WO2008026632A1 - Composition élastomère thermoplastique - Google Patents

Composition élastomère thermoplastique Download PDF

Info

Publication number
WO2008026632A1
WO2008026632A1 PCT/JP2007/066749 JP2007066749W WO2008026632A1 WO 2008026632 A1 WO2008026632 A1 WO 2008026632A1 JP 2007066749 W JP2007066749 W JP 2007066749W WO 2008026632 A1 WO2008026632 A1 WO 2008026632A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
elastomer composition
thermoplastic elastomer
thermoplastic resin
composition according
Prior art date
Application number
PCT/JP2007/066749
Other languages
English (en)
French (fr)
Inventor
Akio Taniguchi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2008532086A priority Critical patent/JP5500823B2/ja
Priority to US12/439,418 priority patent/US8748526B2/en
Priority to EP07806226.2A priority patent/EP2058367B1/en
Publication of WO2008026632A1 publication Critical patent/WO2008026632A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present invention relates to a thermoplastic elastomer composition having a small environmental load and having flexibility, rubber elasticity, moldability, and recyclability, and a molded body using the same.
  • the present invention relates to a thermoplastic elastomer composition using a material derived therefrom and a molded body using the same.
  • Carbon neutral material refers to raw material that emits less carbon dioxide throughout its life cycle (from raw material collection to disposal).
  • Poly-3-hydroxypropylate polymers are also attracting attention (Patent Documents 3 and 4).
  • Poly-3-hydroxy propylate polymers are produced using, for example, microorganisms from methane gas obtained by fermenting organic waste such as food waste, food waste, and livestock waste under anaerobic conditions, or plant raw materials. Can be produced.
  • Poly-3-hydroxybutyrate polymers are biodegradable after disposal or returned to methane gas by microorganisms, making them environmentally recyclable and plastic.
  • polybutylene succinate-based polymers are also attracting attention as materials that produce less carbon dioxide than conventional petroleum-derived resins! (Patent Document 5).
  • Polybutylene succinate polymers can be produced, for example, using succinic acid and diol components as raw materials.
  • Succinic acid is produced by fermenting sugars such as sugar cane and corn. That's the power S.
  • Patent Document 1 JP 2002-275303 A
  • Patent Document 2 JP 2002-040598 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-045366
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2005-304484
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-211041
  • An object of the present invention is to provide a thermoplastic elastomer composition having a small environmental load and having flexibility, rubber elasticity, moldability, and recyclability, and a molded body using the same. .
  • the present invention relates to a thermoplastic resin (A) derived from a non-petroleum raw material and at least various kinds selected from natural rubber, gen-based polymer rubber, olefin-based polymer rubber, acrylic rubber, and silicone rubber.
  • a thermoplastic elastomer composition comprising rubber (B) and obtained by dynamically crosslinking rubber (B) with a crosslinking agent (C) in the presence of thermoplastic resin (A).
  • a thermoplastic resin (A) derived from a non-petroleum raw material and at least various kinds selected from natural rubber, gen-based polymer rubber, olefin-based polymer rubber, acrylic rubber, and silicone rubber.
  • a thermoplastic elastomer composition comprising rubber (B) and obtained by dynamically crosslinking rubber (B) with a crosslinking agent (C) in the presence of thermoplastic resin (A).
  • B dynamically crosslinking rubber
  • C crosslinking agent
  • thermoplastic resin (A) of the present invention is selected from polylactic acid, poly-3-hydroxypropylate polymer, polybutylene succinate polymer, polydarlicolic acid and polytrimethylene terephthalate polymer. It is preferably at least one polymer.
  • thermoplastic elastomer composition of the present invention preferably contains 5 to 150 parts by weight of the thermoplastic resin (A) with respect to 100 parts by weight of the rubber (B). It is more preferable to contain a part of the thermoplastic resin (A)!
  • thermoplastic elastomer composition of the present invention has a rubber composition in the continuous phase of the thermoplastic resin (A). It is preferable that the cross-linked product of (B) is dispersed! /, And has a phase form! /.
  • the particle size of the crosslinked product of rubber (B) is 0.0;! To 20 mm, preferably S, preferably 0.01 to 10 mm. m is more preferable than force S
  • the rubber (B) is preferably natural rubber.
  • thermoplastic elastomer composition of the present invention is preferably a thermoplastic resin (A) that is a polylactic acid or a poly-3-hydroxypropylate polymer.
  • thermoplastic elastomer composition of the present invention preferably further contains a plasticizer (D), and the plasticizer (D) is preferably a plasticizer derived from a non-petroleum raw material.
  • thermoplastic elastomer composition of the present invention preferably further contains a compatibilizer (E).
  • thermoplastic elastomer composition of the present invention is preferably used as a molded product for automobiles, a molded product for electrical products, a molded product for office use, and a molded product for miscellaneous goods.
  • the elastomer composition of the present invention is made of a material derived from non-petroleum raw materials, in addition to having a small load on the environment, it has excellent flexibility, rubber elasticity, compression set characteristics, and moldability. ing. That is, the elastomer composition of the present invention has conventionally used thermoplastic elastomers mainly made from petroleum raw materials! /, Automotive parts, wire covering materials, home appliance parts, medical parts, footwear, miscellaneous goods. It is suitable for use in the environment and is environmentally friendly.
  • Fig. 1 is a view of phase observation of a thermoplastic elastomer composition of the present invention by a transmission electron microscope (Example 5).
  • thermoplastic elastomer composition of the present invention is selected from thermoplastic resins derived from non-petroleum raw materials (A), natural rubber, gen-based polymer rubber, olefin-based polymer rubber, acrylic rubber, and silicone rubber. Containing at least one rubber (B) and the presence of a thermoplastic resin (A) The rubber (B) is obtained by dynamically crosslinking with a crosslinking agent (C).
  • the non-petroleum raw material-derived thermoplastic resin (A) used in the present invention was obtained from a monomer obtained from a plant raw material or an animal raw material, or from a plant raw material or an animal raw material through enzymatic degradation, fermentation or modification. It means a thermoplastic resin polymerized mainly with a monomer.
  • aliphatic polyesters such as polyhydroxybutyrate, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polylactic acid resin, polymalic acid, polydaricholic acid, etc .; polybutylene succinate / Aliphatic aromatic copolyesters such as terephthalate and polytrimethylene terephthalate; natural polymers such as esterified starch and esterified cellulose and mixtures of the above aliphatic polyesters or aliphatic aromatic copolyesters It is done.
  • polylactic acid, poly 3-hydroxybutyrate-based polymer, polybutylene succinate-based polymer, polydarlicolic acid and polytrimethylene terephthalate-based polymer are available as raw materials and obtained thermoplastic elastomers. This is preferred in terms of the degree of thermoplasticity and mechanical properties of the composition.
  • thermoplastic resins (A) may be appropriately selected in consideration of the required physical properties and cost, raw material availability, the degree of reduction of environmental burden, and the like.
  • a polybutylene succinate polymer is preferable in that it can be produced from a plant-derived raw material and imparts excellent flexibility, rubber elasticity, and low-temperature properties to the thermoplastic elastomer composition.
  • polydarlicolic acid and polytrimethylene terephthalate polymers are preferred in that they can be produced from plant-derived raw materials and have excellent mechanical strength.
  • polylactic acid and poly-3-hydroxy propylate polymers are preferred because they can be produced from plant-derived raw materials.
  • Polylactic acid is preferable from the viewpoint of cost and availability because it can be produced from plant-derived raw materials. Furthermore, a poly 3-hydroxy propylate polymer may be used in that it can be produced from plant-derived raw materials and can give excellent flexibility, rubber elasticity, and low-temperature properties to the resulting thermoplastic elastomer composition. .
  • a poly 3-hydroxy propylate polymer may be used in that it can be produced from plant-derived raw materials and can give excellent flexibility, rubber elasticity, and low-temperature properties to the resulting thermoplastic elastomer composition.
  • thermoplastic resins that can be produced from plant-derived raw materials that do not depend on the above-mentioned petroleum resources
  • polylactic acid and poly-3-hydroxypropylate polymers are more preferable.
  • polylactic acid is a polymer composed of monomer units derived from L lactic acid and / or D lactic acid. Other monomer units not derived from L-lactic acid or D-lactic acid may be included as long as the effects of the present invention are not impaired.
  • any known polymerization method can be employed. Most representatively known is a method of ring-opening polymerization of lactide, which is an anhydrous cyclic dimer of lactic acid (lactide method), but direct condensation polymerization of lactic acid may also be used.
  • the molecular weight is preferably in the range of 50,000-300,000 in terms of weight average molecular weight. If the strength is below the range, mechanical properties may not be fully expressed, and if it exceeds, the processability tends to be inferior.
  • the polylactic acid is composed only of monomer units derived from L lactic acid and / or D lactic acid
  • the polymer is crystalline and has a high melting point.
  • L / D ratio the ratio of monomer units derived from L lactic acid and D lactic acid
  • the crystallinity 'melting point can be adjusted freely, so that the thermoplastic elastomer obtained
  • the heat resistance, molding fluidity, rubber elasticity, etc. can be set.
  • a commercially available product such as (trade name) Lashia (manufactured by Mitsui Chemicals, Inc.) can be used.
  • Examples of the poly 3 hydroxybutyrate polymer include poly 3 hydroxybutyrate homopolymers, copolymers of 3-hydroxybutyrate and hydroxyalkanoates other than 3-hydroxybutyrate.
  • Examples of hydroxyalkanoates other than 3 -hydroxypetitate in the case of polymers include 3 -hydroxypropionate, 3-hydroxyvalerate, 3-hydroxyhexanoate, 3-hydroxyheptanoate, 3-hydroxy Examples include droxyoctanoate, 3-hydroxynonanoate, 3-hydroxydecanoate, 3-hydroxyundecanoate, 4-hydroxybutyrate, and hydroxylaurylate.
  • a hydroxyalkanoate other than 3-hydroxybutyrate is copolymerized in an amount of 20 mol% or less because a resin composition excellent in molding processability can be obtained.
  • Poly 3-hydroxybutyrate homopolymer, 3-hydroxybutyrate / 3-hydroxyvalerate copolymer, 3-hydroxybutyrate / 4-hydroxybutyrate copolymer, 3-hydroxybutyrate / 3-hydroxyhexanoate A copolymer is preferred because it is readily available.
  • Poly 3-hydroxy propylate polymerization As the body, it is preferable that the body is produced in a microorganism from the viewpoint that it becomes a resin composition excellent in moldability and can be produced from a non-petroleum-derived raw material.
  • Such poly 3-hydroxypropylate polymers can be obtained as commercial products. Further, for example, it can be produced by a method disclosed in US Pat. No. 4,477,654, International Publication No. 94/11519, US Pat. No. 5,502,273, Japanese Patent Laid-Open No. 2006-045366, etc. .
  • the polybutylene succinate polymer is a copolymer of 1,4 butanediol and succinic acid polymerized using succinic acid synthesized from starch or cellulose as a non-petroleum-derived raw material.
  • polybutylene succinate, polybutylene succinate adipate which is a copolymer of 1,4 butanediol, succinic acid and adipic acid, and the like.
  • polybutylene succinate is preferable because it can be easily obtained.
  • polytrimethylene terephthalate polymer terephthalic acid polymerized using 1,3-propanediol synthesized from starch or fatty oil as a non-petroleum-derived raw material and 1,3-propanediol And polytrimethylene terephthalate which is a copolymer.
  • polyglycolic acid is prepared by using a glycolide (that is, a cyclic dimer ester of glycolic acid) synthesized using a microorganism as a non-petroleum-derived raw material, and a catalyst (for example, organic strength tin sulfonate, halogen It can be obtained by heating in the presence of a cation catalyst such as tin halide or antimony halide and performing bulk ring-opening polymerization or solution ring-opening polymerization.
  • a cation catalyst such as tin halide or antimony halide
  • a copolymer obtained by ring-opening copolymerization of glycolide and a comonomer copolymerizable therewith can also be used as polydaricholic acid.
  • the rubber (B) that can be used in the present invention is at least one rubber selected from natural rubber, gen-based polymer rubber, olefin-based polymer rubber, acrylic rubber, and silicone rubber. These rubber components can be used alone or in combination! /.
  • examples of the natural rubber include those obtained by solidifying a latex liquid collected from a rubber tree represented by hevea brasiliensis into a sheet shape or a block shape. If it is like this, smoke it even if it is smoked and dried It may be a dried product.
  • Ribbed Smoked Sheet (RSS), white crepe, pale crepe, estate brown crepe, compo crepe, thin brown crepe, thick brown crepe, flat bark crepe, pure smoked blanket Examples include crepes.
  • RSS includes various grades visually graded in accordance with (Issue I Cleanup, Natural Rubber Grades).
  • Block natural rubber includes crumb rubber or block Technically Specified Rubber (TSR), called rubber, is included, including Malaysian SMR (Standard Malaysian Rubber), Singaporean S 3 ⁇ 4 (standard Singapore Rubber), Indonesian SIR. (Standard Indonesia n Rubber), Thai STR (Standard Thai Rubber), etc. Of these, ribbed smoke sheet (RSS) is preferable in view of economics. And epoxidized natural rubber, which is a rubber from which most of the protein contained in raw rubber has been removed.
  • TSR Technically Specified Rubber
  • a method for removing the pollutant it is possible to use a method in which latex collected from a rubber tree is sufficiently washed with water, specifically, (i) agglomerating rubber particles in a very diluted latex; (Ii) Centrifugation of highly diluted latex to separate concentrated latex, (iii) Dialysis of latex, etc.
  • Other methods include (a) protein to batteries or enzymes. And (b) a method in which an alkali is added to the latex and heated to decompose the protein, and (c) a protein adsorbed on the rubber particles is released by stalagmites. May be combined appropriately.
  • Epoxidized natural rubber is a modified form of natural rubber in which the unsaturated bond of natural rubber is replaced by an epoxy group, and can be obtained by epoxy-modifying natural rubber latex.
  • ENR50 manufactured by Gutherie, Inc.
  • ENR25 manufactured by Gutherie, Inc.
  • a mixture of natural rubber and epoxidized natural rubber may be used.
  • the deproteinized natural rubber is preferred.
  • a ribbed smoke sheet in terms of the cost and availability of the epoxidized natural rubber. preferable.
  • examples of the gen-based polymer rubber include isoprene polymer rubber (IR), styrene-butadiene copolymer rubber (SBR), butadiene polymer rubber (BR), and allylononitrile butadiene copolymer.
  • examples include rubber (NBR) and black-opened polymer rubber (CR).
  • the olefin-based polymer rubber includes, for example, ethylene 'propylene' gen copolymer rubber (EPDM), isobutylene.isoprene copolymer rubber (IIR), halogenated isobutylene 'isoprene copolymer rubber ( CIIR, BIIR), isobutylene-nonogenated methylstyrene copolymer rubber, chlorosulfonated polyethylene, isobutylene polymer rubber, ethylene / butyl acetate copolymer rubber, and the like.
  • EPDM ethylene 'propylene' gen copolymer rubber
  • IIR isobutylene.isoprene copolymer rubber
  • CIIR halogenated isobutylene 'isoprene copolymer rubber
  • isobutylene-nonogenated methylstyrene copolymer rubber chlorosulfonated polyethylene
  • acrylic rubber any of the conventionally known acrylic rubbers can be used.
  • the power S can be exemplified by acrylic rubber that is obtained by copolymerizing a small amount of one or more of other monomers such as acrylic acid, acrylonitrile, and butadiene.
  • silicone rubber any conventionally known silicone rubber can be used.
  • a dimethylsiloxane polymer rubber or a methylphenylsiloxane polymer rubber can be mentioned with a force S.
  • the rubber (B) may be appropriately selected in consideration of required physical properties, cost, availability, and the like.
  • acrylic rubber is preferably used from the viewpoint of compatibility with the thermoplastic resin (A) and mechanical properties of the resulting thermoplastic elastomer composition.
  • silicone rubber from the viewpoint of low temperature characteristics of the resulting thermoplastic elastomer composition.
  • cost it is preferable to use a gen-based polymer rubber or an olefin-based polymer rubber. It is preferable to use natural rubber because it can produce plant-derived raw materials that do not depend on petroleum resources.
  • Natural rubber is more preferred in that it provides a plastic elastomeric composition. Since natural rubber has biodegradability, when natural rubber is used, biodegradability can be imparted to the thermoplastic elastomer composition, and the burden on the environment can be further reduced.
  • the rubber (B) is melt-kneaded in the presence of the thermoplastic resin (A), and at this time, the crosslinking agent (C) is added to the rubber simultaneously with the melt-kneading.
  • (B) is dynamically crosslinked (dynamic crosslinking).
  • dynamically cross-linking the cross-linked product of rubber (B) is dispersed in the continuous phase of the thermoplastic resin (A), so that it is easy to have a phase form of the resulting thermoplastic elastomer composition. Molding fluidity and mechanical properties are improved.
  • the blended amount of the thermoplastic resin (A) is less than the blended amount of the rubber (B)! In this case, the crosslinked product of the rubber (B) is dispersed in the continuous phase of the thermoplastic resin (A). It is possible to improve the compression set characteristics and rubber elasticity.
  • dynamic cross-linking means Uniroyal's W. M. Fischer, Monsanto
  • the molding process can be performed in accordance with the thermoplastic resin, and the thermoplastic resin used as the continuous phase even when the blending amount of the thermoplastic resin is less than the blending amount of the crosslinked rubber.
  • Cross-linked rubber phase that becomes a discontinuous phase A finely dispersed state.
  • any of the cross-linking agents that have been conventionally used in each rubber can be used and is not particularly limited.
  • the crosslinking agent (C) used to obtain a crosslinked product of rubber (B) include sulfur, organic sulfur compounds, organic nitroso compounds such as aromatic nitroso compounds, oxime compounds, zinc oxide and oxidation.
  • Metal oxides such as magnesium; polyamines; selenium, tellurium and / or their compounds; various organic peroxides; alkylphenol formaldehyde trees Resin cross-linking agents such as oils and brominated alkylphenol formaldehyde resins; organic organosiloxane compounds with two or more siH groups in the molecule can be listed.
  • One type of cross-linking agent depending on the type of rubber Or two or more can be used.
  • a crosslinking agent (C) is added to 100 parts by weight of rubber (B) in terms of crosslinking efficiency of rubber, imparting rubber elasticity to the resulting crosslinked product, odor, and the like.
  • the amount of the crosslinking agent (C) is less than 0.3 parts by weight, the crosslinking becomes insufficient and the rubber elasticity tends to deteriorate.
  • the amount is more than 30 parts by weight, the resulting composition is increased in odor or colored. It tends to be.
  • one or more crosslinking aids may be used as necessary together with the above-described crosslinking agent.
  • the crosslinking aid include guanidine compounds such as diphenyldanidine, aldehyde amine compounds, aldehyde ammonium compounds, thiazole compounds, sulfenamide compounds, thiourea compounds, thiuram compounds, dithiopower rubamate compounds;
  • hydrosilylation catalysts such as group transition metals such as palladium, rhodium, and gold or their compounds and complexes.
  • crosslinked product of rubber (B) in addition to the above-mentioned crosslinking agent and crosslinking aid, etc., if necessary, dibutenebenzene, ethylene glycol dimetatalylate, trimethylolpropane triatally. And compounds such as zinc oxide, N, N-m-phenylene bismaleimide, metal halides, organic halides, maleic anhydride, glycidyl metatalylate, hydroxypropyl metatalylate, stearic acid, etc. it can. By adding these, the crosslinking efficiency by the crosslinking agent can be increased, and rubber elasticity can be imparted.
  • thermoplastic elastomer composition of the present invention contains rubber (B) in the presence of the thermoplastic resin (A).
  • the rubber (B) bridge is dispersed in the continuous phase of the thermoplastic resin (A).
  • thermoplastic resin (A) and the rubber (B) are melted at a high temperature.
  • a cross-linking agent is added while kneading, and the rubber (B) is cross-linked (dynamic cross-linking) during kneading.
  • lubricants such as wax and silicone oil
  • flame retardants such as magnesium hydroxide
  • pigments such as carbon black and titanium oxide
  • crystal nucleating agents such as talc, clay and my strength, and tackifiers.
  • tackifiers can also be done.
  • components derived from non-petroleum raw materials are more preferable from the viewpoint of reducing the burden on the environment.
  • Components derived from non-petroleum raw materials include natural products, derivatives of natural products, those produced by fermenting plant-derived raw materials, and those produced in microorganisms using non-petroleum raw materials. Examples include vitamins for antioxidants, beef tallow for lubricants, and terpenes for tackifiers.
  • the thermoplastic elastomer composition of the present invention contains 5 to 300 parts by weight of the thermoplastic resin (A) when the rubber (B) content is 100 parts by weight. It is more preferable that the rubber (B) is contained at a ratio of 5 to; 150 parts by weight with respect to 100 parts by weight of the rubber (B). It is more preferable to contain 10 to 90 parts by weight of A) with respect to 100 parts by weight of rubber (B) and 15 to 50 parts by weight of thermoplastic resin (A). It is particularly preferable.
  • the amount of the polymer (A) is more than 300 parts by weight with respect to 100 parts by weight of the rubber (B)
  • the compression set and permanent tensile elongation of the thermoplastic elastomer composition increase, and rubber elasticity, elastic recovery and flexibility Tend to decrease.
  • the sealing performance is deteriorated when used for a seal product or the like.
  • the amount of the thermoplastic resin (A) is less than 5 parts by weight with respect to 100 parts by weight of the rubber (B)
  • the melt viscosity of the thermoplastic elastomer composition becomes high and sufficient melt fluidity at the time of molding processing. Cannot be obtained, and the moldability tends to deteriorate.
  • a phase structure in which the rubber (B) is dispersed in the continuous phase of the thermoplastic resin (A) is formed, and mechanical properties such as tensile strength and tensile elongation tend to deteriorate.
  • thermoplastic elastomer composition of the present invention was allowed to stand for 22 hours under the conditions of an atmospheric temperature of 70 ° C and a compression deformation of 25% according to JIS-K6301, from the viewpoint of having characteristics as an elastomer.
  • the amount of compressive deformation at the time is preferably 80% or less, and is preferably 65% or less It is particularly preferable that it is 50% or less.
  • the gel amount in the thermoplastic elastomer composition that is, the gel ratio (wt%) represented by the following formula (1) is 20 to 95. % Is preferred. 40 to 85% is more preferred.
  • the gel ratio (wt%) of the thermoplastic elastomer composition is 20 to 95% as described above, the crosslinked product of rubber (B) is present in a stable phase form in the thermoplastic resin (A). Therefore, the moldability is good and the compression set of the thermoplastic elastomer composition can be reduced.
  • the amount of compressive deformation strain is 65 when left for 22 hours under the conditions of the atmospheric temperature of 70 ° C and the amount of compressive deformation of 25% by IS-K6301. % Or less thermoplastic polymer composition can be easily prepared.
  • Wc represents the solvent-insoluble weight (g) of the thermoplastic elastomer composition
  • Wu represents the weight (g) of the thermoplastic elastomer composition.
  • the gel ratio (wt%) is measured by measuring the weight of a predetermined amount of the thermoplastic elastomer composition as Wu (g), and then placing the Wu (g) thermoplastic elastomer composition in a solvent.
  • the solvent-insoluble matter is dried, and the weight of the dried solvent-insoluble matter is measured to obtain the solvent-insoluble matter weight (Wc) (g) of the thermoplastic elastomer composition.
  • the solvent is a soluble solvent for the thermoplastic resin (A) and the uncrosslinked rubber (B), and may be appropriately set depending on the thermoplastic resin (A) and the rubber (B) to be used!
  • the gel ratio (wt%) of the rubber (B) is preferably 70% or more, more preferably 80% or more. % Or more is particularly preferable.
  • the gel ratio (wt%) of rubber (B) is calculated by the following formula when the rubber (B) content in the compound is T (%).
  • thermoplastic elastomer composition of the present invention is obtained by observing the phase morphology (morphology) with a transmission electron microscope.
  • the rubber (B) is contained in the continuous phase of the thermoplastic resin (A).
  • a cross-linked product of the thermoplastic resin (A) and the rubber (B) has a co-continuous phase form.
  • the cross-linked product of rubber (B) is dispersed in the continuous phase of the thermoplastic resin (A)! .
  • thermoplastic resin (A) and the rubber (B) forms a co-continuous phase
  • thermoplastic resin (A) and the rubber (B) The cross-linked product forms a continuous boundary (line), and the phase form is changed.
  • the state of (c) in (i) to (c) below is! /
  • thermoplastic resin (A) and the cross-linked product of the rubber (B) form a continuous boundary (line).
  • thermoplastic Elastomer Composition Strength When the phase morphology of (a) or (b) is mentioned! /, The moldability of the thermoplastic elastomer composition is improved, and compression set and compression There is a tendency that a molded article having a small permanent elongation can be produced.
  • phase form of (a) When the phase form of (a) is provided, the moldability of the thermoplastic elastomer composition is improved, and compression set and compression set are reduced. In addition to producing small molded products, they tend to have excellent mechanical properties such as tensile strength and tensile elongation. It is more preferable that this force also has the phase form (a).
  • the particle diameter of the crosslinked product of rubber ( ⁇ ⁇ ) is 0.0;! To 20 m, more preferably 0.0;! To 10 to 10 m, and 0.01 to 5 to 111 is more preferable. This is because, when the particle diameter is 0.01 to 2011 m, there is a tendency to obtain a molded product having particularly excellent characteristics described above.
  • the ratio of the particle major axis dl to the particle minor axis d2 is preferably 1 to 5, and the number average of 1 to 3 is preferably S. It is particularly preferred that When the number average of the ratio dl / d2 exceeds 5, the mechanical properties of the resulting thermoplastic elastomer composition tend to deteriorate. Because it is in.
  • thermoplastic resin (A) is dispersed in the continuous phase of the crosslinked product of the rubber (B)! / Tends to decrease the melt fluidity of the polymer composition and deteriorate the physical properties of the molded product obtained from the melt-molded product.
  • the phase morphology of the present application and the particle diameter and particle volume of the rubber (B) cross-linked product can be determined from transmission electron micrographs taken by the ultrathin section method.
  • the thermoplastic elastomer composition of the present invention is first sliced with a frozen microtome and then ruthenium tetroxide, osmium tetroxide, chlorosulfonic acid, acetic acid.
  • Dye using a dye such as uranyl, phosphotungstic acid, iodine ion, or trifluoroacetic acid. In selecting a dye, it is necessary to select an optimum dye according to the types of the thermoplastic resin (A) and rubber (B) contained in the thermoplastic elastomer composition to be observed.
  • the particle diameter and the particle volume of the crosslinked product of rubber (B) are determined based on the structure of 500 rubbers (B) in a transmission electron micrograph taken by the ultrathin section method of the obtained thermoplastic elastomer composition. It is obtained by calculating each particle of the bridge by the following method. That is, the particle diameter of each particle is obtained as the area S of each particle, and S is used to set (4S /) ° 5 as the particle diameter of each particle.
  • the average particle diameter is the weight average particle diameter, and the particle shape is expressed by the ratio dl / d2 between the particle major axis dl and the particle minor axis d2.
  • the particle volume is defined as S 1 ' 5, which is the third power of the particle area S, and the total particle volume is expressed as the sum of the particle volumes. Even if particles of 0.0;! To 20 m existed, if they were agglomerated and contacted each other, the agglomerated particles were regarded as one particle.
  • the phase morphology in the thermoplastic elastomer composition is the content of components such as thermoplastic resin (A), rubber (B), cross-linking agent (C), additive, etc. in the thermoplastic elastomer composition. Influenced by melt-kneading conditions and other factors when preparing a plastic elastomer composition
  • the polymer composition by adjusting the above-mentioned points in various ways so as to be in the phase form of either (a) or (b) described above.
  • thermoplastic elastomer composition having the phase morphology of (a) or (b) of the present invention
  • the thermoplastic resin (A) derived from a non-petroleum raw material was discarded.
  • rubber (B) is a substance that is relatively difficult to decompose in an outdoor environment, after decomposition of (A), the rubber (B) becomes a “fine powder” or “large surface area sponge”.
  • the rubber (B) after the decomposition of (A) has a very large surface area. B) also decomposes relatively easily. Furthermore, when the rubber (B) is natural rubber, it is easier to decompose, so the burden on the environment can be further reduced.
  • a plasticizer (D) may be added in order to impart further flexibility, rubber elasticity, low temperature characteristics to the thermoplastic elastomer composition to be produced, or to adjust the hardness. good.
  • the plasticizer (D) is not particularly limited.
  • a plasticizer usually blended in a thermoplastic resin; process oil; oligomer; oils such as animal oil and vegetable oil and derivatives thereof; kerosene, light oil, heavy oil And oil fractions such as naphtha. These may be used alone or in combination of two or more.
  • Fumaric acid derivatives trimellitic acid derivatives such as tris-1-triethylhexyl trimellitic acid; pyromellitic acid derivatives; citrate derivatives such as acetiltylbutyl taenoate; Conductor; Oleic acid derivative; Ricinoleic acid derivative; Stearic acid derivative; Lactic acid derivative; Other fatty acid derivative; Sulphonic acid derivative; Phosphoric acid derivative; Daltaric acid derivative; Dibasic acid such as adipic acid, azelaic acid, phthalic acid and Daricol Polyester plasticizer that is a polymer with monohydric alcohol, etc., darcol derivative, glycerin derivative, paraffin derivative such as chlorinated paraffin, epoxy derivative polyester polymerized plasticizer, polyether polymerized plasticizer, ethylene carbonate, propylene And carbonate derivatives such as carbonate.
  • trimellitic acid derivatives such as tris-1-triethylhexyl trimellitic acid
  • plasticizers include Ade force sizer O-130P, C-79, UL-100, P-200, RS-735 (manufactured by Asahi Denka) Lactosizer GP-2001, GP-4001 (Arakawa Chemical) Industrial), Richemar PL-019 (manufactured by Riken Vitamin).
  • examples of other high molecular weight plasticizers include acrylic polymers, polypropylene glycol polymers, polytetrahydrofuran polymers, polyisobutylene polymers, and copolymers of polylactic acid and polyester.
  • Examples of the process oil include petroleum-based process oils such as paraffin oil, naphthenic process oil, and aromatic process oil.
  • vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, pine oil, tall oil, rosin and the like.
  • the plasticizer (D) can be used with various plasticizers without being limited thereto.
  • plasticizers derived from non-petroleum raw materials are more preferable from the viewpoint that these forces can be produced from products that do not depend on petroleum resources and can reduce the burden on the environment.
  • plasticizers derived from non-petroleum raw materials include natural products, derivatives of natural products, those produced by fermenting plant-derived raw materials, and those produced in microorganisms using non-petroleum raw materials.
  • at least one selected from animal oils, vegetable oils, animal oil derivatives, vegetable oil derivatives, and lactic acid derivatives is particularly preferable from the viewpoint of cost and availability.
  • the plasticizer (D) is preferably contained in the range of 0.;! To 200 parts by weight with respect to 100 parts by weight of the rubber (B).
  • the content is more preferably in the range of 1 to 50 parts by weight, and the content in the range of 5 to 30 parts by weight is even more preferable. 0. If less than 1 part by weight, the resulting thermoplastic elastomer composition will have less rubber elasticity and low-temperature properties. The mechanical properties and heat resistance of the plastic elastomer composition tend to decrease.
  • various graft polymers and block polymers may be added as a compatibilizing agent in order to improve the compatibility between the thermoplastic resin (A) and the rubber (B).
  • the particle size of the crosslinked product of the rubber (B) in the resulting thermoplastic elastomer composition is less than 20, 1 m.
  • the melt flowability and mechanical properties of the thermoplastic elastomer composition tend to be improved.
  • the compatibilizer include the Kraton series (manufactured by Shell Japan), Tuftec series (manufactured by Asahi Kasei Kogyo), Dynalon (manufactured by Nippon Synthetic Rubber), Epofriend (manufactured by Daicel Chemical Industries), Septon (Kuraray) ), Nofaro (Nippon Yushi), Lettuce Pearl (Nihon Polio Refin), Bond First (Sumitomo Chemical Co., Ltd.), Bondine (Sumitomo Chemical Co., Ltd.), Admar (Mitsui Chemicals), Yumetta (Sanyo Chemical Industries Co., Ltd.) , VMX (Mitsubishi Chemical), Modiper (Nippon Yushi), Staphyroid (Takeda Pharmaceutical), Kane Ace (Kanebuchi Chemical), Reseta (Toagosei), Bramate (Dainippon Ink), etc.
  • Kraton series manufactured by Shell Japan
  • Tuftec series manufactured by Asahi
  • I can give you goods.
  • These can be appropriately selected according to the block co-thermoplastic resin (A) and the thermoplastic resin (B) to be used.
  • compatibilizers having an epoxy group or an acid anhydride group (for example, bond fast or bondine) that have reactivity with the hydroxyl group or carboxyl group at the end of the thermoplastic resin (A) can improve compatibility. Is bigger! /, More preferred from the point! /.
  • the compatibilizer (E) is preferably contained in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of the rubber (B). 0.5 to 5 parts by weight More preferably, it is contained in the range of 1 to 3 parts by weight.
  • the amount is less than 1 part by weight, the effect of improving the compatibility is small, and the effect of improving the mechanical properties of the obtained thermoplastic elastomer composition tends to be small. If the amount exceeds 10 parts by weight, the molding of the resulting thermoplastic elastomer composition will be reduced, or the thermoplastic elastomer composition will not depend on petroleum resources. The ratio of decreases.
  • thermoplastic elastomer composition of the present invention may be adjusted according to the required hardness, mechanical properties, compression set properties, etc., and the properties as an elastomer such as the compression set properties, etc.
  • a thermoplastic elastomer comprising a material derived from a non-petroleum raw material
  • the thermoplastic resin (A) is made of polylactic acid or a poly-3-hydroxypropylate polymer and can be used for rubber (B) from the viewpoint that it can contribute to the reduction of carbon dioxide emissions and reduce the burden on the environment. It is particularly preferable that is made of natural rubber and has a phase structure in which a crosslinked product of rubber (B) is dispersed in thermoplastic resin (A).
  • a plasticizer (D) may be added as appropriate in order to impart further flexibility and compression set properties, but the plasticizer (D) is an animal oil from the viewpoint of non-petroleum raw materials. Vegetable oil, animal oil derivatives, vegetable oil derivatives, and lactic acid derivatives are preferred. From the viewpoint of mechanical properties, a compatibilizing agent for the thermoplastic resin (A) and the rubber (B) may be added. In addition, from the viewpoint of compression set characteristics, when the blending amount of natural rubber in the thermoplastic elastomer composition is 100 parts by weight, 15 to 50% by weight of polylactic acid or poly-3-hydroxybutyrate polymer is used. It is particularly preferred that the content is in the proportion of parts.
  • the component derived from non-petroleum raw materials is 20% by weight or more of the entire composition from the viewpoint of being able to contribute to the reduction of carbon dioxide emission and reducing the burden on the environment. More preferably, it is more than 80% by weight. It is particularly preferred that it is more than 90% by weight.
  • the method for producing a thermoplastic elastomer composition of the present invention is capable of (dynamically) crosslinking rubber (B) at the same time as melt-kneading rubber (B) in the presence of thermoplastic resin (A).
  • the method is not particularly limited, and any method can be adopted as long as the thermoplastic resin (A), the rubber (B), and the above-described components that are optionally used can be mixed uniformly.
  • a production method capable of forming the phase form (a) or (b) described above is preferably used.
  • a method of dynamically crosslinking the rubber (B) with the crosslinking agent (C) at the same time as the rubber (B) is melt-kneaded in the presence of the thermoplastic resin (A) there are methods exemplified below.
  • thermoplastic elastomer composition of the present invention is produced using a closed kneading apparatus or a batch kneading apparatus such as plastinole, Brabender, Banbury mixer, kneader, roll, etc.
  • a crosslinking agent When all components other than (optionally plasticizer) are mixed in advance and melt-kneaded until uniform, and then the crosslinking reaction (C) is added to this and the crosslinking reaction is sufficiently performed.
  • the method of stopping the melt-kneading can be employed.
  • the melt-kneading time after the addition of the cross-linking agent decreases again after the torque value and current value of the motor of the kneading machine significantly increase after the addition of the cross-linking agent (C) and show the maximum value.
  • the cross-linking agent (B) it is desirable to continue the kneading until the torque value and the current value are stabilized at a constant value.
  • thermoplastic elastomer composition of the present invention is produced using a continuous melt-kneader such as a single-screw extruder or a twin-screw extruder, other than the crosslinking agent (in some cases, plastic All of the components are also pre-melted and kneaded by a melt-kneading device such as an extruder, and then pelletized, and after the cross-linking agent is dry-blended to the pellet, it is further melt-kneaded by a melt-kneading device such as an extruder.
  • a melt-kneading device such as an extruder
  • Dynamically cross-linked to contain cross-linked product of thermoplastic resin (A) and rubber (B) It can be employed a method for producing a thermoplastic elastomer first composition.
  • the melt-kneading temperature may be appropriately set according to the thermoplastic resin (A) used, but a temperature of 100 to 250 ° C is preferable. A temperature of 150 to 200 ° C. is more preferably employed. When the temperature is lower than 100 ° C, the thermoplastic resin (A) tends to be insufficiently melted. When the temperature is higher than 250 ° C, the thermoplastic resin (A) tends to decompose.
  • thermoplastic elastomer composition obtained by the above production method
  • known pelletizing machines such as strand cut, underwater cut, mist cut, hot cut, etc. can be used. It is not limited.
  • an anti-adhesive agent may be added to prevent blocking between the pellets.
  • the thermoplastic elastomer composition of the present invention is thermoplastic and can be molded using a molding method and a molding apparatus generally employed for thermoplastic polymer compositions. By molding by injection molding, extrusion molding, press molding, blow molding, etc., it is possible to produce various molded products and products with arbitrary shapes and dimensions.
  • the thermoplastic elastomer composition of the present invention can be recycled and contributes to the reduction of carbon dioxide emissions as a thermoplastic elastomer composition that also has material strength derived from non-petroleum raw materials, and reduces the burden on the environment. Because it can be used, it can be suitably used as a molded article for automobiles, electrical appliances or office use, and miscellaneous goods, which uses conventional thermoplastic elastomers.
  • thermoplastic elastomer composition of the present invention takes advantage of its excellent properties such as molding processability, compression permanent strain resistance, sealing properties, flexibility, mechanical properties, and the like. It is suitable for manufacturing general-purpose molded products such as switches, skin materials, sheets, containers, packaging, general goods such as lures, sandals and toys, and sealing materials such as sealing materials, knocking materials, and gaskets. I'll do it with power.
  • PLA is polylactic acid
  • PHBH is poly (3-hydroxybutyrate /
  • a cylindrical molded body (cylindrical molded body with a diameter of 30 mm and a thickness of 12 mm) is held at 70 ° C for 22 hours under the condition of a compression ratio of 25%, then left at room temperature for 30 minutes, then molded Body thickness was measured and the residual strain was calculated. This corresponds to the fact that all the distortion is recovered when the compression set is 0%, and no distortion is recovered when the compression set is 100%.
  • the gel ratio of a thermoplastic elastomer composition was measured.
  • PLA PLA; LACEA H-100 (Mitsui Chemicals Co., Ltd.) and EPDM; EP22 (JSR Co., Ltd.) Ratios shown in Table 1 Using a Laboplast Mill 50C150 (blade shape: roller type R60 manufactured by Toyo Seiki Seisakusho Co., Ltd.) set to 180 ° C. by weight). Further, while melt-kneading at 180 ° C with a screw rotation speed of 10 Orpm, at the ratio (parts by weight) shown in Table 1, EDMA as a crosslinking aid and perhexine 25B (peroxide as a crosslinking catalyst) Nippon Oil & Fats Co., Ltd.) was added, and the torque value showed the highest value.
  • EDMA as a crosslinking aid
  • perhexine 25B peroxide as a crosslinking catalyst
  • melt kneading was performed until the torque decreased and reached a certain value, and the crosslinking reaction was advanced (dynamic crosslinking).
  • the obtained sample was hot-pressed at a set temperature of 180 ° C. (compression molding machine NSF 50, manufactured by Shinto Metal Industry Co., Ltd.) to obtain a cylindrical molded body having a diameter of 30 mm and a thickness of 12 mm. These molded products were measured for hardness and compression set and evaluated for thermoplasticity.
  • hot press molding was performed at a preset temperature of 180 ° C to obtain a sheet-like molded body having a thickness of 2 mm. Using this sheet, mechanical properties and gel ratio (wt%) were measured.
  • 30 g of EPDM was melt-kneaded.
  • Samples were prepared and evaluated in the same manner as in Example 1 except that NR; RSS3 was used instead of EPDM, and the amount of added calories of Perhexine 25B (Nippon Yushi Co., Ltd.) was changed.
  • a sample was prepared and evaluated in the same manner as in Example 2 except that NR; RSS3 was used instead of EPDM and the amount of perhexine 25B (manufactured by NOF Corporation) was changed.
  • Example 2 Same as Example 2 except that NR; RSS3 was used instead of EPDM, Bond First 7M (Sumitomo Chemical Co., Ltd.) was not added, and the amount of Perhexine 25B (Nippon Yushi Co., Ltd.) was changed. A sample was prepared and evaluated. Furthermore, the phase morphology of the obtained thermoplastic elastomer composition was observed. The results are shown in Figure 1.
  • PHBH and NR; RSS3 was melt kneaded using a Laboblast mill 50C150 (blade shape: roller type R60, manufactured by Toyo Seiki Co., Ltd.) set to 160 ° C in the ratio (parts by weight) shown in Table 1. Furthermore, while melt-kneading at 160 ° C with a screw rotation speed of lOOrpm, EDMA as a crosslinking aid and perhexine 25B (Nippon Yushi) as a crosslinking catalyst at the ratio (parts by weight) shown in Table 1. Co., Ltd.) was added, and the torque value showed the maximum value.
  • the obtained sample was hot-pressed at a set temperature of 160 ° C. (compression molding machine NSF-50 manufactured by Shinfuji Metal Industry Co., Ltd.) to obtain a cylindrical molded body having a diameter of 30 mm and a thickness of 12 mm. These molded bodies were measured for hardness and compression set and evaluated for thermoplasticity. Similarly, hot press molding was performed at a set temperature of 160 ° C to obtain a sheet-like molded body having a thickness of 2 mm. The gel ratio (wt%) was measured using this sheet. In this example, 30 g of NR was melt-kneaded.
  • PLA LACEA H-100 (Mitsui Chemicals Co., Ltd.) Laboplast Mill 50C150 (Blade shape: Roller type R60, manufactured by Toyo Seiki Seisakusho Co., Ltd.) Melting and kneading for 10 minutes at a screw speed of lOOrpm did.
  • the obtained sample was used in Example 1. Evaluation was performed in the same manner. In this comparative example, 50 g of PLA was melt-kneaded.
  • NR Using Laboplast Mill 50C150 (Blade shape: Roller type R60, manufactured by Toyo Seiki Seisakusho Co., Ltd.) with RSS3 set to 180 ° C, melt kneading at 180 ° C with a screw speed of lOOrpm. At the indicated ratio (parts by weight), EDMA was added as a crosslinking aid, and Perhexine 25B (manufactured by Nippon Oil & Fats Co., Ltd.) as a crosslinking catalyst was added. After that, melt kneading was performed until the torque decreased and reached a certain value, and the crosslinking reaction was advanced.
  • PLA; LACEA H-100 (manufactured by Mitsui Chemicals) and BondFirst 7M (manufactured by Sumitomo Chemical Co., Ltd.) were added at the ratio (parts by weight) shown in Table 1, and melt-kneaded for 10 minutes.
  • the obtained sample was evaluated in the same manner as in Example 1.
  • 30 g of NR was melt-kneaded.
  • Blend with PLA blend PLA after first making crosslinked EPDM.
  • thermoplastic elastomer composition of the present invention is superior in flexibility and compression set properties as compared with PLA alone. Furthermore, it turns out that it has thermoplasticity. Further, as apparent from comparison between Examples 1 to 6 and Comparative Examples 2 to 3, the dynamic crosslinking results in an increase in the gel ratio (wt%) (rubber (wax) is crosslinked) and is excellent. It can be seen that mechanical characteristics and compression set characteristics can be imparted. Furthermore, as is clear from comparison between Examples 1 to 5 and Comparative Example 4, the thermoplastic elastomer composition which is a dynamically crosslinked product of the present invention is not crosslinked dynamically but is crosslinked with rubber (EPDM).
  • EPDM crosslinked dynamically but is crosslinked with rubber
  • thermoplastic elastomer composition of the present invention has better moldability (thermoplasticity) and superior mechanical properties and compression set compared to the product in which thermoplastic resin (PLA) and Bondfast 7M are added and kneaded.
  • thermoplastic resin PLA
  • Bondfast 7M Bondfast 7M
  • the thermoplastic elastomer composition of the present invention has a cross-linked product containing rubber (NR) as a main component in a continuous phase mainly containing a thermoplastic resin (PLA) of 10 m or less. Dispersed in the size of! /, Having a phase form! /
  • thermoplastic elastomer composition of the present invention is a novel thermoplastic elastomer having low hardness and flexibility, excellent mechanical properties and compression set properties, and low environmental load. It turns out that it is one. Industrial applicability
  • thermoplastic elastomer composition of the present invention has a low hardness and flexibility, and has excellent mechanical properties and compression set properties, and has a low environmental load! /, A novel thermoplastic elastomer Therefore, it can be suitably used as a molded product for automobiles, electrical products, office products or miscellaneous goods for which conventional thermoplastic elastomers are used.
  • thermoplastic elastomer composition of the present invention takes advantage of its excellent moldability, compression permanent strain resistance, sealing properties, flexibility, mechanical properties, and the like to produce a band, grip, switch, Suitable for use in the manufacture of skin materials, sheets, containers, packaging, general molded products such as lures, sandals and toys, and other sealing materials, sealing materials, knocking materials, gaskets, etc. Monkey.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
熱可塑性エラストマ一組成物
技術分野
[0001] 本発明は、環境に対する負荷が小さぐかつ、柔軟性やゴム弾性、成形性、リサイク ノレ性を有する熱可塑性エラストマ一組成物及びそれを用いた成形体に関し、詳しく は、非石油原料由来の材料を用いてなる熱可塑性エラストマ一組成物及びそれを用 いた成形体に関する。
背景技術
[0002] 近年、プラスチックの投棄による環境汚染やプラスチックの焼却時に発生するガス による地球温暖化等が問題となっている。そのような中、たとえば、でんぷん等を発酵 させてできる乳酸を重合させることにより得られるポリ乳酸等力 S、生分解性プラスチッ クゃカーボンニュートラルな素材として注目されている(特許文献 1、 2)。ここでカーボ ンニュートラルな素材とは、ライフサイクル全体 (原料採取から廃棄まで)での炭酸ガ スの排出量が少なレヽ素材をレ、う。
[0003] 植物が生産する糖質(デンプンなど)から得られるポリ乳酸につ!/、ては、一般的な石 油由来樹脂に比べて、製造工程力 廃棄工程の間に発生する炭酸ガス量が著しく 小さ!/ヽ(カーボンニュートラル)。
[0004] またポリ乳酸と同様、ポリ 3—ヒドロキシプチレート系重合体も注目されている(特許 文献 3、 4)。ポリ 3—ヒドロキシプチレート系重合体は、例えば、生ごみや食品廃棄物 、家畜粪尿等の有機廃棄物を嫌気条件下で発酵させることにより得られるメタンガス 、あるいは植物原料から、微生物を用いて生産することができる。またポリ 3—ヒドロキ シブチレート系重合体は、廃棄後は生分解され、あるいは微生物によりメタンガスに 戻されるので、リサイクルできる環境に優しレ、プラスチックである。
[0005] さらには、ポリブチレンサクシネート系重合体も、一般的な石油由来樹脂に比べて 炭酸ガス排出量の少なレ、材料として注目されて!/、る(特許文献 5)。ポリブチレンサク シネート系重合体は、例えばコハク酸とジオール成分を原料として製造することがで きる力 コハク酸はサトウキビやトウモロコシなどの糖を発酵させることにより製造する こと力 Sでさる。
[0006] 以上のように従来より、環境へ配慮した非石油原料由来の材料を用いた種々のプ ラスチックが開発されている。し力、しこれらのプラスチックは、柔軟性やゴム弾性、圧 縮永久歪特性等に劣り、また成形加工が困難なものが多ぐ適用範囲は限られてい た。
特許文献 1 :特開 2002— 275303号公報
特許文献 2:特開 2002— 040598号公報
特許文献 3:特開 2006— 045366号公報
特許文献 4 :特開 2005— 304484号公報
特許文献 5:特開 2005— 211041号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、環境に対する負荷が小さぐかつ柔軟性やゴム弾性、成形性、リ サイクル性を有する熱可塑性エラストマ一組成物及びそれを用いた成形体を提供す ることである。
課題を解決するための手段
[0008] 本発明は、非石油原料由来の熱可塑性樹脂 (A)と、天然ゴム、ジェン系重合体ゴ ム、ォレフィン系重合体ゴム、アクリルゴム、およびシリコーンゴムから選ばれる少なく とも丄種のゴム (B)を含有し、熱可塑性樹脂 (A)の存在下で、ゴム (B)を架橋剤(C) により動的に架橋することにより得られることを特徴とする熱可塑性エラストマ一組成 物に関する。
[0009] また本発明の熱可塑性樹脂 (A)は、ポリ乳酸、ポリ 3—ヒドロキシプチレート系重合 体、ポリブチレンサクシネート系重合体、ポリダリコール酸およびポリトリメチレンテレフ タレート系重合体から選ばれる少なくとも 1種の重合体であることが好ましい。
[0010] また本発明の熱可塑性エラストマ一組成物は、ゴム(B) 100重量部に対し、 5〜15 0重量部の熱可塑性樹脂 (A)を含有することが好ましぐ 10〜90重量部の熱可塑性 樹脂 (A)を含有することがより好まし!/、。
[0011] また本発明の熱可塑性エラストマ一組成物は、熱可塑性樹脂 (A)の連続相中にゴ ム(B)の架橋物が分散して!/、る相形態を有するものであることが好まし!/、。
[0012] また本発明の熱可塑性エラストマ一組成物においては、ゴム(B)の架橋物の粒子 径カ 0. 0;!〜 20〃 mであること力 S好ましく、 0. 01〜; 10〃 mであること力 Sより好ましい
[0013] また本発明の熱可塑性エラストマ一組成物においては、ゴム(B)が天然ゴムである ことが好ましい。
[0014] また本発明の熱可塑性エラストマ一組成物にお!/、ては、熱可塑性樹脂 (A)力 ポリ 乳酸またはポリ 3—ヒドロキシプチレート系重合体であることが好ましい。
[0015] また本発明の熱可塑性エラストマ一組成物は、さらに可塑剤(D)を含有することが 好ましぐさらに可塑剤(D)が非石油原料由来の可塑剤であることが好ましい。
[0016] また本発明の熱可塑性エラストマ一組成物は、さらに相溶化剤(E)を含有すること が好ましい。
[0017] また本発明の熱可塑性エラストマ一組成物は、自動車用成型品、電気製品用成型 品、事務用成型品、および雑貨用成型品として使用することが好ましい。
発明の効果
[0018] 本発明のエラストマ一組成物は、非石油原料由来の材料からなるため環境に対す る負荷が小さいことに加えて、優れた柔軟性やゴム弾性、圧縮永久歪み特性、成形 性に優れている。すなわち本発明のエラストマ一組成物は、従来、主に石油原料由 来の材料からなる熱可塑性エラストマ一が用いられて!/、た自動車部品、電線被覆材 、家電部品、医療部品、履物、雑貨等に好適に用いることができ、なおかつ環境に優 しいものである。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の熱可塑性エラストマ一組成物の、透過型電子顕微鏡による相 形態観察図(実施例 5)。
発明を実施するための最良の形態
[0020] 本発明の熱可塑性エラストマ一組成物は、非石油原料由来の熱可塑性樹脂 (A)と 、天然ゴム、ジェン系重合体ゴム、ォレフィン系重合体ゴム、アクリルゴム、およびシリ コーンゴムから選ばれる少なくとも 1種のゴム(B)を含有し、熱可塑性樹脂 (A)の存在 下で、ゴム(B)を架橋剤(C)により動的に架橋することにより得られるものである。
[0021] <非石油原料由来の熱可塑性樹脂 (A) >
本発明に使用される非石油原料由来の熱可塑性樹脂 (A)は、植物原料や動物原 料から得られたモノマー、あるいは植物原料や動物原料から酵素分解、発酵又は変 性を経て得られたモノマーを主成分として重合された熱可塑性樹脂を意味する。
[0022] このようなものとして、ポリヒドロキシブチレート、ポリブチレンサクシネート、ポリブチ レンサクシネート/アジペート、ポリエチレンサクシネート、ポリ乳酸樹脂、ポリリンゴ酸 、ポリダリコール酸、等の脂肪族ポリエステル;ポリブチレンサクシネート/テレフタレ ート、ポリトリメチレンテレフタレート等の脂肪族芳香族コポリエステル;エステル化デ ンプン、エステル化セルロース等の天然高分子と上記の脂肪族ポリエステルあるいは 脂肪族芳香族コポリエステルとの混合物等が挙げられる。
[0023] これらのなかでも、ポリ乳酸、ポリ 3—ヒドロキシブチレート系重合体、ポリブチレンサ クシネート系重合体、ポリダリコール酸およびポリトリメチレンテレフタレート系重合体 は、原料入手性や、得られる熱可塑性エラストマ一組成物の熱可塑性の程度や機械 物性が良好である点で好ましレ、。
[0024] これらの重合体成分は単独で用いてもよぐまたは組み合わせて用いてもよい。
[0025] これらの熱可塑性樹脂 (A)は、要求される物性やコスト、原料入手性、環境負荷の 低減の程度などを考慮して適宜選択すれば良い。例えば、植物由来の原料から製 造でき、熱可塑性エラストマ一組成物に優れた柔軟性やゴム弾性、低温特性を付与 するという点ではポリブチレンサクシネート系重合体が好ましい。また、植物由来の原 料から製造でき、優れた機械強度を有する点では、ポリダリコール酸およびポリトリメ チレンテレフタレート系重合体が好ましい。さらに、植物由来の原料から製造できる点 で、ポリ乳酸、ポリ 3—ヒドロキシプチレート系重合体が好ましい。また、植物由来の原 料から製造でき、コストや入手性の点ではポリ乳酸が好ましい。さらに、植物由来の原 料から製造でき、得られる熱可塑性エラストマ一組成物に優れた柔軟性やゴム弾性、 低温特性を付与できるという点では、ポリ 3—ヒドロキシプチレート系重合体を用いれ ば良い。上記の石油資源に依存しない植物由来の原料から製造できる熱可塑性樹 脂の中では、ポリ乳酸、ポリ 3—ヒドロキシプチレート系重合体がより好ましい。 [0026] 本発明において、ポリ乳酸とは、 L 乳酸及び/又は D 乳酸由来のモノマー単 位で構成されるポリマーである。本発明の効果を損なわない範囲で、 L 乳酸または D 乳酸に由来しない、他のモノマー単位を含んでいても良い。
[0027] ポリ乳酸の製造方法としては、既知の任意の重合方法を採用することができる。最 も代表的に知られているのは、乳酸の無水環状二量体であるラクチドを開環重合す る方法 (ラクチド法)であるが、乳酸を直接縮合重合しても構わない。また、分子量とし ては、重量平均分子量で、 50, 000-300, 000の範囲が好ましい。力、かる範囲を下 回ると機械物性等が十分発現されない場合があり、上回る場合は加工性に劣る傾向 にめ ·ο。
[0028] ポリ乳酸が、 L 乳酸及び/又は D 乳酸に由来するモノマー単位からだけなる場 合には、重合体は結晶性で高融点を有する。しかも、 L 乳酸、 D 乳酸由来のモノ マー単位の比率 (L/D比と略称する)を変化させることにより、結晶性'融点を自在 に調節する事ができるので、得られる熱可塑性エラストマ一の耐熱性や成形流動性 、ゴム弾性等に応じて設定することができる。ポリ乳酸としては、特に制限はなぐ例 えば (商品名)レイシァ(三井化学 (株)製)等の市販品を用いることが可能である。
[0029] ポリ 3 ヒドロキシブチレート系重合体としては、例えばポリ 3 ヒドロキシブチレート 単独重合体、 3—ヒドロキシブチレートと 3—ヒドロキシブチレート以外のヒドロキシアル カノエートの共重合体等が挙げられ、共重合体である場合の 3ーヒドロキシプチレート 以外のヒドロキシアルカノエートとしては、例えば 3—ヒドロキシプロピオネート、 3—ヒ ドロキシバレレート、 3—ヒドロキシへキサノエート、 3—ヒドロキシヘプタノエート、 3—ヒ ドロキシォクタノエート、 3—ヒドロキシノナノエート、 3—ヒドロキシデカノエート、 3—ヒ ドロキシゥンデカノエート、 4ーヒドロキシブチレート、ヒドロキシラウリレートが挙げられ る。これらのうち、特に成形加工性に優れた樹脂組成物が得られることから、 3—ヒド ロキシブチレート以外のヒドロキシアルカノエートが 20モル%以下共重合されたもの であることが好ましい。また、ポリ 3—ヒドロキシブチレート単独重合体、 3—ヒドロキシ ブチレート /3—ヒドロキシバレレート共重合体、 3—ヒドロキシブチレート /4ーヒドロ キシブチレート共重合体、 3—ヒドロキシブチレート /3—ヒドロキシへキサノエート共 重合体が容易に入手できるため好ましい。また、ポリ 3—ヒドロキシプチレート系重合 体としては、成形加工性に優れた樹脂組成物となることや、非石油由来の原料から 製造できる点から、微生物体内で生産されたものであることが好ましい。このようなポ リ 3—ヒドロキシプチレート系重合体は市販品として入手することが可能である。また、 例えば米国特許第 4477654号明細書、国際公開第 94/11519号パンフレット、米 国特許 5502273号明細書、特開 2006— 045366号公報に開示されている方法等 により製造することも可能である。
[0030] ポリブチレンサクシネート系重合体としては、非石油由来の原料として、澱粉やセル ロースから合成されたコハク酸を用いて重合された 1 , 4 ブタンジオールとコハク酸 の共重合体であるポリブチレンサクシネート、 1 , 4 ブタンジオールとコハク酸および アジピン酸の共重合体であるポリブチレンサクシネートアジペート、等が挙げられる。 これらのうち、ポリブチレンサクシネートが容易に入手できる点から好ましい。
[0031] ポリトリメチレンテレフタレート系重合体としては、非石油由来の原料として、澱粉や 脂肪油から合成された 1 , 3—プロパンジオールを用いて重合されたテレフタル酸と 1 , 3—プロパンジオールの共重合体であるポリトリメチレンテレフタレート等が挙げられ
[0032] ポリグリコール酸は、例えば、非石油由来の原料として、微生物を用いて合成され たグリコリド(すなわち、グリコール酸の環状 2量体エステル)を、触媒 (例えば、有機力 ルボン酸錫、ハロゲン化錫、ハロゲン化アンチモン等のカチオン触媒)の存在下に加 熱して、塊状開環重合または溶液開環重合することにより得ることができる。なお、グ リコリドとこれと共重合可能なコモノマーとの開環共重合によって得られる共重合体も 、ポリダリコール酸として使用することができる。
[0033] <ゴム(B)〉
本発明に使用しうるゴム(B)は、天然ゴム、ジェン系重合体ゴム、ォレフィン系重合 体ゴム、アクリルゴム、およびシリコーンゴムから選ばれる少なくとも 1種のゴムである。 これらのゴム成分は単独で用いてもよぐまたは組合わせて用いてもよ!/、。
[0034] 本発明にお!/、て、天然ゴムとしては、パラゴムノキ(hevea brasiliensis)に代表され るゴムの木から採取したラテックス液を固めてシート状、ブロック状などの形状にした ものが挙げられ、このようなものであれば、薫製して乾燥させたものであっても薫製せ ずに乾燥させたものであってもよい。シート状の天然ゴムとしては、リブドスモークシ一 ト(Ribbed Smoked Sheet : RSS)、ホワイトクレープ、ペールクレープ、エステート ブラウンプレープ、コンポクレープ、薄手ブランゥンクレープ、厚手ブラウンクレープ、 フラットバーククレープ、純スモークドブランケットクレープなどが挙げられる。 RSSに (ま、所 I再クリーンプ、ック (International standards oi Qualityand Packing for Natural Rubber Grades)にしたがって視覚的に格付けされた各種等級のものが 含まれる。ブロック状の天然ゴムとしては、クラムラバーまたはブロックラバーと呼ばれ る技術的格付けゴム(Technically Specified Rubber : TSR)が挙げられ、その中 には、マレーシア産の SMR (Standard Malaysian Rubber)、シンガポール産の S ¾ (standard Singapore Rubber)、インドネシア産の SIR (standard Indonesia n Rubber)、タイ産の STR (Standard Thai Rubber)などが含まれる。これらのうち 、経済性を考えるとリブドスモークシート (RSS)が好ましい。また、天然ゴムとして、脱 タンパク天然ゴムやエポキシ化天然ゴムも挙げられる。脱タンパク天然ゴムとは、生ゴ ム中に含まれるタンパク質の大部分を除去したゴムをいう。タンパク質の除去方法とし ては、ゴムの木から採取されるラテックスを十分に水洗する方法を用いることができる 。具体的には、(i)非常に希釈したラテックス中のゴム粒子を凝集させる、(ii)非常に 希釈したラテックスを遠心分離機にかけて濃縮ラテックスを分離する、 (iii)ラテックス を透析するなどの方法が挙げられる。また、他の方法として、(a)タンパク質をバタテリ ァまたは酵素にて分解する、(b)ラテックスにアルカリを加えて加熱し、タンパク質を 分解させる、(c)石鹼類により、ゴム粒子に吸着されているタンパク質を遊離させる等 の方法が挙げられる。これらの方法を適当に組み合わせてもよい。
[0035] また、エポキシ化天然ゴムとは、天然ゴムの不飽和結合がエポキシ基によって置換 された天然ゴムの変性形態であり、天然ゴムラテックスをエポキシ変性することにより 得ることができ、例えば(商品名) ENR50 (Gutherie, Inc.製)、(商品名) ENR25 ( Gutherie, Inc.製)が販売されており一般に入手可能である。本発明の樹脂組成 物にぉレ、ては、天然ゴムとエポキシ化天然ゴムの混合物を用いても良!/、。
[0036] 上述の天然ゴムにおいて、得られる熱可塑性エラストマ一の物性の安定化やタンパ ク質によるアレルギーを防ぐ観点では、脱タンパク天然ゴムが好ましぐ熱可塑性樹 脂 (A)との相溶性や得られる熱可塑性エラストマ一組成物の機械特性の点では、ェ ポキシ化天然ゴムが好ましぐコストおよび入手性の点では、リブドスモークシート(R SS)が好ましい。
[0037] 上記において、ジェン系重合体ゴムとしては、例えば、イソプレン重合体ゴム(IR)、 スチレン.ブタジエン共重合体ゴム(SBR)、ブタジエン重合体ゴム(BR)、アタリロニト リル'ブタジエン共重合体ゴム(NBR)、クロ口プレン重合体ゴム(CR)などを挙げるこ と力 Sできる。
[0038] また、ォレフィン系重合体ゴムとしては、例えば、エチレン 'プロピレン'ジェン共重 合体ゴム(EPDM)、イソブチレン.イソプレン共重合体ゴム(IIR)、ハロゲン化イソブ チレン'イソプレン共重合体ゴム(CIIR, BIIR)、イソブチレン'ノヽロゲン化メチルスチ レン共重合体ゴム、クロロスルホン化ポリエチレン、イソブチレン重合体ゴム、エチレン •酢酸ビュル共重合体ゴムなどを挙げることができる。
[0039] また、アクリルゴムとしては従来既知のアクリルゴムのいずれもが使用でき、例えば、 アクリル酸ェチルおよび/またはアクリル酸ブチルからなる単量体に、 2—クロロェチ ノレビュルエーテル、メチルビ二ルケトン、アクリル酸、アタリロニトリノレ、ブタジエンなど の他の単量体の 1種または 2種以上を少量共重合させてなるアクリルゴムなどを挙げ ること力 Sでさる。
[0040] さらに、シリコーンゴムとしては、従来既知のシリコーンゴムのいずれも使用でき、例 えば、ジメチルシロキサン重合体ゴムやメチルフエニルシロキサン重合体ゴムなどを 挙げること力 Sでさる。
[0041] 本発明の熱可塑性エラストマ一組成物では、上記のゴム(B)は要求される物性ゃコ スト、入手容易性等を考慮して適宜選択すれば良い。例えば、熱可塑性樹脂 (A)と の相溶性や得られる熱可塑性エラストマ一組成物の機械特性の点ではアクリルゴム を用いるのが好ましい。また、得られる熱可塑性エラストマ一組成物の低温特性ゃ耐 候性の点ではシリコーンゴムを用いるのが好ましい。さらに、コストの点ではジェン系 重合体ゴム、ォレフィン系重合体ゴムを用いるのが好ましい。石油資源に依存しない 植物由来の原料力も製造できる点では、天然ゴムを用いるのが好ましい。なかでも、 石油資源に依存しない植物由来の原料から得られ、環境に対する負荷が小さい熱 可塑性エラストマ一組成物を与えるという点で、天然ゴムがより好ましい。天然ゴムが 生分解性を有することから、天然ゴムを用いた場合は熱可塑性エラストマ一組成物に 生分解性も付与することができ、環境に対する負荷をより小さくできる。
[0042] 本発明にお!/、ては、熱可塑性樹脂 (A)の存在下でゴム(B)を溶融混練し、この際、 架橋剤(C)を添加して、溶融混練と同時にゴム(B)を動的に架橋する(動的架橋)。 動的架橋することにより、熱可塑性樹脂 (A)の連続相中にゴム(B)の架橋物が分散 して!/、る相形態を有し易くなり、得られる熱可塑性エラストマ一組成物の成形流動性 や機械特性が向上する。また更に、熱可塑性樹脂 (A)の配合量がゴム(B)の配合量 より少な!/、場合にも、熱可塑性樹脂 (A)の連続相中にゴム (B)の架橋物が分散して いる相形態を有することができ、圧縮永久歪み特性やゴム弾性が向上させることがで きる。
[0043] ここで動的架橋とは、ュニロイヤル(Uniroyal)社の W. M. Fischerらゃ、モンサント
(Monsanto)社の A. Y. Coranらにより開発された手法であり(US104210、熱可塑 性エラストマ一のすべて、秋葉光雄、工業調査会、 2003年 (初版)、熱可塑性樹脂の マトリックス中にゴムをブレンドし、架橋剤とともに架橋剤が架橋する温度以上で混練 しながらゴムを高度に架橋させ、し力、もそのゴムを微細に分散させるプロセスのことで ある。この動的架橋により得られた組成物は、連続相となる熱可塑性樹脂(本発明で は熱可塑性樹脂 (A) )に不連続相となる架橋ゴム相(本発明ではゴム(B) )が微細に 分散した状態となるため、架橋ゴムと同様の物性を示し、かつ成形加工に際しては熱 可塑性樹脂に準じた加工が可能となる。また、熱可塑性樹脂の配合量 <架橋ゴムの 配合量の場合にも、連続相となる熱可塑性樹脂に不連続相となる架橋ゴム相が微細 に分散した状態となる。
[0044] ゴム(B)の架橋物を得るための架橋剤(C)としては、それぞれのゴムにおいて従来 力も用いられている架橋剤のいずれもが使用でき、特に制限するものではない。ゴム (B)の架橋物を得るのに用いられる架橋剤(C)としては、例えば、硫黄;有機硫黄化 合物;芳香族ニトロソ化合物などのような有機ニトロソ化合物;ォキシム化合物;酸化 亜鉛や酸化マグネシウムなどの金属酸化物;ポリアミン類;セレン、テルルおよび/ま たはそれらの化合物;各種の有機過酸化物;アルキルフエノールホルムアルデヒド樹 脂や臭素化アルキルフエノールホルムアルデヒド樹脂などの樹脂架橋剤;分子内に s iH基を 2つ以上持つ有機オルガノシロキサン系化合物などを挙げることができ、ゴム の種類などに応じて、架橋剤の 1種または 2種以上を用いることができる。ゴム(B)の 架橋物を得るに当たっては、ゴムの架橋効率や、得られる架橋物にゴム弾性を付与 する点や臭気等の点から、ゴム(B) 100重量部に対して架橋剤(C)を 0. 3〜30重量 部の割合で用いることが好ましぐ 0. 5〜; 15重量部の割合で用いることがより好ましく 、0. 5〜5重慮部の割合で用いることが特に好ましい。架橋剤(C)が 0. 3重量部より 少ないと架橋が不十分になり、ゴム弾性が悪化する傾向にあり、 30重量部より多いと 、得られる組成物に臭気が大きくなつたり、着色したりする傾向にある。
[0045] また、ゴム(B)の架橋物を得るに当たって、上記した架橋剤と共に、必要に応じて 架橋助剤を 1種または 2種以上用いることができる。架橋助剤としては、例えば、ジフ ェニルダァニジンなどのグァニジン系化合物、アルデヒドアミン系化合物、アルデヒド アンモニゥム化合物、チアゾール系化合物、スルフェンアミド系化合物、チォ尿素系 化合物、チウラム系化合物、ジチォ力ルバメート系化合物;パラジウム、ロジウム、白 金などの族遷移金属あるいはそれらの化合物ゃ錯体等のハイドロシリル化触媒など を挙げること力 Sでさる。
[0046] さらに、ゴム(B)の架橋物を得るに当たって、上記した架橋剤や架橋助剤などと共 に、必要に応じて、ジビュルベンゼン、エチレングリコールジメタタリレート、トリメチロ ールプロパントリアタリレート、亜鉛華、 N, N— m—フエ二レンビスマレイミド、金属ノヽ ロゲン化物、有機ハロゲン化物、無水マレイン酸、グリシジルメタタリレート、ヒドロキシ プロピルメタタリレート、ステアリン酸などの化合物を用いることもできる。これらを添カロ することにより、架橋剤による架橋効率を挙げることができ、ゴム弾性を付与すること ができる。
[0047] <熱可塑性エラストマ一組成物〉
本発明の熱可塑性エラストマ一組成物は、熱可塑性樹脂 (A)の存在下で、ゴム(B
)を動的架橋することにより製造する。熱可塑性樹脂 (A)の連続相中にゴム (B)の架 橋物が分散した相構造を有することが好ましレ、。
[0048] さらに詳しくは、熱可塑性樹脂 (A)およびゴム(B)を含む組成物を高温下で溶融、 混練しながら架橋剤を添加し、ゴム(B)を混練中に架橋(動的架橋)させることによつ て製造する。必要に応じて可塑剤 (D)、相溶化剤 (E)、紫外線吸収剤や酸化防止剤 等の安定剤、炭酸カルシウムやカーボンブラックやシリカやタルク等の充填剤や補強 材、ステアリン酸金属塩やワックスやシリコーンオイル等の滑剤、水酸化マグネシウム 等の難燃剤、カーボンブラックや酸化チタン等の顔料、タルクやクレーやマイ力等の 結晶核剤、粘着性付与剤等の他の成分を添加して行うこともできる。この際も、環境 への負荷が低減できる観点から、非石油原料由来の成分がより好ましい。非石油原 料由来の成分は、天然物や、天然物の誘導体、植物由来の原料を醱酵させて生産 されたもの、非石油原料を用いて微生物体内で生産されたものなどが挙げられる。例 えば、酸化防止剤ではビタミン等、滑剤では牛脂等、粘着付与剤ではテルペン等が 挙げられる。
[0049] 本発明の熱可塑性エラストマ一組成物は、ゴム(B)の含有量を 100重量部としたと きに、熱可塑性樹脂 (A)を 5〜300重量部の割合で含有していることが好ましぐゴム (B) 100重量部に対して、 5〜; 150重量部の割合で含有していることがより好ましぐ ゴム(B) 100重量部に対して、熱可塑性樹脂 (A)を 10〜90重量部の割合で含有し ていることが更に好ましぐゴム(B) 100重量部に対して、熱可塑性樹脂 (A)を 15〜 50重量部の割合で含有していることが特に好ましい。ゴム(B) 100重量に対して、重 合体 (A)が 300重量部より多くなると、熱可塑性エラストマ一組成物の圧縮永久歪み および永久引張伸びが大きくなり、ゴム弾性、弾性回復性や柔軟性が低下する傾向 にある。この場合、シール製品等への使用の際には密封性が低下することとなる。一 方、ゴム(B) 100重量に対して、熱可塑性樹脂 (A)が 5重量部より少なくなると、熱可 塑性エラストマ一組成物の溶融粘度が高くなつて、成形加工時に十分な溶融流動性 を得ることができなくなり、成形性が悪化する傾向にある。また、熱可塑性樹脂 (A)の 連続相中にゴム (B)が分散している相構造を形成しに《なり、引張り強度や引っ張 り伸び等の機械特性が悪化する傾向にある。
[0050] また、本発明の熱可塑性エラストマ一組成物は、エラストマ一としての特徴を有する 観点から、 JIS— K6301により雰囲気温度 70°C、圧縮変形量 25%の条件下に 22時 間放置した時の圧縮変形歪み量が 80%以下であることが好ましぐ 65%以下である ことがより好ましぐ 50%以下であることが特に好ましい。
[0051] また、本発明の熱可塑性エラストマ一組成物においては、熱可塑性エラストマ一組 成物におけるゲル量、すなわち下記の数式(1)で示されるゲル率 (wt%)が、 20〜9 5%であることが好ましぐ 40〜85%であることがより好ましい。熱可塑性エラストマ一 組成物のゲル率 (wt%)を前記した 20〜95%にしておくことによって、熱可塑性樹 脂 (A)中にゴム (B)の架橋物を安定した相形態で存在させることができ、成形性を良 好とすると共に熱可塑性エラストマ一組成物の圧縮永久歪みを低減することができる 。また、ゲル率 (wt%)を上記範囲にすることにより、上述し IS— K6301により雰 囲気温度 70°C、圧縮変形量 25%の条件下に 22時間放置した時の圧縮変形歪み量 が 65%以下の熱可塑性重合体組成物を容易に調製しやすくなる。
ゲル率(wt%) = (Wc/Wu) X 100 (1)
[式中、 Wcは熱可塑性エラストマ一組成物の溶剤不溶分重量 (g)を、 Wuは熱可塑性 エラストマ一組成物の重量(g)を示す。 ]
なお、ゲル率(wt%)は、所定量の熱可塑性エラストマ一組成物の重量を Wu (g)と して測定し、次いでその Wu (g)の熱可塑性エラストマ一組成物を溶剤中に入れて 12 時間保った後、溶剤不溶分を乾燥し、乾燥した溶剤不溶分の重量を測定して熱可塑 性エラストマ一組成物の溶剤不溶分重量 (Wc) (g)として、上記の数式(1)から求め る。ここで溶剤とは、熱可塑性樹脂 (A)および未架橋のゴム(B)の可溶溶剤であり、 用いる熱可塑性樹脂 (A)およびゴム(B)により適宜設定すればよ!/、。
[0052] なお、動的架橋の途中で適宜そのゲル量を測定することによって、ゴムの架橋の進 行度合いを調べながら、ゴムの架橋が十分に行われるように調整することができる。
[0053] また、本発明の熱可塑性エラストマ一組成物にお!/、ては、ゴム(B)のゲル率(wt% )は 70%以上が好ましぐ 80%以上がより好ましぐ 95%以上が特に好ましい。ゴム( B)のゲル率 (wt%)が 70%より低くなると、得られる熱可塑性エラストマ一組成物の ゴム弾性や圧縮永久歪み特性、機械強度が悪化する傾向にある。ゴム(B)のゲル率 (wt%)は、配合物中のゴム(B)の含有率を T (%)とした時に下記式により計算する こと力 Sでさる。
ゲル率( %) =
Figure imgf000013_0001
丁 0.01) ) 100 (2) また、本発明の熱可塑性エラストマ一組成物は、透過型電子顕微鏡でその相形態 (モルフォロジ一)を観察したときに、 (a)熱可塑性樹脂 (A)の連続相中にゴム(B)の 架橋物が分散してレ、る相形態を有してレ、るか;または (b)熱可塑性樹脂 (A)とゴム(B )の架橋物が共連続相をなす相形態を有していることが好ましぐ(a)熱可塑性樹脂( A)の連続相中にゴム(B)の架橋物が分散して!/、る相形態を有して!/、ること力 り好ま しい。
[0054] なお、本明細書で!/、う「熱可塑性樹脂 (A)とゴム(B)の架橋物が共連続相をなす」 とは、熱可塑性樹脂 (A)とゴム (B)の架橋物とが連続した境界 (線)を形成して存在し てレ、る相形態をレ、う。すなわち下記 (ィ)〜(ハ)中の (ハ)の状態を!/、う。
(ィ)熱可塑性樹脂 (A)の連続相中にゴム (B)の架橋物が島状に分散した状態(点在 した状態)。
(口)ゴム (B)の架橋物の連続相中に熱可塑性樹脂 (A)が島状に分散した状態(点在 した状態)。
(ハ)熱可塑性樹脂 (A)とゴム (B)の架橋物とが連続した境界 (線)を形成して存在し ている状態。
[0055] 熱可塑性エラストマ一組成物力 上記(a)または (b)の相形態を有して!/、ると、熱可 塑性エラストマ一組成物の成形性が良好になり、圧縮永久歪みおよび圧縮永久伸び の小さい成形品が製造できる傾向にあり、上記(a)の相形態を有していると、熱可塑 性エラストマ一組成物の成形性が良好になり、圧縮永久歪みおよび圧縮永久伸びの 小さい成形品が製造できる上に、引張り強度や引張り伸び等の機械特性にも優れる 傾向にある。このこと力も、上記(a)の相形態を有していることがより好ましい。
[0056] その際に、ゴム(Β)の架橋物の粒子径が 0. 0;!〜 20 mであるのが好ましぐ 0. 0 ;!〜 10〃 m力より好ましく、 0. 01〜5〃111カさらに好ましい。これは、粒子径カ 0. 01 〜20 11 mの場合に、特に優れた前記の諸特性を有する成形品を得ることができる傾 向にあるためである。
[0057] また、粒子長径 dlと粒子短径 d2との比 dl/d2の数平均が 1〜5であることが好まし く、 1〜3であること力 S好ましく、 1〜; 1. 5であることが特に好ましい。比 dl/d2の数平 均が 5を超えると、得られる熱可塑性エラストマ一組成物の機械物性が悪化する傾向 にあるためである。
[0058] 上記(a)および (b)の相形態とは異なり、ゴム(B)の架橋物の連続相中に熱可塑性 樹脂 (A)が分散して!/、るような相形態の場合は重合体組成物の溶融流動性が低下 し、溶融成形品により得られる成形品の物性が悪化する傾向にある。
[0059] なお、本願の相形態およびゴム(B)の架橋物の粒子径及び粒子体積は、超薄切片 法により撮影した透過型電子顕微鏡写真から求めることができる。本発明の熱可塑 性エラストマ一組成物を透過型電子顕微鏡で観察する際には、初めに熱可塑性エラ ストマー組成物を凍結ミクロトームで薄片とし、四酸化ルテニウム、四酸化オスミウム、 クロロスルホン酸、酢酸ゥラニル、リンタングステン酸、ヨウ素イオン、トリフルォロ酢酸 等の染色剤を使用して染色する。染色剤の選択にあたっては、観察対象とする熱可 塑性エラストマ一組成物に含まれる熱可塑性樹脂 (A)およびゴム(B)の種類により最 適な染色剤を選択する必要がある。
[0060] ゴム(B)の架橋物の粒子径及び粒子体積は、得られる熱可塑性エラストマ一組成 物の超薄切片法により撮影した透過型電子顕微鏡写真中の 500個のゴム(B)の架 橋物の各粒子を以下の方法で算出することにより得られる。すなわち、各粒子の粒子 径は各粒子の面積 Sを求め、 Sを用いて、 (4S/ ) °' 5を各粒子の粒子径とする。平 均粒子径は重量平均粒子径を用い、粒子形状は粒子長径 dlと粒子短径 d2との比 d l/d2で表される。また、粒子体積は粒子面積 Sの 3/2乗の S1' 5で定義し、全粒子 体積は各粒子体積の和で表される。なお、たとえ 0. 0;!〜 20 mの粒子が存在して いても、それが凝集して互いに接触している場合は、凝集粒子を 1つの粒子として极 つた。
[0061] 熱可塑性エラストマ一組成物における相形態は、熱可塑性エラストマ一組成物に おける熱可塑性樹脂 (A)、ゴム (B)、架橋剤(C)、添加剤などの成分の含有量、熱 可塑性エラストマ一組成物を調製する際の溶融混練条件などによって影響を受ける
。従って、上記した点を種々調節して、上記した(a)または (b)のいずれかの相形態 になるようにして重合体組成物の調製を行うことが好ましレ、。
[0062] なお本発明の(a)または(b)の!/、ずれかの相形態を有する熱可塑性エラストマ一組 成物では、非石油原料由来の熱可塑性樹脂 (A)は、廃棄された後、例えば屋外環 境下で日光、雨水、微生物などにより比較的容易に分解する。この場合もしもゴム(B )が屋外環境下で比較的分解しにくい物質であったなら、(A)の分解後はゴム(B)は 「微粉末」又は「表面積の大きレ、スポンジ」状になって!/、る。すなわち本発明の(a)ま たは (b)の相形態を有する熱可塑性エラストマ一組成物の場合、(A)の分解後のゴ ム(B)の表面積は非常に大きくなるので、ゴム(B)も比較的容易に分解する。さらに、 ゴム(B)が天然ゴムの場合は、より分解しやすいことから、環境に対する負荷をより小 さくできる。
[0063]
<可塑剤 (D)〉
本発明において、製造される熱可塑性エラストマ一組成物に、より一層の柔軟性や ゴム弾性、低温特性を付与するためや、硬度を調整するために、可塑剤(D)を添カロ しても良い。可塑剤(D)としては、特に限定されないが、例えば、熱可塑性樹脂に通 常配合される可塑剤;プロセスオイル;オリゴマー;動物油、植物油等の油分およびそ れらの誘導体;灯油、軽油、重油、ナフサ等の石油留分などが挙げられる。これらは 単独で用いてもよく、 2種以上を混合して用いてもょレ、。
[0064] より具体的には、フタル酸ジメチル、フタル酸ジェチル、フタル酸ジ n ブチル、 フタル酸ジ一(2—ェチルへキシル)、フタル酸ジヘプチル、フタル酸ジイソデシル、フ タル酸ジー n ォクチル、フタル酸ジイソノエル、フタル酸ジトリデシル、フタル酸オタ チルデシル、フタル酸ブチルベンジル、フタル酸ジシクロへキシル等のフタル酸誘導 体;ジメチルイソフタレートのようなイソフタル酸誘導体;ジー(2—ェチルへキシル)テ トラヒドロフタル酸のようなテトラヒドロフタル酸誘導体;アジピン酸ジメチル、アジピン 酸ジブチル、アジピン酸ジー n へキシル、アジピン酸ジー(2—ェチルへキシル)、 アジピン酸イソノエル、アジピン酸ジイソデシル、アジピン酸ジブチルジグリコール等 のアジピン酸誘導体;ァゼライン酸ジー 2—ェチルへキシル等のァゼライン酸誘導体 ;セバシン酸ジブチル等のセバシン酸誘導体;ドデカン 2—酸誘導体;マレイン酸ジ ブチル、マレイン酸ジー 2—ェチルへキシル等のマレイン酸誘導体;フマル酸ジブチ ル等のフマル酸誘導体;トリメリト酸トリス一 2 -ェチルへキシル等のトリメリト酸誘導体 ;ピロメリト酸誘導体;タエン酸ァセチルトリブチル等のクェン酸誘導体;ィタコン酸誘 導体;ォレイン酸誘導体;リシノール酸誘導体;ステアリン酸誘導体;乳酸誘導体;そ の他脂肪酸誘導体;スルホン酸誘導体;リン酸誘導体;ダルタル酸誘導体;アジピン 酸、ァゼライン酸、フタル酸などの二塩基酸とダリコールおよび一価アルコールなどと のポリマーであるポリエステル系可塑剤、ダルコール誘導体、グリセリン誘導体、塩素 化パラフィン等のパラフィン誘導体、エポキシ誘導体ポリエステル系重合型可塑剤、 ポリエーテル系重合型可塑剤、エチレンカーボネート、プロピレンカーボネート等の カーボネート誘導体等が挙げられる。市販されている可塑剤としては、アデ力サイザ 一 O— 130P、 C— 79、 UL— 100、 P— 200、 RS— 735 (旭電化社製)ラクトサイザ 一 GP— 2001、 GP— 4001 (荒川化学工業製)、リケマール PL— 019 (リケンビタミン 製)などが挙げられる。これら以外の高分子量の可塑剤としては、アクリル系重合体、 ポリプロピレングリコール系重合体、ポリテトラヒドロフラン系重合体、ポリイソブチレン 系重合体、ポリ乳酸とポリエステルとの共重合体などがあげられる。
[0065] 上記のプロセスオイルとしては、パラフィンオイル、ナフテン系プロセスオイル、芳香 族系プロセスオイル等の石油系プロセスオイル等が挙げられる。植物油としては、例 えばひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、 パインオイル、トール油、ロジン等が例示できる。
[0066] 本発明において可塑剤(D)はこれらに限定されることがなぐ種々の可塑剤を用い ること力 Sできる。こららのな力、でも、石油資源に依存しない物から製造され、環境への 負荷が低減できる観点から、非石油原料由来の可塑剤がより好ましい。非石油原料 由来の可塑剤は、天然物や、天然物の誘導体、植物由来の原料を醱酵させて生産 されたもの、非石油原料を用いて微生物体内で生産されたものなどが挙げられる。こ れらのなかでも、動物油、植物油、動物油誘導体や植物油誘導体、乳酸誘導体から 選ばれる少なくとも 1種であること力 コストや入手が容易である点から特に好ましい。
[0067] 本発明において、可塑剤(D)はゴム(B) 100重量部に対して、 0.;!〜 200重量部の 範囲で含有することが好ましぐ 0. ;!〜 100重量部の範囲で含有することがより好まし く、 1〜50重量部の範囲で含有することがさらに好ましぐ 5〜30重量部の範囲で含 有するこが特に好ましい。 0. 1重量部より少ないと、得られる熱可塑性エラストマ一組 成物へのゴム弾性、低温特性の付与が少なぐ 100重量部より多いと、得られる熱可 塑性エラストマ一組成物の機械特性や耐熱性が低下する傾向にある。
[0068] <相溶化剤(E)〉
本発明において、熱可塑性樹脂 (A)とゴム(B)との相溶性を良好にするために、相 溶化剤として種々のグラフトポリマーやブロックポリマーを添加しても良い。熱可塑性 樹脂 (A)とゴム(B)との相溶性が向上することにより、得られる熱可塑性エラストマ一 組成物中のゴム(B)の架橋物の粒子径が 20 ,1 m以下になりやすぐ熱可塑性エラス トマ一組成物の溶融流動性、機械特性が向上する傾向にある。
[0069] 相溶化剤としては、具体的には、クレイトンシリーズ (シェルジャパン製)、タフテック シリーズ (旭化成工業製)、ダイナロン(日本合成ゴム製)、ェポフレンド (ダイセル化 学工業製)、セプトン (クラレ製)、ノファロィ(日本油脂製)、レタスパール(日本ポリオ レフイン製)、ボンドファースト (住友化学工業製)、ボンダイン (住友化学工業製)、ァ ドマー(三井化学)、ユーメッタス(三洋化成工業製)、 VMX (三菱化学製)、モディー パー(日本油脂製)、スタフイロイド (武田薬品工業製)、カネエース (鐘淵化学工業製 )、レゼタ(東亜合成製)、ブラメート(大日本インキ製)などの市販品をあげることがで きる。これらは、用いるブロック共熱可塑性樹脂 (A)と熱可塑性樹脂(B)に応じて適 宜選択すること力できる。なかでも、熱可塑性樹脂 (A)の末端の水酸基やカルボキシ ル基との反応性を有する、エポキシ基や酸無水物基を有する相溶化剤(例えば、ボ ンドファーストやボンダイン)力 相溶性改善効果が大き!/、点からより好まし!/、。
[0070] 本発明において、相溶化剤(E)はゴム(B) 100重量部に対して、 0. ;!〜 10重量部 の範囲で含有することが好ましぐ 0. 5〜5重量部の範囲で含有することがより好まし く、 1〜3重量部の範囲で含有するこが特に好ましい。 0. 1重量部より少ないと、相溶 性の改善効果が少なく、得られる熱可塑性エラストマ一組成物の機械特性の改善効 果が少なくなる傾向にある。 10重量部より多いと、得られる熱可塑性エラストマ一組 成物の成形が低下したり、熱可塑性エラストマ一組成物として、石油資源に依存しな V、植物由来の原料を用レ、た重合体の割合が低下する。
[0071] 本発明の熱可塑性エラストマ一組成物は、必要とされる硬度、機械特性や圧縮永 久歪み特性などに応じて調整すればよいが、前記圧縮永久歪み特性等のエラストマ 一としての特性を有し、かつ非石油原料由来の材料からなる熱可塑性エラストマ一 組成物として、炭酸ガスの排出量低減に寄与でき、環境への負荷を低減できる観点 から、熱可塑性樹脂 (A)がポリ乳酸またはポリ 3—ヒドロキシプチレート系重合体から なり、ゴム(B)が天然ゴムからなり、ゴム(B)の架橋物が熱可塑性樹脂 (A)中に分散 されている相構造を有することが特に好ましい。また、更なる柔軟性や圧縮永久歪特 性を付与する場合に可塑剤 (D)を適宜添加しても良!/、が、可塑剤 (D)は非石油原 料由来の観点から、動物油、植物油、動物油誘導体や植物油誘導体、乳酸誘導体 が好ましレ、。また、機械特性の観点から熱可塑性樹脂 (A)とゴム(B)の相溶化剤が 添加されていても良い。また、圧縮永久歪み特性の観点から、熱可塑性エラストマ一 組成物中の天然ゴムの配合量を 100重量部としたときに、ポリ乳酸またはポリ 3—ヒド ロキシブチレート系重合体を 15〜50重量部の割合で含有していることが特に好まし い。
[0072] 更には、炭酸ガスの排出量削減に寄与でき、環境への負荷を低減できる観点から 、非石油原料由来の成分が組成物全体の 20重量%以上であることが好ましぐ 60重 量%以上であることがより好ましぐ 80重量%以上であることが更により好ましぐ 90 重量%以上であることが特に好まし!/、。
[0073] <熱可塑性エラストマ一組成物の製造方法〉
本発明の熱可塑性エラストマ一組成物の製造方法は、熱可塑性樹脂 (A)の存在 下でゴム (B)を溶融混練すると同時に、ゴム (B)を (動的に)架橋することが可能な限 りにおいては特に制限されず、熱可塑性樹脂 (A)、ゴム(B)および場合により用いら れる上記した成分が均一に混合され得る方法であればいずれも採用できる。特に、 上記した(a)または (b)の相形態を形成し得るような製造方法が好ましく用いられる。 熱可塑性樹脂 (A)の存在下でゴム (B)を溶融混練すると同時に、ゴム(B)を架橋剤( C)により動的に架橋する方法としては、以下に例示する方法がある。
[0074] 例えば、プラストミノレ、ブラベンダー、バンバリ一ミキサー、ニーダー、ロールなどの ような密閉式混練装置またはバッチ式混練装置を用いて本発明の熱可塑性エラスト マー組成物を製造する場合は、架橋剤 (場合により可塑剤も)以外のすべての成分 を予め混合して均一になるまで溶融混練し、次!、でこれに架橋剤(C)を添加して架 橋反応が十分に行われた時点で溶融混練を停止する方法を採用することができる。 その際に、架橋剤添加後の溶融混練時間は、混練機のモーターのトルク値および電 流値が架橋剤(C)の添加後に顕著に上昇して最大値を示した後、再び低下するの を確認し、その後該トルク値および電流値が一定の値で安定するまで混練を続ける ことがゴム(B)を十分に架橋させる上で望まし!/、。
[0075] また、単軸押出機や二軸押出機などのような連続式の溶融混練装置を用いて本発 明の熱可塑性エラストマ一組成物を製造する場合は、架橋剤以外 (場合により可塑 剤も)のすベての成分を予め押出機などの溶融混練装置によって溶融混練した後に ペレット化し、そのペレットに架橋剤をドライブレンドした後更に押出機などの溶融混 練装置で溶融混練してゴム(B)を動的に架橋して、熱可塑性樹脂 (A)とゴム(B)の 架橋物を含む熱可塑性エラストマ一組成物を製造する方法;架橋剤以外 (場合により 可塑剤も)のすベての成分を押出機などの溶融混練装置で溶融混練し、そこに押出 機のシリンダーの途中から架橋剤(場合により可塑剤も)を添加して更に溶融混練し てゴム(B)を動的に架橋して熱可塑性樹脂 (A)とゴム(B)の架橋物を含む熱可塑性 エラストマ一組成物を製造する方法などを採用することができる。
[0076] 溶融混練と同時に動的に架橋を行う上記方法を行うに当たって、溶融混練温度は 、用いる熱可塑性樹脂 (A)に応じて適宜設定すればよいが、 100〜250°Cの温度が 好ましく、 150〜200°Cの温度がより好ましく採用される。 100°Cより低いと熱可塑性 樹脂 (A)の溶融が不十分となる傾向にあり、 250°Cより高いと、熱可塑性樹脂 (A)自 体が分解する傾向にある。
[0077] 上記製造方法によって得られた熱可塑性エラストマ一組成物のペレット化方法とし ては、ストランドカット、アンダーウォーターカット、ミストカット、ホットカット等の公知の ペレット化機械を用いることができ、特に限定されない。この際、、ペレットの同士のブ ロッキングを防ぐために、防着剤を添加しても良い。
[0078] 本発明の熱可塑性エラストマ一組成物は、熱可塑性であり、熱可塑性の重合体組 成物に対して一般に採用されている成形方法および成形装置を用いて成形すること ができ、例えば、射出成形、押出成形、プレス成形、ブロー成形などによって溶融成 形することによって、任意の形状や寸法を有する種々の成形品や製品を製造するこ と力 Sできる。 [0079] 本発明の熱可塑性エラストマ一組成物は、リサイクルでき、非石油原料由来の材料 力もなる熱可塑性エラストマ一組成物として、炭酸ガスの排出量低減に寄与でき、環 境への負荷を低減できることから、従来の熱可塑性エラストマ一が使用されている、 自動車用、電気製品用または事務用成型品、雑貨用成型品として、好適に使用する こと力 Sでさる。
[0080] 特に、本発明の熱可塑性エラストマ一組成物はその優れた成形加工性、耐圧縮永 久歪み性、封止性、柔軟性、力学的特性、などの特性を活かして、バンド、グリップ、 スィッチ、表皮材、シート、容器、包装、ルアーや草履や玩具等の雑貨などのような汎 用の成形品、シール材、ノ クキング材、ガスケットなどの密封用材等の製造に好適に 使用すること力でさる。
実施例
[0081] 次に、本発明を実施例に基づいてさらに詳細に説明する力 本発明はこれらの実 施例のみに限定されるものではない。
[0082] なお、実施例における PLAはポリ乳酸を、 PHBHはポリ(3—ヒドロキシブチレート/
3—ヒドロキシへキサノエート)共重合体〔PHBH中の 3—ヒドロキシへキサノエートが 5 (mol%)〕を、 PBSはポリブチレンサクシネートを、 EPDMはエチレン 'プロピレン 'ジ ェン共重合体を、 NRは天然ゴムを、 EDMAはエチレングリコールジメタタリレートを 表す。ここでは非石油原料由来の PLAおよび PHBHを、熱可塑性樹脂として用いた 。 PHBHは微生物から生産された Mwが 64万のものを使用した。
[0083] <試験方法〉
(硬度)
JIS K6253に準拠し、 23°Cにおける硬度 (JIS A硬度)を測定した。
[0084] (機械特性)
JIS K7113に準拠し、株式会社島津製作所製のオートグラフ AG— 10TB型を用 いて、引張破壊強さおよび引張破壊伸びを測定した。測定は n = 3にて行ない、試験 片が破断したときの強度 (MPa)と伸び(%)の値の平均値を採用した。試験片は 2 (1 /3)号形の形状にて、厚さが約 2mmのものを用いた。試験は 23°Cにて 500mm/ 分の試験速度で行なった。試験片は、試験前に温度 23 ± 2°C、相対湿度 50 ± 5% にお!/、て 48時間以上状態調節したものを用いた。
[0085] (圧縮永久歪み)
JIS K6301に準拠し、円柱型成形体(直径 30mmおよび厚さ 12mmの円筒状の 成形体)を圧縮率 25%の条件で 70°Cで 22時間保持し、室温で 30分放置したのち、 成形体の厚みを測定し、歪みの残留度を計算した。なお、圧縮永久歪み 0%で歪み が全部回復し、圧縮永久歪み 100%で歪みが全く回復しないことに相当する。
[0086] (熱可塑性)
ラボプラストミル 50C150 (ブレード形状:ローラー形 R60 株式会社東洋精機製作 所製)にて試験体を混練した後、 50kgf、 180°Cで 5分間熱プレス (株式会社神藤金 属工業所製 圧縮成形機 NSF— 50)成形し、円柱型成形体(直径 30mmおよび厚 さ 12mmの円筒状の成形体)を成形できるかどうかにより判断した。円柱型成形体作 製には、直径 30mmおよび厚さ 12mmの円筒状の穴が空いた金属製金型を用いた 。未溶融部分がなく成形できる場合を〇、未溶融部分があり成形できない場合を Xと して評価した。未溶融部分にっレ、ては目視にて判断した。
[0087] (ゲル率(wt%) )
実施例および比較例で得られたシート状成形体を用いて、熱可塑性エラストマ一組 成物のゲル率を測定した。シート状成形体 lgを 350メッシュのステンレス金網に包み 、トルエン/クロ口ホルム = 1/1溶剤に 12時間浸漬した。浸漬後、金網を取り出して 、 80°Cで真空乾燥することで、溶剤不溶分を測定した。
[0088] (相形態観察)
実施例にて得られた円柱型成形体(直径 30mmおよび厚さ 12mmの円筒状の成 形体)の中心部分(円心、厚さ 6mmの部分)からサンプリングし、凍結ミクロトームで 薄片として、四酸化オスミウムで染色して透過型電子顕微鏡(日本電子 JEM— 1200 EX)にて観察した。
[0089] (実施例 1)
PLA; LACEA H— 100 (三井化学株式会社製)および EPDM; EP22 (JSR株式 会社製)および相溶化剤としてエチレンとグリシジルメタタリレートとアクリル酸メチル の共重合体であるボンドファースト 7M (住友化学株式会社製)を表 1に示した割合( 重量部)で 180°Cに設定したラボプラストミル 50C150 (ブレード形状:ローラー形 R6 0 株式会社東洋精機製作所製)を用いて溶融混練した。さらにスクリュー回転数 10 Orpmにて 180°Cで溶融混練しながら、表 1に示した割合(重量部)で、架橋助剤とし て EDMA、および架橋触媒として過酸化物であるパーへキシン 25B (日本油脂株式 会社製)を添加し、トルクの値が最高値を示し、さらにその後、トルクが低下して一定 値に達するまで溶融混練を行い、架橋反応を進行させた (動的架橋)。得られたサン プルを設定温度 180°Cで熱プレス (株式会社神藤金属工業所製 圧縮成形機 NSF 50)成形し、直径 30mmおよび厚さ 12mmの円筒状の成形体を得た。これらの成 形体について、硬度、圧縮永久歪みを測定し、熱可塑性を評価した。また、同様に 設定温度 180°Cで熱プレス成形し、厚さ 2mmのシート状の成形体を得た。このシー トを用いて機械特性、ゲル率 (wt%)を測定した。なお本実施例では 30gの EPDMを 溶融混練した。
(実施例 2)
PLA; LACEA H— 100 (三井化学株式会社製)および EPDM; EP22 (JSR株式 会社製)およびボンドファースト 7Mを表 1に示した割合(重量部)で 180°Cに設定した ラボプラストミル 50C150 (ブレード形状:ローラー形 R60 東洋精機株式会社製)を 用いて溶融混練した。さらにスクリュー回転数 lOOrpmにて 180°Cで溶融混練しなが ら、表 1に示した割合(重量部)で、架橋助剤として EDMA、および架橋触媒として過 酸化物であるパーへキシン 25B (日本油脂株式会社製)を添加し、トルクの値が最高 値を示し、さらにその後、トルクが低下して一定値に達するまで溶融混練を行い、架 橋反応を進行させた (動的架橋)。さらにトルクが一定値に達した後、醱酵乳酸原料 を使用した可塑剤であるラクトサイザ一 GP— 4001 (荒川化学工業株式会社製)を表 1に示した割合(重量部)で添加し、溶融混練した。得られたサンプルを設定温度 18 0°Cで熱プレス (株式会社神藤金属工業所製 圧縮成形機 NSF— 50)成形し、直径 30mmおよび厚さ 12mmの円筒状の成形体を得た。これらの成形体について、硬度 、圧縮永久歪みを測定し、熱可塑性を評価した。また、同様に設定温度 180°Cで熱 プレス成形し、厚さ 2mmのシート状の成形体を得た。このシートを用いて機械特性、 ゲル率 (wt%)を測定した。なお本実施例では 30gの EPDMを溶融混練した。 [0091] (実施例 3)
EPDMにかえて NR;RSS3を用い、パーへキシン 25B (日本油脂株式会社製)の 添カロ量を変更した以外は実施例 1と同様にしてサンプルを作製し、評価を行なった。
[0092] (実施例 4)
EPDMにかえて NR;RSS3を用い、パーへキシン 25B (日本油脂株式会社製)の 添加量を変更した以外は実施例 2と同様にしてサンプルを作製し、評価を行なった。
[0093] (実施例 5)
EPDMにかえて NR;RSS3を用い、ボンドファースト 7M (住友化学株式会社製)を 配合せず、パーへキシン 25B (日本油脂株式会社製)の添加量を変更した以外は実 施例 2と同様にしてサンプルを作製し、評価を行なった。さらに、得られた熱可塑性ェ ラストマー組成物の相形態観察を行った。結果を図 1に示す。
[0094] (実施例 6)
PHBHおよび NR; RSS3を表 1に示した割合(重量部)で 160°Cに設定したラボプ ラストミル 50C150 (ブレード形状:ローラー形 R60 東洋精機株式会社製)を用いて 溶融混練した。さらにスクリュー回転数 lOOrpmにて 160°Cで溶融混練しながら、表 1 に示した割合(重量部)で、架橋助剤として EDMA、および架橋触媒として過酸化物 であるパーへキシン 25B (日本油脂株式会社製)を添加し、トルクの値が最高値を示 し、さらにその後、トルクが低下して一定値に達するまで溶融混練を行い、架橋反応 を進行させた (動的架橋)。得られたサンプルを設定温度 160°Cで熱プレス (株式会 社神藤金属工業所製 圧縮成形機 NSF— 50)成形し、直径 30mmおよび厚さ 12m mの円筒状の成形体を得た。これらの成形体について、硬度、圧縮永久歪みを測定 し、熱可塑性を評価した。また、同様に設定温度 160°Cで熱プレス成形し、厚さ 2mm のシート状の成形体を得た。このシートを用いてゲル率 (wt%)を測定した。なお本実 施例では 30gの NRを溶融混練した。
[0095] (比較例 1)
PLA ; LACEA H— 100 (三井化学株式会社製)を 180°Cに設定したラボプラストミ ル 50C150 (ブレード形状:ローラー形 R60 株式会社東洋精機製作所製)を用いて スクリュー回転数 lOOrpmにて 10分間溶融混練した。得られたサンプルを実施例 1と 同様にして評価した。なお本比較例では 50gの PLAを溶融混練した。
[0096] (比較例 2)
PLA ; LACEA H— 100 (三井化学株式会社製)および NR;RSS3およびボンドフ アースト 7M (住友化学株式会社製)を表 1に示した割合 (重量部)で、 180°Cに設定 したラボプラストミル 50C150 (ブレード形状:ローラー形 R60 株式会社東洋精機製 作所製)を用いてスクリュー回転数 lOOrpmにて 10分間溶融混練した。得られたサン プルを実施例 1と同様にして評価した。なお本比較例では 30gの NRを溶融混練した
[0097] (比較例 3)
PLA ; LACEA H— 100 (三井化学株式会社製)および NR;RSS3およびボンドフ アースト 7M (住友化学株式会社製)を表 1に示した割合 (重量部)で、 180°Cに設定 したラボプラストミル 50C150 (ブレード形状:ローラー形 R60 株式会社東洋精機製 作所製)を用いてスクリュー回転数 lOOrpmにて 10分間溶融混練した。さらに、ラクト サイザ一 GP— 4001 (荒川化学工業株式会社製)を表 1に示した割合 (重量部)で添 加し、溶融混練した。得られたサンプルを実施例 1と同様にして評価した。なお本比 較例では 30gの NRを溶融混練した。
[0098] (比較例 4)
NR ;RSS3を 180°Cに設定したラボプラストミル 50C150 (ブレード形状:ローラー 形 R60 株式会社東洋精機製作所製)を用いて、スクリュー回転数 lOOrpmにて 180 °Cで溶融混練しながら、表 1に示した割合(重量部)で、架橋助剤として EDMA、お よび架橋触媒として過酸化物であるパーへキシン 25B (日本油脂株式会社製)を添 加し、トルクの値が最高値を示し、さらにその後、トルクが低下して一定値に達するま で溶融混練を行い、架橋反応を進行させた。さらに、表 1に示した割合(重量部)で P LA; LACEA H— 100 (三井化学株式会社製)およびボンドファースト 7M (住友化 学株式会社製)を添加し、 10分間、溶融混練した。得られたサンプルを実施例 1と同 様にして評価した。なお本比較例では 30gの NRを溶融混練した。
[0099] [表 1] 実 ίΐ 5例 比 ΐ交例
配合物 1 2 3 4 5 6 1 2 3 4 *1 ) 熱可塑性樹脂 PLA 30 30 30 30 30 100 30 30 30
CA) PHBH 30
ゴム(B) EPDM 100 100 1 00
NR 100 100 100 100 1 00 100 架橋助剤 EDMA 1 1 1 1 1 1 1 架橋剤(C) ハ° -へキシン 25B 2 2 3 3 3 3 2 相溶化剤(E) ホ"ント'ファ—スト 7M 3.3 3.3 3.3 3.3 3.3 3.3 3.3 可塑剤 ) GP-4001 20 20 20 20
物性
硬度 JIS- A 88 66 82 50 59 41 > 98 1 5 8 62 圧縮永久歪み(%) 79 42 55 43 33 39 100 1 00 100 *2) 破断強度(MPa) 6 3.8 4.0 2.4 6.4 4.4 0.12 <0.1 1.8 機械特性 破断伸び (%) 187 245 1 1 5 188 1 92 < 10 1 55 138 1 7 弾性率(MPa) 42.5 3.7 1 6.1 1.7 10.2 484 <0.5 <0.5 1 1 熱可塑性 〇 〇 〇 〇 〇 〇 〇 〇 〇 ゲル率(wt%) 71 61 55 53 48 82 0.5 0.7 1.7 70
*1 )熱可塑性樹脂 (Α)の存在下で、ゴム(Β)を動的架橋したものではな EPDMの架橋物と
PLAとのブレンド物(EPDMの架橋物を先に作製した後に PLAをブレンド)。
*2)測定のための圧縮時に成形体が崩壊したために、測定できず。
※各成分の配合量を重量部で示した。
[0100] 表 1 (実施例 1〜6および比較例 1)力 明らかなように、本発明の熱可塑性エラスト マー組成物は、 PLAだけのものに比べて柔軟性および圧縮永久歪み特性に優れる 。さらには熱可塑性を有することがわかる。また実施例 1〜6および比較例 2〜3を比 較して明らかなように、動的架橋することにより、ゲル率 (wt%)が上昇し〔ゴム(Β)が 架橋し〕、優れた機械特性や、圧縮永久歪み特性を付与できることがわかる。さらに、 実施例 1〜5および比較例 4を比較して明らかなように、本発明の動的架橋体である 熱可塑性エラストマ一組成物は、動的架橋せずに、ゴム(EPDM)の架橋物に熱可 塑性樹脂(PLA)とボンドファースト 7Mを添加、混練したものに比べて、良好な成形 性 (熱可塑性)を有し、機械特性や、圧縮永久歪みに優れることがわかる。さらに、図 1から明らかなように本発明の熱可塑性エラストマ一組成物は、熱可塑性樹脂(PLA )を主成分とする連続相中にゴム(NR)を主成分とする架橋物が 10 m以下の大き さで分散して!/、る相形態を有して!/、ること力 Sわ力、る。
[0101] 以上の結果から、本発明の熱可塑性エラストマ一組成物は、低硬度で柔軟性を有 しながら、機械特性、圧縮永久歪み特性に優れた環境への負荷が小さい新規な熱 可塑性エラストマ一であることがわかる。 産業上の利用可能性
[0102] 本発明の熱可塑性エラストマ一組成物は、低硬度で柔軟性を有しながら、機械特 性、圧縮永久歪み特性に優れた環境への負荷が小さ!/、新規な熱可塑性エラストマ 一であることから、従来の熱可塑性エラストマ一が使用されている、自動車用、電気 製品用、事務用成形品または雑貨用成型品として、好適に使用することができる。 特に、本発明の熱可塑性エラストマ一組成物はその優れた成形加工性、耐圧縮永 久歪み性、封止性、柔軟性、力学的特性、などの特性を活かして、バンド、グリップ、 スィッチ、表皮材、シート、容器、包装、ルアーや草履や玩具等の雑貨などのような汎 用の成形品、シール材、ノ クキング材、ガスケットなどの密封用材などの製造に好適 に使用することカでさる。

Claims

請求の範囲
[I] 非石油原料由来の熱可塑性樹脂 (A)と、天然ゴム、ジェン系重合体ゴム、ォレフィ ン系重合体ゴム、アクリルゴム、およびシリコーンゴムから選ばれる少なくとも 1種のゴ ム(B)を含有し、熱可塑性樹脂 (A)の存在下で、ゴム (B)を架橋剤(C)により動的に 架橋することにより得られることを特徴とする熱可塑性エラストマ一組成物。
[2] 熱可塑性樹脂 (A)がポリ乳酸、ポリ 3—ヒドロキシプチレート系重合体、ポリプチレン サクシネート系重合体、ポリダリコール酸およびポリトリメチレンテレフタレート系重合 体から選ばれる少なくとも 1種の重合体であることを特徴とする請求項 1に記載の熱 可塑性エラストマ一組成物。
[3] ゴム(B) 100重量部に対し、 5〜; 150重量部の熱可塑性樹脂 (A)を含有することを 特徴とする請求項 1または 2に記載の熱可塑性エラストマ一組成物。
[4] ゴム(B) 100重量部に対し、 10〜90重量部の熱可塑性樹脂 (A)を含有することを 特徴とする請求項 3に記載の熱可塑性エラストマ一組成物。
[5] 熱可塑性樹脂 (A)の連続相中にゴム(B)の架橋物が分散して!/、る相形態を有する ことを特徴とする請求項 1〜4のいずれかに記載の熱可塑性エラストマ一組成物。
[6] ゴム(B)の架橋物の粒子径が、 0. 0;!〜 20 mであることを特徴とする請求項 1〜5 のいずれかに記載の熱可塑性エラストマ一組成物。
[7] ゴム(B)の架橋物の粒子径が、 0. 01〜; 10 mであることを特徴とする請求項 6に 記載の熱可塑性エラストマ一組成物。
[8] ゴム(B)が、天然ゴムであることを特徴とする請求項 1〜7のいずれかに記載の熱可 塑性エラストマ一組成物。
[9] 熱可塑性樹脂 (A) 、ポリ乳酸またはポリ 3—ヒドロキシプチレート系重合体である ことを特徴とする請求項 1〜8のいずれかに記載の熱可塑性エラストマ一組成物。
[10] さらに可塑剤(D)を含有することを特徴とする請求項 1〜9のいずれかに記載の熱 可塑性エラストマ一組成物。
[I I] 可塑剤 (D)が非石油原料由来の可塑剤であることを特徴とする請求項 10記載の 熱可塑性エラストマ一組成物。
[12] さらに、相溶化剤(E)を含有することを特徴とする請求項 1〜; 11のいずれかに記載 の熱可塑性エラストマ一組成物。
[13] 請求項 1〜; 12の何れかに記載の組成物を用いた自動車用成型品。
[14] 請求項 1〜; 12の何れかに記載の組成物を用いた電気製品用成型品。
[15] 請求項 1〜; 12の何れかに記載の組成物を用いた事務用成型品。
[16] 請求項 1〜; 12の何れかに記載の組成物を用いた雑貨用成型品。
PCT/JP2007/066749 2006-09-01 2007-08-29 Composition élastomère thermoplastique WO2008026632A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008532086A JP5500823B2 (ja) 2006-09-01 2007-08-29 熱可塑性エラストマー組成物
US12/439,418 US8748526B2 (en) 2006-09-01 2007-08-29 Thermoplastic elastomer composition
EP07806226.2A EP2058367B1 (en) 2006-09-01 2007-08-29 Thermoplastic elastomer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-238278 2006-09-01
JP2006238278 2006-09-01

Publications (1)

Publication Number Publication Date
WO2008026632A1 true WO2008026632A1 (fr) 2008-03-06

Family

ID=39135914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066749 WO2008026632A1 (fr) 2006-09-01 2007-08-29 Composition élastomère thermoplastique

Country Status (4)

Country Link
US (1) US8748526B2 (ja)
EP (1) EP2058367B1 (ja)
JP (1) JP5500823B2 (ja)
WO (1) WO2008026632A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184543A (ja) * 2007-01-30 2008-08-14 Tokai Rubber Ind Ltd 熱可塑性エラストマー製品の製法およびそれによって得られた熱可塑性エラストマー製品
EP2058368A1 (en) * 2007-11-08 2009-05-13 Seed Company Ltd. Elastomer composition, method for producing the same, and eraser using the same
JP2009203322A (ja) * 2008-02-27 2009-09-10 Tokai Rubber Ind Ltd 熱可塑性エラストマー製品およびその製法
WO2009134704A1 (en) * 2008-04-29 2009-11-05 The Procter & Gamble Company Polymeric compositions and articles comprising polylactic acid and polyolefin
JP2010254729A (ja) * 2009-04-21 2010-11-11 Nof Corp 環境配慮型熱可塑性エラストマー組成物及びその成形品
JP2011084654A (ja) * 2009-10-15 2011-04-28 Mitsubishi Chemicals Corp ポリ乳酸系樹脂組成物
US20110124778A1 (en) * 2008-07-25 2011-05-26 Seed Company Ltd. Abradant-containing eraser
JP2011236025A (ja) * 2010-05-12 2011-11-24 Yokohama Rubber Co Ltd:The コンベヤベルト用ゴム組成物
JP2011241317A (ja) * 2010-05-19 2011-12-01 Nishikawa Rubber Co Ltd 樹脂組成物
JP2012197364A (ja) * 2011-03-22 2012-10-18 Nishikawa Rubber Co Ltd 熱可塑性エラストマー組成物、その成形方法、並びにその成形体
DE102012017354A1 (de) 2011-09-02 2013-03-07 Sumitomo Chemical Company, Limited Thermplastische Elastomerzusammensetzung
DE102012017353A1 (de) 2011-09-02 2013-03-07 Sumitomo Chemical Company, Limited Thermoplastische Elastomerzusammensetzung
JP5467871B2 (ja) * 2008-01-11 2014-04-09 株式会社カネカ 組成物及びその成形体
JPWO2012063619A1 (ja) * 2010-11-10 2014-05-12 株式会社オートネットワーク技術研究所 絶縁電線
JP2017115041A (ja) * 2015-12-24 2017-06-29 日立造船株式会社 ポリ乳酸樹脂組成物およびその製造方法
WO2023145743A1 (ja) * 2022-01-27 2023-08-03 国立大学法人大阪大学 ポリ乳酸樹脂組成物

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2360546B1 (es) * 2009-11-25 2012-04-19 Luis Enrique Lopez-Pozas Lanuza Golftee 100% biodegradables.
FR2954337A1 (fr) * 2009-12-21 2011-06-24 Bastien Pascal Composition pour bio-plastiques
BE1019289A5 (fr) * 2010-04-13 2012-05-08 Futerro Sa Composition de polymeres issus de ressources renouvelables.
JP2012219151A (ja) * 2011-04-06 2012-11-12 Nishikawa Rubber Co Ltd 樹脂組成物
KR101290147B1 (ko) 2011-10-06 2013-07-26 한국신발피혁연구원 신발 인솔용 고무계 발포체 조성물
TWI648872B (zh) 2013-03-15 2019-01-21 法商梭意泰科公司 具有包含InGaN之作用區域之半導體結構、形成此等半導體結構之方法及由此等半導體結構所形成之發光裝置
CN104672807A (zh) * 2013-11-29 2015-06-03 中国科学院理化技术研究所 一种聚丁二酸丁二醇酯/天然橡胶复合可降解韧性材料及其制备方法
JP6327083B2 (ja) * 2014-09-18 2018-05-23 信越化学工業株式会社 帯電防止性シリコーンゴム組成物、その硬化物及びその製造方法
US9260550B1 (en) 2015-01-27 2016-02-16 International Business Machines Corporation Lactide-based acrylate polymers
EP3395882B1 (en) * 2017-04-28 2023-06-28 Sumitomo Chemical Company, Ltd Thermoplastic elastomer composition, process for producing the thermoplastic elastomer composition and molded body thereof
CN109320726B (zh) * 2018-10-11 2021-05-18 东华大学 一种高回弹热塑性弹性体及其制备方法
CN112745588A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 制三元乙丙橡胶/聚乳酸热塑性硫化胶的组合物、硫化胶及其制备方法与应用
CN112745587B (zh) * 2019-10-31 2022-09-20 中国石油化工股份有限公司 阻燃三元乙丙橡胶/聚乳酸热塑性弹性体的组合物、弹性体及其制备方法与应用
CN111154265B (zh) * 2020-01-17 2022-08-12 沈阳化工大学 一种硅橡胶/聚丁二酸丁二醇酯非石油基热塑性硫化胶及其制备方法
US20220212879A1 (en) * 2021-01-06 2022-07-07 Atomation Net Ltd. Method and system for monitoring a conveyor belt
CN117511229B (zh) * 2023-11-21 2024-04-05 东莞市和昶兴高分子材料科技有限公司 一种生物基热塑性弹性体及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477654A (en) 1981-07-07 1984-10-16 Imperial Chemical Industries Plc 3-Hydroxybutyrate polymers
WO1994011519A1 (en) 1992-11-06 1994-05-26 Zeneca Limited Production of polyhydroxyalkanoate in plants
US5502273A (en) 1991-04-24 1996-03-26 Zeneca Limited Production of polyhydroxy alkanoate in plants
JPH10274494A (ja) * 1997-03-31 1998-10-13 Showa Rubber Kk 熱交換器洗浄用スポンジボール
JP2002037987A (ja) * 2000-07-26 2002-02-06 Shimadzu Corp ポリ乳酸系組成物及びその製造方法
JP2002040598A (ja) 2000-07-26 2002-02-06 Fuji Photo Film Co Ltd 写真感光材料用包装材料
JP2002275303A (ja) 2002-03-15 2002-09-25 Mitsui Chemicals Inc 発泡体
JP2003183488A (ja) * 2001-12-17 2003-07-03 Techno Polymer Co Ltd ポリ乳酸系樹脂組成物
JP2005211041A (ja) 2004-02-02 2005-08-11 Nippon Shokubai Co Ltd コハク酸の製造方法
JP2005226057A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル系樹脂組成物成形体
JP2005226054A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル樹脂組成物
JP2005232232A (ja) * 2004-02-17 2005-09-02 Tosoh Corp 樹脂組成物
JP2005232231A (ja) * 2004-02-17 2005-09-02 Tosoh Corp 樹脂組成物および樹脂組成物の製造方法
JP2005255722A (ja) * 2004-03-09 2005-09-22 Tosoh Corp 樹脂組成物および製造方法
JP2005304484A (ja) 2004-03-23 2005-11-04 Osaka Gas Co Ltd Phb産生方法
JP2005320409A (ja) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd 耐衝撃性熱可塑性樹脂組成物
JP2006045366A (ja) 2004-08-05 2006-02-16 Kaneka Corp ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)組成物およびその成形体
JP2006152162A (ja) * 2004-11-30 2006-06-15 Toyota Motor Corp ポリ乳酸組成物及びこれを用いた樹脂成形体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW203079B (ja) * 1991-03-27 1993-04-01 Japan Synthetic Rubber Co Ltd
DE4343587A1 (de) * 1993-12-21 1995-06-22 Huels Chemische Werke Ag Thermoplastische Polyesterelastomere und Verfahren zu ihrer Herstellung
US5714573A (en) * 1995-01-19 1998-02-03 Cargill, Incorporated Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof
JP3150561B2 (ja) * 1995-01-25 2001-03-26 横浜ゴム株式会社 空気入りタイヤ
DE69815032T2 (de) * 1997-12-10 2004-04-01 Advanced Elastomer Systems, L.P., Akron Thermoplastische Vulkanisate aus Kondensationsharz und vernetztem Elastomer
JP2002037984A (ja) 2000-07-27 2002-02-06 Sanyo Chem Ind Ltd 舗装材料用組成物及び舗装方法
JP3448581B2 (ja) * 2001-10-19 2003-09-22 リケンテクノス株式会社 熱可塑性エラストマー組成物、それを用いた成形体及び複合成形体
US6569958B1 (en) * 2001-10-19 2003-05-27 Dow Corning Corporation Thermoplastic silicone elastomers from compatibilized polyester resins
JP4220709B2 (ja) * 2002-03-07 2009-02-04 株式会社カネカ 熱可塑性エラストマー組成物
EP1669406B1 (en) * 2003-09-30 2008-12-24 Kaneka Corporation Thermoplastic elastomer composition
EP1672032A4 (en) * 2003-10-06 2006-11-22 Kao Corp BIODEGRADABLE WAX COMPOSITION
JPWO2005042624A1 (ja) 2003-10-31 2007-05-10 日本ゼオン株式会社 熱可塑性エラストマー組成物及び成形品
CN100506912C (zh) * 2004-03-05 2009-07-01 三菱丽阳株式会社 热塑性树脂组合物以及使用该组合物的成型品
JP4691957B2 (ja) * 2004-10-29 2011-06-01 Jsr株式会社 熱可塑性エラストマー組成物及びその製造方法
JP2007039585A (ja) * 2005-08-04 2007-02-15 Sumitomo Rubber Ind Ltd ゴム組成物およびこれを用いた空気入りタイヤ

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477654A (en) 1981-07-07 1984-10-16 Imperial Chemical Industries Plc 3-Hydroxybutyrate polymers
US5502273A (en) 1991-04-24 1996-03-26 Zeneca Limited Production of polyhydroxy alkanoate in plants
WO1994011519A1 (en) 1992-11-06 1994-05-26 Zeneca Limited Production of polyhydroxyalkanoate in plants
JPH10274494A (ja) * 1997-03-31 1998-10-13 Showa Rubber Kk 熱交換器洗浄用スポンジボール
JP2002037987A (ja) * 2000-07-26 2002-02-06 Shimadzu Corp ポリ乳酸系組成物及びその製造方法
JP2002040598A (ja) 2000-07-26 2002-02-06 Fuji Photo Film Co Ltd 写真感光材料用包装材料
JP2003183488A (ja) * 2001-12-17 2003-07-03 Techno Polymer Co Ltd ポリ乳酸系樹脂組成物
JP2002275303A (ja) 2002-03-15 2002-09-25 Mitsui Chemicals Inc 発泡体
JP2005211041A (ja) 2004-02-02 2005-08-11 Nippon Shokubai Co Ltd コハク酸の製造方法
JP2005226057A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル系樹脂組成物成形体
JP2005226054A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル樹脂組成物
JP2005232232A (ja) * 2004-02-17 2005-09-02 Tosoh Corp 樹脂組成物
JP2005232231A (ja) * 2004-02-17 2005-09-02 Tosoh Corp 樹脂組成物および樹脂組成物の製造方法
JP2005255722A (ja) * 2004-03-09 2005-09-22 Tosoh Corp 樹脂組成物および製造方法
JP2005304484A (ja) 2004-03-23 2005-11-04 Osaka Gas Co Ltd Phb産生方法
JP2005320409A (ja) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd 耐衝撃性熱可塑性樹脂組成物
JP2006045366A (ja) 2004-08-05 2006-02-16 Kaneka Corp ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)組成物およびその成形体
JP2006152162A (ja) * 2004-11-30 2006-06-15 Toyota Motor Corp ポリ乳酸組成物及びこれを用いた樹脂成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUO AKIBA; KOGYO CHOSAKAI: "Thermoplastic Elastomer", 2003, PUBLISHING CO., LTD.
See also references of EP2058367A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184543A (ja) * 2007-01-30 2008-08-14 Tokai Rubber Ind Ltd 熱可塑性エラストマー製品の製法およびそれによって得られた熱可塑性エラストマー製品
EP2058368A1 (en) * 2007-11-08 2009-05-13 Seed Company Ltd. Elastomer composition, method for producing the same, and eraser using the same
WO2009060554A1 (ja) * 2007-11-08 2009-05-14 Seed Company Ltd. エラストマー組成物、その製造方法、及び該組成物を用いた字消し
JP2009132865A (ja) * 2007-11-08 2009-06-18 Seed:Kk エラストマー組成物、その製造方法、及び該組成物を用いた字消し
JP5467871B2 (ja) * 2008-01-11 2014-04-09 株式会社カネカ 組成物及びその成形体
JP2009203322A (ja) * 2008-02-27 2009-09-10 Tokai Rubber Ind Ltd 熱可塑性エラストマー製品およびその製法
JP2011516718A (ja) * 2008-04-29 2011-05-26 ザ プロクター アンド ギャンブル カンパニー ポリ乳酸とポリオレフィンとを含む、ポリマー組成物及び物品
WO2009134704A1 (en) * 2008-04-29 2009-11-05 The Procter & Gamble Company Polymeric compositions and articles comprising polylactic acid and polyolefin
US20110124778A1 (en) * 2008-07-25 2011-05-26 Seed Company Ltd. Abradant-containing eraser
JP2010254729A (ja) * 2009-04-21 2010-11-11 Nof Corp 環境配慮型熱可塑性エラストマー組成物及びその成形品
JP2011084654A (ja) * 2009-10-15 2011-04-28 Mitsubishi Chemicals Corp ポリ乳酸系樹脂組成物
JP2011236025A (ja) * 2010-05-12 2011-11-24 Yokohama Rubber Co Ltd:The コンベヤベルト用ゴム組成物
JP2011241317A (ja) * 2010-05-19 2011-12-01 Nishikawa Rubber Co Ltd 樹脂組成物
US9000300B2 (en) 2010-11-10 2015-04-07 Autonetworks Technologies, Ltd. Insulated wire
JPWO2012063619A1 (ja) * 2010-11-10 2014-05-12 株式会社オートネットワーク技術研究所 絶縁電線
JP2012197364A (ja) * 2011-03-22 2012-10-18 Nishikawa Rubber Co Ltd 熱可塑性エラストマー組成物、その成形方法、並びにその成形体
US8598265B2 (en) 2011-09-02 2013-12-03 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition
JP2013064121A (ja) * 2011-09-02 2013-04-11 Sumitomo Chemical Co Ltd 熱可塑性エラストマー組成物及びその製造方法
US8703870B2 (en) 2011-09-02 2014-04-22 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition
DE102012017353A1 (de) 2011-09-02 2013-03-07 Sumitomo Chemical Company, Limited Thermoplastische Elastomerzusammensetzung
DE102012017354A1 (de) 2011-09-02 2013-03-07 Sumitomo Chemical Company, Limited Thermplastische Elastomerzusammensetzung
DE102012017353B4 (de) 2011-09-02 2024-02-29 Sumitomo Chemical Company, Limited Verfahren zur Herstellung einer thermoplastische Elastomerzusammensetzung
JP2017115041A (ja) * 2015-12-24 2017-06-29 日立造船株式会社 ポリ乳酸樹脂組成物およびその製造方法
WO2017110164A1 (ja) * 2015-12-24 2017-06-29 日立造船株式会社 ポリ乳酸樹脂組成物およびその製造方法
US10538662B2 (en) 2015-12-24 2020-01-21 Hitachi Zosen Corporation Polylactic acid resin composition and method for producing same
WO2023145743A1 (ja) * 2022-01-27 2023-08-03 国立大学法人大阪大学 ポリ乳酸樹脂組成物

Also Published As

Publication number Publication date
JPWO2008026632A1 (ja) 2010-01-21
EP2058367B1 (en) 2014-01-15
EP2058367A1 (en) 2009-05-13
EP2058367A4 (en) 2012-10-17
JP5500823B2 (ja) 2014-05-21
US20100016495A1 (en) 2010-01-21
US8748526B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
JP5500823B2 (ja) 熱可塑性エラストマー組成物
Krishnan et al. Toughening of polylactic acid: an overview of research progress
KR101970847B1 (ko) 생분해성 필름
JPH06500819A (ja) ポリヒドロキシ酸と相溶化剤を含有するフィルム
JP2020125470A (ja) バイオマスプラスチック複合材及びその製造方法
AU2007278752A1 (en) Masterbatch and polymer composition
KR20100036872A (ko) 생분해성 수지 조성물, 그의 제조방법 및 그로부터 제조되는 생분해성 필름
CN1665882A (zh) 聚酯共混物组合物和由其生产的生物可降解薄膜
WO2013101821A1 (en) Toughened polyester blends
JP3819291B2 (ja) 生分解性肥料袋
KR20110082702A (ko) 생분해성 수지 조성물, 그의 제조방법 및 그로부터 제조되는 생분해성 필름
JP4034596B2 (ja) 射出成形体
JP2007138020A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2023504657A (ja) 生分解性樹脂組成物及びその製造方法
JP2010126619A (ja) ポリ乳酸系樹脂組成物からなるチップ状物
US20120259028A1 (en) Reactive polymeric mixture
CN102924883A (zh) 具有高热封强度的可生物降解聚酯组合物薄膜及其制备方法
JP2024503434A (ja) ポリマーブレンド
JP5573355B2 (ja) 樹脂組成物
JP3257151B2 (ja) 熱可塑性エラストマー組成物及びその製造法
JP2009052014A (ja) 熱可塑性エラストマ樹脂組成物および成形体
KR102464095B1 (ko) 생분해성 고무 조성물
JP2009179750A (ja) 樹脂組成物
JP2011256274A (ja) ポリ乳酸含有樹脂組成物、その製造方法及びその成形体
WO2022212880A1 (en) Impact modification of polyesters via reactive extrusion with polyacrylated epoxidized high oleic soybean oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008532086

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12439418

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806226

Country of ref document: EP