 2、 p≤2n + 2— mである。 )
[7] 前記連鎖移動剤がジクロロメタン、クロロジフルォロメタンまたはェタンである請求項
1〜6に記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
[8] 前記連鎖移動剤の仕込み量が、重合開始時に仕込んだ全モノマーに対してモル 比で 0. 000;!〜 1である請求項 1〜7のいずれかに記載の溶融成形可能なテトラフル ォロエチレン共重合体の製造方法。
[9] 前記ラジカル重合開始剤が、水溶性ラジカル重合開始剤である請求項 1〜8の!/、 ずれかに記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
[10] 前記水溶性ラジカル重合開始剤が過硫酸アンモユウムである請求項 9に記載の溶 融成形可能なテトラフルォロエチレン共重合体の製造方法。
[11] テトラフルォロエチレン及びその他の含フッ素モノマーを、水性媒体中で前記ラジ カル重合開始剤、前記連鎖移動剤に加えて、水性媒体の質量に対して 3〜80ppm の含フッ素乳化剤の存在下に、ラジカル懸濁重合する請求項 1〜; 10のいずれかに 記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
[12] 前記含フッ素乳化剤が、パーフルォロオクタン酸アンモニゥム、パーフルォ口へキ サン酸アンモニゥムまたは F (CF ) OCF CF OCF COONHである請求項 11に
2 2 2 2 2 4
記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
[13] 上記その他の含フッ素モノマーを重合開始時に一括して仕込み、テトラフルォロェ チレンとその他の含フッ素モノマーとをラジカル懸濁重合させる請求項 1〜; 12のいず れかに記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
[14] 重合開始時に重合系中に存在させる、その他の含フッ素モノマーの使用量力 生 成するテトラフルォロエチレン共重合体の質量に対して、;!〜 6質量%である請求項 1 3に記載の溶融成形可能なテトラフルォロエチレン共重合体の製造方法。
PCT/JP2007/067236 2006-09-11 2007-09-04 Procédé servant à produire un copolymère du tétrafluoroéthylène pouvant être moulé en phase fondue WO2008032613A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008534298A JP5298851B2 (ja) 2006-09-11 2007-09-04 溶融成形可能なテトラフルオロエチレン共重合体の製造方法
EP07806691A EP2058341B1 (en) 2006-09-11 2007-09-04 Process for producing melt-moldable tetrafluoroethylene copolymer
CN2007800334725A CN101511887B (zh) 2006-09-11 2007-09-04 可熔融成形的四氟乙烯共聚物的制造方法
US12/402,108 US8470942B2 (en) 2006-09-11 2009-03-11 Method for producing melt-moldable tetrafluoroethylene copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006246041 2006-09-11
JP2006-246041 2006-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/402,108 Continuation US8470942B2 (en) 2006-09-11 2009-03-11 Method for producing melt-moldable tetrafluoroethylene copolymer

Publications (1)

Publication Number Publication Date
WO2008032613A1 true WO2008032613A1 (fr) 2008-03-20

Family

ID=39183674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067236 WO2008032613A1 (fr) 2006-09-11 2007-09-04 Procédé servant à produire un copolymère du tétrafluoroéthylène pouvant être moulé en phase fondue

Country Status (6)

Country Link
US (1) US8470942B2 (ja)
EP (1) EP2058341B1 (ja)
JP (1) JP5298851B2 (ja)
CN (1) CN101511887B (ja)
RU (1) RU2441883C2 (ja)
WO (1) WO2008032613A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132959A1 (ja) * 2007-04-13 2008-11-06 Asahi Glass Company, Limited 含フッ素カルボン酸化合物を用いた含フッ素ポリマーの製造方法
EP2287209A1 (en) * 2008-05-21 2011-02-23 Asahi Glass Company, Limited Method for producing polytetrafluoroethylene fine powder
JPWO2014123075A1 (ja) * 2013-02-05 2017-02-02 旭硝子株式会社 ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
JP2020139092A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂の製造方法
WO2022071532A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、圧縮成形体、トランスファー成形体および被圧縮部材
WO2022071531A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、被圧縮部材および被覆電線
WO2022071530A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、および被圧縮部材
WO2022181720A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 管継手および管継手の製造方法
WO2022181222A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 共重合体、成形体、射出成形体および被覆電線
JP2023153081A (ja) * 2022-03-31 2023-10-17 ダイキン工業株式会社 フッ素樹脂組成物、及び、成形体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106046219B (zh) * 2011-08-25 2019-07-05 大金工业株式会社 聚四氟乙烯水性分散液的制造方法
EP2928946B1 (en) * 2012-12-05 2019-02-27 Solvay Specialty Polymers Italy S.p.A. Melt-processable perfluoropolymers having improved thermal and mechanical properties after heating treatment
CN106046206B (zh) * 2016-07-26 2017-09-22 金华永和氟化工有限公司 一种制备可熔性含氟聚合物的水乳液聚合方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188346A (ja) * 1993-12-27 1995-07-25 Asahi Glass Co Ltd テトラフルオロエチレン共重合体
JPH0952955A (ja) * 1995-08-11 1997-02-25 Daikin Ind Ltd 変性ポリテトラフルオロエチレン粒状粉末の製法
JPH1053624A (ja) * 1996-08-12 1998-02-24 Daikin Ind Ltd 変性ポリテトラフルオロエチレンファインパウダー及びその製造方法
JP2002003514A (ja) * 2000-06-19 2002-01-09 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体の製造方法
JP2002194008A (ja) * 2000-12-22 2002-07-10 Daikin Ind Ltd 含フッ素重合体の製造方法
JP2002317003A (ja) * 2001-04-19 2002-10-31 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2003119204A (ja) * 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2003520863A (ja) 1998-08-06 2003-07-08 オムリドン テクノロジーズ エルエルシー 溶融加工性ポリ(テトラフルオロエチレン)
JP2003523436A (ja) 2000-02-16 2003-08-05 オムリドン テクノロジーズ エルエルシー 溶融加工可能なポリ(テトラフルオロエチレン)
JP2004231936A (ja) * 2002-12-06 2004-08-19 Asahi Glass Co Ltd テトラフルオロエチレン共重合体、その製造方法およびペースト押し出し成形物
JP2006246041A (ja) 2005-03-03 2006-09-14 Alps Electric Co Ltd 電子機器
WO2007074901A1 (ja) * 2005-12-28 2007-07-05 Daikin Industries, Ltd. フルオロポリマー水性分散液

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642742A (en) * 1969-04-22 1972-02-15 Du Pont Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
US3635926A (en) * 1969-10-27 1972-01-18 Du Pont Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers
JPS58189210A (ja) * 1982-04-30 1983-11-04 Daikin Ind Ltd テトラフルオロエチレン/フルオロ(アルキルビニルエ−テル)共重合体の製法
JPS62285907A (ja) 1986-06-03 1987-12-11 Asahi Glass Co Ltd テトラフルオロエチレン−フルオロビニルエ−テル共重合体の製造方法
DE4139665A1 (de) * 1991-12-02 1993-06-03 Hoechst Ag Verfahren zur herstellung von polymerisaten des tetrafluorethylens
WO1994021696A1 (en) * 1993-03-17 1994-09-29 Asahi Glass Company Ltd. Process for producing fluoropolymer
IT1271422B (it) * 1993-10-15 1997-05-28 Ausimont Spa Procedimento per la preparazione di copolimeri del tetrafluoroetilene con altri monomeri perfluorurati
JPH07126329A (ja) * 1993-10-29 1995-05-16 Nippon Mektron Ltd テトラフルオロエチレン−パーフルオロビニルエ−テル共重合体
US5760151A (en) * 1995-08-17 1998-06-02 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer
JP4792622B2 (ja) * 2000-05-30 2011-10-12 旭硝子株式会社 テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体及びその製造方法
US6653379B2 (en) * 2001-07-12 2003-11-25 3M Innovative Properties Company Fluoropolymers resistant to stress cracking
US7247690B2 (en) * 2003-04-17 2007-07-24 E. I. Du Pont De Nemours And Company Melt-fabricable tetrafluoroethylene/fluorinated vinyl ether copolymer prepared by suspension polymerization
JP4424246B2 (ja) * 2004-10-28 2010-03-03 旭硝子株式会社 含フッ素共重合体及びその用途
JP5061446B2 (ja) * 2005-03-04 2012-10-31 旭硝子株式会社 含フッ素エラストマーラテックス、その製造方法、含フッ素エラストマーおよび含フッ素ゴム成形品
WO2007046377A1 (ja) * 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188346A (ja) * 1993-12-27 1995-07-25 Asahi Glass Co Ltd テトラフルオロエチレン共重合体
JPH0952955A (ja) * 1995-08-11 1997-02-25 Daikin Ind Ltd 変性ポリテトラフルオロエチレン粒状粉末の製法
JPH1053624A (ja) * 1996-08-12 1998-02-24 Daikin Ind Ltd 変性ポリテトラフルオロエチレンファインパウダー及びその製造方法
JP2003520863A (ja) 1998-08-06 2003-07-08 オムリドン テクノロジーズ エルエルシー 溶融加工性ポリ(テトラフルオロエチレン)
JP2003523436A (ja) 2000-02-16 2003-08-05 オムリドン テクノロジーズ エルエルシー 溶融加工可能なポリ(テトラフルオロエチレン)
JP2002003514A (ja) * 2000-06-19 2002-01-09 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体の製造方法
JP2002194008A (ja) * 2000-12-22 2002-07-10 Daikin Ind Ltd 含フッ素重合体の製造方法
JP2002317003A (ja) * 2001-04-19 2002-10-31 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2003119204A (ja) * 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2004231936A (ja) * 2002-12-06 2004-08-19 Asahi Glass Co Ltd テトラフルオロエチレン共重合体、その製造方法およびペースト押し出し成形物
JP2006246041A (ja) 2005-03-03 2006-09-14 Alps Electric Co Ltd 電子機器
WO2007074901A1 (ja) * 2005-12-28 2007-07-05 Daikin Industries, Ltd. フルオロポリマー水性分散液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASAHI GLASS RESEARCH REPORT, vol. 40, no. 1, 1990, pages 75
See also references of EP2058341A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132959A1 (ja) * 2007-04-13 2008-11-06 Asahi Glass Company, Limited 含フッ素カルボン酸化合物を用いた含フッ素ポリマーの製造方法
JP5338659B2 (ja) * 2007-04-13 2013-11-13 旭硝子株式会社 含フッ素カルボン酸化合物を用いた含フッ素ポリマーの製造方法
EP2287209A1 (en) * 2008-05-21 2011-02-23 Asahi Glass Company, Limited Method for producing polytetrafluoroethylene fine powder
EP2287209A4 (en) * 2008-05-21 2011-04-27 Asahi Glass Co Ltd METHOD FOR PRODUCING A FINE POLYTETRAFLUOROETHYLENE PULVER
US8575287B2 (en) 2008-05-21 2013-11-05 Asahi Glass Company, Limited Method for producing polytetrafluoroethylene fine powder
JPWO2014123075A1 (ja) * 2013-02-05 2017-02-02 旭硝子株式会社 ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
JP2018053259A (ja) * 2013-02-05 2018-04-05 旭硝子株式会社 ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
JP2020139092A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂の製造方法
JP7338169B2 (ja) 2019-02-28 2023-09-05 東ソー株式会社 フッ素樹脂の製造方法
WO2022071530A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、および被圧縮部材
WO2022071531A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、射出成形体、被圧縮部材および被覆電線
JP2022058291A (ja) * 2020-09-30 2022-04-11 ダイキン工業株式会社 共重合体、圧縮成形体、トランスファー成形体および被圧縮部材
JP2022058289A (ja) * 2020-09-30 2022-04-11 ダイキン工業株式会社 共重合体、射出成形体、および被圧縮部材
JP2022058290A (ja) * 2020-09-30 2022-04-11 ダイキン工業株式会社 共重合体、射出成形体、被圧縮部材および被覆電線
JP7206517B2 (ja) 2020-09-30 2023-01-18 ダイキン工業株式会社 共重合体、射出成形体、被圧縮部材および被覆電線
WO2022071532A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、圧縮成形体、トランスファー成形体および被圧縮部材
WO2022181720A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 管継手および管継手の製造方法
WO2022181222A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 共重合体、成形体、射出成形体および被覆電線
JP2022132103A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 共重合体、成形体、射出成形体および被覆電線
JP2022132164A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 管継手および管継手の製造方法
JP7197819B2 (ja) 2021-02-26 2022-12-28 ダイキン工業株式会社 管継手および管継手の製造方法
JP2023153081A (ja) * 2022-03-31 2023-10-17 ダイキン工業株式会社 フッ素樹脂組成物、及び、成形体

Also Published As

Publication number Publication date
CN101511887A (zh) 2009-08-19
JP5298851B2 (ja) 2013-09-25
JPWO2008032613A1 (ja) 2010-01-21
RU2441883C2 (ru) 2012-02-10
US8470942B2 (en) 2013-06-25
EP2058341A1 (en) 2009-05-13
RU2009113552A (ru) 2010-10-20
EP2058341B1 (en) 2012-07-25
CN101511887B (zh) 2010-12-22
US20090176952A1 (en) 2009-07-09
EP2058341A4 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2008032613A1 (fr) Procédé servant à produire un copolymère du tétrafluoroéthylène pouvant être moulé en phase fondue
JP4792622B2 (ja) テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体及びその製造方法
EP1939222B1 (en) Process for producing an aqueous polytetrafluoroethylene emulsion, and polytetrafluoroethylene fine powder and porous material produced from the same
JP5298853B2 (ja) 含フッ素共重合体及び成形品
JP5663839B2 (ja) エチレン/テトラフルオロエチレン系共重合体及びその製造方法
JP4746536B2 (ja) 改善された加工特性を有する溶融加工可能な熱可塑性フルオロポリマーおよびその製造方法
JP2018505283A (ja) ペンダントスルホニル基を有するテトラフルオロエチレン/ヘキサフルオロプロピレンコポリマー
EP1141047A1 (en) Fluoromonomer polymerization
CN111201251B (zh) 用于制造氟聚合物的方法
CN106459233B (zh) 乙烯/四氟乙烯共聚物、其制造方法、粉体涂料、以及成形体
JP3669172B2 (ja) テトラフルオロエチレン系共重合体、その製造方法およびその用途
WO2015002008A1 (ja) 含フッ素ポリマーの製造方法
CN107001509B (zh) 制备氟聚合物分散体的方法
WO2020196779A1 (ja) 含フッ素重合体の製造方法、水性分散液および含フッ素重合体組成物
JP4956868B2 (ja) 安定性に優れるテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体の製造方法
JP5581569B2 (ja) ポリテトラフルオロエチレンファインパウダー、ポリテトラフルオロエチレン製造方法
JP2016124909A (ja) 含フッ素樹脂架橋体の製造方法、成形体の製造方法および含フッ素樹脂組成物
JP4960582B2 (ja) テトラフルオロエチレン共重合体及び電線
JP2001040042A (ja) クロロトリフルオロエチレンのパーハロゲン化熱可塑性(共)重合体
JP2002012626A (ja) 含フッ素共重合体及び成形体
JPS61159410A (ja) 含フツ素共重合体
CN112409528B (zh) 一种核壳结构ptfe分散树脂的制备方法
JP4834966B2 (ja) テトラフルオロエチレン共重合体
JP5278281B2 (ja) 溶融成形材料及び電線
JP2007112916A (ja) 非晶質含フッ素共重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033472.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534298

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1565/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007806691

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009113552

Country of ref document: RU

Kind code of ref document: A