WO2007105556A1 - 光学材料用硬化性組成物及び光導波路 - Google Patents

光学材料用硬化性組成物及び光導波路 Download PDF

Info

Publication number
WO2007105556A1
WO2007105556A1 PCT/JP2007/054419 JP2007054419W WO2007105556A1 WO 2007105556 A1 WO2007105556 A1 WO 2007105556A1 JP 2007054419 W JP2007054419 W JP 2007054419W WO 2007105556 A1 WO2007105556 A1 WO 2007105556A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
optical
epoxy
optical waveguide
Prior art date
Application number
PCT/JP2007/054419
Other languages
English (en)
French (fr)
Inventor
Naofumi Fujiue
Kenji Hara
Yoshihiro Ishikawa
Yoshikazu Shoji
Original Assignee
Adeka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corporation filed Critical Adeka Corporation
Priority to US12/224,951 priority Critical patent/US8175439B2/en
Priority to EP07737933.7A priority patent/EP1995264B1/en
Priority to CN2007800109515A priority patent/CN101410432B/zh
Priority to KR1020087024724A priority patent/KR101323564B1/ko
Publication of WO2007105556A1 publication Critical patent/WO2007105556A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • Curable composition for optical material and optical waveguide are Curable composition for optical material and optical waveguide
  • the present invention relates to a curable composition for optical materials, and more particularly, to a curable composition for optical materials that can be used for various optical components, optical integrated circuits, optical wiring boards, optical waveguides, and the like.
  • the present invention relates to an optical waveguide provided with a component obtained by curing an object.
  • An optical waveguide for example, is a special type that confines light by creating a part with a slightly higher refractive index than the surroundings on the surface of the substrate or directly under the substrate surface, and performs optical multiplexing / demultiplexing and switching. It is an optical component. Specific examples include optical multiplexing / demultiplexing circuits, frequency filters, optical switches, or optical interconnection components that are useful in the fields of communication and optical information processing. For example, WDM systems that transmit time-divided signals at different wavelengths are considered promising as systems that can realize high-speed and large-capacity communication necessary for an advanced information society. Optical devices that are key in this WDM system are: Examples include light sources, optical amplifiers, optical multiplexers / demultiplexers, optical switches, wavelength tunable filters, and wavelength converters.
  • the optical waveguide device can realize high-performance compactly based on a precisely designed waveguide circuit, can be mass-produced, and can produce many types of optical waveguides on a single chip. And the like.
  • inorganic glass having excellent transparency and low optical anisotropy has been mainly used as an optical waveguide material.
  • inorganic glass has problems such as heavy breakage and high production cost.
  • inorganic glass instead of inorganic glass, in the visible light region such as 0.85 zm, and in the infrared region, too. 1. 3 ⁇ : 1.
  • optical waveguide components using polymer materials that are transparent at communication wavelengths such as 55 xm.
  • Patent Document 1 includes a silicon atom having an epoxy group as an essential component and at least three bonding elements that are oxygen atoms, and a Si—R group (R is an alkyl group, A phenyl group, an alkylphenyl group, a phenylalkyl group, or an alkyl group, a phenyl group, an alkyl group in which part or all of the hydrogen atoms in R are halogenated or deuterated. (Ruylphenyl group or phenylalkyl group), Si—OH group-free layer, weight-average molecular weight 500 to 1,000,000-containing polymer and curing catalyst A curable composition and an optical waveguide obtained by curing the curable composition are disclosed.
  • R is an alkyl group, A phenyl group, an alkylphenyl group, a phenylalkyl group, or an alkyl group, a phenyl group, an alkyl group in which part or all of the hydrogen atoms in R are
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-10849 Claims
  • the curable composition for optical materials using a epoxy-containing polymer having an epoxy group as a macromonomer has heat resistance and transparency (low in communication wavelength). Although it is excellent in light loss and the like and has good moisture resistance to some extent, in recent years, optical waveguides have been produced under higher temperature and humidity conditions, and the moisture resistance is no longer sufficient.
  • the object of the present invention is to satisfy the heat resistance, moisture resistance, and transparency at the communication wavelength (low optical loss property) at the same time, and is particularly excellent as a material for optical waveguides.
  • An object of the present invention is to provide an optical waveguide comprising an article and a member obtained by curing the composition.
  • X and Y may be the same or different, and may be a hydrogen atom, an alkyl group, a fluoroalkylenole group, a perfluoroalkyl group, a phenyl group, an alkylphenyl group, a fluorophenyl group, or a perfluorophenyl group.
  • the curable composition for optical materials of the present invention comprises (D): an epoxy resin represented by the following general formula (2)
  • R 1 represents hydrogen, which may be the same or different, and an alkyl group having! To 4 carbon atoms.
  • the present invention is an optical waveguide characterized by having a core formed by curing the above-described curable composition for optical materials.
  • the present invention is the optical waveguide having a clad formed by curing the curable composition for optical materials.
  • the present invention is a method for producing an optical waveguide, comprising the step of curing the above-mentioned curable composition for optical materials to form a core.
  • the present invention is the above-described method for producing an optical waveguide, comprising the step of curing the curable composition for an optical material to form a clad.
  • the effect of the present invention is to satisfy the heat resistance, moisture resistance, and transparency at the communication wavelength (low light loss) at the same time, and particularly excellent as a material for an optical waveguide, and a curable composition for an optical material.
  • An object of the present invention is to provide an optical waveguide comprising a component obtained by curing the composition.
  • FIG. 1 is a schematic cross-sectional view showing a process for forming an optical waveguide of the present invention.
  • Component (A) C-containing polymer
  • the silicon-containing polymer used in the curable composition for optical materials of the present invention has an epoxy group in its structure and has a silicon atom bonded to at least three oxygen atoms. Yes.
  • the silicon-containing polymer used in the present invention has a Si_R group in its structure, and R represents an alkyl group, a phenyl group, an alkylphenyl group, a phenylalkyl group, or Some or all of the hydrogen atoms in R are halogenated or deuterated, such as an anoquinol group, a phenyl group, an alkylphenyl group, or a phenylalkyl group.
  • the hydrogen atoms in R are halogenated or deuterated.
  • halogenation fluorination is preferred. Specifically, 3, 3, 3_trifluoropropyl group, pentafluorophenyl group, etc. are preferred. Masle.
  • deuterated group a deuterated phenyl group is preferable.
  • the silicon-containing polymer used in the present invention has a Si—OR ′ group in its structure, and R ′ is an alkyl group, a phenyl group, an alkylphenyl group, or a phenylalkyl group. Or an alkyl group, a phenyl group, an alkylphenyl group, or a phenylalkyl group in which some or all of the hydrogen atoms in R ′ are halogenated or deuterated.
  • the weight-average molecular weight of the silicon-containing polymer used in the present invention is in the range of 1,000 to 1,000,000, preferably in the range of 1,000 to 500,000 in terms of polystyrene.
  • the weight-average molecular weight of the silicon-containing polymer is less than 1000, desired physical properties cannot be obtained (decrease in thermal weight loss temperature), and if it exceeds 1,000,000, sufficient physical properties cannot be obtained (light scattering does not occur). Or the viscosity becomes high and handling becomes difficult and productivity decreases).
  • the epoxy equivalent (value obtained by dividing the molecular weight by the number of epoxy groups) of the silicon-containing polymer used in the curable composition for optical materials of the present invention is not particularly limited, but is preferably an epoxy equivalent. 100-2000 is good.
  • the silicon-containing polymer used in the curable composition for optical materials of the present invention includes boron, magnesium, aluminum, phosphorus, titanium, iron, zirconium, niobium as atoms other than silicon.
  • boron, aluminum, phosphorus, titanium, zirconium, tin, and germanium are preferable, which may contain one or more atoms selected from the group consisting of tin, tellurium, tantalum, and germanium.
  • hydrolysis or condensation with alkoxysilanes or chlorosilanes and alcoholates of other atoms can be used, or treated with a complex of other atoms.
  • An epoxy group can be introduced into a silicon-containing polymer by hydrolysis and condensation reaction of alkoxysilane and / or chlorosilane having an epoxy group.
  • An epoxy group can be introduced into a silicon-containing polymer by a hydrosilylation reaction between chlorosilane or at least one of these polymers and an epoxy compound having a vinyl group (for example, bicyclohexenoxide).
  • hydrolysis of alkoxysilane and / or chlorosilane having a silane group (Si-H) and a polymer obtained by a condensation reaction and an epoxy compound having a bur group are hydrosilylated. It is preferable to use for.
  • a polymer obtained by a hydrolysis reaction of alkoxysilane and Z or chlorosilane having a bur group (one CH CH), and an epoxy compound having a silane group (for example, glycidoxydimethylsilane), It can introduce
  • the (A) component-containing polymer used in the curable composition for optical materials of the present invention has an epoxy group in the hydrolysis / condensation reaction of alkoxysilane and / or chlorosilane. , Alkoxysilane and / or chlorosilane.
  • the hydrolysis / condensation reaction may be performed only with an alkoxysilane and / or chlorosilane having an epoxy group, but from the viewpoint of physical properties, the hydrolysis / condensation reaction should be performed by mixing with other alkoxysilanes. Is preferred.
  • the (A) component-containing polymer used in the curable composition for optical materials of the present invention has a silane group in the hydrolysis reaction of alkoxysilane and Z or chlorosilane.
  • Alkoxysilane and / or chlorosilane having a silane group is present to form a polymer having a silane group, and then the polymer and an epoxy compound having a vinyl group (eg, bullcyclohexenoxide) are hydrosilylated. It can be used for the chemical reaction and can be manufactured.
  • the alkoxysilane and / or chlorosilane can be hydrolyzed in the condensation reaction by the presence of an alkoxysilane having a bur group and / or a chlorosilane having a vinyl group to form a polymer having a bur group.
  • a polymer and an epoxy compound having a silane group can be produced by subjecting to a hydrosilylation reaction.
  • a conventionally known platinum catalyst or the like is known.
  • a hydrosilylation reaction may be performed using a catalyst.
  • the epoxy compound used for introducing an epoxy group into a silicon-containing polymer by a hydrosilylation reaction is a compound having an epoxy group and a bur group or a compound having an epoxy group and a silane group. I just need it. Specific examples include burcyclohexene oxide and glycidoxydimethylsilane.
  • the hydrolysis and condensation reaction of alkoxysilane may be performed by performing so-called sol-gel reaction.
  • the reaction include a method of performing a hydrolysis / condensation reaction with a catalyst such as an acid or a base in the absence of a solvent or in a solvent.
  • the solvent used here is not particularly limited.
  • water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, Toluene and the like can be mentioned, and one of these can be used, or two or more can be mixed and used.
  • the hydrolysis-condensation reaction of the alkoxysilane generates silanol groups (Si—OH) by hydrolysis with alkoxysilane-powered water, and the generated silanol groups or the silanol groups and the alkoxy groups condense. Go on.
  • the water may be added to a solvent, or the catalyst may be dissolved in water.
  • the hydrolysis reaction can also proceed with moisture in the air or trace amounts of moisture contained in the solvent.
  • the catalyst such as acid and base used in the hydrolysis 'condensation reaction is not particularly limited as long as it promotes the hydrolysis' condensation reaction, and specifically, hydrochloric acid, phosphoric acid, sulfuric acid, etc.
  • Inorganic acids Organic acids such as acetic acid, p-toluenesulfonic acid, monoisopropyl phosphate;
  • Inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia; amine compounds such as trimethylenoamine, triethylamine, monoethanolamine and diethanolamine; titanium esters such as tetraisopropyl titanate and tetrabutyl titanate ; Tin carboxylates such as dibutyltin laurate and tin octylate; Fluorine compounds such as trifluoroboron; chlorides and naphthenates of metals such as iron, cobalt, manganese and zinc; or octylic acid Examples include metal carboxy
  • a method in which an acid catalyst is added and the reaction is allowed to proceed under acidic conditions (pH 7 or lower), and then a basic catalyst is added and the reaction is performed under basic conditions (pH 7 or higher) is preferred.
  • the order of the hydrolysis' condensation reaction is not particularly limited. For example, when an alkoxysilane having an epoxy group is used to introduce an epoxy group, an alkoxysilane having an epoxy group and another alkoxysilane are used. A mixture of the two may be used to carry out a hydrolysis 'condensation reaction alone, and after performing a hydrolysis' condensation reaction to some extent, another may be added to perform further hydrolysis / condensation reaction.
  • the silicon-containing polymer used in the curable composition for an optical material of the present invention is obtained by condensing silicon dioxide after removing sodium from sodium silicate by ion exchange or the like. You can also use things.
  • the alkoxysilane or chlorosilane used in the production of the (A) component-containing polymer used in the curable composition for optical materials of the present invention is hydrolyzed and condensed in the molecule. More specifically, the ability to have an alkoxy group that reacts, and the Si-C1 group, are trimethylenomethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyljetoxysilane, dimethoxymethylsilane, tetramethoxysilane, tetra Ethoxysilane, Methyltrimethoxysilane, Methylenotriethoxysilane, Methylenoresimethoxysilane, Methylenoretoxysilane, Dimethylethoxysilane, Dimethylvinylmethoxysilane, Dimethylvinylethoxysilane, Methylvinyldimethoxysilane, Methylvinyljetoxys
  • a part or all of which is halogenated (particularly fluorinated) or deuterated is halogenated (particularly fluorinated) or deuterated.
  • deuterated phenyltrimethoxysilane, pentafluorophenyltriethoxysilane, (3, 3, 3-trifluoropropyl) trimethoxysilane and the like are preferably used.
  • the alkoxysilane having an epoxy group used for introducing an epoxy group in the silicon-containing polymer used in the curable composition for an optical material of the present invention is only required to have an epoxy group in the molecule.
  • 4 _Alkoxysilane having an epoxycyclohexyl group is used under mild conditions (others When using other alkoxysilanes, perform a hydrolysis reaction (under mild conditions in a separate kettle from other alkoxysilanes) to make the liquid neutral or alkaline, and then mix the reaction liquids and calothermal polycondensation. It is preferable to obtain a copolymer from the viewpoint of improving the thermal weight loss temperature.
  • epoxy groups are bonded to a silicon atom without an oxygen atom in the middle.
  • ⁇ - (3,4-epoxycyclohexylene) ethyltrimethoxysilane and ⁇ _ (3,4-epoxycyclohexyl) ethyltriethoxysilane are preferable.
  • the chlorosilane having an epoxy group used for introducing an epoxy group in the silicon-containing polymer used in the curable composition for an optical material of the present invention may have an epoxy group in the molecule.
  • the catalyst may be treated with a chlorosilan compound such as trimethylchlorosilane or a hydrolysable ester compound as it is or after a catalyst removal treatment.
  • a hydrolyzable ester compound it is preferable to seal the silanol group (Si— ⁇ H) in the silicon-containing polymer to Si—OR ′.
  • hydrolyzable ester compound examples include orthoformate ester, orthoacetate ester, tetraalkoxymethane, carbonate ester and the like, and one or more of these may be used.
  • orthoformate trialkyl ester, tetraalkoxymethane and the like are preferable.
  • the treatment method with a hydrolyzable ester is carried out by adding an excessive amount of hydrolytic decomposition to a silicon-containing polymer, a mixture of a silicon-containing polymer and a solvent, or an optical material composition containing the silicon-containing polymer. It is preferable to add a functional ester, and at that time, stirring and heating are preferable. After the treatment, it may be used as it is, or may be heated and decompressed under a nitrogen stream to remove unreacted hydrolysable ester. This treatment eliminates silanol groups and improves storage stability and transparency.
  • the (A) component-containing polymer used in the curable composition for optical materials of the present invention has a phenyl group ratio of 85 mass to the total organic component (a component excluding silicon). % Or less, preferably within a range of 85 mass% or less.
  • the greater the number of phenyl groups the higher the heat resistance temperature.
  • the higher the viscosity at room temperature the lower the handling properties.
  • component (A) one or more of the above-described components can be used.
  • the (B) component epoxy resin used in the curable composition for optical materials of the present invention is an epoxy resin represented by the following general formula (1).
  • X and Y may be the same or different from each other, hydrogen atom, alkyl group, fluoroalkylenole group, perfluoroalkyl group, phenyl group, alkylphenyl group, fluorophenyle group, perfluorophenyl.
  • component (B) Since component (B) has a rigid molecular structure, the resulting cured product exhibits a high glass transition point. Also, the rate of shrinkage that occurs with curing is small. Those containing a perfluorinated group have low polarizability, and therefore have the effect of reducing the water absorption of the cured product.
  • X and Y are preferably a methyl group and a perfluoromethyl group, and n is preferably a number from 1 to 3.
  • Such preferable compounds include, for example, 2, 2-bis (3,4-epoxycyclohexyl) propane, 1, 1, 1, 3, 3, 3-hexafluoro. And propyl-1,2,2-bis (3,4-epoxycyclohexyl) propane.
  • one or more compounds can be used as the component (B).
  • Component (C) used in the curable composition for optical materials of the present invention is an energy ray-sensitive cationic polymerization initiator. That is, it is a compound capable of releasing a substance that initiates cationic polymerization upon irradiation with energy rays, and is not particularly limited, but preferably an onium salt that releases a Lewis acid upon irradiation with energy rays. Preference is given to the salt or its derivatives.
  • Is an organic group having a carbon number in the range of :! to 60, and may contain atoms other than carbon atoms.
  • a is an integer of:! ⁇ 5.
  • a R 21 s are independent and may be the same or different. Further, it is preferable that at least one is an organic group having an aromatic ring as described above.
  • the structure of the anion [B] m — which is preferably a halide complex, can be represented, for example, by the following general formula [LX] m —.
  • L is the central element of the halide complex.
  • X is a halogen atom.
  • b is an integer of 3-7.
  • the anion B m — preferably has a structure represented by [LX ( ⁇ H)] m — b-1
  • Can do. L, X, and b have the same meaning as above.
  • Other anions that can be used include perchlorate ion (ClO)-, trifluoromethylsulfite ion (CF S
  • aromatic onium salts of the following (i) to (c) among such onium salts are particularly effective to use aromatic onium salts of the following (i) to (c) among such onium salts.
  • aromatic onium salts of the following (i) to (c) among such onium salts.
  • Triphenylsulfonhexafluoroantimonate tris (4-methoxyphenyl) sulfonium hexafluorophosphate, diphenylenol 4-thiophenoxyphenyl hexafluoroantimony 4-phenylthiophenesulfonehexafluorophosphate, 4,4'-bis (diphenylsulfonio) phenylsulfide 1bishexafluoroantimonate, 4 , 4'-Bis (diphenylolsulfonio) phenylsulfide 1bishexafluorophosphate, 4,4'-bis [di (/ 3-hydroxyethoxy) phenylsulfonio] phenylsulfide 1 Bis-hexahex-norroantimonate, 4, 4, _bis [di (monohydroxyethoxy) phenylsulfonio] phenylsulfide
  • iron-arene complexes such as one iron one hexafluorophosphate, aluminum such as tris (acetylacetonato) aluminum, tris (ethylacetonatoacetato) anoreminium, tris (salicylaldehyde) aluminum
  • a silanol such as triphenylsilanol
  • an aromatic iodine salt an aromatic sulfonium salt, or an iron monoarene complex.
  • the amount of the energy ray-sensitive cationic polymerization initiator as the component (C) is as follows:
  • the curable composition for optical materials of the present invention preferably further contains an epoxy resin represented by the following general formula (2) as the component (D):
  • R 1 represents hydrogen, which may be the same or different, and an alkyl group having! To 4 carbon atoms.
  • R 19 and R 2 ° are preferably both hydrogen. Specifically, 3,4-epoxycyclohexylmethyl _3,4-epoxycyclohexanecarboxylate is preferred. Good.
  • the inclusion of the component (D) is preferable because the viscosity at room temperature can be lowered, so that the component (A) can have a higher viscosity.
  • the preferred proportion of component (D) to be used is 10 to 60 parts by mass, more preferably 15 to 50 parts by mass with respect to 100 parts by mass of component (A).
  • the proportion of component (D) used is less than 10 parts by mass, the effect of addition does not appear, and when it exceeds 60 parts by mass, the process resistance and environmental resistance are likely to deteriorate, such being undesirable. .
  • a solvent another cationically polymerizable organic substance, an acid diffusion controller, light, and the like are optionally added within a range not impairing the effects of the present invention.
  • a sensitizer, a thermoplastic polymer compound, a filler and the like can be added. These are described below.
  • the solvent is not particularly limited as long as it has solubility in all of the components (A), (B), (C) and (D), but has a boiling point of 80 to 200 ° C.
  • the C version is recommended.
  • Examples include tinole ether, diethylene glycol dimethyl ether, methyl ether, 2-methoxy-2-propanol acetate, methoxy-2-propanol acetate, otatamethylol cyclotetrasiloxane, hexamethyldisiloxane, and the like.
  • Such organic solvents may be used alone or in combination of two or
  • the performance of the cured product may change due to the remaining solvent.
  • the amount of the solvent varies depending on properties, solubility, and viscosity, but 1 to 1000% by mass is preferable with respect to the total mass of the components (A) to (D):! To 500% by mass is more preferable.
  • Other cationically polymerizable organic materials include, for example, epoxy compounds [excluding those corresponding to the above components (A), (B) and (D)], oxetane compounds, cyclic ether compounds, cyclic ratatones Compounds, cyclic thioether compounds, spiroorthoester compounds, vinyl ether compounds, etc., and one or more of these can be used.
  • epoxy compounds [excluding those corresponding to the above components (A), (B) and (D)], oxetane compounds, cyclic ether compounds, cyclic ratatones Compounds, cyclic thioether compounds, spiroorthoester compounds, vinyl ether compounds, etc., and one or more of these can be used.
  • an epoxy compound that is easy to obtain and convenient for handling is suitable.
  • Examples of powerful epoxy compounds include aromatic epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
  • aromatic epoxy compound examples include a polyhydric phenol having at least one aromatic ring, or a polyglycidyl ether of an alkylene oxide adduct thereof, such as bisphenol A, bisphenol F, or further alkylene oxide.
  • alkylene oxide adduct thereof such as bisphenol A, bisphenol F, or further alkylene oxide.
  • examples thereof include glycidinole ether of a compound to which is added and epoxy novolac resin.
  • alicyclic epoxy compound examples include epoxidizing a polyglycidyl ether of a polyhydric alcohol having at least one alicyclic ring or a cyclohexene or cyclopentene ring-containing compound with an oxidizing agent.
  • examples thereof include cyclohexene oxide-containing compounds containing cyclopentene oxide.
  • hydrogenated bisulfenol A glycidyl ether 2— (3,4 epoxy cyclohexyl 5,5 spiro 3,4-epoxy) cyclohexane metadioxane, bis (3,4-epoxycyclohexyl methinole) adipate, vinylcyclo Hexene dioxide, 4 vinyl epoxy cyclohexane, bis (3,4-epoxy-6-methylcyclohexylmethinole) adipate, 3, 4-epoxy 6-methylcyclohexylcarboxylate, dicyclopentagenepoxide, ethylene glycol / Residue (3,4-epoxycyclohexyl / remethy / le) ether, epoxyhexahexahydrophthalate dioctyl, epoxyhexahydrophthalate di-2-ethylhexyl and the like.
  • aliphatic epoxy compound examples include polyglycidinole ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, glycidyl acrylates or glycidyl methacrylates. Examples thereof include homopolymers synthesized by vinyl polymerization of the rate, and copolymers synthesized by bully polymers of glycidyl acrylate and other bulle monomers.
  • Representative compounds include 1,4_butanezinoresigrisidinoreatenore, 1,6-hexanediosinoresigrisinoreatenore, glycerin triglycidinoreatenore, and trimethylonorepropane.
  • Triglycy Ginoleetenore, Sonorebitonore Tetraglycidinoreetenore, Dipentaerythritonore One or two of polyglycol glycidyl ether such as xaglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, or aliphatic polyhydric alcohol such as propylene glycol, trimethylolpropane, glycerin
  • polyglycidyl ethers of polyether polyols obtained by adding the above alkylene oxides and diglycidyl esters of aliphatic long-chain dibasic acids include polyglycidyl ethers of polyether polyols obtained by adding the above alkylene oxides and diglycidyl esters of aliphatic long-chain dibasic acids.
  • monoglycidyl ethers of higher aliphatic alcohols phenols, cresols, butyl phenols
  • monoglycidyl ethers of polyether alcohols obtained by adding alkylene oxides to these, glycidinoles of higher fatty acids, epoxidation Examples include soybean oil, epoxy stearate octenole, epoxy stearate butyl, epoxidized flax oil, epoxidized polybutadiene, and the like.
  • epoxy compound examples include trimethylene oxide, 3,3-dimethyloxetane, oxetane compounds such as 3,3-dichloromethyloxetane, tetrahydrofuran, trioxane such as 2,3 dimethyltetrahydrofuran, 1, 3 Cyclic ether compounds such as dioxolane, 1, 3, 6 trioxacyclooctane, cyclic rataton compounds such as ⁇ -propiolatatatone, ⁇ -ptyloratatone, ⁇ -force prolatatone, thiirane compounds such as ethylene sulfide, trimethylenesulfur Fluids, Chetan compounds such as 3,3-dimethyl carten, cyclic thioether compounds such as tetrahydrothiophene derivatives, spiroorthoester compounds obtained by reaction of epoxy compounds with ratatones, ethylene glycol divinyl ether, alkyl Bule ether 3, 4 dihydropyran-2
  • the acid diffusion control agent is a compound having an action of controlling the diffusion of the acidic active substance generated from the component (C) by energy ray irradiation in the film and controlling the curing reaction in the non-irradiated region.
  • nitrogen-containing compounds such as nitrogen-containing compounds containing one nitrogen in the molecule, diamino compounds containing two nitrogen atoms in the same molecule, diamine polymers having three or more nitrogen atoms, or Examples include amide group-containing compounds, urea compounds, and nitrogen-containing heterocyclic compounds.
  • monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine; dialkylamines such as di_n-butylamine, di-n-hexylamine, di_n_octylamine, tri_n -Trialkylamines such as propylamine, tri_n-hexylamine, tri-n-nonylamine; 4-aronitrolin, aromatic amines such as diphenylamine and the like.
  • the compounding amount of the acid diffusion controller is preferably 0.001 to 10% by mass with respect to the total mass of the components (A) to (D), more preferably 0.00 to 5% by mass.
  • thermoplastic polymer compound examples include polyester, poly (acetate) butyl, poly (vinyl chloride) vinyl, polybutadiene, polycarbonate, polystyrene, polyvinyl ether, polyvinyl butyral, poly (aryl acrylate), and poly (methyl methacrylate).
  • polyester poly (acetate) butyl, poly (vinyl chloride) vinyl, polybutadiene, polycarbonate, polystyrene, polyvinyl ether, polyvinyl butyral, poly (aryl acrylate), and poly (methyl methacrylate).
  • polybutene, styrene butadiene gen block copolymer hydrogenated product and the like.
  • thermoplastic polymer compounds those obtained by introducing a functional group such as a hydroxyl group, a carboxyl group, a vinyl group, or an epoxy group into these thermoplastic polymer compounds can be used.
  • the preferred number average molecular weight of the strong thermoplastic polymer compound is 1000 to 500,000, and the preferred number average molecular weight is 5,000 to 100,000.
  • the compounding amount of the thermoplastic polymer compound is preferably 1 to 100% by mass, more preferably 1 to 10% by mass, based on the total mass of the components (A) to (D).
  • Typical photosensitizers include, for example, photosensitizers such as anthracene derivatives and pyrene derivatives. By using these in combination, the curing rate is higher than when these are not blended. Is improved, and it becomes preferable as a curable composition for optical materials.
  • Examples of the filler include inorganic and organic powders, flakes, and fibrous substances.
  • inorganic fillers include glass powder, my strength powder, silica or quartz powder, carbon powder, calcium carbonate powder, alumina powder, aluminum hydroxide powder, and aluminum silicate. Powder, zirconium silicate powder, iron oxide powder, barium sulfate powder, kaolin, dolomite, metal powder, glass fiber, carbon fiber, metal whisker, calcium carbonate whisker, hollow glass balloon or their surface treated with a coupling agent And those with organic groups on the surface.
  • organic fillers include pulp powder, nylon powder, polyethylene powder, cross-linked polystyrene powder, cross-linked acrylic resin powder, cross-linked phenol resin powder, cross-linked acrylic resin powder, cross-linked phenol resin powder, cross-linked urea resin powder, cross-linked melamine.
  • examples thereof include resin powders, crosslinked epoxy resin powders, rubber powders, and those having reactive groups such as epoxy groups, acrylic groups, and hydroxyl groups on their surfaces.
  • the filler may be about 0.5 to 30% by mass, preferably about! To 20% by mass with respect to the total amount of components (A) to (D).
  • a heat-sensitive cationic polymerization initiator such as a pigment and a dye, a leveling agent, an antifoaming agent, a thickener, a flame retardant, an oxidation agent.
  • a resin additives such as an inhibitor and a stabilizer can be added within a range of usual amounts used.
  • each of the components (A) to (D) and other optional components used in the curable composition for optical materials of the present invention with an active deuterium compound.
  • Treatment with an active deuterated compound causes damage to transparency in the near-infrared region.
  • CH bonds and O—H bonds that exist in a polymer containing silicon or in a curable composition for optical materials.
  • H can be deuterated to improve transparency.
  • Examples of the active deuterated compound include deuterated alcohols such as deuterated water, deuterated methanol, and deuterated methanol.
  • the step of preparing the curable composition for optical materials of the present invention can be performed by well-known steps, for example, by sufficiently mixing the constituent materials.
  • Specific mixing methods include, for example, a stirring method using a stirring force accompanying the rotation of the propeller, a roll kneading method, and a planetary stirring method. Then, prepare it through 0.:! To 5. ⁇ filter.
  • the active energy rays for curing the curable composition for optical materials of the present invention include ultraviolet rays, electron beams, X-rays, radiation, high frequencies, and the like, and ultraviolet rays are most preferable economically.
  • the ultraviolet light source include an ultraviolet laser, a mercury lamp, a high-pressure mercury lamp, a xenon lamp, a sodium lamp, and an alkali metal lamp.
  • the curable composition for optical materials of the present invention can be used for various optical components, optical integrated circuits, optical wiring boards, optical waveguides and the like.
  • optical waveguide and the method for manufacturing the optical waveguide of the present invention will be described.
  • the optical waveguide of the present invention is formed by forming at least the core from the curable composition for optical materials of the present invention, and further forming the cladding from the curable composition for optical materials of the present invention. You can also.
  • the curable composition for optical materials of the present invention for both the core and the clad, the refractive index is measured in advance, and the higher refractive index is used for the core, and the lower one is used for the clad.
  • the method for producing an optical waveguide of the present invention includes a step of forming a core by curing the curable composition for optical materials of the present invention. Further, it may have a step of forming a clad by curing the curable composition for optical materials of the present invention.
  • the clad is formed by applying the curable composition for an optical material of the present invention (for example, an ultraviolet curable composition) to a substrate and curing it, and further, the curable composition for an optical material of the present invention is formed on the obtained clad.
  • Apply a composition eg UV curable composition
  • align it preferably using a mask aligner
  • a waveguide ridge pattern is prepared by removing the ridge pattern, and a curable composition for an optical material for a clad material is supplied and cured to form an optical waveguide.
  • a conventional material can also be used.
  • FIG. 1 (a) to 1 (d) are schematic cross-sectional views showing a process for forming an optical waveguide according to the present invention.
  • a curable composition for forming a clad part on a substrate (1) to a desired thickness As shown in Fig. 1 (a), a curable composition for forming a clad part on a substrate (1) to a desired thickness. A layer (2) of a product (for example, an ultraviolet curable composition), and a layer (3) of a curable composition for forming a core part (for example, an ultraviolet curable composition) on the desired thickness. Form. Next, as shown in FIG. 1 (b), a mask (4) having a core portion-shaped pattern mask is placed on the layer (3) of the curable composition for forming the core portion, and the mask (4 ) To irradiate ultraviolet light (5). Thereby, the layer (3) of the curable composition for forming the core portion is cured only in the core portion (6).
  • a mask (4) having a core portion-shaped pattern mask is placed on the layer (3) of the curable composition for forming the core portion, and the mask (4 ) To irradiate ultraviolet light (5).
  • the ridge pattern of the core part (6) as shown in FIG. 1 (c) is obtained. It is formed.
  • a layer (2) of the curable composition for forming the cladding portion is applied to a desired thickness so as to embed the core portion (6), and the cladding portion (7) as shown in FIG. Can be formed.
  • the optical waveguide with a substrate manufactured in this way is made of the curable composition for an optical material of the present invention as a core, or a clad, or a cladding, so that it has excellent solvent resistance and can be used. Since the birefringence of the material is small, the polarization dependence is small, the loss is low, and the heat resistance and moisture resistance are excellent.
  • the substrate used in the production of the optical waveguide should not be peeled off before the film-forming process.
  • the substrate used for optical waveguide fabrication is not particularly limited, but specific examples include glass substrate, Si substrate, fired Si substrate, PET film, polycarbonate, ceramic, epoxy substrate, polyimide substrate, and fluorination. Examples include polyimide substrates, FR4 substrates, or those whose surfaces have been physically or chemically treated with a coupling agent to change adhesion.
  • the substrate may be one, two, or two or more substrates laminated.
  • the substrate preferably has a smooth surface and high adhesion to the material. Specifically, it is preferable to use a product obtained by applying and curing a novolac type epoxy resin on a fired substrate.
  • the method for applying the curable composition for an optical material of the present invention to a uniform thickness on a substrate or a clad is not particularly limited.
  • the curable composition for optical materials of the present invention is an ultraviolet curable composition
  • the amount of UV irradiation is preferably in the range of force S, 100 to 10000 mj / cm 2 , where the optimum conditions vary depending on the applied film thickness.
  • the curable composition for an optical material of the present invention When the curable composition for an optical material of the present invention is molded into an optical waveguide, it may be heated by heat if necessary.
  • the heating operation is not particularly limited, but can be performed using a hot plate, an oven, or the like. Among these, it is preferable to use an oven that can apply heat uniformly.
  • the solvent used for forming the core ridge when producing the optical waveguide is not particularly limited as long as it is a solvent that dissolves the components (A) to (D).
  • Specific examples include alkaline aqueous solution, acidic aqueous solution, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethanol, isopropanol, n-propanol, benzene, toluene, o-xylene, m-xylene, p-xylene, 1, 3 , 4-trimethylbenzene and the like.
  • alkaline aqueous solution acidic aqueous solution
  • acetone methyl ethyl ketone
  • methyl isobutyl ketone ethanol
  • isopropanol n-propanol
  • benzene toluene
  • o-xylene m-xylene
  • p-xylene 1, 3
  • a developing method using a solvent may not be used. That is, for forming the waveguide ridge pattern, a saddle mold that can be peeled off from the molded product after curing may be used. As the mold, silicon, fluorine, glass, or those whose surfaces are treated with a coupling agent or the like can be used. It is preferable to form a saddle shape by light.
  • Reaction soda 1 178.5 g (0.90 mol) of phenylenotrimethoxysilane and 97.2 g of 0.032 ⁇ / ⁇ phosphoric acid aqueous solution were mixed and stirred at 10 ° C for 2 hours. 0. 5N sodium hydroxide aqueous solution 6.07 g of liquid was added.
  • Reaction tank 2 3, 4 24.6 g (0.10 mol) of epoxycyclohexyltrimethylmethoxysilane and 10.8 g of ethanol were mixed, and 10.8 g of 0.032% phosphoric acid aqueous solution was reacted. The solution was added dropwise over 5 minutes, taking care not to exceed a temperature of 10 ° C, and stirred at 10 ° C or lower for 2 hours. Thereafter, 0.67 g of a 0.5N aqueous sodium hydroxide solution was added.
  • Reaction tank 1 300.lg (l.51mol) of phenyltrimethoxysilane and 163.7g of 0.032% phosphoric acid aqueous solution were mixed and stirred at 10 ° C for 2 hours, then 0.5N 10.67 g of an aqueous solution of sodium hydroxide was added.
  • Reactor 2 3, 4 124.4 g (0. 50 of epoxy cyclohexyl ether trimethoxysilane) mol) and 54.7 g of ethanol, and 54.7 g of 0.032% aqueous phosphoric acid solution was added dropwise over 5 minutes, taking care not to exceed a temperature of 10 ° C. After stirring for 2 hours below, 3.42 g of 0.5N aqueous sodium hydroxide solution was added. The reaction liquid in the above reaction tank 1 and reaction tank 2 was mixed, and 1200 ml of ethanol and 1200 ml of ethanol were further added, and the outer bath temperature was heated to 130 ° C.
  • Reactor 1 138.8 g (0.70 mol) of phenyltrimethoxysilane, 6.0 g (0.05 mol) of dimethyldimethoxysilane, 23.6 g (0.70 mol) of y-glycidoxypropinoletrimethoxysilane 10 mol), 0. 032% phosphoric acid aqueous solution 91.8 g was mixed and stirred at 10 ° C. for 2 hours, and then 0.5N sodium hydroxide aqueous solution 5.74 g was added.
  • Reaction tank 2 3, 4 Mix 37.0 g (0.15 mol) of epoxycyclohexyltrimethylmethoxysilane and 16.2 g of ethanol, and react with 16.32 g of 0.032% phosphoric acid aqueous solution. Liquid The solution was added dropwise over 5 minutes, taking care that the temperature did not exceed 10 ° C, and stirred at 10 ° C or lower for 2 hours. Thereafter, 1. Olg of 0.5N sodium hydroxide aqueous solution was added.
  • reaction liquids in the above reaction tank 1 and reaction tank 2 add 600 ml of toluene and 600 ml of ethanol, heat the outer bath temperature to 130 ° C, and remove the water by azeotropy. Heat condensation polymerization was performed until the weight average molecular weight Mw of the polymer was 1700 (analyzed by GPC, converted to polystyrene). 1780 g (12. Omol) of onoletomate triethylinole was added and heated to 130 ° C. After reaching 130 ° C, the mixture was heated and stirred for 1 hour. 90 g of adsorbent was added, and the mixture was heated and stirred at 100 ° C for 1 hour.
  • the weight average molecular weight was 2800, and as a result of analysis by 1 H NMR, silanol groups (Si—OH) were not detected.
  • Reactor 1 Mix 11.9 g (0.6 mol) of phenyltrimethoxysilane, 48.lg (0.4 mol) of dimethyldimethoxysilane, 108.0 g of 0.032% phosphoric acid aqueous solution, After stirring at ° C for 2 hours, 6.06 g of 0.5N aqueous sodium hydroxide solution was added.
  • Reactor 2 3, 4 246.4 g (l. 00 mol) of epoxy cyclohexyl ether trimethoxysilane and 108.0 g of ethanol? Recombined with 0. 032 ⁇ / ⁇ of phosphoric acid in water at 108.0 g. Add dropwise over 5 minutes, taking care that the temperature at night does not exceed 10 ° C. Stir for hours. Thereafter, 6.06 g of a 0.5N aqueous sodium hydroxide solution was added.
  • Reaction tank 1 50 g (0.25 mol) of phenylenotrimethoxysilane, 121.5 g (l.01 mol) of dimethyldimethoxysilane, 149 g (0.63 mol) of ⁇ -glycidoxypropyltrimethoxysilane, 0.032 204.6 g of% phosphoric acid aqueous solution was mixed and stirred at 10 ° C. for 2 hours, and then 4.26 g of 0.5 N aqueous sodium hydroxide solution was added.
  • Reaction tank 2 155.2 g (0.63 mol) of 3,4-epoxycyclohexylethyltrimethoxysilane and 68.2 g of ethanol were mixed to react with 68.2 g of 0.032% phosphoric acid aqueous solution. The solution was added dropwise over 5 minutes, taking care not to exceed 10 ° C, and stirred at 10 ° C or lower for 2 hours. Thereafter, 12.8 g of a 0.5N aqueous sodium hydroxide solution was added.
  • reaction liquid in the above reaction tank 1 and reaction tank 2 After mixing the reaction liquid in the above reaction tank 1 and reaction tank 2, the mixture was heated to 45 ° C and polycondensed for about 1.5 hours. After diluting the reaction solution by adding 356.4 g of toluene, stop stirring, separate and extract the lower layer containing a lot of organic components separated into two layers, and under reduced pressure at 45 ° C for about 1 hour. Reflux dehydration was performed. 561 g (3.79 mol) of onoletoformate triethyl was added and heated to 130 ° C. After reaching 130 ° C, the mixture was heated and stirred for 1 hour.
  • Reaction tank 1 108.2 g (0.90 mol) of dimethyldimethoxysilane and 97.2 g of 0.032% phosphoric acid aqueous solution were mixed, stirred at 10 ° C for 2 hours, and then hydroxylated with 0.5N. 6.07 g of sodium aqueous solution was obtained.
  • Reaction tank 2 24.6 g (0.10 mol) of 3,4-epoxycyclohexylethyltrimethoxysilane and 10.8 g of ethanol were mixed to react 10.8 g of 0.032% phosphoric acid aqueous solution. The solution was added dropwise over 5 minutes, taking care not to exceed 10 ° C, and stirred at 10 ° C or lower for 2 hours. Thereafter, 0.67 g of a 0.5N aqueous sodium hydroxide solution was added.
  • reaction solution in reaction tank 1 and reaction tank 2 above add 600 ml of toluene and 400 ml of ethanol, heat to an external bath temperature of 130 ° C, and remove the water by azeotropic distillation. Polymerization was performed. Accompanied with 1780 g (12. Omol) of triethinole noretotate 130. C was heated to C, and after reaching 130 ° C, the mixture was heated and stirred for 1 hour. 90 g of adsorbent was added, and the mixture was heated and stirred at 100 ° C for 1 hour. Volatile components were removed at 120 ° C and 3 mmHg, and 45 layers of Tolenene and 1000 g of hexane were added to separate two layers.
  • the silicon-containing polymer was designated as (A6).
  • the weight average molecular weight is 15000.
  • Si-OH silanol group
  • epoxy group As a result of analysis by 29 Si_NMR, it was confirmed that at least three binding elements have a silicon atom which is an oxygen atom, and as a result of analysis by ⁇ -NMR, it was confirmed to have a Si_R group.
  • the phenyl group in the organic component excluding the key atom is 0% by mass
  • the methyl group in the organic component excluding the key atom is 45.8% by mass
  • the epoxy equivalent measured by the potentiometric method is It was 933.
  • compositions of Examples and Comparative Examples shown in Table 1 were used as the core material and the cladding material in the combinations shown in Table 2 to produce the optical waveguide of the present invention and the comparative optical waveguide.
  • Each optical waveguide obtained was tested for optical loss, process resistance, and environmental resistance. The results are shown in Table 1-2.
  • Each clad material shown in Table 2 (the composition obtained in Example 13 and Example 5) was laminated on the fired silicon substrate to a thickness of 30 ⁇ m by spin coating, and the light intensity lOmWZcm After irradiating UV rays of 2 for 200 seconds, it was heated at 120 ° C for 15 minutes.
  • each core material shown in Table _ 2 (in Example 13, the composition obtained in Example 2) was laminated to a thickness of 50 zm by spin coating, and a negative photomask was used. The sample was irradiated with ultraviolet light having a light intensity of 10 mW / cm 2 for 400 seconds. After heating for 15 minutes at 90 ° C.
  • a pattern with a line width of 50 / m was formed by heating and curing at 120 ° C. for 15 minutes. Further, the same clad material by spin coating, and laminated to a thickness of the previously formed pattern line above the 30 mu m, after irradiation with ultraviolet light intensity 10 mW / cm 2 200 seconds, to 120 ° C An optical waveguide on a silicon substrate was fabricated by heating for 15 minutes.
  • connection loss was calculated from the transmission loss measured by the cut-back method.
  • the process resistance of the fabricated optical waveguide was comprehensively evaluated from the short-term solder heat resistance and UV resistance as follows:
  • a test was conducted to irradiate the fabricated optical waveguide with light from a high-pressure mercury lamp with a central wavelength of 365 nm and a light intensity of lOmWZcm 2 for 100,000 seconds. The change in appearance after the test was visually observed. In addition, optical loss at a wavelength of 850 nm after the test was measured, and the amount of change was calculated compared to before the test;
  • the fabricated optical waveguide in a thermostatic chamber that can be programmed, hold it at _40 ° C for 5 minutes, raise the temperature to 120 ° C at a rate of 1 ° CZ, and then hold it at 120 ° C for 5 minutes Then, 30 cycles were tested with 1 cycle of cooling to 40 ° C at a rate of 1 ° C / min. After the test, the appearance of the test piece was confirmed. In addition, after the test, the optical loss at a wavelength of 850 nm was measured, and the amount of change was measured compared to before the test;
  • the produced optical waveguide was stored in a thermo-hygrostat and tested at 85 ° C x 85% RH for 1000 hours. After the test was completed, the appearance of the test piece was changed. In addition, after the test, the optical loss at a wavelength of 850 ⁇ m was measured, and the amount of change was calculated compared to before the test;
  • the optical waveguide of the present invention has excellent light loss, process resistance, and environmental resistance, and has heat resistance, moisture resistance, and transparency (low light loss) at the communication wavelength. At the same time, I was satisfied.
  • a pre-coating agent for example, polyimide resin or epoxy novolac
  • Resin for example, polyimide resin or epoxy novolac
  • the fired silicon substrate and the precoat agent were peeled off to form a film-like optical waveguide.
  • the obtained film-like optical waveguide had good properties as in the above examples.
  • the optical waveguide of the present invention has excellent properties even when it is manufactured as a metal (copper) mark optical waveguide by a conventional method, whether on a fired silicon substrate or in the form of a film. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Epoxy Resins (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 本発明の光学材料用硬化性組成物は、必須の構成成分として、(A)特定のケイ素含有重合体;(B)特定のエポキシ樹脂;及び(C):エネルギー線感受性カチオン重合開始剤を含有してなることを特徴とする。

Description

明 細 書
光学材料用硬化性組成物及び光導波路
技術分野
[0001] 本発明は、光学材料用硬化性組成物に関し、更に詳しくは、種々の光学部品、光 集積回路、光配線板、光導波路等に利用できる光学材料用硬化性組成物及び該組 成物を硬化させて得られた部品を備えてなる光導波路に関する。
背景技術
[0002] 光導波路は、例えば、基板の表面もしくは基板表面直下に、周囲よりわずかに屈折 率の高い部分を作ることにより光を閉じ込め、光の合波 ·分波やスイッチングなどを行 う特殊な光学部品である。具体的には、通信や光情報処理の分野で有用な光合分 波回路、周波数フィルター、光スィッチ又は光インターコネクション部品等が挙げられ る。例えば、時間分割された信号を異なる波長において伝送する WDMシステムは、 高度情報化社会に必要な高速大容量通信を実現できるシステムとして有望視されて いる力 この WDMシステムにおいてキーとなる光デバイスは、光源、光増幅器、光合 分波器、光スィッチ、波長可変フィルター、波長変換器などが挙げられる。
光導波路デバイスは、光ファイバ一部品と比較して、精密に設計された導波回路を 基に高機能をコンパクトに実現できること、量産が可能であること、多種類の光導波 路を 1つのチップに集積可能であること等の利点が挙げられる。
[0003] 従来、光導波路用材料としては、透明性に優れ、光学異方性の小さい無機ガラス が主に用いられてきた。しかし、無機ガラスは重ぐ破損し易ぐ生産コストが高い等の 問題を有しており、最近では、無機ガラスの代わりに、例えば 0. 85 z mなどの可視 光域において、また、赤外領域である 1. 3〜: 1. 55 x m等の通信波長で透明な高分 子材料を使って、光導波路部品を製造しょうとする動きが活発化してきている。
[0004] 例えば、特許文献 1には、必須の構成成分として、エポキシ基を有し、少なくとも 3 つの結合元素が酸素原子であるケィ素原子を含み、 Si— R基 (Rは、アルキル基、フ ェニル基、アルキルフエニル基若しくはフエニルアルキル基又は R中の水素原子の一 部若しくは全部がハロゲンィヒ若しくは重水素化された、アルキル基、フエニル基、ァ ルキルフエニル基若しくはフエニルアルキル基)を有し、 Si— OH基を有さなレ、、重量 平均分子量 500〜100万のケィ素含有重合体及び硬化触媒を含有することを特徴 とする光学材料用硬化性組成物及びこれを硬化させた光導波路が開示されている。
[0005] 特許文献 1 :特開 2004— 10849号公報 特許請求の範囲
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 1みられるようなエポキシ基を有するケィ素含有重合体をマ クロモノマーとして用いた光学材料用硬化性組成物は、耐熱性や通信波長における 透明性 (低光損失性)などに優れ、耐湿性についてもある程度良好なものの、近年の 光導波路の作製においては更に高温多湿な条件で作製されており、もはや耐湿性 においては不十分なものであった。
[0007] 従って、本発明の目的は、耐熱性、耐湿性、通信波長における透明性 (低光損失 性)を同時に満足する、特に、光導波路用材料として優れた、光学材料用硬化性組 成物及び該組成物を硬化させて得られた部材を備えてなる光導波路を提供すること にある。
課題を解決するための手段
[0008] 本発明者らは鋭意検討を重ねた結果、上記課題を解決することができ、本発明を 完成するに至った。
即ち、本発明は、必須の構成成分として、
(A):エポキシ基を有し、少なくとも 3つの結合元素が酸素原子であるケィ素原子を含 み、 Si_R基(Rは、アルキル基、フエ二ル基、アルキルフエニル基若しくはフエニルァ ルキル基又は R中の水素原子の一部若しくは全部がハロゲンィヒ若しくは重水素化さ れた、アルキル基、フエニル基、アルキルフエニル基若しくはフエニルアルキル基を表 わす。)並びに Si_OR'基(R'は、アルキル基、フヱニル基、アルキルフエ二ル基若 しくはフヱニルアルキル基又は R'中の水素原子の一部若しくは全部がハロゲン化若 しくは重水素化された、アルキル基、フヱニル基、アルキルフヱニル基若しくはフエ二 ルアルキル基を表わす)を有し、重量平均分子量 1000〜: 100万のケィ素含有重合 体; (B):下記一般式(1)で表されるエポキシ樹脂
[化 1]
Figure imgf000005_0001
(式中、 X及び Yは、同一でも異なっていてもよぐ水素原子、アルキル基、フルォロア ノレキノレ基、パーフルォロアルキル基、フエニル基、アルキルフエニル基、フルオロフェ ニル基、パーフルオロフェニル基、フルォロアルキルフエニル基、パーフルォロアノレ キルフエニル基から選択される一価の基を表わし、 nは、正の数であり、 R^R18は、 水素原子、ハロゲン原子、あるいは酸素原子もしくはハロゲン原子を含んでも良い炭 化水素基、または置換基を有していてもよいアルコキシ基を表わす。);及び
(C):エネルギー線感受性カチオン重合開始剤
を含有する光学材料用硬化性組成物である。
また、本発明の光学材料用硬化性組成物は、 (D):下記一般式(2)で表されるェポ キシ樹脂
[化 2]
Figure imgf000005_0002
(式中、 R , は、同一でも異なっていてもよぐ水素、炭素原子数:!〜 4のアルキル 基を表わす。 )
を含有していてもよい。 [0010] 更に、本発明は、上記の光学材料用硬化性組成物を硬化させ形成したコアを有す ることを特徴とする光導波路である。
[0011] また、本発明は、上記の光学材料用硬化性組成物を硬化させ形成したクラッドを有 する上記の光導波路である。
[0012] 更に、本発明は、上記の光学材料用硬化性組成物を硬化させコアを形成する工程 を有する光導波路の製造方法である。
[0013] また、本発明は、上記の光学材料用硬化性組成物を硬化させクラッドを形成するェ 程を有する上記の光導波路の製造方法である。
発明の効果
[0014] 本発明の効果は、耐熱性、耐湿性、通信波長における透明性 (低光損失性)を同 時に満足する、特に、光導波路用材料として優れた、光学材料用硬化性組成物及び 該組成物を硬化させて得られた部品を備えてなる光導波路を提供したことにある。 図面の簡単な説明
[0015] [図 1]本発明の光導波路を形成する工程を示す概略断面図である。
発明を実施するための最良の形態
[0016] (A)成分:ケィ素含有重合体
まず、本発明の光学材料用硬化性組成物の必須の構成成分 (A)であるケィ素含 有重合体にっレ、て説明する。
本発明の光学材料用硬化性組成物に用レ、られるケィ素含有重合体は、その構造 中に、エポキシ基を有し、少なくとも 3つの酸素原子に結合しているケィ素原子を有し ている。
[0017] 更に、本発明で用いられるケィ素含有重合体は、その構造中に Si_R基を有して おり、 Rは、アルキル基、フエ二ル基、アルキルフエニル基若しくはフエニルアルキル 基又は R中の水素原子の一部若しくは全部がハロゲン化若しくは重水素化されたァ ノレキノレ基、フエ二ル基、アルキルフエニル基若しくはフエニルアルキル基である。
[0018] ここで、近赤外領域の透明性の点から、 R中の水素原子の一部若しくは全部がハロ ゲンィ匕若しくは重水素化されていることが好ましい。ハロゲン化は、フッ素化が好まし く、具体的には、 3, 3, 3 _トリフルォロプロピル基、ペンタフルオロフヱニル基等が好 ましレ、。重水素化されている基としては、重水素化フエニル基が好ましい。
[0019] また、本発明で用いられるケィ素含有重合体は、その構造中に Si— OR'基を有し ており、 R'は、アルキル基、フエニル基、アルキルフエニル基若しくはフエニルアルキ ル基又は R'中の水素原子の一部若しくは全部がハロゲン化若しくは重水素化され た、アルキル基、フエ二ル基、アルキルフエニル基若しくはフエニルアルキル基である
[0020] なお、本発明で用いられるケィ素含有重合体の重量平均分子量は、ポリスチレン換 算で、 1000から 100万の範囲内であり、好ましくは 1000から 50万の範囲内である。 ここで、ケィ素含有重合体の重量平均分子量が 1000より小さいと望ましい物性が得 られず (熱重量減温度の低下)、 100万より大きいと、やはり充分な物性が得られない (光散乱が発生したり、高粘度となってハンドリングが困難になり、生産性が低下した りする)ために好ましくない。
[0021] 本発明の光学材料用硬化性組成物に用いられるケィ素含有重合体のエポキシ当 量 (分子量をエポキシ基数で割った値)は、特に限定されるものではないが、好ましく はエポキシ当量 100〜2000が良レ、。
[0022] また、本発明の光学材料用硬化性組成物に用いられるケィ素含有重合体は、ケィ 素以外の原子として、ホウ素、マグネシウム、アルミニウム、リン、チタン、鉄、ジルコ二 ゥム、ニオブ、スズ、テルル、タンタル、ゲルマニウムからなる群から選ばれる原子を 1 種又は 2種以上含有してもよぐ特に、ホウ素、アルミニウム、リン、チタン、ジルコニゥ ム、スズ、ゲルマニウムが好ましい。これら原子の導入には、アルコキシシランまたはク ロロシランと、他の原子のアルコラートを併用して加水分解 '縮合反応を行うか、他の 原子の錯体で処理すればょレ、。
[0023] ケィ素含有重合体へのエポキシ基の導入方法
<加水分解 ·縮合反応 >
エポキシ基を有する、アルコキシシラン及び/又はクロロシランの加水分解 '縮合反 応により、ケィ素含有重合体へエポキシ基を導入することができる。
<ヒドロシリル化反応 >
シラン基(Si-H)を有するアルコキシシラン及び/又はシラン基(Si-H)を有する クロロシラン、又はこれらの少なくとも 1種の重合体と、ビニル基を有するエポキシ化合 物(例えばビエルシクロへキセンォキシド等)とのヒドロシリルイ匕反応により、ケィ素含 有重合体へエポキシ基を導入することができる。或いは、ビニル基(一 CH = CH )を 有するアルコキシシラン及び/又はビュル基(一CH = CH )を有するクロロシラン、 又はこれらの少なくとも 1種の重合体と、シラン基(Si— H)を有するエポキシ化合物と のヒドロシリルイ匕反応により、導入することもできる。
より具体的には、シラン基(Si-H)を有する、アルコキシシラン及び/又はクロロシ ランの加水分解 '縮合反応により得られた重合体と、ビュル基を有するエポキシ化合 物とをヒドロシリルイ匕反応に供することが好ましい。また、ビュル基(一 CH = CH )を 有する、アルコキシシラン及び Z又はクロロシランの加水分解 '縮合反応により得られ た重合体と、シラン基を有するエポキシ化合物(例えばグリシドキシジメチルシラン)と を、ヒドロシリル化反応に供することにより導入することができる。
[0024] なお、これらエポキシ基導入の方法はいずれを用いてもよぐ併用することもできる
[0025] ケィ素含有重合体の製造方法
上述のように、本発明の光学材料用硬化性組成物に使用される (A)成分のケィ素 含有重合体は、アルコキシシラン及び/又はクロロシランの加水分解 ·縮合反応の際 、エポキシ基を有する、アルコキシシラン及び/又はクロロシランを存在させることに より製造することができる。
この場合、エポキシ基を有する、アルコキシシラン及び/又はクロロシランだけで加 水分解'縮合反応を行ってもよいが、物性の点から、他のアルコキシシランと混合し、 加水分解 '縮合反応を行うことが好ましい。
[0026] また、本発明の光学材料用硬化性組成物に使用される (A)成分のケィ素含有重合 体は、アルコキシシラン及び Z又はクロロシランの加水分解 '縮合反応の際、シラン 基を有するアルコキシシラン及び/又はシラン基を有するクロロシランを存在させ、シ ラン基を有する重合体を形成し、その後、該重合体と、ビニル基を有するエポキシ化 合物(例えばビュルシクロへキセンォキシド等)とをヒドロシリル化反応に供し、製造す ること力 Sできる。 別法として、アルコキシシラン及び/又はクロロシランの加水分解 '縮合反応の際、 ビュル基を有するアルコキシシラン及び/又はビニル基を有するクロロシランを存在 させ、ビュル基を有する重合体を形成し、その後、該重合体と、シラン基を有するェ ポキシ化合物とを、ヒドロシリルイ匕反応に供し、製造することができる。
なお、シラン基(Si_H)とビュル基(_CH = CH )のヒドロシリル化反応により、本 発明の光学材料用硬化性組成物で用いられるケィ素含有重合体を得る場合、白金 触媒等の従来公知の触媒を使用してヒドロシリルイ匕反応を行なえばよい。
[0027] ヒドロシリル化反応によって、ケィ素含有重合体へエポキシ基を導入するために用 レ、るエポキシィ匕合物としては、エポキシ基とビュル基を有する化合物又はエポキシ基 とシラン基を有する化合物であればよい。具体的には、ビュルシクロへキセンォキシド 、グリシドキシジメチルシラン等が挙げられる。
[0028] 本発明の光学材料用硬化性組成物に用いられるケィ素含有重合体を得るための、 アルコキシシランの加水分解.縮合反応は、いわゆるゾル'ゲル反応を行えばよぐゾ ノぃゲル反応としては、無溶媒もしくは溶媒中で、酸又は塩基等の触媒で加水分解 · 縮合反応を行う方法が挙げられる。ここで用いる溶媒は、特に限定されず、具体的に は、水、メタノール、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール 、イソブタノール、 tーブタノール、アセトン、メチルェチルケトン、ジォキサン、テトラヒ ドロフラン、トルエン等が挙げられ、これらの 1種を用いることも、 2種以上を混合して 用レ、ることもできる。
[0029] 上記アルコキシシランの加水分解縮合反応は、アルコキシシラン力 水による加水 分解により、シラノール基(Si— OH)を生成し、この生成したシラノール基同士又はシ ラノール基とアルコキシ基が縮合することにより進む。この反応を進ませるためには、 適量の水を加えることが好ましぐ水は溶媒中に加えてもよぐ触媒を水に溶解してカロ えてもよい。また、空気中の水分あるいは、溶媒中に含まれる微量の水分によっても 加水分解反応は進む。
[0030] 上記加水分解 '縮合反応で用いられる酸、塩基等の触媒は、加水分解 '縮合反応 を促進するものであれば、特に限定されず、具体的には、塩酸、リン酸、硫酸等の無 機酸類;酢酸、 p—トルエンスルホン酸、リン酸モノイソプロピル等の有機酸類;水酸 化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等の無機塩基類;トリメチ ノレアミン、トリェチルァミン、モノエタノールァミン、ジエタノールァミン等のアミン化合 物類;テトライソプロピルチタネート、テトラブチルチタネート等のチタンエステル類;ジ ブチル錫ラウレート、ォクチル酸錫等の錫カルボン酸塩類;トリフルォロボロン等のホ ゥ素化合物類;鉄、コバルト、マンガン、亜鉛等の金属の塩化物やナフテン酸塩ある いはォクチル酸塩等の金属カルボン酸塩類;アルミニウムトリスァセチルアセテート等 のアルミニウム化合物等が挙げられ、これらの 1種を用いることも、 2種以上を併用す ることちでさる。
[0031] 酸触媒を加えて、酸性下 (pH7以下)で反応を進ませた後、塩基触媒を加えて塩基 性下 (pH7以上)で反応を行う方法が好ましレ、例として挙げられる。
[0032] なお、上記加水分解 ·縮合反応を行うときには、攪拌することが好ましぐまた加熱 することで反応を促進することができる。
[0033] 加水分解 '縮合反応の順序は特に限定されず、例えば、エポキシ基を導入するた めに、エポキシ基を有するアルコキシシランを使用する場合、エポキシ基を有するァ ルコキシシランと他のアルコキシシランを両者混合して、加水分解 '縮合反応を行つ てもよぐ単独で、ある程度加水分解 '縮合反応を行った後、他を加えてさらに加水分 解 ·縮合反応を行ってもよい。
[0034] アルコキシシラン以外にクロロシランを使用する場合もアルコキシシランと同様に加 水分解縮合反応を行なえばよい。
[0035] 加水分解縮合反応で生成したケィ素含有重合体を得るためには、反応溶媒、水、 触媒を除去すればよぐ例えば、ブタノール等の溶媒を加えて溶媒抽出後、抽出溶 媒を窒素気流下で減圧留去すればょレ、。
[0036] また、本発明の光学材料用硬化性組成物に用いられるケィ素含有重合体は、アル コキシシラン、クロロシラン以外に、ケィ酸ナトリウムからナトリウムをイオン交換等で除 去後、二酸化ケイ素の縮合物を利用することもできる。
[0037] くアルコキシシラン、クロロシラン〉
本発明の光学材料用硬化性組成物に用レ、られる (A)成分のケィ素含有重合体の 製造に使用されるアルコキシシランまたはクロロシランは、分子中に加水分解 '縮合 反応をするアルコキシ基を有する力、 Si— C1基を有すればよぐ具体的には、トリメチ ノレメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジェト キシシラン、ジメトキシメチルシラン、テトラメトキシシラン、テトラエトキシシラン、メチル トリメトキシシラン、メチノレトリエトキシシラン、メチノレジメトキシシラン、メチノレジェトキシ シラン、ジメチルエトキシシラン、ジメチルビニルメトキシシラン、ジメチルビニルェトキ シシラン、メチルビ二ルジメトキシシラン、メチルビ二ルジェトキシシラン、ジフエニルジ メトキシシラン、フエニルトリメトキシシラン、ジフエ二ルジェトキシシラン、フエニルトリエ トキシシラン、ビュルトリクロロシラン、ビュルトリス( /3メトキシェトキシ)シラン、ビニノレト リエトキシシラン、ビュルトリメトキシシラン、 γ— (メタクリロイルォキシプロピル)トリメト キシシラン、 Ν— j3 (アミノエチル) γ—ァミノプロピルトリメトキシシラン、 N_ j3 (ァミノ ェチル) γ—ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルトリエトキシシラ ン及びこれらの各アルコキシ基の代わりにクロル化物、さらには、これらのアルコキシ 基以外の基の水素原子の一部又は全部がハロゲン化(特にフッ素化)、又は重水素 化されているものが挙げられ、これらの 1種又は 2種以上を用いることができる。
[0038] 特に近赤外領域の透明性の点から、一部または全部がハロゲン化(特に、フッ素化 )もしくは重水素化されているものを使用するのが好ましい。具体的には、重水素化フ ェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン、 (3, 3, 3—トリフ ルォロプロピル)トリメトキシシラン等が好ましく用いられる。また、エポキシ基の導入の ために、シラン基(Si— Η)、ビエル基(一 CH = CH )、ビエルシラン基(Si— CH = C
H )を有するものが好ましい。
[0039] くエポキシ基を有するアルコキシシラン〉
本発明の光学材料用硬化性組成物に用いられるケィ素含有重合体でエポキシ基 導入のために使用されるエポキシ基を有するアルコキシシランは、分子中にエポキシ 基を持っていればよぐ具体的には γ—グリシドキシプロピルトリメトキシシラン、 Ί - グリシドキシプロピルメチルジェトキシシラン、 j3 _ (3, 4 _エポキシシクロへキシル) ェチルトリメトキシシラン、 j3 _ (3, 4 _エポキシシクロへキシル)ェチルトリエトキシシ ラン等が挙げられ、これらの 1種又は 2種以上を用いることができる。
[0040] 3, 4 _エポキシシクロへキシル基を有するアルコキシシランは、温和な条件で(他 のアルコキシシランも用いる場合は、他のアルコキシシランとは別釜の温和な条件で) 加水分解反応を行い、液性を中性またはアルカリ性にした後に反応液を混合してカロ 熱重縮合して共重合体を得ることが、熱重量減温度を向上する観点から好ましレ、。
[0041] なお、これらのエポキシ基は、途中に酸素原子を介さずにケィ素原子に結合してい ることが好ましい。また、特に光硬化性の点から、 β― (3, 4—エポキシシクロへキシ ノレ)ェチルトリメトキシシラン、 β _ (3, 4_エポキシシクロへキシル)ェチルトリエトキ シシランが好ましい。
[0042] <エポキシ基を有するクロロシラン >
本発明の光学材料用硬化性組成物に用いられるケィ素含有重合体で、エポキシ 基導入のために使用されるエポキシ基を有するクロロシランは、分子中にエポキシ基 を持っていればよい。
[0043] <加水分解性エステル化合物処理 >
また、本発明の光学材料用硬化性組成物に用いられる (Α)成分のケィ素含有重合 体を、あるいはケィ素含有重合体を得るために行なった加水分解 '縮合反応後の溶 液を、そのまま或いは脱触媒処理を行ってから、トリメチルクロロシラン等のクロロシラ ン化合物、あるいは加水分解性エステル化合物で処理してもよい。特に加水分解性 エステル化合物で処理することにより、ケィ素含有重合体中のシラノール基(Si— Ο H)を封止して Si— OR'とすることが好ましい。
[0044] 加水分解性エステル化合物の例としては、オルト蟻酸エステル、オルト酢酸エステ ノレ、テトラアルコキシメタン、炭酸エステルなどが挙げられ、これらの 1種又は 2種以上 を使用すればよい。とりわけオルト蟻酸トリアルキルエステル、テトラアルコキシメタン 等が好ましい。
[0045] 加水分解性エステルでの処理方法は、ケィ素含有重合体又はケィ素含有重合体と 溶媒との混合物又はケィ素含有重合体を含有する光学材料組成物に、過剰量の加 水分解性エステルを加えればよぐその時攪拌、加熱をすることが好ましい。処理後、 そのまま使用するか、或いは窒素気流下、加熱減圧して、未反応の加水分解性エス テルを除去処理すればよい。この処理によって、シラノール基がなくなり、保存安定 性や透明性がよくなる。 [0046] 本発明の光学材料用硬化性組成物に用いられる (A)成分のケィ素含有重合体は 、全有機成分 (ケィ素を除く成分)中の割合に対するフエニル基の割合が、 85質量% 以下、メチル基の割合力 85質量%以下の範囲内であることが好ましい。フエニル基 が多いほど耐熱温度は向上する力 室温での粘度が高くなり、ハンドリング性が低下 する。メチル基を多く含有するほど室温での粘度が低くなるが、多すぎると耐熱性が 低下するために好ましくなレ、。
[0047] なお、上記 (A)成分は、上記した 1種または 2種以上が使用できる。
[0048] (B)成分:エポキシ樹脂
本発明の光学材料用硬化性組成物に使用される(B)成分のエポキシ樹脂は、下 記一般式(1)で表されるエポキシ樹脂である。
[化 3]
Figure imgf000013_0001
(式中、 X及び Yは、同一でも異なっていてもよぐ水素原子、アルキル基、フルォロア ノレキノレ基、パーフルォロアルキル基、フエニル基、アルキルフエニル基、フルオロフェ 二ノレ基、パーフルオロフェニル基、フルォロアルキルフエニル基、パーフルォロアノレ キルフエニル基から選択される一価の基を表わし、 nは、正の数であり、 ^〜 8は、 水素原子、ハロゲン原子、あるいは酸素原子もしくはハロゲン原子を含んでも良い炭 化水素基、または置換基を有していてもよいアルコキシ基を表わす。)
[0049] (B)成分は分子構造が剛直であるために、得られた硬化物は高いガラス転移点を 示す。また、硬化に伴って起こる収縮の割合が小さい。パーフルォロ基を含むものは 低分極性であるために、硬化物の吸水性を低減する効果を有する。
[0050] なお、(B)成分の 1^〜1 18として好ましいのは水素原子である。また X、 Yとして好ま しいのはメチル基、パーフルォロメチル基であり、 nとして好ましいのは 1〜3の数であ る。
[0051] このような好ましい化合物の具体例としては、例えば、 2, 2—ビス(3, 4—エポキシ シクロへキシル)プロパン、 1, 1 , 1 , 3, 3, 3—へキサフルォロプロピル一 2, 2—ビス (3, 4_エポキシシクロへキシル)プロパンなどが挙げられる。
なお、(B)成分は 1種または 2種以上の化合物が使用できる。
[0052] (A)成分と(B)成分の好ましい使用割合 (質量比)は、 (A): (B) = 10 : 90〜90 : l 0、より好ましく fま 20 : 80〜80 : 20、更 (こ好ましく fま 40 : 60〜60 : 40の範囲内である。
[0053] 本発明の光学材料用硬化性組成物に使用される(C)成分は、エネルギー線感受 性カチオン重合開始剤である。即ち、エネルギー線の照射によってカチオン重合を 開始させる物質を放出させることが可能な化合物であり、特に限定されるものではな レ、が、好ましくは、エネルギー線の照射によってルイス酸を放出するォニゥム塩であ る復塩またはその誘導体が好ましレ、。
[0054] 力かる化合物の代表的なものとしては、次の一般式 [A]m+[B]m—で表される陽イオン と陰イオンの塩を挙げることができる。ここで、陽イオン [A]m+はォニゥムであるのが好 ましぐその構造は、例えば、次の一般式 [ (R21) Q]m+で表すことができる。なお、 R21
a
は、炭素数が:!〜 60の範囲内であり、炭素原子以外の原子をレ、くつ含んでもよい有 機の基である。 aは、:!〜 5なる整数である。 a個の R21は各々独立で、同一でも異なつ ていてもよい。また、少なくとも 1つは、芳香環を有する上記の如き有機の基であるこ と力 S好ましい。 Qは、 S、 N、 Se、 Te、 P、 As、 Sb、 Bi、〇、 I、 Br、 Cl、 F、 N = N力らな る群から選ばれる原子あるいは原子団である。また、陽イオン [A]m+中の Qの原子価 を qとしたとき、 m = a— qなる関係が成り立つことが必要である(但し、 N = Nは原子価 0として扱う)。
[0055] また、陰イオン [B]m—は、ハロゲン化物錯体であるのが好ましぐその構造は、例え ば、次の一般式 [LX ]m—で表すことができる。なお、 Lは、ハロゲンィ匕物錯体の中心原
b
子である金属または半金属(Metalloid)であり、 B、 P、 As、 Sb、 Fe、 Sn、 Bi、 Al、 Ca 、 In、 Ti、 Zn、 Sc、 V、 Cr、 Mn、 Co等である。 Xは、ハロゲン原子である。 bは、 3〜7 なる整数である。また、陰イオン [B]m—中の Lの原子価を pとしたとき、 m=b_pなる関 係が成り立つことが必要である。 [0056] 上記一般式で表される陰イオン [LX ]" "—の具体例としては、テトラフルォロボレート( b
BF )—、へキサフルオロフォスフェート(PF ) _、へキサフルォロアンチモネート(SbF )—
4 6 6
、へキサフルォロアルセネート(AsF )—、へキサクロ口アンチモネート(SbCl )—等が挙
6 6 げられる。
[0057] また、陰イオン Bm—は、 [LX (〇H) ]m—で表される構造のものも好ましく用いること b-1
ができる。なお、 L、 X、 bは、上記と同意義を有する。また、その他用いることができる 陰イオンとしては、過塩素酸イオン(Cl〇)―、トリフルォロメチル亜硫酸イオン(CF S
4 3
〇 ) _、フルォロスルホン酸イオン(FS〇)—、トルエンスルホン酸陰イオン、トリニトロべ
3 3
ンゼンスルホン酸陰イオン等が挙げられる。
[0058] 本発明では、このようなォニゥム塩の中でも、下記のィ)〜ハ)の芳香族ォニゥム塩 を使用するのが特に有効である。これらの中から、その 1種を単独で、または 2種以上 を混合して使用することができる:
ィ)フエニルジァゾニゥムへキサフルォロホスフェート、 4ーメトキシフエ二ルジァゾニゥ ムへキサフルォロアンチモネート、 4 メチルフエニルジァゾニゥムへキサフルォロホ スフェートなどのァリー/レジァゾニゥム塩;
口)ジフエ二ルョードニゥムへキサフルォロアンチモネート、ジ(4 メチルフエ二ノレ)ョ 一ドニゥムへキサフルォロホスフェート、ジ(4— tert ブチルフエニル)ョードニゥム へキサフルォロホスフェートなどのジァリールョードニゥム塩;
ハ)トリフエニルスルホニゥムへキサフルォロアンチモネート、トリス(4—メトキシフエ二 ノレ)スルホニゥムへキサフルォロホスフェート、ジフエ二ノレ一 4—チオフエノキシフエ二 ノレスルホニゥムへキサフルォロアンチモネート、ジフエ二ルー 4ーチオフエノキシフエ ニルスルホニゥムへキサフルォロホスフェート、 4, 4'—ビス(ジフエニルスルフォ二ォ) フエニルスルフイド一ビス一へキサフルォロアンチモネート、 4, 4'—ビス(ジフエ二ノレ スルフォニォ)フエニルスルフイド一ビス一へキサフルォロホスフェート、 4, 4'—ビス [ ジ( /3—ヒドロキシエトキシ)フエニルスルホニォ]フエニルスルフイド一ビス一へキサフ ノレォロアンチモネート、 4, 4,_ビス[ジ( 一ヒドロキシエトキシ)フエニルスルホニォ] フエニルスルフイド一ビス一へキサフルォロホスフェート、 4- [4' - (ベンゾィノレ)フエ 二ルチオ]フエニル一ジ一(4—フルオロフェニノレ)スルホニゥムへキサフルォロアンチ モネート、 4- [4' - (ベンゾィル)フエ二ルチオ]フエ二ルージ一(4—フルオロフェニ ノレ)スルホニゥムへキサフルォロホスフェートなどのトリァリールスルホニゥム塩。
[0059] また、その他好ましいものとしては、 (?7 5— 2, 4—シクロペンタジェン一 1—ィル)〔( 1 , 2, 3, 4, 5, 6, _ ) _ (1—メチルェチル)ベンゼン〕一アイアン一へキサフルォ 口ホスフェート等の鉄—アレーン錯体や、トリス(ァセチルァセトナト)アルミニウム、トリ ス(ェチルァセトナトァセタト)ァノレミニゥム、トリス(サリチルアルデヒダト)アルミニウム などのアルミニウム錯体とトリフエ二ルシラノールなどのシラノール類との混合物なども 挙げられる。
[0060] これらの中でも実用面と光感度の観点から、芳香族ョードニゥム塩、芳香族スルホ ニゥム塩、鉄一アレーン錯体を用いることが好ましい。
[0061] なお、(C)成分のエネルギー線感受性カチオン重合開始剤の配合量は、(A)成分
、(B)成分、及び後述の (D)成分を含む場合には (D)成分の合計質量に対して、 0.
05〜30質量%であり、好ましくは 0. 5〜: 10質量%である。この量が少なすぎると感 度が悪くなり、多すぎると硬化性が悪化するとともに接着性の低下、硬化物の着色等 の問題が生じやすい。
[0062] 本発明の光学材料用硬化性組成物は、更に (D)成分として下記一般式(2)で表さ れるエポキシ樹脂を含有することが好ましい:
[化 4]
Figure imgf000016_0001
(式中、 R , は、同一でも異なっていてもよぐ水素、炭素原子数:!〜 4のアルキル 基を表わす。 )
[0063] R19、 R2°としては好ましくはいずれも水素であることがよい。具体的には、 3, 4—ェ ポキシシクロへキシルメチル _ 3, 4_エポキシシクロへキサンカルボキシレートが好 ましい。
[0064] (D)成分を含有すると、室温での粘度を低下させることができるので、上記 (A)成 分として、より高粘度のものを使用することができるので好ましい。
[0065] なお、(D)成分の好ましい使用割合は、(A)成分 100質量部に対して 10〜60質量 部、より好ましくは 15〜50質量部がよい。ここで、 (D)成分の使用割合が 10質量部 未満では、その添加効果が出現せず、また、 60質量部を超えると、プロセス耐性、耐 環境性が悪化する可能性が高まるため好ましくない。
[0066] 本発明の光学材料用硬化性組成物には、必須ではないが本発明の効果を阻害し ない範囲内で所望により、溶媒、他のカチオン重合性有機物質、酸拡散制御剤、光 増感剤、熱可塑性高分子化合物、充填剤などを添加することができる。以下、これら について説明する。
[0067] 溶剤としては、上記 (A)成分、(B)成分、(C)成分並びに (D)成分の全てに溶解性 を有するものでれば、特に限定されないが、沸点が 80〜200°Cのものが推奨される。 具体的には、イソプロパノール、 tーブタノール、メチルェチルケトン、メチルイソブチ ノレケトン、シクロペンタノン、シクロへキサノン、シクロへプタノン、トノレェン、キシレン、 クロ口ベンゼン、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレ エーテル、ジエチレングリコールジメチルエーテル、メチルエーテル、 2—メトキシー 2 プロパノールアセテート、メトキシー2—プロパノールアセテート、オタタメチノレシクロ テトラシロキサン、へキサメチルジシロキサン、等が挙げられる。このような有機溶媒は 単独で使用してもよいし、 2種類以上を混合して使用してもよい。
ただし、溶剤を用いる場合、溶剤が残存することにより、硬化物の性能が変わる可 能性がある。溶剤の配合量は、性状や溶解性、粘度により異なるが、(A)成分〜(D) 成分の合計質量に対して 1〜: 1000質量%が好ましぐ:!〜 500質量%がより好ましい
[0068] 他のカチオン重合性有機物質としては、例えば、エポキシ化合物 [上記 (A)成分、( B)成分、 (D)成分に該当するものを除く]、ォキセタン化合物、環状エーテル化合物 、環状ラタトン化合物、環状チォエーテル化合物、スピロオルトエステル化合物、ビニ ルエーテル化合物などであり、これらの 1種類または 2種類以上を使用することができ る。中でも入手するのが容易であり、取扱いに便利なエポキシ化合物が適している。 力かるエポキシィ匕合物としては、芳香族エポキシィ匕合物、脂環族エポキシ化合物、 脂肪族エポキシ化合物などが挙げられる。
上記芳香族エポキシ化合物の具体例としては、少なくとも 1個の芳香環を有する多 価フエノール、またはそのアルキレンオキサイド付加物のポリグリシジルエーテル、例 えば、ビスフエノーノレ A、ビスフエノール F、またはこれらに更にアルキレンオキサイド を付加させた化合物のグリシジノレエーテルやエポキシノボラック樹脂などが挙げられ る。
また、上記脂環族エポキシ化合物の具体例としては、少なくとも 1個の脂環族環を 有する多価アルコールのポリグリシジルエーテルまたはシクロへキセンやシクロペン テン環含有化合物を酸化剤でエポキシ化することによって得られるシクロへキセンォ キサイドゃシクロペンテンオキサイド含有化合物が挙げられる。例えば、水素添加ビ スフエノーノレ Aグリシジルエーテル、 2— (3, 4 エポキシシクロへキシル 5, 5 ス ピロ 3, 4—エポキシ)シクロへキサン メタジォキサン、ビス(3, 4—エポキシシクロ へキシルメチノレ)アジペート、ビニルシクロへキセンジオキサイド、 4 ビニルエポキシ シクロへキサン、ビス(3, 4—エポキシー6—メチルシクロへキシルメチノレ)アジペート 、 3, 4—エポキシ 6—メチルシクロへキシルカルボキシレート、ジシクロペンタジェ ンジェポキサイド、エチレングリコー/レジ(3, 4—エポキシシクロへキシ/レメチ /レ)エー テル、エポキシへキサヒドロフタル酸ジォクチル、エポキシへキサヒドロフタル酸ジ 2 ェチルへキシル等が挙げられる。
さらに、上記脂肪族エポキシ化合物の具体例としては、脂肪族多価アルコールまた はそのアルキレンオキサイド付加物のポリグリシジノレエーテル、脂肪族長鎖多塩基酸 のポリグリシジルエステル、グリシジルアタリレートまたはグリシジルメタタリレートのビニ ル重合により合成したホモポリマー、グリシジルアタリレートとその他のビュルモノマー とのビュル重合体により合成したコポリマー等が挙げられる。代表的な化合物として は、 1, 4 _ブタンジォーノレジグリシジノレエーテノレ、 1 , 6—へキサンジォーノレジグリシ ジノレエーテノレ、グリセリンのトリグリシジノレエーテノレ、トリメチローノレプロパンのトリグリシ ジノレエーテノレ、ソノレビトーノレのテトラグリシジノレエーテノレ、ジペンタエリスリトーノレのへ キサグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピ レングリコールのジグリシジルエーテルなどの多価アルコールのグリシジルエーテル、 またはプロピレングリコール、トリメチロールプロパン、グリセリン等の脂肪族多価アル コールに 1種または 2種以上のアルキレンオキサイドを付加することによって得られる ポリエーテルポリオールのポリグリシジルエーテル、脂肪族長鎖二塩基酸のジグリシ ジルエステルが挙げられる。さらに、脂肪族高級アルコールのモノグリシジルエーテ ノレやフエノール、クレゾール、ブチルフエノール、また、これらにアルキレンオキサイド を付加することによって得られるポリエーテルアルコールのモノグリシジルエーテル、 高級脂肪酸のグリシジノレエステル、エポキシ化大豆油、エポキシステアリン酸ォクチ ノレ、エポキシステアリン酸プチル、エポキシ化アマ二油、エポキシ化ポリブタジエン等 が挙げられる。
エポキシィ匕合物以外の具体例としては、トリメチレンオキサイド、 3, 3—ジメチルォ キセタン、 3, 3—ジクロロメチルォキセタン等のォキセタン化合物、テトラヒドロフラン、 2, 3 ジメチルテトラヒドロフラン等のトリオキサン、 1, 3 ジォキソラン、 1, 3, 6 トリ ォキサシクロオクタン等の環状エーテル化合物、 β プロピオラタトン、 γ—プチロラ タトン、 ε—力プロラタトン等の環状ラタトン化合物、エチレンスルフイド等のチイラン化 合物、トリメチレンスルフイド、 3, 3—ジメチルチェタン等のチェタン化合物、テトラヒド ロチォフェン誘導体等の環状チォエーテルィヒ合物、エポキシィヒ合物とラタトンとの反 応によって得られるスピロオルトエステル化合物、エチレングリコールジビエルエーテ ノレ、アルキルビュルエーテル、 3, 4 ジヒドロピランー2 メチル(3, 4 ジヒドロビラ ン一 2—メチノレ(3, 4 ジヒドロピラン一 2 カルボキシレート)、トリエチレングリコール ジビュルエーテル等のビュルエーテル化合物などが挙げられる。 他のカチオン重 合性有機物質の配合量は、 (Α)成分〜(D)成分の合計質量に対して 0. 01〜: 10質 量%が好ましぐ 0.:!〜 5質量%がより好ましい。
酸拡散制御剤は、エネルギー線照射により(C)成分から生じた酸性活性物質の被 膜中における拡散を制御し、非照射領域での硬化反応を制御する作用を有する化 合物である。
酸拡散制御剤としては、形成工程中の露光や加熱処理によって塩基性が変化しな い含窒素化合物などがこのましぐ例えば、分子内に窒素を 1つ含む含窒素化合物、 同一分子内に窒素原子を 2個含むジァミノ化合物、窒素原子を 3個以上有するジアミ ノ重合体、あるいは、アミド基含有化合物、ゥレア化合物、含窒素複素環化合物など を挙げることができる。
具体的には、 n—へキシルァミン、 n—ヘプチルァミン、 n—ォクチルァミンなどのモ ノアルキルアミン類;ジ _n—ブチルァミン、ジ一 n—へキシルァミン、ジ _n_ォクチ ルァミン等のジアルキルアミン類、トリ _n—プロピルァミン、トリ _n—へキシルァミン、 トリ一 n—ノニルァミン等のトリアルキルアミン類; 4—二トロア二リン、ジフエニルァミン 等の芳香族ァミンなどを上げることができる。
酸拡散制御剤の配合量は、(A)成分〜(D)成分の合計質量に対して 0. 001〜: 10 質量%が好ましぐ 0. 00:!〜 5質量%がより好ましい。
[0070] 熱可塑性高分子化合物の代表的なものとしては、ポリエステル、ポリ酢酸ビュル、ポ リ塩ィ匕ビニル、ポリブタジエン、ポリカーボネート、ポリスチレン、ポリビニルエーテル、 ポリビニルブチラール、ポリアタリレート、ポリメチルメタタリレート、ポリブテン、スチレン ブタジエンジェンブロックコポリマー水添物などが挙げられる。
また、これらの熱可塑性高分子化合物に水酸基、カルボキシル基、ビニル基、ェポ キシ基などの官能基を導入したものも用いることができる。
力かる熱可塑性高分子化合物の好ましい数平均分子量は 1000〜500, 000であ り、さらに好ましレヽ数平均分子量は 5, 000〜100, 000である。
熱可塑性高分子化合物の配合量は、 (A)成分〜 (D)成分の合計質量に対して 1 〜 100質量%が好ましく、 1〜 10質量%がより好ましレ、。
[0071] 代表的な光増感剤としては、例えば、アントラセン誘導体、ピレン誘導体等の光増 感剤を例示することができ、これらを併用することにより、これらを配合しない場合に 比べて硬化速度が向上し、光学材料用硬化性組成物として好ましいものになる。 (C )成分に対して 0.:!〜 300質量%程度あればよい。
[0072] 充填剤としては、無機及び有機の粉末状、フレーク状、繊維状物質が挙げられる。
無機充填剤の例としては、ガラス粉末、マイ力粉末、シリカまたは石英粉末、炭素粉 末、炭酸カルシウム粉末、アルミナ粉末、水酸化アルミニウム粉末、ケィ酸アルミユウ ム粉末、ケィ酸ジルコニウム粉末、酸化鉄粉末、硫酸バリウム粉末、カオリン、ドロマイ ト、金属粉末、ガラス繊維、炭素繊維、金属ホイスカー、炭酸カルシウムホイスカー、 中空ガラスバルーンあるいはこれらの表面をカップリング剤で処理し、表面に有機基 をつけたものなどが上げられる。
有機の充填剤の例としては、パルプ粉末、ナイロン粉末、ポリエチレン粉末、架橋ポ リスチレン粉末、架橋アクリル樹脂粉末、架橋フエノール樹脂粉末、架橋アクリル樹脂 粉末、架橋フエノール樹脂粉末、架橋尿素樹脂粉末、架橋メラミン樹脂粉末、架橋ヱ ポキシ樹脂粉末、ゴム粉末あるいはこれらの表面にエポキシ基、アクリル基、水酸基 などの反応基をつけたものなどが挙げられる。
充填剤は、概ね (A)成分〜(D)成分の合計量に対して 0. 5〜30質量%程度、好 ましくは、:!〜 20質量%程度であればよい。
[0073] また、本発明の効果を損なわない範囲で所望により、熱感応性カチオン重合開始 剤、顔料、染料などの着色剤、レべリング剤、消泡剤、増粘剤、難燃剤、酸化防止剤 、安定剤等の各種樹脂添加物等を通常の使用量の範囲内で添加することができる。
[0074] <活性重水素化化合物処理 >
また、本発明では、本発明の光学材料用硬化性組成物に用いられる (A)成分〜( D)成分の各成分及びその他の任意成分を活性重水素化合物で処理することが好ま しい。
活性重水素化化合物で処理することにより、近赤外領域の透明性を損なう原因で ある、ケィ素含有重合体中または光学材料用硬化性組成物中に存在する C H結 合、 O— H結合等の Hを重水素化でき、透明性を改善することができる。
なお、活性重水素化化合物の例としては、重水や重水素化メタノール、重水素化工 タノール等の重水素化アルコール等が挙げられる。
[0075] また、本発明の光学材料用硬化性組成物を調製する工程は、周知の工程によれば よぐ例えば、構成材料を十分混合することにより行なうことができる。具体的な混合 方法としては、例えば、プロペラの回転に伴う攪拌力を利用する攪拌法や、ロール練 りこみ法、遊星式攪拌法などが挙げられる。その後、 0.:!〜 5. Ο μのフィルターに通 して調製する。 [0076] 本発明の光学材料用硬化性組成物を硬化させる活性エネルギー線としては、紫外 線、電子線、 X線、放射線、高周波等があり、紫外線が経済的に最も好ましい。紫外 線の光源としては、紫外線レーザ、水銀ランプ、高圧水銀ランプ、キセノンランプ、ナ トリウムランプ、アルカリ金属ランプ等が挙げられる。
[0077] 本発明の光学材料用硬化性組成物は、種々の光学部品、光集積回路、光配線板 、光導波路等に利用できる。
[0078] 次に、本発明の光導波路及び光導波路の製造方法について説明する。
本発明の光導波路は、少なくともコアを、本発明の光学材料用硬化性組成物から 形成してなるものであり、更に、クラッドを、本発明の光学材料用硬化性組成物から形 成することもできる。なお、本発明の光学材料用硬化性組成物をコア、クラッドの両方 に用いるにあたっては、予めその屈折率を測定しておき、屈折率の高い方をコアに、 低レ、方をクラッドに用いればょレ、。
[0079] 次に、本発明の光導波路の製造方法について説明する。
本発明の光導波路の製造方法は、本発明の光学材料用硬化性組成物を硬化させ てコアを形成する工程を有するものである。また、本発明の光学材料用硬化性組成 物を硬化させてクラッドを形成する工程を有するものであってもよい。
例えば、本発明の光学材料用硬化性組成物(例えば紫外線硬化性組成物)を基板 に塗布して硬化させることによりクラッドを形成し、得られたクラッド上に更に本発明の 光学材料用硬化性組成物(例えば紫外線硬化性組成物)を塗布し、位置あわせ (好 ましくはマスクァライナーを使用して位置あわせ)をしてマスクを通してあるいは、直接 紫外線照射し、照射していない部分を溶媒除去することにより導波路リッジパターン を作製し、更に、クラッド材料用の光学材料用硬化性組成物を供給して硬化させ光 導波路とすればよい。ここでは、コア、クラッドの両方に本発明の光学材料用硬化性 組成物を用レ、た例を説明したが、コアのみに本発明の光学材料用硬化性組成物を 用レ、、クラッドには慣用の材料を用いることもできる。
[0080] 光導波路の製造方法の例を具体的に述べる。図 1 (a)から(d)は、本発明による光 導波路の形成工程を示す概略断面図である。
図 1 (a)に示すように、基板(1)上に所望の厚さにクラッド部分形成用の硬化性組成 物(例えば紫外線硬化性組成物)の層(2)を形成し、その上に、所望の厚さにコア部 分形成用の硬化性組成物(例えば紫外線硬化性組成物)の層(3)を形成する。次い で、図 1 (b)に示すように、コア部分形状のパターンマスクを有するマスク (4)をコア部 分形成用の硬化性組成物の層(3)の上に被せ、マスク (4)を通して紫外線(5)を照 射する。これにより、コア部分形成用の硬化性組成物の層(3)は、コア部分(6)のみ 硬化する。その後、コア部分形成用の硬化性組成物の層(3)のうち、紫外線の未照 射部分を溶媒で溶解除去すると、図 1 (c)に示すようなコア部 (6)のリッジパターンが 形成される。このコア部分(6)を埋め込むように、クラッド部分形成用の硬化性組成物 の層(2)を所望の厚さに塗布して、図 1 (d)に示すようなクラッド部分(7)を形成するこ とができる。
[0081] このようにして作製された基板付光導波路は、コア、或レ、はさらにクラッドとして本発 明の光学材料用硬化性組成物を材料としているので、耐溶剤性に優れ、また用いた 材料の複屈折が小さいために偏波依存性が小さぐかつ低損失で、耐熱性、耐湿性 に優れているものである。
[0082] 光導波路の製造で使用される基板は、フィルム化する前工程にて剥離しないことが 好ましレ、。光導波路作製に使用される基板は、特に制限されるものではないが、具体 例としては、ガラス基板、 Si基板、焼成 Si基板、 PETフィルム、ポリカーボネート、セラ ミックス、エポキシ基板、ポリイミド基板、フッ素化ポリイミド基板、 FR4基板または、こ れらの表面が物理的、またはカップリング剤などで化学的に処理されて密着性を変え たものなどが挙げられる。
[0083] 基板は、 1種類または 2種類、または 2種類以上の材質を積層した基板を使用して もよレ、。基板は、表面が平滑であって、材料との密着性の高いものが好ましい。具体 的には、焼成基板上にノボラック型エポキシ樹脂を塗布して硬化させたものを使用す ることが好ましい。
[0084] 本発明の光学材料用硬化性組成物を、基板またはクラッド上に均一な厚さに塗布 する方法は、特に制限されるものではなレ、が、スピンコーター法、バーコ一ター法、 溶媒キャスト法、インクジェット法などを利用して行なうことができ、短時間に均一に塗 布できるスピンコーターを使用するのが好ましい。 [0085] また、本発明の光学材料用硬化性組成物が紫外線硬化性組成物である場合には 、紫外線源として、高圧水銀ランプを使用することが好ましい。紫外線照射量は、塗 布した膜厚により最適条件が異なる力 S、 100〜: 10000mj/cm2の範囲内であること が好ましい。
[0086] 本発明の光学材料用硬化性組成物を、光導波路へ成形する際、必要に応じてカロ 熱してもよレ、。加熱操作は、特に制限されなレ、が、ホットプレート、オーブン等を用い て行なうことができる。このなかで、均一に熱をかけることが可能な、オーブンを使用 することが好ましい。
[0087] 更に、上記の光導波路を作製する際に、コアリッジを形成するために使用する溶剤 は、上記 (A)〜(D)成分を溶解する溶剤であれば、特に制限されるものではなぐ具 体例としては、アルカリ性水溶液、酸性水溶液、アセトン、メチルェチルケトン、メチル イソブチルケトン、エタノール、イソプロパノール、 n—プロパノール、ベンゼン、トルェ ン、 o—キシレン、 m—キシレン、 p—キシレン、 1, 3, 4—トリメチルベンゼン等が挙げ られる。これらの 1種または 2種類以上を使用すればよい。また、これらを任意の割合 にて混合したものも使用してよい。
[0088] また、本発明の光学材料用硬化性組成物を用いて光導波路を形成する場合、溶 剤による現像法を利用しなくともよい。即ち、導波路リッジパターンの形成には、硬化 後に成形物との剥離可能な铸型モールドを使用してもよい。モールドとしては、シリコ ーン、フッ素、ガラス若しくはこれらがカップリング剤などで表面処理されたものを使用 すること力 Sできる。光により铸型形成させることが好ましい。
実施例
[0089] 以下に実施例を挙げて本発明をさらに説明するが、本発明はこれらに実施例に限 定されるものではないことを理解されたい。
実施例に記載した成分は以下の通りである:
(A)成分として以下の (A1)〜 (A6)を使用した。
(A1):以下の手順に従って合成したケィ素含有重合体
反応ネ曹 1 :フエニノレトリメトキシシランを 178. 5g (0. 90mol)、 0. 032ο/οリン酸水溶 液を 97. 2g混合して、 10°Cにて 2時間の攪拌の後、 0. 5Nの水酸化ナトリウム水溶 液を 6. 07g加えた。
反応槽 2 : 3, 4 エポキシシクロへキシルェチルトリメトキシシランを 24. 6g (0. 10 mol)、エタノールを 10. 8g混合して、 0. 032%のリン酸水溶液 10. 8gを反応液の 温度が 10°Cを超えないように注意しながら 5分間かけて滴下し、 10°C以下で 2時間 攪拌した。その後、 0. 5Nの水酸化ナトリウム水溶液を 0. 67g加えた。
上記の反応槽 1と反応槽 2の反応液を混合し、さらにトノレェンを 600ml、エタノール を 600ml加えて、外浴温度を 130°Cまで加熱し、共沸により水を除去しながら、ケィ 素含有重合体の重量平均分子量 Mwが 1400 (GPCにより分析、ポリスチレン換算値 )となるまで加熱縮重合を行った。オノレトギ酸トリエチノレ 890g (6. Omol)を添加して 1 30°Cまで加温し、 130°C到達後、 1時間加熱攪拌した。吸着剤 (協和化学工業製 キヨ一ワード 600S、以下同様)を 45g加え、 100°Cで 1時間加熱攪拌した。吸着剤を 濾過して除去後、 120°C、 3mmHgにて揮発成分を除去し、トルエン 45g、メタノーノレ lOOOgを加えて 2層分離した。
下層を 110°C、 3mmHgにて揮発成分を除去し、得られたケィ素含有重合体を (A 1)とした。 GPCによる分析の結果、重量平均分子量は 1800であり、 NMRによ る分析の結果、シラノール基(Si— OH)は検出されなかった。
また、 NMRと赤外吸収スペクトルによる分析の結果、エポキシ基を有すること が確認され、 ¾Si— NMRによる分析の結果、少なくとも 3つの結合元素が酸素原子 であるケィ素原子を有することが確認され、 NMRによる分析の結果、 Si— R基 を有することが確認され、 ^ NMRと29 Si— NMRによる分析の結果、 Si— OR'基 を有することが確認された。また、ケィ素原子を除いた有機成分中のフエニル基は、 6 5. 0質量%、ケィ素原子を除いた有機成分中のメチル基は、 0質量%、電位差法に より測定したエポキシ当量は、 1428であった。
(A2):以下の手順に従って合成したケィ素含有重合体
反応槽 1 :フエニルトリメトキシシランを 300. lg (l . 51mol)、 0. 032%リン酸水溶 液を 163. 7g混合して、 10°Cにて 2時間の攪拌の後、 0. 5Nの水酸化ナトリウム水溶 液を 10. 67g加えた。
反応槽 2 : 3, 4 エポキシシクロへキシルェチルトリメトキシシランを 124. 4g (0. 50 mol)、エタノールを 54. 7g混合して、 0. 032%のリン酸水溶液 54. 7gを反応液の 温度が 10°Cを超えないように注意しながら 5分間かけて滴下し、 10°C以下で 2時間 の攪拌の後、 0. 5Nの水酸化ナトリウム水溶液を 3. 42g加えた。 上記の反応槽 1と 反応槽 2の反応液を混合し、さらにトノレェンを 1200ml、エタノールを 1200mlカ卩えて 、外浴温度を 130°Cまで加熱した。
共沸により水を除去しながら、ケィ素含有重合体の重量平均分子量 Mwが 2200と なるまで加熱縮重合を行った。オノレトギ酸トリェチノレ 1780g (12. Omol)を添加して 1 30°Cまで加温し、 130°C到達後、 1時間加熱攪拌した。
吸着剤を 90g加え、 100°Cで 1時間加熱攪拌した。吸着剤をろ過して除去後、 120 °C、 3mmHgにて揮発成分を除去し、トノレエン 45g、メタノール lOOOgを加えて 2層分 離した。
下層を 110°C、 3mmHgにて揮発成分を除去し、得られたケィ素含有重合体を (A 1)とした。 GPCによる分析の結果、重量平均分子量は 1800であり、 NMRによ る分析の結果、シラノール基(Si— OH)は検出されなかった。
また、 NMRと赤外吸収スペクトルによる分析の結果、エポキシ基を有すること が確認され、 ¾Si— NMRによる分析の結果、少なくとも 3つの結合元素が酸素原子 であるケィ素原子を有することが確認され、 NMRによる分析の結果、 Si— R基 を有することが確認され、 NMRと29 Si— NMRによる分析の結果、 Si— OR'基 を有することが確認された。また、ケィ素原子を除いた有機成分中のフエニル基は、 5 0. 8質量%、ケィ素原子を除いた有機成分中のメチル基は、 0質量%、電位差法に より測定したエポキシ当量は、 600であった。
(A3):以下の手順に従って合成したケィ素含有重合体
反応槽 1 :フエニルトリメトキシシランを 138. 8g (0. 70mol)、ジメチルジメトキシシラ ンを 6. 0g (0. 05mol)、 y—グリシドキシプロピノレトリメトキシシランを 23. 6g (0. 10 mol) , 0. 032%リン酸水溶液 91. 8gを混合して、 10°Cにて 2時間の攪拌の後、 0. 5Nの水酸化ナトリウム水溶液を 5. 74g加えた。
反応槽 2 : 3, 4 エポキシシクロへキシルェチルトリメトキシシランを 37. 0g (0. 15 mol)、エタノールを 16. 2gを混合して、 0. 032%のリン酸水溶液 16. 2gを反応液の 温度が 10°Cを超えないように注意しながら 5分間かけて滴下し、 10°C以下で 2時間 攪拌した。その後、 0. 5Nの水酸化ナトリウム水溶液を 1. Olg加えた。
上記の反応槽 1と反応槽 2の反応液を混合し、さらにトルエンを 600ml、エタノール を 600ml加えて、外浴温度を 130°Cまで加熱し、共沸により水を除去しながら、ケィ 素含有重合体の重量平均分子量 Mwが 1700 (GPCにより分析、ポリスチレン換算値 )となるまで加熱縮重合を行った。オノレトギ酸トリエチノレ 1780g (12. Omol)を添加し て 130°Cまでカ卩温し、 130°C到達後、 1時間加熱攪拌した。吸着剤を 90g加え、 100 °Cで 1時間加熱攪拌した。吸着剤をろ過して除去後、 120°C、 3mmHgにて揮発成 分を除去し、トノレェン 45g、メタノール lOOOgを加えて 2層分離した。下層を 110°C、 3 mmHgにて揮発成分を除去し、得られたケィ素含有重合体(200g)を (A3)とした。
GPCによる分析の結果、重量平均分子量は 2800であり、 H NMRによる分析の 結果、シラノール基(Si—〇H)は検出されな力、つた。
また、 NMRと赤外吸収スペクトルによる分析の結果、エポキシ基を有すること が確認され、 ¾Si— NMRによる分析の結果、少なくとも 3つの結合元素が酸素原子 であるケィ素原子を有することが確認され、 NMRによる分析の結果、 Si— R基 を有することが確認され、 NMRと29 Si— NMRによる分析の結果、 Si— OR'基 を有することが確認された。また、ケィ素原子を除いた有機成分中のフエニル基は、 4 9. 3質量%、ケィ素原子を除いた有機成分中のメチル基は、 1. 3質量%、電位差法 により測定したエポキシ当量は、 584であった。
(A4):以下の手順に従って合成したケィ素含有重合体
反応槽 1 :フエニルトリメトキシシランを 119· 0g (0. 6mol)、ジメチルジメトキシシラ ンを 48. lg (0. 4mol)、 0. 032%リン酸水溶液を 108. 0gを混合して、 10°Cにて 2 時間の攪拌の後、 0. 5Nの水酸化ナトリウム水溶液を 6. 06g加えた。
反応槽 2 : 3, 4 エポキシシクロへキシルェチルトリメトキシシランを 246. 4g (l . 00 mol)、エタノーノレ 108. 0gを?昆合して、 0. 032ο/οのリン酸水溶夜 108. 0gを反応 ί夜 の温度が 10°Cを超えないように注意しながら 5分間かけて滴下し、 10°C以下で 2時 間攪拌した。その後、 0. 5Nの水酸化ナトリウム水溶液を 6. 06g加えた。
上記の反応槽 1と反応槽 2中の反応液を混合した後、トルエンを 1200ml、エタノー ルを 1200ml加え、外浴を 130°Cに加熱した。共沸により水を除去しながら、ケィ素 含有重合体の重量平均分子量 Mwが 9000以上となるまで重縮合を行った。オノレト ギ酸トリェチノレ 1780g (12mol)を添カロして 130oCまでカ卩温し、 130°C到達後、 1時間 加熱攪拌した。吸着剤を 90g加え、 100°Cで 1時間加熱攪拌した。吸着剤をろ過して 除去後、 60°C, 20mmiigこて揮発成分を除去し、トノレエン 45g、メタノーノレ lOOOg をカロえて 2層分離した。下層を 60°C、 3mmHgにて揮発成分を除去し、得られたケィ 素含有重合体を (A4)とした。 GPCによる分析の結果、重量平均分子量 (Mw)は 12 000であり、 ^— NMRによる分析の結果、シラノール基(Si— ΟΗ)は検出されなか つた。
また、 H— NMRと赤外吸収スペクトルによる分析の結果、エポキシ基を有すること が確認され、 29Si_NMRによる分析の結果、少なくとも 3つの結合元素が酸素原子 であるケィ素原子を有することが確認され、 ^— NMRによる分析の結果、 Si_R基 を有することが確認され、 — NMRと29 Si— NMRによる分析の結果、 Si— OR'基 を有することが確認された。また、ケィ素原子を除いた有機成分中のフエニル基は、 2 0. 3質量%、ケィ素原子を除いた有機成分中のメチル基は、 5. 1質量%、電位差法 により測定したエポキシ当量は、 307であった。
(A5):以下の手順に従って合成したケィ素含有重合体
反応槽 1 :フエニノレトリメトキシシランを 50g (0. 25mol)、ジメチルジメトキシシランを 121. 5g (l . 01mol)、 γ —グリシドキシプロピルトリメトキシシランを 149g (0· 63mol )、 0. 032%リン酸水溶液を 204. 6gを混合して、 10°Cにて 2時間の攪拌の後、 0. 5 Nの水酸化ナトリウム水溶液を 4. 26g加えた。
反応槽 2 : 3, 4—エポキシシクロへキシルェチルトリメトキシシランを 155. 2g (0. 63 mol)、エタノーノレ 68. 2gを混合して、 0. 032%のリン酸水溶液 68. 2gを反応液の 温度が 10°Cを超えないように注意しながら 5分間かけて滴下し、 10°C以下で 2時間 攪拌した。その後、 0. 5Nの水酸化ナトリウム水溶液を 12. 8g加えた。
上記の反応槽 1と反応槽 2中の反応液を混合した後、 45°Cまで加熱して 1. 5時間 ほど重縮合を行った。トルエンを 356. 4g加えて反応液を希釈した後攪拌をやめ、 2 層に分かれた有機成分を多く含む下層を分離搾取し、減圧下、 45°Cにて 1時間ほど 還流脱水を行った。オノレトギ酸トリェチル 561g (3. 79mol)を添加して 130°Cまで加 温し、 130°C到達後、 1時間加熱攪拌を行った。空冷し、反応液を脱イオンフィルタ 一に通した後、 60°C、 3mmHgにて揮発成分を除去し、トルエン 100gを加えて溶解 させ、へキサン 800gを加えて 2層分離した。下層を 60°C、 5mmHgにて揮発成分を 除去し、得られたケィ素含有重合体を (A5)とした。 GPCによる分析の結果、重量平 均分子量(Mw)は 10000であり、 ^— NMRによる分析の結果、シラノール基(Si— OH)は検出されなかった。
また、 H— NMRと赤外吸収スペクトルによる分析の結果、エポキシ基を有すること が確認され、 29Si_NMRによる分析の結果、少なくとも 3つの結合元素が酸素原子 であるケィ素原子を有することが確認され、 ^— NMRによる分析の結果、 Si_R基 を有することが確認され、 H— NMRと29 Si_NMRによる分析の結果、 Si_OR'基 を有することが確認された。また、ケィ素原子を除いた有機成分中のフエニル基は、 7 . 7質量%、ケィ素原子を除いた有機成分中のメチル基は、 11. 9質量%、電位差法 により測定したエポキシ当量は、 307であった。
(A6):以下の手順に従って合成したケィ素含有重合体
反応槽 1 :ジメチルジメトキシシランを 108. 2g (0. 90mol)、 0. 032%リン酸水溶液 を 97. 2g混合して、 10°Cにて 2時間の攪拌の後、 0. 5Nの水酸化ナトリウム水溶液を 6. 07gカロえた。
反応槽 2 : 3, 4—エポキシシクロへキシルェチルトリメトキシシランを 24. 6g (0. 10 mol)、エタノールを 10. 8g混合して、 0. 032%のリン酸水溶液 10. 8gを反応液の 温度が 10°Cを超えないように注意しながら 5分間かけて滴下し、 10°C以下で 2時間 攪拌した。その後、 0. 5Nの水酸化ナトリウム水溶液を 0. 67g加えた。
上記の反応槽 1と反応槽 2の反応液を混合し、さらにトノレェンを 600ml、エタノール を 400mlカ卩えて、外浴温度を 130°Cまで加熱し、共沸により水を除去しながら、加熱 縮重合を行った。才ノレトギ酸トリエチノレ 1780g (12. Omol)を添カロして 130。Cまでカロ 温し、 130°C到達後、 1時間加熱攪拌した。吸着剤を 90g加え、 100°Cで 1時間加熱 攪拌した。 120°C、 3mmHgにて揮発成分を除去し、トノレェン 45g、へキサン 1000g をカロえて 2層分離した。下層を 110°C、 3mmHgにて揮発成分を除去し、得られたケ ィ素含有重合体を (A6)とした。 GPCによる分析の結果、重量平均分子量は 15000 であり、 — NMRによる分析の結果、シラノール基(Si— OH)は検出されなかった また、 H— NMRと赤外吸収スペクトルによる分析の結果、エポキシ基を有すること が確認され、 29Si_NMRによる分析の結果、少なくとも 3つの結合元素が酸素原子 であるケィ素原子を有することが確認され、 ^— NMRによる分析の結果、 Si_R基 を有することが確認され、 ^— NMRと29 Si_NMRによる分析の結果、 Si_OR'基 を有することが確認された。また、ケィ素原子を除いた有機成分中のフエニル基は、 0 質量%、ケィ素原子を除いた有機成分中のメチル基は、 45. 8質量%、電位差法に より測定したエポキシ当量は、 933であった。
[0095] (B)成分として以下の(B1)及び (B2)を使用した。
(B1) : 2, 2_ビス(3, 4 _エポキシシクロへキシル)プロパン
(B2) : 1, 1 , 1 , 3, 3, 3—へキサフルォロプロピル一 2, 2—ビス(3, 4—エポキシシ クロへキシル)プロパン
[0096] (C)成分として以下の(C1)を使用した。
(C1):ビス一 [4— (ビス(4—ブトキシフエ二ノレ)スルホニォ)フエ二ノレ]スルフ イドへキサフルォロアンチモネート
[0097] (D)成分として以下の(D1)を使用した。
(D1) : 3, 4—エポキシシクロへキシルメチルー 3, 4—エポキシシクロへキサン カルボキシレート
[0098] 実施例:!〜 12及び比較例:!〜 2
上記で得られた (A)〜(D)の各成分にっレ、て、表— 1に記載した割合 (表中の数 字は質量部である)で混合して本発明の光学材料用硬化性組成物及び比較のため の組成物を得た。
[0099] [表 1] 表一 1
Figure imgf000031_0001
[0100] 実施例 13〜: 18及び比較例 3
表 1に記載の各実施例及び比較例の組成物をコア材料、クラッド材料として表 2に示した組み合わせで用い、本発明の光導波路及び比較のための光導波路を作 製した。得られた各光導波路について光損失、プロセス耐性、耐環境性について試 験した。結果を表一 2に示す。
[0101] <光導波路の作製 >
焼成シリコン基板に、表— 2に示す各クラッド材料 (実施例 13におレ、ては実施例 5 で得られた組成物)をスピンコート法により 30 μ mの厚さに積層し、光量 lOmWZcm 2の紫外線を 200秒照射後、 120°Cにて 15分間加熱した。次いで、表 _ 2に示す各コ ァ材料 (実施例 13においては実施例 2で得られた組成物)をスピンコート法により 50 z mの厚さに積層し、ネガ型のフォトマスクを使用して、光量 10mW/cm2の紫外線 を 400秒照射した。オーブンを用いて 90°Cで 15分間加熱した後、混合質量比が 1 : 1のアセトン:イソプロパノールで現像した。 120°Cで 15分間加熱硬化させ、線幅 50 / mのパターンを形成した。更に、同じクラッド材料をスピンコート法により、先に形成 されたパターン線上部より 30 μ mの厚さとなるように積層し、光量 10mW/cm2の紫 外線を 200秒間照射後、 120°Cにて 15分間加熱することで、シリコン基板上光導波 路を作製した。
[0102] <光導波路の光損失の測定方法 >
波長 850nmのアイソレータ付 ASE光源を用レ、、カットバック法により測定した伝送 損失から接続損失を差し弓 [ V、て光伝送損失を得た。
[0103] <光導波路のプロセス耐性評価 >
作製した光導波路のプロセス耐性を、短期はんだ耐熱性と耐紫外線特性より以下 のようにして総合的に評価した;
〇:短期はんだ耐熱性と耐紫外線特性ともに〇のもの
△:短期はんだ耐熱性または耐紫外線特性のどちらか一方が〇であるもの
X:短期はんだ耐熱性、耐紫外線特性ともに〇でなレ、もの
[0104] <短期はんだ耐熱性 >
作製した 5cmの光導波路を空気中で、 250°Cで 15分間加熱する試験を行った。加 熱前後における外観形状の変化を目視で確認した。また、試験後の波長 850nmの 光損失を測定し、試験前と比較して変化量を算出した;
〇:試験後に外観形状に変化が見られず、光損失変化量が 0. 3dB以内のもの △:試験後に外観形状に変化が見られず、光損失変化量が 0. 3〜0. 5dBのもの X:試験後の外観形状に変化が見られる力、、または光損失変化量が 0. 5dBより大き レ、もの
[0105] <耐紫外線特性 >
作製した光導波路に、中心波長が 365nmで光量 lOmWZcm2の高圧水銀灯の光 を 100, 000秒間照射する試験を行った。試験後の外観形状の変化を目視で観察し た。また、試験後の波長 850nmの光損失を測定し、試験前と比較して変化量を算出 した;
〇:試験後に外観形状に変化が見られず、光損失変化量が 0. 3dB以内のもの △:試験後に外観形状に変化が見られず、光損失変化量が 0. 3〜0. 5dBのもの X:試験後の外観形状に変化が見られるカ または光損失変化量が 0. 5dBより大き いもの
[0106] <光導波路の耐環境性評価 >
耐環境性は、ヒートサイクル特性試験、高温高湿試験により以下のようにして総合 的に評価した;
〇:ヒートサイクル特性試験と高温高湿試験ともに〇のもの
△:ヒートサイクル特性試験または高温高湿試験のどちらか一方が〇であるもの X:ヒートサイクル特性試験または高温高湿試験ともに〇でなレ、もの
[0107] <ヒートサイクル特性試験 >
作製した光導波路をプログラム運転が可能な恒温槽に保管し、 _40°Cで 5分間保 持した後、 1°CZ分の割合で 120°Cまで昇温させ、その後 120°Cで 5分間保持し、 1 °C /分の割合で— 40°Cに冷却することを 1サイクルとして、 30サイクル試験した。試 験終了後、試験片の外観の変化の様子を確認した。また、試験後の波長 850nmの 光損失を測定し、試験前と比較して変化量を測定した;
〇:試験後に外観形状に変化が見られず、光損失変化量が 0. 3dB以内のもの △:試験後に外観形状に変化が見られず、光損失変化量が 0· 3〜0· 5dBのもの X:試験後の外観形状に変化が見られるカ または光損失変化量が 0. 5dBより大き いもの
[0108] <高温高湿試験 >
作製した光導波路を恒温恒湿槽に保管し、 85°C X 85%RHで 1000時間試験した 。試験終了後、試験片の外観の変化の様子を確認した。また、試験後の波長 850η mの光損失を測定し、試験前と比較して変化量を算出した;
〇:試験後に外観形状に変化が見られず、光損失変化量が 0. 3dB以内のもの △:試験後に外観形状に変化が見られず、光損失変化量が 0. 3〜0. 5dBのもの X:試験後の外観形状に変化が見られる力 \または光損失変化量が 0. 5dBより大き レ、もの
[0109] [表 2] 表一 2
Figure imgf000034_0001
[0110] 表 2の通り、本発明の光導波路は、光損失、プロセス耐性、耐環境性について優 れたものであり、耐熱性、耐湿性、通信波長における透明性 (低光損失性)を同時に 満足するものであった。
[0111] なお、焼成シリコン基板にプレコート剤(例えばポリイミド榭脂やエポキシノボラック 樹脂など)を積層しておき、上記と同様に作製した後、焼成シリコン基板及びプレコ ート剤(膜)を剥離してフィルム状の光導波路を形成することができた。また、得られた フィルム状の光導波路は、上記実施例と同様に良好な性質を有するものであった。 また、本発明の光導波路は、焼成シリコン基板上の場合も、フィルム状の場合も、常 法によるメタル (銅)マーク付き光導波路として作製しても同様に優れた性質を有する ものであった。

Claims

請求の範囲 必須の構成成分として、 (A):エポキシ基を有し、少なくとも 3つの結合元素が酸素原子であるケィ素原子を含 み、 Si_R基(Rは、アルキル基、フエ二ル基、アルキルフエニル基若しくはフエニルァ ルキル基又は R中の水素原子の一部若しくは全部がハロゲンィヒ若しくは重水素化さ れた、アルキル基、フエニル基、アルキルフエニル基若しくはフエニルアルキル基を表 わす。)並びに Si— OR,基(R'は、アルキル基、フエニル基、アルキルフエ二ル基若 しくはフエニルアルキル基又は R'中の水素原子の一部若しくは全部がハロゲン化若 しくは重水素化された、アルキル基、フエ二ル基、アルキルフエニル基若しくはフエ二 ルアルキル基を表わす。)を有し、重量平均分子量 1000〜100万のケィ素含有重合 体; (B):下記一般式(1)で表されるエポキシ樹脂
[化 1]
Figure imgf000036_0001
(式中、 X及び Yは、同一でも異なっていてもよぐ水素原子、アルキル基、フルォロア ノレキノレ基、パーフルォロアルキル基、フエニル基、アルキルフエニル基、フルオロフェ ニル基、パーフルオロフェニル基、フルォロアルキルフエニル基、パーフルォロアノレ キルフエニル基から選択される一価の基を表わし、 nは、正の数であり、 R^R18は、 水素原子、ハロゲン原子、あるいは酸素原子もしくはハロゲン原子を含んでも良い炭 化水素基、または置換基を有していてもよいアルコキシ基を表わす。);及び
(C):エネルギー線感受性カチオン重合開始剤
を含有することを特徴とする光学材料用硬化性組成物。
更に、(D) :下記一般式 (2)で表されるエポキシ樹脂
[化 2]
Figure imgf000037_0001
(式中、 R19、 R2°は、同一でも異なっていてもよぐ水素、炭素原子数:!〜 4のアルキル 基を表わす。 )
を含有する、請求項 1記載の光学材料用硬化性組成物。
[3] 更に、溶媒、他のカチオン重合性有機物質、酸拡散制御剤、光増感剤、熱可塑性 高分子化合物及び充填剤からなる群から選択される 1種または 2種以上の成分を含 有する、請求項 1または 2記載の光学材料用硬化性組成物。
[4] 更に、熱感応性カチオン重合開始剤、着色剤、レべリング剤、消泡剤、増粘剤、難 燃剤、酸化防止剤及び安定剤からなる群から選択される 1種または 2種以上の樹脂 添加物を含有する、請求項 1なレ、し 3のレ、ずれか 1項記載の光学材料用硬化性組成 物。
[5] 請求項 1ないし 4のいずれか 1項記載の光学材料用硬化性組成物を硬化させ形成 したコアを有することを特徴とする光導波路。
[6] 請求項 1ないし 4のいずれか 1項記載の光学材料用硬化性組成物を硬化させ形成 したクラッドを有する、請求項 5記載の光導波路。
[7] 請求項 1ないし 4のいずれ力 1項記載の光学材料用硬化性組成物を硬化させコア を形成する工程を有することを特徴とする光導波路の製造方法。
[8] 請求項 1ないし 4のいずれ力 1項記載の光学材料用硬化性組成物を硬化させクラッ ドを形成する工程を有する、請求項 7記載の光導波路の製造方法。
PCT/JP2007/054419 2006-03-10 2007-03-07 光学材料用硬化性組成物及び光導波路 WO2007105556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/224,951 US8175439B2 (en) 2006-03-10 2007-03-07 Curable composition for optical material and optical waveguide
EP07737933.7A EP1995264B1 (en) 2006-03-10 2007-03-07 Curable composition for optical material and optical waveguide
CN2007800109515A CN101410432B (zh) 2006-03-10 2007-03-07 光学材料用固化性组合物和光波导
KR1020087024724A KR101323564B1 (ko) 2006-03-10 2007-03-07 광학 재료용 경화성 조성물 및 광도파로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006066294A JP4979963B2 (ja) 2006-03-10 2006-03-10 光学材料用硬化性組成物及び光導波路
JP2006-066294 2006-03-10

Publications (1)

Publication Number Publication Date
WO2007105556A1 true WO2007105556A1 (ja) 2007-09-20

Family

ID=38509388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054419 WO2007105556A1 (ja) 2006-03-10 2007-03-07 光学材料用硬化性組成物及び光導波路

Country Status (7)

Country Link
US (1) US8175439B2 (ja)
EP (1) EP1995264B1 (ja)
JP (1) JP4979963B2 (ja)
KR (1) KR101323564B1 (ja)
CN (1) CN101410432B (ja)
TW (1) TWI402285B (ja)
WO (1) WO2007105556A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133228A1 (ja) * 2007-04-23 2008-11-06 Adeka Corporation ケイ素含有化合物、硬化性組成物及び硬化物
WO2009131229A1 (en) * 2008-04-24 2009-10-29 Panasonic Electric Works Co., Ltd. Method for manufacturing optical waveguide
WO2010001992A1 (ja) * 2008-07-03 2010-01-07 旭化成ケミカルズ株式会社 変性樹脂組成物、その製造方法及びそれを含む硬化性樹脂組成物
JP2010229384A (ja) * 2008-07-03 2010-10-14 Asahi Kasei Chemicals Corp 樹脂組成物、その製造方法及びその硬化物
JP2011001492A (ja) * 2009-06-19 2011-01-06 Asahi Kasei Chemicals Corp ハイブリッド硬化体及び樹脂組成物並びにこれらを用いた複合透明シート
JP5335670B2 (ja) * 2007-04-17 2013-11-06 旭化成ケミカルズ株式会社 エポキシシリコーン及びその製造方法、並びに、それを用いた硬化性樹脂組成物とその用途
JP2017008146A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、積層物及び装置
JP2017110092A (ja) * 2015-12-16 2017-06-22 東レ・ファインケミカル株式会社 シロキサン樹脂組成物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665162B2 (ja) * 2008-03-07 2015-02-04 東レ株式会社 光導波路フィルムおよびその製造方法
JP2009280767A (ja) * 2008-05-26 2009-12-03 Asahi Kasei Corp シロキサン誘導体、硬化物及び光半導体封止材
US8569149B2 (en) * 2010-05-06 2013-10-29 Micron Technology, Inc. Method of treating a semiconductor device
WO2012162376A1 (en) 2011-05-25 2012-11-29 Duane Raymond Bujalski Epoxy-functional radiation-curable composition containing an epoxy-functional siloxane oligomer
CN104395826B (zh) * 2012-06-27 2018-11-23 富士胶片株式会社 感光性树脂组合物、硬化膜及其制造方法、有机el显示装置、液晶显示装置及组合物
JP6096202B2 (ja) * 2012-09-28 2017-03-15 富士フイルム株式会社 感光性樹脂組成物、これを用いたパターンの製造方法
US20140170786A1 (en) 2012-12-13 2014-06-19 Juanita N. Kurtin Ceramic composition having dispersion of nano-particles therein and methods of fabricating same
JP6004581B2 (ja) * 2013-03-25 2016-10-12 日本化薬株式会社 エポキシ基含有シリコーン樹脂、エポキシ基含有シリコーン樹脂組成物、及びその硬化物
EP2995633A4 (en) * 2013-05-10 2016-10-26 Daicel Corp HARDENABLE EPOXY RESIN COMPOSITION AND HARDENING PRODUCT THEREOF
KR101447478B1 (ko) 2013-07-12 2014-10-06 (주)바이오니아 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 이용한 세라믹 페이스트 조성물 및 이를 포함하는 도전성 필름
EP3048122A4 (en) * 2013-09-18 2017-05-17 Daicel Corporation Photosensitive resin composition and cured article of same, and optical component
JP2015086306A (ja) * 2013-10-31 2015-05-07 住友ベークライト株式会社 光学装置用樹脂組成物、樹脂硬化物および光学装置
WO2015129503A1 (ja) 2014-02-28 2015-09-03 株式会社ダイセル 硬化性組成物及びその硬化物、並びにウェハレベルレンズ
TW201623453A (zh) * 2014-11-12 2016-07-01 Nagase Chemtex Corp 光學零件用樹脂組成物
CN104656188B (zh) * 2015-02-06 2018-02-16 浙江大学 一种含有铁磁金属纳米颗粒的玻璃基离子交换光波导
CN110998445B (zh) * 2017-08-24 2023-07-07 陶氏环球技术有限责任公司 光波导制造方法
CN110998388B (zh) 2017-08-24 2022-01-25 陶氏环球技术有限责任公司 用于光波导制造的方法
EP3673307B1 (en) 2017-08-24 2021-08-25 Dow Global Technologies LLC Method for optical waveguide fabrication
EP4023694B1 (en) * 2019-08-27 2024-02-14 Mitsubishi Chemical Corporation Epoxy group-containing polyorganosiloxane, curable resin composition containing epoxy group-containing polyorganosiloxane, and cured product of same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010849A (ja) 2002-06-11 2004-01-15 Asahi Denka Kogyo Kk 光学材料用硬化性組成物
JP2004102247A (ja) * 2002-07-18 2004-04-02 Shin Etsu Chem Co Ltd 光導波路形成材料、それを用いた光導波路及び光導波路の製造方法
JP2004285125A (ja) * 2003-03-19 2004-10-14 Daicel Chem Ind Ltd エポキシ樹脂組成物及びその硬化物
JP2004352771A (ja) * 2003-05-27 2004-12-16 Nitto Denko Corp 紫外線硬化型エポキシ樹脂組成物
JP2005206787A (ja) * 2003-07-07 2005-08-04 Sumitomo Bakelite Co Ltd 透明複合体組成物
JP2006225515A (ja) * 2005-02-17 2006-08-31 Jsr Corp 光半導体、その封止材および封止用組成物
JP2006282988A (ja) * 2005-03-08 2006-10-19 Sanyo Chem Ind Ltd 光半導体素子封止用エポキシ樹脂組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804616A (en) * 1993-05-19 1998-09-08 Ameron International Corporation Epoxy-polysiloxane polymer composition
JP4663893B2 (ja) * 2001-03-23 2011-04-06 ダイセル化学工業株式会社 エポキシ化合物の製造方法
EP1416003A4 (en) * 2001-08-07 2006-05-03 Nippon Kayaku Kk RESIN COMPOSITION, WELDING RESERVE COMPOSITION, AND CURED ARTICLE OBTAINED THEREFROM
EP1359198A1 (en) * 2002-05-03 2003-11-05 SigmaKalon Group B.V. Epoxy-modified polysiloxane resin based compositions useful for coatings
KR100954044B1 (ko) * 2002-05-14 2010-04-20 제이에스알 가부시끼가이샤 수지 조성물 및 보호막
US7031591B2 (en) * 2002-07-18 2006-04-18 Shin-Etsu Chemical Co., Ltd. Optical waveguide, forming material and making method
EP1542045B1 (en) * 2002-09-20 2011-07-20 Toppan Printing Co., Ltd. Method of manufacturing an optical waveguide
US20050239295A1 (en) * 2004-04-27 2005-10-27 Wang Pei-L Chemical treatment of material surfaces
JPWO2006003990A1 (ja) * 2004-07-02 2008-04-17 日本化薬株式会社 光導波路用感光性樹脂組成物及びその硬化物からなる光導波路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010849A (ja) 2002-06-11 2004-01-15 Asahi Denka Kogyo Kk 光学材料用硬化性組成物
JP2004102247A (ja) * 2002-07-18 2004-04-02 Shin Etsu Chem Co Ltd 光導波路形成材料、それを用いた光導波路及び光導波路の製造方法
JP2004285125A (ja) * 2003-03-19 2004-10-14 Daicel Chem Ind Ltd エポキシ樹脂組成物及びその硬化物
JP2004352771A (ja) * 2003-05-27 2004-12-16 Nitto Denko Corp 紫外線硬化型エポキシ樹脂組成物
JP2005206787A (ja) * 2003-07-07 2005-08-04 Sumitomo Bakelite Co Ltd 透明複合体組成物
JP2006225515A (ja) * 2005-02-17 2006-08-31 Jsr Corp 光半導体、その封止材および封止用組成物
JP2006282988A (ja) * 2005-03-08 2006-10-19 Sanyo Chem Ind Ltd 光半導体素子封止用エポキシ樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995264A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335670B2 (ja) * 2007-04-17 2013-11-06 旭化成ケミカルズ株式会社 エポキシシリコーン及びその製造方法、並びに、それを用いた硬化性樹脂組成物とその用途
WO2008133228A1 (ja) * 2007-04-23 2008-11-06 Adeka Corporation ケイ素含有化合物、硬化性組成物及び硬化物
JP2008266485A (ja) * 2007-04-23 2008-11-06 Adeka Corp ケイ素含有化合物、硬化性組成物及び硬化物
WO2009131229A1 (en) * 2008-04-24 2009-10-29 Panasonic Electric Works Co., Ltd. Method for manufacturing optical waveguide
US8541050B2 (en) 2008-04-24 2013-09-24 Panasonic Corporation Method for manufacturing optical waveguide
WO2010001992A1 (ja) * 2008-07-03 2010-01-07 旭化成ケミカルズ株式会社 変性樹脂組成物、その製造方法及びそれを含む硬化性樹脂組成物
JP2010229384A (ja) * 2008-07-03 2010-10-14 Asahi Kasei Chemicals Corp 樹脂組成物、その製造方法及びその硬化物
JP2011001492A (ja) * 2009-06-19 2011-01-06 Asahi Kasei Chemicals Corp ハイブリッド硬化体及び樹脂組成物並びにこれらを用いた複合透明シート
JP2017008146A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、積層物及び装置
JP2017110092A (ja) * 2015-12-16 2017-06-22 東レ・ファインケミカル株式会社 シロキサン樹脂組成物

Also Published As

Publication number Publication date
KR101323564B1 (ko) 2013-10-29
EP1995264B1 (en) 2013-05-01
US8175439B2 (en) 2012-05-08
KR20090006086A (ko) 2009-01-14
CN101410432B (zh) 2011-12-28
CN101410432A (zh) 2009-04-15
EP1995264A1 (en) 2008-11-26
TW200740871A (en) 2007-11-01
JP4979963B2 (ja) 2012-07-18
TWI402285B (zh) 2013-07-21
JP2007238868A (ja) 2007-09-20
US20090074374A1 (en) 2009-03-19
EP1995264A4 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2007105556A1 (ja) 光学材料用硬化性組成物及び光導波路
JP6030745B2 (ja) 多面体構造ポリシロキサン変性体および該変性体を用いた組成物
JP4205368B2 (ja) 光学材料用硬化性組成物
JP4058808B2 (ja) 光硬化性組成物および硬化膜
JP3965789B2 (ja) 硬化性組成物、硬化性金属酸化物粒子および硬化性金属酸化物粒子の製造方法
KR20040030834A (ko) 포지티브형 감방사선성 조성물 및 패턴 형성 방법
KR20090018100A (ko) 유동성 접착제 조성물을 이용한 접합 방법
WO2005091027A1 (ja) 光導波路形成用感光性樹脂組成物および光導波路
KR20130089596A (ko) 에폭시기 함유 실세스키옥산 변성 에폭시 수지, 경화성 수지 조성물, 경화물 및 코팅제
JP5219872B2 (ja) 変性樹脂組成物、その硬化物、及びそれらを含む封止材、並びに変性樹脂組成物の製造方法
JP2002071987A (ja) 光導波路の作製方法
JP2001083710A (ja) 電子部品用材料およびそれを硬化してなる電子部品
JP3867409B2 (ja) 光導波路の製造方法
JP2001281475A (ja) 光導波路用有機・無機複合材料及びそれを用いた光導波路の製造方法
JP2000109560A (ja) 光硬化性組成物および硬化膜
JP2006195420A (ja) 保護膜形成用組成物および保護膜
JP2004189840A (ja) 樹脂組成物及びその硬化物
JP4103702B2 (ja) 硬化性組成物及び反射防止膜
WO2004083309A1 (ja) 放射線硬化型組成物、光導波路およびその形成方法
JP2006152086A (ja) 硬化性組成物
WO2005085922A1 (ja) 光導波路チップの製造方法
JP2003335982A (ja) フォトマスクコート剤及びフォトマスクの表面保護コート形成方法
JP4525108B2 (ja) プライマー組成物及び積層体
JP2004300404A (ja) 放射線硬化型組成物、光導波路およびその形成方法
TW202405057A (zh) 倍半矽氧烷衍生物及其製造方法、硬化性組成物、硬塗劑、硬化物、硬塗層、以及基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12224951

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780010951.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087024724

Country of ref document: KR