WO2007119310A1 - アンテナ - Google Patents

アンテナ Download PDF

Info

Publication number
WO2007119310A1
WO2007119310A1 PCT/JP2007/054242 JP2007054242W WO2007119310A1 WO 2007119310 A1 WO2007119310 A1 WO 2007119310A1 JP 2007054242 W JP2007054242 W JP 2007054242W WO 2007119310 A1 WO2007119310 A1 WO 2007119310A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductance
antenna
capacitance
elements
power supply
Prior art date
Application number
PCT/JP2007/054242
Other languages
English (en)
French (fr)
Inventor
Noboru Kato
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP16198115.4A priority Critical patent/EP3168932B1/en
Priority to EP07737817A priority patent/EP2009738A4/en
Priority to BRPI0702888-1A priority patent/BRPI0702888B1/pt
Priority to CN2007800007085A priority patent/CN101331651B/zh
Priority to JP2007550609A priority patent/JP4135770B2/ja
Publication of WO2007119310A1 publication Critical patent/WO2007119310A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the present invention relates to an antenna, and more particularly to a small and wide band surface mount antenna.
  • Patent Document 1 discloses that an excitation coil is helically wound around an elongated insulating main body and adjacent to the excitation coil.
  • a helical antenna capable of operating in two frequency bands by winding the first and second parasitic coils around the main body in a helical shape is disclosed.
  • the interval between the two operable frequency bands is several hundred MHz or more, and the two frequency bands cannot be brought close to 100 MHz or less. Also, if the bandwidth of one frequency band is wider than that of a helical antenna formed by a single coil, it is still possible to secure a sufficient bandwidth.
  • Patent Document 1 JP 2003-37426 A
  • an object of the present invention is to provide a small antenna that can ensure a wide band.
  • the first invention is an antenna including a power supply terminal and at least two inductance elements having different inductance values, and uses the inductance element for radiation of radio waves.
  • it is characterized in that it is used as an inductance of a matching circuit that impedance-matches the impedance of the power feeding terminal seen from the power feeding side and the radiation impedance in free space.
  • the impedance of the device connected to the feeder terminal and the impedance of the space 377 ⁇ Matching can be made substantially in a wide band, and a small and wide band antenna can be achieved, and a surface mount type can be realized.
  • a second invention is an antenna including a power supply terminal and a plurality of resonance circuits, wherein the plurality of resonance circuits are used for radiating radio waves, and the impedance of the power supply terminal is viewed from the power supply side. And the inductance of a matching circuit that impedance matches the radiation impedance of free space.
  • the impedance of the device connected to the feeder terminal and the impedance of the space 377 ⁇ can be matched substantially over a wide band, and a small-sized and wide-band antenna can be achieved.
  • the plurality of resonance circuits can be composed of a capacitance element and an inductance element.
  • the plurality of resonance circuits be electrically connected to the power supply terminal directly or via a lumped constant type capacitance or inductance. It is preferable that adjacent resonance circuits among the plurality of resonance circuits have a coupling coefficient of at least 0.1 or more.
  • the inductance elements constituting the plurality of resonance circuits can be constituted by linear electrode patterns arranged in a uniaxial direction. If this capacitance element, which is preferably electrically connected to a capacitor element as a countermeasure against surges, is formed on the laminated board, the size reduction will not be impaired. If a plurality of resonant circuits are formed on the laminated substrate, the miniaturization is further promoted and the production is facilitated by the laminated construction method.
  • a third invention is an antenna including first and second feeding terminals and a plurality of resonance circuits
  • a first LC series resonant circuit comprising a first inductance element and first and second capacitance elements electrically connected to both ends thereof; a second inductance element and third and third electrically connected to both ends thereof; A second LC series resonant circuit comprising a fourth capacitance element, and
  • the first and second inductance elements are magnetically coupled to each other, and the first inductance element is One end of which is electrically connected to the first feeding terminal via the first capacitance element, and the other end is electrically connected to the second feeding terminal via the second capacitance element,
  • One end of the second inductance element is electrically connected to the first feeding terminal via the third and first capacitance elements, and the other end is electrically connected to the second feeding terminal via the fourth and second capacitance elements. Being connected,
  • the first and second LC series resonant circuits are used for radio wave radiation, and the first and second inductance elements function as the inductance of the matching circuit.
  • the impedance of the equipment connected to the 1st and 2nd feed terminals can be matched with the spatial impedance of 377 ⁇ in a substantially wide band.
  • each element can easily have a laminated structure, and a small and broadband surface-mount antenna is achieved.
  • the impedance of the device connected to the power supply terminal and the impedance of the space 377 ⁇ are substantially matched in a wide band with a plurality of inductance elements or a plurality of resonance circuits used for radio wave radiation. Therefore, it is possible to obtain a small and wideband antenna that does not require a separate matching circuit.
  • FIG. 1 is an equivalent circuit diagram of an antenna according to a first embodiment.
  • FIG. 2 is a plan view showing the laminated structure of the antenna according to the first embodiment.
  • FIG. 3 is a graph showing the reflection characteristics of the antenna according to the first embodiment.
  • FIG. 4 is a graph showing the reflection characteristics of the antenna according to the first embodiment.
  • FIG. 5 is an XY plane chart showing the directivity of the antenna according to the first embodiment.
  • FIG. 6 is a Smith chart showing the impedance of the antenna according to the first embodiment.
  • FIG. 7 is an equivalent circuit diagram of the antenna according to the second embodiment.
  • FIG. 8 is a plan view showing a laminated structure of an antenna according to a second embodiment.
  • FIG. 9 is a graph showing the reflection characteristics of the antenna according to the second embodiment.
  • FIG. 10 is an equivalent circuit diagram obtained by converting the circuit of the antenna according to the second embodiment.
  • FIG. 11 is an equivalent circuit diagram of the antenna according to the third embodiment.
  • FIG. 12 is a perspective view showing the appearance of an antenna that is a third embodiment.
  • FIG. 13 is a graph showing the reflection characteristics of the antenna according to the third embodiment.
  • FIG. 14 is an equivalent circuit diagram of the antenna according to the fourth embodiment.
  • FIG. 15 is a plan view showing a laminated structure of an antenna according to a fourth embodiment.
  • FIG. 16 is a graph showing the reflection characteristics of the antenna according to the fourth embodiment.
  • FIG. 17 is an equivalent circuit diagram of the antenna according to the fifth embodiment.
  • FIG. 18 is a plan view showing the laminated structure of the antenna according to the fifth embodiment.
  • FIG. 19 is an equivalent circuit diagram of the antenna according to the sixth embodiment.
  • FIG. 20 is a plan view showing a laminated structure of an antenna according to a sixth embodiment.
  • FIG. 21 is an equivalent circuit diagram of an antenna according to another embodiment.
  • FIG. 22 is an equivalent circuit diagram of the antenna according to the seventh embodiment.
  • FIG. 23 is a graph showing the reflection characteristics of the antenna according to the seventh example.
  • FIG. 24 is an equivalent circuit diagram of the antenna according to the eighth embodiment.
  • FIG. 25 is a graph showing the reflection characteristics of the antenna according to the eighth example.
  • FIG. 26 is an equivalent circuit diagram of the antenna according to the ninth embodiment.
  • FIG. 27 is a graph showing the reflection characteristics of the antenna according to the ninth embodiment.
  • FIG. 28 is an equivalent circuit diagram of the antenna according to the tenth embodiment.
  • FIG. 29 is a plan view showing the laminated structure of the antenna according to the tenth embodiment.
  • FIG. 30 is a graph showing the reflection characteristics of the antenna according to the tenth example.
  • FIG. 31 is an equivalent circuit diagram of the antenna according to the eleventh embodiment.
  • FIG. 32 is a graph showing the reflection characteristics of the antenna according to the eleventh embodiment.
  • FIGS. 1 to 7 Refer to the first embodiment, FIGS. 1 to 7)
  • the antenna 1A has inductance elements LI, having different inductance values and magnetically coupled in phase with each other (indicated by mutual inductance M).
  • L2 and inductance element L1 is capacitance It is connected to the power supply terminals 5 and 6 via the elements Cla and Clb, and is connected in parallel to the inductance element L2 via the capacitance elements C2a and C2b.
  • this resonance circuit is configured to include an LC series resonance circuit that also includes the inductance element L1 and the capacitance elements Cla and Clb, and an LC series resonance circuit that includes the inductance element L2 and the capacitance elements C2a and C2b.
  • the antenna 1A having the circuit configuration described above is formed by laminating, press-bonding, and firing ceramic sheets lla to lli having a dielectric force, which has a laminated structure shown as an example in FIG.
  • the power supply terminals 5 and 6 and the via-hole conductors 19a and 19b are formed on the sheet 11a
  • the capacitor electrodes 12a and 12b are formed on the sheet l ib
  • the capacitor electrodes 13a and 13b and the via-hole conductors 19c, 19b are formed on the sheet 11c.
  • 19d is formed
  • the capacitor electrodes 14a and 14b and via Honoré conductors 19c, 19d, 19e and 19f are formed on the sheet id.
  • connecting conductor patterns 15a, 15b, 15c and via-hole conductors 19d, 19g, 19h, 19i are formed.
  • Sheet 1 If has conductor patterns 16a and 17a and via hole conductors 19g, 19i, 19j and 19k.
  • Conductive patterns 16b and 17b and via-hole conductors 19g, 19i, 19j and 19k are formed on the sheet llg.
  • Conductive patterns 16c and 17c and via-hole conductors 19g, 19i, 19j and 19k are formed on the sheet l lh.
  • conductor patterns 16d and 17d are formed on the sheet 1 li!
  • the conductor patterns 16a to 16d are connected via the via hole conductor 19j to form the inductance element L1, and the conductor patterns 17a to 17d are connected to the via hole conductor 19k.
  • the inductance element L2 is formed.
  • the capacitance element Cla is composed of electrodes 12a and 13a
  • the capacitance element Clb is composed of electrodes 12b and 13b.
  • the capacitance element C2a is composed of electrodes 13a and 14a
  • the capacitance element C2b is composed of electrodes 13b and 14b.
  • One end of the inductance element L1 is connected to the capacitor electrode 13a via the via-hole conductor 19g, the connecting conductor pattern 15c, and the via-hole conductor 19c, and the other end is connected to the capacitor electrode 13b via the via-hole conductor 19d.
  • One end of the inductance element L2 is connected to the capacitor electrode 14a via the via-hole conductor 19i, the connection conductor pattern 15a, and the via-hole conductor 19e, and the other end is connected to the via-hole conductor 19h. It is connected to the capacitor electrode 14b through the body pattern 15b and the via hole conductor 19f.
  • the power supply terminal 5 is connected to the capacitor electrode 12a via the via-hole conductor 19a, and the power supply terminal 6 is connected to the capacitor electrode 12b via the via-hole conductor 19b.
  • the LC series resonance circuit including the inductance elements LI and L2 magnetically coupled to each other resonates, and the inductance elements LI and L2 function as radiating elements.
  • the inductance elements LI and L2 are coupled via the capacitance elements C 2a and C2b, so that the impedance of the equipment connected to the feed terminals 5 and 6 (usually 50 ⁇ ) matches the impedance of the space (377 ⁇ ). Functions as a circuit.
  • the inductance values of the inductance elements LI and L2 and the degree of magnetic coupling between the inductance elements L1 and L2 (mutual inductance M) are set so as to obtain a desired bandwidth.
  • the LC resonant circuit consisting of capacitance elements Cla, Clb, C2a, C2b and inductance elements LI, L2 is configured as a lumped constant type resonant circuit, it can be miniaturized as a stacked type, and other elements Will be influenced by.
  • the capacitance elements Cla and Clb are interposed at the power supply terminals 5 and 6, low frequency surges can be cut off, and the device can be protected from surge power.
  • LC series resonant circuits are formed on a multilayer substrate, it can be a small antenna that can be surface-mounted on a substrate such as a mobile phone, which is an RFID (Radio Frequency Identification) system. It can also be used as an antenna for the wireless IC devices used.
  • RFID Radio Frequency Identification
  • the antenna 1 A was able to obtain the reflection characteristics shown in FIG.
  • the center frequency is 760 MHz, and a reflection characteristic of 10 dB or more is obtained in a wide band of 700 to 800 MHz.
  • the reason why such a broadband reflection characteristic can be obtained will be described in detail in a second embodiment to be described later.
  • FIG. 4 shows the directivity of antenna 1A
  • FIG. 5 shows the directivity in the XY plane.
  • the X, Y, and Z axes correspond to the arrows X, ⁇ , and Z shown in Figs.
  • Figure 6 It is a Smith chart which shows an impedance dance.
  • the antenna 1B according to the second embodiment has inductance elements LI, having different inductance values and magnetically coupled in phase with each other (indicated by mutual inductance M).
  • L2 is provided, and one end of the inductance element L1 is connected to the power feeding terminal 5 via the capacitance element C1 and to the inductance element L2 via the capacitance element C2.
  • the other ends of the inductance elements LI and L2 are directly connected to the feeding terminal 6, respectively.
  • this resonance circuit is configured to include an LC series resonance circuit composed of an inductance element L1 and a capacitance element C1, and an LC series resonance circuit composed of an inductance element L2 and a capacitance element C2.
  • Capacitance elements Clb and C2b are omitted from the antenna 1A according to one embodiment.
  • the inductance values of the inductance elements LI and L2 and the degree of magnetic coupling between the inductance elements L1 and L2 (mutual inductance M) are set so as to obtain a desired bandwidth.
  • the antenna 1B having the above-described circuit configuration force has a laminated structure shown as an example in FIG. 8, and is obtained by laminating, pressing and firing ceramic sheets lla to lli having dielectric force.
  • the power supply terminals 5 and 6 and via-hole conductors 19a and 19b are formed on the sheet 11a
  • the capacitor electrode 12a and the via-hole conductor 19m are formed on the sheet l ib
  • the capacitor electrode 13a and the via-hole conductor 19c are formed on the sheet 11c.
  • 19m is formed, and the capacitor electrode 14a and the via hole conductor 19c, 19e, 19m force are formed on the sheet id.
  • connection conductor patterns 15a, 15b, 15c and via-hole conductors 19d, 19g, 19h, 19i are formed on the sheet lie.
  • Sheet 1 If has conductor patterns 16a and 17a and via hole conductors 19g, 19i, 19j and 19k.
  • Conductive patterns 16b and 17b and via-hole conductors 19g, 19i, 19j and 19k are formed on the sheet llg.
  • Conductive patterns 16c and 17c and via-hole conductors 19g, 19i, 19j and 19k are formed on the sheet l lh.
  • conductor patterns 16d and 17d are formed on the sheet 1 li!
  • the conductor patterns 16a to 16d are connected via the via hole conductor 19j to form the inductance element L1, and the conductor pattern 17a is formed.
  • ⁇ 17d are connected via the via-hole conductor 19k to form the inductance element L2.
  • the capacitance element C1 is composed of electrodes 12a and 13a
  • the capacitance element C2 is composed of electrodes 13a and 14a.
  • the inductance element L1 has one end connected to the capacitor electrode 13a via the via-hole conductor 19g, the connecting conductor pattern 15c, and the via-hole conductor 19c, and the other end connected to the via-hole conductor 19d, the connecting conductor pattern 15b, Connected to the feed terminal 6 via via-hole conductors 19m and 19b.
  • the capacitor electrode 12a is connected to the power supply terminal 5 via the via-hole conductor 19a.
  • one end of the inductance element L2 is connected to the capacitor electrode 14a via the via-hole conductor 19i, the connecting conductor pattern 15a, and the via-hole conductor 19e, and the other end is connected to the via-hole conductor 19h, the connecting conductor pattern 15b, Connected to the feed terminal 6 via via-hole conductors 19m and 19b.
  • the other ends of the inductance elements LI and L2 are connected by a connecting conductor pattern 15b.
  • the LC series resonance circuit including the inductance elements LI and L2 magnetically coupled to each other resonates, and the inductance elements LI and L2 function as radiating elements.
  • the inductance elements LI and L2 are coupled via the capacitance element C 2 to match the impedance of the equipment connected to the feed terminals 5 and 6 (usually 50 ⁇ ) and the impedance of the space (377 ⁇ ). Function as.
  • the antenna 1 B has the reflection characteristics shown in FIG.
  • FIG. 10 shows the circuit configuration of this antenna 1B.
  • the ⁇ -type circuit part consisting of inductance element Ll, capacitance element C2, and inductance element L2 is converted into a saddle type circuit. It is the same figure ( ⁇ ).
  • when L1 ⁇ L2, L1 – LM ⁇ 0 depending on the magnitude of mutual inductance M.
  • L1 ⁇ M 0, the circuit shown in FIG. 5B can be converted to the circuit shown in FIG. If LI-M is 0, the capacitance C2 in the circuit shown in FIG.
  • the circuit shown in the figure (C) converted in this way has capacitance C1 and mutual inductance.
  • I can plan. This bandwidth is appropriately set according to each resonance frequency, that is, the values of LI, L2, and M.
  • the antenna 1C according to the third embodiment includes blocks A, B, and C each including two LC series resonance circuits.
  • the LC series resonance circuit included in each of the blocks A, B, and C has the same circuit configuration as that of the antenna 1A according to the first embodiment, and a detailed description thereof is omitted.
  • This antenna 1C has the stacked structure shown in FIG. 2 arranged side by side as blocks A, B, and C as shown in FIG. 12, and the LC series resonance circuit of each block A, B, and C is connected to a common feeding terminal. 5 and 6 are connected.
  • LC series resonance circuits including inductance elements LI and L2, inductance elements L3 and L4, and inductance elements L5 and L6 magnetically coupled to each other resonate, Functions as a radiating element.
  • each inductance element via a capacitance element, it functions as a matching circuit between the impedance of the equipment (usually 50 ⁇ ) connected to the feed terminals 5 and 6 and the impedance of the space (377 ⁇ ).
  • the antenna 1C according to the third embodiment is obtained by connecting three antennas 1A according to the first embodiment in parallel, and the inventor performed a simulation based on the equivalent circuit shown in FIG. As a result, as shown in Fig. 13, reflection characteristics of 10 dB or more were obtained in the three frequency bands Tl, T2, and T3.
  • Band T1 is equivalent to UHF TV
  • band T2 is equivalent to GSM
  • band T3 is equivalent to a wireless LAN.
  • the other operational effects of the third embodiment are the same as those of the first embodiment.
  • the antenna 1D according to the fourth embodiment has inductance elements LI, L2 having different inductance values and magnetically coupled in the same phase (indicated by mutual inductance M). , L3, L4 and inductance element L1 Connected to feed terminals 5 and 6 via the capacitance elements Cla and Clb, and the inductance element L2 is connected in parallel via the capacitance elements C2a and C2b, and the inductance element L3 is connected in parallel via the capacitance elements C3a and C3b.
  • the inductance element L4 is connected in parallel via the capacitance elements C4a and C4b.
  • this resonance circuit includes an LC series resonance circuit composed of an inductance element L1 and capacitance elements Cla and Clb, an LC series resonance circuit composed of an inductance element L2 and capacitance elements C2a and C2b, and an inductance element L3.
  • An LC series resonance circuit composed of capacitance elements C3a and C3b, and an LC series resonance circuit also including an inductance element L4 and capacitance elements C4a and C4b are included.
  • the antenna 1D having the circuit configuration described above has a laminated structure shown as an example in FIG. 15, and is obtained by laminating, pressing, and firing ceramic sheets 21a to 21j having dielectric strength. That is, capacitor electrodes 22a and 22b that also function as power supply terminals 5 and 6 are formed on the sheet 21a, capacitor electrodes 23a and 23b and via-hole conductors 29a and 29b are formed on the sheet 21b, and capacitor electrodes are formed on the sheet 21c. 24a and 24b and via-hole conductors 29a to 29d are formed. Capacitor electrodes 25a and 25b and via-hole conductors 29a to 29f are formed on the sheet 21d, and capacitor electrodes 26a and 26b and via-hole conductors 29a to 29h are formed on the sheet 21e.
  • connection conductive patterns 30a to 30d and via-hole conductors 28a to 28h are formed on the sheet 21f.
  • Conductive patterns 31a to 31d and via-hole conductors 27a to 27h are formed on the sheet 21g.
  • Conductive patterns 31a to 31d and via hole conductors 27a to 27h are formed on the sheet 21h.
  • Conductive patterns 31a to 31d and via hole conductors 27a to 27h are formed on the sheet 21i.
  • connection conductor patterns 32a to 32d are formed on the sheet 21j.
  • the conductor patterns 31a to 31d are connected via the via-hole conductors 27e to 27h, respectively, thereby forming the inductance elements L1 to L4.
  • One end of the inductance element L1 is connected to the capacitor electrode 23a via the via-hole conductor 27e, the connecting conductor pattern 32a, the via-hole conductors 27a and 28a, the connecting conductor pattern 30a, and the via-hole conductor 29a.
  • the other end of the inductance element L1 It is connected to the capacitor electrode 23b through the conductors 28e and 29b.
  • One end of the inductance element L2 is connected to the capacitor electrode 24a via the via-hole conductor 27f, the connecting conductor pattern 32b, the via-hole conductors 27b and 28b, the connecting conductor pattern 30b, and the via-hole conductor 29c.
  • the other end of the inductance element L2 is connected to the capacitor electrode 24b via the via-hole conductors 28f and 29d.
  • one end of the inductance element L3 is connected to the capacitor electrode 25a via the via-hole conductor 27g, the connecting conductor pattern 32c, the via-hole conductors 27c and 28c, the connecting conductor pattern 30c, and the via-hole conductor 29e.
  • the other end of the inductance element L3 is connected to the capacitor electrode 25b via the via-hole conductors 28g and 29f.
  • One end of the inductance element L4 is connected to the capacitor electrode 26a via the via-hole conductor 27h, the connecting conductor pattern 32d, the via-hole conductors 27d and 28d, the connecting conductor pattern 30d, and the via-hole conductor 29g.
  • the other end of the inductance element L4 is connected to the capacitor electrode 26b via the via-hole conductors 28h and 29h.
  • the capacitance element Cla is composed of electrodes 22a and 23a, and the capacitance element Clb is composed of electrodes 22b and 23b.
  • Capacitance element C2a is composed of electrodes 23a and 24a, and capacitance element C2b is composed of electrodes 23b and 24b.
  • the capacitance element C 3a is composed of electrodes 24a and 25a, and the capacitance element C3b is composed of electrodes 24b and 25b.
  • the capacitance element C4a is composed of electrodes 25a and 26a, and the capacitance element C4b is composed of electrodes 25b and 26b.
  • the LC series resonance circuit including the inductance elements L1 to L4 magnetically coupled to each other resonates, and the inductance elements L1 to L4 function as radiating elements.
  • Inductance elements L1 to L4 are coupled via capacitance elements C2a, C2b and C3a, C3b and C4a, C4b, respectively, so that the impedance (usually 50 ⁇ ) of the equipment connected to feed terminals 5 and 6 and the space It functions as a matching circuit with the impedance of 377 ⁇ .
  • kl force is about 0.7624
  • k2 force is about 0.5750
  • k3 force is about 0.6627.
  • the inductance values of these inductance elements L1 to L4 and the values of coupling coefficients kl, k2, and k3 are set so as to obtain a desired bandwidth.
  • the antenna 1D has a reflection characteristic of ⁇ 6 dB or more in an extremely wide frequency band T4 as shown in FIG.
  • the other operational effects of the fourth embodiment are the same as those of the first embodiment.
  • the antenna 1E according to the fifth embodiment has inductance elements LI, L2 having different inductance values and magnetically coupled in phase with each other (shown as mutual inductance M).
  • the inductance element L1 is connected to the power supply terminals 5 and 6 via the capacitance elements Cla and Clb, and constitutes an LC series resonance circuit composed of the inductance element L1 and the capacitance elements Cla and Clb.
  • Inductance element L2 is connected in series with capacitance element C2 to form an LC series resonance circuit.
  • the antenna 1E having the above circuit configuration is configured by laminating, press-bonding, and firing ceramic sheets 41a to 41f having a dielectric structure, which has a laminated structure shown as an example in FIG. That is, capacitor electrodes 42a and 42b that also function as power supply terminals 5 and 6 are formed on the sheet 41a, and capacitor electrodes 43a and 43b and via-hole conductors 49a and 49b are formed on the sheet 41b.
  • conductor patterns 44a, 45a and via-honored conductors 49c, 49d, 49e, 49f are formed on the sheet 41c.
  • Conductive patterns 44b and 45b and via-hole conductors 49g and 49h are formed on the sheet 41d.
  • a capacitor electrode 46 and a via-hole conductor 49i are formed on the sheet 41e. Further, a capacitor electrode 47 is formed on the sheet 41f.
  • Capacitance element Cla consists of electrodes 42a and 43a
  • capacitance element Clb It consists of electrodes 42b and 43b.
  • the capacitance element C2 is composed of electrodes 46 and 47.
  • inductance element L1 is connected to capacitor electrode 43a via via-hole conductors 49c and 49a, and the other end is connected to capacitor electrode 43b via via-hole conductor 49b.
  • One end of the inductance element L2 is connected to the capacitor electrode 46 via the via-hole conductors 49f and 49h, and the other end is connected to the capacitor electrode 47 via the via-hole conductors 49g and 49i.
  • the LC series resonance circuit including the inductance elements LI and L2 magnetically coupled to each other resonates, and the inductance elements LI and L2 function as radiating elements.
  • the inductance elements LI and L2 are magnetically coupled to function as a matching circuit between the impedance (usually 50 ⁇ ) of the equipment connected to the feed terminals 5 and 6 and the spatial impedance (377 ⁇ ). To do.
  • the effect of the antenna 1E according to the fifth embodiment is basically the same as that of the antenna 1A according to the first embodiment.
  • the antenna 1F according to the sixth embodiment has inductance elements LI, L2 having different inductance values and magnetically coupled in the same phase (indicated by mutual inductance M).
  • the inductance element L1 is connected to the power supply terminal 5 via the capacitance element C1, and constitutes an LC series resonance circuit including the inductance element L1 and the capacitance element C1.
  • the inductance element L2 is connected in series with the capacitance element C2 to form an LC series resonance circuit.
  • the inductance element L3 has one end connected to the power supply terminal 6 and the other end force inductance elements L1 and L2.
  • the inductance values of the inductance elements LI, L2, and L3, and the degree of magnetic coupling between the inductance elements L1 and L2 are set so as to obtain a desired bandwidth.
  • the antenna 1F having the circuit configuration described above is formed by laminating, press-bonding, and firing ceramic sheets 5la to 51h having a dielectric force, which has a laminated structure shown as an example in FIG.
  • the power supply terminals 5 and 6 and via-hole conductors 59a and 59b are formed on the sheet 51a.
  • Shi A capacitor electrode 52a, a conductor pattern 56a, and a via-hole conductor 59c are formed on the 5 lb.
  • Capacitor electrode 52b, conductor pattern 56b, and via hole conductors 59c and 59d are formed on sheet 51c.
  • conductor patterns 53 and 56c and via-hole conductors 59c and 59e are formed on the sheet 5 Id.
  • a conductive pattern 56d and via-hole conductors 59c, 59f, 59g are formed on the sheet 51e.
  • capacitor electrodes 54a, conductor patterns 56e, and via-hole conductors 59c and 59g are formed on the sheet 5
  • Capacitor electrode 54b, conductor pattern 56f, and via-hole conductors 59c, 59g, and 59h are formed on sheet 51g.
  • a conductor pattern 55 is formed on the sheet 51h, and an end portion on the other end side of the conductor pattern 55 is a conductor 56g.
  • the conductor pattern 53 is configured as the inductance element L1
  • the conductor pattern 55 is configured as the inductance element L2.
  • Conductive patterns 56a to 56g are connected via via-hole conductor 59c to form inductance element L3.
  • the capacitance element C1 is composed of capacitor electrodes 52a and 52b
  • the capacitance element C2 is composed of capacitor electrodes 54a and 54b.
  • One end of the inductance element L1 is connected to the capacitor electrode 52b via the via-hole conductor 59d, and the other end is connected to the other end of the inductance element L2 via the via-hole conductors 59e and 59g.
  • One end of the inductance element L2 is connected to the capacitor electrode 54b via the via-hole conductor 59h, and the other end is connected to the other end of the inductance element L1 via the via-hole conductors 59g and 59e as described above, and the inductance element L3 Is connected to one end (conductor pattern 56g).
  • the other end of the inductance element L3 is connected to the feed terminal 6 via the via-hole conductor 59b.
  • the capacitor electrode 52a is connected to the power feeding terminal 5 through the via-hole conductor 59a.
  • the LC series resonance circuit including the inductance elements LI and L2 magnetically coupled to each other resonates, and the inductance elements LI and L2 function as radiating elements.
  • Inductance elements LI and L2 are magnetically coupled to function as a matching circuit between the impedance (usually 50 ⁇ ) of the equipment connected to power supply terminals 5 and 6 and the spatial impedance (377 ⁇ ).
  • the antenna 1F even if the magnetic coupling between the inductance elements LI and L2 is small, A wide band can be secured because the children LI and L2 are directly connected. Furthermore, since the other end force S of the inductance elements LI and L2 is connected to the power supply terminal 6 via the S inductance element L3, the coupling coefficient k of the inductance elements LI and L2 can be increased. Further, by adding the inductance element L3, it is possible to realize a wide band even if the coupling coefficient of the inductance elements LI and L2 is small.
  • the other effects of the antenna 1F according to the sixth embodiment are basically the same as those of the antenna 1A according to the first embodiment.
  • the resonant circuit constituting the antenna can adopt, for example, various forms shown by equivalent circuits in FIGS. 21 (A) to (E). Can be obtained.
  • Fig. 21 (A) shows an LC series resonance circuit composed of the inductance element L1 and the capacitance element C1, and the inductance element L2 and the capacitance element C2, respectively, and the inductance elements LI and L2 are directly connected.
  • one end of the inductance element L1 is connected to the power supply terminal 5, and the capacitance elements CI and C2 are connected to the power supply terminal 6.
  • Fig. 21 (B) shows an LC series resonance circuit composed of the inductance element L1 and the capacitance element C1, and the inductance element L2 and the capacitance element C2, respectively, and feeds one end of the inductance element L1.
  • capacitance element C2 is connected between inductance elements LI and L2, and the other ends of capacitance element C1 and inductance element L2 are connected to feeder terminal 6.
  • Fig. 21 (C) shows an LC series resonance circuit composed of the inductance element L1 and the capacitance element C1, and the inductance element L2 and the capacitance element C2, respectively, and the inductance elements LI and L2 are directly connected.
  • the capacitance element C1 is connected to the feeding terminal 5, and the other ends of the capacitance element C2 and the inductance element L1 are connected to the feeding terminal 6.
  • FIG. 21 (D) shows an LC series resonance circuit composed of the inductance element L1 and the capacitance element C1, and the inductance element L2 and the capacitance element C2, respectively.
  • One end of the inductance elements LI and L2 Are connected via the capacitance element C1 and the other end is directly connected.
  • One end of the inductance element L1 is connected to the power supply terminal 5, and the inductance element The other ends of the devices LI and L2 are connected to the power feeding terminal 6.
  • Fig. 21 (E) shows an LC series resonance circuit composed of the inductance element L1 and the capacitance element C1, and the inductance element L2 and the capacitance element C2, respectively, and the inductance elements LI and L2 are directly connected.
  • the connection point between one end of the inductance element L1 and the capacitance element C1 is connected to the power supply terminal 5
  • the connection point between the other end of the inductance element L2 and the capacitance element C1 is connected to the power supply terminal 6.
  • the antenna 1G according to the seventh embodiment has inductance elements LI, L2 having different inductance values and magnetically coupled in phase with each other (shown as mutual inductance M).
  • the inductance elements LI and L2 are connected in parallel to the power supply terminals 5 and 6, respectively.
  • the inductance elements LI and L2 have mutually different inductance values and are magnetically coupled in the same phase.
  • the antenna 1G has a wideband reflection characteristic shown in FIG. Functions as a radiating element.
  • the antenna 1H according to the eighth embodiment is arranged between one end of the inductance element L1 and the feeding terminal 5 with respect to the inductance elements LI and L2 shown in the seventh embodiment.
  • Capacitance element C1 is connected.
  • the mutual inductance M is generated by the magnetic coupling of the inductance elements LI and L2 having different inductance values. According to the simulation of the present inventors, The broadband reflection characteristics shown in Fig. 25 can be obtained.
  • the antenna II according to the ninth embodiment has a capacitance element between one end and the feeding terminal 5 with respect to the inductance elements LI and L2 shown in the seventh embodiment. CI and C2 are connected.
  • the antenna 1J of the tenth embodiment is provided with a so-called intermediate tap in the inductance element L1 shown in the second embodiment, and the power supply terminal 5 is connected to the intermediate tap.
  • the capacitance element C1 is omitted.
  • the effect is the same as that of the second embodiment, but by providing an intermediate tap according to the impedance between the power supply terminals 5 and 6, the impedance of the space and the power supply terminal without reducing the electromagnetic field energy. Matching with impedance of equipment connected between 5 and 6 is possible.
  • the inductance element L1 is divided into inductances Lla and Lib.
  • the antenna 1J having the above circuit configuration is formed by laminating, press-bonding, and firing ceramic sheets lla to llh each having a laminated structure shown as an example in FIG. 29 and also having dielectric strength. That is, the power supply terminals 5 and 6 and the via-hole conductors 19a and 19b are formed on the sheet l la, and the capacitor electrode 13a, the connecting conductor pattern 15d and the via-hole conductors 19c, 19m, and 19 n are formed on the sheet l ib. A capacitor electrode 14a and via-hole conductors 19c, 19e, 19m, 19 ⁇ are formed on the sheet 11c.
  • connecting conductor patterns 15a, 15b, 15c and via-hole conductors 19d, 19g, 19h, 19i, 19n are formed on the sheet lie.
  • Conductive patterns 16a and 17a and via-hole conductors 19g, 19i, 19j, 19k and 19n are formed on the sheet lie.
  • Sheet 1 If is formed with conductor patterns 16b and 17b and via Honoré conductors 19g, 19i, 19j, 19k and 19n.
  • the sheet l lg is formed with conductor turns ⁇ 16c, 17c and via Honoré conductors 19g, 19i, 19j, 19k force S. Further, conductor patterns 16d and 17d are formed on the sheet l lh.
  • the conductor patterns 16a to 16d are connected via the via hole conductor 19j to form the inductance element L1, and the branch portion 16c of the conductor pattern 16c is formed. 'Functions as an intermediate tap, and the branch portion 16c' is connected to the power supply terminal 5 via the via-hole conductor 19n and further via the connecting conductor pattern 15d and the via-hole conductor 19a.
  • the conductor patterns 17a to 17d are connected via the via-hole conductor 19k to form the inductance element L2.
  • the capacitance element C2 includes electrodes 13a and 14a.
  • One end of the inductance element L1 is connected to the capacitor electrode 13a via the via-hole conductor 19g, the connection conductor pattern 15c, and the via-hole conductor 19c, and the other end is connected to the via-hole conductor 19d, the connection conductor pattern 15b, Connected to the feed terminal 6 via via-hole conductors 19m and 19b.
  • one end of the inductance element L2 is connected to the capacitor electrode 14a via the via-hole conductor 19i, the connecting conductor pattern 15a, and the via-hole conductor 19e, and the other end is connected to the via-hole conductor 19h, the connecting conductor pattern 15b, Connected to the feed terminal 6 via via-hole conductors 19m and 19b.
  • the other ends of the inductance elements LI and L2 are connected by a connecting conductor pattern 15b.
  • the LC series resonance circuit including the inductance elements LI and L2 magnetically coupled to each other resonates, and the inductance elements LI and L2 function as radiating elements.
  • Inductance elements LI and L2 are coupled via capacitance element C2, and by providing branch 16c (intermediate tap), the impedance of the equipment connected to feeder terminals 5 and 6 (usually 50 ⁇ ) Functions as a matching circuit with space impedance (377 ⁇ ).
  • an antenna 1K according to the eleventh embodiment is obtained by adding a capacitance element C1 to the antenna 1J shown in the tenth embodiment.
  • the operational effect is the same as that of the tenth embodiment, and it can be adjusted according to the impedance between the feed terminals 5 and 6.
  • By providing an inter-tap it is possible to match the impedance of the space without reducing the electromagnetic field energy and the impedance of the equipment connected between the feed terminals 5 and 6.
  • the capacitance element C1 to the tenth embodiment impedance matching between the feeding terminals 5 and 6 can be easily achieved.
  • the antenna 1K having the above circuit configuration power is basically the same as the laminated structure shown in FIGS. 8 and 29, and the details are omitted.
  • the reflection characteristic shown in FIG. 32 was obtained in the antenna 1K.
  • the antenna according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.
  • the LC resonance circuit is configured by a lumped constant type resonance circuit, but may be configured by a distribution constant type resonance circuit.
  • the laminated body incorporating the LC resonance circuit can be made of ceramic resin or the like as a material that can be an insulator as well as an insulator.
  • the present invention is useful for a surface-mounted antenna, and is particularly excellent in that it is small and can secure a wide band.

Abstract

 小型で広帯域を確保できるアンテナを得る。  互いに磁気結合するインダクタンス素子(L1),(L2)を備え、インダクタンス素子(L1)とキャパシタンス素子(C1a),(C1b)とからなるLC直列共振回路と、インダクタンス素子(L2)とキャパシタンス素子(C2a),(C2b)とからなるLC直列共振回路を含むアンテナ。複数のLC直列共振回路を電波の放射に使用するとともに、給電端子(5),(6)から給電側を見たインピーダンス(50Ω)と自由空間の放射インピーダンス(377Ω)とをインピーダンスマッチングさせるマッチング回路のインダクタンスとして用いている。

Description

明 細 書
アンテナ
技術分野
[0001] 本発明はアンテナ、特に、小型で広帯域な表面実装型のアンテナに関する。
背景技術
[0002] 従来、携帯電話などの移動体通信に使用される小型アンテナとして、特許文献 1に は、細長い絶縁性の本体部に励振コイルをヘリカル状に巻き付けるとともに、該励振 コイルに隣接するように第 1、第 2の無給電コイルを本体部にヘリカル状に巻き付ける ことにより、 2周波数帯での動作が可能なヘリカルアンテナが開示されている。
[0003] し力しながら、前記へリカルアンテナは、動作可能な 2周波数帯の間隔が数百 MHz 以上離れており、二つの周波数帯を 100MHz以下の近傍に近付けることはできない 。また、一つの周波数帯の帯域幅は単一コイルで形成したヘリカルアンテナに比較し て広くなつては 、るものの未だ十分な帯域幅を確保することはできて ヽな 、。
特許文献 1:特開 2003 - 37426号公報
発明の開示
発明が解決しょうとする課題
[0004] そこで、本発明の目的は、小型で広帯域を確保できるアンテナを提供することにあ る。
課題を解決するための手段
[0005] 前記目的を達成するため、第 1の発明は、給電端子と互いに異なるインダクタンス 値を有する少なくとも二つのインダクタンス素子とを備えたアンテナであって、前記ィ ンダクタンス素子を電波の放射に使用するとともに、前記給電端子力 給電側を見た インピーダンスと自由空間の放射インピーダンスとをインピーダンスマッチングさせる マッチング回路のインダクタンスとして用いることを特徴とする。
[0006] 第 1の発明に係るアンテナにおいては、互いに異なるインダクタンス値を有する少な くとも二つのインダクタンス素子をマッチング回路のインダクタンスとして使用すること で、給電端子に接続される機器のインピーダンスと空間のインピーダンス 377 Ωとを 実質的に広帯域でマッチングさせることができ、小型でかつ広帯域のアンテナが達 成され、表面実装型とすることも可能になる。
[0007] 第 2の発明は、給電端子と複数の共振回路とを備えたアンテナであって、前記複数 の共振回路を電波の放射に使用するとともに、前記給電端子力 給電側を見たイン ピーダンスと自由空間の放射インピーダンスとをインピーダンスマッチングさせるマツ チング回路のインダクタンスとして用いることを特徴とする。
[0008] 第 2の発明に係るアンテナにおいては、電波の放射に使用する複数の共振回路の インダクタンス成分をマッチング回路のインダクタンスとして使用することで、給電端子 に接続される機器のインピーダンスと空間のインピーダンス 377 Ωとを実質的に広帯 域でマッチングさせることができ、小型でかつ広帯域のアンテナが達成され、表面実 装型とすることも可能になる。
[0009] 第 2の発明にお 、て、複数の共振回路はキャパシタンス素子とインダクタンス素子と で構成することができる。この場合、複数の共振回路は給電端子と直接又は集中定 数型のキャパシタンス若しくはインダクタンスを介して電気的に接続されて!ヽることが 好ましい。そして、複数の共振回路のうち隣接する共振回路どうしが少なくとも 0. 1以 上の結合係数であることが好まし 、。
[0010] また、複数の共振回路を構成するインダクタンス素子は 1軸方向に並べた線状電極 ノ ターンにて構成することができる。給電端子には、サージ対策として、キャパシタン ス素子が電気的に接続されていることが好ましぐこのキャパシタンス素子を積層基 板に形成すれば、小型化を損なうことはない。複数の共振回路を積層基板に形成す れば、小型化がより促進され、積層工法によって製造も容易になる。
[0011] 第 3の発明は、第 1及び第 2給電端子と複数の共振回路とを備えたアンテナであつ て、
第 1インダクタンス素子とその両端に電気的に接続された第 1及び第 2キャパシタン ス素子とからなる第 1LC直列共振回路と、第 2インダクタンス素子とその両端に電気 的に接続された第 3及び第 4キャパシタンス素子とからなる第 2LC直列共振回路と、 を備え、
第 1及び第 2インダクタンス素子は互いに磁気結合し、第 1インダクタンス素子はそ の一端が第 1キャパシタンス素子を介して第 1給電端子に電気的に接続され、他端が 第 2キャパシタンス素子を介して第 2給電端子に電気的に接続され、
第 2インダクタンス素子はその一端が第 3及び第 1キャパシタンス素子を介して第 1 給電端子に電気的に接続され、他端が第 4及び第 2キャパシタンス素子を介して第 2 給電端子に電気的に接続されていること、
を特徴とする。
[0012] 第 3の発明に係るアンテナにおいては、第 1及び第 2LC直列共振回路が電波の放 射に使用され、かつ、第 1及び第 2インダクタンス素子がマッチング回路のインダクタ ンスとして機能し、第 1及び第 2給電端子に接続される機器のインピーダンスと空間の インピーダンス 377 Ωとを実質的に広帯域でマッチングさせることができる。し力も、 それぞれの素子は容易に積層構造ィ匕することができ、小型かつ広帯域の表面実装 型のアンテナが達成される。
発明の効果
[0013] 本発明によれば、電波の放射に使用する複数のインダクタンス素子又は複数の共 振回路にて給電端子に接続される機器のインピーダンスと空間のインピーダンス 377 Ωとを実質的に広帯域でマッチングさせることができ、マッチング回路を別途設ける 必要がなぐ小型で広帯域のアンテナを得ることができる。
図面の簡単な説明
[0014] [図 1]第 1実施例であるアンテナの等価回路図。
[図 2]第 1実施例であるアンテナの積層構造を示す平面図。
[図 3]第 1実施例であるアンテナの反射特性を示すグラフ。
[図 4]第 1実施例であるアンテナの反射特性を示すグラフ。
[図 5]第 1実施例であるアンテナの指向性を示す X— Y平面のチャート。
[図 6]第 1実施例であるアンテナのインピーダンスを示すスミスチャート。
[図 7]第 2実施例であるアンテナの等価回路図。
[図 8]第 2実施例であるアンテナの積層構造を示す平面図。
[図 9]第 2実施例であるアンテナの反射特性を示すグラフ。
[図 10]第 2実施例であるアンテナの回路変換した等価回路図。 [図 11]第 3実施例であるアンテナの等価回路図。
[図 12]第 3実施例であるアンテナの外観を示す斜視図。
[図 13]第 3実施例であるアンテナの反射特性を示すグラフ。
[図 14]第 4実施例であるアンテナの等価回路図。
[図 15]第 4実施例であるアンテナの積層構造を示す平面図。
[図 16]第 4実施例であるアンテナの反射特性を示すグラフ。
[図 17]第 5実施例であるアンテナの等価回路図。
[図 18]第 5実施例であるアンテナの積層構造を示す平面図。
[図 19]第 6実施例であるアンテナの等価回路図。
[図 20]第 6実施例であるアンテナの積層構造を示す平面図。
[図 21]他の実施例であるアンテナの等価回路図。
[図 22]第 7実施例であるアンテナの等価回路図。
[図 23]第 7実施例であるアンテナの反射特性を示すグラフ。
[図 24]第 8実施例であるアンテナの等価回路図。
[図 25]第 8実施例であるアンテナの反射特性を示すグラフ。
[図 26]第 9実施例であるアンテナの等価回路図。
[図 27]第 9実施例であるアンテナの反射特性を示すグラフ。
[図 28]第 10実施例であるアンテナの等価回路図。
[図 29]第 10実施例であるアンテナの積層構造を示す平面図。
[図 30]第 10実施例であるアンテナの反射特性を示すグラフ。
[図 31]第 11実施例であるアンテナの等価回路図。
[図 32]第 11実施例であるアンテナの反射特性を示すグラフ。
発明を実施するための最良の形態
[0015] 以下に、本発明に係るアンテナの実施例について添付図面を参照して説明する。
[0016] (第 1実施例、図 1〜図 7参照)
第 1実施例であるアンテナ 1Aは、図 1に等価回路として示すように、互いに異なるィ ンダクタンス値を有し、かつ、互いに同相で磁気結合 (相互インダクタンス Mで示す) されているインダクタンス素子 LI, L2を備え、インダクタンス素子 L1はキャパシタンス 素子 Cla, Clbを介して給電端子 5, 6と接続され、かつ、キャパシタンス素子 C2a, C2bを介してインダクタンス素子 L2と並列に接続されている。換言すれば、この共振 回路は、インダクタンス素子 L1とキャパシタンス素子 Cla, Clbと力もなる LC直列共 振回路と、インダクタンス素子 L2とキャパシタンス素子 C2a, C2bとからなる LC直列 共振回路を含んで構成されて 、る。
[0017] 以上の回路構成カゝらなるアンテナ 1Aは、図 2に一例として示す積層構造で構成さ れ、誘電体力もなるセラミックシート l la〜l liを積層、圧着、焼成したものである。即 ち、シート 11aには給電端子 5, 6とビアホール導体 19a, 19bが形成され、シート l ib にはキャパシタ電極 12a, 12bが形成され、シート 11cにはキャパシタ電極 13a, 13b とビアホール導体 19c, 19dが形成され、シート l idにはキャパシタ電極 14a, 14bと ビアホーノレ導体 19c, 19d, 19e, 19f力形成されている。
[0018] さらに、シート l ieには接続用導体パターン 15a, 15b, 15cとビアホール導体 19d , 19g, 19h, 19iが形成されている。シート 1 Ifには導体パターン 16a, 17aとビアホ 一ノレ導体 19g, 19i, 19j, 19k力形成されている。シート l lgには導体パターン 16b , 17bとビアホール導体 19g, 19i, 19j, 19kが形成されている。シート l lhには導体 パターン 16c, 17cとビアホール導体 19g, 19i, 19j, 19kが形成されている。さらに、 シート 1 liには導体パターン 16d, 17dが形成されて!、る。
[0019] 以上のシート l la〜l liを積層することにより、導体パターン 16a〜16dがビアホー ル導体 19jを介して接続されてインダクタンス素子 L1が形成され、導体パターン 17a 〜 17dがビアホール導体 19kを介して接続されてインダクタンス素子 L2が形成される 。キャパシタンス素子 Claは電極 12a, 13aで構成され、キャパシタンス素子 Clbは 電極 12b, 13bで構成される。また、キャパシタンス素子 C2aは電極 13a, 14aで構成 され、キャパシタンス素子 C2bは電極 13b, 14bで構成される。
[0020] そして、インダクタンス素子 L1はその一端がビアホール導体 19g、接続用導体パタ ーン 15c、ビアホール導体 19cを介してキャパシタ電極 13aに接続され、その他端が ビアホール導体 19dを介してキャパシタ電極 13bに接続される。インダクタンス素子 L 2はその一端がビアホール導体 19i、接続用導体パターン 15a、ビアホール導体 19e を介してキャパシタ電極 14aに接続され、その他端がビアホール導体 19h、接続用導 体パターン 15b、ビアホール導体 19fを介してキャパシタ電極 14bに接続される。
[0021] また、給電端子 5はビアホール導体 19aを介してキャパシタ電極 12aと接続され、給 電端子 6はビアホール導体 19bを介してキャパシタ電極 12bと接続される。
[0022] 以上の構成力もなるアンテナ 1 Aにおいては、互いに磁気的に結合しているインダ クタンス素子 LI, L2を含む LC直列共振回路が共振し、インダクタンス素子 LI, L2 が放射素子として機能する。また、インダクタンス素子 LI, L2がキャパシタンス素子 C 2a, C2bを介して結合することで、給電端子 5, 6に接続される機器のインピーダンス (通常 50 Ω )と空間のインピーダンス (377 Ω )とのマッチング回路として機能する。
[0023] 隣接するインダクタンス素子 LI, L2の結合係数 kは、 k2 = M2 (Ll X L2)で表され 、 0. 1以上が好ましぐ本第 1実施例においては、約 0. 8975である。インダクタンス 素子 LI, L2のインダクタンス値、並びに、インダクタンス素子 L1とインダクタンス素子 L2の磁気結合の度合 (相互インダクタンス M)は、所望する帯域幅が得られるように 設定されるものである。また、キャパシタンス素子 Cla, Clb, C2a, C2bとインダクタ ンス素子 LI, L2とからなる LC共振回路を集中定数型共振回路として構成している ため、積層タイプとして小型化することができ、他の素子からの影響が受けに《なる 。さらに、給電端子 5, 6には、キャパシタンス素子 Cla, Clbが介在されているため、 低周波数のサージをカットすることができ、機器をサージ力も保護することができる。
[0024] また、複数の LC直列共振回路を積層基板にて形成したため、携帯電話などの基 板に表面実装することのできる小型のアンテナとすることができ、 RFID (Radio Frequ ency Identification)システムに用いられる無線 ICデバイスのアンテナとしても使用す ることがでさる。
[0025] 図 1に示した等価回路に基づいて本発明者がシミュレーションした結果、アンテナ 1 Aにおいては、図 3に示す反射特性を得ることができた。図 3から明らかなように、中 心周波数は 760MHzであり、 700〜800MHzの広帯域で 10dB以上の反射特性 が得られた。なお、このように広帯域な反射特性が得られる理由については、後述の 第 2実施例において詳述する。
[0026] また、図 4にアンテナ 1Aの指向性について示し、図 5に X—Y平面での指向性につ いて示す。 X軸、 Y軸、 Z軸は図 2及び図 4に示す矢印 X, Υ, Zに対応する。図 6はィ ンピーダンスを示すスミスチャートである。
[0027] (第 2実施例、図 7〜図 9参照)
第 2実施例であるアンテナ 1Bは、図 7に等価回路として示すように、互いに異なるィ ンダクタンス値を有し、かつ、互いに同相で磁気結合 (相互インダクタンス Mで示す) されているインダクタンス素子 LI, L2を備え、インダクタンス素子 L1は一端がキャパ シタンス素子 C1を介して給電端子 5と接続されるとともに、キャパシタンス素子 C2を 介してインダクタンス素子 L2と接続されている。また、インダクタンス素子 LI, L2の他 端はそれぞれ直接に給電端子 6と接続されている。換言すれば、この共振回路は、ィ ンダクタンス素子 L1とキャパシタンス素子 C1とからなる LC直列共振回路と、インダク タンス素子 L2とキャパシタンス素子 C2とからなる LC直列共振回路を含んで構成され ており、第 1実施例である前記アンテナ 1Aからキャパシタンス素子 Clb, C2bを省略 したものである。インダクタンス素子 LI, L2のインダクタンス値、並びに、インダクタン ス素子 L1とインダクタンス素子 L2の磁気結合の度合 (相互インダクタンス M)は、所 望する帯域幅が得られるように設定されるものである。
[0028] 以上の回路構成力もなるアンテナ 1Bは、図 8に一例として示す積層構造で構成さ れ、誘電体力もなるセラミックシート l la〜l liを積層、圧着、焼成したものである。即 ち、シート 11aには給電端子 5, 6とビアホール導体 19a, 19bが形成され、シート l ib にはキャパシタ電極 12aとビアホール導体 19mが形成され、シート 11cにはキャパシ タ電極 13aとビアホール導体 19c, 19mが形成され、シート l idにはキャパシタ電極 1 4aとビアホーノレ導体 19c, 19e, 19m力 ^形成されて!ヽる。
[0029] さらに、シート l ieには接続用導体パターン 15a, 15b, 15cとビアホール導体 19d , 19g, 19h, 19iが形成されている。シート 1 Ifには導体パターン 16a, 17aとビアホ 一ノレ導体 19g, 19i, 19j, 19k力形成されている。シート l lgには導体パターン 16b , 17bとビアホール導体 19g, 19i, 19j, 19kが形成されている。シート l lhには導体 パターン 16c, 17cとビアホール導体 19g, 19i, 19j, 19kが形成されている。さらに、 シート 1 liには導体パターン 16d, 17dが形成されて!、る。
[0030] 以上のシート l la〜l liを積層することにより、導体パターン 16a〜16dがビアホー ル導体 19jを介して接続されてインダクタンス素子 L1が形成され、導体パターン 17a 〜 17dがビアホール導体 19kを介して接続されてインダクタンス素子 L2が形成される 。キャパシタンス素子 C1は電極 12a, 13aで構成され、キャパシタンス素子 C2は電極 13a, 14aで構成される。
[0031] そして、インダクタンス素子 L1はその一端がビアホール導体 19g、接続用導体パタ ーン 15c、ビアホール導体 19cを介してキャパシタ電極 13aに接続され、その他端が ビアホール導体 19d、接続用導体パターン 15b、ビアホール導体 19m, 19bを介して 給電端子 6に接続される。また、キャパシタ電極 12aはビアホール導体 19aを介して 給電端子 5に接続される。
[0032] 一方、インダクタンス素子 L2はその一端がビアホール導体 19i、接続用導体パター ン 15a、ビアホール導体 19eを介してキャパシタ電極 14aに接続され、その他端がビ ァホール導体 19h、接続用導体パターン 15b、ビアホール導体 19m, 19bを介して 給電端子 6に接続される。インダクタンス素子 LI, L2の他端はそれぞれ接続用導体 パターン 15bによって接続されている。
[0033] 以上の構成力もなるアンテナ 1Bにおいては、互いに磁気的に結合しているインダ クタンス素子 LI, L2を含む LC直列共振回路が共振し、インダクタンス素子 LI, L2 が放射素子として機能する。また、インダクタンス素子 LI, L2がキャパシタンス素子 C 2を介して結合することで、給電端子 5, 6に接続される機器のインピーダンス (通常 5 0 Ω )と空間のインピーダンス (377 Ω )とのマッチング回路として機能する。
[0034] 図 7に示した等価回路に基づいて本発明者がシミュレーションした結果、アンテナ 1 Bにおいては、図 9に示す反射特性が得られた。
[0035] 以下に、第 2実施例であるアンテナ 1Bは広帯域な反射特性が得られることについ て詳述する。図 10を参照して、同図 (A)は本アンテナ 1Bの回路構成を示し、インダ クタンス素子 Ll、キャパシタンス素子 C2、インダクタンス素子 L2からなる π型回路部 分を Τ型回路に変換したもの力 同図(Β)である。同図(Β)において、 L1 <L2の場 合、相互インダクタンス Mの大きさにより L1—LM≤0となる。ここで、 L1— M = 0の場 合には、同図(B)に示した回路は同図(C)に示す回路に変換できる。なお、 LI— M く 0の場合には、同図(C)に示す回路におけるキャパシタンス C2が C2'となる。この ように回路変換された同図(C)に示す回路は、キャパシタンス C1と相互インダクタン ス Mとの直列共振回路と、キャパシタンス C2とインダクタンス L2— Mとの並列共振回 路とで構成されることになり、各共振回路の共振周波数の間隔を広げることにより帯 域幅を広げて広帯域ィ匕が図れる。この帯域幅は各共振周波数、即ち、 LI, L2, Mの 値により適宜設定されるものである。
[0036] (第 3実施例、図 11〜図 13参照)
第 3実施例であるアンテナ 1Cは、図 11に等価回路として示すように、それぞれ二 つの LC直列共振回路からなるブロック A, B, Cにて構成されている。各ブロック A, B , Cに含まれる LC直列共振回路は前記第 1実施例であるアンテナ 1Aと同じ回路構 成であり、その詳細な説明は省略する。
[0037] このアンテナ 1Cは、図 2に示した積層構造をそれぞれブロック A, B, Cとして図 12 に示すように並置し、各ブロック A, B, Cの LC直列共振回路を共通の給電端子 5, 6 に接続している。
[0038] 以上の構成力もなるアンテナ 1Cにおいては、互いに磁気的に結合しているインダ クタンス素子 LI, L2、インダクタンス素子 L3, L4及びインダクタンス素子 L5, L6を 含む LC直列共振回路がそれぞれ共振し、放射素子として機能する。また、それぞれ のインダクタンス素子がキャパシタンス素子を介して結合することで、給電端子 5, 6に 接続される機器のインピーダンス(通常 50 Ω )と空間のインピーダンス (377 Ω )との マッチング回路として機能する。
[0039] 即ち、第 3実施例であるアンテナ 1Cは第 1実施例であるアンテナ 1Aを 3個分並列 に接続したもので、図 11に示した等価回路に基づ 、て本発明者がシミュレーションし た結果、図 13に示すように、三つの周波数帯域 Tl, T2, T3において 10dB以上 の反射特性が得られた。帯域 T1は UHFテレビ、帯域 T2は GSM、帯域 T3はワイヤ レス LANに相当する。また、本第 3実施例におけるその他の作用効果は前記第 1実 施例と同様である。
[0040] (第 4実施例、図 14〜図 16参照)
第 4実施例であるアンテナ 1Dは、図 14に等価回路として示すように、互いに異なる インダクタンス値を有し、かつ、互いに同相で磁気結合 (相互インダクタンス Mで示す )されているインダクタンス素子 LI, L2, L3, L4を備え、インダクタンス素子 L1はキヤ パシタンス素子 Cla, Clbを介して給電端子 5, 6と接続され、かつ、インダクタンス素 子 L2はキャパシタンス素子 C2a, C2bを介して並列に接続され、インダクタンス素子 L3はキャパシタンス素子 C3a, C3bを介して並列に接続され、インダクタンス素子 L4 はキャパシタンス素子 C4a, C4bを介して並列に接続されている。換言すれば、この 共振回路は、インダクタンス素子 L1とキャパシタンス素子 Cla, Clbとからなる LC直 列共振回路と、インダクタンス素子 L2とキャパシタンス素子 C2a, C2bとからなる LC 直列共振回路と、インダクタンス素子 L3とキャパシタンス素子 C3a, C3bとからなる L C直列共振回路と、インダクタンス素子 L4とキャパシタンス素子 C4a, C4bと力もなる LC直列共振回路を含んで構成されて ヽる。
[0041] 以上の回路構成カゝらなるアンテナ 1Dは、図 15に一例として示す積層構造で構成 され、誘電体力もなるセラミックシート 21a〜21jを積層、圧着、焼成したものである。 即ち、シート 21aには給電端子 5, 6としても機能するキャパシタ電極 22a, 22bが形 成され、シート 21bにはキャパシタ電極 23a, 23bとビアホール導体 29a, 29bが形成 され、シート 21cにはキャパシタ電極 24a, 24bとビアホール導体 29a〜29dが形成さ れている。シート 21dにはキャパシタ電極 25a, 25bとビアホール導体 29a〜29fが形 成され、シート 21eにはキャパシタ電極 26a, 26bとビアホール導体 29a〜29hが形 成されている。
[0042] さらに、シート 21fには接続用導体パターン 30a〜30dとビアホール導体 28a〜28 hが形成されている。シート 21gには導体パターン 31a〜31dとビアホール導体 27a 〜27hが形成されている。シート 21hには導体パターン 31a〜31dとビアホール導体 27a〜27hが形成されている。シート 21iには導体パターン 31a〜31dとビアホール 導体 27a〜27hが形成されている。さらに、シート 21jには接続用導体パターン 32a 〜32dが形成されている。
[0043] 以上のシート 21a〜21jを積層することにより、導体パターン 31a〜31dがそれぞれ ビアホール導体 27e〜27hを介して接続されてインダクタンス素子 L1〜L4が形成さ れる。インダクタンス素子 L1の一端は、ビアホール導体 27e、接続用導体パターン 3 2a、ビアホール導体 27a, 28a、接続用導体パターン 30a及びビアホール導体 29aを 介してキャパシタ電極 23aに接続される。インダクタンス素子 L1の他端は、ビアホー ル導体 28e, 29bを介してキャパシタ電極 23bに接続される。インダクタンス素子 L2 の一端は、ビアホール導体 27f、接続用導体パターン 32b、ビアホール導体 27b, 28 b、接続用導体パターン 30b及びビアホール導体 29cを介してキャパシタ電極 24aに 接続される。インダクタンス素子 L2の他端は、ビアホール導体 28f, 29dを介してキヤ パシタ電極 24bに接続される。
[0044] さらに、インダクタンス素子 L3の一端は、ビアホール導体 27g、接続用導体パター ン 32c、ビアホール導体 27c, 28c、接続用導体パターン 30c及びビアホール導体 2 9eを介してキャパシタ電極 25aに接続される。インダクタンス素子 L3の他端は、ビア ホール導体 28g, 29fを介してキャパシタ電極 25bに接続される。インダクタンス素子 L4の一端は、ビアホール導体 27h、接続用導体パターン 32d、ビアホール導体 27d , 28d、接続用導体パターン 30d及びビアホール導体 29gを介してキャパシタ電極 2 6aに接続される。インダクタンス素子 L4の他端は、ビアホール導体 28h, 29hを介し てキャパシタ電極 26bに接続される。
[0045] キャパシタンス素子 Claは電極 22a, 23aで構成され、キャパシタンス素子 Clbは 電極 22b, 23bで構成される。キャパシタンス素子 C2aは電極 23a, 24aで構成され、 キャパシタンス素子 C2bは電極 23b, 24bで構成される。また、キャパシタンス素子 C 3aは電極 24a, 25aで構成され、キャパシタンス素子 C3bは電極 24b, 25bで構成さ れる。キャパシタンス素子 C4aは電極 25a, 26aで構成され、キャパシタンス素子 C4b は電極 25b, 26bで構成される。
[0046] 以上の構成力もなるアンテナ 1Dにおいては、互いに磁気的に結合しているインダ クタンス素子 L1〜L4を含む LC直列共振回路が共振し、インダクタンス素子 L1〜L4 が放射素子として機能する。また、インダクタンス素子 L1〜L4がそれぞれキャパシタ ンス素子 C2a, C2bと C3a, C3bと C4a, C4bを介して結合することで、給電端子 5, 6に接続される機器のインピーダンス(通常 50 Ω )と空間のインピーダンス (377 Ω )と のマッチング回路として機能する。
[0047] 隣接するインダクタンス素子 LI, L2の結合係数 kl、インダクタンス素子 L2, L3の 結合係数 k2、インダクタンス素子 L3, L4の結合係数 k3は、それぞれ、 kl2 = M2 (L 1 X L2)、 k22 = M2 (L2 X L3)、 k32 = M2 (L3 X L4)で表され、それぞれ 0. 1以上 力好まし ヽ。本第 4実施 f列にお!ヽて ίま、 kl力約 0. 7624、 k2力 ^約 0. 5750、 k3力 ^約 0. 6627である。これらのインダクタンス素子 L1〜L4のインダクタンス値、並びに、結 合係数 kl, k2, k3の値は、所望する帯域幅が得られるように設定されるものである。
[0048] 図 14に示した等価回路に基づいて本発明者がシミュレーションした結果、アンテナ 1Dにおいては、図 16に示すように、極めて広い周波数帯域 T4において— 6dB以上 の反射特性が得られた。また、本第 4実施例におけるその他の作用効果は前記第 1 実施例と同様である。
[0049] (第 5実施例、図 17及び図 18参照)
第 5実施例であるアンテナ 1Eは、図 17に等価回路として示すように、互いに異なる インダクタンス値を有し、かつ、互いに同相で磁気結合 (相互インダクタンス Mで示す )されているインダクタンス素子 LI, L2を備え、インダクタンス素子 L1はキャパシタン ス素子 Cla, Clbを介して給電端子 5, 6と接続され、インダクタンス素子 L1とキャパ シタンス素子 Cla, Clbとからなる LC直列共振回路を構成している。また、インダクタ ンス素子 L2はキャパシタンス素子 C2と直列に接続されて LC直列共振回路を構成し ている。
[0050] 以上の回路構成カゝらなるアンテナ 1Eは、図 18に一例として示す積層構造で構成さ れ、誘電体力もなるセラミックシート 41a〜41fを積層、圧着、焼成したものである。即 ち、シート 41aには給電端子 5, 6としても機能するキャパシタ電極 42a, 42bが形成さ れ、シート 41bにはキャパシタ電極 43a, 43bとビアホール導体 49a, 49bが形成され ている。
[0051] さらに、シート 41cには導体パターン 44a, 45aとビアホーノレ導体 49c, 49d, 49e, 49fが形成されている。シート 41dには導体パターン 44b, 45bとビアホール導体 49g , 49hが形成されている。シート 41eにはキャパシタ電極 46とビアホール導体 49iが 形成されている。さらに、シート 41fにはキャパシタ電極 47が形成されている。
[0052] 以上のシート 41a〜41fを積層することにより、導体パターン 44a, 44bがビアホー ル導体 49dを介して接続されてインダクタンス素子 L1が形成され、導体パターン 45a , 45bがビアホール導体 49eを介して接続されてインダクタンス素子 L2が形成される 。キャパシタンス素子 Claは電極 42a, 43aで構成され、キャパシタンス素子 Clbは 電極 42b, 43bで構成される。また、キャパシタンス素子 C2は電極 46, 47で構成さ れる。
[0053] そして、インダクタンス素子 L1はその一端がビアホール導体 49c, 49aを介してキヤ パシタ電極 43aに接続され、その他端がビアホール導体 49bを介してキャパシタ電極 43bに接続される。インダクタンス素子 L2はその一端がビアホール導体 49f, 49hを 介してキャパシタ電極 46に接続され、その他端がビアホール導体 49g, 49iを介して キャパシタ電極 47に接続される。
[0054] 以上の構成力もなるアンテナ 1Eにおいては、互いに磁気的に結合しているインダ クタンス素子 LI, L2を含む LC直列共振回路が共振し、インダクタンス素子 LI, L2 が放射素子として機能する。また、インダクタンス素子 LI, L2が磁気的に結合するこ とで、給電端子 5, 6に接続される機器のインピーダンス (通常 50 Ω )と空間のインピ 一ダンス (377 Ω )とのマッチング回路として機能する。
[0055] 本第 5実施例であるアンテナ 1Eの作用効果は前記第 1実施例であるアンテナ 1 Aと 基本的に同様である。
[0056] (第 6実施例、図 19及び図 20参照)
第 6実施例であるアンテナ 1Fは、図 19に等価回路として示すように、互いに異なる インダクタンス値を有し、かつ、互いに同相で磁気結合 (相互インダクタンス Mで示す )されているインダクタンス素子 LI, L2を備え、インダクタンス素子 L1はキャパシタン ス素子 C 1を介して給電端子 5と接続され、インダクタンス素子 L 1とキャパシタンス素 子 C1とからなる LC直列共振回路を構成している。また、インダクタンス素子 L2はキ ャパシタンス素子 C2と直列に接続されて LC直列共振回路を構成している。また、ィ ンダクタンス素子 L3は、一端が給電端子 6と接続され、他端力 ンダクタンス素子 L1 , L2にそれぞれ接続されている。インダクタンス素子 LI, L2, L3のインダクタンス値 、並びに、インダクタンス素子 L1とインダクタンス素子 L2の磁気結合の度合 (相互ィ ンダクタンス M)は、所望する帯域幅が得られるように設定されるものである。
[0057] 以上の回路構成カゝらなるアンテナ 1Fは、図 20に一例として示す積層構造で構成さ れ、誘電体力もなるセラミックシート 5 la〜51hを積層、圧着、焼成したものである。即 ち、シート 51aには給電端子 5, 6とビアホール導体 59a, 59bが形成されている。シ ート 5 lbにはキャパシタ電極 52aと導体パターン 56aとビアホール導体 59cが形成さ れている。シート 51cにはキャパシタ電極 52bと導体パターン 56bとビアホール導体 5 9c, 59d力形成されて!ヽる。
[0058] さらに、シート 5 Idには導体パターン 53, 56cとビアホール導体 59c, 59eが形成さ れている。シート 51eには導体パターン 56dとビアホール導体 59c, 59f, 59gが形成 されている。シート 5 Ifにはキャパシタ電極 54aと導体パターン 56eとビアホール導体 59c, 59gが形成されている。シート 51gにはキャパシタ電極 54bと導体パターン 56f とビアホール導体 59c, 59g, 59hが形成されている。さらに、シート 51hには導体パ ターン 55が形成され、該導体パターン 55の他端側の端部は導体 56gとされている。
[0059] 以上のシート 51a〜51hを積層することにより、導体パターン 53がインダクタンス素 子 L1として構成され、導体パターン 55がインダクタンス素子 L2として構成される。ま た、導体パターン 56a〜56gがビアホール導体 59cを介して接続されてインダクタン ス素子 L3を形成する。さらに、キャパシタンス素子 C1がキャパシタ電極 52a, 52bで 構成され、キャパシタンス素子 C2がキャパシタ電極 54a, 54bで構成される。
[0060] インダクタンス素子 L1は、その一端がビアホール導体 59dを介してキャパシタ電極 52bに接続され、その他端がビアホール導体 59e, 59gを介してインダクタンス素子 L 2の他端に接続される。インダクタンス素子 L2は、その一端がビアホール導体 59hを 介してキャパシタ電極 54bに接続され、その他端は前述のようにビアホール導体 59g , 59eを介してインダクタンス素子 L1の他端に接続されるとともにインダクタンス素子 L3の一端 (導体パターン 56g)に接続されている。インダクタンス素子 L3はその他端 がビアホール導体 59bを介して給電端子 6に接続される。また、キャパシタ電極 52a はビアホール導体 59aを介して給電端子 5に接続される。
[0061] 以上の構成力もなるアンテナ 1Fにおいては、互いに磁気的に結合しているインダク タンス素子 LI, L2を含む LC直列共振回路が共振し、インダクタンス素子 LI, L2が 放射素子として機能する。また、インダクタンス素子 LI, L2が磁気的に結合すること で、給電端子 5, 6に接続される機器のインピーダンス (通常 50 Ω )と空間のインピー ダンス (377 Ω )とのマッチング回路として機能する。
[0062] 本アンテナ 1Fにおいては、インダクタンス素子 LI, L2の磁気結合が小さくても素 子 LI, L2が直結されているために広帯域を確保することができる。さらに、インダクタ ンス素子 LI, L2の他端力 Sインダクタンス素子 L3を介して給電端子 6に接続されてい るため、インダクタンス素子 LI, L2の結合係数 kを高めることができる。また、インダク タンス素子 L3を付加することにより、インダクタンス素子 LI, L2の結合係数が小さく ても広帯域化を実現できる。第 6実施例であるアンテナ 1Fの他の作用効果は前記第 1実施例であるアンテナ 1 Aと基本的に同様である。
[0063] (LC共振回路を備えた他の共振回路、図 21参照)
アンテナを構成する共振回路は前記第 1〜第 6実施例以外にも、例えば、図 21 (A )〜 (E)に等価回路で示す種々の形態を採用することができ、小型で広帯域な特性 を得ることができる。
[0064] 図 21 (A)は、インダクタンス素子 L1とキャパシタンス素子 C1とで、及び、インダクタ ンス素子 L2とキャパシタンス素子 C2とで、それぞれ LC直列共振回路を構成し、イン ダクタンス素子 LI, L2を直結するとともに、インダクタンス素子 L1の一端を給電端子 5に接続し、キャパシタンス素子 CI, C2を給電端子 6に接続したものである。
[0065] 図 21 (B)は、インダクタンス素子 L1とキャパシタンス素子 C1とで、及び、インダクタ ンス素子 L2とキャパシタンス素子 C2とで、それぞれ LC直列共振回路を構成し、イン ダクタンス素子 L1の一端を給電端子 5に接続し、インダクタンス素子 LI, L2の間に キャパシタンス素子 C2を接続し、キャパシタンス素子 C1とインダクタンス素子 L2の他 端を給電端子 6に接続したものである。
[0066] 図 21 (C)は、インダクタンス素子 L1とキャパシタンス素子 C1とで、及び、インダクタ ンス素子 L2とキャパシタンス素子 C2とで、それぞれ LC直列共振回路を構成し、イン ダクタンス素子 LI, L2を直結するとともに、キャパシタンス素子 C1を給電端子 5に接 続し、キャパシタンス素子 C2とインダクタンス素子 L1の他端を給電端子 6に接続した ものである。
[0067] 図 21 (D)は、インダクタンス素子 L1とキャパシタンス素子 C1とで、及び、インダクタ ンス素子 L2とキャパシタンス素子 C2とで、それぞれ LC直列共振回路を構成し、イン ダクタンス素子 LI, L2の一端をキャパシタンス素子 C1を介して接続し、他端を直結 したものである。インダクタンス素子 L1の一端が給電端子 5に接続され、インダクタン ス素子 LI, L2の他端が給電端子 6に接続されている。
[0068] 図 21 (E)は、インダクタンス素子 L1とキャパシタンス素子 C1とで、及び、インダクタ ンス素子 L2とキャパシタンス素子 C2とで、それぞれ LC直列共振回路を構成し、イン ダクタンス素子 LI, L2を直結するとともに、インダクタンス素子 L1の一端とキャパシタ ンス素子 C1の接続点を給電端子 5に接続し、インダクタンス素子 L2の他端とキャパ シタンス素子 C 1の接続点を給電端子 6に接続したものである。
[0069] (第 7実施例、図 22及び図 23参照)
第 7実施例であるアンテナ 1Gは、図 22に等価回路として示すように、互いに異なる インダクタンス値を有し、かつ、互いに同相で磁気結合 (相互インダクタンス Mで示す )されているインダクタンス素子 LI, L2を備え、該インダクタンス素子 LI, L2は給電 端子 5, 6に互いに並列に接続されている。
[0070] 以上の回路構成力 なるアンテナ 1Gにおいて、インダクタンス素子 LI, L2は互い に異なるインダクタンス値を有し、同相で磁気結合している。そして、インダクタンス素 子 LI, L2は磁気的な結合により、 LI— L2 = Mの相互インダクタンスが発生し、本発 明者のシミュレーションによると、アンテナ 1Gは図 23に示す広帯域の反射特性を有 する放射素子として機能する。
[0071] なお、二つのインダクタンス素子 LI, L2のみでマッチング回路を構成すると、給電 端子 5, 6に接続される機器のインピーダンスやリアクタンスは制約を受けることになる 力 図 23に示す広帯域の反射特性を得ることができる。
[0072] (第 8実施例、図 24及び図 25参照)
第 8実施例であるアンテナ 1Hは、図 24に等価回路として示すように、前記第 7実施 例に示したインダクタンス素子 LI, L2に対して、インダクタンス素子 L1の一端と給電 端子 5との間にキャパシタンス素子 C1を接続したものである。
[0073] 以上の回路構成カゝらなるアンテナ 1Hにおいても、互いに異なるインダクタンス値を 有するインダクタンス素子 LI, L2の磁気的な結合により、相互インダクタンス Mが発 生し、本発明者のシミュレーションによると、図 25に示す広帯域の反射特性を得るこ とがでさる。
[0074] (第 9実施例、図 26及び図 27参照) 第 9実施例であるアンテナ IIは、図 26に等価回路として示すように、前記第 7実施 例に示したインダクタンス素子 LI, L2に対して、それぞれの一端と給電端子 5との間 にキャパシタンス素子 CI, C2を接続したものである。
[0075] 以上の回路構成カゝらなるアンテナ IIにおいても、互いに異なるインダクタンス値を 有するインダクタンス素子 LI, L2の磁気的な結合により、相互インダクタンス Mが発 生し、本発明者のシミュレーションによると、図 27に示す広帯域の反射特性を得るこ とがでさる。
[0076] (第 10実施例、図 28〜図 30参照)
第 10実施例であるアンテナ 1Jは、図 28に等価回路として示すように、前記第 2実 施例に示したインダクタンス素子 L1にいわゆる中間タップを設け、該中間タップに給 電端子 5を接続したもので、キャパシタンス素子 C1は省略されている。
[0077] その作用効果は第 2実施例と同じであるが、給電端子 5, 6間のインピーダンスに合 わせて中間タップを設けることにより、電磁界エネルギーを低下させることなぐ空間 のインピーダンスと給電端子 5, 6間に接続される機器のインピーダンスとの整合を取 ることができる。ここで、インダクタンス素子 L1はインダクタンス Lla, Libに分割され ることになる。
[0078] 以上の回路構成カゝらなるアンテナ 1Jは、図 29に一例として示す積層構造で構成さ れ、誘電体力もなるセラミックシート l la〜l lhを積層、圧着、焼成したものである。即 ち、シート l laには給電端子 5, 6とビアホール導体 19a, 19bが形成され、シート l ib にはキャパシタ電極 13aと接続用導体パターン 15dとビアホール導体 19c, 19m, 19 nが形成され、シート 11cにはキャパシタ電極 14aとビアホール導体 19c, 19e, 19m , 19ηが形成されている。
[0079] さらに、シート l idには接続用導体パターン 15a, 15b, 15cとビアホール導体 19d , 19g, 19h, 19i, 19nが形成されている。シート l ieには導体パターン 16a, 17aと ビアホール導体 19g, 19i, 19j, 19k, 19nが形成されている。シート 1 Ifには導体パ ターン 16b, 17bとビアホーノレ導体 19g, 19i, 19j, 19k, 19n力形成されている。シ ート l lgには導体ノ《ターン 16c, 17cとビアホーノレ導体 19g, 19i, 19j, 19k力 S形成さ れている。さらに、シート l lhには導体パターン 16d, 17dが形成されている。 [0080] 以上のシート l la〜l lhを積層することにより、導体パターン 16a〜16dがビアホー ル導体 19jを介して接続されてインダクタンス素子 L1が形成され、かつ、導体パター ン 16cの分岐部 16c'が中間タップとして機能し、該分岐部 16c'がビアホール導体 19 nを介して、さらに、接続用導体パターン 15d及びビアホール導体 19aを介して給電 端子 5に接続される。また、導体パターン 17a〜17dがビアホール導体 19kを介して 接続されてインダクタンス素子 L2が形成される。キャパシタンス素子 C2は電極 13a, 14aで構成される。
[0081] そして、インダクタンス素子 L1はその一端がビアホール導体 19g、接続用導体パタ ーン 15c、ビアホール導体 19cを介してキャパシタ電極 13aに接続され、その他端が ビアホール導体 19d、接続用導体パターン 15b、ビアホール導体 19m, 19bを介して 給電端子 6に接続される。
[0082] 一方、インダクタンス素子 L2はその一端がビアホール導体 19i、接続用導体パター ン 15a、ビアホール導体 19eを介してキャパシタ電極 14aに接続され、その他端がビ ァホール導体 19h、接続用導体パターン 15b、ビアホール導体 19m, 19bを介して 給電端子 6に接続される。インダクタンス素子 LI, L2の他端はそれぞれ接続用導体 パターン 15bによって接続されている。
[0083] 以上の構成力もなるアンテナ 1Jにおいては、互いに磁気的に結合しているインダク タンス素子 LI, L2を含む LC直列共振回路が共振し、インダクタンス素子 LI, L2が 放射素子として機能する。また、インダクタンス素子 LI, L2がキャパシタンス素子 C2 を介して結合し、かつ、分岐部 16c (中間タップ)を設けることで、給電端子 5, 6に接 続される機器のインピーダンス(通常 50 Ω )と空間のインピーダンス (377 Ω )とのマツ チング回路として機能する。
[0084] 図 28に示した等価回路に基づいて本発明者がシミュレーションした結果、アンテナ 1Jにおいては、図 30に示す反射特性が得られた。
[0085] (第 11実施例、図 31及び図 32参照)
第 11実施例であるアンテナ 1Kは、図 31に等価回路として示すように、前記第 10 実施例に示したアンテナ 1Jにキャパシタンス素子 C1を追加したものである。その作 用効果は第 10実施例と同様であり、給電端子 5, 6間のインピーダンスに合わせて中 間タップを設けることにより、電磁界エネルギーを低下させることなぐ空間のインピー ダンスと給電端子 5, 6間に接続される機器のインピーダンスとの整合を取ることがで きる。第 10実施例に対してキャパシタンス素子 C1を追加することで、給電端子 5, 6 間とのインピーダンス整合が取りやすくなる。
[0086] 以上の回路構成力もなるアンテナ 1Kは、基本的には図 8及び図 29に示した積層 構造と同様の構成であり、詳細は省略する。また、図 31に示した等価回路に基づい て本発明者がシミュレーションした結果、アンテナ 1Kにおいては、図 32に示す反射 特性が得られた。
[0087] 前記第 10及び第 11実施例のように、中間タップを設けることで給電端子 5, 6とのィ ンピーダンス整合が取りやすくなるとリターンが大きくなり、それに応じて帯域が広くな る。つまり、インピーダンス整合の度合が変わると、帯域幅が変わる。従って、所望の 帯域を得るために、各インダクタンス素子の定数を設定する際には、インピーダンス 整合の度合も考慮する必要がある。
[0088] (他の実施例)
なお、本発明に係るアンテナは前記実施例に限定するものではなぐその要旨の範 囲内で種々に変更することができる。
[0089] 例えば、前記各実施例では LC共振回路を集中定数型共振回路で構成したが、分 布定数型共振回路で構成してもよい。また、この LC共振回路を内蔵する積層体は誘 電体のみならず絶縁体であってもよぐ材料としてはセラミックゃ榭脂などを使用する ことができる。
産業上の利用可能性
[0090] 以上のように、本発明は、表面実装型のアンテナに有用であり、特に、小型で広帯 域を確保できる点で優れて!/ヽる。

Claims

請求の範囲
[1] 給電端子と互いに異なるインダクタンス値を有する少なくとも二つのインダクタンス 素子とを備えたアンテナであって、
前記インダクタンス素子を電波の放射に使用するとともに、前記給電端子力 給電 側を見たインピーダンスと自由空間の放射インピーダンスとをインピーダンスマツチン グさせるマッチング回路のインダクタンスとして用いること、
を特徴とするアンテナ。
[2] さらに、キャパシタンス素子を備え、該キャパシタンス素子と前記インダクタンス素子 とで複数の共振回路を構成していることを特徴とする請求の範囲第 1項に記載のアン テナ。
[3] 給電端子と複数の共振回路とを備えたアンテナであって、
前記複数の共振回路を電波の放射に使用するとともに、前記給電端子から給電側 を見たインピーダンスと自由空間の放射インピーダンスとをインピーダンスマッチング させるマッチング回路のインダクタンスとして用いること、
を特徴とするアンテナ。
[4] 前記複数の共振回路はキャパシタンス素子とインダクタンス素子とで構成されて ヽ ることを特徴とする請求の範囲第 3項に記載のアンテナ。
[5] 前記複数の共振回路が前記給電端子と直接又は集中定数型のキャパシタンス若 しくはインダクタンスを介して電気的に接続されていることを特徴とする請求の範囲第
3項又は第 4項に記載のアンテナ。
[6] 前記複数の共振回路のうち隣接する共振回路どうしが少なくとも 0. 1以上の結合係 数であることを特徴とする請求の範囲第 3項ないし第 5項のいずれかに記載のアンテ ナ。
[7] 複数の共振回路を構成するインダクタンス素子は 1軸方向に並べた線状電極バタ ーンにて構成されて 、ることを特徴とする請求の範囲第 3項な 、し第 6項の 、ずれか に記載のアンテナ。
[8] 前記給電端子にはキャパシタンス素子が電気的に接続されていることを特徴とする 請求の範囲第 3項な 、し第 7項の 、ずれかに記載のアンテナ。
[9] 前記給電端子に接続されて ヽるキャパシタンス素子が積層基板に形成されて ヽる ことを特徴とする請求の範囲第 8項に記載のアンテナ。
[10] 前記複数の共振回路が積層基板に形成されて!ヽることを特徴とする請求の範囲第
3項な 、し第 9項の 、ずれかに記載のアンテナ。
[11] 第 1及び第 2給電端子と複数の共振回路とを備えたアンテナであって、
第 1インダクタンス素子とその両端に電気的に接続された第 1及び第 2キャパシタン ス素子とからなる第 1LC直列共振回路と、
第 2インダクタンス素子とその両端に電気的に接続された第 3及び第 4キャパシタン ス素子とからなる第 2LC直列共振回路と、を備え、
前記第 1及び第 2インダクタンス素子は互いに磁気結合し、
前記第 1インダクタンス素子はその一端が前記第 1キャパシタンス素子を介して前 記第 1給電端子に電気的に接続され、他端が前記第 2キャパシタンス素子を介して 前記第 2給電端子に電気的に接続され、
前記第 2インダクタンス素子はその一端が前記第 3及び第 1キャパシタンス素子を介 して前記第 1給電端子に電気的に接続され、他端が前記第 4及び第 2キャパシタンス 素子を介して前記第 2給電端子に電気的に接続されていること、
を特徴とするアンテナ。
PCT/JP2007/054242 2006-04-14 2007-03-06 アンテナ WO2007119310A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16198115.4A EP3168932B1 (en) 2006-04-14 2007-03-06 Antenna
EP07737817A EP2009738A4 (en) 2006-04-14 2007-03-06 ANTENNA
BRPI0702888-1A BRPI0702888B1 (pt) 2006-04-14 2007-03-06 Antena
CN2007800007085A CN101331651B (zh) 2006-04-14 2007-03-06 天线
JP2007550609A JP4135770B2 (ja) 2006-04-14 2007-03-06 アンテナ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-112352 2006-04-14
JP2006112352 2006-04-14
JP2006254153 2006-09-20
JP2006-254153 2006-09-20
JP2006311546 2006-11-17
JP2006-311546 2006-11-17

Publications (1)

Publication Number Publication Date
WO2007119310A1 true WO2007119310A1 (ja) 2007-10-25

Family

ID=38609121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054242 WO2007119310A1 (ja) 2006-04-14 2007-03-06 アンテナ

Country Status (7)

Country Link
US (2) US7629942B2 (ja)
EP (2) EP3168932B1 (ja)
JP (7) JP4135770B2 (ja)
KR (1) KR100968347B1 (ja)
CN (3) CN102780084B (ja)
BR (1) BRPI0702888B1 (ja)
WO (1) WO2007119310A1 (ja)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081719A1 (ja) * 2007-12-20 2009-07-02 Murata Manufacturing Co., Ltd. 無線icデバイス
WO2009119548A1 (ja) * 2008-03-26 2009-10-01 株式会社村田製作所 無線icデバイス
US20110043429A1 (en) * 2008-03-20 2011-02-24 Nxp B.V. Transceiving circuit for contactless communication and nfc device or rfid reader/writer device comprising such a transceiving circuit
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US8011589B2 (en) 2008-06-25 2011-09-06 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8191791B2 (en) 2007-07-17 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
US8360330B2 (en) 2007-12-26 2013-01-29 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
WO2017187862A1 (ja) * 2016-04-28 2017-11-02 株式会社村田製作所 アンテナ装置および電子機器
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156723A1 (en) * 2001-03-26 2010-06-24 Daniel Luch Electrically conductive patterns, antennas and methods of manufacture
US8085208B2 (en) * 2007-05-16 2011-12-27 Infineon Technologies Ag Configurable radio frequency element
TWI449066B (zh) * 2010-01-19 2014-08-11 Murata Manufacturing Co High coupling degree transformers, electronic circuits and electronic machines
CN102341957B (zh) * 2010-01-19 2014-01-22 株式会社村田制作所 天线装置及通信终端装置
CN104953242B (zh) * 2010-01-19 2019-03-26 株式会社村田制作所 天线装置及通信终端设备
JP2011238016A (ja) * 2010-05-10 2011-11-24 Sony Corp 非接触通信媒体、アンテナパターン配置媒体、通信装置及びアンテナ調整方法
JP5234084B2 (ja) * 2010-11-05 2013-07-10 株式会社村田製作所 アンテナ装置および通信端末装置
US9179492B2 (en) * 2011-10-26 2015-11-03 Texas Instruments Deutschland Gmbh Electronic device, method and system for half duplex data transmission
KR101851590B1 (ko) 2011-11-28 2018-04-25 삼성전자주식회사 무선 전력 전송 시스템 및 무선 전력 전송 시스템에서 다중 모드 공진기
JP5532191B1 (ja) 2012-06-28 2014-06-25 株式会社村田製作所 アンテナ装置および通信端末装置
EP2741366A4 (en) * 2012-08-28 2015-02-25 Murata Manufacturing Co ANTENNA DEVICE, AND COMMUNICATION TERMINAL DEVICE
JP5672414B2 (ja) * 2012-10-12 2015-02-18 株式会社村田製作所 Hf帯無線通信デバイス
KR102155199B1 (ko) 2013-12-23 2020-09-11 삼성전자주식회사 Nfc 장치의 매칭 회로, nfc 장치 및 전자 시스템
CN105226387A (zh) * 2014-06-30 2016-01-06 泰科电子(上海)有限公司 天线装置
US11500059B2 (en) * 2017-07-11 2022-11-15 Mitsubishi Electric Corporation Radar device
JP6473210B1 (ja) * 2017-11-02 2019-02-20 株式会社エスケーエレクトロニクス Lc共振アンテナ
JP7445502B2 (ja) 2020-04-07 2024-03-07 矢崎総業株式会社 センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204117A (ja) * 2000-10-27 2002-07-19 Mitsubishi Materials Corp アンテナ
JP2003037426A (ja) 2001-07-25 2003-02-07 Nippon Antenna Co Ltd 多周波ヘリカルアンテナ
JP2003110344A (ja) * 2001-09-26 2003-04-11 Hitachi Metals Ltd 表面実装型アンテナおよびそれを搭載したアンテナ装置
JP2004336250A (ja) * 2003-05-02 2004-11-25 Taiyo Yuden Co Ltd アンテナ整合回路、アンテナ整合回路を有する移動体通信装置、アンテナ整合回路を有する誘電体アンテナ

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364564A (en) 1965-06-28 1968-01-23 Gregory Ind Inc Method of producing welding studs dischargeable in end-to-end relationship
JPS5754964B2 (ja) 1974-05-08 1982-11-20
JPS6193701A (ja) 1984-10-13 1986-05-12 Toyota Motor Corp 自動車用アンテナ装置
JPS62127140U (ja) 1986-02-03 1987-08-12
US5253969A (en) 1989-03-10 1993-10-19 Sms Schloemann-Siemag Aktiengesellschaft Feeding system for strip material, particularly in treatment plants for metal strips
JPH03281464A (ja) * 1990-03-29 1991-12-12 Aisin Seiki Co Ltd 水滴除去装置
JP2763664B2 (ja) 1990-07-25 1998-06-11 日本碍子株式会社 分布定数回路用配線基板
NL9100176A (nl) 1991-02-01 1992-03-02 Nedap Nv Antenne met transformator voor contactloze informatieoverdracht vanuit integrated circuit-kaart.
NL9100347A (nl) 1991-02-26 1992-03-02 Nedap Nv Geintegreerde transformator voor een contactloze identificatiekaart.
JPH04321190A (ja) 1991-04-22 1992-11-11 Mitsubishi Electric Corp 非接触型携帯記憶装置のアンテナ回路
EP0522806B1 (en) 1991-07-08 1996-11-20 Nippon Telegraph And Telephone Corporation Retractable antenna system
CN1023625C (zh) * 1991-07-11 1994-01-26 景立山 微型天线
JPH05327331A (ja) 1992-05-15 1993-12-10 Matsushita Electric Works Ltd プリントアンテナ
JP3186235B2 (ja) 1992-07-30 2001-07-11 株式会社村田製作所 共振器アンテナ
JPH0677729A (ja) 1992-08-25 1994-03-18 Mitsubishi Electric Corp アンテナ一体化マイクロ波回路
JPH06177635A (ja) 1992-12-07 1994-06-24 Mitsubishi Electric Corp クロスダイポールアンテナ装置
JPH07183836A (ja) 1993-12-22 1995-07-21 San'eisha Mfg Co Ltd 配電線搬送通信用結合フィルタ装置
US5491483A (en) 1994-01-05 1996-02-13 Texas Instruments Incorporated Single loop transponder system and method
US6096431A (en) 1994-07-25 2000-08-01 Toppan Printing Co., Ltd. Biodegradable cards
JP3141692B2 (ja) 1994-08-11 2001-03-05 松下電器産業株式会社 ミリ波用検波器
JPH0887580A (ja) 1994-09-14 1996-04-02 Omron Corp データキャリア及びボールゲーム
JP2837829B2 (ja) 1995-03-31 1998-12-16 松下電器産業株式会社 半導体装置の検査方法
JPH08279027A (ja) 1995-04-04 1996-10-22 Toshiba Corp 無線通信カード
WO1996032755A1 (de) * 1995-04-12 1996-10-17 Siemens Schweiz Ag Antennensystem insbesondere für verkehrstechnische kommunikationssysteme
US5955723A (en) 1995-05-03 1999-09-21 Siemens Aktiengesellschaft Contactless chip card
JPH08307126A (ja) 1995-05-09 1996-11-22 Kyocera Corp アンテナの収納構造
JP3637982B2 (ja) 1995-06-27 2005-04-13 株式会社荏原電産 インバータ駆動ポンプの制御システム
US5629241A (en) 1995-07-07 1997-05-13 Hughes Aircraft Company Microwave/millimeter wave circuit structure with discrete flip-chip mounted elements, and method of fabricating the same
JP3150575B2 (ja) 1995-07-18 2001-03-26 沖電気工業株式会社 タグ装置及びその製造方法
GB2305075A (en) 1995-09-05 1997-03-26 Ibm Radio Frequency Tag for Electronic Apparatus
DE19534229A1 (de) 1995-09-15 1997-03-20 Licentia Gmbh Transponderanordnung
US6104611A (en) * 1995-10-05 2000-08-15 Nortel Networks Corporation Packaging system for thermally controlling the temperature of electronic equipment
JP3882218B2 (ja) 1996-03-04 2007-02-14 ソニー株式会社 光ディスク
JP3471160B2 (ja) 1996-03-18 2003-11-25 株式会社東芝 モノリシックアンテナ
JPH09270623A (ja) * 1996-03-29 1997-10-14 Murata Mfg Co Ltd アンテナ装置
AUPO055296A0 (en) 1996-06-19 1996-07-11 Integrated Silicon Design Pty Ltd Enhanced range transponder system
US6104311A (en) 1996-08-26 2000-08-15 Addison Technologies Information storage and identification tag
US6190942B1 (en) 1996-10-09 2001-02-20 Pav Card Gmbh Method and connection arrangement for producing a smart card
JPH10171954A (ja) 1996-12-05 1998-06-26 Hitachi Maxell Ltd 非接触式icカード
JPH10193849A (ja) 1996-12-27 1998-07-28 Rohm Co Ltd 回路チップ搭載カードおよび回路チップモジュール
DE19703029A1 (de) 1997-01-28 1998-07-30 Amatech Gmbh & Co Kg Übertragungsmodul für eine Transpondervorrichtung sowie Transpondervorrichtung und Verfahren zum Betrieb einer Transpondervorrichtung
EP0966775A4 (en) 1997-03-10 2004-09-22 Prec Dynamics Corp REACTIVE COUPLED ELEMENTS IN CIRCUITS ON FLEXIBLE SUBSTRATES
JPH10293828A (ja) 1997-04-18 1998-11-04 Omron Corp データキャリア、コイルモジュール、リーダライタ及び衣服データ取得方法
JPH11346114A (ja) 1997-06-11 1999-12-14 Matsushita Electric Ind Co Ltd アンテナ装置
JP3800765B2 (ja) 1997-11-14 2006-07-26 凸版印刷株式会社 複合icカード
EP1031939B1 (en) 1997-11-14 2005-09-14 Toppan Printing Co., Ltd. Composite ic card
JP3800766B2 (ja) 1997-11-14 2006-07-26 凸版印刷株式会社 複合icモジュールおよび複合icカード
JPH11219420A (ja) 1998-02-03 1999-08-10 Tokin Corp Icカードモジュール、icカード及びそれらの製造方法
JPH11261325A (ja) 1998-03-10 1999-09-24 Shiro Sugimura コイル素子と、その製造方法
WO1999050932A1 (fr) 1998-03-31 1999-10-07 Matsushita Electric Industrial Co., Ltd. Antenne et televiseur numerique
US5936150A (en) 1998-04-13 1999-08-10 Rockwell Science Center, Llc Thin film resonant chemical sensor with resonant acoustic isolator
CN1267267A (zh) 1998-04-14 2000-09-20 德克萨斯黎伯迪纸板箱公司 用于压缩机和其它货物的容器
JPH11328352A (ja) 1998-05-19 1999-11-30 Tokin Corp アンテナとicチップとの接続構造、及びicカード
US5969681A (en) * 1998-06-05 1999-10-19 Ericsson Inc. Extended bandwidth dual-band patch antenna systems and associated methods of broadband operation
US6107920A (en) 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
JP2000021639A (ja) 1998-07-02 2000-01-21 Sharp Corp インダクター、これを用いた共振回路、整合回路、アンテナ回路及び発振回路
JP2000022421A (ja) 1998-07-03 2000-01-21 Murata Mfg Co Ltd チップアンテナ及びそれを搭載した無線機器
JP2000311226A (ja) 1998-07-28 2000-11-07 Toshiba Corp 無線icカード及びその製造方法並びに無線icカード読取り書込みシステム
EP0977145A3 (en) 1998-07-28 2002-11-06 Kabushiki Kaisha Toshiba Radio IC card
JP2000059260A (ja) 1998-08-04 2000-02-25 Sony Corp 記憶装置
ES2198938T3 (es) 1998-08-14 2004-02-01 3M Innovative Properties Company Aplicacion para un sistema de identificacion de radiofrecuencia.
JP4508301B2 (ja) 1998-09-16 2010-07-21 大日本印刷株式会社 非接触icカード
JP3632466B2 (ja) 1998-10-23 2005-03-23 凸版印刷株式会社 非接触icカード用の検査装置および検査方法
US6837438B1 (en) 1998-10-30 2005-01-04 Hitachi Maxell, Ltd. Non-contact information medium and communication system utilizing the same
JP3924962B2 (ja) 1998-10-30 2007-06-06 株式会社デンソー 皿状物品用idタグ
US6072383A (en) * 1998-11-04 2000-06-06 Checkpoint Systems, Inc. RFID tag having parallel resonant circuit for magnetically decoupling tag from its environment
JP2000148948A (ja) 1998-11-05 2000-05-30 Sony Corp 非接触型icラベルおよびその製造方法
JP2000172812A (ja) 1998-12-08 2000-06-23 Hitachi Maxell Ltd 非接触情報媒体
JP2000228602A (ja) 1999-02-08 2000-08-15 Alps Electric Co Ltd 共振線路
JP4349597B2 (ja) 1999-03-26 2009-10-21 大日本印刷株式会社 Icチップの製造方法及びそれを内蔵したメモリー媒体の製造方法
US6542050B1 (en) 1999-03-30 2003-04-01 Ngk Insulators, Ltd. Transmitter-receiver
JP2000286634A (ja) 1999-03-30 2000-10-13 Ngk Insulators Ltd アンテナ装置及びアンテナ装置の製造方法
JP3067764B1 (ja) 1999-03-31 2000-07-24 株式会社豊田自動織機製作所 移動体通信用結合器、移動体及び移動体の通信方法
JP2000321984A (ja) 1999-05-12 2000-11-24 Hitachi Ltd Rf−idタグ付きラベル
JP2000332523A (ja) * 1999-05-24 2000-11-30 Hitachi Ltd 無線タグ、その製造方法及びその配置方法
JP3557130B2 (ja) 1999-07-14 2004-08-25 新光電気工業株式会社 半導体装置の製造方法
US6259369B1 (en) 1999-09-30 2001-07-10 Moore North America, Inc. Low cost long distance RFID reading
JP4205823B2 (ja) * 1999-10-04 2009-01-07 大日本印刷株式会社 Icカード
JP3451373B2 (ja) 1999-11-24 2003-09-29 オムロン株式会社 電磁波読み取り可能なデータキャリアの製造方法
JP4186149B2 (ja) 1999-12-06 2008-11-26 株式会社エフ・イー・シー Icカード用の補助アンテナ
JP2001256457A (ja) 2000-03-13 2001-09-21 Toshiba Corp 半導体装置及びその製造方法、icカード通信システム
EP1269412A1 (de) 2000-03-28 2003-01-02 Lucatron AG Rfid-label mit einem element zur einstellung der resonanzfrequenz
JP4624537B2 (ja) 2000-04-04 2011-02-02 大日本印刷株式会社 非接触式データキャリア装置、収納体
JP2001319380A (ja) 2000-05-11 2001-11-16 Mitsubishi Materials Corp Rfid付光ディスク
JP2001331976A (ja) 2000-05-17 2001-11-30 Casio Comput Co Ltd 光記録型記録媒体
JP4223174B2 (ja) 2000-05-19 2009-02-12 Dxアンテナ株式会社 フィルムアンテナ
JP2001344574A (ja) 2000-05-30 2001-12-14 Mitsubishi Materials Corp 質問器のアンテナ装置
JP2001345212A (ja) * 2000-05-31 2001-12-14 Tdk Corp 積層電子部品
US6894624B2 (en) 2000-07-04 2005-05-17 Credipass Co., Ltd. Passive transponder identification and credit-card type transponder
JP4138211B2 (ja) 2000-07-06 2008-08-27 株式会社村田製作所 電子部品およびその製造方法、集合電子部品、電子部品の実装構造、ならびに電子装置
JP2002024776A (ja) 2000-07-07 2002-01-25 Nippon Signal Co Ltd:The Icカード用リーダライタ
US7088249B2 (en) 2000-07-19 2006-08-08 Hanex Co., Ltd. Housing structure for RFID tag, installation structure for RFID tag, and communication using such RFID tag
JP2002042076A (ja) 2000-07-21 2002-02-08 Dainippon Printing Co Ltd 非接触型データキャリア及び非接触型データキャリアを有する冊子
JP2002076750A (ja) 2000-08-24 2002-03-15 Murata Mfg Co Ltd アンテナ装置およびそれを備えた無線機
JP4615695B2 (ja) 2000-10-19 2011-01-19 三星エスディーエス株式会社 Icカード用のicモジュールと、それを使用するicカード
US6634564B2 (en) 2000-10-24 2003-10-21 Dai Nippon Printing Co., Ltd. Contact/noncontact type data carrier module
JP2002185358A (ja) 2000-11-24 2002-06-28 Supersensor Pty Ltd 容器にrfトランスポンダを装着する方法
JP4641096B2 (ja) 2000-12-07 2011-03-02 大日本印刷株式会社 非接触式データキャリア装置とブースターアンテナ部用配線部材
JP2002183690A (ja) 2000-12-11 2002-06-28 Hitachi Maxell Ltd 非接触icタグ装置
AU2002226093A1 (en) * 2000-12-15 2002-06-24 Electrox Corp. Process for the manufacture of novel, inexpensive radio frequency identificationdevices
TW531976B (en) 2001-01-11 2003-05-11 Hanex Co Ltd Communication apparatus and installing structure, manufacturing method and communication method
JP3621655B2 (ja) 2001-04-23 2005-02-16 株式会社ハネックス中央研究所 Rfidタグ構造及びその製造方法
JP4662400B2 (ja) 2001-02-05 2011-03-30 大日本印刷株式会社 コイルオンチップ型の半導体モジュール付き物品
JP3570386B2 (ja) 2001-03-30 2004-09-29 松下電器産業株式会社 無線機能内蔵携帯用情報端末
JP2002298109A (ja) 2001-03-30 2002-10-11 Toppan Forms Co Ltd 非接触型icメディアおよびその製造方法
JP2005236339A (ja) 2001-07-19 2005-09-02 Oji Paper Co Ltd Icチップ実装体
JP2002362613A (ja) 2001-06-07 2002-12-18 Toppan Printing Co Ltd 非接触icが積層された積層包装材及びこれを用いた包装容器、並びに包装容器の開封検出方法
JP2002373029A (ja) 2001-06-18 2002-12-26 Hitachi Ltd Icタグによるソフトウェアの不正コピーの防止方法
JP4882167B2 (ja) 2001-06-18 2012-02-22 大日本印刷株式会社 非接触icチップ付きカード一体型フォーム
JP2003087008A (ja) 2001-07-02 2003-03-20 Ngk Insulators Ltd 積層型誘電体フィルタ
JP4058919B2 (ja) 2001-07-03 2008-03-12 日立化成工業株式会社 非接触式icラベル、非接触式icカード、非接触式icラベルまたは非接触式icカード用icモジュール
JP2003030612A (ja) 2001-07-19 2003-01-31 Oji Paper Co Ltd Icチップ実装体
JP3629448B2 (ja) 2001-07-27 2005-03-16 Tdk株式会社 アンテナ装置及びそれを備えた電子機器
JP2003067711A (ja) 2001-08-29 2003-03-07 Toppan Forms Co Ltd Icチップ実装体あるいはアンテナ部を備えた物品
JP2003078336A (ja) * 2001-08-30 2003-03-14 Tokai Univ 積層スパイラルアンテナ
JP4514374B2 (ja) 2001-09-05 2010-07-28 トッパン・フォームズ株式会社 Rf−idの検査システム
JP4747467B2 (ja) 2001-09-07 2011-08-17 大日本印刷株式会社 非接触icタグ
JP2003085520A (ja) 2001-09-11 2003-03-20 Oji Paper Co Ltd Icカードの製造方法
JP4698096B2 (ja) 2001-09-25 2011-06-08 トッパン・フォームズ株式会社 Rf−idの検査システム
JP4845306B2 (ja) 2001-09-25 2011-12-28 トッパン・フォームズ株式会社 Rf−idの検査システム
JP2003132330A (ja) 2001-10-25 2003-05-09 Sato Corp Rfidラベルプリンタ
JP2003134007A (ja) 2001-10-30 2003-05-09 Auto Network Gijutsu Kenkyusho:Kk 車載機器間における信号送受信システム及び車載機器間における信号送受信方法
JP3908514B2 (ja) 2001-11-20 2007-04-25 大日本印刷株式会社 Icタグ付き包装体とicタグ付き包装体の製造方法
JP3984458B2 (ja) 2001-11-20 2007-10-03 大日本印刷株式会社 Icタグ付き包装体の製造方法
US6812707B2 (en) 2001-11-27 2004-11-02 Mitsubishi Materials Corporation Detection element for objects and detection device using the same
JP2003188338A (ja) 2001-12-13 2003-07-04 Sony Corp 回路基板装置及びその製造方法
JP3700777B2 (ja) 2001-12-17 2005-09-28 三菱マテリアル株式会社 Rfid用タグの電極構造及び該電極を用いた共振周波数の調整方法
JP4028224B2 (ja) 2001-12-20 2007-12-26 大日本印刷株式会社 非接触通信機能を有する紙製icカード用基材
JP3895175B2 (ja) 2001-12-28 2007-03-22 Ntn株式会社 誘電性樹脂統合アンテナ
JP2003209421A (ja) 2002-01-17 2003-07-25 Dainippon Printing Co Ltd 透明アンテナを有するrfidタグ、及びその製造方法
JP3915092B2 (ja) 2002-01-21 2007-05-16 株式会社エフ・イー・シー Icカード用のブースタアンテナ
JP2003233780A (ja) 2002-02-06 2003-08-22 Mitsubishi Electric Corp データ通信装置
JP3998992B2 (ja) 2002-02-14 2007-10-31 大日本印刷株式会社 ウェブに実装されたicチップへのアンテナパターン形成方法とicタグ付き包装体
JP2003243918A (ja) 2002-02-18 2003-08-29 Dainippon Printing Co Ltd 非接触icタグ用アンテナと非接触icタグ
US7119693B1 (en) 2002-03-13 2006-10-10 Celis Semiconductor Corp. Integrated circuit with enhanced coupling
JP2003288560A (ja) 2002-03-27 2003-10-10 Toppan Forms Co Ltd 帯電防止機能を有するインターポーザおよびインレットシート
US7129834B2 (en) 2002-03-28 2006-10-31 Kabushiki Kaisha Toshiba String wireless sensor and its manufacturing method
JP2003309418A (ja) 2002-04-17 2003-10-31 Alps Electric Co Ltd ダイポールアンテナ
JP3879098B2 (ja) 2002-05-10 2007-02-07 株式会社エフ・イー・シー Icカード用のブースタアンテナ
US6753814B2 (en) 2002-06-27 2004-06-22 Harris Corporation Dipole arrangements using dielectric substrates of meta-materials
JP3863464B2 (ja) 2002-07-05 2006-12-27 株式会社ヨコオ フィルタ内蔵アンテナ
JP2004096566A (ja) 2002-09-02 2004-03-25 Toenec Corp 誘導通信装置
DE60231842D1 (de) * 2002-10-15 2009-05-14 Hitachi Ltd Kleine multimodeantenne und diese verwendendes hochfrequenzmodul
CA2502107A1 (en) 2002-10-17 2004-04-29 Ambient Corporation Repeaters sharing a common medium for communications
JP2004166384A (ja) * 2002-11-12 2004-06-10 Sharp Corp 非接触型給電システムにおける電磁結合特性調整方法、給電装置、および非接触型給電システム
JP3735635B2 (ja) 2003-02-03 2006-01-18 松下電器産業株式会社 アンテナ装置とそれを用いた無線通信装置
EP1445821A1 (en) 2003-02-06 2004-08-11 Matsushita Electric Industrial Co., Ltd. Portable radio communication apparatus provided with a boom portion
US7225992B2 (en) 2003-02-13 2007-06-05 Avery Dennison Corporation RFID device tester and method
JP2004253858A (ja) 2003-02-18 2004-09-09 Minerva:Kk Icタグ用のブースタアンテナ装置
JP4010263B2 (ja) * 2003-03-14 2007-11-21 富士電機ホールディングス株式会社 アンテナ、及びデータ読取装置
JP4034676B2 (ja) 2003-03-20 2008-01-16 日立マクセル株式会社 非接触通信式情報担体
JP2004297249A (ja) 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd 異相線間カプラーとその装着方法、及び、異相線間のカップリング方法
JP2004326380A (ja) 2003-04-24 2004-11-18 Dainippon Printing Co Ltd Rfidタグ
DE10318639A1 (de) * 2003-04-24 2004-11-11 Robert Bosch Gmbh Brennstoffeinspritzventil
JP2004334268A (ja) 2003-04-30 2004-11-25 Dainippon Printing Co Ltd 紙片icタグと紙片icタグ付き書籍・雑誌、紙片icタグ付き書籍
JP2004343000A (ja) 2003-05-19 2004-12-02 Fujikura Ltd 半導体モジュールとそれを備えた非接触icタグ及び半導体モジュールの製造方法
JP2004362190A (ja) 2003-06-04 2004-12-24 Hitachi Ltd 半導体装置
JP4828088B2 (ja) 2003-06-05 2011-11-30 凸版印刷株式会社 Icタグ
JP3982476B2 (ja) 2003-10-01 2007-09-26 ソニー株式会社 通信システム
JP3570430B1 (ja) 2003-10-29 2004-09-29 オムロン株式会社 ループコイルアンテナ
JP4343655B2 (ja) 2003-11-12 2009-10-14 株式会社日立製作所 アンテナ
JP4451125B2 (ja) 2003-11-28 2010-04-14 シャープ株式会社 小型アンテナ
JP2005165839A (ja) 2003-12-04 2005-06-23 Nippon Signal Co Ltd:The リーダライタ、icタグ、物品管理装置、及び光ディスク装置
JP4177241B2 (ja) 2003-12-04 2008-11-05 株式会社日立情報制御ソリューションズ 無線icタグ用アンテナ、無線icタグ及び無線icタグ付き容器
JP4326936B2 (ja) 2003-12-24 2009-09-09 シャープ株式会社 無線タグ
EP1548674A1 (en) 2003-12-25 2005-06-29 Hitachi, Ltd. Radio IC tag, method and apparatus for manufacturing the same
KR100995265B1 (ko) 2003-12-25 2010-11-19 미쓰비시 마테리알 가부시키가이샤 안테나 장치 및 통신기기
JP2005210676A (ja) 2003-12-25 2005-08-04 Hitachi Ltd 無線用icタグ、無線用icタグの製造方法、及び、無線用icタグの製造装置
JP4089680B2 (ja) 2003-12-25 2008-05-28 三菱マテリアル株式会社 アンテナ装置
KR101107555B1 (ko) 2004-01-22 2012-01-31 미코 코포레이션 모듈러 무선 주파수 식별 태깅 방법
JP4271591B2 (ja) 2004-01-30 2009-06-03 双信電機株式会社 アンテナ装置
KR101270180B1 (ko) 2004-01-30 2013-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 검사장치 및 검사방법과, 반도체장치 제작방법
JP2005229474A (ja) 2004-02-16 2005-08-25 Olympus Corp 情報端末装置
JP4393228B2 (ja) 2004-02-27 2010-01-06 シャープ株式会社 小型アンテナ及びそれを備えた無線タグ
JP4206946B2 (ja) * 2004-03-23 2009-01-14 パナソニック株式会社 磁性体アンテナ
JP2005275870A (ja) 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd 挿入型無線通信媒体装置および電子機器
JP4067510B2 (ja) 2004-03-31 2008-03-26 シャープ株式会社 テレビジョン受信装置
US8139759B2 (en) 2004-04-16 2012-03-20 Panasonic Corporation Line state detecting apparatus and transmitting apparatus and receiving apparatus of balanced transmission system
JP2005311205A (ja) 2004-04-23 2005-11-04 Nec Corp 半導体装置
JP2005321305A (ja) 2004-05-10 2005-11-17 Murata Mfg Co Ltd 電子部品測定治具
US7317396B2 (en) 2004-05-26 2008-01-08 Funai Electric Co., Ltd. Optical disc having RFID tag, optical disc apparatus, and system for preventing unauthorized copying
JP4360276B2 (ja) 2004-06-02 2009-11-11 船井電機株式会社 無線icタグを有する光ディスク及び光ディスク再生装置
JP4551122B2 (ja) 2004-05-26 2010-09-22 株式会社岩田レーベル Rfidラベルの貼付装置
JP4348282B2 (ja) 2004-06-11 2009-10-21 株式会社日立製作所 無線用icタグ、及び無線用icタグの製造方法
JP2005352858A (ja) 2004-06-11 2005-12-22 Hitachi Maxell Ltd 通信式記録担体
JP4359198B2 (ja) 2004-06-30 2009-11-04 株式会社日立製作所 Icタグ実装基板の製造方法
JP4328682B2 (ja) 2004-07-13 2009-09-09 富士通株式会社 光記録媒体用の無線タグアンテナ構造および無線タグアンテナ付き光記録媒体の収納ケース
JP2004362602A (ja) 2004-07-26 2004-12-24 Hitachi Ltd Rfidタグ
US7242359B2 (en) * 2004-08-18 2007-07-10 Microsoft Corporation Parallel loop antennas for a mobile electronic device
JP4600742B2 (ja) 2004-09-30 2010-12-15 ブラザー工業株式会社 印字ヘッド及びタグラベル作成装置
GB2419779A (en) 2004-10-29 2006-05-03 Hewlett Packard Development Co Document having conductive tracks for coupling to a memory tag and a reader
JP2006148518A (ja) 2004-11-19 2006-06-08 Matsushita Electric Works Ltd 非接触icカードの調整装置および調整方法
US7545328B2 (en) 2004-12-08 2009-06-09 Electronics And Telecommunications Research Institute Antenna using inductively coupled feeding method, RFID tag using the same and antenna impedance matching method thereof
JP4281683B2 (ja) 2004-12-16 2009-06-17 株式会社デンソー Icタグの取付構造
EP1829102A4 (en) 2004-12-24 2014-08-13 Semiconductor Energy Lab SEMICONDUCTOR DEVICE
JP4737505B2 (ja) 2005-01-14 2011-08-03 日立化成工業株式会社 Icタグインレット及びicタグインレットの製造方法
JP4711692B2 (ja) 2005-02-01 2011-06-29 富士通株式会社 メアンダラインアンテナ
US7964413B2 (en) 2005-03-10 2011-06-21 Gen-Probe Incorporated Method for continuous mode processing of multiple reaction receptacles in a real-time amplification assay
JP4437965B2 (ja) 2005-03-22 2010-03-24 Necトーキン株式会社 無線タグ
JP4750450B2 (ja) 2005-04-05 2011-08-17 富士通株式会社 Rfidタグ
JP4771115B2 (ja) 2005-04-27 2011-09-14 日立化成工業株式会社 Icタグ
US7688272B2 (en) 2005-05-30 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI252605B (en) * 2005-05-31 2006-04-01 Ind Tech Res Inst Multilayered chip-type triplexer
EP1910872B1 (en) * 2005-07-28 2011-06-29 Tagsys SAS Rfid tag containing two tuned circuits
JP4801951B2 (ja) 2005-08-18 2011-10-26 富士通フロンテック株式会社 Rfidタグ
DE102005042444B4 (de) 2005-09-06 2007-10-11 Ksw Microtec Ag Anordnung für eine RFID - Transponder - Antenne
JP4075919B2 (ja) 2005-09-29 2008-04-16 オムロン株式会社 アンテナユニットおよび非接触icタグ
EP1776939A1 (en) * 2005-10-18 2007-04-25 The Procter and Gamble Company Absorbent Articles with comfortable Elasticated Laminates
JP2007150868A (ja) 2005-11-29 2007-06-14 Renesas Technology Corp 電子装置およびその製造方法
US7573388B2 (en) 2005-12-08 2009-08-11 The Kennedy Group, Inc. RFID device with augmented grain
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
JP4998463B2 (ja) 2006-04-10 2012-08-15 株式会社村田製作所 無線icデバイス
EP2012388B1 (en) 2006-04-26 2011-12-28 Murata Manufacturing Co. Ltd. Article provided with feed circuit board
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
JP4775440B2 (ja) 2006-06-01 2011-09-21 株式会社村田製作所 無線icデバイス及び無線icデバイス用複合部品
DE102006057369A1 (de) 2006-12-04 2008-06-05 Airbus Deutschland Gmbh RFID-Etikett, sowie dessen Verwendung und ein damit gekennzeichnetes Objekt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204117A (ja) * 2000-10-27 2002-07-19 Mitsubishi Materials Corp アンテナ
JP2003037426A (ja) 2001-07-25 2003-02-07 Nippon Antenna Co Ltd 多周波ヘリカルアンテナ
JP2003110344A (ja) * 2001-09-26 2003-04-11 Hitachi Metals Ltd 表面実装型アンテナおよびそれを搭載したアンテナ装置
JP2004336250A (ja) * 2003-05-02 2004-11-25 Taiyo Yuden Co Ltd アンテナ整合回路、アンテナ整合回路を有する移動体通信装置、アンテナ整合回路を有する誘電体アンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009738A4 *

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725071B2 (en) 2006-01-19 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US8191791B2 (en) 2007-07-17 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8413907B2 (en) 2007-07-17 2013-04-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US8400307B2 (en) 2007-07-18 2013-03-19 Murata Manufacturing Co., Ltd. Radio frequency IC device and electronic apparatus
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8610636B2 (en) 2007-12-20 2013-12-17 Murata Manufacturing Co., Ltd. Radio frequency IC device
JP2010074839A (ja) * 2007-12-20 2010-04-02 Murata Mfg Co Ltd 給電回路
CN101595599B (zh) * 2007-12-20 2013-05-01 株式会社村田制作所 无线ic器件
WO2009081719A1 (ja) * 2007-12-20 2009-07-02 Murata Manufacturing Co., Ltd. 無線icデバイス
US8360330B2 (en) 2007-12-26 2013-01-29 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US9019167B2 (en) * 2008-03-20 2015-04-28 Quotainne Enterprises Llc Transceiving circuit for contactless communication and NFC device or RFID reader/writer device comprising such a transceiving circuit
US20110043429A1 (en) * 2008-03-20 2011-02-24 Nxp B.V. Transceiving circuit for contactless communication and nfc device or rfid reader/writer device comprising such a transceiving circuit
US8668151B2 (en) 2008-03-26 2014-03-11 Murata Manufacturing Co., Ltd. Wireless IC device
WO2009119548A1 (ja) * 2008-03-26 2009-10-01 株式会社村田製作所 無線icデバイス
US8360325B2 (en) 2008-04-14 2013-01-29 Murata Manufacturing Co., Ltd. Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device
US8960557B2 (en) 2008-05-21 2015-02-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US7967216B2 (en) 2008-05-22 2011-06-28 Murata Manufacturing Co., Ltd. Wireless IC device
US8047445B2 (en) 2008-05-22 2011-11-01 Murata Manufacturing Co., Ltd. Wireless IC device and method of manufacturing the same
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US8596545B2 (en) 2008-05-28 2013-12-03 Murata Manufacturing Co., Ltd. Component of wireless IC device and wireless IC device
US8011589B2 (en) 2008-06-25 2011-09-06 Murata Manufacturing Co., Ltd. Wireless IC device and manufacturing method thereof
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8177138B2 (en) 2008-10-29 2012-05-15 Murata Manufacturing Co., Ltd. Radio IC device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8342416B2 (en) 2009-01-09 2013-01-01 Murata Manufacturing Co., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8583043B2 (en) 2009-01-16 2013-11-12 Murata Manufacturing Co., Ltd. High-frequency device and wireless IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8757502B2 (en) 2011-02-28 2014-06-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
WO2017187862A1 (ja) * 2016-04-28 2017-11-02 株式会社村田製作所 アンテナ装置および電子機器
JPWO2017187862A1 (ja) * 2016-04-28 2018-07-05 株式会社村田製作所 アンテナ装置および電子機器
US10511350B2 (en) 2016-04-28 2019-12-17 Murata Manufacturing Co., Ltd. Antenna device and electronic device

Also Published As

Publication number Publication date
CN101331651A (zh) 2008-12-24
US20080224935A1 (en) 2008-09-18
JP2008148292A (ja) 2008-06-26
JP4404152B2 (ja) 2010-01-27
EP3168932B1 (en) 2021-06-02
CN102780084A (zh) 2012-11-14
BRPI0702888B1 (pt) 2019-09-17
BRPI0702888A2 (pt) 2011-03-22
JP2008148289A (ja) 2008-06-26
US7629942B2 (en) 2009-12-08
JP4404153B2 (ja) 2010-01-27
JP5522231B2 (ja) 2014-06-18
EP2009738A1 (en) 2008-12-31
KR100968347B1 (ko) 2010-07-08
JP4404132B2 (ja) 2010-01-27
KR20080025741A (ko) 2008-03-21
US20080122724A1 (en) 2008-05-29
JP5187285B2 (ja) 2013-04-24
JP4404131B2 (ja) 2010-01-27
JP2009268145A (ja) 2009-11-12
JP2008178154A (ja) 2008-07-31
CN102780085A (zh) 2012-11-14
EP3168932A1 (en) 2017-05-17
EP2009738A4 (en) 2011-10-26
CN102780084B (zh) 2016-03-02
BRPI0702888A8 (pt) 2018-04-24
US7786949B2 (en) 2010-08-31
JP2013048474A (ja) 2013-03-07
JP4135770B2 (ja) 2008-08-20
JP2008178153A (ja) 2008-07-31
CN101331651B (zh) 2013-01-30
JPWO2007119310A1 (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2007119310A1 (ja) アンテナ
TWI466375B (zh) An antenna device and a communication terminal device
JP4343655B2 (ja) アンテナ
JP5477512B2 (ja) インピーダンス変換回路および通信端末装置
US10445635B2 (en) Feeder coil, antenna device, and electronic appliance
US8933859B2 (en) Antenna device and communication terminal apparatus
CN211088515U (zh) 天线耦合元件、天线装置及电子设备
JPWO2018101284A1 (ja) アンテナ装置および電子機器
WO2012121185A1 (ja) アンテナ装置及び通信端末機器
US6781557B1 (en) Antenna formed from a plurality of stacked bases
US7369086B2 (en) Miniature vertically polarized multiple frequency band antenna and method of providing an antenna for a wireless device
RU2366045C1 (ru) Антенна
CN215732211U (zh) 天线装置及电子设备
JP6724429B2 (ja) アンテナ装置および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000708.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007550609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4875/KOLNP/2007

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2007737817

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007737817

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008102067

Country of ref document: RU

Ref document number: 1020087001471

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0702888

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080118