WO2007142106A1 - ポリ乳酸系耐熱シート - Google Patents

ポリ乳酸系耐熱シート Download PDF

Info

Publication number
WO2007142106A1
WO2007142106A1 PCT/JP2007/061051 JP2007061051W WO2007142106A1 WO 2007142106 A1 WO2007142106 A1 WO 2007142106A1 JP 2007061051 W JP2007061051 W JP 2007061051W WO 2007142106 A1 WO2007142106 A1 WO 2007142106A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
crystallization
heat
sheet
mass
Prior art date
Application number
PCT/JP2007/061051
Other languages
English (en)
French (fr)
Inventor
Yukiko Inui
Masanori Hashimoto
Masahiro Yoshida
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Priority to EP07744462.8A priority Critical patent/EP2025713A4/en
Priority to JP2008520519A priority patent/JP5274251B2/ja
Priority to US12/227,921 priority patent/US20090186990A1/en
Priority to CN2007800171713A priority patent/CN101443410B/zh
Publication of WO2007142106A1 publication Critical patent/WO2007142106A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a polylactic acid heat-resistant sheet, and more particularly to a polylactic acid heat-resistant sheet suitable for molding strength.
  • biodegradable polymers that are decomposed by microorganisms and the like have attracted attention with increasing social demands for environmental protection.
  • specific examples of biodegradable polymers include aliphatic polyesters such as polyethylene succinate, polyprolacton, polylactic acid, and aliphatic monoaromatics such as terephthalic acid / 1,4 butanediol / adipic acid copolymer.
  • Group copolymerized polyesters such as polyester can be mentioned.
  • polylactic acid which is widely distributed in nature and is harmless to animals, plants and animals, has a melting point of 140-175 ° C and sufficient heat resistance, and is relatively inexpensive. It is expected as a plastic biodegradable resin.
  • polylactic acid generally has a slow crystallization rate. For this reason, the crystals are completely melted by heating for fluidization when extruding into a sheet, and then the sheet is manufactured by ordinary roll cooling, and this sheet is used for thermoforming into a container or the like. Even so, the crystallization of polylactic acid does not proceed sufficiently during the process. As a result, the obtained molded product is inferior in heat resistance.
  • a sheet having a high crystallization rate is produced by adding talc or the like as a crystal nucleating agent to polylactic acid, and the sheet is heated with a mold heated using this sheet.
  • JP2003-253009A proposes a manufacturing method in which molding is performed in time.
  • a method of adding a so-called transparent nucleating agent such as an aliphatic carboxylic acid amide, an aliphatic carboxylic acid salt, an aliphatic alcohol, and an aliphatic carboxylic acid ester has been proposed in JP9 278991A, for example.
  • the sheet before molding is also transparent. Is low.
  • the resin component is polylactic acid alone, the cache property is good, but in order to improve impact resistance, blending with other flexible biodegradable resins, A molding cycle is required several times and practical workability cannot be obtained.
  • the sheet obtained by the method of JP9-278991A has high transparency before being molded, but its transparency decreases due to crystallization, and the heat treatment time required for crystallization is long, and it is inferior in practicality.
  • JP20 01-162676A As a method of crystallizing by stretching orientation, a method of performing a certain stretching before molding (JP20 01-162676A), or a method of using the above-mentioned transparent nuclei together with stretching orientation (JP2003-3451 50A) has been proposed.
  • the sheet of JP2001-162676A is difficult to form compared to the unstretched sheet, and is particularly difficult to deep-draw.
  • JP2004-345150A is intended to maintain the transparency after crystallization by increasing the crystallization speed by using the crystal nucleating agent in combination with the orientation by stretching during molding.
  • the stretch ratio of a molded product generally varies greatly depending on the part, it is difficult to increase the heat resistance of the entire molded product, especially in a low-magnification processed molded product.
  • An object of the present invention is to solve the above-described problems and provide a polylactic acid heat-resistant sheet that is excellent in transparency and heat resistance and is particularly suitable for use in molding.
  • the polylactic acid heat-resistant sheet of the present invention contains 50 to 95% by mass of polylactic acid and 5 to 50% by mass of a polylactic acid copolymer containing 30 to 70% by mol of a lactic acid component.
  • Crystallization peak temperature is 60-120 ° C
  • crystallization heat is 10-25j / g
  • melting point is 160 ° C or higher
  • heat of crystal fusion is 15-40J. / g.
  • a polylactic acid-based heat-resistant sheet suitable for molding processing the sheet being stretched It is possible to provide a polylactic acid-based heat-resistant sheet that can be crystallized by heating at a practical molding cycle time, and has excellent transparency and heat resistance after crystallization.
  • the polylactic acid heat-resistant sheet of the present invention contains 50 to 95% by mass of polylactic acid and 5 to 50% by mass of a polylactic acid copolymer.
  • polylactic acid poly L lactic acid, poly DL lactic acid which is a copolymer of L lactic acid and D lactic acid, or a mixture thereof can be used.
  • the melting point of the sheet is preferably S160 ° C or higher. When the melting point is less than 160 ° C, in some cases force s poor heat resistance.
  • the melting point of polylactic acid varies depending on the copolymerization ratio of L lactic acid and D lactic acid.
  • the content of D lactic acid increases, the crystallinity of polylactic acid itself decreases and the melting point decreases.
  • polylactic acid having a D-lactic acid content of 2 mol% or less.
  • a melting point of 160 ° C or higher can be obtained by mixing a part of polylactic acid with a D-lactic acid content of 10% or more and a substantially non-crystalline polylactic acid with a D-lactic acid content of 2 mol% or less. It is possible to control the degree of crystallization and the crystallization speed. Therefore, this method is effective as a method for obtaining desired crystallinity.
  • the amount of residual lactide in the polylactic acid is not particularly limited, but is in the range of 0.:! To 0.6% by mass from the viewpoint of promoting crystallization and imparting heat resistance to the molded body. Preferably there is. If the amount of residual lactide is less than 0.1% by mass, the function as a crystallization initiator for promoting crystallization of polylactic acid cannot be obtained sufficiently. On the other hand, if the amount of residual lactide exceeds 0.6% by mass, crystallization is promoted, but the action of promoting hydrolysis is strengthened and biodegraded.
  • the weight average molecular weight of the polylactic acid is preferably in the range of 150,000 to 300,000, more preferably 160,000 to 200,000. If the weight average molecular weight of polylactic acid is less than 150,000, The resulting sheet is too low to be inferior in mechanical properties. If the weight average molecular weight exceeds 300,000, the melt viscosity becomes too high and melt extrusion tends to be difficult.
  • the polylactic acid-based copolymer constituting the polylactic acid-based heat-resistant sheet of the present invention needs to contain 30 to 70 mol% of a lactic acid component. If the lactic acid component is less than 30 mol%, it is difficult to obtain a transparent sheet having poor compatibility with polylactic acid. On the other hand, if it exceeds 70 mol%, the effect of accelerating the crystallization rate of polylactic acid is small, and the heat treatment time required for crystallization is long, so that it is inferior in practicality, and the transparency when crystallized is also inferior. .
  • the copolymer component other than the lactic acid component is preferably a polyester or a polyether composed of a dicarboxylic acid and a diol.
  • the dicarboxylic acid component is not particularly limited, but oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid, terephthalic acid, isophthalic acid, phthalanol Acid, 2, 6 naphthalene dicarboxylic acid, 5 sodium sulfoisophthalenolic acid, maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, dicarboxylic acids such as cyclohexanedicarboxylic acid, 4-hydroxybenzoic acid , ⁇ -force prolatathon. From the viewpoint of compatibility with polylactic acid, dicarboxylic acid having 10 or less carbon atoms is preferred.
  • diol components include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4 butanediol, 1,5-pentanediol, neopentyl glycol, 1,6- Examples include xylenediol, cyclohexanedimethanol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, bisphenol ⁇ and bisphenol S ethylene oxide adduct.
  • polyether component examples include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • weight average molecular weight of the polyether is 200-5000.
  • the polylactic acid copolymer further includes trimellitic acid, trimesic acid, pyromellitic acid, trime It may contain a small amount of trifunctional compounds such as tyrolpropane, glycerin and pentaerythritol. Two or more of these copolymer components may be used in combination.
  • the polylactic acid copolymer is crystalline and has a melting point of 130 ° C or higher, particularly 140 ° C or higher.
  • the melting point is less than 130 ° C, the difference between the crystallization temperature range of polylactic acid and the crystallization temperature range of the polylactic acid-based copolymer becomes large, and the effect of improving the crystallization rate at the time of temperature rise becomes small.
  • the heat resistance after crystallization may be inferior.
  • Preferable commercially available polylactic acid-based copolymers include trade names “Puramate PD150, PD350” manufactured by Dainippon Ink and the like.
  • the heat-resistant polylactic acid sheet of the present invention needs to be composed of 50 to 95% by mass of polylactic acid and 5 to 50% by mass of a polylactic acid copolymer. If the polylactic acid component is less than 50% by mass, the glass transition temperature and the melting point are lowered, and the handling property of the amorphous sheet is inferior, or the heat resistance is lowered even if it is crystallized. If the polylactic acid component exceeds 95% by mass, the effect of improving the crystallization rate is small and the practicality of the molding process is poor.
  • polylactic acid is 50 to 85% by mass
  • polylactic acid copolymer is preferably 15 to 50% by mass
  • polylactic acid is preferably 60 to 85% by mass
  • polylactic acid copolymer is 15% by mass. More preferably, it is ⁇ 40 mass%.
  • a crystal nucleating agent is added for the purpose of controlling the crystallization peak temperature, the crystallization heat amount, and the shortest half crystallization time of the resin composition. It may be included.
  • the amount is preferably in the range of 0.1 to 15% by mass with respect to 100% by mass of the entire resin composition. If the amount added is less than 0.1% by mass, the effect as a crystal nucleating agent cannot be sufficiently exhibited. If the addition amount exceeds 15% by mass, the content of the crystal nucleating agent will increase too much, and the physical properties will be adversely affected, such as a decrease in transparency and brittleness of the molded product.
  • the type of the crystal nucleating agent is not particularly limited, but is preferably an amide-based crystal nucleating agent having at least one hydroxyl group.
  • amide crystal nucleating agents those having good compatibility with polylactic acid and polylactic acid copolymer are preferred, and the crystallization rate of polylactic acid and polylactic acid copolymer is increased.
  • Polylactic acid and poly Those which maintain transparency when the lactic acid copolymer is crystallized are preferred.
  • amide-based crystal nucleating agents include the following compounds.
  • ricinoleic acid amide hydroxystearic acid amide, N-hydroxyethyl ricinoleic acid amide, N-hydroxyethyl 1-12-hydroxystearic acid amide, N, N '-ethylene mono-bis-ricinoleic acid amide, N, ⁇ ' —Ethylene bis bis 12-hydroxy stearyl amide, ⁇ , ⁇ '_Ethylene bis bis stearamide, N, N'-hexamethylene bis bis ricinoleate amide, ⁇ , ⁇ '-hexamethylene bis bis 12 -Hydroxy stearic acid amide, ⁇ , ⁇ '-xylylene mono-bis-12-hydroxy stearic acid amide.
  • ⁇ , ⁇ , monoethylenebismonostearic acid amide, ⁇ , ⁇ , monohexamethylene bis monoricinoleic acid amide, ⁇ , ⁇ '-hexamethylene bis-12-hydroxystearic acid amide, ⁇ , ⁇ , One xylylene bis-12-hydroxystearic acid amide can be suitably used.
  • These amide crystal nucleating agents may be used alone or in combination.
  • Risinoleic acid and 12-hydroxy stearic acid which are raw materials for amide crystal nucleating agents that are preferably used, are fatty acids obtained by saponification decomposition of castor oil and are derived from plants. In addition to using polylactic acid-based copolymer, it contributes to reducing the amount of petroleum raw materials used.
  • the chemical structure of the amide crystal nucleating agent is preferably a symmetric structure.
  • the carbon number power in the amide-based crystal nucleating agent is preferably from about 60 to 60.
  • the addition amount of the amide-based crystal nucleating agent is preferably 0.:! To 5% by mass, more preferably 0.:! To 2% by mass. :! It is more preferable that the content is% by mass. 0.1 Less than 1% by mass, the effect of promoting crystallization is poor. When it exceeds 5% by mass, transparency tends to be impaired or processability tends to be reduced.
  • Fats such as bisoleic acid amide and ethylene bislauric acid amide Examples include acid amides.
  • examples of the crystal nucleating agent include inorganic substances such as layered silicates typified by talc, smectite, vermiculite, and swellable fluorine mica.
  • talc is an inorganic substance that exists in nature because it has the highest crystallization efficiency compared to polylactic acid, and it is industrially advantageous and does not cause a burden on the global environment. .
  • the average particle size of the inorganic crystal nucleating agent is preferably in the range of 0.1 to 10 ⁇ m. If the average particle size is less than 0.1 l ⁇ m, poor dispersion and secondary agglomeration occur, and a sufficient effect as a crystal nucleating agent is obtained. When the average particle size exceeds 10 x m, the physical properties of the heat-resistant sheet are adversely affected, and as a result, the physical properties of the molded product obtained from the heat-resistant sheet are likely to be adversely affected.
  • the above-mentioned amide-based crystal nucleating agent having at least one hydroxyl group, other organic crystal nucleating agent, and inorganic crystal nucleating agent may be used alone or in combination. May be used.
  • a crosslinking agent such as an organic peroxide or a crosslinking aid may be used in combination, and the resin composition may be subjected to slight crosslinking. It is possible.
  • crosslinking agent examples include ⁇ -butyl-4,4 bis-t-butyl peroxide, dicumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di Organic peroxides such as (t-butylperoxy) hexane, 2,5 dimethylolene 2,5-t-butylperoxyhexine 3; phthalic anhydride, maleic anhydride, trimethyladipic acid, trimellitic anhydride, 1, 2, 3, 4 Polyvalent carboxylic acids such as butanetetracarboxylic acid; Metal complexes such as lithium formate, sodium methoxide, potassium propionate, magnesium ethoxide; Bisphenol A type diglycidinole ether, 1,6-hexanediol diglycidyl Ether, trimethylolpropane triglycidyl ether, diglycidyl terephthalate
  • an impact resistance improver in the resin composition forming the sheet, an impact resistance improver, a plasticizer, an ultraviolet ray inhibitor, a light stabilizer, an antifogging agent, an antifoggant, and an antistatic agent are added as necessary.
  • Agents, flame retardants, anti-coloring agents, antioxidants, fillers, pigments, mold release agents, moisture-proofing agents, oxygen barrier agents and the like may be added as long as the properties of the resin composition are not impaired. Alternatively, these may be coated on the surface of the sheet.
  • the resin composition configured as described above is extruded into a sheet shape to form a sheet.
  • the thickness of the sheet is not particularly limited and can be set as appropriate depending on the application and required performance. However, a thickness of about 150 to 500 x m is appropriate.
  • the method for producing the polylactic acid heat-resistant sheet of the present invention is not particularly limited, and examples thereof include a T-die method, an inflation method, and a calendar method. Of these, the T-die method is preferred, in which a T-die is used and the material is melt-kneaded and extruded.
  • a polylactic acid resin composition containing an appropriate amount of polylactic acid and a polylactic acid copolymer is mixed with a single screw extruder or a twin screw extruder.
  • the extruder is heated to a cylinder temperature of 180 to 230 ° C. and a T-die temperature of 200 to 230 ° C., and the resin composition is melt-kneaded and extruded to 30 to 50 ° C.
  • a sheet having a thickness of about 150 to 500 ⁇ m can be obtained.
  • the sheet of the present invention has a crystallization peak temperature of 60 to 120 ° C and a crystallization heat amount of 10 to 25 jZg when measured with a differential scanning calorimeter at a temperature rise condition of 20 ° C / min. It is necessary that the melting point is 160 ° C or more and the heat of crystal fusion is 15 to 40 jZg.
  • the blending ratio of crystalline polylactic acid and amorphous polylactic acid in polylactic acid, the type of polylactic acid copolymer, and polylactic acid It is important to adjust the mixing ratio with the polylactic acid copolymer and to add a crystallization nucleating agent as necessary. These characteristics can also be exhibited by heating or stretching the sheet.
  • the crystallization peak temperature is less than 60 ° C, crystallization may occur during heating to soften the sheet, resulting in poor moldability. On the other hand, if the temperature exceeds 120 ° C, it takes too much time to crystallize, so that the practicality of the molding force is inferior, and it tends to whiten after crystallization. For this reason, the crystallization peak temperature is preferably 60 ° C. to: 100 ° C.
  • the crystallization peak temperature is the compatibility between polylactic acid and polylactic acid copolymer, the blending ratio of both, the molecular weight of the polylactic acid copolymer, glass transition temperature, crystallinity, and The physical properties depend on the type and amount of the crystal nucleating agent.
  • the crystallization peak temperature of the polylactic acid alone is a measurement condition defined in the present invention, which is not observed when the temperature is raised at 20 ° C. Zmin by a differential scanning calorimeter.
  • This crystallization peak temperature can be lowered by the following method, and can be controlled in the range of 60 to 120 ° C. Specifically, the crystallization peak temperature is lowered by increasing the blending amount of the polylactic acid copolymer. Further, even if a polylactic acid copolymer having higher compatibility with polylactic acid and higher crystallinity is used, the crystallization peak temperature is lowered.
  • the crystallization peak temperature decreases according to the amount added. To adjust the crystallization peak temperature within the above range, adjust these methods in an appropriate combination.
  • the amount of crystallization heat is preferably 15 to 25 j / g.
  • the amount of crystallization heat can be adjusted by the same method as in the case of the crystallization peak temperature described above.
  • the amount of crystallization heat can be reduced by subjecting the pre-molded sheet to a treatment such as heating and stretching as described later to crystallize a part of the composition.
  • the melting point must be 160 ° C or higher, and if it is lower than 160 ° C, the heat resistance is poor.
  • the heat of crystal melting is preferably 20 to 35 j / g.
  • the melting point and the heat of crystal fusion are adjusted by the melting points of the polylactic acid and the polylactic acid copolymer, the blending ratio of the both, and the like.
  • the selection of polylactic acid, which is the main component, is particularly important.
  • the melting point and heat of crystal fusion are adjusted by the mixing ratio and copolymerization ratio of the D and L lactic acid components.
  • the polylactic acid-based heat-resistant sheet of the present invention preferably has a shortest half crystallization time of less than lOOsec when measured by isothermal crystallization with a differential scanning calorimeter, and particularly preferably less than 50sec. preferable. If it is over lOOsec, it will be whitened even if it is crystallized in the shortest temperature range.
  • the adjustment of the shortest half-crystallization time when isothermal crystallization measurement is performed with a differential scanning calorimeter is based on the compatibility of polylactic acid and polylactic acid copolymer, the blending ratio of both, and polylactic acid copolymer. This can be done by adjusting the molecular weight, glass transition temperature, crystallinity, etc.
  • the effect of the type and addition amount of the crystal nucleating agent is large.
  • the amide-based crystal nucleating agent having at least one hydroxyl group can increase the crystallization speed with a small amount, so that it can be minimized by using this.
  • Half crystallization time will be less than lOOsec.
  • the polylactic acid-based heat-resistant sheet of the present invention preferably has a temperature range where the half-crystallization time is less than lOOsec at 30 ° C or higher, particularly 40 ° C or higher. That is, increasing the crystallization rate in a temperature range lower than the melting point of the resin composition is effective in suppressing whitening after crystallization.
  • the polylactic acid-based heat-resistant sheet of the present invention can be adjusted in its crystallization characteristics by pre-crystallization or pre-stretching before molding.
  • Preliminary crystallization can reduce the time required for crystallization required at the time of molding. Specifically, it is preferable to pre-crystallize the extruded sheet under the conditions of 50 to 80 ° C. and 5 to 30 seconds before the molding step. Although the amount of crystallization at the time of temperature rise is reduced by precrystallization, the amount of crystallization must be at least lOjZg in the state before molding.
  • the pre-stretching conditions are preferably 50 to 80 ° C and 1. 05 to 2.0 times. Pre-stretching the sheet increases the crystallization speed of the sheet, and crystallization progresses depending on the conditions, but it is necessary to keep the heat of crystallization in the state before molding at 10 j / g or more. If the heat of crystallization is less than lOjZg, the moldability tends to decrease. Pre-stretching above If the conditions are used, the heat of crystallization of the sheet can be easily adjusted to a range of 10 to 25 j / g.
  • the method for molding the sheet of the present invention is not particularly limited, but any one of vacuum molding, pressure molding, vacuum pressure molding, and press molding is preferable. .
  • a hot plate or hot air Prior to molding, it is necessary to heat with a hot plate or hot air.
  • a heating method in that case, in the hot plate method in direct contact with the sheet, since the surface state of the hot plate may be transferred to the sheet and impair the transparency of the molded product, indirect hot air heating may be performed. preferable.
  • the sheet is first heated with a hot plate or hot air in the range of glass transition temperature + 20 ° C to glass transition temperature + 60 ° C of the resin composition for 10 to 60 seconds to soften and partially After crystallization, it is shaped by a method such as vacuum or compressed air. If the heating temperature at this time is too low, the softness is insufficient and shaping cannot be performed. On the other hand, if the heating temperature is too high or the heating time is too long, the crystallization of the sheet proceeds so much that the moldability is lowered.
  • the mold temperature at the time of molding may be set to be equal to or lower than the glass transition temperature of the resin composition and released immediately after molding, but the mold temperature is substantially the most crystalline in the polylactic acid composition.
  • the molded product obtained using the polylactic acid heat-resistant sheet of the present invention preferably has a crystallization index of 20 to 35 j / g.
  • the crystallization index of the molded product can be set within this range. When the crystallization index is within this range, moderate heat resistance and transparency can be imparted.
  • the polylactic acid-based molded product according to the present invention will be described with an example as follows. For example, it can be used for various containers and trays that have been difficult to use due to lack of heat resistance, and can be used for container lids, blister packs, clear cases, etc. that require transparency. It can be used suitably.
  • PLA-1 (Neichi Ya Works Co., No.: 4032D) D-isomer content 1 - 2 mole 0/0, residual lactide content 0.2 wt%, a weight average molecular weight of 200,000.
  • PLA- 2 (Neichi Ya Works Co., No.: 4060D) D-isomer content 10.5 mole 0/0, the residual lactide amount 0.2 wt%, a weight average molecular weight of 200,000.
  • CPLA- 1 (Dainippon Ink Co., part number: Plamate PD150) lactic acid component 50 mol 0/0, mp 165 ° C, glass transition temperature 52 ° C.
  • CPLA-2 (Dainippon Ink Co., Ltd., product number: Puramate PD350) Lactic acid component 50 mol%, melting point 157 ° C, glass transition temperature 18 ° C.
  • EA—1 Ethylene bislauric acid amide (Nippon Kasei Co., Ltd., product number: SLIPAX L)
  • EA-2 Ethylene bis 12-hydroxystearic amide (manufactured by Ito Oil Co., product number:
  • the sheet was fixed to a 12 cm ⁇ 12 cm stainless steel frame and subjected to heat crystallization treatment in the hot air dryer under the conditions shown in Table 1.
  • a 7 cm cross cut was made in the center of the obtained crystallized sheet, and the sheet was stored in a horizontal orientation in a hot air dryer for 2 hours. At that time, heat resistance was evaluated according to the following criteria.
  • A force at which deformation was not observed at 70 ° C. At 80 ° C, deformation was observed at the incised portion.
  • a molded product obtained by molding the sheet using a mold described later was stored for 2 hours in a hot air dryer with its bottom facing up, and the heat resistance was evaluated according to the following criteria.
  • a haze meter manufactured by Nippon Denshoku Kogyo Co., Ltd., model number: NDH2000
  • the haze value (%) was measured and evaluated according to the following criteria.
  • HMR-3B Using a hot plate compression molding machine and an aluminum mold (HMR-3B), a container with a length of 230 mm, width of 200 mm, and depth of 24 mm was molded under the heating conditions shown in Table 2. The moldability was evaluated.
  • Example 1 Compared to Example 1, the raw material resin and the crystal nucleating agent were changed as shown in Table 1. Otherwise, various sheets were obtained in the same manner as in Example 1.
  • the crystal nucleating agent was added in the form of a master chip.
  • This master chip is a dry blend of 90% by weight of polylactic acid and 10% by weight of a crystal nucleating agent, and using a twin screw extruder with a screw diameter of 30mm ⁇ , extrusion temperature of 190 ° C, screw rotation speed of 150rpm, discharge rate It was manufactured by melt-kneading under lOOgZmin conditions. The details of the obtained sheets and their characteristic values are shown in Table 1.
  • sheet numbers S_1 to S_14 are assigned to the sheets.
  • Example 2 An unstretched sheet having the same composition as in Example 1 and a thickness of 600 xm was obtained. This sheet was heated in a batch-type stretching machine at 80 ° C for lmin, and then stretched twice in one axial direction to obtain a thickness. Only a stretched sheet of 300 ⁇ m was obtained. Table 1 shows the details of the stretched sheet and its characteristic values.
  • Sheets S_1 to S_14 obtained in Examples 1 to 7 and Comparative Examples 1 to 7 were molded under the heating conditions shown in Table 2 using the molds described above. The results are shown in Table 2.
  • the sheets of Examples 1 to 7 can be crystallized by heat treatment at 95 ° C to 120 ° C for 20 to 30 seconds, and the obtained sheets are relatively transparent and have a heat resistance of 80 ° C or higher. Was.
  • Examples 8 to 10 were obtained by using the sheet of Example 1 and changing the processing conditions to obtain molded products.
  • the molded product of Example 6 having a high crystallization index of the molded product was slightly reduced in transparency but excellent in heat resistance.
  • the molded product of Example 8 having a low crystallization index was slightly inferior in heat resistance, but was excellent in transparency.
  • the molded product of Example 7 had a slightly reduced heat resistance, but was excellent in transparency.
  • Examples 11-: 14 were obtained by using the sheets of Examples 2-5, respectively, and were excellent in both transparency and heat resistance.
  • Examples 15 and 16 were obtained by using the sheets of Examples 6 and 7, respectively, to obtain molded products. Of these, Example 15 had a shorter molding site than Examples 8 to 10 in which no crystal nucleating agent was used in combination. Example 16 had the shortest molding cycle among Examples 8 to 16. In Examples 15 and 16, both the transparency and heat resistance of the molded product were good. The molding cycle is the sum of the hot plate heating time and the mold holding time.
  • the sheet of Comparative Example 3 was inferior in heat resistance even after crystallization by heat treatment because the resin composition with a high content of amorphous polylactic acid PLA-2 had a small amount of heat of crystallization and melting. It was.
  • the sheet of Comparative Example 5 was crystallized by subjecting the same sheet as Comparative Example 4 to heat treatment at 130 ° C for 180 seconds, so it had heat resistance, but its transparency was extremely poor. It was. However, it was inferior in practicality with a molding cycle of 180 sec.
  • the sheet of Comparative Example 6 was obtained by adding ethylene bislauric acid amide (EA-1) as a crystal nucleating agent, but it was heat resistant and transparent after crystallization by heat treatment at 120 ° C for 30 seconds. Both sexes were inferior.
  • EA-1 ethylene bislauric acid amide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 成型加工に適したポリ乳酸系耐熱シートである。ポリ乳酸50~95質量%と、乳酸成分を30~70モル%含有したポリ乳酸系共重合ポリマー5~50質量%とを含み、示差走査型熱量計にて20°C/minで昇温した際の、結晶化ピーク温度が60~120°C、結晶化熱量が10~25J/g、融点が160°C以上、結晶融解熱量が15~40J/gである。

Description

明 細 書
ポリ乳酸系耐熱シート
技術分野
[0001] 本発明はポリ乳酸系耐熱シートに関し、特に成型力卩ェに適したポリ乳酸系耐熱シ ートに関する。
背景技術
[0002] 近年、環境保全に関する社会的要求の高まりに伴い、微生物などにより分解される 生分解性ポリマーが注目されている。生分解性ポリマーの具体例としては、ポリプチ レンサクシネート、ポリ力プロラタトン、ポリ乳酸などの脂肪族ポリエステルや、テレフタ ル酸 /1 , 4ブタンジオール/アジピン酸の共重合体などの脂肪族一芳香族共重合 ポリエステル等のように、溶融成形可能なポリエステルが挙げられる。これらの脂肪族 ポリエステルの中でも、自然界に広く分布し、動植物や人畜に対して無害なポリ乳酸 は、融点が 140〜175°Cであって十分な耐熱性を有するとともに、比較的安価な、熱 可塑性の生分解性樹脂として期待されてレ、る。
[0003] しかし、ポリ乳酸は、一般的に結晶化速度が遅い。この為、シートに押出成形する 際の流動化のための加熱で結晶を完全に融解させてしまった後、通常のロール冷却 をしてシートを製造し、このシートを用いて容器などに熱成型しても、工程中にポリ乳 酸の結晶化が十分に進まない。その結果、得られた成型品は耐熱性に劣る。
[0004] そこで、ポリ乳酸からなる成型品に耐熱性を付与する為に、熱処理することまたは /および延伸配向させることで結晶化させる方法が多数報告されている。
[0005] 例えば、熱処理により結晶化する方法としては、ポリ乳酸に結晶核剤としてタルクな どを添加して結晶化速度の速いシートを製造し、このシートを用いて加熱された金型 により短時間に成型させる製造方法が、たとえば JP2003— 253009Aにおいて提案 されている。また、脂肪族カルボン酸アミド、脂肪族カルボン酸塩、脂肪族アルコール 、脂肪族カルボン酸エステルなどの所謂透明核剤を添加する方法が、たとえば JP9 278991Aにおレ、て提案されてレ、る。
[0006] しかし、 JP2003— 253009Aに記載された方法では、成型前のシートでも透明性 が低い。し力も、成型を行う場合に、樹脂成分がポリ乳酸単独であればカ卩ェ性が良 好であるが、耐衝撃性を向上させるために他の柔軟な生分解性樹脂をブレンドする と、成型サイクルが数倍必要になり実用的な加工性が得られない。 JP9— 278991A の方法で得られるシートは、成型前のシートの透明性は高いものの、結晶化により透 明性が低下し、しかも結晶化に必要な熱処理時間が長ぐ実用性に劣る。
[0007] 延伸配向により結晶化する方法としては、成型前に一定の延伸を施す方法 (JP20 01— 162676A)や、上記透明核斉と延伸酉己向とを併用する方法 (JP2003— 3451 50A)が提案されている。し力、し、 JP2001— 162676Aのシートは、未延伸シートに 比べ成型しにくぐ特に深絞り成型が困難である。し力も、成型品の残留歪みが大き くなるため、ガラス転移点以上の温度で変形する問題がある。 JP2004- 345150A の技術は、結晶核剤と、成型時の延伸による配向との併用により、結晶化速度を向 上させて、結晶化後の透明性を維持させようとするものである。しかし、一般に成型品 の延伸倍率はその部位によって大きく異なるため、特に低倍率の加工成型品におい て成型品全体の耐熱性を上げることが困難である。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、前記問題点を解決して、透明性、耐熱性に優れ、特に成型加工の用途 に適した、ポリ乳酸系耐熱シートを提供することを課題とする。
課題を解決するための手段
[0009] 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に至ったも のである。すなわち、本発明のポリ乳酸系耐熱シートは、ポリ乳酸 50〜95質量%と、 乳酸成分を 30〜70モル%含有したポリ乳酸系共重合ポリマー 5〜50質量%とを含 み、示差走查型熱量計にて 20°CZminで昇温した際の、結晶化ピーク温度が 60〜 120°C、結晶化熱量が 10〜25j/g、融点が 160°C以上、結晶融解熱量が 15〜40J /gである。
発明の効果
[0010] 本発明によれば、成形加工に適したポリ乳酸系耐熱シートであって、シートを延伸 することなぐ実用性のある成型サイクル時間での加熱により結晶化可能で、結晶化 後の透明性や耐熱性に優れた、ポリ乳酸系耐熱シートを提供することができる。 発明を実施するための最良の形態
[0011] 以下、本発明について詳細に説明する。
[0012] 本発明のポリ乳酸系耐熱シートは、ポリ乳酸 50〜95質量%と、ポリ乳酸系共重合 ポリマー 5〜50質量%とを含有したものである。
[0013] 上記したポリ乳酸としては、ポリ L 乳酸、 L 乳酸と D 乳酸の共重合体であるポ リ DL 乳酸、またはこれらの混合体が使用できる。混合体の場合は、シートの融点 力 S160°C以上であることが好ましい。融点が 160°C未満であると、耐熱性に劣る場合 力 sある。
[0014] ポリ乳酸の融点は、 L 乳酸と D 乳酸の共重合比によって異なり、 D 乳酸の含 有率が増加すると、ポリ乳酸自体の結晶性が低下して融点が低下する。混合体の融 点を 160°C以上にするには、 D 乳酸の含有率が 2モル%以下であるポリ乳酸を主 体とする必要がある。 D 乳酸の含有率が 2モル%以下のポリ乳酸に、 D 乳酸の含 有率が 10%以上で実質的に非晶性であるポリ乳酸を一部混合することにより、 160 °C以上の融点を有しつつ、結晶化度や結晶化速度を制御することができる。よって、 この手法は、所望の結晶性を得る手法として有効である。
[0015] ポリ乳酸に存在する残留ラクチドは、その量が多すぎるとポリ乳酸の加水分解を促 進することが知られている。しかし、低分子量のラクチドは、高分子量のポリ乳酸よりも 結晶化しやすぐこのラクチドが結晶化開始剤となってポリ乳酸の結晶化を促進する 。したがって、本発明においては、ポリ乳酸中の残留ラクチド量は特に限定しないが 、結晶化の促進と成形体への耐熱性の付与の点から、 0.:!〜 0. 6質量%の範囲に あることが好ましい。残留ラクチド量が 0. 1質量%未満であると、ポリ乳酸の結晶化を 促進する結晶化開始剤としての働きが十分に得られない。一方、残留ラクチド量が 0 . 6質量%を超えると、結晶化は促進されるものの、加水分解を促進する作用が強ま つて生分解してしまう。
[0016] ポリ乳酸の重量平均分子量は、 15万〜 30万の範囲にあることが好ましぐより好ま しくは 16万〜 20万である。ポリ乳酸の重量平均分子量が 15万未満であると、溶融粘 度が低くすぎて、得られたシートは機械的特性に劣るものになりなすい。重量平均分 子量が 30万を超えると、溶融粘度が高くなりすぎて溶融押出が困難となりやすい。
[0017] 本発明のポリ乳酸系耐熱シートを構成するポリ乳酸系共重合ポリマーは、乳酸成分 を 30〜70モル%含有することが必要である。乳酸成分が 30モル%未満であると、ポ リ乳酸との相溶性が悪ぐ透明なシートを得ることが難しい。その一方で、 70モル%を 超えると、ポリ乳酸の結晶化速度を速める効果が小さぐ結晶化に必要な熱処理時 間が長くなつて実用性に劣り、しかも結晶化した際の透明性も劣る。
[0018] 乳酸成分以外の共重合成分は、ジカルボン酸とジオールからなるポリエステル、も しくはポリエーテルであることが好ましい。
[0019] ジカルボン酸成分としては、特に限定するものではなレ、が、シユウ酸、コハク酸、ァ ジピン酸、セバシン酸、ァゼライン酸、ドデカン二酸、ダイマー酸、テレフタル酸、イソ フタル酸、フタノレ酸、 2, 6 ナフタレンジカルボン酸、 5 ナトリウムスルホイソフタノレ 酸、無水マレイン酸、マレイン酸、フマール酸、ィタコン酸、シトラコン酸、メサコン酸、 シクロへキサンジカルボン酸等のジカルボン酸、 4ーヒドロキシ安息香酸、 ε —力プロ ラタトンなどが挙げられる。ポリ乳酸との相溶性の面から、炭素数が 10以下のジカル ボン酸が好ましい。
[0020] ジオール成分としては、エチレングリコール、ジエチレングリコール、 1, 2-プロピレ ングリコール、 1, 3—プロパンジオール、 1, 4 ブタンジオール、 1 , 5—ペンタンジ オール、ネオペンチルグリコール、 1 , 6—へキサンジオール、シクロへキサンジメタノ ール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリ テトラメチレングリコール、ビスフエノール Αやビスフエノール Sのエチレンォキシド付 加体等が挙げられる。
[0021] ポリエーテル成分としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ テトラメチレングリコールなどが挙げられる。ポリエーテルの重量平均分子量は 200〜 5000であることが好ましレ、。特定の重量平均分子量のポリエーテル成分を共重合す ることにより、ポリ乳酸との相溶性を低下させずに、ポリ乳酸に柔軟性を付与するがで きる。
[0022] ポリ乳酸系共重合ポリマーは、さらに、トリメリット酸、トリメシン酸、ピロメリット酸、トリメ チロールプロパン、グリセリン、ペンタエリスリトール等の 3官能化合物等を少量だけ 含有していてよい。これらの共重合成分は、 2種以上併用しても良い。
[0023] ポリ乳酸系共重合ポリマーは、結晶性であり、かつその融点が 130°C以上であり、 特に 140°C以上であることが好ましい。融点が 130°C未満であると、ポリ乳酸の結晶 化温度範囲とポリ乳酸系共重合ポリマーの結晶化温度範囲とのズレが大きくなり、昇 温時の結晶化速度の向上効果が小さくなる。また、結晶化後の耐熱性が劣る場合が ある。
[0024] 好ましい市販のポリ乳酸系共重合ポリマーとしては、大日本インキ社製の、商品名「 プラメート PD150、 PD350」などが挙げられる。
[0025] 本発明のポリ乳酸系耐熱シートは、ポリ乳酸 50〜95質量%と、ポリ乳酸系共重合 ポリマー 5〜50質量%とからなる必要がある。ポリ乳酸成分が 50質量%未満では、ガ ラス転移温度や融点が低下して、非晶状態のシートの取り扱い性に劣ったり、結晶化 しても耐熱性が低下したりする。ポリ乳酸成分が 95質量%を超えると、結晶化速度の 向上効果が小さぐ成型加工の実用性に劣る。この観点から、ポリ乳酸が 50〜85質 量%、ポリ乳酸系共重合ポリマーが 15〜50質量%であることが好ましぐポリ乳酸が 60〜85質量%、ポリ乳酸系共重合ポリマーが 15〜40質量%であることがさらに好ま しい。
[0026] 本発明のポリ乳酸系耐熱シートを構成する樹脂組成物中には、この樹脂組成物の 結晶化ピーク温度、結晶化熱量、最短半結晶化時間を制御する目的で、結晶核剤 を含有させても良い。その量は、樹脂組成物の全体を 100質量%として、 0. 1〜: 15 質量%の範囲であることが好ましい。添加量が 0. 1質量%未満であると結晶核剤とし ての効果を十分発揮できなくなる。添加量が 15質量%を超えると、結晶核剤の含有 量が多くなりすぎて、透明性が低下したり、成形品が脆くなつたりするなど、物性に悪 影響を与えてしまう。
[0027] 結晶核剤は、その種類が特に限定されるものではないが、少なくとも 1つの水酸基 を有するアミド系の結晶核剤であることが好ましい。またアミド系結晶核剤としては、ポ リ乳酸及びポリ乳酸系共重合ポリマーとの相溶性が良好であるものが好ましぐかつ ポリ乳酸及びポリ乳酸共重合ポリマーの結晶化速度を高め、しかも、ポリ乳酸及びポ リ乳酸共重合ポリマーが結晶化した時の透明性を維持するものが好ましい。
[0028] このようなアミド系結晶核剤としては、具体的に以下のような化合物が挙げられる。
すなわち、リシノレイン酸アミド、ヒドロキシステアリン酸アミド、 N—ヒドロキシェチルー リシノレイン酸アミド、 N—ヒドロキシェチル一 12—ヒドロキシステアリン酸アミド、 N, N '—エチレン一ビス一リシノレイン酸アミド、 N, Ν'—エチレン一ビス一 12—ヒドロキシ ステアリルアミド、 Ν, Ν' _エチレン一ビス一ステアリン酸アミド、 N, N'—へキサメチレ ン一ビス一リシノレイン酸アミド、 Ν, Ν'—へキサメチレン一ビス一 12—ヒドロキシステ アリン酸アミド、 Ν, Ν'—キシリレン一ビス一 12—ヒドロキシステアリン酸アミドなどが挙 げられる。この中でも特に、 Ν, Ν,一エチレンビス一ステアリン酸アミド、 Ν, Ν,一へキ サメチレンビス一リシノレイン酸アミド、 Ν, Ν'—へキサメチレンビス一 12—ヒドロキシ ステアリン酸アミド、 Ν, Ν,一キシリレンビス一 12—ヒドロキシステアリン酸アミドを、好 適に用いることができる。これらのアミド系結晶核剤は、単独で使用してもよいし複数 組み合わせて使用してもよい。
[0029] 好ましく用いられるアミド系結晶核剤の原料となるリシノレイン酸や 12—ヒドロキシス テアリン酸は、ヒマシ油をケン化分解して得られる脂肪酸で、植物由来であり、これら を用いることは、ポリ乳酸系共重合ポリマーを用いることとともに、石油原料の使用量 削減に貢献する。
[0030] 本発明のポリ乳酸系耐熱シートの結晶性を高めるためには、アミド系結晶核剤の化 学構造が対称構造であることが好ましい。また、ポリ乳酸およびポリ乳酸系共重合ポリ マーとの相溶性を高めるために、アミド系結晶核剤中の炭素数力 ¾〜60であることが 好ましい。
[0031] アミド系結晶核剤の添カ卩量は、 0.:!〜 5質量%であることが好ましぐ 0. :!〜 2質量 %であることがさらに好ましぐ 0. 1〜:!質量%であることがいっそう好ましい。 0. 1質 量%未満では結晶化を促進する効果に乏しぐ 5質量%を超える場合は、透明性が 損なわれやすくなつたり加工性が低下しやすくなつたりする。
[0032] ポリ乳酸との相溶性に優れる、前記したアミド系結晶核剤以外の有機物質の結晶 核剤として、エル力酸アミド、ステアリン酸アミド、ォレイン酸アミド、エチレンビスステア リン酸アミド、エチレンビスォレイン酸アミド、エチレンビスラウリル酸アミドなどの脂肪 酸アミドが挙げられる。
[0033] 結晶核剤としては、上記以外に、タルク、スメクタイト、バーミキユライト、膨潤性フッ 素雲母などに代表される層状珪酸塩などの、無機物質が挙げられる。その中で、タル クは、ポリ乳酸に対して最も結晶化効率が高ぐ非常に安価で、しかも自然界に存在 する無機物質であるため、工業的にも有利で地球環境にも負荷を与えない。
[0034] 無機の結晶核剤の平均粒径は、 0. 1〜: 10 μ mの範囲にあることが好ましい。平均 粒径が 0. l x m未満であると、分散不良や二次凝集を生じて、結晶核剤としての効 果が十分に得られに《なる。平均粒径が 10 x mを超えると、耐熱シートの物性に悪 影響を与え、結果的にこの耐熱シートから得られる成形体の物性に悪影響を及ぼし やすくなる。
[0035] 上述した少なくとも 1つの水酸基を有するアミド系の結晶核剤と、その他の有機の結 晶核剤と、無機の結晶核剤とは、それぞれ単独で使用してもよいし、複数組み合わ せて使用してもよい。
[0036] ポリ乳酸樹脂の結晶化速度をより促進するために、必要に応じて、有機過酸化物な どの架橋剤や架橋助剤を併用して、樹脂組成物に軽度の架橋を施すことも可能であ る。
[0037] その架橋剤としては、 η—ブチルー 4, 4 ビス t ブチルパーォキシバリレート、 ジクミルパーオキサイド、ジー t ブチルパーオキサイド、ジー t一へキシルパーォキ サイド、 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へキサン、 2, 5 ジメチ ノレ 2, 5— t ブチルパーォキシへキシン 3などの有機過酸化物や;無水フタル 酸、無水マレイン酸、トリメチルアジピン酸、無水トリメリット酸、 1, 2, 3, 4 ブタンテト ラカルボン酸などの多価カルボン酸や;蟻酸リチウム、ナトリウムメトキシド、プロピオン 酸カリウム、マグネシウムエトキシドなどの金属錯体ゃ;ビスフエノール A型ジグリシジ ノレエーテル、 1, 6—へキサンジオールジグリシジルエーテル、トリメチロールプロパン トリグリシジルエーテル、テレフタル酸ジグリシジルエステルなどのエポキシ化合物や ;ジイソシァネート、トリイソシァネート、へキサメチレンジイソシァネート、 2, 4_トリレ ンジイソシァネート、 2, 6 _トリレンジイソシァネート、キシリレンジイソシァネート、ジフ ヱニルメタンジイソシァネートなどのイソシァネートイ匕合物などが挙げられる。 [0038] 架橋助剤としては、トリメタタリレート、グリシジルメタタリレート、 n—ブチルメタクリレ ート、ヒドロキシプロピルモノメタタリレート、ポリエチレングリコールモノメタタリレートな どが挙げられる。
[0039] 本発明においては、シートを形成する樹脂組成物中に、必要に応じて、耐衝撃性 改良剤、可塑剤、紫外線防止剤、光安定剤、防曇剤、防霧剤、帯電防止剤、難燃剤 、着色防止剤、酸化防止剤、充填材、顔料、離型剤、防湿剤、酸素バリア剤などを、 樹脂組成物の特性を損なわない範囲で添加してもよい。あるいは、これらをシートの 表面にコートしてもよい。
[0040] 上記のように構成された樹脂組成物は、シート状に押し出されてシート化される。シ ートの厚みは、特に限定されるものではなぐ用途や要求性能等によって適宜設定 すればよレ、。ただし、 150〜500 x m程度の厚みであるのが適当である。
[0041] 本発明のポリ乳酸耐熱シートの製造方法は、特に限定されるものではなぐ例えば 、 Tダイ法、インフレーション法、カレンダ一法等が挙げられる。なかでも、 Tダイを用 レ、て材料を溶融混練して押出す Tダイ法が好ましレ、。
[0042] Tダイ法により本発明のポリ乳酸耐熱シート製造する場合には、ポリ乳酸とポリ乳酸 系共重合ポリマーとを適量配合したポリ乳酸系樹脂組成物を、 1軸押出機あるいは 2 軸押出機の押出機ホッパーに供給し、押出機を、例えば、シリンダー温度 180〜23 0°C、 Tダイ温度 200〜230°Cに加熱し、樹脂組成物を溶融混練して押出し、 30〜5 0°Cの温度範囲に設定されたキャストロールにて冷却することで、厚み 150〜500 μ m程度のシートを得ることができる。
[0043] 本発明のシートは、 20°C/minの昇温条件で示差走査型熱量計にて測定した際 の、結晶化ピーク温度が 60〜120°C、結晶化熱量が 10〜25jZg、融点が 160°C以 上、結晶融解熱量が 15〜40jZgであることが必要である。
[0044] これらの特性を発揮させるためには、具体的には、ポリ乳酸における結晶性ポリ乳 酸と非晶性ポリ乳酸の配合比や、ポリ乳酸系共重合ポリマーの種類や、ポリ乳酸とポ リ乳酸系共重合ポリマーとの混合比などを調整したり、必要に応じて結晶化核剤を添 加したりすることが肝要である。シートに加熱や延伸を行うことによつても、これらの特 性を発揮させることができる。 [0045] 結晶化ピーク温度が 60°C未満であると、シートを軟ィ匕するための加熱の際に結晶 化して、成型性に劣る場合がある。反対に 120°Cを越えると、結晶化に時間がかかり すぎて成型力卩ェの実用性に劣るばかりか、結晶化後に白化しやすい。このため、結 晶化ピーク温度は、 60°C〜: 100°Cであることが好ましい。
[0046] 結晶化ピーク温度は、ポリ乳酸とポリ乳酸系共重合ポリマーとの相溶性や、両者の 配合割合や、ポリ乳酸系共重合ポリマーの分子量、ガラス転移温度、結晶性や、さら には、結晶核剤の種類、添加量などに依存する物性である。
[0047] ポリ乳酸単体の結晶化ピーク温度は、本発明で規定する測定条件であるところの、 示差走查型熱量計にて 20°CZminで昇温したときには、観測されなレ、。ポリ乳酸に ポリ乳酸系共重合ポリマーを添加すると、結晶化ピークが比較的高い値で観測され るようになる。この結晶化ピーク温度は、次のような手法により下げることができ、これ を 60〜: 120°Cの範囲に制御することができる。詳しくは、ポリ乳酸系共重合ポリマー の配合量を増やすことにより、結晶化ピーク温度は低下する。また、ポリ乳酸系共重 合ポリマーとして、ポリ乳酸との相溶性がより高ぐより結晶性の高レ、ものを使用しても 、結晶化ピーク温度は低下する。結晶核剤を使用すると、その添加量に応じて結晶 化ピーク温度は低下する。結晶化ピーク温度を上記範囲とするためには、これらの手 法を適宜組み合わせて調整すればょレ、。
[0048] 結晶化熱量が 10j/g未満であると、シートの状態で結晶化が進行している力、結 晶性が低レ、ことを意味する。ここで、結晶化が進んでレ、る場合には深絞り成型性に劣 り、結晶化速度が遅い場合には上記と同様に結晶化に時間力 Sかかりすぎて成型カロ ェの実用性に劣る。よって、結晶化熱量は、 15〜25j/gであることが好ましい。
[0049] 結晶化熱量は、上記した結晶化ピーク温度の場合と同様の手法で調整できる。そ の他として、成型前のシートに後述するような加熱や延伸などの処理をおこなって、 組成物の一部を結晶化させることにより、結晶化熱量を低下させることができる。
[0050] 融点は、 160°C以上であることが必要で、 160°C未満であると耐熱性に劣る。
[0051] 結晶融解熱量が 15jZg未満であると、結晶化度が低ぐ結晶化しても耐熱性に劣 る。反対に結晶融解熱量力 OjZgを超えると、成型品が脆ィ匕したり、結晶化後に白 化性したりする。よって、結晶融解熱量は、 20〜35j/gであることが好ましい。 [0052] 融点と結晶融解熱量とは、ポリ乳酸とポリ乳酸系共重合ポリマーのそれぞれの融点 や、両者の配合比などによって、調整される。特に主成分であるポリ乳酸についての 選定が重要であり、先述のように D 乳酸成分と L 乳酸成分の混合比や共重合比 により融点や結晶融解熱量が調整される。
[0053] 本発明のポリ乳酸系耐熱性シートは、示差走査型熱量計にて等温結晶化測定した 際の最短半結晶化時間が lOOsec未満であることが好ましぐ 50sec未満であること が特に好ましい。 lOOsec以上であると、最短の温度域で結晶化処理を施しても白化 しゃすい。示差走査型熱量計にて等温結晶化測定した際の最短半結晶化時間の調 整は、ポリ乳酸とポリ乳酸系共重合ポリマーとの相溶性や、両者の配合割合や、ポリ 乳酸系共重合ポリマーの分子量、ガラス転移温度、結晶性などを調整することで、お こなうことができる。また、結晶核剤の種類や添加量の効果が大きぐ特に、少なくとも 1つの水酸基を有するアミド系の結晶核剤は、少量で結晶化速度を速めることができ るので、これを用いることで最短半結晶化時間を lOOsec以下としゃすくなる。
[0054] 本発明のポリ乳酸系耐熱性シートは、半結晶化時間が lOOsec未満の温度域が 30 °C以上、特に 40°C以上で存在することが好ましい。すなわち、樹脂組成物の融点か らより低い温度域での結晶化速度を高めることが、結晶化後の白化抑制に有効であ る。
[0055] 本発明のポリ乳酸系耐熱性シートは、成型前に予備結晶化させたり予備延伸させ たりしておくことで、その結晶化特性を調整することができる。
[0056] 予備結晶化させることにより、成型時に必要な結晶化に力かる時間を削減すること ができる。具体的には、押出成形されたシートを、成型工程前に、 50〜80°C、 5〜3 0秒の条件で予備結晶化させることが好ましい。なお、予備結晶化により昇温時の結 晶化熱量が低下するが、結晶化熱量は、成型加工前の状態で lOjZg以上としてお くことが必要である。
[0057] 予備延伸の条件は、 50〜80°Cで、 1. 05〜2. 0倍とすることが好ましレ、。シートを 予備延伸することによりシートの結晶化速度が速くなり、条件によっては結晶化が進 むが、成型前の状態での結晶化熱量を 10j/g以上としておくことが必要である。結 晶化熱量が lOjZg未満であると、成形性が低下する傾向にある。上記の予備延伸 条件を用いれば、シートの結晶化熱量を 10〜25j/gの範囲に調整しやすくなる。
[0058] 次に、本発明のシートの成型加工について述べる。
[0059] 本発明のシートを成型加工する方法は、特に限定されるものではないが、真空成型 、圧空成型、真空圧空成型、プレス成型のうちのいずれかの成型カ卩ェ方法が好適で ある。成型加工に先立って、熱板もしくは熱風により加熱しておくことが必要である。 その場合の加熱方法として、シートと直接接触する熱板方式では、熱板の表面状態 がシートに転写して成型品の透明性を損なう場合があるため、間接的な熱風加熱を 行うことがより好ましい。
[0060] 具体的には、まずシートを熱板もしくは熱風で樹脂組成物のガラス転移温度 + 20 °C〜ガラス転移温度 + 60°Cの範囲で 10〜60sec加熱し、シートを軟化および一部 結晶化させた後、真空もしくは圧空等の方法で賦型する。このときの加熱温度が低す ぎると、軟ィ匕が不十分で賦型できない。反対に加熱温度が高すぎたり加熱時間が長 すぎたりすると、シートの結晶化が進行し過ぎて賦型性が低下する。成型の際の金型 温度は、これを樹脂組成物のガラス転移温度以下に設定して賦型後速やかに離型 しても良いが、金型温度を実質的にポリ乳酸組成物が最も結晶化し易い温度である 80〜130°Cの範囲として金型内で結晶化させるようにすることが好ましい。このときの 更に好ましい温度範囲は、 90〜: 120°Cである。金型温度が 80°C未満であると、ポリ 乳酸組成物の結晶化が進行しなくなる。反対に熱処理温度が 130°Cを超えると、ポリ 乳酸の結晶化速度が極端に遅くなるとともに、ポリ乳酸の融点に近づくため結晶が融 解してしまうおそれがあり、結果的に結晶化による硬化が遅れ離型に必要な剛性を 得るのに時間がかかってしまう。
[0061] 本発明のポリ乳酸系耐熱シートを用いて得られる成型品は、結晶化指標が 20〜35 j/gであることが好ましい。前記のような成型方法を採ることで成型品の結晶化指標 をこの範囲とすることができる。結晶化指標がこの範囲にあることで、適度な耐熱性と 透明性を付与することができる。
[0062] 本発明にもとづくポリ乳酸系成型品について、一例を挙げて説明すると、以下の通 りである。例えば、従来耐熱性が不足するため使用が難しかった各種容器ゃトレイ等 に使用でき、さらに透明性が必要とされる容器蓋、ブリスターパック、クリアケース等に 好適に使用できる。
実施例
[0063] 次に、実施例によって本発明を具体的に説明する。
[0064] 下記の実施例及び比較例における、シートの原料と、シートの特性値の測定法とは
、次の通りである。
[0065] [シートの原料]
(A.ポリ乳酸)
PLA- 1 : (ネイチヤーワークス社製、品番: 4032D) D体含有量 1 · 2モル0 /0、残 留ラクチド量 0. 2質量%、重量平均分子量 20万。
[0066] PLA— 2 : (ネイチヤーワークス社製、品番: 4060D) D体含有量 10· 5モル0 /0、 残留ラクチド量 0. 2質量%、重量平均分子量 20万。
[0067] (B.ポリ乳酸系共重合ポリマー)
CPLA— 1: (大日本インキ社製、品番:プラメート PD150) 乳酸成分 50モル0 /0、 融点 165°C、ガラス転移温度 52°C。
[0068] CPLA— 2 : (大日本インキ社製、品番:プラメート PD350) 乳酸成分 50モル%、 融点 157°C、ガラス転移温度 18°C。
[0069] (C.結晶核剤)
EA—1 :エチレンビスラウリル酸アミド(日本化成社製、品番:スリパックス L)。
[0070] EA— 2 :エチレンビス一 12—ヒドロキシステアリン酸アミド (伊藤製油社製、品番:
A- S -A T- 530SF) o
[0071] [シートの特性値の測定法]
(A.結晶化特性)
示差走查型熱量計(Perkin Elmer社製、型番: Pyris l DSC)を用レ、、シート 10 mgを昇温速度 20°CZminで昇温し、その昇温時のガラス転移温度 (Tg)、結晶化ピ ーク温度 (Tc)、結晶化熱量 (AHc)、融点 (Tm)、結晶融解熱量(AHm)を測定し た。
[0072] (B.結晶化指標)
上記 A.結晶化特性の測定結果より、下記式(1 )により算出した。 [0073] 結晶化指標 = | AHm | | ΔΗο | (j/g) 式(1) (C.最短半結晶化時間)
示差走査型熱量計(Perkin Elmer社製、型番: Pyrisl DSC)を用い、シート 10 mgを昇温速度 500°CZminで所定の温度まで昇温し、その温度において等温で保 持した際の結晶化時間を測定した。測定は 80°C〜140°Cの範囲にて 5°C間隔で行 レ、、結晶化が最速となる温度でのピークまでの時間を最短半結晶化時間とした。
[0074] (D.耐熱性)
[シートの耐熱性]
12cm X 12cmのステンレス製の枠にシートを固定し、熱風乾燥機内で表 1に示す 条件で加熱結晶化処理を施した。得られた結晶化シートの中央部に 7cmの十字の 切込みを入れ、熱風乾燥機内でシートを水平方向の姿勢で 2時間保管した。そのと きに、次の基準にしたがって耐熱性を評価した。
[0075] ◎ 90°Cで変形が認められなかった。
[0076] 〇: 80°Cで変形が認められな力 た力 90°Cでは切込みを入れた部分に変形が 認められた。
[0077] Δ: 70°Cで変形が認められな力 た力 80°Cでは切込みを入れた部分に変形が 認められた。
[0078] X: 70°Cで、切込みを入れた部分に変形が認められた。
[0079] [成型品の耐熱性]
シートを後述の金型を用いて成型することにより得られた成型品を、その底部を上 にして熱風乾燥機内で 2時間保管して、次の基準により耐熱性を評価した。
[0080] ◎: 90°Cで変形が認められなかった。
[0081] 〇:80°Cで変形が認められなかった力 90°Cでは変形が認められた。
[0082] A : 70°Cで変形が認められなかった力 80°Cでは変形が認められた。
[0083] X : 70°Cで変形が認められた。
[0084] (E.ヘイズ)
ヘイズメーター(日本電色工業社製、型番: NDH2000)により、上記 D.と同様に 加熱結晶化処理を施したシート、および実施例 6〜8では成型品の底中央部につい て、それぞれヘイズ値(%)を測定し、次の基準にしたがって評価した。
[0085] ◎ (良好) :15%未満
〇(普通) :15%以上〜 25%未満
△ (やや劣る): 25%以上〜 35%未満
X (劣る) :35%以上
(F.成型加工性)
熱板圧空成型機とアルミニウム製の金型 (HMR— 3B)とを用いて、表 2に示す加熱 条件で、縦 230mm、横 200mm、深さ 24mmの容器を成型し、次の基準にしたがつ て成形加工性を評価した。
[0086] 〇:成型品に金型の形状が明確に転写されており、かつ、離型時の変形なし。
[0087] △:成型品に金型の形状が明確に転写されているが、離型時の変形あり。
[0088] X:成型品に金型の形状が明確に転写されていない。
[0089] (実施例 1)
上述の PLA— 1を 80質量%と、上述の CPLA— 2を 20質量%とを、スクリュー径 90 mmの単軸押出機を用いて押出温度 225°Cにて溶融押出し、 20°Cに設定されたキ ヤストロールに密着させて、厚み 300 μ ΐηの未延伸シートを得た。得られたシートおよ びその特性値の詳細を表 1に示す。
[0090] (実施例 2〜7、比較例:!〜 6)
実施例 1に比べて、原料樹脂および結晶核剤を表 1に示すように変更した。それ以 外は実施例 1と同様にして、各種シートを得た。結晶核剤は、マスターチップの形で 添加した。このマスターチップは、ポリ乳酸 90質量%と結晶核剤 10質量%とをドライ ブレンドし、スクリュー径 30mm φの二軸押出機を用いて、押出温度 190°C、スクリュ 一回転数 150rpm、吐出量 lOOgZminの条件で溶融混練することで、製造した。得 られたシートおよびその特性値の詳細を表 1に示す。
[0091] なお、表 1では、各シートにシート番号 S _ 1〜S _ 14を付した。
[0092] (比較例 7)
実施例 1と同組成で厚み 600 x mの未延伸シートを得た。このシートについて、バッ チ式延伸機内において 80°Cで lmin加熱後、 1軸方向に 2倍延伸処理を施して、厚 み 300 β mの延伸シートを得た。延伸後のシートおよびその特性値の詳細を表 1に 示す。
[0093] (実施例 8〜: 16、比較例 8〜: 14)
実施例 1〜7および比較例 1〜7で得られたシート S_ 1〜S _ 14を、上述の金型を 用いて表 2の加熱条件で成型した。その結果は、表 2に示すとおりであった。
[0094] [表 1]
Figure imgf000017_0001
TS0l90/.00Zdf/X3d L V 90Ϊひ動 OAV
Figure imgf000019_0001
実施例 1〜7のシートは、 95°C〜120°C、 20〜30secの熱処理で結晶化させること ができ、得られたシートは、比較的透明で、 80°C以上の耐熱性を有していた。
[0096] 実施例 8〜: 10は、実施例 1のシートを使用し、加工条件を変えて成型品を得たもの であった。このうち、成型品の結晶化指標の高い実施例 6の成型品は、透明性が若 干低下していたが、耐熱性に優れたものであった。一方、結晶化指標の低い実施例 8の成型品は、耐熱性が若干劣っていたが、透明性に優れるものであった。実施例 7 の成型品は、耐熱性が若干低下していたが、透明性に優れるものであった。
[0097] 実施例 11〜: 14は、実施例 2〜5のシートをそれぞれ使用して成型品を得たもので あつたが、透明'性、耐熱 '性ともに優れていた。
[0098] 実施例 15、 16は、実施例 6、 7のシートをそれぞれ使用して成型品を得たものであ つた。このうち、実施例 15は、結晶核剤を併用しない実施例 8〜: 10に比べて成型サ イタルが短かった。実施例 16は、実施例 8〜: 16の中で最も成型サイクルが短かった 。これら実施例 15、 16は、いずれも成型品の透明性と耐熱性がともに良好であった。 なお、成型サイクルとは、熱板加熱時間と金型保持時間の和をいう。
[0099] 比較例 1のシートは、ポリ乳酸系共重合ポリマーの添カ卩量が少なかったため、樹脂 組成物の結晶化ピーク温度が高ぐ結晶化速度が遅かった。その結果、 130°Cで 30 secの熱処理を施しても耐熱性が得られず、ヘイズも劣ってレ、た。
[0100] 比較例 2のシートは、樹脂組成物の結晶化ピーク温度が高かったため、 120°Cで 3 Osecの熱処理を施しても結晶化指標が低ぐ耐熱性に劣っていた。
[0101] 比較例 3のシートは、非晶性のポリ乳酸である PLA— 2の含有量が多ぐ樹脂組成 物の結晶化融解熱量が少なかったため、熱処理による結晶化後も耐熱性に劣って いた。
[0102] 比較例 4のシートは、ポリ乳酸系共重合ポリマーを含有していなかつたため、結晶 化速度が著しく遅ぐ実用的な成型サイクルである 30secでは殆ど結晶化が認められ ず、従って、透明性には優れるが耐熱性に劣っていた。
[0103] 比較例 5のシートは、比較例 4と同様のシートに 130°Cで 180secの熱処理を施して 結晶化させたものであったため、耐熱性は有していたが透明性は著しく劣っていた。 し力、も、 180secの成型サイクルでは実用性に劣るものであった。 [0104] 比較例 6のシートは、結晶核剤としてエチレンビスラウリル酸アミド(EA— 1)を添カロ したものであつたが、 120°Cで 30secの熱処理による結晶化後の耐熱性、透明性共 に劣っていた。
[0105] 比較例 7のシートは、その結晶化熱量が低かったため、 100°Cで 30secの熱処理を 施したことによる耐熱性と透明性は優れていた。しかし、成型前のシートの結晶化指 標が高かったため、比較例 14において再度軟化し成型した際の加工性に劣ってい た。換言すると、比較例 14では、所定の深さの成型品が得られなかった。このため、 耐熱性、透明性の評価は行わなかった。
[0106] 比較例 8、 9では、金型内で成型品を結晶化させるベぐ金型内に成型品を保持し たまま 120°Cで 120secまでの熱処理を施した。しかし、得られた成型品は、結晶化 指標が低ぐ耐熱性に劣っていた。また金型からの離型時に成型品に変形が認めら れ、かつ比較例 9では成型品の透明性も劣っていた。
[0107] 比較例 10では、金型内に成型品を保持したまま、成型品を金型から離型可能な最 高温度の 100°Cで 120secの熱処理を施した。しかし、得られた成型品の結晶化指 標が低ぐ耐熱性に劣っていた。また、熱処理温度が 100°Cであったにもかかわらず 、金型からの離型時に成型品に若干の変形が認められた。
[0108] 比較例 11、 12では、金型内で結晶化させる方法を用いたときには、離型可能な温 度を見つけることができな力 た。そこで、金型温度を 40°Cまで低下させて離型した 。しかし、得られた成型品は、結晶化指標が低ぐ耐熱性に劣っていた。
[0109] 比較例 13では、金型内で結晶化させるために、 120°Cで 60secの熱処理を施した 。その結果、結晶化指標が高く耐熱性の向上が見られた。しかし、熱処理温度が高 すぎたため、成型品の透明性は劣ってレ、た。

Claims

請求の範囲
[1] ポリ乳酸 50〜95質量%と、乳酸成分を 30〜70モル%含有したポリ乳酸系共重合ポ リマー 5〜50質量%とを含み、示差走查型熱量計にて 20°C/minで昇温した際の、 結晶化ピーク温度が 60〜120°C、結晶化熱量が 10〜25j/g、融点が 160°C以上、 結晶融解熱量が 15〜40jZgであることを特徴とするポリ乳酸系耐熱シート。
[2] ポリ乳酸 50〜85質量%と、乳酸成分を 30〜70モル%含有したポリ乳酸系共重合ポ リマー 15〜50質量%とを含むことを特徴とする請求項 1記載のポリ乳酸系耐熱シー 卜。
[3] 最短半結晶化時間が lOOsec未満であることを特徴とする請求項 1記載のポリ乳酸系 耐熱シート。
[4] ポリ乳酸と、乳酸成分を 30〜70モル%含有したポリ乳酸系共重合ポリマーと、少なく とも 1つの水酸基を有するアミド系結晶核剤 0.:!〜 5質量%とを含んで、全体が 100 質量%であることを特徴とする請求項 1から 3までのいずれ力 1項記載のポリ乳酸系 耐熱シート。
[5] 請求項 1から 4までのいずれ力 1項に記載のポリ乳酸系耐熱シートが成型されること により得られた成型品であって、結晶化指標が 20〜35j/gであることを特徴とする 成型品。
PCT/JP2007/061051 2006-06-02 2007-05-31 ポリ乳酸系耐熱シート WO2007142106A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07744462.8A EP2025713A4 (en) 2006-06-02 2007-05-31 HEAT-RESISTANT SURFACE OF POLYMIC ACID
JP2008520519A JP5274251B2 (ja) 2006-06-02 2007-05-31 ポリ乳酸系成型品の製造方法
US12/227,921 US20090186990A1 (en) 2006-06-02 2007-05-31 Polylactic Acid Based Heat-Resistant Sheet
CN2007800171713A CN101443410B (zh) 2006-06-02 2007-05-31 聚乳酸系耐热片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-154788 2006-06-02
JP2006154788 2006-06-02

Publications (1)

Publication Number Publication Date
WO2007142106A1 true WO2007142106A1 (ja) 2007-12-13

Family

ID=38801364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061051 WO2007142106A1 (ja) 2006-06-02 2007-05-31 ポリ乳酸系耐熱シート

Country Status (7)

Country Link
US (1) US20090186990A1 (ja)
EP (1) EP2025713A4 (ja)
JP (1) JP5274251B2 (ja)
KR (1) KR20090023336A (ja)
CN (1) CN101443410B (ja)
TW (1) TW200811240A (ja)
WO (1) WO2007142106A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110171A1 (ja) * 2008-03-03 2009-09-11 ユニチカ株式会社 生分解性ポリエステル樹脂組成物及びそれからなる成形体
JP2009256412A (ja) * 2008-04-14 2009-11-05 Takemoto Oil & Fat Co Ltd ポリ乳酸樹脂組成物及びポリ乳酸樹脂成形体
JP2009263416A (ja) * 2008-04-22 2009-11-12 Toray Saehan Inc 透明性に優れた生分解性防曇シート及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694950B2 (ja) * 2008-12-29 2015-04-01 スリーエム イノベイティブ プロパティズ カンパニー 構造化表面を有するフィルム及びその作製方法
CN102648234A (zh) 2009-12-08 2012-08-22 国际纸业公司 由生物基材料的反应性挤出产物制得的热成型制品
TWI418575B (zh) 2010-11-01 2013-12-11 Far Eastern New Century Corp Production method of heat-resistant polylactic acid element
WO2013030972A1 (ja) * 2011-08-31 2013-03-07 Jfeスチール株式会社 樹脂被膜金属板
JP5414875B2 (ja) * 2011-11-11 2014-02-12 日本合成化学工業株式会社 生分解性積層体
JP6117609B2 (ja) * 2012-05-18 2017-04-19 花王株式会社 熱成形用ポリ乳酸樹脂シート
CN105199348B (zh) * 2015-10-26 2017-01-18 江南大学 一种高强度高韧性耐热聚乳酸基膜材料的制备方法
WO2019094871A1 (en) * 2017-11-13 2019-05-16 Pactiv LLC Mineral-filled polymer articles and methods of forming same
CN112920574B (zh) * 2021-01-29 2022-09-20 四川大学 一种高透明高耐热聚乳酸材料或制品及其制备方法
CN114045018A (zh) * 2021-11-19 2022-02-15 上海奇彩塑胶原料有限公司 一种增韧高耐热全降解材料及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278991A (ja) 1995-12-21 1997-10-28 Mitsui Toatsu Chem Inc 脂肪族ポリエステル成形体の製造方法及びそれにより製造された成形体
JPH11124495A (ja) * 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd ポリ乳酸系重合体組成物および成形品
JP2001162676A (ja) 1999-12-08 2001-06-19 Mitsubishi Plastics Ind Ltd ポリ乳酸系重合体の成形体およびその成形方法
JP2002167497A (ja) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc 乳酸系ポリマー組成物
JP2002292665A (ja) * 2001-03-29 2002-10-09 Dainippon Ink & Chem Inc 乳酸系ポリマーシートの製造法
JP2003253009A (ja) 2002-03-06 2003-09-10 Unitika Ltd ポリ乳酸系成形体およびその製造方法
JP2003345150A (ja) 2002-05-30 2003-12-03 Canon Inc 画像形成装置
JP2004345150A (ja) 2003-05-21 2004-12-09 Kanebo Ltd ヒートセット成形品の製造方法
JP2004359828A (ja) * 2003-06-05 2004-12-24 Toyota Motor Corp 乳酸系ポリエステル組成物およびその成形体
JP2006016605A (ja) * 2004-06-04 2006-01-19 Mitsubishi Plastics Ind Ltd 乳酸系軟質フィルム
JP2006045300A (ja) * 2004-08-03 2006-02-16 Sekisui Seikei Ltd シート材料
JP2006335904A (ja) * 2005-06-02 2006-12-14 Tohcello Co Ltd ポリ乳酸系延伸フィルム
JP2007016091A (ja) * 2005-07-06 2007-01-25 Toray Ind Inc ポリ乳酸フィルム
JP2007091769A (ja) * 2005-09-27 2007-04-12 Mitsubishi Plastics Ind Ltd 熱収縮性フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417294B1 (en) * 1995-12-21 2002-07-09 Mitsui Chemicals, Inc. Films and molded articles formed from aliphatic polyester compositions containing nucleating agents
JP2004051666A (ja) * 2002-07-16 2004-02-19 Toyota Central Res & Dev Lab Inc ポリ乳酸複合材料及び成形体

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278991A (ja) 1995-12-21 1997-10-28 Mitsui Toatsu Chem Inc 脂肪族ポリエステル成形体の製造方法及びそれにより製造された成形体
JPH11124495A (ja) * 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd ポリ乳酸系重合体組成物および成形品
JP2001162676A (ja) 1999-12-08 2001-06-19 Mitsubishi Plastics Ind Ltd ポリ乳酸系重合体の成形体およびその成形方法
JP2002167497A (ja) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc 乳酸系ポリマー組成物
JP2002292665A (ja) * 2001-03-29 2002-10-09 Dainippon Ink & Chem Inc 乳酸系ポリマーシートの製造法
JP2003253009A (ja) 2002-03-06 2003-09-10 Unitika Ltd ポリ乳酸系成形体およびその製造方法
JP2003345150A (ja) 2002-05-30 2003-12-03 Canon Inc 画像形成装置
JP2004345150A (ja) 2003-05-21 2004-12-09 Kanebo Ltd ヒートセット成形品の製造方法
JP2004359828A (ja) * 2003-06-05 2004-12-24 Toyota Motor Corp 乳酸系ポリエステル組成物およびその成形体
JP2006016605A (ja) * 2004-06-04 2006-01-19 Mitsubishi Plastics Ind Ltd 乳酸系軟質フィルム
JP2006045300A (ja) * 2004-08-03 2006-02-16 Sekisui Seikei Ltd シート材料
JP2006335904A (ja) * 2005-06-02 2006-12-14 Tohcello Co Ltd ポリ乳酸系延伸フィルム
JP2007016091A (ja) * 2005-07-06 2007-01-25 Toray Ind Inc ポリ乳酸フィルム
JP2007091769A (ja) * 2005-09-27 2007-04-12 Mitsubishi Plastics Ind Ltd 熱収縮性フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2025713A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110171A1 (ja) * 2008-03-03 2009-09-11 ユニチカ株式会社 生分解性ポリエステル樹脂組成物及びそれからなる成形体
JPWO2009110171A1 (ja) * 2008-03-03 2011-07-14 ユニチカ株式会社 生分解性ポリエステル樹脂組成物及びそれからなる成形体
JP2009256412A (ja) * 2008-04-14 2009-11-05 Takemoto Oil & Fat Co Ltd ポリ乳酸樹脂組成物及びポリ乳酸樹脂成形体
JP2009263416A (ja) * 2008-04-22 2009-11-12 Toray Saehan Inc 透明性に優れた生分解性防曇シート及びその製造方法

Also Published As

Publication number Publication date
CN101443410B (zh) 2012-06-06
KR20090023336A (ko) 2009-03-04
EP2025713A4 (en) 2014-06-11
CN101443410A (zh) 2009-05-27
US20090186990A1 (en) 2009-07-23
EP2025713A1 (en) 2009-02-18
JP5274251B2 (ja) 2013-08-28
TW200811240A (en) 2008-03-01
JPWO2007142106A1 (ja) 2009-10-22

Similar Documents

Publication Publication Date Title
WO2007142106A1 (ja) ポリ乳酸系耐熱シート
KR100942443B1 (ko) 폴리락트산계 성형체 및 그 제조방법
JP7322463B2 (ja) 生分解性積層体
WO2004058893A1 (ja) 熱成形用ポリ乳酸系重合体組成物、熱成形用ポリ乳酸系重合体シート、及びこれを用いた熱成形体
WO2007063864A1 (ja) ポリ乳酸系樹脂積層シートおよびそれからなる成形体
JPWO2011162046A1 (ja) ポリ乳酸系フィルム
JP2006212897A (ja) ポリ乳酸系成型品の製造方法
JP2002327107A (ja) ポリ乳酸系フィルムおよびその製造方法
JP2004099671A (ja) 生分解性フィルムおよびその製造方法
JP4167107B2 (ja) ポリ乳酸系二軸延伸積層フィルム
JP5354848B2 (ja) 熱収縮性空孔含有フィルム、並びに該フィルムを基材とした成形品、熱収縮性ラベル及び容器
JP4808367B2 (ja) ポリ乳酸系成形体の製造方法
JP2011241347A (ja) ポリ乳酸系樹脂組成物、ポリ乳酸系耐熱シートおよび成形体
JP2015113442A (ja) ポリ乳酸系樹脂組成物およびそれからなる成形体
JP2008266369A (ja) ポリ乳酸系フィルム
JP2007284595A (ja) 脂肪族ポリエステルフィルム
JP2007106996A (ja) ラップフィルムおよびその製造方法
TW583215B (en) Transparent flexible polyester
JP2005219487A (ja) 積層フィルム
JP4669890B2 (ja) 熱成形体の製造方法
JP5151189B2 (ja) 積層シートおよびそれからなる成形体
JP4452293B2 (ja) 熱成形用ポリ乳酸系多層シートおよびその成形物
JP2004359948A (ja) 成形用二軸延伸ポリ乳酸フィルムおよび容器
JP2007076139A (ja) 密封袋用生分解性フィルム
WO2014189021A1 (ja) ポリ乳酸系シート及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520519

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087024955

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780017171.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12227921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007744462

Country of ref document: EP