WO2008018227A1 - Procédé de production d'un substrat céramique multicouche - Google Patents

Procédé de production d'un substrat céramique multicouche Download PDF

Info

Publication number
WO2008018227A1
WO2008018227A1 PCT/JP2007/061415 JP2007061415W WO2008018227A1 WO 2008018227 A1 WO2008018227 A1 WO 2008018227A1 JP 2007061415 W JP2007061415 W JP 2007061415W WO 2008018227 A1 WO2008018227 A1 WO 2008018227A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
multilayer substrate
ceramic multilayer
laminate
layer
Prior art date
Application number
PCT/JP2007/061415
Other languages
English (en)
French (fr)
Inventor
Akiyoshi Kawamura
Takayuki Tsukizawa
Tetsuya Ikeda
Osamu Chikagawa
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2007800009396A priority Critical patent/CN101347058B/zh
Priority to DE602007011286T priority patent/DE602007011286D1/de
Priority to JP2007556187A priority patent/JP5090185B2/ja
Priority to AT07744760T priority patent/ATE492147T1/de
Priority to EP07744760A priority patent/EP2051570B1/en
Priority to US11/951,842 priority patent/US7833370B2/en
Publication of WO2008018227A1 publication Critical patent/WO2008018227A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/302Bending a rigid substrate; Breaking rigid substrates by bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a method for manufacturing a ceramic multilayer substrate, and more particularly to a method for manufacturing a ceramic multilayer substrate in which a plurality of ceramic layers are stacked.
  • a ceramic multilayer substrate in which a plurality of ceramic layers are laminated is fired at the same time in the state of an aggregate substrate including a portion to become a plurality of ceramic multilayer substrates, and is divided into one ceramic multilayer substrate after firing. By doing so, it can be manufactured efficiently.
  • Patent Document 1 discloses that a laminated body is formed by transferring and laminating raw ceramic sheets having a dividing line, heat-treating the laminated body, and then applying a CO layer to the dividing line.
  • Patent Document 3 discloses that a ceramic substrate having a hollow portion is formed by laminating ceramic green sheets that are partially pressed to form a recess.
  • Patent Document 4 a ceramic green sheet formed in a shape corresponding to the outer shape of the multilayer electronic component is laminated, and a disappearing material is laminated at a position corresponding to a cutting margin, and after firing, It is disclosed to dissipate lost material and separate individual stacked electronic components.
  • Patent Document 1 Japanese Utility Model Publication No. 4 38071
  • Patent Document 2 JP-A-5-75262
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-332857
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-311225
  • Patent Document 1 requires a large and expensive CO laser irradiation apparatus.
  • laser irradiation takes a long time, and the substrate may be damaged due to thermal strain during cutting processing, or the vicinity of the cut surface may be deformed or altered by the heat from the laser.
  • the pressure-bonded body after the division grooves are formed may cause problems such as deformation or breakage of the division groove force during conveyance.
  • the substrate after heat treatment when it is creased, it may crack at an unintended position outside the split groove and cause defective products. Even if it can be divided along the dividing groove, the cut surface may be irregular and deviate from the standard.
  • the present invention is intended to provide a method for manufacturing a ceramic multilayer substrate and an aggregate substrate of ceramic multilayer substrates, which can accurately and easily manufacture a ceramic multilayer substrate. is there.
  • the present invention provides a method for manufacturing a ceramic multilayer substrate configured as follows.
  • a method for producing a ceramic multilayer substrate includes: (1) a first step of forming an unfired ceramic laminate formed by laminating a plurality of unfired ceramic base layers; and (2) the unfired ceramic laminate. A second step of sintering the green body and sintering the unfired ceramic layer, and (3) breaking the sintered ceramic laminate formed by firing the unfired ceramic laminate, Or a third step of taking out two or more ceramic multilayer substrates.
  • the first A break pattern that can disappear during firing in the second step along a break line that serves as a boundary line when the ceramic multilayer substrate is taken out of at least one of the unfired ceramic base layers laminated in the process. Is formed.
  • the break pattern disappears and voids are formed inside the sintered ceramic laminate.
  • a cut surface passing through the void is formed in the sintered ceramic laminate, and one or more ceramic multilayer substrates are taken out.
  • the position and shape of the break pattern are not disturbed even when pressed when laminating the ceramic base material layer, so that the break line is placed inside the sintered ceramic laminate.
  • the gap can be formed with high accuracy.
  • the sintered ceramic laminate can be easily broken along the voids.
  • a shrinkage suppressing layer for suppressing firing shrinkage in the planar direction of the unfired ceramic base material layer is provided on the main surface of the unfired ceramic base material layer.
  • the ceramic base material layer is suppressed from firing shrinkage in the planar direction, and the shrinkage amount in the thickness direction is increased. Therefore, the gap in the stacking direction of the voids formed inside the sintered ceramic laminate can be shortened, and the ceramic multilayer substrate can be easily taken out. Moreover, generation
  • the shrinkage suppression layer is a shrinkage suppression layer that does not sinter substantially during the firing in the second step and also has a ceramic force.
  • metal powder or the like can be used as the shrinkage suppression layer, but ceramic powder is suitable for the shrinkage suppression force against the ceramic base layer.
  • an unfired ceramic laminate is formed by sandwiching a shrinkage suppression layer that is sufficiently thinner than the ceramic base layer between the ceramic base layers, and the ceramic base is formed by the shrinkage suppression layer.
  • the unfired ceramic laminate may be fired while suppressing firing shrinkage in the plane direction of the layer.
  • the glass component or the like of the ceramic base material layer penetrates into the shrinkage suppression layer, and the shrinkage suppression layer becomes dense by the glass component or the like.
  • the ceramic multilayer substrate includes a shrinkage suppression layer.
  • the shrinkage suppressing layer may be provided on at least one main surface of the unfired ceramic laminate. In this case, by removing the shrinkage suppressing layer after firing. Then, the ceramic multilayer substrate is taken out.
  • the shrinkage-suppressing layer is sufficiently thicker than the ceramic base layer to remove the porous shrinkage-suppressing layer after firing so that the ceramic multilayer substrate does not contain the shrinkage-suppressing layer. Can do.
  • the break pattern is a greave pattern mainly composed of greaves that can disappear during the firing.
  • the break pattern is a paste including a material powder that can disappear after the temperature reaches the vicinity of the firing maximum temperature of the ceramic layer in the second step.
  • the break pattern does not disappear until the temperature reaches around the firing maximum temperature of the ceramic layer, so the void formed by the disappearance of the break pattern still has a firing temperature. Compared to the case where voids are formed at a low stage, it is less likely to become smaller during firing after void formation. Further, cracks are formed between adjacent voids in the ceramic laminate, and the voids are connected, so that the ceramic multilayer substrate can be easily divided after firing.
  • the material powder is carbon
  • Carbon is preferable because it is inexpensive and does not adversely affect the ceramic multilayer substrate even if it disappears.
  • At least one end of the break pattern is exposed on a side surface of the unfired ceramic laminate.
  • the green ceramic base layer includes a binder resin
  • the iku pattern is mainly composed of a resin that disappears faster than the binder resin upon firing.
  • the break pattern is formed in a lattice shape so as to partition a plurality of the ceramic multilayer substrates.
  • one break pattern is disposed between adjacent ceramic multilayer substrates.
  • two or more break patterns are arranged between adjacent ceramic multilayer substrates.
  • adjacent ceramic multilayer substrates are arranged at intervals.
  • an inspection terminal of a ceramic multilayer substrate can be arranged in the space between the ceramic laminates.
  • the green ceramic base layer is a green low-temperature sintered ceramic layer mainly composed of a low-temperature sintered ceramic powder, and the green ceramic laminate includes gold, silver or copper.
  • Low temperature co-fired ceramic is a material that can be sintered at a temperature of 1050 ° C or less and co-fired with low specific resistance Au, Ag, Cu, etc. ( Since it is a ceramic material capable of co-fire), it is a suitable material as a substrate material for configuring modules and devices for high-frequency applications.
  • Specific examples of low-temperature sintered ceramic materials include: (1) Glass composite LTCC materials made by mixing borosilicate glass with ceramic powders such as alumina, zirconia, magnesia, and forsterite; (2) ZnO -MgO- AI O— Crystallized glass-based LTCC material using SiO-based crystallized glass, (3) BaO— A1
  • Non-glass type LTCC material using etc. is mentioned.
  • passive elements such as capacitors and inductors having a ceramic sintered body as an element can be incorporated into the sintered ceramic laminate.
  • a surface mount type electronic device is provided on a portion of the sintered ceramic laminate from which the ceramic multilayer substrate is taken out, or at least one main surface of the ceramic multilayer substrate taken out of the sintered ceramic laminate force.
  • the method further includes a step of mounting the component.
  • a module in which surface-mounted electronic components are mounted on a ceramic multilayer substrate can be manufactured.
  • surface-mounted components can be mounted efficiently without the need to rearrange the boards.
  • the ceramic multilayer substrate can be manufactured accurately and easily. it can.
  • FIG. 1 is a cross-sectional view showing a manufacturing process of a ceramic multilayer substrate. (Example 1)
  • FIG. 2 is a cross-sectional view showing a manufacturing process of the ceramic multilayer substrate. (Example 1)
  • FIG. 3 is a cross-sectional view showing a manufacturing process of the ceramic multilayer substrate. (Example 1)
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the ceramic multilayer substrate.
  • Example 1 [5] Cross sectional view showing a manufacturing process of the ceramic multilayer substrate. (Example 1)
  • FIG. 7 is a perspective view showing a cut surface of the ceramic multilayer substrate. (Example 1)
  • FIG. 9 is a plan view showing a break pattern. (Example 1)
  • FIG. 10 is a plan view showing a break pattern. (Modification 1)
  • FIG. 11 is a plan view showing a break pattern. (Modification 2)
  • FIG. 12 is a plan view showing a break pattern. (Modification 3)
  • FIG. 17 is a cross-sectional view showing a manufacturing process of the ceramic multilayer substrate. (Example 2)
  • Embodiment 1 of a method for producing a ceramic multilayer substrate will be described with reference to FIGS.
  • a plurality of unfired ceramic green sheets 12 and shrinkage-suppressing green sheets 20, 22 are prepared and laminated in a predetermined order, and are shown in the cross-sectional view of FIG. In this way, a composite laminate is formed in which the green sheets 20 and 22 for suppressing shrinkage are adhered to both surfaces of the unfired ceramic laminate 12.
  • the unfired ceramic laminate 13 includes a portion that becomes one or two ceramic multilayer substrates.
  • the unfired ceramic laminate 13 is composed of an in-plane conductor pattern 14 that becomes an internal electrode, internal wiring, built-in element, etc. of the multilayer ceramic substrate between the laminated unfired ceramic green sheets 12 and the ceramic multilayer.
  • a break pattern 17 is formed along the board boundary (break line).
  • the ceramic green sheet 12 is formed with a through conductor pattern 15 that penetrates the ceramic green sheet 12 and is connected to the in-plane conductor pattern 14.
  • the break pattern 17 is mainly composed of a resin that decomposes into a monomer at a high temperature, such as a resin that disappears upon burning, such as a petal resin, or an acrylic resin.
  • the break pattern 17 includes a portion 17a extending in the horizontal direction and a portion 17b extending in the vertical direction.
  • Each rectangular portion formed continuously and partitioned by the break patterns 17a and 17b is a portion 40 to be a ceramic multilayer substrate.
  • the parts 40 to be the ceramic multilayer substrate are arranged adjacent to each other in the hatched area.
  • a margin for disposal that is, a margin portion 42 is arranged along the outer edges 12x and 12y of the ceramic green sheet, which is the same as the ceramic multilayer substrate.
  • the in-plane conductor pattern 14k formed on the main surface of the ceramic green sheet 12k that is in close contact with the shrinkage-suppressing green sheet 20 is formed on the main surface of the ceramic green sheet 12k as shown in the sectional view of FIG.
  • the electrodes 26 and 28 are exposed on one main surface 10s of the multilayer multilayer substrate 10.
  • the in-plane conductor 16 connected to the through conductor pattern 15s of the ceramic green sheet 12s is formed on the shrinkage-suppressing green sheet 22. This The in-plane conductor pattern 16 becomes an electrode 24 exposed on the other main surface 10t of the ceramic multilayer substrate 10 as shown in the sectional view of FIG.
  • the composite laminate is fired under the condition that the unfired ceramic laminate 13 is sintered but the shrinkage-suppressing green sheets 20 and 22 are not sintered.
  • the unfired ceramic laminate 13 is suppressed from shrinkage in the plane direction by the shrinkage-suppressing green sheets 20 and 22, as shown in the cross-sectional view of FIG.
  • the figure contracts greatly in the vertical direction.
  • the break line 17 in the unfired ceramic laminate 13 disappears, and a void 18 is formed in the portion where the break line 17 was present.
  • the unfired ceramic base layer 12 contains a binder resin, and the break pattern 17 is used for a break when the main component is a resin that disappears faster than the Noinder resin 12 during firing. Since the noinder resin in the ceramic base material layer 12 is scattered and disappears through the voids 18 formed by the disappearance of the pattern 17, firing can be performed particularly efficiently.
  • the green sheets 20 and 22 for shrinkage suppression are removed, and the sintered ceramic laminate 13 is taken out.
  • the sintered ceramic laminate 13 is bent to form a cut surface passing through the gap 18 and divided, and the ceramic multilayer substrates 10a, 10b, and 10c are taken out as shown in the cross-sectional view of FIG.
  • the cut surface 10x of the ceramic substrate 10 includes a concave gap dividing portion 18x into which the gap 18 is divided, and the ceramic The substantially flat ceramic base material layer fracture portion 13x in which the base material layer is broken is exposed. Note that the ceramic particles forming the ceramic base material layer have only grain boundary fractures at the void divisions 18x. In the fractured portion 13x of the ceramic base material layer, grain boundary fracture and intragranular fracture occur.
  • a groove is formed in advance on one or both main surfaces of the unfired ceramic laminate 13 along the boundary of the portion to be the ceramic multilayer substrate. Also good. Alternatively, by forming a break pattern between the ceramic base layer and the shrinkage suppression layer, it is possible to form a groove on the surface of the sintered ceramic laminate to promote the start of division. .
  • the ceramic multilayer substrate 10 has terminals 26, 28 exposed on one main surface, and terminals of surface mount electronic components 30, 32 such as multilayer capacitors and IC chips. Connected by solder reflow or bumps to form module 11 with surface-mounted electronic components 30, 32.
  • the module 11 can be mounted on the external circuit by connecting the electrode 24 on the other main surface of the ceramic multilayer substrate 10 to the external circuit by solder reflow or the like. As described above, it is preferable to mount the surface mount electronic components on the assembly board before the break.
  • a ceramic green sheet containing a ceramic material is prepared.
  • the ceramic green sheet is composed of CaO (10 to 55%), SiO (45 to 70%), A
  • the mixture is dispersed in an organic vehicle such as an organic solvent and a plasticizer to prepare a slurry.
  • an organic vehicle such as an organic solvent and a plasticizer
  • the obtained slurry is formed into a sheet shape by a doctor blade method or a casting method to produce an unsintered glass ceramic layer (ceramic green sheet).
  • the unsintered glass ceramic layer is preferably a ceramic green sheet formed by the above-mentioned sheet forming method, but may be an unsintered thick film printed layer formed by the thick film printing method.
  • the ceramic powder may be a magnetic material such as ferrite, or a dielectric material such as barium titanate.
  • the ceramic liner sheet is sintered at a temperature of 1050 ° C or lower. For this reason, a low-temperature sintered ceramic green sheet to be bonded is preferred. Therefore, the glass powder described above has a soft spot of 750 ° C or lower.
  • the in-plane conductor pattern 14 can be formed by, for example, a method of printing a paste of a conductor material by a screen printing method or a gravure printing method, or a method of transferring a metal foil having a predetermined pattern shape. .
  • the conductor material a material having Ag as a main component of a low resistance and poorly acidic material is preferable.
  • At least one kind of additive of 2 3 may be added.
  • the conductive paste can be prepared by adding a predetermined amount of an organic vehicle at a predetermined ratio to the main component powder, stirring, and kneading.
  • an organic vehicle at a predetermined ratio to the main component powder, stirring, and kneading.
  • the organic vehicle is a mixture of Noinda resin and a solvent, and as binder resin, for example, ethyl cellulose, acrylic resin, polybutyral, methacrylic resin, etc. can be used. It is.
  • solvent for example, tervineol, dihydrotapineol, dihydrotapineol acetate, butyl carbitol, butyl carbitol acetate, alcohols, and the like can be used.
  • the viscosity of the conductor paste is preferably 50 to 700 Pa ⁇ s in consideration of printability.
  • the conductor pattern on the surface includes a portion where a through conductor pattern 15 such as a via hole conductor or a through hole conductor for connecting conductor patterns between upper and lower layers is exposed on the surface.
  • the through conductor pattern 15 is formed by a means such as embedding the paste in a through hole formed in the glass ceramic green sheet by a punch bonder or the like.
  • an organic vehicle contained in the conductor paste can be used, and is printed on a ceramic green sheet in the same manner as the conductor paste.
  • a ceramic powder such as alumina that does not substantially sinter at the firing temperature of the green glass ceramic layer is dispersed in an organic vehicle composed of an organic binder, an organic solvent, a plasticizer, and the like to form a slurry.
  • the resulting slurry is formed into a sheet based on a doctor blade method, a casting method, or the like to produce a shrinkage-suppressing green sheet.
  • the sintering temperature of the green sheet for suppressing shrinkage is, for example, 1400 to 1600 ° C., and substantially does not sinter at the sintering temperature of the unsintered glass ceramic layer.
  • the shrinkage-suppressing green sheet may be composed of a single sheet or a plurality of laminated sheets.
  • the average particle size of the ceramic powder used in the shrinkage-suppressing green sheet is preferably 0.1 to 5. O / zm. If the average particle size of the ceramic powder is less than 0., the glass contained in the vicinity of the surface layer of the unsintered glass ceramic layer reacts violently during firing, and after firing, the glass ceramic layer and the shrinkage-suppressing green sheet The green sheet for suppressing shrinkage cannot be removed due to the close contact, and because of the small particle size, the binder and other organic components in the sheet are not easily decomposed and scattered during firing, and delamination occurs in the substrate. On the other hand, if it exceeds 5.0 m, the suppression of firing shrinkage becomes small and the substrate tends to shrink or swell in the X and Y directions more than necessary.
  • the ceramic powder constituting the shrinkage-suppressing green sheet does not substantially sinter at the firing temperature of the unsintered glass ceramic layer.
  • the ceramic powder alumina, zircoure, magnesia, etc.
  • the ceramic powder can also be used.
  • the glass on the surface layer is suitably wetted against the green sheet for shrinkage suppression at the boundary between the surface layer and the shrinkage-suppressing liner sheet. Since it is necessary, it is preferable that the ceramic powder is the same as the ceramic powder constituting the green glass ceramic layer.
  • the green ceramic laminate is formed by laminating the ceramic green sheets on which the in-plane conductor pattern, the through conductor pattern, and the boundary conductor pattern are formed, and one main surface of the unfired ceramic laminate, On the other main surface, shrinkage-suppressing green sheets are superposed and pressed against each other on the main surface of the ceramic laminate by, for example, pressing under a pressure of 5 to 200 MPa based on an isostatic press. A composite laminate having a sheet is produced. [0080]
  • the thickness of the shrinkage-suppressing green sheet is preferably 25 to 500 / zm.
  • the thickness of the green sheet for suppressing shrinkage is less than 25 m, the suppressive force on firing shrinkage becomes small, and the substrate may shrink or swell in the xy direction more than necessary.
  • the substrate may shrink or swell in the xy direction more than necessary.
  • organic components such as binders in the sheet are difficult to decompose and scatter during firing, and delamination tends to occur in the substrate.
  • the composite laminate is fired at a firing temperature of a ceramic green sheet of an unfired ceramic laminate, for example, 850 to 950 ° C. in a well-known belt furnace or batch furnace.
  • the resulting ceramic laminate is sintered.
  • the unfired ceramic laminate is greatly shrunk in the thickness direction due to the restraining action of the shrinkage-suppressing green sheet, instead of being substantially shrunk in the plane direction.
  • the sintered ceramic laminate including portions to be a plurality of ceramic multilayer substrates is taken out by removing the green sheet for suppressing the shrinkage of the composite laminate force after firing.
  • the green sheet for suppressing shrinkage is not substantially sintered, and the organic components contained before firing are scattered and become a porous state. Therefore, it can be easily removed by sand blasting, wet blasting, ultrasonic vibration or the like.
  • the fired ceramic laminate obtained by removing the shrinkage-suppressing green sheet is divided along the boundary of the ceramic multilayer substrate to obtain a ceramic multilayer substrate.
  • ⁇ Modification 1> As shown in the plan view of FIG. 10 in which the main surface 12a of the ceramic green sheet 12 is viewed from the stacking direction, as in the embodiment, the horizontal break pattern 17s and the vertical break The pattern for use 17t is formed in a lattice shape. Unlike the embodiment, the break patterns 17s, 17t are intermittently formed in a broken line shape.
  • Fig. 11 shows the main surface 12a of the ceramic green sheet 12 as viewed from the stacking direction. As shown in the plan view, the horizontal break pattern 17x and the vertical break pattern 17y are formed in a lattice pattern. A blank portion 45 that does not become a ceramic multilayer substrate is disposed between the portions 44 that become the hatched ceramic multilayer substrate. In the blank portion 45, a terminal for inspecting before removing the ceramic multilayer substrate can be arranged.
  • the break pattern 17k is a portion of the portion 46 to be a ceramic multilayer substrate with diagonal lines. It is formed only along the boundary.
  • the ceramic multilayer substrate is taken out by performing the vertical break and the horizontal break, whereas in the modified example 3, only the portion 46 that becomes the ceramic multilayer substrate is punched out. It can be removed.
  • Example 2 of the method for producing a ceramic multilayer substrate will be described with reference to FIGS.
  • the method for manufacturing the ceramic multilayer substrate of Example 2 is substantially the same as that of Example 1.
  • differences from the first embodiment will be mainly described, and the same reference numerals are used for the same components as in the first embodiment.
  • Example 2 was carried out except that a special material was used for the break pattern 17x formed between the layers of the unfired ceramic green sheet 12 and disposed along the boundary (break line) of the ceramic multilayer substrate.
  • a ceramic multilayer substrate is prepared in the same manner as in Example 1.
  • a plurality of unfired ceramic green sheets 12 and shrinkage-suppressing green sheets 20 and 22 are prepared and laminated in a predetermined order, and unfired ceramics are prepared.
  • a composite laminate in which the shrinkage-suppressing green sheets 20 and 22 are adhered to both sides of the laminate 12 is formed.
  • the ceramic green sheet 12 before lamination is formed on the boundary between the in-plane conductor pattern 14 that becomes internal electrodes, internal wiring, built-in elements, etc. and the ceramic multilayer substrate (break Break pattern 17x arranged along the line) is formed.
  • a through conductor pattern 15 that penetrates the ceramic green sheet 12 and is connected to the in-plane conductor pattern 14 is formed.
  • An in-plane conductor pattern 14k is formed on the main surface of the ceramic green sheet that is in close contact with the shrinkage-suppressing green sheet 20.
  • Shrinkage suppression green sheet 22 In-plane conductor pattern 16 connected to the through conductor pattern of the ceramic green sheet is formed.
  • the break pattern 17x includes a material powder that can disappear near the maximum firing temperature of the ceramic green sheet, for example, carbon that is an inorganic material, when firing the ceramic laminate.
  • the composite laminate is fired under the condition that the unfired ceramic laminate 13 is sintered but the shrinkage-suppressing green sheets 20 and 22 are not sintered.
  • the unfired ceramic laminate 13 is suppressed from shrinkage in the plane direction by the shrinkage-suppressing green sheets 20 and 22, and therefore, as shown in the cross-sectional view of FIG. It contracts greatly in the direction (up and down in the figure).
  • the break line 17x in the unfired ceramic laminate 13 disappears, and a void 18x is formed in the portion where the break line 17x is provided.
  • Example 2 Particularly in Example 2, large voids 18x are formed after firing, and the voids 18x are easily connected.
  • the green sheets 20 and 22 for shrinkage suppression are removed, and the sintered ceramic laminate 13x is taken out.
  • the sintered ceramic laminate 13x is easy to handle such as transport become.
  • the sintered ceramic laminate 13x is bent, and the ceramic multilayer substrates lOp, 10q, and 10r are taken out as shown in the sectional view of FIG. At this time, since the gaps are connected, they can be easily divided and are not divided in any direction.
  • the cut surface 10z of the divided ceramic multilayer substrate 10q has a concave gap dividing portion 18z in which the gap 18x is divided, and the ceramic base material layer is almost broken.
  • the flat ceramic base layer rupture portion 13z is exposed.
  • Example 2 differs from the fabrication example of Example 1 only in the paste used for the break pattern 17x.
  • a ceramic green sheet containing a ceramic material is prepared.
  • the ceramic green sheet is composed of CaO (10 to 55%), SiO (45 to 70%), A
  • the mixture is dispersed in an organic vehicle such as an organic solvent and a plasticizer to prepare a slurry.
  • an organic vehicle such as an organic solvent and a plasticizer
  • the obtained slurry is formed into a sheet shape by a doctor blade method or a casting method to produce an unsintered glass ceramic layer (ceramic green sheet).
  • the unsintered glass ceramic layer is preferably a ceramic green sheet formed by the above-described sheet forming method, but may be an unsintered thick film printed layer formed by the thick film printing method.
  • the ceramic powder may be a magnetic material such as ferrite, or a dielectric material such as barium titanate.
  • the ceramic liner sheet is sintered at a temperature of 1050 ° C or lower. For this reason, a low-temperature sintered ceramic green sheet to be bonded is preferred. Therefore, the glass powder described above has a soft spot of 750 ° C or lower.
  • In-plane conductor pattern 14 For forming, for example, a method of printing a paste of a conductive material by a screen printing method or a gravure printing method or a method of transferring a metal foil having a predetermined pattern shape can be used.
  • the conductor material a material having Ag as a main component of a low resistance and hardly acidic material is preferable.
  • At least one kind of additive of 2 3 may be added.
  • the conductive paste can be prepared by adding a predetermined amount of an organic vehicle in a predetermined ratio to the main component powder, stirring and kneading.
  • an organic vehicle in a predetermined ratio to the main component powder, stirring and kneading.
  • the organic vehicle is a mixture of Noinda resin and solvent, and as binder resin, for example, ethyl cellulose, acrylic resin, Bolibul butyral, methacrylic resin, etc. can be used. It is.
  • solvent for example, tervineol, dihydrotapineol, dihydrotapineol acetate, butyl carbitol, butyl carbitol acetate, alcohols and the like can be used.
  • the viscosity of the conductor paste is preferably 50 to 700 Pa ⁇ s in consideration of printability.
  • the surface conductor pattern includes a portion where a through-hole conductor pattern 15 such as a via-hole conductor or a through-hole conductor for connecting conductor patterns between upper and lower layers is exposed on the surface.
  • the through conductor pattern 15 is formed by a means such as embedding the paste in a through hole formed in the glass ceramic green sheet by a punch bonder or the like.
  • the paste used for the break pattern 17x is obtained by kneading the organic vehicle contained in the conductor paste with carbon powder. This is printed on a ceramic green sheet in the same manner as the conductor paste.
  • ceramic powder such as alumina that does not substantially sinter at the firing temperature of the unsintered glass ceramic layer is converted into an organic vehicle comprising an organic binder, an organic solvent, a plasticizer, and the like.
  • a slurry is prepared by dispersing in a slurry, and the resulting slurry is formed into a sheet based on a doctor blade method, a casting method, or the like to produce a shrinkage-suppressing green sheet.
  • the sintering temperature of the green sheet for suppressing shrinkage is, for example, 1400 to 1600 ° C., and substantially does not sinter at the sintering temperature of the unsintered glass ceramic layer.
  • the shrinkage-suppressing green sheet may be constituted by a single sheet or a plurality of laminated sheets.
  • the average particle size of the ceramic powder used in the shrinkage-suppressing green sheet is preferably 0.1 to 5. O / zm. If the average particle size of the ceramic powder is less than 0., the glass contained in the vicinity of the surface layer of the unsintered glass ceramic layer reacts violently during firing, and after firing, the glass ceramic layer and the shrinkage-suppressing green sheet The green sheet for suppressing shrinkage cannot be removed due to the close contact, and because of the small particle size, the binder and other organic components in the sheet are not easily decomposed and scattered during firing, and delamination occurs in the substrate. On the other hand, if it exceeds 5.0 m, the suppression of firing shrinkage becomes small and the substrate tends to shrink or swell in the X and Y directions more than necessary.
  • the ceramic powder constituting the shrinkage-suppressing green sheet does not substantially sinter at the firing temperature of the unsintered glass ceramic layer. If it is a ceramic powder, alumina, zirconium, magnesia, etc. The ceramic powder can also be used. However, in order for a large amount of glass to be present in the surface layer region of the unsintered glass ceramic layer, the glass on the surface layer is suitably wetted against the green sheet for shrinkage suppression at the boundary between the surface layer and the shrinkage-suppressing liner sheet. Since it is necessary, it is preferable that the ceramic powder is the same as the ceramic powder constituting the green glass ceramic layer.
  • the ceramic green sheets on which the in-plane conductor pattern, the through conductor pattern, and the boundary arrangement conductor pattern are formed are laminated to form an unfired ceramic laminate, and one main surface of the unfired ceramic laminate, On the other main surface, shrinkage-suppressing green sheets are superposed and pressed against each other on the main surface of the ceramic laminate by, for example, pressing under a pressure of 5 to 200 MPa based on an isostatic press. A composite laminate having a sheet is produced.
  • the thickness of the shrinkage-suppressing green sheet is preferably 25 to 500 / zm. If the thickness of the green sheet for shrinkage suppression is less than 25 m, the suppression of firing shrinkage will be small and the The plate may shrink or swell in the xy direction more than necessary. On the other hand, when it exceeds 500 / zm, organic components such as binders in the sheet are difficult to decompose and scatter during firing, and delamination tends to occur in the substrate.
  • the composite laminate is fired in a known belt furnace batch furnace at a firing temperature of a ceramic green sheet of an unfired ceramic laminate, for example, 850 to 950 ° C.
  • the resulting ceramic laminate is sintered.
  • the unfired ceramic laminate does not substantially shrink in the plane direction due to the restraining action of the green sheet for shrinkage suppression layer, but instead shrinks greatly in the thickness direction.
  • the fired composite laminate force shrinkage-suppressing green sheet is removed to take out a sintered ceramic laminate including portions to be a plurality of ceramic multilayer substrates.
  • the green sheet for suppressing shrinkage is not substantially sintered, and the organic components contained before firing are scattered and become a porous state. Therefore, it can be easily removed by sand blasting, wet blasting, ultrasonic vibration or the like.
  • a ceramic multilayer substrate is obtained by dividing the fired ceramic laminate obtained by removing the shrinkage-suppressing green sheet along the boundary of the ceramic multilayer substrate.
  • the crack progresses by applying stress in the vicinity of the void formed along the boundary of the ceramic multilayer substrate, so that it has the desired dimensions and has a smooth cut section.
  • a ceramic multilayer substrate can be obtained.
  • FIG. 18 is a photograph of the outermost layer of the ceramic multilayer substrate and its peripheral portion before the division of the ceramic multilayer substrate in the production example of Example 2.
  • the part marked with a broken line is the printed part of the break line. It can be seen that voids are connected across multiple layers along the boundary of the ceramic multilayer substrate up to just before the outermost layer.
  • the width of the break line is 50 m, and the gap is about the same width. If the width of the break line is reduced, the gap width can be further reduced.
  • Example 2 The manufacturing method of Example 2 described above uses a void formed by printing a break pattern on an unfired ceramic green sheet and disappearing the break pattern during firing.
  • the strength of the sintered ceramic laminate is also suitable for producing a ceramic multilayer substrate accurately and easily by taking out the ceramic substrate.
  • the gap may become smaller or buried during sintering.
  • the tendency is remarkable when the line for breaking organic substances is thinned. If the gap becomes small or fills up, the substrate cannot be divided at the desired cut surface when dividing the substrate after firing, and defects tend to occur.
  • the break line By forming the break line with carbon, which is an inorganic substance, the temperature at which the break line disappears by firing can be raised to around the maximum temperature during substrate firing. This makes it possible to suppress void disappearance due to the viscous flow of the glass in the ceramic green sheet.
  • carbon is preferable because it is inexpensive and does not adversely affect the ceramic multilayer substrate even if it disappears, but other materials can also be used. It is. Any material other than carbon may be used as long as the material can disappear when the temperature reaches around the maximum firing temperature of the ceramic green sheet, and organic material may be used.
  • ⁇ Summary> As described above, a break pattern is printed on an unfired ceramic green sheet, and the sintered ceramic laminate strength is also improved by utilizing voids formed by the disappearance of the break pattern during firing. By removing the ceramic substrate, a ceramic multilayer substrate can be manufactured accurately and easily. [0131] Since the fired ceramic laminate can be cut by bending, it is not necessary to use a special cutting device (laser processing machine, dicer, etc.) to cut the hard fired ceramic laminate. Thus, the process can be simplified.
  • the present invention is not limited to the manufacture of a ceramic multilayer substrate of a module (composite functional component) on which a surface mount electronic component is mounted, but also includes other components such as multilayer capacitors, multilayer inductors, and LC chips. It can also be applied to the production of ceramic multilayer substrates for devices (single-function components) that do not have these components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)
  • Structure Of Printed Boards (AREA)

Description

明 細 書
セラミック多層基板の製造方法
技術分野
[0001] 本発明はセラミック多層基板の製造方法に関し、詳しくは、複数のセラミック層が積 層されたセラミック多層基板の製造方法に関する。
背景技術
[0002] 複数のセラミック層が積層されたセラミック多層基板は、複数個分のセラミック多層 基板となる部分を含む集合基板の状態で同時に焼成し、焼成後に 1個ずつのセラミ ック多層基板に分割することにより、効率よく製造することができる。
[0003] 例えば特許文献 1には、分割線を施した生セラミックシートを転写積層して積層体 を形成し、積層体を熱処理した後に、分割線に COレ
2 ーザーを照射するなどして分 割溝を形成し、分割することにより、多数の基板を得ることが開示されている。
[0004] また、特許文献 2には、予め生セラミックシートの圧着体の表裏面の両方あるいは片 方に分割溝を形成しておき、熱処理後に基板を橈ませることにより分割溝から亀裂を 進行させて分割し、多数の基板を得ることが開示されている。
[0005] また、特許文献 3には、部分的に押圧して凹部を形成したセラミックグリーンシートを 積層することにより、内部に空洞部を有するセラミック基板を形成することが開示され ている。
[0006] また、特許文献 4には、積層型電子部品の外形に対応する形状に形成されたセラミ ックグリーンシートを積層するとともに、切り代に相当する位置に消失材料を積層し、 焼成後に消失材料を消失させて、個々の積層型電子部品を分離することが開示され ている。
特許文献 1 :実開平 4 38071号公報
特許文献 2:特開平 5 - 75262号公報
特許文献 3:特開 2001— 332857号公報
特許文献 4:特開 2005 - 311225号公報
発明の開示 発明が解決しょうとする課題
[0007] しかし、特許文献 1の方法では、大掛かり、かつ高価な COレーザー照射装置が必
2
要となる。また、レーザー照射には長時間を要し、切断加工中に熱ひずみによって基 板が破損する場合や、レーザーによる熱で切断面付近が変形'変質する場合がある
[0008] また、特許文献 2の方法では、分割溝を形成した後の圧着体は、搬送時に、分割溝 力も変形したり破損するなどの不具合が発生することがある。また、熱処理後の基板 を橈ませたときに、分割溝カゝら外れた意図しない位置で割れて、不良品が発生するこ とがある。分割溝に沿って分割できた場合でも、切断面が不規則な形状となり、規格 から外れる場合がある。
[0009] また、特許文献 3の方法では、セラミックグリーンシートの厚みの不均一や押圧力の 不均一によって、空洞がつぶれたり変形したりするので、精度よく空洞を形成すること が困難である。
[0010] また、特許文献 4の方法では、積層型電子部品の外形に対応する形状に消失材料 が充填されたセラミックグリーンシートを準備する必要があり、製造工程が複雑になる 。また、焼成後、個々の部品に分離されてしまうので、たとえば表面実装部品の搭載 工程を実施する際には、個々の部品を整列しなおす必要がある。
[0011] 本発明は、力かる実情に鑑み、正確にかつ容易にセラミック多層基板を製造するこ とができる、セラミック多層基板の製造方法及びセラミック多層基板の集合基板を提 供しょうとするものである。
課題を解決するための手段
[0012] 本発明は、上記課題を解決するために、以下のように構成したセラミック多層基板 の製造方法を提供する。
[0013] セラミック多層基板の製造方法は、(1)複数の未焼成のセラミック基材層を積層して なる未焼成セラミック積層体を形成する第 1の工程と、 (2)前記未焼成セラミック積層 体を焼成して、未焼成の前記セラミック層を焼結させる第 2の工程と、(3)前記未焼成 セラミック積層体の焼成により形成された焼結済みセラミック積層体をブレイクして、 1 個又は 2個以上のセラミック多層基板を取り出す第 3の工程とを備える。前記第 1のェ 程において積層される少なくとも一つの前記未焼成セラミック基材層に、前記セラミツ ク多層基板を取り出す際の境界線となるブレイクラインに沿って、前記第 2の工程の 焼成時に消失し得るブレイク用パターンを形成しておく。前記第 2の工程にぉ 、て、 前記ブレイク用パターンが消失して、前記焼結済みセラミック積層体の内部に空隙が 形成される。前記第 3の工程において、前記焼結済みセラミック積層体に、前記空隙 を通る切断面を形成して、 1個又は 2個以上のセラミック多層基板を取り出す。
[0014] 上記方法によれば、セラミック基材層を積層するときに押圧しても、ブレイク用バタ ーンの位置や形状は乱れないため、焼結済みセラミック積層体の内部に、ブレイクラ インに沿って、精度よく空隙を形成することができる。また、焼成後は、空隙に沿って 焼結済みセラミック積層体を容易にブレイクすることができる。
[0015] 好ましくは、未焼成の前記セラミック基材層の主面に、未焼成の前記セラミック基材 層の平面方向の焼成収縮を抑制するための収縮抑制用層が設けられている。
[0016] この場合、セラミック基材層は、平面方向の焼成収縮が抑制され、厚み方向の収縮 量が大きくなる。そのため、焼結済みセラミック積層体の内部に形成される空隙の積 層方向の間隔を短くし、セラミック多層基板の取り出しを容易にすることができる。また 、空隙の形成にともなう焼成歪みの発生を抑制することができる。
[0017] 好ましくは、前記収縮抑制用層は、前記第 2の工程の焼成の際には実質的に焼結 しな 、セラミック力もなる収縮抑制用層である。
[0018] すなわち、金属粉末等を収縮抑制層として利用することもできるが、セラミック基材 層に対する収縮抑制力はセラミック粉末が好適である。
[0019] なお、例えば、セラミック基材層の間に、セラミック基材層に比べて十分に薄い収縮 抑制用層を挟んだ未焼成セラミック積層体を形成し、収縮抑制用層によってセラミツ ク基材層の平面方向の焼成収縮を抑制しながら、未焼成セラミック積層体を焼成して もよい。この場合、セラミック基材層のガラス成分等が収縮抑制層に浸透し、収縮抑 制層はこのガラス成分等によって緻密になり、その結果、セラミック多層基板は、収縮 抑制用層を含む。
[0020] 他方、前記収縮抑制用層は、前記未焼成セラミック積層体の少なくとも一方主面に 設けられていてもよい。この場合、焼成の後に前記収縮抑制用層を除去することによ つて、前記セラミック多層基板が取り出される。
[0021] すなわち、主面に設けられた収縮抑制層の作用により、セラミック積層体の平面方 向の焼成収縮を抑制することができる。この場合、収縮抑制層はセラミック基材層に 対して十分に厚くてよぐ焼成後のポーラスな収縮抑制層を除去することによって、セ ラミック多層基板が収縮抑制用層を含まないようにすることができる。
[0022] 好ましくは、前記ブレイク用パターンは、前記焼成時に消失し得る榭脂を主成分とし た榭脂パターンである。
[0023] 榭脂は、分子量等によって消失挙動が異なるため、セラミック基材層中のバインダ ー榭脂の飛散消失に対応して、適宜な材料を選択することができる。また、燃え残つ たり、デラミネーシヨンが生じたりしないようにすることができる。
[0024] 好ましくは、前記ブレイク用パターンは、前記第 2の工程において温度が前記セラミ ック層の焼成最高温度付近に達した後に消失し得る材料粉末を含むペーストである
[0025] この場合、第 2の工程において、ブレイク用パターンは、温度がセラミック層の焼成 最高温度付近に達するまで消失しないので、ブレイク用パターンの消失により形成さ れた空隙は、焼成温度がまだ低い段階で空隙が形成された場合と比べると、空隙形 成後の焼成中に、小さくなりにくい。また、セラミック積層体の内部において隣接する 空隙の間に亀裂が形成され、空隙がつながった状態とし、焼成後にセラミック多層基 板の分割を容易に行えるようにすることができる。
[0026] 好ましくは、前記材料粉末は、カーボンである。
[0027] カーボンは安価である上、消失してもセラミック多層基板に悪影響を与えないので、 好ましい。
[0028] 好ましくは、前記ブレイク用パターンの少なくとも一端が、前記未焼成セラミック積層 体の側面に露出している。
[0029] この場合、ブレイク用パターンの消失により形成された空隙を通って、セラミック基 材層中の成分が飛散消失するので、基材層中にカーボンが残留するのを抑制し、焼 成を効率よく行うことができる。
[0030] 好ましくは、前記未焼成セラミック基材層はバインダー榭脂を含んでおり、前記ブレ イク用パターンは、焼成の際、前記バインダー榭脂よりも早く消失する榭脂を主成分 とする。
[0031] この場合、ブレイク用パターンの消失により形成された空隙を通って、セラミック基 材層中のバインダー榭脂が飛散消失するため、基材層中にカーボンが残留するのを 抑制し、焼成を効率よく行うことができる。
[0032] 好ましくは、前記ブレイク用パターンは、複数個の前記セラミック多層基板を区画す るように、格子状に形成されている。
[0033] この場合、複数個のセラミック多層基板を同時に作製することができる。
[0034] 好ましくは、隣合う前記セラミック多層基板の間に、 1本の前記ブレイク用パターンが 配置されている。
[0035] この場合、隣合うセラミック多層基板が間隔を設けずに詰めて配置されるので、セラ ミック積層体力も作製されるセラミック多層基板の個数を多くすることができる。
[0036] 好ましくは、隣合う前記セラミック多層基板の間に、 2本以上の前記ブレイク用バタ ーンが配置されている。
[0037] この場合、隣合うセラミック多層基板が間隔を設けて配置される。セラミック積層体 間の間隔部分には、例えば、セラミック多層基板の検査用端子を配置することができ る。
[0038] 好ましくは、前記未焼成セラミック基材層は、低温焼結セラミック粉末を主成分とす る未焼成低温焼結セラミック層であり、前記未焼成セラミック積層体には、金、銀又は 銅を主成分とする導体パターンが設けられて!/ヽる。
[0039] 低温焼結セラミック材料(LTCC : Low Temperature Co-fired Ceramic)とは、 105 0°C以下の温度で焼結可能であって、比抵抗の小さな Au、 Agや Cu等と同時焼成 (c o-fire)が可能なセラミック材料であるため、高周波用途のモジュールやデバイスを構 成するための基板材料として好適な材料である。低温焼結セラミック材料としては、具 体的には、(1)アルミナやジルコユア、マグネシア、フォルステライト等のセラミック粉 末にホウ珪酸系ガラスを混合してなるガラス複合系 LTCC材料、 (2) ZnO-MgO- AI O— SiO系の結晶化ガラスを用いた結晶化ガラス系 LTCC材料、(3) BaO— A1
2 3 2
O -SiO系セラミック粉末や Al O -CaO-SiO— MgO— B O系セラミック粉末 等を用いた非ガラス系 LTCC材料、等が挙げらる。低温焼結セラミック材料を用いる ことにより、セラミック焼結体を素体とするコンデンサやインダクタ等の受動素子を焼 結済みセラミック積層体内に組み込むことができる。
[0040] 好ましくは、前記焼結済みセラミック積層体の前記セラミック多層基板が取り出され る部分、もしくは前記焼結済みセラミック積層体力 取り出された前記セラミック多層 基板の少なくとも一方主面に、表面実装型電子部品を搭載する工程をさらに備える。
[0041] この場合、セラミック多層基板に表面実装型電子部品を搭載したモジュールを作製 することができる。特に、焼成後、ブレイク前に搭載すれば、基板の並べなおしが必 要なぐ効率的に表面実装部品を搭載できる。
発明の効果
[0042] 本発明によれば、ブレイク用パターンの焼成時の消失によって形成した空隙を利用 して、焼結済み積層体を分割するので、正確にかつ容易にセラミック多層基板を製 造することができる。
[0043] すなわち、焼結済みのセラミック積層体の切断面は、空隙を通るため、位置ずれや 形状のばらつきがほとんど生じない。そのため、意図しない位置で分割されたり、切 断時に破損したり、切断面がばらつ 、たりすることがな 、。
[0044] また、未焼成セラミック積層体の所望の場所に、導体パターンと同様に、厚膜バタ ーンを形成するだけでよい。焼成することで、はじめて空隙が形成されるので、未焼 成セラミック多層基板の搬送時に、空隙力も変形や破損が発生することはない。焼結 済みのセラミック積層体は、空隙付近に応力を加えることにより、簡単に切断すること ができ、例えば COレーザー照射装置のような大掛かりで高価な装置は特には不要
2
である。切断時に熱をカ卩えなくてもよいので、切断面付近の熱による変形 ·変質を抑 制できる。
図面の簡単な説明
[0045] [図 1]セラミック多層基板の製造工程を示す断面図である。(実施例 1)
[図 2]セラミック多層基板の製造工程を示す断面図である。(実施例 1)
[図 3]セラミック多層基板の製造工程を示す断面図である。(実施例 1)
[図 4]セラミック多層基板の製造工程を示す断面図である。(実施例 1) 圆 5]セラミック多層基板の製造工程を示す断面図である。(実施例 1)
圆 6]セラミック多層基板の断面図である。(実施例 1)
圆 7]セラミック多層基板の切断面を示す斜視図である。(実施例 1)
圆 8]セラミック多層基板に表面実装型電子部品を実装したモジュールの断面図であ る。(実施例 1)
[図 9]ブレイク用パターンを示す平面図である。(実施例 1)
[図 10]ブレイク用パターンを示す平面図である。(変形例 1)
[図 11]ブレイク用パターンを示す平面図である。(変形例 2)
[図 12]ブレイク用パターンを示す平面図である。(変形例 3)
圆 13]セラミック多層基板の製造工程を示す断面図である。(実施例 2)
圆 14]セラミック多層基板の製造工程を示す断面図である。(実施例 2)
圆 15]セラミック多層基板の製造工程を示す断面図である。(実施例 2)
圆 16]セラミック多層基板の製造工程を示す断面図である。(実施例 2)
圆 17]セラミック多層基板の製造工程を示す断面図である。(実施例 2)
圆 18]セラミック多層基板の分割部分の写真である。(実施例 2)
符号の説明
10, lOp, 10q, 10r セラミック多層基板
11 モジユーノレ
12 セラミックグリーンシート(セラミック基材層)
13 セラミック積層体
14 面内導体パターン (導体パターン)
15 貫通導体パターン (導体パターン)
17, 17x ブレイク用パターン
18, 18x 空隙
20, 22 収縮抑制用グリーンシート
30, 32 表面実装型電子部品
発明を実施するための最良の形態
以下、本発明の実施の形態について、図 1〜図 18を参照しながら説明する。 [0048] <実施例 1 > セラミック多層基板の製造方法の実施例 1について、図 1〜図 9を参 照しながら、説明する。
[0049] まず、セラミック多層基板の製造方法の概要について説明する。
[0050] 図 1の断面図に示すように、複数枚の未焼成のセラミックグリーンシート 12と、収縮 抑制用グリーンシート 20, 22とを準備して所定順に積層し、図 2の断面図に示すよう に、未焼成セラミック積層体 12の両面に収縮抑制用グリーンシート 20, 22を密着さ せた複合積層体を形成する。
[0051] 未焼成セラミック積層体 13は、 1又は 2個分のセラミック多層基板となる部分を含む 。未焼成セラミック積層体 13は、積層された複数枚の未焼成のセラミックグリーンシー ト 12の層間に、セラミック多層基板の内部電極、内部配線、内蔵素子などになる面内 導体パターン 14と、セラミック多層基板の境界 (ブレイクライン)に沿って配置された ブレイク用パターン 17とが形成されている。また、セラミックグリーンシート 12には、セ ラミックグリーンシート 12を貫通し、面内導体パターン 14に接続された貫通導体バタ ーン 15が形成されている。
[0052] ブレイク用パターン 17は、例えば、プチラール系榭脂など、燃焼して消失する榭脂 、あるいは、アクリル系榭脂など、高温になるとモノマーに分解する榭脂を主成分とす る。ブレイク用パターン 17は、セラミックグリーンシート 12の主面 12aを積層方向から 見た図 9の平面図に示すように、横方向に延在する部分 17aと縦方向に延在する部 分 17bとが連続的に形成されており、ブレイク用パターン 17a, 17bで区画された各 矩形部分がセラミック多層基板となる部分 40である。セラミック多層基板となる部分 4 0は、斜線を付した領域には、互いに隣接して配置されている。セラミック多層基板の 品質をほぼ一定に保っため、セラミックグリーンシートの外縁 12x, 12yに沿って、セ ラミック多層基板とならな 、捨て代、すなわちマージン部 42が配置されて 、る。
[0053] 図 1に示したように、収縮抑制用グリーンシート 20に密着するセラミックグリーンシー ト 12kの主面に形成された面内導体パターン 14kは、図 6の断面図に示すように、セ ラミック多層基板 10の一方主面 10sに露出する電極 26, 28となる。
[0054] また、図 1に示したように、収縮抑制用グリーンシート 22には、セラミックグリーンシ ート 12sの貫通導体パターン 15sに接続される面内導体 16が形成されている。この 面内導体パターン 16は、図 6の断面図に示すように、セラミック多層基板 10の他方 主面 10tに露出する電極 24となる。
[0055] 次いで、未焼成セラミック積層体 13は焼結するが、収縮抑制用グリーンシート 20, 22は焼結しない条件で、複合積層体を焼成する。このとき、未焼成セラミック積層体 13は、収縮抑制用グリーンシート 20, 22によって平面方向の収縮が抑制されるため 、図 3の断面図に示すように、たとえば 40〜60%程度、厚み方向(図において上下 方向)に大きく収縮する。また、焼成によって、未焼成セラミック積層体 13中のブレイ ク用ライン 17が消失し、ブレイク用ライン 17があった部分には空隙 18が形成される。
[0056] 図 9に示したように、ブレイク用パターン 17a, 17bは連続して形成され、それぞの 両端はセラミックグリーンシートの外縁 12x, 12yに達しているため、焼成後のセラミツ ク積層体 13の側面には、ブレイク用パターン 17a, 17bが消失して形成された空隙 1 8が開口する。このように、ブレイク用パターン 17a, 17bが連続し、ブレイク用パター ン 17a, 17bの少なくとも一端が未焼成セラミック積層体 17の側面に露出していれば 、ブレイク用パターン 17a, 17bの消失により形成された空隙 18を通って、セラミック 基材層 12中の有機成分が飛散消失するので、残留カーボンを生じさせず、焼成を 効率よく行うことができる。
[0057] 未焼成セラミック基材層 12はバインダー榭脂を含んでおり、ブレイク用パターン 17 は、焼成の際、ノインダー榭脂 12よりも早く消失する榭脂を主成分とする場合、ブレ イク用パターン 17の消失により形成された空隙 18を通って、セラミック基材層 12中の ノインダー榭脂が飛散消失するため、特に焼成を効率よく行うことができる。
[0058] 次いで、図 4の断面図に示すように、収縮抑制用グリーンシート 20, 22を除去して、 焼結済みセラミック積層体 13を取り出す。
[0059] 次いで、焼結済みセラミック積層体 13を折り曲げ、空隙 18を通る切断面を形成して 分割し、図 5の断面図に示すように、セラミック多層基板 10a, 10b, 10cを取り出す。
[0060] このとき、セラミック基板 10の切断面 10xには、図 6の拡大断面図及び図 7の要部 斜視図に示すように、空隙 18が分割された凹状の空隙分割部 18xと、セラミック基材 層が破断したほぼ平坦なセラミック基材層破断部 13xとが露出する。なお、セラミック 基材層を形成するセラミック粒子には、空隙分割部 18xでは粒界破断のみが生じて おり、セラミック基材層破断部 13xでは粒界破断と粒内破断が生じている。
[0061] なお、分割の開始を促進するために、未焼成セラミック積層体 13のいずれか一方 又は両方の主面に、セラミック多層基板となる部分の境界に沿って予め溝を形成して おいてもよい。あるいは、セラミック基材層と収縮抑制層との間にブレイク用パターン を形成しておくことにより、焼結済みセラミック積層体の表面に、分割の開始を促進す る溝を形成することちでさる。
[0062] セラミック多層基板 10には、図 8の断面図に示すように、一方主面に露出した電極 26, 28に、積層コンデンサや ICチップなどの表面実装型電子部品 30, 32の端子を はんだリフローやバンプなどによって接続し、表面実装型電子部品 30, 32が搭載さ れたモジュール 11を形成する。モジュール 11は、セラミック多層基板 10の他方主面 の電極 24を、外部回路にはんだリフロー等によって接続することにより、外部回路に 実装することができる。なお、上述したように、表面実装型電子部品の搭載は、ブレイ ク前の集合基板に対して行うことが好まし 、。
[0063] 次に、セラミック多層基板の作製例について説明する。
[0064] まず、セラミック材料を含むセラミックグリーンシートを用意する。
[0065] セラミックグリーンシートは、具体的には、 CaO (10〜55%)、 SiO (45〜70%)、 A
2
1 O (0〜30wt%)、不純物(0〜: L0wt%)、 B O (0〜20wt%)からなる組成のガラ
2 3 2 3
ス粉末 50〜65wt%と、不純物が 0〜10wt%の Al O粉末 35〜50wt%とからなる
2 3
混合物を、有機溶剤、可塑剤等カゝらなる有機ビヒクル中に分散させ、スラリーを調製 する。次いで、得られたスラリーをドクターブレード法やキャスティング法でシート状に 成形し、未焼結ガラスセラミック層(セラミックグリーンシート)を作製する。
[0066] 未焼結ガラスセラミック層は、上述したシート成形法により形成したセラミックグリーン シートであることが好ま 、が、厚膜印刷法により形成した未焼結の厚膜印刷層であ つてもよい。また、セラミック粉末は上述した絶縁体材料のほか、フェライト等の磁性 体材料、チタン酸バリウム等の誘電体材料を使用することもできるが、セラミックダリー ンシートとしては、 1050°C以下の温度で焼結する低温焼結セラミックグリーンシート が好ましぐこのため、上述したガラス粉末は 750°C以下の軟ィ匕点を有するものであ る。 [0067] 次 、で、パンチング加工等により前記末焼結ガラスセラミック層に貫通孔を形成し、 そこに導電材料をペーストイ匕した導体ペーストを充填する。面内導体パターン 14を 形成するには、例えば導体材料をペーストイ匕したものをスクリーン印刷法やグラビア 印刷法等により印刷する力、あるいは所定パターン形状の金属箔を転写する等の方 法が挙げられる。
[0068] 前記導体材料としては、低抵抗で難酸ィ匕性材料の Agを主成分としたものが好まし い。また、主成分の Ag以外に特にセラミックとの接合強度が必要な場合は、 Al O等
2 3 の添加物を少なくとも 1種類以上添加しても構わない。
[0069] 導体ペーストは、上記の主成分粉末に対して、所定の割合で有機ビヒクルを所定量 加え、攪拌、混練すること〖こより作製することができる。ただし、主成分粉末、添加成 分粉末、有機ビヒクルなどの配合の順序には特に制約はな 、。
[0070] また、有機ビヒクルはノインダー榭脂と溶剤を混合したものであり、バインダー榭脂 としては、例えば、ェチルセルロース、アクリル榭脂、ボリビュルブチラール、メタクリル 榭脂などを使用することが可能である。
[0071] また、溶剤としては、例えば、タービネオール、ジヒドロタ一ビネオール、ジヒドロタ一 ピネオールアセテート、ブチルカルビトール、ブチルカルビトールアセテート、アルコ ール類などを使用することが可能である。
[0072] また、必要に応じて、各種の分散剤、可塑剤、活性剤などを添加してもよ ヽ。
[0073] また、導体ペーストの粘度は、印刷性を考慮して、 50〜700Pa · sとすることが望ま しい。
[0074] なお、表面の導体パターンには、上下の層間の導体パターン同士を接続するため のビアホール導体やスルーホール導体等の貫通導体パターン 15が表面に露出した 部分も含まれる。貫通導体パターン 15は、パンチンダカ卩ェ等によりガラスセラミックグ リーンシートに形成した貫通孔に、上記ペーストを印刷により埋め込む等の手段によ つて形成される。
[0075] ブレイク用パターン 17に用いるペーストは、上記導体ペーストに含まれる有機ビヒク ルを用いることができ、上記導体ペーストと同様に、セラミックグリーンシートに印刷さ れるものである。 [0076] 他方、上記の未焼結ガラスセラミック層の焼成温度では実質的に焼結しないアルミ ナ等のセラミック粉末を、有機バインダー、有機溶剤、可塑剤等からなる有機ビヒクル 中に分散させてスラリーを調製し、得られたスラリーをドクターブレード法やキャスティ ング法等に基づいてシート状に成形して、収縮抑制用グリーンシートを作製する。収 縮抑制用グリーンシートの焼結温度は、例えば 1400〜1600°Cであり、未焼結ガラス セラミック層の焼結温度では実質的に焼結しない。
[0077] なお、この収縮抑制用グリーンシートは、一枚で構成しても、複数枚を積層すること により構成してもよい。ここで、収縮抑制用グリーンシートに用いるセラミック粉末の平 均粒径は 0. 1〜5. O /z mが好ましい。セラミック粉末の平均粒径が 0. 未満で あると、未焼結ガラスセラミック層の表層近傍に含有しているガラスと焼成中に激しく 反応して、焼成後にガラスセラミック層と収縮抑制用グリーンシートとが密着して収縮 抑制用グリーンシートの除去ができなくなったり、小粒径のためにシート中のバインダ 一等有機成分が焼成中に分解飛散しにくく基板中にデラミネーシヨンが発生すること 力 Sあり、他方、 5. 0 mを超えると焼成収縮の抑制力が小さくなつて基板が必要以上 に X, y方向に収縮したりうねったりする傾向にある。
[0078] また、収縮抑制用グリーンシートを構成するセラミック粉末は、未焼結ガラスセラミツ ク層の焼成温度では実質的に焼結しな 、セラミック粉末であればよぐアルミナのほ 、ジルコユアやマグネシア等のセラミック粉末も使用できる。ただし、未焼結ガラス セラミック層の表層領域にガラスを多く存在させるためには表層と収縮抑制用ダリー ンシートの接触している境界で表層のガラスが収縮抑制用グリーンシートに対して好 適に濡れる必要があるので、未焼結ガラスセラミック層を構成するセラミック粉末と同 種のセラミック粉末であることが好まし 、。
[0079] 次いで、面内導体パターン、貫通導体パターン及び境界配置導体パターンが形成 されたセラミックグリーンシートを積層して未焼成のセラミック積層体を形成し、未焼成 のセラミック積層体の一方主面、他方主面に、収縮抑制用グリーンシートをそれぞれ 重ね合わせ、例えば 5〜200MPaの圧力下にて、静水圧プレス等に基づき、圧着す ることにより、セラミック積層体の両主面に収縮抑制用グリーンシートを有する複合積 層体を作製する。 [0080] なお、収縮抑制用グリーンシートの厚みは、 25〜500 /z mが好ましい。収縮抑制用 グリーンシートの厚みが 25 m未満であると、焼成収縮の抑制力が小さくなつて、基 板が必要以上に xy方向に収縮したりうねったりすることがある。他方、 500 /z mを超 えると,シート中のバインダー等の有機成分が焼成中に分解飛散しにくく,基板中に デラミネーシヨンが発生する傾向にある。
[0081] 次 、で、この複合積層体を、周知のベルト炉ゃバッチ炉で、未焼成のセラミック積 層体のセラミックグリーンシートの焼成温度、例えば 850〜950°Cで焼成して、未焼 成のセラミック積層体を焼結させる。このとき、未焼成のセラミック積層体は、収縮抑 制用グリーンシートの拘束作用により、平面方向に実質的に収縮しないかわりに、厚 み方向には大きく収縮する。
[0082] 次いで、焼成後の複合積層体力 収縮抑制用グリーンシートを除去することによつ て、複数のセラミック多層基板となる部分を含む焼結済みセラミック積層体を取り出す
[0083] なお、焼成後の複合積層体において、収縮抑制用グリーンシートは実質的に焼結 しておらず、また、焼成前に含まれていた有機成分が飛散し、多孔質の状態になつ ているため、サンドブラスト法、ウエットブラスト法、超音波振動法等により、容易に除 去することができる。
[0084] 収縮抑制用グリーンシートを除去して得られた焼成後のセラミック積層体を、セラミ ック多層基板の境界に沿って分割することにより、セラミック多層基板が得られる。
[0085] 焼成後のセラミック積層体を分割する際には、セラミック多層基板の境界に沿って 形成された空隙近傍に応力が集中して亀裂が進行し、希望寸法通りで滑らかな切断 面を持つセラミック多層基板が得られる。切断面は、バレル研磨等の平滑ィ匕処理によ つて、さらに滑らかにしてもよい。
[0086] く変形例 1 > セラミックグリーンシート 12の主面 12aを積層方向から見た図 10の 平面図に示すように、実施例と同様に、横方向のブレイク用パターン 17sと縦方向の ブレイク用パターン 17tとが格子状に形成されている。実施例と異なり、ブレイク用パ ターン 17s, 17tは、破線状に断続的に形成されている。
[0087] く変形例 2 > セラミックグリーンシート 12の主面 12aを積層方向から見た図 11の 平面図に示すように、横方向のブレイク用パターン 17xと縦方向のブレイク用パター ン 17yが格子状に形成されて 、る。斜線を付したセラミック多層基板となる部分 44の 間に、セラミック多層基板とならない空白部分 45が配置されている。空白部分 45に は、セラミック多層基板を取り出す前に検査するための端子等を配置することができ る。
[0088] く変形例 3 > セラミックグリーンシート 12の主面 12aを積層方向から見た図 12の 平面図に示すように、ブレイク用パターン 17kが、斜線を付したセラミック多層基板と なる部分 46の境界に沿ってのみ形成されている。実施例や変形例 1、 2では、縦方 向のブレイクと横方向のブレイクとを行うことによってセラミック多層基板を取り出すの に対し、変形例 3では、セラミック多層基板となる部分 46を打ち抜くだけで取り出すこ とがでさる。
[0089] <実施例 2 >セラミック多層基板の製造方法の実施例 2について、図 13〜図 18を 参照しながら、説明する。実施例 2のセラミック多層基板の製造方法は、実施例 1と略 同様である。以下では、実施例 1との相違点を中心に説明し、実施例 1と同様の構成 部分には同じ符号を用いる。
[0090] 実施例 2では、未焼成のセラミックグリーンシート 12の層間に形成され、セラミック多 層基板の境界 (ブレイクライン)に沿って配置されるブレイク用パターン 17xに特別な 材料を用いる以外、実施例 1と同様の方法でセラミック多層基板を作製する。
[0091] すなわち、図 13の断面図に示すように、複数枚の未焼成のセラミックグリーンシート 12と、収縮抑制用グリーンシート 20, 22とを準備して所定順に積層し、未焼成セラミ ック積層体 12の両面に収縮抑制用グリーンシート 20, 22を密着させた複合積層体 を形成する。
[0092] 実施例 1の図 1と同様に、積層前のセラミックグリーンシート 12には、内部電極、内 部配線、内蔵素子などになる面内導体パターン 14と、セラミック多層基板の境界 (ブ レイクライン)に沿って配置されたブレイク用パターン 17xとが形成されている。セラミ ックグリーンシート 12を貫通し、面内導体パターン 14に接続された貫通導体パターン 15が形成されている。収縮抑制用グリーンシート 20に密着するセラミックグリーンシ ート主面には、面内導体パターン 14k形成されている。収縮抑制用グリーンシート 22 には、セラミックグリーンシートの貫通導体パターンに接続される面内導体パターン 1 6が形成されている。
[0093] 特に実施例 2では、ブレイク用パターン 17xは、セラミック積層体の焼成時に、セラミ ックグリーンシートの焼成最高温度付近で消失し得る材料粉末、例えば、無機材料で あるカーボンを含む。
[0094] 次いで、未焼成セラミック積層体 13は焼結するが、収縮抑制用グリーンシート 20, 22は焼結しない条件で、複合積層体を焼成する。焼成中に、未焼成セラミック積層 体 13は、収縮抑制用グリーンシート 20, 22によって平面方向の収縮が抑制されるた め、図 14の断面図に示すように、たとえば 40〜60%程度、厚み方向(図において上 下方向)に大きく収縮する。また、焼成によって、未焼成セラミック積層体 13中のブレ イク用ライン 17xが消失し、ブレイク用ライン 17xがあつた部分には空隙 18xが形成さ れる。
[0095] 特に実施例 2では、焼成後に大きな空隙 18xが形成され、空隙 18x間がつながりや すい。
[0096] すなわち、セラミックグリーンシートの焼成収縮中にブレイク用パターンが消失する と、ブレイク用パターンの消失後に形成された空隙は、その後の焼成でセラミックダリ ーンシートが収縮することによって、あるいは、セラミックグリーンシート中のガラス成 分が空隙内に溶け出すことによって、小さくなり、場合によっては埋もれてしまう。焼 成の遅い段階で空隙が形成されるほど、空隙は小さくなりにくい。実施例 2のブレイク 用パターン 17xは、セラミックグリーンシートの焼成最高温度付近で消失し得る材料 粉末を含むので、焼成後に大きな空隙が形成される。
[0097] また、ブレイク用パターン 17xが消失すると、積層方向(Z方向)に隣接するブレイク 用パターン 17x間の領域のセラミックグリーンシートは、ブレイク用パターン 17xが消 失して空隙 18xが形成されると、面方向(XY方向)にも収縮する。一方、その領域の 周囲のセラミックグリーンシートは、拘束層によって面方向の収縮が抑制され続ける。 そのため、ブレイク用パターン 17xが消失して空隙 18xが形成されると、積層方向に 隣接するブレイク用パターン 17x間の領域のセラミックグリーンシートに、積層方向に 延在する亀裂が発生し、空隙 18xがつながった状態となる。 [0098] 次いで、図 15の断面図に示すように、収縮抑制用グリーンシート 20, 22を除去して 、焼結済みセラミック積層体 13xを取り出す。このとき、最外層には亀裂が達しない( 空隙が繋がらない)ように、例えば最外層のセラミックグリーンシートの厚みを選択す ると、焼結済みセラミック積層体 13xは、搬送等の取り扱いが容易になる。
[0099] 次いで、焼結済みセラミック積層体 13xを折り曲げ、図 16の断面図に示すように、 セラミック多層基板 lOp, 10q, 10rを取り出す。このとき、空隙がつながっているので 、容易に分割することができる上、あらぬ方向に分割されることがない。
[0100] 図 17の拡大断面図に示すように、分割されたセラミック多層基板 10qの切断面 10z には、空隙 18xが分割された凹状の空隙分割部 18zと、セラミック基材層が破断した ほぼ平坦なセラミック基材層破断部 13zとが露出する。
[0101] 次に、セラミック多層基板の作製例について説明する。実施例 2の作製例は、実施 例 1の作製例とは、ブレイク用パターン 17xに用いるペーストのみが異なる。
[0102] まず、セラミック材料を含むセラミックグリーンシートを用意する。
[0103] セラミックグリーンシートは、具体的には、 CaO (10〜55%)、 SiO (45〜70%)、 A
2
1 O (0〜30wt%)、不純物(0〜: L0wt%)、 B O (0〜20wt%)からなる組成のガラ
2 3 2 3
ス粉末 50〜65wt%と、不純物が 0〜10wt%の Al O粉末 35〜50wt%とからなる
2 3
混合物を、有機溶剤、可塑剤等カゝらなる有機ビヒクル中に分散させ、スラリーを調製 する。次いで、得られたスラリーをドクターブレード法やキャスティング法でシート状に 成形し、未焼結ガラスセラミック層(セラミックグリーンシート)を作製する。
[0104] 未焼結ガラスセラミック層は、上述したシート成形法により形成したセラミックグリーン シートであることが好ま 、が、厚膜印刷法により形成した未焼結の厚膜印刷層であ つてもよい。また、セラミック粉末は上述した絶縁体材料のほか、フェライト等の磁性 体材料、チタン酸バリウム等の誘電体材料を使用することもできるが、セラミックダリー ンシートとしては、 1050°C以下の温度で焼結する低温焼結セラミックグリーンシート が好ましぐこのため、上述したガラス粉末は 750°C以下の軟ィ匕点を有するものであ る。
[0105] 次いで、パンチング加工等により前記末焼結ガラスセラミック層に貫通孔を形成し、 そこに導電材料をペーストイ匕した導体ペーストを充填する。面内導体パターン 14を 形成するには、例えば導体材料をペーストイ匕したものをスクリーン印刷法やグラビア 印刷法等により印刷する力、あるいは所定パターン形状の金属箔を転写する等の方 法が挙げられる。
[0106] 前記導体材料としては、低抵抗で難酸ィ匕性材料の Agを主成分としたものが好まし い。また、主成分の Ag以外に特にセラミックとの接合強度が必要な場合は、 Al O等
2 3 の添加物を少なくとも 1種類以上添加しても構わない。
[0107] 導体ペーストは、上記の主成分粉末に対して、所定の割合で有機ビヒクルを所定量 加え、攪拌、混練すること〖こより作製することができる。ただし、主成分粉末、添加成 分粉末、有機ビヒクルなどの配合の順序には特に制約はな 、。
[0108] また、有機ビヒクルはノインダー榭脂と溶剤を混合したものであり、バインダー榭脂 としては、例えば、ェチルセルロース、アクリル榭脂、ボリビュルブチラール、メタクリル 榭脂などを使用することが可能である。
[0109] また、溶剤としては、例えば、タービネオール、ジヒドロタ一ビネオール、ジヒドロタ一 ピネオールアセテート、ブチルカルビトール、ブチルカルビトールアセテート、アルコ ール類などを使用することが可能である。
[0110] また、必要に応じて、各種の分散剤、可塑剤、活性剤などを添加してもよい。
[0111] また、導体ペーストの粘度は、印刷性を考慮して、 50〜700Pa · sとすることが望ま しい。
[0112] なお、表面の導体パターンには、上下の層間の導体パターン同士を接続するため のビアホール導体やスルーホール導体等の貫通導体パターン 15が表面に露出した 部分も含まれる。貫通導体パターン 15は、パンチンダカ卩ェ等によりガラスセラミックグ リーンシートに形成した貫通孔に、上記ペーストを印刷により埋め込む等の手段によ つて形成される。
[0113] ブレイク用パターン 17xに用いるペーストは、カーボン粉に上記導体ペーストに含ま れる有機ビヒクルを混練して得られる。これを、上記導体ペーストと同様に、セラミック グリーンシートに印刷する。
[0114] 他方、上記の未焼結ガラスセラミック層の焼成温度では実質的に焼結しないアルミ ナ等のセラミック粉末を、有機バインダー、有機溶剤、可塑剤等からなる有機ビヒクル 中に分散させてスラリーを調製し、得られたスラリーをドクターブレード法やキャスティ ング法等に基づいてシート状に成形して、収縮抑制用グリーンシートを作製する。収 縮抑制用グリーンシートの焼結温度は、例えば 1400〜1600°Cであり、未焼結ガラス セラミック層の焼結温度では実質的に焼結しない。
[0115] なお、この収縮抑制用グリーンシートは、一枚で構成しても、複数枚を積層すること により構成してもよい。ここで、収縮抑制用グリーンシートに用いるセラミック粉末の平 均粒径は 0. 1〜5. O /z mが好ましい。セラミック粉末の平均粒径が 0. 未満で あると、未焼結ガラスセラミック層の表層近傍に含有しているガラスと焼成中に激しく 反応して、焼成後にガラスセラミック層と収縮抑制用グリーンシートとが密着して収縮 抑制用グリーンシートの除去ができなくなったり、小粒径のためにシート中のバインダ 一等有機成分が焼成中に分解飛散しにくく基板中にデラミネーシヨンが発生すること 力 Sあり、他方、 5. 0 mを超えると焼成収縮の抑制力が小さくなつて基板が必要以上 に X, y方向に収縮したりうねったりする傾向にある。
[0116] また、収縮抑制用グリーンシートを構成するセラミック粉末は、未焼結ガラスセラミツ ク層の焼成温度では実質的に焼結しな 、セラミック粉末であればよぐアルミナのほ 、ジルコユアやマグネシア等のセラミック粉末も使用できる。ただし、未焼結ガラス セラミック層の表層領域にガラスを多く存在させるためには表層と収縮抑制用ダリー ンシートの接触している境界で表層のガラスが収縮抑制用グリーンシートに対して好 適に濡れる必要があるので、未焼結ガラスセラミック層を構成するセラミック粉末と同 種のセラミック粉末であることが好まし 、。
[0117] 次いで、面内導体パターン、貫通導体パターン及び境界配置導体パターンが形成 されたセラミックグリーンシートを積層して未焼成のセラミック積層体を形成し、未焼成 のセラミック積層体の一方主面、他方主面に、収縮抑制用グリーンシートをそれぞれ 重ね合わせ、例えば 5〜200MPaの圧力下にて、静水圧プレス等に基づき、圧着す ることにより、セラミック積層体の両主面に収縮抑制用グリーンシートを有する複合積 層体を作製する。
[0118] なお、収縮抑制用グリーンシートの厚みは、 25〜500 /z mが好ましい。収縮抑制用 グリーンシートの厚みが 25 m未満であると、焼成収縮の抑制力が小さくなつて、基 板が必要以上に xy方向に収縮したりうねったりすることがある。他方、 500 /z mを超 えると,シート中のバインダー等の有機成分が焼成中に分解飛散しにくく,基板中に デラミネーシヨンが発生する傾向にある。
[0119] 次 、で、この複合積層体を、周知のベルト炉ゃバッチ炉で、未焼成のセラミック積 層体のセラミックグリーンシートの焼成温度、例えば 850〜950°Cで焼成して、未焼 成のセラミック積層体を焼結させる。このとき、未焼成のセラミック積層体は、収縮抑 制用層用グリーンシートの拘束作用により、平面方向に実質的に収縮しな!、かわりに 、厚み方向には大きく収縮する。
[0120] 次いで、焼成後の複合積層体力 収縮抑制用グリーンシートを除去することによつ て、複数のセラミック多層基板となる部分を含む焼結済みセラミック積層体を取り出す
[0121] なお、焼成後の複合積層体において、収縮抑制用グリーンシートは実質的に焼結 しておらず、また、焼成前に含まれていた有機成分が飛散し、多孔質の状態になつ ているため、サンドブラスト法、ウエットブラスト法、超音波振動法等により、容易に除 去することができる。
[0122] 収縮抑制用グリーンシートを除去して得られた焼成後のセラミック積層体を、セラミ ック多層基板の境界に沿って分割することにより、セラミック多層基板が得られる。
[0123] 分割する際には、セラミック多層基板の境界に沿って形成された空隙近傍に応力を 作用させることにより亀裂が進行するので、所望の寸法通りであり、かつ、滑らかな切 断面を持つセラミック多層基板を得ることができる。
[0124] 図 18は、実施例 2の作製例について、セラミック多層基板の分割前に、セラミック多 層基板の最外層及びその周辺部分を撮影した写真である。破線を付した部分は、ブ レイク用ラインの印刷部分である。セラミック多層基板の境界に沿って、最外層の手 前まで、複数層に渡って空隙がつながつていることが分かる。ブレイク用ラインの幅は 50 mであり、空隙も略同じ程度の幅である。ブレイク用ラインの幅を小さくすれば、 空隙の幅もさらに小さくすることが可能である。
[0125] 以上に説明した実施例 2の製造方法は、未焼成セラミックグリーンシートにブレイク 用パターンを印刷し、焼成時にブレイク用パターンが消失して形成された空隙を利用 して、焼結済みセラミック積層体力もセラミック基板を取り出すことにより、正確にかつ 容易にセラミック多層基板を製造する場合に、好適である。
[0126] すなわち、セラミックグリーンシートに、有機物でブレイク用ラインを形成すると、空 隙が焼結時に小さくなつたり、埋まってしまうことがある。特に、ガラスの粘性流動を利 用して焼結挙動をコントロールするガラスセラミックのグリーンシートでは、有機物のブ レイク用ラインを細線ィ匕した場合、その傾向が顕著である。空隙が小さくなつたり、埋 まったりすると、焼成後の基板分割時に所望の切断面で分割できずに不良が発生し やすくなる。
[0127] ブレイク用ラインを無機物であるカーボンで形成することで、ブレイク用ラインが焼成 により消失する温度を、基板焼成時の最高温度付近まで上げることできる。これにより 、セラミックグリーンシート内のガラスの粘性流動による空隙消失を抑えることが可能 になる。
[0128] さらに、焼成中に、拘束層によって面方向(XY方向)の収縮が抑制されているセラ ミックグリーンシートの層間に、ブレイク用ラインの消失によって空隙が生じた場合、空 隙に隣接する部分は拘束力が及ばず、面方向 (XY方向)に収縮可能となる。そのた め、セラミックグリーンシートは、空隙と空隙の間の微小領域においてのみ面方向(X Y方向)に縮むため、この微小領域に亀裂が生じる。この亀裂によって空隙がつなが つた状態になり、焼成後のセラミック多層基板の分割が容易となる。また、分割時にあ らぬ方向に分割されることが起きな 、。
[0129] なお、ブレイク用ラインに含まれる材料として、カーボンは、安価である上、消失して もセラミック多層基板に悪影響を与えな 、ので好まし 、が、それ以外の材料を用いる ことも可能である。焼成の際に、温度がセラミックグリーンシートの焼成最高温度付近 に達したときに消失し得る材料であれば、カーボン以外の無機物であってもよぐさら には、有機物でもよい。
[0130] <まとめ > 以上のように、未焼成セラミックグリーンシートにブレイク用パターンを 印刷し、焼成時にブレイク用パターンが消失して形成された空隙を利用して、焼結済 みセラミック積層体力もセラミック基板を取り出すことにより、正確にかつ容易にセラミ ック多層基板を製造することができる。 [0131] 焼成後のセラミック積層体は、折り曲げることで切断できるので、硬い焼成後のセラ ミック積層体を切断するため特別な切断装置 (レーザー加工機、ダイサーなど)を用 いて加工することが不要となり、工程を簡略ィ匕することができる。
[0132] なお、本発明は、上記した実施の形態に限定されるものではなぐ種々変更を加え て実施可能である。
[0133] 例えば、本発明は、表面実装型電子部品が搭載されるモジュール (複合機能部品) のセラミック多層基板の製造に限らず、積層コンデンサ、積層インダクタ、 LCチップな ど、セラミック多層基板に他の部品が搭載されないデバイス (単機能部品)のセラミツ ク多層基板の製造にも適用することができる。

Claims

請求の範囲
[1] 複数の未焼成のセラミック基材層を積層してなる未焼成セラミック積層体を形成す る第 1の工程と、
前記未焼成セラミック積層体を焼成して、未焼成の前記セラミック層を焼結させる第
2の工程と、
前記未焼成セラミック積層体の焼成により形成された焼結済みセラミック積層体を ブレイクして、 1個又は 2個以上のセラミック多層基板を取り出す第 3の工程と、 を備えた、セラミック多層基板の製造方法において、
前記第 1の工程において積層される少なくとも一つの前記未焼成セラミック基材層 に、前記セラミック多層基板を取り出す際の境界線となるブレイクラインに沿って、前 記第 2の工程の焼成時に消失し得るブレイク用パターンを形成しておき、
前記第 2の工程において、前記ブレイク用パターンが消失して、前記焼結済みセラ ミック積層体の内部に空隙が形成され、
前記第 3の工程において、前記焼結済みセラミック積層体に、前記空隙を通る切断 面を形成して、 1個又は 2個以上のセラミック多層基板を取り出すことを特徴とする、 セラミック多層基板の製造方法。
[2] 未焼成の前記セラミック基材層の主面に、未焼成の前記セラミック基材層の平面方 向の焼成収縮を抑制するための収縮抑制用層が設けられていることを特徴とする、 請求項 1のセラミック多層基板の製造方法。
[3] 前記収縮抑制用層は、前記第 2の工程の焼成の際には実質的に焼結しないセラミ ックカもなる収縮抑制用層であることを特徴とする、請求項 2に記載のセラミック多層 基板の製造方法。
[4] 前記収縮抑制用層は、前記未焼成セラミック積層体の少なくとも一方主面に設けら れており、
焼成の後に前記収縮抑制用層を除去することによって、前記セラミック多層基板が 取り出されることを特徴とする、請求項 2又は 3に記載のセラミック多層基板の製造方 法。
[5] 前記ブレイク用パターンは、前記焼成時に消失し得る榭脂を主成分とした榭脂バタ ーンであることを特徴とする、請求項 1〜4のいずれか一項に記載のセラミック多層基 板の製造方法。
[6] 前記ブレイク用パターンは、前記第 2の工程において温度が前記セラミック層の焼 成最高温度付近に達した後に消失し得る材料粉末を含むペーストであることを特徴 とする、請求項 1〜4のいずれか一項に記載のセラミック多層基板の製造方法。
[7] 前記材料粉末は、カーボンであることを特徴とする、請求項 6に記載のセラミック多 層基板の製造方法。
[8] 前記ブレイク用パターンの少なくとも一端が、前記未焼成セラミック積層体の側面に 露出していることを特徴とする、請求項 1〜7のいずれか一項に記載のセラミック多層 基板の製造方法。
[9] 前記未焼成セラミック基材層はバインダー榭脂を含んでおり、前記ブレイク用バタ ーンは、焼成の際、前記バインダー榭脂よりも早く消失する榭脂を主成分とすることを 特徴とする、請求項 8に記載のセラミック多層基板の製造方法。
[10] 前記ブレイク用パターンは、複数個の前記セラミック多層基板を区画するように、格 子状に形成されていることを特徴とする、請求項 9に記載のセラミック多層基板の製 造方法。
[11] 隣合う前記セラミック多層基板の間に、 1本の前記ブレイク用パターンが配置されて いることを特徴とする、請求項 10に記載のセラミック多層基板の製造方法。
[12] 隣合う前記セラミック多層基板の間に、 2本以上の前記ブレイク用パターンが配置さ れていることを特徴とする、請求項 10に記載のセラミック多層基板の製造方法。
[13] 前記未焼成セラミック基材層は、低温焼結セラミック粉末を主成分とする未焼成低 温焼結セラミック層であり、前記未焼成セラミック積層体には、金、銀又は銅を主成分 とする導体パターンが設けられていることを特徴とする、請求項 1〜12のいずれか一 項に記載のセラミック多層基板の製造方法。
[14] 前記焼結済みセラミック積層体の前記セラミック多層基板が取り出される部分、もし くは前記焼結済みセラミック積層体から取り出された前記セラミック多層基板の少なく とも一方主面に、表面実装型電子部品を搭載する工程をさらに備えたことを特徴とす る、請求項 1〜13のいずれか一項に記載のセラミック多層基板の製造方法。
PCT/JP2007/061415 2006-08-07 2007-06-06 Procédé de production d'un substrat céramique multicouche WO2008018227A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2007800009396A CN101347058B (zh) 2006-08-07 2007-06-06 陶瓷多层基板的制造方法
DE602007011286T DE602007011286D1 (de) 2006-08-07 2007-06-06 Verfahren zur herstellung eines keramischen, mehrschichtsubstrats
JP2007556187A JP5090185B2 (ja) 2006-08-07 2007-06-06 セラミック多層基板の製造方法
AT07744760T ATE492147T1 (de) 2006-08-07 2007-06-06 Verfahren zur herstellung eines keramischen, mehrschichtsubstrats
EP07744760A EP2051570B1 (en) 2006-08-07 2007-06-06 Method of producing multilayer ceramic substrate
US11/951,842 US7833370B2 (en) 2006-08-07 2007-12-06 Method for manufacturing a ceramic multi-layered substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006215046 2006-08-07
JP2006-215046 2006-08-07
JP2007064173 2007-03-13
JP2007-064173 2007-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/951,842 Continuation US7833370B2 (en) 2006-08-07 2007-12-06 Method for manufacturing a ceramic multi-layered substrate

Publications (1)

Publication Number Publication Date
WO2008018227A1 true WO2008018227A1 (fr) 2008-02-14

Family

ID=39032765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061415 WO2008018227A1 (fr) 2006-08-07 2007-06-06 Procédé de production d'un substrat céramique multicouche

Country Status (8)

Country Link
US (1) US7833370B2 (ja)
EP (1) EP2051570B1 (ja)
JP (1) JP5090185B2 (ja)
KR (1) KR101011196B1 (ja)
CN (1) CN101347058B (ja)
AT (1) ATE492147T1 (ja)
DE (1) DE602007011286D1 (ja)
WO (1) WO2008018227A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050974A1 (ja) * 2007-10-17 2009-04-23 Murata Manufacturing Co., Ltd. キャビティ付きセラミック多層基板の製造方法
JP2009130370A (ja) * 2007-11-23 2009-06-11 Samsung Electro Mech Co Ltd 積層セラミック基板の製造方法
JP2009267320A (ja) * 2008-03-31 2009-11-12 Tdk Corp 積層セラミック電子部品の製造方法
JP2010177320A (ja) * 2009-01-28 2010-08-12 Kyocera Corp 多数個取り配線基板
WO2012144114A1 (ja) * 2011-04-20 2012-10-26 日本特殊陶業株式会社 配線基板、多数個取り配線基板、およびその製造方法
WO2020202942A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
WO2020202943A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
JP2021111701A (ja) * 2020-01-10 2021-08-02 Tdk株式会社 電子部品及びその製造方法
JP7427966B2 (ja) 2020-01-16 2024-02-06 Tdk株式会社 電子部品

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989342B1 (ko) * 2006-05-29 2010-10-25 가부시키가이샤 무라타 세이사쿠쇼 세라믹 다층기판의 제조 방법
KR101004843B1 (ko) 2008-09-05 2010-12-28 삼성전기주식회사 세라믹 다층 회로 기판 및 그의 제조 방법
JP5798435B2 (ja) 2011-03-07 2015-10-21 日本特殊陶業株式会社 電子部品検査装置用配線基板およびその製造方法
JP5777997B2 (ja) * 2011-03-07 2015-09-16 日本特殊陶業株式会社 電子部品検査装置用配線基板およびその製造方法
JP5921074B2 (ja) * 2011-03-17 2016-05-24 株式会社村田製作所 積層基板の製造方法
JP2012227306A (ja) * 2011-04-19 2012-11-15 Ngk Insulators Ltd セラミック基板の製造方法
US9779874B2 (en) 2011-07-08 2017-10-03 Kemet Electronics Corporation Sintering of high temperature conductive and resistive pastes onto temperature sensitive and atmospheric sensitive materials
CN102271456B (zh) * 2011-07-13 2013-05-01 东北大学 一种导热陶瓷基印刷电路板及其制备方法
CN103050281A (zh) * 2011-10-12 2013-04-17 李文熙 利用抑制收缩烧结改善积层陶瓷组件电极连续性
KR20140039736A (ko) * 2012-09-25 2014-04-02 삼성전자주식회사 스택 패키지 및 그 제조 방법
SG11201609223XA (en) * 2014-05-07 2016-12-29 Morgan Advanced Ceramics Inc Method for manufacturing large ceramic co-fired articles
US9583426B2 (en) 2014-11-05 2017-02-28 Invensas Corporation Multi-layer substrates suitable for interconnection between circuit modules
CN104640344A (zh) * 2015-02-16 2015-05-20 上海贺鸿电子有限公司 镀铜的陶瓷线路板及其制造方法
US10283492B2 (en) 2015-06-23 2019-05-07 Invensas Corporation Laminated interposers and packages with embedded trace interconnects
CN105098300A (zh) * 2015-09-11 2015-11-25 禾邦电子(中国)有限公司 共模滤波器及其制造方法
US9852994B2 (en) 2015-12-14 2017-12-26 Invensas Corporation Embedded vialess bridges
US10763031B2 (en) 2016-08-30 2020-09-01 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing an inductor
JP7193001B2 (ja) * 2019-08-23 2022-12-20 株式会社村田製作所 チップ状電子部品用治具
CN114364141A (zh) * 2022-01-04 2022-04-15 深圳中富电路股份有限公司 一种厚铜陶瓷基板及其制作方法
CN115475797B (zh) * 2022-09-30 2024-04-05 肇庆绿宝石电子科技股份有限公司 一种叠层电容器及其制造方法、载条清洗液及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252917A (ja) * 1985-08-30 1987-03-07 株式会社村田製作所 単板コンデンサの製造方法
JP2001332857A (ja) * 2000-05-22 2001-11-30 Kyocera Corp 配線基板の製造方法
JP2002270459A (ja) * 2001-03-06 2002-09-20 Taiyo Yuden Co Ltd 積層セラミック電子部品の製造方法
JP2002290043A (ja) 2001-03-28 2002-10-04 Kyocera Corp セラミック配線基板の製造方法
WO2005039263A1 (ja) * 2003-10-17 2005-04-28 Hitachi Metals, Ltd. 多層セラミック基板及びその製造方法並びにこれを用いた電子機器
JP2005277008A (ja) * 2004-03-24 2005-10-06 Tdk Corp 外部電極内蔵層の形成方法およびそれを使用する積層型電子部品の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030004A (en) * 1971-04-16 1977-06-14 Nl Industries, Inc. Dielectric ceramic matrices with end barriers
US4353957A (en) * 1973-09-24 1982-10-12 Tam Ceramics Inc. Ceramic matrices for electronic devices and process for forming same
DE4091418C2 (de) * 1989-08-24 2001-07-05 Murata Manufacturing Co Verfahren zur Herstellung eines Mehrschichtkondensators
JPH0438071U (ja) 1990-07-27 1992-03-31
JPH0575262A (ja) 1991-09-11 1993-03-26 Matsushita Electric Ind Co Ltd セラミツク多層配線基板の製造方法
US6252761B1 (en) * 1999-09-15 2001-06-26 National Semiconductor Corporation Embedded multi-layer ceramic capacitor in a low-temperature con-fired ceramic (LTCC) substrate
JP2003017851A (ja) * 2001-06-29 2003-01-17 Murata Mfg Co Ltd 多層セラミック基板の製造方法
JP4470158B2 (ja) * 2003-10-24 2010-06-02 日立金属株式会社 多層セラミック基板の製造方法および多層セラミック基板
JP4639801B2 (ja) * 2004-04-14 2011-02-23 株式会社デンソー セラミック板及びその製造方法
JP2005311225A (ja) 2004-04-26 2005-11-04 Tdk Corp 積層型電子部品の製造方法
KR100989342B1 (ko) * 2006-05-29 2010-10-25 가부시키가이샤 무라타 세이사쿠쇼 세라믹 다층기판의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252917A (ja) * 1985-08-30 1987-03-07 株式会社村田製作所 単板コンデンサの製造方法
JP2001332857A (ja) * 2000-05-22 2001-11-30 Kyocera Corp 配線基板の製造方法
JP2002270459A (ja) * 2001-03-06 2002-09-20 Taiyo Yuden Co Ltd 積層セラミック電子部品の製造方法
JP2002290043A (ja) 2001-03-28 2002-10-04 Kyocera Corp セラミック配線基板の製造方法
WO2005039263A1 (ja) * 2003-10-17 2005-04-28 Hitachi Metals, Ltd. 多層セラミック基板及びその製造方法並びにこれを用いた電子機器
JP2005277008A (ja) * 2004-03-24 2005-10-06 Tdk Corp 外部電極内蔵層の形成方法およびそれを使用する積層型電子部品の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050974A1 (ja) * 2007-10-17 2009-04-23 Murata Manufacturing Co., Ltd. キャビティ付きセラミック多層基板の製造方法
JP2009130370A (ja) * 2007-11-23 2009-06-11 Samsung Electro Mech Co Ltd 積層セラミック基板の製造方法
JP2009267320A (ja) * 2008-03-31 2009-11-12 Tdk Corp 積層セラミック電子部品の製造方法
JP2010177320A (ja) * 2009-01-28 2010-08-12 Kyocera Corp 多数個取り配線基板
WO2012144114A1 (ja) * 2011-04-20 2012-10-26 日本特殊陶業株式会社 配線基板、多数個取り配線基板、およびその製造方法
JP2012227351A (ja) * 2011-04-20 2012-11-15 Ngk Spark Plug Co Ltd 配線基板、多数個取り配線基板、およびその製造方法
US8987604B2 (en) 2011-04-20 2015-03-24 Ngk Spark Plug Co., Ltd. Wiring substrate, multi-piece wiring substrate, and method for producing same
KR101514172B1 (ko) * 2011-04-20 2015-04-21 니혼도꾸슈도교 가부시키가이샤 배선기판, 다수개 취득 배선기판, 및 그 제조방법
WO2020202942A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
WO2020202943A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
JPWO2020202942A1 (ja) * 2019-03-29 2021-09-13 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
JPWO2020202943A1 (ja) * 2019-03-29 2021-10-28 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
JP7140271B2 (ja) 2019-03-29 2022-09-21 株式会社村田製作所 セラミック基板の製造方法及びセラミック基板
US11950360B2 (en) 2019-03-29 2024-04-02 Murata Manufacturing Co., Ltd. Method for manufacturing ceramic substrate and ceramic substrate
JP2021111701A (ja) * 2020-01-10 2021-08-02 Tdk株式会社 電子部品及びその製造方法
JP7180619B2 (ja) 2020-01-10 2022-11-30 Tdk株式会社 電子部品及びその製造方法
JP7427966B2 (ja) 2020-01-16 2024-02-06 Tdk株式会社 電子部品

Also Published As

Publication number Publication date
EP2051570B1 (en) 2010-12-15
EP2051570A4 (en) 2009-11-25
KR101011196B1 (ko) 2011-01-26
JP5090185B2 (ja) 2012-12-05
US7833370B2 (en) 2010-11-16
CN101347058A (zh) 2009-01-14
KR20080037041A (ko) 2008-04-29
EP2051570A1 (en) 2009-04-22
CN101347058B (zh) 2010-09-22
DE602007011286D1 (de) 2011-01-27
ATE492147T1 (de) 2011-01-15
JPWO2008018227A1 (ja) 2009-12-24
US20080142147A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2008018227A1 (fr) Procédé de production d&#39;un substrat céramique multicouche
KR100989342B1 (ko) 세라믹 다층기판의 제조 방법
JPWO2006040941A1 (ja) 積層セラミック部品とその製造方法
JP4610114B2 (ja) セラミック配線基板の製造方法
JPH06100377A (ja) 多層セラミック基板の製造方法
WO2009119198A1 (ja) セラミック基板の製造方法
JP4888564B2 (ja) キャビティ付きセラミック多層基板の製造方法
JP4110536B2 (ja) 多層セラミック集合基板および多層セラミック集合基板の製造方法
JP2006108482A (ja) キャビティを備えた多層セラミック基板およびその製造方法
JP4028810B2 (ja) 多層配線基板の製造方法
WO2009151006A1 (ja) セラミック成形体の製造方法
JP3173412B2 (ja) ガラスセラミックス基板の製造方法
JP4084696B2 (ja) 低温焼成多層セラミック配線基板の製法
JP5201903B2 (ja) 多層配線基板およびその製造方法、並びにビアホール導体用組成物
JP2005159038A (ja) 低温焼成セラミック基板の製造方法
JP2004296721A (ja) 複数個取り用大型基板
JP2001156411A (ja) 多層配線基板およびその製造方法
JPH1065336A (ja) 低温焼成ガラスセラミックス多層配線基板とその製造方法
JP2008098647A (ja) 多層セラミック基板
JP2000026167A (ja) 厚膜多層基板の製造方法
JP2004253429A (ja) セラミック多層基板の製造方法
JP2002134915A (ja) 厚膜多層基板、その製造方法、及びその厚膜多層基板を用いた電子回路基板
JP2004296711A (ja) 多層セラミック基板の製造方法
JP2002134914A (ja) 低温焼成セラミック回路基板の製造方法
JP2010073713A (ja) セラミック部品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000939.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007556187

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007744760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087004158

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU