WO2007097264A1 - Element semiconducteur - Google Patents

Element semiconducteur Download PDF

Info

Publication number
WO2007097264A1
WO2007097264A1 PCT/JP2007/052872 JP2007052872W WO2007097264A1 WO 2007097264 A1 WO2007097264 A1 WO 2007097264A1 JP 2007052872 W JP2007052872 W JP 2007052872W WO 2007097264 A1 WO2007097264 A1 WO 2007097264A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
semiconductor
concentration
carbon concentration
Prior art date
Application number
PCT/JP2007/052872
Other languages
English (en)
Japanese (ja)
Inventor
Yoshihiro Sato
Sadahiro Kato
Seikoh Yoshida
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Publication of WO2007097264A1 publication Critical patent/WO2007097264A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • a semiconductor element formed using a compound semiconductor is an electronic element promising as a high-voltage element and a high-speed element because of its inherent characteristics such as direct transition properties.
  • field effect transistors FETs: Field
  • High electron mobility transistor (HEMT: High Electron) formed using a nitride compound semiconductor, a type of effect transistor
  • FIG. 8 is a cross-sectional view showing an example of a HEMT which is formed using a GaN-based compound semiconductor as a nitride-based compound semiconductor and works well with the prior art.
  • a low-temperature buffer layer 23 having a GaN force formed at a low temperature on a substrate 22 such as a sapphire substrate, a low-temperature buffer layer 23 having a GaN force formed at a low temperature, a buffer layer 24 made of GaN, an electron transit layer 25 made of GaN, and an electron supply made of AlGaN Layer 26 is laminated in this order to form a heterojunction structure.
  • a source electrode 27S, a gate electrode 27G, and a drain electrode 27D are disposed on the electron supply layer 26 disposed.
  • a contact layer having an n-GaN force (not shown) is formed between the source electrode 27S and the drain electrode 27D and the electron supply layer 26 to reduce the contact resistance between the layers.
  • a two-dimensional electron gas formed immediately below the heterojunction interface between the electron transit layer 25 and the electron supply layer 26 is used as a carrier.
  • the source electrode 27S and the drain electrode 27D are operated, the electrons supplied to the electron transit layer 25 travel at a high speed in the two-dimensional electron gas layer 25a and move to the drain electrode 27D.
  • the electrons moving to the source electrode 27S force drain electrode 27D, that is, the drain current, are controlled. can do.
  • the semiconductor element according to the present invention is a semiconductor element comprising a compound semiconductor layer laminated on a substrate via a buffer layer, from the layer serving as a current path in the compound semiconductor layer.
  • the layer thickness up to the buffer layer is not less than the thickness at which current Collabs changes rapidly with respect to the layer thickness, and not more than the thickness at which the breakdown voltage of the semiconductor element changes rapidly with respect to the layer thickness. It is characterized by.
  • the layer serving as the current path is a two-dimensional electron gas layer formed at a heterojunction interface in the compound semiconductor layer.
  • a semiconductor element according to the present invention includes a compound semiconductor layer laminated on a substrate via a buffer layer, and is laminated between the buffer layer and the compound semiconductor layer. And a carbon concentration transition layer to which carbon is added so that the addition concentration increases according to the distance in the stacking direction from the compound semiconductor layer to the buffer layer.
  • the semiconductor element according to the present invention is laminated between the buffer layer and the compound semiconductor layer, and the buffer is formed from the compound semiconductor layer. It is characterized in that the layer is provided with a carbon concentration transition layer to which carbon is added so that the addition concentration is increased in accordance with the distance in the direction of stacking direction.
  • the thickness of the carbon concentration transition layer is 1 ⁇ m or less.
  • the heterojunction interfacial force in the compound semiconductor layer has a carbon concentration between the buffer layer and the carbon concentration transition layer of 1 X 10 17 cm 3 or less.
  • the compound semiconductor layer and at least one of the buffer layer and the carbon concentration transition layer include Al Ga In N
  • the semiconductor element according to the present invention is characterized in that, in the above invention, the semiconductor element is a diode or a field effect transistor.
  • the carbon concentration is 1 in the above invention.
  • the semiconductor operation layer is
  • Carbon is not added, and the layer thickness is 200 nm or more and 400 nm or less.
  • FIG. 1 is a cross-sectional view showing a configuration of a semiconductor element according to a first embodiment of the present invention.
  • FIG. 3 is a graph showing the correspondence between the thickness of an electron transit layer, current collabs, and breakdown voltage.
  • FIG. 4 is a cross-sectional view showing a configuration of a semiconductor element according to a second embodiment of the present invention.
  • FIG. 5-2 This is a graph showing the correspondence between depth of heterojunction interface force and carbon concentration.
  • FIG. 6-2 This is a graph showing the measured value of the correspondence between the depth of heterojunction interfacial force and the carbon concentration.
  • FIG. 7-1 is a graph showing the correspondence between the carbon concentration transition type of the carbon concentration transition layer, current collabs, and breakdown voltage.
  • FIG. 8 is a cross-sectional view showing a configuration of a semiconductor device that is prior art.
  • FIG. 9 is a cross-sectional view showing a configuration of a semiconductor element according to a third embodiment of the present invention.
  • FIG. 11 A graph showing the relationship between the threshold voltage and the carbon and Mg concentrations in the buffer layer. It is rough.
  • FIG. 1 is a cross-sectional view showing a configuration of HEMT 1 as a semiconductor element according to the first embodiment.
  • the HEMT 1 includes a compound semiconductor layer laminated on a substrate 2 made of sapphire, S, SiC, or the like via a buffer layer.
  • a low temperature buffer layer 3 made of GaN formed at low temperature
  • a buffer layer 4 made of GaN
  • an electron transit layer 5 made of GaN
  • an electron supply layer 6 made of AlGaN on the substrate 2. It has a mouth joint structure formed by laminating layers in this order.
  • the electron supply layer 6 has a two-dimensional electron gas layer 5a formed immediately below the heterojunction interface between the two layers having a larger band gap energy than the electron transit layer 5.
  • the two-dimensional electron gas layer 5a is used as a carrier. That is, when the source electrode 7S and the drain electrode 7D are operated, the electrons supplied to the electron transit layer 5 travel at a high speed in the two-dimensional electron gas layer 5a and move to the drain electrode 7D. At this time, by controlling the voltage supplied to the gate electrode 7G and changing the thickness of the depletion layer immediately below the gate electrode 7G, the electrons moving to the source electrode 7S force drain electrode 7D, that is, the drain current, are controlled. can do.
  • the buffer layer 4 included in the HEMT 1 will be described.
  • the noffer layer 4 is doped with an impurity force S and has a high resistance so as to reduce the leakage current generated in this layer without deteriorating the current collapse as a characteristic of HEMT1.
  • Such a buffer layer In the formation of 4 the present inventors first found that it is preferable to dope carbon (C) as an impurity into this layer.
  • the present inventors presume that the impurity concentration force in the nota layer 4 contributes to the resistance of this layer and the current collab of HEMT1, and as an impurity that makes it easier to control the addition concentration in device fabrication.
  • carbon is preferred. Specifically, by using carbon as an impurity, the impurity concentration distribution in the notch layer 4 is made finer than when doping Zn, Mg, etc. used in Patent Documents 1 and 2. It became possible to control. In particular, at the interface with the electron transit layer 5, the carbon concentration can be changed steeply in the stacking direction without diffusing carbon in the electron transit layer 5.
  • FIG. 1 is a graph showing the results of this derivation.
  • the withstand voltage of HEMT1 is a characteristic that uniquely corresponds to the resistance of the nother layer 4, and the resistance of the buffer layer 4 increases as the withstand voltage increases.
  • the current collapse is performed by sweeping the source-drain voltage (voltage between the source electrode 7S and the drain electrode 7D) in the range of 0 to 10V and 0 to 30V when HEMT1 is turned on. It is the ratio of the current value obtained for 10V. In other words, this current collabs indicates that the larger the value is and closer to “1.0”, the better the reproducibility of the output current characteristic of HEMT1.
  • Carbon concentration is S IMS (secondary
  • the current collab decreases (deteriorates) as the carbon concentration in the buffer layer 4 increases, and particularly when the carbon concentration increases to about IX 10 2 ° cm 3 or more. It turns out that falls rapidly.
  • the withstand voltage that is, the resistance of the buffer layer 4 decreases as the carbon concentration in the noffer layer 4 decreases, particularly when the carbon concentration decreases to about 1 X 10 17 cm 3 or less. I understand that At this time, the layer thickness of the electron transit layer 5 is set to 0.
  • the carbon concentration doped into the notfer layer 4 is equal to or less than the concentration at which the current collab changes rapidly with respect to this carbon concentration, and with respect to this carbon concentration. It has been found that it is preferable that the breakdown voltage of HEMT1 is equal to or higher than the concentration at which it rapidly changes. Specifically, it has been found that the carbon concentration doped in the notch layer 4 is preferably 1 ⁇ 10 17 cm 3 or more and IX 10 2 ° cm 3 or less. When the carbon concentration is within this range, HEMT1 has practically effective characteristics with current collabs of 0.8 or higher and breakdown voltage of 400V or higher.
  • the breakdown voltage is 75 OV or more.
  • the withstand voltage required when using AC power supplied as a commercial power supply in Japan is about 400V. If the withstand voltage is 750V or more, it is also required for commercial power supply in most other countries. Can satisfy the withstand voltage. Furthermore, if the carbon concentration is 5 ⁇ 10 17 cm 3 or more and 5 ⁇ 10 18 cm 3 or less, the withstand voltage is 750 V or more and the current collapse can be 0.9 or more, which is more preferable.
  • the present inventors have found that the distance from the layer serving as the current path between the electrodes to the buffer layer as the high resistance layer (layer thickness) in the compound semiconductor layer is 1S breakdown voltage and current collaboration. I guess it will contribute. In the field effect transistor, this distance corresponds to the layer thickness from the channel layer to the high resistance layer.
  • the channel layer is a two-dimensional electron gas layer 5a formed immediately below the heterojunction interface between the electron transit layer 5 and the electron supply layer 6, and the two-dimensional electron gas layer 5a to the buffer layer 4 Is approximately equal to the thickness of the electron transit layer 5. Therefore, the present inventors have actually derived the correspondence relationship between the layer thickness of the electron transit layer 5, the withstand voltage, and the current collabs.
  • FIG. 3 is a graph showing the derivation result. From Fig. 3, it can be seen that the current collab decreases as the thickness of the electron transit layer 5 decreases, especially when the layer thickness is about 0.05 ⁇ m or less. In addition, the breakdown voltage decreases as the layer thickness of the electron transit layer 5 increases, and particularly when the layer thickness is about 1.0 m or more, the breakdown voltage rapidly decreases. At this time, the carbon concentration of the noffer layer 4 is set to 1 ⁇ 10 19 cm 3 .
  • the present inventors determined that the layer thickness of the electron transit layer 5, that is, the layer thickness from the heterojunction interface between the electron transit layer 5 and the electron supply layer 6 to the buffer layer 4, is equal to this layer thickness.
  • the current collab is not less than the thickness at which the abrupt change occurs, and not more than the thickness at which the withstand voltage of the HEMT1 changes abruptly with respect to this layer thickness.
  • the electronic travel layer It was found that the layer thickness of 5 is preferably 0.05 ⁇ m or more and 1 ⁇ m or less. When the thickness of the electron transit layer 5 is within this range, HEMT1 has practically effective characteristics with current collabs of 0.8 or more and withstand voltage of 400 V or more.
  • the breakdown voltage is S750V or more. In this case, the breakdown voltage required for commercial power can be satisfied in most countries including Japan. Furthermore, if the thickness of the electron transit layer 5 is 0.05 m or more and 0.1 m or less, a withstand voltage of 800 V or more can be obtained, which is particularly suitable for applications requiring a withstand voltage.
  • the buffer layer 4 is formed so that the doped carbon concentration is 1 ⁇ 10 17 cm 3 or more and 1 ⁇ 10 2Q cm 3 or less.
  • the electron transit layer 5 is formed so that the layer thickness is 0.05 m or more and: m or less.
  • the notch layer 4 is increased in resistance without deteriorating current collabs, and the leakage current generated in the notch layer 4 is reduced.
  • the electron transit layer 5 is made of high-purity GaN so that current collabs do not occur due to the impurity concentration of this layer.
  • the carbon concentration is 1 ⁇ 10 17 cm. 3 or less
  • HEMT1 is mounted on substrate 2 with MOC VD (Metal Organic and hemical Vapor
  • a nitride compound semiconductor layer is stacked by a Deposition method. Specifically, first, trimethylgallium (TMGa) and ammonia (NH), which are raw materials for compound semiconductors, are placed in a MOCVD apparatus in which a substrate 2 having sapphire, Si, SiC, etc. is installed.
  • TMGa trimethylgallium
  • NH ammonia
  • a low temperature buffer layer 3 having a GaN force of 30 nm thickness and epitaxial growth is grown on the substrate 2 at a growth temperature of 550 ° C.
  • TMGa and NH were introduced at flow rates of 58 ⁇ mol / min and 12 lZmin, respectively.
  • a buffer layer 4 made of GaN doped with carbon having a layer thickness of 3 ⁇ m is grown epitaxially on the low-temperature buffer layer 3 at a growth temperature of 1050 ° C. At this time, by controlling the growth rate, the carbon concentration in the buffer layer 4 is set to 1 ⁇ 10 17 cm 3 or more and 1 ⁇ 10 2Q cm 3 or less. [0049] Continue! /, Introduce TMGa and NH at flow rates of 19 ⁇ mol / min and 12 lZmin, respectively.
  • an electron transit layer 5 made of GaN having a layer thickness of 0.05 to 0.1 ⁇ m is grown epitaxially on the buffer layer 4 at a growth temperature of 1050 ° C.
  • trimethylaluminum (TMA1), TMGa, and NH are introduced at flow rates of 100 molZmin, 19 ⁇ mol / min, and 12 lZmin, respectively.
  • an electron supply layer 6 made of AlGaN having a layer thickness of 30 nm is grown epitaxially on the electron transit layer 5 at a growth temperature of 1050 ° C.
  • 100% hydrogen is used as a carrier gas for introducing TMA1, TMGa, and NH.
  • a mask made of a SiO film is formed on the electron supply layer 6 by patterning using photolithography, and a source electrode 7S and a drain electrode 7D are formed.
  • An opening corresponding to each electrode shape is formed in the region to be formed. Then, Al, Ti and Au are vapor-deposited in this order in this opening to form the source electrode 7S and the drain electrode 7D. Further, the mask on the electron supply layer 6 is removed and the SiO 2 film is again formed on the electron supply layer 6.
  • the notch layer 4 is doped with carbon force S, and the carbon concentration in the nofer layer 4 is equal to the current of the HEMT1 with respect to this carbon concentration.
  • the concentration is less than the concentration at which Collabs changes rapidly, and more than the concentration at which the pressure resistance of HEMT1 changes abruptly with respect to this carbon concentration, specifically, 1 X 10 17 cm 3 or more, 1 X 10 2 ° cm— 3 or less. Therefore, in HEMT1, the buffer layer 4 can be increased in resistance without deteriorating the current collapse, the leakage current generated in the buffer layer 4 can be reduced, and the HEMT1 itself can be increased in breakdown voltage.
  • the heterojunction interfacial force in the compound semiconductor layer up to the buffer layer 4, that is, the layer thickness of the electron transit layer 5, is such that the current collab of HEMT1 is abrupt with respect to this layer thickness. More than the changing thickness and less than the thickness at which the withstand voltage of HEMT1 changes abruptly with respect to this layer thickness, specifically 0.05 ⁇ m or more and 1 ⁇ m or less. For this reason, HEMT1 can increase the resistance of buffer layer 4 without deteriorating current collapse, reduce the leakage current generated in buffer layer 4, and increase the breakdown voltage of HEMT1 itself. [0053] (Embodiment 2)
  • FIG. 4 is a cross-sectional view showing a configuration of the HEMT 11 as a semiconductor element according to the second embodiment.
  • the HEMT 11 includes a buffer layer 14 and an electron transit layer 15 that also have a GaN force instead of the buffer layer 4 and the electron transit layer 5 based on the configuration of the HEMT 1, and the notch layer 14 Further, a carbon concentration transition layer 18 having a GaN force is further provided between the electron transit layer 15 and the electron transit layer 15.
  • Other configurations are the same as HEMT1, and the same components are denoted by the same reference numerals.
  • the noffer layer 14 is formed by doping carbon in the same manner as the buffer layer 4 in HEMT 1, and the carbon concentration is 1 ⁇ 10 17 cm 3 or more and 1 ⁇ 10 2 Q cm 3 or less.
  • the electron transit layer 15 is made of high-purity GaN, like the electron transit layer 5, and its carbon concentration is 1 ⁇ 10 17 cm 3 or less.
  • the layer thickness of the electron transit layer 15 is set to 0.05 / zm or more and 1 m or less similarly to the electron transit layer 5.
  • the carbon concentration transition layer 18 is doped with carbon so that the additive concentration increases from the electron transit layer 15 to the buffer layer 14 in accordance with the distance in the direction of the stacking direction.
  • Figures 5-1 and 5-2 are graphs that schematically show this situation.
  • the horizontal axis represents the depth (distance) in the stacking direction of the heterojunction interface force between the electron transit layer 15 and the electron supply layer 6, and the vertical axis represents the carbon concentration corresponding to this depth. I will show you.
  • the carbon concentration in the carbon concentration transition layer 18 depends on the distance from the electron transit layer 15 to the buffer layer 14 in the direction of stacking force.
  • the transition is made continuously or stepwise from the carbon concentration of the electron transit layer 15 to the carbon concentration of the buffer layer 14.
  • the continuous transition is not limited to the linear transition as shown in Figure 5-1, but may be a curvilinear transition represented by a quadratic function, logarithmic function, exponential function, or the like.
  • the step transition is not limited to the four-step transition (four-step transition) as shown in Figure 5-2, but may be any multi-step transition. Further, the transition amount of the carbon concentration at each stage in the multistage step does not need to be equal and may be arbitrary.
  • the HEMT 11 has a current depending on the tendency of the carbon concentration transition (transition type). Correspondence between Collabs and pressure resistance can be finely controlled. Examples of actual measurement results are shown in Figures 6-1 and 6-2 and Figures 7-1 and 7-2.
  • the electron transit layer 15 has a layer thickness of 0 .: L m and a carbon concentration of 1 ⁇ 10 17 cm 3
  • the noffer layer 14 has a layer thickness of 2 / zm and a carbon concentration of 1 ⁇ 10 it is a 19 cm 3.
  • the HEMT 11 according to the second embodiment is laminated between the nother layer 14 and the electron transit layer 15, and also has a counter force accumulation layer from the electron transit layer 15 to the buffer layer 14. Since the carbon concentration transition layer 18 doped with carbon is added so that the additive concentration increases according to the distance in the direction, the current collabs, withstand voltage, and the breakdown voltage are changed according to the transition tendency (transition type) of the carbon concentration. Can be controlled finely.
  • the carbon concentration of the buffer layer 14 is 1 ⁇ 10 17 cm— 3 or more and 1 ⁇ 10 2 ° cm ”3 or less
  • the carbon concentration of the electron transit layer 15 is 1 ⁇ 10 17 cm 3
  • the carbon concentration transition The carbon concentration in layer 18 continuously or stepwise transitions from the carbon concentration in electron transit layer 15 to the carbon concentration in buffer layer 14 depending on the distance in the stacking direction from electron transit layer 15 to buffer layer 14. Therefore, it is possible to increase the resistance of the buffer layer 14 and the carbon concentration transition layer 18 without deteriorating the current collab, and to reduce the leakage current generated in the buffer layer 14 and the carbon concentration transition layer 18.
  • the HEMT11 itself can have a high breakdown voltage.
  • the carbon concentration of the carbon concentration transition layer 18 has been described as transitioning from the carbon concentration of the electron transit layer 15 to the carbon concentration of the buffer layer 14, but the interface with respect to the electron transit layer 15 has been described. On the other hand, the carbon concentration of the carbon concentration transition layer 18 and the electron transit layer 15 does not necessarily have to be equal. Similarly, at the interface to the buffer layer 14, the carbon concentration transition layer 18 and the buffer layer 14 may The carbon concentration is not necessarily equal.
  • the concentration of carbon Roh Ffa layer 14 is 1 X 10 17 cm 3 has been described as being 1 X 10 2Q cm 3 or less, a carbon concentration transition layer 18 at the interface to the buffer layer 14 When the carbon concentration is 1 ⁇ 10 17 cm 3 or more and 1 ⁇ 10 2Q cm 3 or less, the carbon concentration of the notfer layer 14 is not necessarily within the above range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

La présente invention concerne l'augmentation de résistance d'une couche tampon augmentée sans entraîner de chute de courant, et le courant de fuite généré dans la couche tampon est réduit. Dans un HEMT (1), un substrat (2) est fourni avec une couche tampon à basse température (3), composé de semiconducteur à composé GaN, une couche tampon (4), une couche de transport d'électron (5) et une couche d'alimentation d'électron (6) dans cet ordre. Du carbone est ajouté à la couche tampon (4) et le carbone est ajouté à un niveau de concentration où la chute de courant change rapidement ou s'abaisse mais pas plus bas qu'une concentration où la tension de tenue de l'HEMT (1) change rapidement. La couche de transport d'électrons (5) a une épaisseur où la chute de courant change rapidement ou plus mais pas plus qu'une épaisseur où la tension de tenue de l'HEMT (1) change rapidement.
PCT/JP2007/052872 2006-02-20 2007-02-16 Element semiconducteur WO2007097264A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-043036 2006-02-20
JP2006043036 2006-02-20
JP2007030341A JP5064824B2 (ja) 2006-02-20 2007-02-09 半導体素子
JP2007-030341 2007-11-02

Publications (1)

Publication Number Publication Date
WO2007097264A1 true WO2007097264A1 (fr) 2007-08-30

Family

ID=38437304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052872 WO2007097264A1 (fr) 2006-02-20 2007-02-16 Element semiconducteur

Country Status (2)

Country Link
JP (1) JP5064824B2 (fr)
WO (1) WO2007097264A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232322A (ja) * 2009-03-26 2010-10-14 Covalent Materials Corp 化合物半導体基板
JP2010283350A (ja) 2009-06-08 2010-12-16 Internatl Rectifier Corp 希土類エンハンスト高電子移動度トランジスタ及びその製造方法
WO2012157371A1 (fr) * 2011-05-18 2012-11-22 シャープ株式会社 Dispositif à semi-conducteur
CN103038869A (zh) * 2010-07-30 2013-04-10 松下电器产业株式会社 场效应晶体管
CN103545361A (zh) * 2012-07-10 2014-01-29 富士通株式会社 化合物半导体器件及其制造方法、电源装置和高频放大器
JP2014222716A (ja) * 2013-05-14 2014-11-27 コバレントマテリアル株式会社 窒化物半導体基板
CN109564855A (zh) * 2016-08-18 2019-04-02 雷声公司 使用离子注入的高电阻率氮化物缓冲层的半导体材料生长

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088081A (ja) * 2007-09-28 2009-04-23 Furukawa Electric Co Ltd:The Iii族窒化物半導体を用いた電界効果トランジスタ
KR101006480B1 (ko) * 2008-09-08 2011-01-06 서울대학교산학협력단 반도체 박막 구조 및 그 형성 방법
JP5546301B2 (ja) * 2008-11-27 2014-07-09 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP4677499B2 (ja) 2008-12-15 2011-04-27 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP5460087B2 (ja) * 2009-03-13 2014-04-02 古河電気工業株式会社 電界効果トランジスタ
JP5697012B2 (ja) * 2009-03-31 2015-04-08 古河電気工業株式会社 溝の形成方法、および電界効果トランジスタの製造方法
JP2010239034A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The 半導体装置の製造方法および半導体装置
CN102460664B (zh) * 2009-05-11 2014-08-13 同和电子科技有限公司 电子器件用外延衬底及其制造方法
JP2011035065A (ja) * 2009-07-30 2011-02-17 Hitachi Cable Ltd 半導体装置
JP5188545B2 (ja) * 2009-09-14 2013-04-24 コバレントマテリアル株式会社 化合物半導体基板
TWI462286B (zh) * 2009-12-10 2014-11-21 Dowa Electronics Materials Co A epitaxial substrate for electronic components and a method for manufacturing the same
JP2011166067A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 窒化物半導体装置
JP2011187654A (ja) * 2010-03-08 2011-09-22 Toyoda Gosei Co Ltd Iii族窒化物半導体からなるhemt、およびその製造方法
JP2011258782A (ja) * 2010-06-10 2011-12-22 Covalent Materials Corp 窒化物半導体基板
JP2012033575A (ja) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置
JP5707767B2 (ja) * 2010-07-29 2015-04-30 住友電気工業株式会社 半導体装置
JP6024075B2 (ja) * 2010-07-30 2016-11-09 住友電気工業株式会社 半導体装置およびその製造方法
JP5286613B2 (ja) 2010-08-30 2013-09-11 次世代パワーデバイス技術研究組合 窒化物系化合物半導体素子
CN103155124A (zh) * 2010-11-19 2013-06-12 松下电器产业株式会社 氮化物半导体装置
JP5136867B2 (ja) 2011-02-03 2013-02-06 次世代パワーデバイス技術研究組合 半導体基板、半導体装置、および半導体基板の製造方法
JP5711001B2 (ja) * 2011-02-17 2015-04-30 新日本無線株式会社 窒化物半導体装置の製造方法
JP5788296B2 (ja) * 2011-02-22 2015-09-30 コバレントマテリアル株式会社 窒化物半導体基板及びその製造方法
JP5919626B2 (ja) 2011-02-25 2016-05-18 富士通株式会社 化合物半導体装置及びその製造方法
JP5075264B1 (ja) 2011-05-25 2012-11-21 シャープ株式会社 スイッチング素子
JP2013004681A (ja) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp 窒化物半導体装置の製造方法
JP2013021106A (ja) * 2011-07-11 2013-01-31 Toyota Central R&D Labs Inc 半導体装置
JP2013038157A (ja) * 2011-08-05 2013-02-21 Covalent Materials Corp 化合物半導体基板
US8796738B2 (en) 2011-09-21 2014-08-05 International Rectifier Corporation Group III-V device structure having a selectively reduced impurity concentration
WO2014108946A1 (fr) * 2013-01-10 2014-07-17 パナソニック株式会社 Transistor à effet de champ
JP6392498B2 (ja) * 2013-03-29 2018-09-19 富士通株式会社 化合物半導体装置及びその製造方法
JP2015053328A (ja) 2013-09-05 2015-03-19 富士通株式会社 半導体装置
JP2015060987A (ja) * 2013-09-19 2015-03-30 富士通株式会社 半導体装置及び半導体装置の製造方法
JP2015070064A (ja) 2013-09-27 2015-04-13 富士通株式会社 半導体装置及び半導体装置の製造方法
JP6261437B2 (ja) 2014-04-09 2018-01-17 サンケン電気株式会社 半導体基板の製造方法、及び半導体素子の製造方法
JP6283250B2 (ja) * 2014-04-09 2018-02-21 サンケン電気株式会社 半導体基板及び半導体素子
JP6249868B2 (ja) 2014-04-18 2017-12-20 サンケン電気株式会社 半導体基板及び半導体素子
JP6494361B2 (ja) * 2015-03-25 2019-04-03 ローム株式会社 窒化物半導体デバイス
JP2016184663A (ja) * 2015-03-26 2016-10-20 株式会社豊田中央研究所 半導体ウエハ、半導体装置及び半導体ウエハの製造方法
US9871108B2 (en) 2015-04-23 2018-01-16 Rohm Co., Ltd. Nitride semiconductor device
JP6084254B2 (ja) * 2015-06-03 2017-02-22 クアーズテック株式会社 化合物半導体基板
JP6416705B2 (ja) * 2015-06-24 2018-10-31 日本電信電話株式会社 電界効果トランジスタおよびその製造方法
JP6660631B2 (ja) 2015-08-10 2020-03-11 ローム株式会社 窒化物半導体デバイス
JP6671124B2 (ja) 2015-08-10 2020-03-25 ローム株式会社 窒化物半導体デバイス
JP6441767B2 (ja) * 2015-08-12 2018-12-19 日本電信電話株式会社 半導体装置およびその製造方法
JP2018206786A (ja) * 2015-11-05 2018-12-27 シャープ株式会社 窒化物半導体、窒化物半導体の製造方法、および電子デバイス
JP2019003963A (ja) * 2015-11-05 2019-01-10 シャープ株式会社 窒化物半導体、窒化物半導体の製造方法、および電子デバイス
JP6654409B2 (ja) * 2015-11-16 2020-02-26 Dowaエレクトロニクス株式会社 Iii族窒化物半導体デバイス用基板およびその製造方法
FR3047608B1 (fr) * 2016-02-04 2018-04-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Transistor a heterojonction a haute mobilite electronique de type normalement bloque ameliore
JP6656991B2 (ja) 2016-03-31 2020-03-04 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
JP6396939B2 (ja) 2016-03-31 2018-09-26 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
JP6233476B2 (ja) * 2016-09-07 2017-11-22 富士通株式会社 化合物半導体装置
JP6950185B2 (ja) * 2017-01-12 2021-10-13 三菱電機株式会社 高電子移動度トランジスタの製造方法、高電子移動度トランジスタ
US11316041B2 (en) 2017-11-20 2022-04-26 Rohm Co., Ltd. Semiconductor device
JP7398968B2 (ja) 2020-01-20 2023-12-15 株式会社東芝 半導体装置及びその製造方法
WO2024004016A1 (fr) * 2022-06-28 2024-01-04 三菱電機株式会社 Dispositif à semi-conducteur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173203A (ja) * 1996-12-11 1998-06-26 Furukawa Electric Co Ltd:The Mis型電界効果トランジスタ
JP2000068498A (ja) * 1998-08-21 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 絶縁性窒化物膜およびそれを用いた半導体装置
JP2001196575A (ja) * 2000-01-13 2001-07-19 Matsushita Electric Ind Co Ltd 半導体装置
JP2003023220A (ja) * 2001-07-06 2003-01-24 Toshiba Corp 窒化物半導体素子
JP2006332367A (ja) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG135924A1 (en) * 2003-04-02 2007-10-29 Sumitomo Electric Industries Nitride-based semiconductor epitaxial substrate, method of manufacturing the same, and hemt substrate
JP4748501B2 (ja) * 2004-02-02 2011-08-17 古河電気工業株式会社 高電子移動度トランジスタ
JP4728582B2 (ja) * 2004-02-18 2011-07-20 古河電気工業株式会社 高電子移動度トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173203A (ja) * 1996-12-11 1998-06-26 Furukawa Electric Co Ltd:The Mis型電界効果トランジスタ
JP2000068498A (ja) * 1998-08-21 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 絶縁性窒化物膜およびそれを用いた半導体装置
JP2001196575A (ja) * 2000-01-13 2001-07-19 Matsushita Electric Ind Co Ltd 半導体装置
JP2003023220A (ja) * 2001-07-06 2003-01-24 Toshiba Corp 窒化物半導体素子
JP2006332367A (ja) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232322A (ja) * 2009-03-26 2010-10-14 Covalent Materials Corp 化合物半導体基板
JP2010283350A (ja) 2009-06-08 2010-12-16 Internatl Rectifier Corp 希土類エンハンスト高電子移動度トランジスタ及びその製造方法
CN103038869A (zh) * 2010-07-30 2013-04-10 松下电器产业株式会社 场效应晶体管
CN103038869B (zh) * 2010-07-30 2015-08-05 松下电器产业株式会社 场效应晶体管
WO2012157371A1 (fr) * 2011-05-18 2012-11-22 シャープ株式会社 Dispositif à semi-conducteur
JP2012243886A (ja) * 2011-05-18 2012-12-10 Sharp Corp 半導体装置
CN103545361A (zh) * 2012-07-10 2014-01-29 富士通株式会社 化合物半导体器件及其制造方法、电源装置和高频放大器
JP2014222716A (ja) * 2013-05-14 2014-11-27 コバレントマテリアル株式会社 窒化物半導体基板
CN109564855A (zh) * 2016-08-18 2019-04-02 雷声公司 使用离子注入的高电阻率氮化物缓冲层的半导体材料生长
CN109564855B (zh) * 2016-08-18 2023-08-22 雷声公司 使用离子注入的高电阻率氮化物缓冲层的半导体材料生长

Also Published As

Publication number Publication date
JP2007251144A (ja) 2007-09-27
JP5064824B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5064824B2 (ja) 半導体素子
US8569800B2 (en) Field effect transistor
US10128362B2 (en) Layer structure for a group-III-nitride normally-off transistor
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
JP5587564B2 (ja) 電界効果トランジスタおよび電界効果トランジスタの製造方法
JP5323527B2 (ja) GaN系電界効果トランジスタの製造方法
US8134181B2 (en) Semiconductor device
US9478632B2 (en) Method of manufacturing a semiconductor device
JP5566670B2 (ja) GaN系電界効果トランジスタ
KR101365302B1 (ko) 화합물 반도체 장치 및 그 제조 방법
US10199476B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2015004853A1 (fr) Dispositif semi-conducteur
WO2013155396A1 (fr) Procédé de croissance hétéroépitaxiale de transistors à mobilité électronique élevée, polaire, à azote, à haute tension de claquage et à haute conductivité de canal
US20110215424A1 (en) Semiconductor device and manufacturing method thereof
US20170250274A1 (en) Semiconductor device and manufacturing method thereof
US9087890B2 (en) Semiconductor device
JP7257498B2 (ja) 窒化物半導体装置
JP4748501B2 (ja) 高電子移動度トランジスタ
US8524550B2 (en) Method of manufacturing semiconductor device and semiconductor device
JP2011129607A (ja) GaN系MOS型電界効果トランジスタ
KR101364029B1 (ko) 질화물 반도체 소자 및 이의 제조 방법
KR101427279B1 (ko) 질화물 반도체 소자 및 이의 제조 방법
JP2007096261A (ja) 半導体素子
CN110875379A (zh) 一种半导体器件及其制造方法
KR102067597B1 (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714402

Country of ref document: EP

Kind code of ref document: A1